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Abstract

The (standard) Brownian web is a collection of coalescing one-dimensional Brownian mo-
tions, starting from each point in space and time. It arises as the diffusive scaling limit of
a collection of coalescing random walks. We show that it is possible to obtain a nontrivial
limiting object if the random walks in addition branch with a small probability. We call
the limiting object the Brownian net, and study some of its elementary properties.
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Figure 1: An arrow configuration.

1 Introduction and main results

1.1 Arrow configurations and branching-coalescing random walks

The Brownian web originated from the work of Arratia [Ara79, Ara81], and has since been
studied by Tóth and Werner [TW98], and Fontes, Isopi, Newman, and Ravishankar [FINR02,
FINR04, FINR06]. It arises as the diffusive scaling limit of a collection of coalescing random
walks. In this paper, we show that it is possible to obtain a nontrivial limiting object if the
random walks in addition branch with a small probability.

Let Z2
even := {(x, t) : x, t ∈ Z, x + t is even} be the even sublattice of Z2. We interpret

the first coordinate x as space and the second coordinate t as time, which is plotted vertically
in figures. Fix a branching probability β ∈ [0, 1]. Independently for each (x, t) ∈ Z2

even, with
probability 1−β

2 draw an arrow from (x, t) to (x−1, t+1), with probability 1−β
2 draw an arrow

from (x, t) to (x+ 1, t+ 1), and with the remaining probability β draw two arrows starting at
(x, t), one ending at (x − 1, t + 1) and the other at (x + 1, t+ 1). (See Figure 1.) We denote
the random configuration of all arrows by

ℵβ :=
{

(z, z′) ∈ Z2
even × Z2

even : there is an arrow from z to z′
}

. (1.1)

By definition, a path along arrows in ℵβ, in short an ℵβ-path, is the graph of a function
π : [σπ,∞] → R∪{∗}, with σπ ∈ Z∪{±∞}, such that ((π(t), t), (π(t+1), t+1)) ∈ ℵβ and π is
linear on the interval [t, t+1] for all t ∈ [σπ,∞]∩Z, while π(±∞) = ∗ whenever ±∞ ∈ [σπ,∞].
We call σπ the starting time, π(σπ) the starting position, and zπ := (π(σπ), σπ) the starting
point of the ℵβ-path π.

For any A ⊂ Zd
even ∪ {(∗,±∞)}, we let Uβ(A) denote the collection of all ℵβ-paths with

starting points in the set A, and we use the shorthands Uβ(z) := Uβ({z}) and Uβ := Uβ(Zd
even∪

{(∗,±∞)}) for the collections of all ℵβ-paths starting from a single point z, and from any point
in space-time, respectively.

An arrow configuration ℵβ is in fact the graphical representation for a system of discrete
time branching-coalescing random walks. Indeed, if we set

ηA
t := {π(t) : π ∈ Uβ(A)} (t ∈ Z, A ⊂ Zd

even ∪ {(∗,±∞)}), (1.2)

and we interpret the points in ηA
t as being occupied by a particle at time t, then (ηA

t )t∈Z is a
collection of random walks, which are introduced into the system at space-time points in A.
At each time t ∈ Z, independently each particle with probability 1−β

2 jumps one step to the

3
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Figure 2: The compactification R2
c of R2.

left (resp. right), and with probability β branches into two particles, one jumping one step to
the left and the other one step to the right. Two walks coalesce instantly when they jump
to the same lattice site. Note that the case β = 0 corresponds to coalescing random walks
without branching.

We are interested in the limit of Uβ under diffusive rescaling, letting at the same time
β → 0. Thus, we rescale space by a factor ε, time by a factor ε2, and let ε→ 0 and β → 0 at
the same time. For the case β = 0, it has been shown in [FINR04] that U0 diffusively rescaled
converges weakly in law, with respect to an appropriate topology, to a random object W,
called the Brownian web. We will show that if β/ε → b for some b ≥ 0, then in (essentially)
the same topology as in [FINR04], Uβ diffusively rescaled converges in law to a random object
Nb, which we call the Brownian net with branching parameter b. Here N0 is equal to W in
distribution, while Nb with b > 0 differ from W, but are related to each other through scaling.

1.2 Topology and convergence

To formulate our main results, we first need to define the space in which our random variables
take values and the topology with respect to which we will prove convergence. Our topology
is essentially the same as the one used in [FINR02, FINR04], except for a slight (and in most
applications irrelevant) detail, as explained in Appendix A.

Let R2
c be the compactification of R2 obtained by equipping the set R2

c := R2 ∪ {(±∞, t) :
t ∈ R}∪{(∗,±∞)} with a topology such that (xn, tn) → (±∞, t) if xn → ±∞ and tn → t ∈ R,
and (xn, tn) → (∗,±∞) if tn → ±∞ (regardless of the behavior of xn). In [FINR02, FINR04],
such a compactification is achieved by taking the completion of R2 with respect to the metric

ρ((x1, t1), (x2, t2)) = |Θ1(x1, t1) − Θ1(x2, t2)| ∨ |Θ2(t1) − Θ2(t2)|, (1.3)

where the map Θ = (Θ1,Θ2) is defined by

Θ(x, t) =
(

Θ1(x, t),Θ2(t)
)

:=
( tanh(x)

1 + |t| , tanh(t)
)

. (1.4)

We can think of R2
c as the image of [−∞,∞]2 under the map Θ. Of course, ρ and Θ are by no

means the only choices that achieve the desired compactification. See Figure 2 for a picture
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of R2
c (for a somewhat different choice of Θ).

By definition, a (continuous) path in R2
c is a function π : [σπ,∞] → [−∞,∞] ∪ {∗},

with σπ ∈ [−∞,∞], such that π : [σπ,∞] ∩ R → [−∞,∞] is continuous, and π(±∞) = ∗
whenever ±∞ ∈ [σπ,∞]. Equivalently, if we identify R2

c with the image of [−∞,∞]2 under
the map Θ, then π is a continuous map from [Θ2(σπ),Θ2(∞)] to R whose graph is contained
in Θ([−∞,∞]2). Throughout the paper, we identify a path π with its graph {(π(t), t) : t ∈
[σπ,∞]} ⊂ R2

c . Thus, we often view paths as compact subsets of R2
c . We stress that the

starting time is part of the definition of a path, i.e., paths that are defined by the same
function but have different starting times are considered to be different. Note that both the
function defining a path and its starting time can be read off from its graph.

