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Structural Transitions in Colloidal Suspensions

Martin Hecht and Jens Harting

Institut für Computerphysik, Pfaffenwaldring 27, 70569 Stuttgart, Germany

Summary. In suspensions of colloidal particles different types of interactions are
in a subtle interplay. In this report we are interested in sub-micro meter sized Al2O3

particles which are suspended in water. Their interactions can be adjusted by tuning
the pH-value and the salt concentration. In this manner different microscopic struc-
tures can be obtained. Industrial processes for the production of ceramics can be
optimized by taking advantage of specific changes of the microscopic structure. To
investigate the influences of the pH-value and the salt concentration on the micro-
scopic structure and the properties of the suspension, we have developed a coupled
Stochastic Rotation Dynamics (SRD) and Molecular Dynamics (MD) simulation
code. The code has been parallelized using MPI. We utilize the pair correlation
function and the structure factor to analyze the structure of the suspension. The
results are summarized in a stability diagram. For selected conditions we study the
process of cluster formation in large scale simulations of dilute suspensions.

Key words: Stochastic Rotation Dynamics; Molecular Dynamics; colloids; cluster-
ing

1 Introduction

Colloid science is a very fascinating research field, gaining more and more
importance in the last years. It closely connects physics, chemistry, material
science, biology, and several branches of engineering technology. According to
its key role in modern science a considerable amount of research has been per-
formed to describe colloidal suspensions from a theoretical point of view and
by simulations [16, 28, 29, 41, 47, 49] as well as to understand the particle-
particle interactions [3, 11, 12, 15, 51, 52], the phase behavior [10, 23, 32, 50],
the relevant processes on the microscale and their influence on macroscopic
parameters [13, 40, 54]. Colloidal suspensions are in fact complicated sys-
tems, since depending on the particle sizes, materials, and concentrations,
different interactions are of relevance and often several of them are in a subtle
interplay: electrostatic repulsion, depletion forces, van der Waals attraction,
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hydrodynamic interaction, Brownian motion, and gravity are the most impor-
tant influences. The properties of the suspension strongly depend on the bal-
ance of the microscopic forces between the particles. Especially for industrial
processes, where one needs to optimize certain material properties a detailed
understanding of the relevant influences is needed. The stability of different
microstructures and especially the clustering process are key properties which
are of interest.

In our work we investigate these properties, focusing on Al2O3 particles
suspended in water. This is a widely used material in ceramics [37]. We have
developed a simulation code for a Brownian suspension [20] and have adjusted
the simulation parameters so that the simulation corresponds quantitatively
to a real suspension such that experimental data can be compared directly.
The diffusion coefficient, sedimentation velocity [20], and the viscosity of the
suspension can be reproduced [17]. We also have tested the influence of poly-
dispersity and found that its influence on the results is small. It is much more
important to choose the correct mean size of the particles [17]. For Al2O3

suspensions attractive van der Waals forces are important for the behavior
of this material. Electrostatic repulsion of the charged particles counteracts
the attraction and can prevent clustering depending on the particle surface
charge. In [17] we have presented how one can relate parameters of DLVO
potentials [11, 52] with experimental conditions. In the experiment one can
control the pH-value and the salt concentration. The latter can be expressed
by the ionic strength I, which is an effective concentration of all ions present
in the solution. Both, the pH-value and the ionic strength, influence the charge
of the colloidal particles. We have shown that for not too strongly attractive
forces one can obtain reasonable quantitative agreement with experimental
results.

Three regimes can be identified and plotted in a stability diagram [17],
which we want to investigate here in more detail: A clustered regime, in which
particles aggregate to clusters, a fluid-like and stable stable suspension and
a repulsive region, for which the microstructure is similar to the ones known
from glassy systems. From our previous work we know that our model works
well, even quantitatively, in the suspended regime of the stability diagram and
close to the borders between the different microstructures. Here we extend our
investigations to different pH-values, deeper in the clustered regime, and to
the repulsive structure. We expect to gain insight to the microscopic structure
on a qualitative level.

On these grounds we have explored the stability diagram of Al2O3 suspen-
sions. The particles are uncharged close to the so called “isoelectric point” at
pH = 8.7. There, for all ionic strengths the particles form clusters. For lower
pH-values particles can be stabilized in solution by the electrostatic repulsion
due to the charge the particles carry in this case. For low pH-values, low salt
concentrations, and high volume fractions a repulsive structure can be found.