We let Π denote the space of all paths in R2
c , equipped with the metric

d(π1, π2) := |Θ2(σπ1) − Θ2(σπ2)| ∨ sup
t≥σπ1∧σπ2

∣

∣Θ1

(

π1(t ∨ σπ1), t) − Θ1(π2(t ∨ σπ2), t
)
∣

∣. (1.5)

The space (Π, d) is complete and separable. Note that paths converge in (Π, d) if and only if
their starting times converge and the functions converge locally uniformly on R. If fact, one
gets the same topology on Π (though not the same uniform structure) if one views paths as
compact subsets of R2

c and then equips Π with the Hausdorff metric.
Recall that if (E, d) is a metric space and K(E) is the space of all compact subsets of E,

then the Hausdorff metric dH on K(E) is defined by

dH(K1,K2) = sup
x1∈K1

inf
x2∈K2

d(x1, x2) ∨ sup
x2∈K2

inf
x1∈K1

d(x1, x2). (1.6)

If (E, d) is complete and separable then so is (K(E), dH). For a given topology on E, the
Hausdorff topology generated by dH depends only on the topology on E and not on the choice
of the metric d.

The Brownian net Nb and web W are K(Π)-valued random variables. We define scaling
maps Sε : R2

c → R2
c by

Sε(x, t) := (εx, ε2t) ((x, t) ∈ R2
c). (1.7)

We adopt the convention that if f : R2
c → R2

c and A ⊂ R2
c , then f(A) := {f(x) : x ∈ A}

denotes the image of A under f . Likewise, if K is a set of subsets of R2
c (e.g. a set of paths),

then f(K) = {f(A) : A ∈ K} is the image of K under the map A 7→ f(A). So, for example,
Sε(Uβ) is the set of all ℵβ-paths (viewed as subsets of R2

c), diffusively rescaled with ε. This
will later also apply to notation such as −A := {−x : x ∈ A} and A + y := {x + y : x ∈ A}.
We will sometimes also use the shorthand f(A1, . . . , An) :=

(

f(A1), . . . , f(An)
)

when f is a
function defined on R2

c and A1, . . . , An are elements of, or subsets of, or sets of subsets of R2
c .

Recall from Section 1.1 the definition of an arrow configuration ℵβ and the set Uβ of all
ℵβ-paths. Note that Uβ is a random subset of Π. In order to make Uβ compact, from now
on, we modify our definition of Uβ by adding all trivial paths π that satisfy σπ ∈ {±∞} ∪ Z

and π(t) = −∞ or π(t) = ∞ for all t ∈ [σπ,∞]. The main result of this paper is the following
convergence theorem.

Theorem 1 (Convergence to the Brownian net)
There exist K(Π)-valued random variables Nb (b ≥ 0) such that, if εn, βn → 0 and βn/εn →
b ≥ 0, then Sεn(Uβn) are K(Π)-valued random variables, and

L(Sεn(Uβn)) =⇒
n→∞

L(Nb), (1.8)
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where L( · ) denotes law, and ⇒ denotes weak convergence. The random variables (Nb)b>0

satisfy the scaling relation

L(Sε(Nb)) = L(Nb/ε) (ε, b > 0). (1.9)

We have L(N0) = L(W), where W is the Brownian web. However, the random variables Nb

with b > 0 are different from W.

For βn = 0, i.e., the case without branching, Theorem 1 follows from [FINR04, Theorem 6.1].
In the next sections, we will give three equivalent characterizations of the random variables
Nb with b > 0. In view of the scaling relation (1.9), it suffices to consider the case b = 1. We
call Nb the Brownian net with branching parameter b and N := N1 the (standard) Brownian
net.

1.3 The Brownian web

In order to prepare for our first characterization of the Brownian net N , we start by recalling
from [FINR04, Theorem 2.1] the characterization of the Brownian web W. For any K ∈ K(Π)
and A ⊂ R2

c , we let K(A) := {π ∈ K : zπ ∈ A} denote the collection of paths in K with
starting points in A, and for z ∈ R2

c we write K(z) := K({z}).

Theorem 2 (Characterization of the Brownian web)
There exists a K(Π)-valued random variable W, the so-called (standard) Brownian web, whose
distribution is uniquely determined by the following properties:

(i) For each deterministic z ∈ R2, W(z) consists a.s. of a single path W(z) = {πz}.
(ii) For any finite deterministic set of points z1, . . . , zk ∈ R2, (πz1 , . . . , πzk

) is distributed as a
system of coalescing Brownian motions starting at space-time points z1, . . . , zk.

(iii) For any deterministic countable dense set D ⊂ R2,

W = W(D) a.s., (1.10)

where denotes closure in (Π, d).

Note that by properties (i) and (iii), for any deterministic countable dense set D ⊂ R2,
the Brownian web is almost surely determined by the countable system of paths W(D) =
{πz : z ∈ D}, whose distribution is uniquely determined by property (ii). We call W(D) a
skeleton of the Brownian web (relative to the countable dense set D). Since skeletons may be
constructed using Kolmogorov’s extension theorem, Theorem 2 allows a direct construction of
the Brownian web.

Although W(z) consists of a single path for each deterministic z ∈ R2, as a result of the
closure in (1.10), there exist random points z where W(z) contains more than one path. These
are points where the map z 7→ πz is discontinuous, i.e., the limit limn→∞ πzn depends on the
choice of the sequence zn ∈ D with zn → z. These special points of the Brownian web are
classified according to the number of disjoint incoming and distinct outgoing paths at z, and
play an important role in understanding the Brownian web, and, later on, also the Brownian
net. We recall the classification of the special points of the Brownian web in Section 3.2.

6



1.4 Characterization of the Brownian net using hopping

Our first characterization of the Brownian net will be similar to the characterization of the
Brownian web in Theorem 2. A difficulty is that in the Brownian net N , there is a multitude
of paths starting at any site z = (x, t) ∈ R2. There is, however, a.s. a well-defined left-most
path and right-most path in N (z), i.e., there exist lz, rz ∈ N (z) such that lz(s) ≤ π(s) ≤ rz(s)
for any s ≥ t and π ∈ N (z). These left-most and right-most paths will play a key role in our
characterization.

Our first task is to characterize the distribution of a finite number of left-most and right-
most paths, started from deterministic starting points. Thus, for given deterministic z1, . . . , zk,
z′1, . . . , z

′
k′ ∈ R2, we need to characterize the joint law of (lz1 , . . . , lzk

, rz′1 , . . . , rz′k′
). It turns

out that (lz1 , . . . , lzk
) is a collection of coalescing Brownian motions with drift one to the

left, while (rz′1 , . . . , rz′k′
) is a collection of coalescing Brownian motions with drift one to the

right. Moreover, paths evolve independently when they do not coincide. Therefore, in order to
characterize the joint law of (lz1 , . . . , lzk

, rz′1 , . . . , rz′k′
), it suffices to characterize the interaction

between one left-most path lz = l(x,s) and one right-most path rz′ = r(x′,s′). The joint evolution
of such a pair after time s ∨ s′ can be characterized as the unique weak solution of the two-
dimensional left-right SDE

dLt =1{Lt 6=Rt}dB
l
t + 1{Lt=Rt}dB

s
t − dt,

dRt =1{Lt 6=Rt}dB
r
t + 1{Lt=Rt}dB

s
t + dt,

(1.11)

where Bl
t, B

r
t , B

s
t are independent standard Brownian motions, and Lt and Rt are subject to

the constraint that Lt ≤ Rt for all t ≥ T := inf{u ≥ s ∨ s′ : Lu ≤ Ru}. These rules uniquely
determine the joint law of (lz1 , . . . , lzk

, rz′1 , . . . , rz′k′
). We call such a system a collection of

left-right coalescing Brownian motions. See Figure 5 for a picture. We refer to Sections 2.1
and 2.2 for the proof that solutions to (1.11) are weakly unique, and a more careful definition
of left-right coalescing Brownian motions.

Since we are not only interested in left-most and right-most paths, but in all paths in the
Brownian net, we need a way to construct general paths from left-most and right-most paths.
The method we choose in this section is based on hopping, i.e., concatenating pieces of paths
together at times when the two paths are at the same position.

We call t an intersection time of two paths π1, π2 ∈ Π if σπ1 ∨ σπ2 < t < ∞ and π1(t) =
π2(t). We say that a path π1 crosses a path π2 from left to right at time t if there exist
σπ1 ∨ σπ2 ≤ t− < t < t+ < ∞ such that π1(t−) < π2(t−), π2(t+) < π1(t+), and t = inf{s ∈
(t−, t+) : π2(s) < π1(s)}. We say that t ∈ R is a crossing time of π1 and π2 if either π1 crosses
π2 or π2 crosses π1 from left to right at time t.

For any collection of paths A ⊂ Π, we let Hint(A) denote the smallest set of paths contain-
ing A that is closed under hopping at intersection times, i.e., Hint(A) is the set of all paths
π ∈ Π of the form

π =

m
⋃

k=1

{

(πk(t), t) : t ∈ [tk−1, tk]
}

, (1.12)

where π1, . . . , πm ∈ A, σπ1 = t0 < · · · < tm = ∞, and tk is an intersection time of πk and
πk+1 for each k = 1, . . . ,m − 1. Likewise, we let Hcros(A) denote the smallest set of paths
containing A that is closed under hopping at crossing times.

Theorem 3 (Characterization of the Brownian net using hopping)

7



There exists a K(Π)-valued random variable N , which we call the (standard) Brownian net,
whose distribution is uniquely determined by the following properties:

(i) For each deterministic z ∈ R2, N (z) a.s. contains a unique left-most path lz and right-most
path rz.

(ii) For any finite deterministic set of points z1, . . . , zk, z
′
1, . . . , z

′
k′ ∈ R2, the collection of

paths (lz1 , . . . , lzk
, rz′1 , . . . , rz′k′

) is distributed as a collection of left-right coalescing Brownian
motions.

(iii) For any deterministic countable dense sets Dl,Dr ⊂ R2,

N = Hcros

(

{lz : z ∈ Dl} ∪ {rz : z ∈ Dr}
)

a.s. (1.13)

Instead of hopping at crossing times, we could also have built our construction on hopping at
intersection times. In fact, a much stronger statement is true.

Proposition 4 (The Brownian net is closed under hopping)
We have Hint(N ) = N .

We note, however, that as a result of the existence of special points in the Brownian web with
one incoming and two outgoing paths, the Brownian net is not closed under hopping at times
t such that π1(t) = π2(t) but t = σπ1 ∨ σπ2(t). Thus, it is generally not allowed to hop onto
paths at their starting times.

1.5 The left-right Brownian web

Given a Brownian net N , if we take the closures of the set of all left-most and right-most paths,
started respectively from deterministic countable dense sets Dl,Dr ⊂ R2, then we obtain two
Brownian webs, tilted respectively with drift −1 and +1, that are coupled in a special way.
Our next theorem introduces this object in its own right.

Theorem 5 (Characterization of the left-right Brownian web)
There exists a K(Π)2-valued random variable (W l,Wr), which we call the (standard) left-right
Brownian web, whose distribution is uniquely determined by the following properties:

(i) For each deterministic z ∈ R2, W l(z) and Wr(z) a.s. each contains a single path W l(z) =
{lz} and Wr(z) = {rz}.
(ii) For any finite deterministic set of points z1, . . . , zk, z

′
1, . . . , z

′
k′ ∈ R2, the collection of

paths (lz1 , · · · , lzk
; rz′1 , · · · , rz′k′ ) is distributed as a collection of left-right coalescing Brownian

motions.