In the following section we shortly describe our simulation method. After
that we discuss the properties which can be found in our suspensions and how
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different regimes of the stability diagram are distinguished. In the section
thereafter we describe our simulation setup. Then, we present our results and
discuss the criteria we apply to characterize the microstructures. We utilize the
pair correlation function and the structure factor to characterize the clustering
behavior. Both of them in principle contain the same information, but we
concentrate on certain peaks in either of them. Each peak in the correlation
function and in the structure factor corresponds to a certain length scale and
we chose either the correlation function or the structure factor, depending
on which of the two quantities is more suitable under numerical criterions
to observe on a given length scale. To characterize the repulsive region we
evaluate the mean squared displacement (MSD), which shows a plateau, if
the particle motion consists of different processes acting on well separated
time scales. Finally, the results are summarized in a stability diagram for
our Al2O3-suspension. It shows the behavior of the suspension in an intuitive
way and helps to design industrial processes using this material. After that,
we turn to dilute suspensions of only 5% volume fraction and study cluster
growth at low shear rates in these suspensions. Finally, we shortly summarize
our results. The results which we present in this report have been accepted
for publication in [18, 19].

2 Simulation Method

Our simulation method is described in detail in [17, 20] and consists of two
parts: a Molecular Dynamics (MD) code, which treats the colloidal particles,
and a Stochastic Rotation Dynamics (SRD) simulation for the fluid solvent.
In the MD part we include effective electrostatic interactions and van der
Waals attraction, known as DLVO potentials [11, 52], a lubrication force and
Hertzian contact forces. DLVO potentials are composed of two terms, the first
one being an exponentially screened Coulomb potential due to the surface
charge of the suspended particles

VCoul = πεrε0

[
2 + κd
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· 4kBT
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tanh
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zeζ
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)]2
× d2
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where d denotes the particle diameter, r the distance between the particle
centers, e the elementary charge, T the temperature, kB the Boltzmann con-
stant, and z is the valency of the ions of added salt. ε0 is the permittivity of
the vacuum, εr = 81 the relative dielectric constant of the solvent, κ the in-
verse Debye length defined by κ2 = 8π�BI, with ionic strength I and Bjerrum
length �B = 7 . The effective surface potential ζ can be related to the pH-value
of the solvent with a 2pK charge regulation model [17]. The Coulomb term
competes with the attractive van der Waals interaction (AH = 4.76 · 10−20 J
is the Hamaker constant) [21]
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The attractive contribution VVdW is responsible for the cluster formation we
observe. However, depending on the pH-value and the ionic strength, it may be
overcompensated by the electrostatic repulsion. When particles get in contact,
the potential has a minimum. However, (2) diverges due to the limitations of
DLVO theory. We cut off the DLVO potentials and model the minimum by
a parabola as described in [20]. The particle contacts are modeled as Hertzian
contacts and for non-touching particles. Below the resolution of the SRD
algorithm short range hydrodynamics is corrected by a lubrication force, which
we apply within the MD framework, as we have explained in [17, 20]. For
the integration of translational motion of the colloidal particles we utilize
a velocity Verlet algorithm [5].

For the simulation of a fluid solvent, many different simulation methods
have been proposed: Stokesian Dynamics (SD) [6, 7, 41], Accelerated Stoke-
sian Dynamics (ASD) [45, 46], pair drag simulations [47], Brownian Dynamics
(BD) [21, 22], Lattice Boltzmann (LB) [27, 28, 29, 30], and Stochastic Rota-
tion Dynamics (SRD) [20, 26, 38]. These mesoscopic fluid simulation methods
have in common that they make certain approximations to reduce the com-
putational effort. Some of them include thermal noise intrinsically, or it can
be included consistently. They scale differently with the number of embedded
particles and the complexity of the algorithm differs largely.

We apply the Stochastic Rotation Dynamics method (SRD) introduced
by Malevanets and Kapral [33, 34]. It intrinsically contains fluctuations, is
easy to implement, and has been shown to be well suitable for simulations of
colloidal and polymer suspensions [4, 17, 20, 26, 38, 42, 53] and recently for
star-polymers in shear flow [44]. The method is also known as “Real-coded
Lattice Gas” [26] or as “multi-particle-collision dynamics” (MPCD) [43]. It
is based on so-called fluid particles with continuous positions and velocities.
A streaming step and an interaction step are performed alternately. In the
streaming step, each particle i is moved according to

ri(t+ τ) = ri(t) + τ vi(t), (3)

where ri(t) denotes the position of the particle i at time t and τ is the time
step. In the interaction step the fluid particles are sorted into cubic cells of
a regular lattice and only the particles within the same cell interact among
each other according to an artificial interaction. The interaction step is de-
signed to exchange momentum among the particles, but at the same time
to conserve total energy and total momentum within each cell, and to be
very simple, i.e., computationally cheap: each cell j is treated independently.
First, the mean velocity uj(t′) = 1

Nj(t′)

∑Nj(t
′)

i=1 vi(t) is calculated. Nj(t′) is
the number of fluid particles contained in cell j at time t′ = t+ τ . Then, the
velocities of each fluid particle in cell j are rotated according to

vi(t+ τ) = uj(t′) + Ωj(t′) · [vi(t) − uj(t′)]. (4)

Ωj(t′) is a rotation matrix, which is independently chosen at random for each
time step and each cell. We use rotations about one of the coordinate axes
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by an angle ±α, with α fixed. The coordinate axis as well as the sign of the
rotation are chosen at random, resulting in 6 possible rotation matrices. To
remove anomalies introduced by the regular grid, one can either choose a mean
free path of the order of the cell size or shift the whole grid by a random vector
once per SRD time step as proposed by Ihle and Kroll [24, 25].

Three different methods to couple the SRD and the MD simulation have
been introduced in the literature. Inoue et al. proposed a way to implement no
slip boundary conditions on the particle surface [26]. Padding and Louis very
recently came up with full slip boundaries, where the fluid particles interact
via Lennard-Jones potentials with the colloidal particles [39]. Falck et al. [14]
have developed a “more coarse grained” method which we use for our simula-
tions and which we descibe shortly in the following.

To couple the colloidal particles to the fluid, the colloidal particles are
sorted into the SRD cells and their velocities are included in the rotation
step. One has to use the mass of each particle –colloidal or fluid particle –as
a weight factor when calculating the mean velocity

uj(t′) =
1

Mj(t′)

Nj(t
′)∑

i=1

vi(t)mi, (5)

with Mj(t′) =
Nj(t

′)∑
i=1

mi, (6)

where we sum over all colloidal and fluid particles in the cell, so that Nj(t′) is
the total number of both particles, fluid plus colloidal ones. mk is the mass of
the particle with index i and Mj(t′) gives the total mass contained in cell j at
time t′ = t+ τ . To some of our simulations we apply shear. This is realized by
explicitly setting the mean velocity uj to the shear velocity in the cells close
to the border of the system. Both, colloidal and fluid particles, are involved in
this additional step. A thermostat is applied to remove the energy introduced
to the system by the shear force. We have described the simulation method
in more detail in [17, 20].

A single simulation run as presented in these papers took between one
and seven days on a 3GHz Pentium CPU. However, for strongly clustering
systems we easily end up with only a single cluster inside the simulation vol-
ume. In order to be able to gather statistics on cluster growth and formation,
as well as to minimize finite size effects, we parallelized our code. While MD
codes have been parallelized by many groups, only few parallel implementa-
tions of a coupled MD and SRD program exist. This is in contrast to the
number of parallel implementations of other mesoscopic simulation methods
like for example the lattice Boltzmann method. A possible explanation is that
SRD is a more recent and so far not as widely used algorithm causing the
parallelization to be a more challenging task.

We utilize the Message Pasing Interface (MPI) to create a C++ code
based on domain decomposition for both involved simulation methods. In
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the MD code the position of neighbouring particles is needed to compute
the interactions. Since the intractions have a limited range, and a linked cell
algorithm is already used in the serial code, we apply linked cells here as
well. Particle positions at the border of the domain of each processor are
communicated to the neighbouring processors for the calculation of the forces.
Then, the propagation step is performed and particle positions are updated,
whereby the particles crossing a domain boundary are transferred from one
processor to the other one.

Since (in principle), fluid particles can travel arbitrary large distances in
one time step, one either has to limit the distance they can move, or one needs
all-to-all communication between the processors. Even though the mean free
path in our systems is small enough to limit communication to nearest neigh-
bours only, the current version of our code tries to be as general as possible
and allows fluid particles to move to any possible position in the total simula-
tion volume within a single timestep. First, we determine locally which fluid
particles have to be sent to which destination CPU and collect all particles
to be sent to the same destination into a single MPI message. If no parti-
cles are to be sent, a zero dummy message is transmitted. On the receiving
side, MPI_Probe with the MPI_ANY_SOURCE option is utilized to determine the
sender’s rank and the number of particles to be accomodated. Now, MPI_Recv
can be used to actually receive the message. All processors send and receive
in arbitrary order, thus waiting times are kept at a minimum allowing a very
efficient communication. The standard MPI all-to-all communication proce-
dure should be less efficient since the size of every message would be given
by the size of the largest message. However, we still do find a substantial
communication overhead from our benchmark tests of the scalability of the
code. Due to this overhead, we are currently limited to 32 CPUs. In order to
achieve Gallilean invariance, a random shift of the SRD lattice is performed
for every rotation step [24, 25]. Since the domains managed by each CPU do
not move, this would include the borders between the processors to cross SRD
cells, which is undesirable. Therefore, we keep the position of the lattice fixed
and shift the fluid particle positions before sorting them into the cells instead.
After the rotation step they are shifted back.