(iii) For any deterministic countable dense sets Dl,Dr ⊂ R2,

W l = {lz : z ∈ Dl} and Wr = {rz : z ∈ Dr} a.s. (1.14)

Note that if we define titling maps by Tilt±(x, t) := (x± t, t), then Tilt+(W l) and Tilt−(Wr)
are distributed as the (standard) Brownian web. The following lemma, the proof of which can
be found in Section 4, is an easy consequence of Theorem 3.

Lemma 6 (Associated left-right Brownian web)
Let N be the Brownian net. Then N a.s. uniquely determines a left-right Brownian web
(W l,Wr) such that for each deterministic z ∈ R2, W l(z) = {lz} and Wr(z) = {rz}, where lz
and rz are respectively the left-most and right-most path in N (z).

8



Mesh M(r; l) Wedge W (r̂; l̂)

:
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Figure 3: A mesh M(r, l) with bottom point z and a wedge W (r̂, l̂) with bottom point z.

If (W l,Wr) and N are coupled as in Lemma 6, then we say that (W l,Wr) is the left-right
Brownian web associated with the Brownian net N . Theorem 3 shows that conversely, a
left-right Brownian web uniquely determines its associated Brownian net a.s.

In the next section, we give another way to construct a Brownian net from its associated
left-right Brownian web. Since the left-right Brownian web is characterized by Theorem 5,
this yields another way to characterize the Brownian net.

1.6 Characterization of the Brownian net using meshes

If for some z = (x, t) ∈ R2, there exist l ∈ W l(z) and r ∈ Wr(z) such that r(s) < l(s) on
(t, t+ ε) for some ε > 0, then denoting T := inf{s > t : r(s) = l(s)}, we call the open set (see
Figure 3)

M = M(r, l) :=
{

(y, s) ∈ R2 : t < s < T, r(s) < y < l(s)
}

(1.15)

the mesh with bottom point z, top point (r(T ), T ), and left and right boundary r and l,
respectively. We call x and t the bottom position and bottom time, respectively, of the mesh
M . We say that a path π ∈ Π enters an open set A ⊂ Rd if there exist σπ < s < t such that
π(s) 6∈ A and π(t) ∈ A. Note the strict inequality in s > σπ.

Theorem 7 (Characterization of the Brownian net using meshes)
Let (W l,Wr) be the left-right Brownian web. Then almost surely,

N = {π ∈ Π : π does not enter any mesh of (W l,Wr) with bottom time t > σπ} (1.16)

is the Brownian net associated with (W l,Wr).

The next proposition implies that paths in the net N do not enter meshes of (W l,Wr) at
all (regardless of their bottom times), and hence formula (1.16) stays true if one drops the
restriction that the bottom time of the mesh should be larger than σπ.

Proposition 8 (Containment by left-most and right-most paths)
Let N be the Brownian net and let (W l,Wr) be its associated left-right Brownian web. Then,
almost surely, there exist no π ∈ N and l ∈ W l such that l(s) ≤ π(s) and π(t) < l(t) for some
σπ ∨ σl < s < t. An analogue statement holds for right-most paths.

9



:

:
Figure 4: Dual arrow configuration with no branching.

Remark Theorem 7 and Proposition 8 have analogues for the Brownian web. Indeed, gener-
alizing our earlier definition, we can define a left-right Brownian web (W l

b,Wr
b) with drift b ≥ 0

by replacing the drift terms +dt and −dt in the left-right SDE (1.11) with +bdt and −bdt,
respectively. Then W l

0 = N0 = Wr
0 a.s. and is distributed as the (standard) Brownian web,

and Theorem 7 and Proposition 8 hold for any b ≥ 0. The meshes of the Brownian web are
called bubbles in [FINR06].

1.7 The dual Brownian web

Arratia [Ara79] observed that there is a natural dual for the arrow configuration ℵ0, the
graphical representation of discrete time coalescing simple random walks. More precisely, ℵ0

uniquely determines a dual arrow configuration ℵ̂0 defined as follows (see Figure 4):

ℵ̂0 := {
(

(x, t+ 1), (x± 1, t)
)

∈ Z2
odd × Z2

odd :
(

(x, t), (x∓ 1, t+ 1)
)

∈ ℵ0}. (1.17)

Observe that directed edges in ℵ0 and ℵ̂0 do not cross, and ℵ0 and ℵ̂0 uniquely determine each
other. A dual arrow configuration ℵ̂0 is the graphical representation of a system of coalescing
simple random walks running backward in time, and −ℵ̂0 + (0, 1) is equally distributed with
ℵ0. In analogy with U0, let Û0 denote the set of backward paths along arrows in ℵ̂0. It follows
from results in [FINR04, FINR06] that

L
(

Sε(U0, Û0)
)

=⇒
ε→0

L(W, Ŵ), (1.18)

where W is the standard Brownian web, and Ŵ is the so-called dual Brownian web associated
with W. One has

L
(

− (W, Ŵ)
)

= L(Ŵ,W). (1.19)

In particular, Ŵ is equally distributed with −W, the Brownian web rotated 180o around the
origin. It was shown in [STW00, FINR06] that the interaction between paths in W and Ŵ is
that of Skorohod reflection.

A Brownian web W and its dual Ŵ a.s. uniquely determine each other. There are several
ways to construct W from Ŵ. We will describe one such way here, since this construction
generalizes to the Brownian net. For any dual paths π̂1, π̂2 ∈ Ŵ that are ordered as π̂1(s) <
π̂2(s) at the time s := σ̂π̂1 ∧ σ̂π̂2, where σ̂πi denotes the starting time of π̂i (i = 1, 2), we let
T := sup{t < s : π̂1(t) = π̂2(t)} denote the coalescence time of π̂1 and π̂2. We call the open
set

W = W (π̂1, π̂2) :=
{

(x, u) ∈ R2 : T < u < s, π̂1(u) < x < π̂2(u)
}

(1.20)
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the wedge with left and right boundary π̂1 and π̂2. We say that a path π ∈ Π enters an open
set A ⊂ R2 from outside if there exist σπ < s < t such that π(s) 6∈ A and π(t) ∈ A.

Theorem 9 (Construction of the Brownian web from its dual)
Let (W, Ŵ) be a Brownian web and its dual. Then almost surely,

W =
{

π ∈ Π : π does not enter any wedge of Ŵ from outside
}

. (1.21)

The proof of Theorem 9 is contained in Section 4.2.

1.8 Dual characterization of the Brownian net

Let (W l,Wr) be a left-right Brownian web. Then W l and Wr each a.s. determines a dual web,

which we denote respectively by Ŵ l and Ŵr. It will be proved in Section 5.2 below that

L
(

− (W l,Wr, Ŵ l, Ŵr)
)

= L(Ŵ l, Ŵr,W l,Wr). (1.22)

In particular, the dual left-right Brownian web (Ŵ l, Ŵr) is equally distributed with −(W l,Wr),
the left-right Brownian web rotated by 180o around the origin.

For any r̂ ∈ Ŵr and l̂ ∈ Ŵ l that are ordered as r̂(s) < l̂(s) at the time s := σ̂r̂ ∧ σ̂l̂, we let

T := sup{t < s : r̂(t) = l̂(t)} denote the first hitting time of r̂ and l̂, which may be −∞. We
call the open set (see Figure 3)

W = W (r̂, l̂) :=
{

(x, u) ∈ R2 : T < u < s, r̂(u) < x < l̂(u)
}

(1.23)

the wedge with left and right boundary r̂ and l̂. The next theorem is analogous to Theorem 9.

Theorem 10 (Dual characterization of the Brownian net)

Let (W l,Wr, Ŵ l, Ŵr) be a left-right Brownian web and its dual. Then, almost surely,

N =
{

π ∈ Π : π does not enter any wedge of (Ŵ l, Ŵr) from outside
}

(1.24)

is the Brownian net associated with (W l,Wr).

We note that there exist paths in N (even in W l and Wr) that enter wedges of (Ŵ l, Ŵr) in
the sense defined just before Theorem 7. Therefore, the condition in (1.24) that π enters from
outside cannot be relaxed.

1.9 The branching-coalescing point set

Just as the arrow configuration ℵβ is the graphical representation of a discrete system of
branching-coalescing random walks, the Brownian net N is the graphical representation of a
Markov process taking values in the space of compact subsets of [−∞,∞], which we call the
branching-coalescing point set. In analogy with (1.2), for any compact A ⊂ R2

c , we denote

ξA
t := {π(t) : π ∈ N (A)} (t ∈ R, A ∈ K(R2

c)). (1.25)

We set R := [−∞,∞] and let K(R) denote the space of compact subsets of R, equipped with
the Hausdorff topology, under which K(R) is itself a compact space. We recall that if E is a
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compact metrizable space, then a Feller process in E is a time-homogeneous Markov process
in E, with cadlag sample paths, whose transition probabilities Pt(x,dy) have the property
that the map (x, t) 7→ Pt(x, · ) from E × [0,∞) into the space of probability measures on E
is continuous with respect to the topology of weak convergence. Feller processes are strong
Markov processes [EK86, Theorem 4.2.7].

Theorem 11 (Branching-coalescing point set)
Let N be the Brownian net. Then for any s ∈ R and K ∈ K(R),

ξt := ξ
K×{s}
t (s ≤ t <∞) (1.26)

defines a Feller process (ξt)t≥s in K(R) with continuous sample paths, started from the initial
state K at time s. For each deterministic t > s, the set ξt is a.s. locally finite in R. If
K ∈ K′ := {K ∈ K(R) : K = K ∩ R}, then

P[ξt ∈ K′ ∀t ≥ s] = 1. (1.27)

Note that K′ excludes sets in which either −∞ or ∞ is an isolated point, and hence K′ can
in a natural way be identified with the space of all closed subsets of R. Thus, property (1.27)
says that we can view the branching-coalescing point set as a Markov process taking values
in the space of closed subsets of R.

The branching-coalescing point set ξt arises as the scaling limit of the branching-coalescing
random walks ηt introduced in (1.2). The scaling regime considered in Theorem 1 allows us to
interpret ξt heuristically as a collection of Brownian particles which coalesce instantly when
they meet but branch with an infinite rate. The infinite branching rate makes it difficult,
however, to develop a good intuition from this simple picture. In particular, even for the
process started at time zero from just one point, there is a dense collection of random times
t > 0 such that ξt is not locally finite. The proof of this fact is not difficult, but for lack of
space, we defer it to a future paper.

For the branching-coalescing point set started from the whole extended real line R, we can
explicitly calculate the expected density at any t > 0. Below, |A| denotes the cardinality of a
set and Φ(x) = 1√

2π

∫ x
−∞ e−y2/2dy.

Proposition 12 (Density of branching-coalescing point set)
We have

E

[

∣

∣ξ
R×{0}
t ∩ [a, b]

∣

∣

]

= (b− a) ·
(

e−t

√
πt

+ 2Φ(
√

2t)

)

for all [a, b] ⊂ R, t > 0. (1.28)

Note that the density of ξ
R×{0}
t is proportional to t−1/2 as t ↓ 0. This is consistent with the

behavior of the Brownian web, but the decay is faster than is known for other coalescents such
as Kingman’s coalescent or the branching-coalescing particle systems in [AS05, Theorem 2 (b)].
On the other hand, the density approaches the constant 2 as t → ∞, in contrast to the
Brownian web.

Our next proposition shows that it is possible to recover N (R × {0}) from (ξ
R×{0}
t )t≥0.

Below, for any K ⊂ K(R2
c), we let

∪K = {z ∈ R2
c : ∃A ∈ K s.t. z ∈ A} (1.29)

denote the union of all sets in K. We call ∪K the image set of K. For t ∈ [−∞,∞], let
Πt := {π ∈ Π : σπ = t} denote the space of all paths with starting time t. Note that

∪(N ∩ Π0) = {(x, t) : t ≥ 0, x ∈ ξR×{0}
t } ∪ {(∗,∞)}.
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Proposition 13 (Image set property)
Let N be the Brownian net. Then, almost surely for all t ∈ [−∞,∞],

N ∩ Πt = {π ∈ Πt : π ⊂ ∪(N ∩ Πt)}. (1.30)

1.10 The backbone

In this section, we study N (∗,−∞), the set of paths in the Brownian net starting at time
−∞, and its discrete counterpart Uβ(∗,−∞). These sets are relevant in the study of ergodic
properties of the branching-coalescing point set and the branching-coalescing random walks.
Borrowing terminology from branching theory, we call N (∗,−∞) and U(∗,−∞) respectively
the backbone of the Brownian net and the backbone of an arrow configuration.