3 Background

We examine the microstructures obtained in our simulations for different con-
ditions. We vary the pH-value and the ionic strength I. The shear rate γ̇ as an
external influence is varied as well. We classify the microstructures in three
categories: suspended, clustered, and repulsive. In the suspended case, the
particles can move freely in the fluid and do not form stable clusters. In the
clustered regime the particles form clusters due to attractive van der Waals
forces. These clusters can be teared apart if shear is applied. In some of our
simulations the clusters are very weakly connected and at small shear rates
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they are not only broken up into smaller pieces, but they dissolve to freely
moving individual particles. In this case, we assign the microstructure to the
suspended region, although in complete absence of the shear flow clusters are
formed. At the borders between the different regimes in fact no sharp transi-
tions can be observed. The DLVO forces rather steadily increase and compete
with the hydrodynamic interactions. Accordingly, in experiments one cannot
observe a sudden solidification, but a steadily increasing viscosity when leav-
ing the suspended regime [17].

Similarly as for attractive forces, repulsive interactions can restrict the
mobility of the particles. If this happens, the mean squared displacement
of the particles shows a pronounced plateau, as it can be found in glassy
systems. However, we speak of a “repulsive structure”, because the change of
the viscosity is not as strong as in glasses, where it often changes by many
oders of magnitude, when the glass transition is approached. In addition,
to claim a system shows a glassy behavior would require to investigate the
temperature dependence of a typical time (e.g. particle diffusion time) and to
show its divergence as the glass temperature is approached. This is difficult
to do in the framework of our simulation model [20] and therefore we prefer
to speak about a “repulsive structure” which might be identified as a colloidal
glass in future work.

Here we would like to emphasize the analysis of the microstructure for
different conditions. Our aim is to reproduce a so-called stability diagram
by simulations. The stability diagram depicts the respective microstructure
depending on the pH-value and the ionic strength I. We apply different numer-
ical tools to analyze the microstructure in our simulations and finally arrive
at a stability diagram shown in Fig. 7, which summarizes the results which
we present in the following sections.

4 Simulation Setup

In this study the colloidal particles are represented by three dimensional
spheres of d = 0.37 µm in diameter. This is the mean diameter of the particles
used in the experiments to which we refer in [17]. We have simulated a small
volume, 24 d = 8.88 µm long in x-direction, which is the shear direction, and
12 d = 4.44 µm long in y- and z-direction. We have varied the volume fraction
between Φ = 10 % (660 particles) and Φ = 40 % (2640 particles). Most of the
simulations were performed at Φ = 35 % (2310 particles). To study low volume
fractions Φ = 5 % we have enlarged the simulation volume to 24 d = 8.88 µm
in each direction and we have further scaled up the system in each dimesion
by a factor of 2 or 4, resulting in a cube of 48d = 17.76µm. For selected
pH-values and ionic strengths we have studied the cluster growth of dilute
suspensions at low shear rates (γ̇ = 20/s).

We use periodic boundaries in x- and y-direction and closed boundaries
in z-direction [17]. Shear is applied in x-direction by moving small zones of
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particles and fluid close to the wall with a given shear velocity. The xy-plane
is our shear plane. For simulations without shear, to achieve the best com-
parability, we use the same boundary conditions and just set the shear rate
to γ̇ = 0. In addition we have performed simulations with two different shear
rates: with γ̇ = 100/s and with γ̇ = 500/s.

5 Results and Discussion

First, we focus on simulations without shear, where one can predict intu-
itively, what should happen. Qualitatively the results are similar to our earlier
work [20], but the quantitative relation between the pH-value and the poten-
tials is new. The relation was presented in [17], but here we apply it to different
cases and we focus more on the characterization of the microstructure. How-
ever, given the particle particle interaction potentials, the microstructure in
equilibrium can be predicted easily, at least on a qualitative level. But, the
matter changes and gets more sophisticated, when shear is applied and an
interplay between shear flow and particle particle interactions becomes re-
sponsible for the resulting microstructure. At the end of this section we move
on to dilute suspensions and study the growth of clusters at low shear rates.

5.1 Correlation Function

For constant ionic strength I = 3 mmol/l the local microstructure can be
examined using the correlation function. Depending on the pH-value the be-
havior of the system changes from a repulsive structure around pH = 4 to
a stable suspension around pH = 6 towards a clustered region if the pH-value
is further increased, until the isoelectric point is reached at pH = 8.7. There
clustering occurs in any case, independent on the ionic strength. This can be
seen in the structure of the correlation function

g(r) =
V

N2

〈∑
i

∑
j �=i

δ(r − rij)

〉
, (7)

(see [5] p. 55), where V is the volume, N the number of particles and rij the
distance of two particles i and j.

At pH = 4 electrostatic repulsion prevents clustering: Particles are sus-
pended, and there is no fixed long range ordering in the system. The cor-
relation function (Fig. 1) shows a maximum at a typical nearest neighbor
distance slightly above r

d = 1 with d denoting the particle diameter, then in
the layer of next neighbors small correlations can be found (at r

d = 2). For
larger distances the correlation function is rather constant.

When the pH-value is increased, the surface charge is lower, which at first
causes the particles to approach each other more closely. The maximum of the
correlation function is shifted to smaller distances (see Fig. 1, note that the
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curves are shifted vertically in the plot by a factor of 3 for better visibility.).
Then, van der Waals attraction becomes more important and clustering be-
gins. One can see this in the correlation function where a sharp structure at
particle distances between 1.5 and 2 particle diameters occurs. There is a near-
est neighbor peak, and more complicated structures at larger distances, which
we have assigned to typical particle configurations for small distances [20]. In
a solid like cluster the position of the next neighbor is fixed more sharply than
in the suspension, consequently the nearest neighbor peak becomes sharper,
and its height is increased. Close to the isoelectric point (pH = 8.7) the bar-
rier between primary and secondary minimum disappears. The particles, once
clustered, cannot rearrange anymore, and therefore the correlations to the
next neighbors become less sharp again (compare the cases of pH = 8.7 and
pH = 7.7 in Fig. 1 at the positions denoted by the arrows).

Instead of varying the pH-value, one can also vary the ionic strength to
achieve similar effects. Increasing the ionic strength, experimentally speaking
“adding salt” decreases the screening length 1/κ and therefore the attractive
forces become more important: the particles start to form clusters.

The effects described up to here can be observed with or without shear
qualitatively in an analogous manner. If the suspension is sheared clustering
occurs at higher pH-values and the peaks found in the correlation function are
slightly broadened, because the relative particle positions are less fixed. But
a new feature appears, if a stable suspension of not too high volume fraction is
sheared. Induced by the shear particles arrange themselves in layers. Regular
nearest neighbor distances in the shear plane cause the correlation function to

Fig. 1. Dependence of the particle correlation function on the pH value, I = 3 mmol,
γ̇ = 0/s Φ = 35%. The plots for four different pH-values are shifted against each other
for better visibility by a factor of 3. For pH = 4 the particles are not clustered. Hence
the structure at r

d
= 2 is less sharp than in the other three curves of the plot and

the nearest neighbor peak (at r
d

= 1) is broad. For pH = 6.5 slight clustering starts,
the structures become sharper. For pH = 7.7 strong cluster formation is reflected
in very sharp structures. For pH = 8.5 electrostatic repulsion nearly disappears
so that no barrier between primary and secondary minimum exists anymore. The
particles cannot rearrange anymore, and therefore the structures labeled by the
arrows become smoothened compared to the case of pH = 7.7 (source: [19])
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Fig. 2. Nearest neighbor peak (primary and secondary minimum of the potential)
of the correlation function I = 3 mmol/l, Φ = 35 %: For low pH-values clustering
is prevented by the electrostatic repulsion. For high pH-values the particles form
clusters, which is reflected by an increased nearest neighbor peak. First, shear pre-
vents clustering, then depending on the shear rate, cluster formation takes place.
Low shear rates even support cluster formation at high pH-values (source: [19])

become more structured even for large distances. The long range structure of
the pair correlation function appears after a transient time the particles need
to arrange themselves in the layered structure. Shear induced layer formation
has been found in both, experiments [1, 2] and simulations [8, 9, 36]

We have integrated over the nearest neighbor peaks, both, the peaks of
the primary and the secondary minimum, and plotted the integral versus
pH-value in Fig. 2. We have chosen I = 3 mmol/l and Φ = 35 % and three
different shear rates: γ̇ = 0, 100 and 500/s. We have integrated the correlation
function for r < 1.215 d, where for all pH-values the potential in the secondary
minimum has a value of − 1

2kBT . In other words, we have captured the primary
and the secondary minimum of the potential for this plot. For low pH-values
clustering (in the secondary minimum) is only possible for low shear rates. For
high shear rates, the hydrodynamic forces do not allow the formation of stable
clusters. For rising pH-values the clustering increases, first for the un-sheared
suspension, at higher pH-values for low shear rates (γ̇ = 100/s) and finally
for high shear rates (γ̇ = 500/s). Remarkably, for pH > 7.5 the curve for
γ̇ = 100/s shows stronger cluster formation than the other ones. Particles are
brought together by the shear flow, so that compared to the case of no shear,
the clustering process is supported here. On the other hand, the shear stress
may not be too strong, because otherwise the clustering process is limited by
the shear flow again (for γ̇ = 500/s the clustering is less pronounced than for
γ̇ = 100/s).