Proposition 14 (Backbone of an arrow configuration)
For β ≥ 0, the set of ℵβ-paths, Uβ, satisfies the following properties:

(i) {π(0) : π ∈ Uβ(∗,−∞)} is a Bernoulli random field on Zeven with intensity ρ := 4β
(1+β)2

.

(ii) Uβ(∗,−∞) and −Uβ(∗,−∞) are equal in law.

(iii) Almost surely, Uβ(xn, tn) −→
n→∞

Uβ(∗,−∞) in K(Π) for any sequence (xn, tn) ∈ Z2
even

satisfying tn → −∞ and lim supn→∞
|xn|
|tn| < β.

Note that (recall (1.2))

η
(∗,−∞)
t = {π(t) : π ∈ Uβ(∗,−∞)} (t ∈ Z) (1.31)

defines, modulo parity, a stationary system of branching-coalescing random walks (η
(∗,−∞)
t )t∈Z.

Thus, property (i) implies that, modulo parity, Bernoulli product measure with intensity 4β
(1+β)2

is an invariant measure for the branching-coalescing random walks with branching probability
β. This is perhaps surprising, unless one is familiar with other branching-coalescing particle
systems such as Schlögl models (see, for example, [Sch72, DDL90, AS05]). Property (ii) says
that this invariant law is moreover reversible in a rather strong sense. Note that an arrow
configuration ℵβ is not symmetric with respect to time reversal, so this statement is not as
obvious as it may seem. Property (iii) implies that the branching-coalescing random walks
(ηt)t≥0 exhibits complete convergence, i.e., for any nonempty initial state η0 ⊂ Zeven, as
t → ∞, η2t (resp. η2t+1) converges in law to Bernoulli product measure on Zeven (resp. Zodd)
with intensity ρ = 4β

(1+β)2 .

For the Brownian net, we have the following analogue of Proposition 14.

Proposition 15 (Backbone of the Brownian net)
The Brownian net N satisfies

(i) {π(0) : π ∈ N (∗,−∞)}\{±∞} is a Poisson point process on R with intensity 2.

(ii) N (∗,−∞) and −N (∗,−∞) are equal in law.

(iii) Almost surely, N (xn, tn) −→
n→∞

N (∗,−∞) in K(Π) for any sequence (xn, tn) ∈ R2 satisfy-

ing tn → −∞ and lim supn→∞
|xn|
|tn| < 1.

13
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Figure 5: Left-right coalescing Brownian motions and the backbone of the Brownian net.

In analogy with the branching-coalescing random walks, it follows that the law of a Poisson
point set on R with intensity 2 is an invariant law for the branching-coalescing point set,
that the latter exhibits complete convergence, and hence this is its unique nontrivial invariant
law. See Figure 5 for a picture of the backbone, or rather its image set ∪N (∗,−∞). Note
that by Proposition 13, any path starting at time −∞ that stays in ∪N (∗,−∞) is a path in
N (∗,−∞).

1.11 Discussion, applications, and open problems

This article began with the question whether it is possible to add a small branching probability
to the arrow configuration ℵ0, which scales to the Brownian web, in such a way that one still
obtains a nontrivial limit. At first sight, this may not seem possible because of the instanta-
neous coalescing of paths in the Brownian web. At second thought, for arrow configurations
ℵβ with branching probability β, if we rescale space and time by ε and ε2 and let ε→ 0, then
for the left-most and right-most ℵβ-path starting from the origin to have a nontrivial limit,
we need β/ε → b for some b > 0. It seems a coincidence that exactly the same scaling of
β and ε is needed for the invariant measures of the branching-coalescing random walks from
Proposition 14 (i) to have a nontrivial limit. It was the observation of this coincidence that
started off the present article.

Arratia’s [Ara79, Ara81] original motivation for studying the Brownian web came from one-
dimensional voter models. In fact, coalescing simple random walks are dual to one-dimensional
nearest-neighbor voter model in two ways. They represent the genealogy lines of the voter
model, and they also characterize the evolution of boundaries between domains of different
types in an infinite type voter model. Voter models are used in population genetics to study
the spread of genes in the absence of selection and mutation. They can also be viewed as the
stochastic dynamics of zero-temperature one-dimensional Potts models. These points of view
suggest several extensions of the Brownian web.
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In [FINR06], the marked Brownian web was introduced for the study of one-dimensional
Potts models at small positive temperature. There, with small probability, a site may change
its type, giving rise to a ‘nucleation event’. In the biological context, such an event may be
interpreted as a mutation. For the dual system of coalescing random walks, this results in a
small death rate. The diffusive scaling limit of such a system is characterized by a Poisson
marking of paths in the dual Brownian web, according to their length measure, where marks
indicate deaths of particles.

There are at least two motivations for studying the Brownian net. First, in the biological
interpretation, if instead of mutation, one adds a small selection rate, then one ends up
with a biased voter model, which is dual to branching-coalescing random walks (compare
[AS05]). Near the completion of this article, we learned that Newman, Ravishankar, and
Schertzer [NRS06] have been studying a differently motivated model that also leads to the
Brownian net. Their model is a one-dimensional infinite-type Potts model, where, in contrast
to the model in [FINR06], nucleation events can now only occur at the boundaries between
different types. These boundaries then evolve as a system of continuous-time branching-
coalescing random walks, which leads to the Brownian net. Rather than starting from the
left-right Brownian web, their construction of the Brownian net is based on a Poisson marking
of the set of intersection points between paths in the Brownian web W and its dual Ŵ according
to the local time measure. We refer the reader to their paper for more details.

There are a number of questions about the Brownian net that are worth investigating.
First, we would like to give a complete classification of all special points in the Brownian
net, in analogy with the classification of special points in the Brownian web. We have partial
results in that direction and will present them in a separate paper. There, we will also discuss
the interaction between forward left-most and dual right-most paths, which can be used to
give an alternative characterization of the left-right Brownian web not discussed in the present
paper.

The second question regards the universality of the Brownian net and the branching-
coalescing point set. Our convergence result is for the simplest system of branching-coalescing
random walks. It is plausible that the same result holds for more general branching-coalescing
systems, such as Schlögl models or the biased annihilating branching process from [Sud99].
Related to this is the question of how to characterize the branching-coalescing point set by
means of a generator or well-posed martingale problem.

The third question is to study the marked Brownian net, which can be defined by a Poisson
marking of paths in the Brownian net paths in the same spirit as the marked Brownian web
introduced in [FINR06]. In the biological context, such a model describes genealogies in the
presence of small selection and rare mutations. It can be shown that the resulting branching-
coalescing point set with deaths undergoes a phase transition of contact-process type as the
death rate is increased. This model might therefore be of some relevance in the study of the
one-dimensional contact process.

Finally, it would be interesting to know if the branching-coalescing point set is related to
some field theory used in theoretical physics. The physicist’s way of viewing this process would
probably be to say that these are coalescing Brownian motions with an infinite branching rate,
but, due to the coalescence, most of this branching is not effective, so at macroscopic space
scales one only observes the ‘renormalized’ branching rate, which is finite.
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1.12 Outline

The rest of the paper is organized as follows. In Section 2, we construct and characterize the
left-right Brownian web (Theorem 5) by first characterizing the left-right SDE and left-right
coalescing Brownian motions described in Section 1.4. In Section 3, we establish some basic
properties for the left-right SDE, recall some properties of the Brownian web and its dual, and
prove some basic properties for the left-right Brownian web and its dual.

In Section 4, we prove the equivalence of the hopping construction (Theorem 3) and the
dual construction (Theorem 10) of the Brownian net. In Section 5, we prove Theorem 1, our
main convergence result. In fact, we prove something more: denoting the collections of all
left-most and right-most paths in an arrow configuration ℵβ by U l

β and U r
β, respectively, we

show that Sε(U l
β,U r

β,Uβ) converges to (W l,Wr,N ), where (W l,Wr) is a left-right Brownian
web and N is the associated Brownian net. Here the hopping and dual characterizations of
the Brownian net serve respectively as a stochastic lower and upper bound on limit points of
Sε(Uβ).

In Section 6, we carry out two density calculations. The first of these yields Proposition 12,
while the second estimates the density of the set of times when the left-most path starting
at the origin first meets some path in the Brownian net starting at time 0 to the left of the
origin. This second calculation is used in Section 7 to establish the characterization of the
Brownian net using meshes (Theorem 7) and Proposition 8. These two results then in turn
imply Propositions 4 and 13.

Finally, in Section 8, we prove Theorem 11 on the branching-coalescing point set, and in
Section 9, we prove Propositions 14 and 15 on the backbones of arrow configurations and the
Brownian net.

2 The left-right Brownian web

In section 2.1, we characterize the left-right SDE described in Section 1.4 as the unique weak
solution of the SDE (1.11). In Section 2.2, we give a rigorous definition of a collection of
left-right coalescing Brownian motions described in Section 1.4. Finally in Section 2.3, we
construct the left-right Brownian web and prove Theorem 5.

2.1 The left-right SDE

Recall that a Markov transition probability kernel Pt(x,dy) on a compact metrizable space has
the Feller property if the map (x, t) 7→ Pt(x, · ) from E × [0,∞) into the space of probability
measures on E is continuous with respect to the topology of weak convergence. Each Feller
transition probability kernel gives rise to a strong Markov process with cadlag sample paths
[EK86, Theorem 4.2.7]. If E is not compact, but locally compact, then let E∞ = E ∪ {∞}
denote the one-point compactification of E. In this case, one says that a Markov transition
probability kernel Pt(x,dy) on E has the Feller property if the extension of Pt(x,dy) to E∞
defined by putting Pt(∞, · ) := δ∞ (t ≥ 0) has the Feller property. The corresponding Markov
process is called a Feller process.

Proposition 16 (Well-posedness and stickiness of the left-right SDE)
For each initial state (L0, R0) ∈ R2, there exists a unique weak solution to the SDE (1.11)
subject to the constraint that Lt ≤ Rt for all t ≥ T := inf{s ≥ 0 : Ls = Rs}. The family
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of solutions {(Lt, Rt)t≥0}(L0,R0)∈R2 defines a Feller process. The law of the total time that Lt

and Rt are equal is given by

L
(

∫ ∞

0
1{Lt=Rt} dt

)

= L
(

sup
t≥0

(

Bt√
2
− t+ (L0−R0)∧0

2

))

, (2.1)

where Bt is a standard Brownian motion (started at zero).

Denote R2
≤ := {(x, y) ∈ R2 : x ≤ y}. A weak R2

≤-valued solution to (1.11) is a quintuple

(L,R,Bl, Br, Bs) where Bl, Br, Bs are independent Brownian motions and (L,R) is a contin-
uous, adapted R2

≤-valued process such that (1.11) holds in integral form (where the stochastic
integrals are of Itô-type).

We rewrite the SDE (1.11) into a different equation, which has a pathwise unique solution.1

Consider the equation
(i) dLt = dB̃l

Tt
+ dB̃s

St
− dt,

(ii) dRt = dB̃r
Tt

+ dB̃s
St

+ dt,

(iii) Tt + St = t,

(iv)
∫ t
0 1{Ls<Rs}dSs = 0.

(2.2)

Note that (2.2) (iv) says that St increases only when Lt = Rt. By definition, by a weak
R2

≤-valued solution to (2.2), we will mean a 7-tuple (L,R, S, T, B̃l, B̃r, B̃s), where B̃l, B̃r, B̃s

are independent Brownian motions, S, T are nonnegative, nondecreasing, continuous, adapted
processes such that (2.2) (iii) and (iv) hold, and (L,R) is a continuous, adapted R2

≤-valued
process such that (2.2) (i) and (ii) hold in integral form.