5.2 Structure Factor

The pair correlation function can be used to characterize the local order of
the microstructure on the length scale of the particle size. However, to do the
characterization on the length scale of the system size, we use the structure



Structural Transitions in Colloidal Suspensions 55

factor defined by

S(k) =
1
N

N∑
l,m=1

exp(ik · rlm), (8)

where N is the number of particles, and rlm is the vector from particle l to
particle m. i denotes the imaginary unit here. The structure factor is related
to the pair correlation function in real space by a three dimensional Fourier
transform. In principle the structure factor contains the same information
as the pair correlation function. However, due to numerical reasons and our
implementation of shear boundary conditions it is easier to observe the long-
range structure in the structure factor than in the pair correlation function.

In Fig. 3 we have plotted several typical structure factors of our simula-
tions. For these plots the pH-value is fixed to pH = 6. The cases a) and b)
are sheared with γ̇ = 500/s at an ionic strength of I = 0.3 mmol/l. In case
a) the volume fraction Φ = 20% is relatively low. Therefore the particles can
arrange themselves in layers parallel to the shear plane, which move relatively
independently in the shear flow. They have a certain distance fixed in space
and time. This can be seen in a sharp peak at a dimensionless k-vector of
k = 5.2, which corresponds to a distance of 1.2 particle diameters. In fact,
this is exactly the distance between two neighboring layers, as one can easily
verify by counting the layers in a snapshot of the system (Fig. 4a)). The parti-
cles in the layers do not have a fixed distance and therefore no 2nd-order-peak
can be observed.

Fig. 3. Structure factor for some selected examples, with pH = 6 fixed for all plots:
γ̇ = 500/s, I = 0.3 mmol/l: a) Φ = 20% and b) Φ = 35% , γ̇ = 0, I = 25 mmol/l:
c) Φ = 40% and d) Φ = 10% . The curves are shifted vertically for better visibility.
In case a) ten layers can be identified in the system, resulting in the strong peak
close to 5. But, since the particles in the layers can still move freely, there is no
2nd-order-peak. In case b) layers are formed, but particles are moving from one
layer to the other, disturbing the flow. As a result the nearest neighbor peak is much
broader. Due to the structure in the layers, a 2nd-order-peak appears. In case c) the
interaction is strongly attractive, hence the particles approach each other and the
nearest neighbor peak is shifted to higher k-vectors. In case d) the volume fraction
is much less. The slope of the low-k-peak is much flatter, which depicts that the
cluster is fractal (source: [19])
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For case b) the volume fraction is increased to Φ = 35%. The particle layers
are packed more densely and therefore the interactions between one layer and
the neighboring one become relevant. Particles jump from one layer to the
other, which disturbs the flow and therefore the distance between the layers
is not fixed anymore. The sharp peak on top of the nearest neighbor peak
disappears. Instead of that, in each layer a regular hexagonal order appears
and therefore the 2nd-order-peak is much more pronounced.

In case c) the ionic strength is increased to I = 25 mmol/l. The inter-
particle potentials are attractive enough that aggregation takes place. In this
simulation we did not apply shear, therefore one finds only one big cluster in
the system (compare Fig. 4c)). In the cluster the particles are packed more
densely and consistently the nearest neighbor peak in the structure factor is
shifted to larger k-vectors. The volume fraction is Φ = 40% in this case.

In case d) the volume fraction is decreased to Φ = 10%. The particles still
form clusters, but their mobility is not high enough to create one compact
cluster. The system has a fractal structure (see Fig. 4d)). This can be seen
in the structure factor as well: The slope for low k-vectors is flatter in this
case compared to cases a)–c). A flatter slope of the low-k-peak is typical for
structure factors of fractal objects. The fractal dimension of the cluster ex-
tracted from the slope of the low-k-peak is 2.5. In experiments this relation is
often used to determine the fractal dimension of a sample: Lattuada et al. [31]
have evaluated the fractal dimension of agglomerates of latex particles from
the slope of the structure factor. McCarthy et al. [35] give an introduction
to scattering intensities at fractal objects, without mentioning the structure
factor, but their arguments refer to the contribution of the structure factor
on the scattering intensity. The underlying mechanism which is responsible
for these structures is cluster cluster aggregation [48].

In Fig. 5 we show the dependence of the low-k-peak of the structure factor
on the pH-value. Here we have integrated over dimensionless k-vectors smaller
than 3 which means, we have captured structures larger than twice a particle
diameter. A large integral over the low-k-peak is due to a large inhomogeneity
in the system. In one part of the system particles are present and in the
other part not. In other words, we observe the process of cluster formation
on a length scale of the system size. Without shear, particles cluster in the
secondary minimum for all pH-values. If the system is slightly sheared (γ̇ =
100/s) clustering is suppressed for low pH-values. Starting at pH = 6 cluster
formation starts and is even supported by the shear flow for pH-values larger
than 7.5. For large shear rates (γ̇ = 500/s) cluster formation is suppressed
by the shear flow. By analyzing the low-k-peak of the structure factor one
observes on the length scale of the system size. The same behavior of the
system can be seen by analyzing the pair correlation function, as we have
already shown in Fig. 2. In that case one analyzes the number of nearest
neighbors, that means, one observes the length scale of a particle diameter.
Nevertheless, both graphs show the same behavior of the system, i.e., we have
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Fig. 4. Snapshots of the systems analyzed in Fig. 3: In case a) one can see the layers
resulting in the sharp peak in the structure factor. In case b) the layers are packed
closer due to the higher volume fraction. Collisions between particles of neighboring
layers happen more frequently. In case c) one big cluster is formed. The particles
are packed densely. In case d) the fractal nature of the system can be seen directly
(source: [19])

Fig. 5. low-k-peak for different pH-values and different shear rates. The ionic
strength I is kept constant at I = 3mmol/l and the volume fraction is always
Φ = 35%. For γ̇ = 0/s the particles tend to cluster in the secondary minimum
of the potential. This clustering can easily be broken up, if shear is applied. If the
pH-value is increased, shear cannot prevent cluster formation anymore. At low shear
rates (γ̇ = 100/s) clustering is even enhanced, since the particles are brought closer
to each other by the shear flow (source: [19])
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a consistent picture of the cluster formation process on the length scale of the
nearest neighbors and on the length scale of the system size.

Thus we have confirmed that the cluster formation process is not limited
to length scales smaller than our system size. This is reflected especially by
the transition between pH = 7–8 and its shear rate dependence in the plots
in Fig. 5 and Fig. 2. There is a strong similarity of the two plots, which are
obtained by two evaluation methods referring to two different length scales.
This confirms that the plots do not only reflect how clusters are formed on
the respective length scale, but that the clustering process is a phenomenon
which can be observed on any length scale by applying a suitable method to
characterize it.

5.3 Repulsive Regime

To characterize the repulsive regime, we evaluate the mean squared displace-
ment for the particles. In Fig. 6 we plot the mean squared displacement for
different ionic strengths. The pH-value is kept constant at pH = 6 and the
volume fraction is Φ = 35% for this plot. Three different regimes can be
identified. For very short times, the ballistic regime: particles move on short
distances without a notable influence by their neighbors. The distances are
in the order of some percent of the particle diameter and the times are a few
SRD time steps. For larger times the particles interact with their neighbors
and therefore their mobility is limited due to collisions with the neighbors.
This is reflected in the mean squared displacement by a plateau of reduced
slope, which is the more pronounced the more the mobility of the particles is
restricted. For even larger time scales collective motion starts, i.e., clusters or

Fig. 6. Mean squared displacement at pH = 6 for different ionic strengths, without
shear. One can see a ballistic regime for short times, a central plateau and a collective
long time movement which can be a movement of a whole cluster or cage escape
events of single particles. Depending on the ionic strength, the central plateau is
more or less pronounced. A comparison of the plateau for different simulations can
be used to decide, if a certain state belongs to the repulsive region of the stability
diagram. A state well in the liquid microstructure should be used as a reference for
the comparison (source: [19])
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groups of particles move, or single particles can escape from a cage formed by
its neighbors. Depending on the ionic strength different effects are important
and thus the shape of the curve is different. For large ionic strengths the par-
ticles form clusters and these clusters may drift or rotate in the system. Then
the collective motion is more dominant and the mean squared displacement
grows faster than in single particle diffusion. The mean squared displacement
does not show a plateau, then. But in the repulsive regime, the neighbors
limit the motion of the particles, and the slope of the plateau is flatter, i.e.,
the plateau is even more pronounced, compared to the suspended case. In
the repulsive regime the particles tend to arrange themselves in layers when
shear is applied [17] and long range correlations can be found in un-sheared
systems [20].

5.4 Stability Diagram

The results of the investigations presented up to here can be summarized
in a stability diagram for our Al2O3-suspension (Fig. 7). Three different mi-
crostructures can be identified: a repulsive structure, a suspended region and
a clustered region. In contrast to our previous work [17, 20], we have explored
the parameter space more in the repulsive regime and deeper in the clustered
region. We use the mean squared displacement, the correlation function, and
the structure factor, to decide to which of the three microstructures a certain
point in the stability diagram belongs. However, the borders between the re-

Fig. 7. Stability diagram (plotted for Φ = 35% and without shear): depicting three
regions: a clustered region (filled circles), a suspended regime (open squares), and
a repulsive structure (filled squares). In the clustered region particles aggregate
which leads to inhomogeneity in the system. In the suspended regime, the particles
are distributed homogeneously in the system and they can move freely. In the re-
pulsive regime the mobility of the particles is restricted by electrostatic repulsion
exerted by their neighbors. As a result they arrange in a local order which maxi-
mizes nearest neighbor distances. The borders between the regimes are not sharp.
They depend on the shear rate and on the volume fraction. Therefore we have indi-
cated the crossover regions by the shaded patterns. The lines are guides to the eye
(source: [19])
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gions are not sharp and they depend on the shear rate. We have indicated
the crossover regions by the shaded patterns in the stability diagram. If the
volume fraction is decreased, the region of the repulsive structure becomes
smaller.

To decide if a state is in the suspended region or in the repulsive one
of the stability diagram, we have compared the plots of the mean squared
displacement for the simulations without shear. If the plateau was pronounced
there, we have counted the state among the repulsive regime. As a second
criterion one can compare the pair correlation function. If there are long range
correlations even though the system is not sheared, then the microstructure is
the repulsive one. Finally, the shear force can be used to localize the border to
the repulsive regime. For a given shear rate and a fixed volume fraction, the
shear force depends on the particle interactions. If the shear force increases
compared to a state well in the suspended regime, the motion of the particles
is blocked by the electrostatic interaction in the repulsive regime.

Thus, to decide, if a state belongs to the clustered or to the suspended
regime, we first study the snapshots of the system. If we see no clusters there,
the clustered regime can be excluded. But, if we see clusters, we also consult
numerical quantities like the density of clusters and the rate of cluster growth
into account. Both, the density and the time for cluster growth are indications
for the stability of the clusters. If they grow slowly and their density is low,
we count the state to the suspended regime. The stability diagram obtained
by these criteria is consistent with the results of the simulations with shear
flow, shown in Fig. 2 and Fig. 5. Especially, the increased cluster formation for
I = 3 mmol/l starting between pH = 7–8 is reflected in an increased nearest
neighbor peak in Fig. 2, and low-k-peak in Fig. 5 respectively, and in a border
between suspended and clustered regime in Fig. 7. The repulsive structure for
pH = 4 and I = 3 mmol/l can not be recognized in Fig. 2 and Fig. 5, but in
a pronounced layer formation.

6 Dilute Suspensions

To study the process of cluster growth we simulate dilute suspensions of Φ =
5% only. To see cluster-cluster aggregation we scale up the simulation volume
to 17.76 µm3 containing 10560 MD particles and 1.3 · 107 fluid particles. Due
to the computational demands of the fluid solver, a single simulation of 5 s
real time requires about 5000 CPU hours on 32 CPUs of a state of the art
supercomputer.

We use a cluster counting algorithm [18] to detect clusters of particles
in the suspension and to evaluate their size. In Fig. 8 we present the time
dependence of the mean cluster size (a) and of the number of clusters in the
system (b). We find that both observables can be fitted by a power law of
the form A · (t+B)C , where A,B,C are fitting parameters. The lines in the
figure correspond to the fit and the symbols to the simulation data. It would
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Fig. 8. The time dependence of the mean cluster size is plotted for different simula-
tion parameters (a). Fig. b) depicts the time dependence of the number of clusters
found in the system. Each curve is shifted vertically by a factor of two for better vis-
ibility. While the symbols correspond to simulation data, lines are given by a power
law fit (source: [18])

be of great interest to investigate if a general scaling behavior can be observed
depending on the volume concentration, the ionic strength and the pH-value.
However, for this a detailed investigation of the parameter space would be
needed which will be the focus of a future work.

7 Summary

We have utilized our new parallel simulation code to model colloidal particles
in shear flow and investigated how the clustering process due to attractive
DLVO potentials is affected by the hydrodynamic forces. We find a consis-
tent behavior on different length scales. The nearest neighbor peak of the
pair correlation function has been used to observe the direct neighborhood
of the particles and the low-k-peak of the structure factor to keep track of
the length scales up to the system size. In both cases a suppression of the
cluster formation by the shear flow can be seen at low pH-values. For large
pH-values low shear rates even support the clustering process. In contrast, for
high shear rates it suppresses the cluster formation. We have evaluated the
mean squared displacement to characterize the repulsive regime. To summa-
rize the results we have drawn the stability diagram as given in Fig. 7. To our
knowledge this stability diagram for Al2O3 suspensions is reproduced quan-
titatively for the first time from simulations. It helps to predict the behavior
of a real suspension. Our findings on the cluster formation process suggest
that soft stirring can enhance the cluster formation in industrial processing
of this material. Further investigations can be carried out on the fractal di-
mension and its dependence on the experimental conditions. The low-k-peak
of the structure factor can be used for that. We have followed up this point
by simulating dilute suspensions for selected conditions. We have found that
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the time dependence of the mean cluster size and the number of clusters in
the system can be well described by power laws.
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