Proposition 16 follows from the following lemma.

Lemma 17 (Space-time SDE)
(i) There is a one-to-one correspondence in law between weak R2

≤-valued solutions of (1.11)

and weak R2
≤-valued solutions of (2.2).

(ii) For each initial state (L0, R0) ∈ R2
≤, equation (2.2) has a pathwise unique solution.

(iii) Solutions to (2.2) satisfy St :=
∫ t
0 1{Ls=Rs}ds,

St = sup
0≤s≤Tt

(

1
2(L0 + B̂l

s −R0 − B̂r
s) − s

)

a.s., (2.3)

and limt→∞ Tt = ∞.

Proof of Proposition 16 Since Lt and Rt evolve independently until they meet, it suffices to
consider the case L0 ≤ R0. The existence and uniqueness of weak solutions to (1.11) under the
given constraint follow from Lemma 17 (i) and (ii), while (2.1) follows from Lemma 17 (iii).
To prove the Feller property, by the continuity of sample paths, it suffices to show that the
law on path space of solutions to (1.11) depends continuously on the initial state. Since the
first meeting time and position of two independent Brownian motions depend continuously
on their initial states, it suffices to show continuity of R2

≤-valued solutions to (2.2) in the

initial state. Fix Brownian motions B̃l, B̃r, and B̃s, and let (Ln, Rn, Sn, T n) be a sequence of

1In contrast, we believe that solutions to (1.11) are not pathwise unique; see [War02] and references therein
for a similar equation where this has been proved.
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solutions to (2.2) with initial states (Ln
0 , R

n
0 ) = (ln, rn) ∈ R2

≤, such that (ln, rn) → (l, r) ∈ R2
≤.

Since Ln and Rn are Brownian motions and Sn, T n increase with slope at most 1, the sequence
(Ln, Rn, Sn, T n) is tight. It is not hard to see that any subsequential limit solves (2.2) (compare
the proof of Proposition 31 in Section 5.1), and therefore (Ln, Rn) converges to the pathwise
unique solution of (2.2) with initial state (l, r).

Proof of Lemma 17 We start with the proofs of parts (ii) and (iii). Our approach is to
transform an equation with a sticky boundary into a SDE with immediate reflection, which is
a standard technique to deal with sticky reflection. Put

Dt :=Rt − Lt,

Wt :=R0 + B̃r
t − L0 − B̃l

t.
(2.4)

Then
dDt = dWTt + 2dt. (2.5)

It is easy to see from (2.2) that Dt leaves 0 immediately, i.e., there exist no s < t such that
Du = 0 for all u ∈ (s, t). Hence, by (2.2) (iii) and (iv), Tt is strictly increasing and continuous
in t. Making the random time change τ = Tt, denoting the inverse of T by τ 7→ T−1

τ , and
writing dt = dTt + dSt, we can transform the equation for Dt into

dDT−1
τ

= dWτ + 2dτ + 2dST−1
τ
, (2.6)

where DT−1
τ

is constrained to be nonnegative for all τ > 0, and 2ST−1
τ

is a nondecreasing
process that increases only when DT−1

τ
= 0. Equation (2.6) is an SDE with instant reflection,

known as the Skorohod equation (see, e.g., Section 3.6.C of [KS91]). It can be solved (pathwise)
uniquely for 2ST−1

τ
, yielding

2ST−1
τ

= − inf
0≤s≤τ

(Ws + 2s) (2.7)

Time changing back and remembering the definition of W we arrive at (2.3). By the fact that
St + Tt = t, we find that

t = Tt + sup
0≤s≤Tt

(

1
2 (L0 + B̂l

s −R0 − B̂r
s) − s

)

(2.8)

Since the function
τ 7→ τ + sup

0≤s≤τ

(

1
2(L0 + B̂l

s −R0 − B̂r
s) − s

)

(2.9)

is strictly increasing and continuous, it has a unique inverse, which is t 7→ Tt. This proves that
S and T are pathwise unique, and therefore, by (2.2) (i) and (ii), also L and R are pathwise
unique.

Since the solution DT−1
τ

of (2.6) spends zero Lebesgue time at 0, time-changing τ = Ts we
see that

0 =

∫ Tt

0
1{D

T−1
τ

=0}dτ =

∫ t

0
1{Ds=0}dTs. (2.10)

By (2.2) (iii) and (iv) it follows that St :=
∫ t
0 1{Ls=Rs}ds and Tt :=

∫ t
0 1{Ls<Rs}ds. Finally,

since L and R are Brownian motions with drift −1 and +1, respectively, there is a last time
that L and R are equal, and therefore limt→∞ Tt = ∞. This completes the proofs of parts (ii)
and (iii).
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To prove part (i), note that we have just proved that any solution to (2.2) solves

(i) dLt = dB̃l
Tt

+ dB̃s
St

− dt,

(ii) dRt = dB̃r
Tt

+ dB̃s
St

+ dt,

(iii) Tt =
∫ t
0 1{Ls<Rs}ds,

(iv) St =
∫ t
0 1{Ls=Rs}ds.

(2.11)

Conversely, solutions to (2.11) obviously solve (2.2).
Given a R2

≤-valued solution to (2.2), setting

Bl
t := B̃l

Tt
+

∫ t

0
1{Ls=Rs}dB̂

l
s,

Br
t := B̃r

Tt
+

∫ t

0
1{Ls=Rs}dB̂

r
s,

Bs
t := B̃s

St
+

∫ t

0
1{Ls<Rs}dB̂

s
s,

(2.12)

where B̂l, B̂r, and B̂s are Brownian motions independent of each other and of B̃l, B̃r, and B̃s,
yields a weak R2

≤-valued solution to (1.11). Conversely, given a weak R2
≤-valued solution to

(1.11), let St :=
∫ t
0 1{Ls=Rs}ds, Tt :=

∫ t
0 1{Ls<Rs}ds, and

B̃l
Tt

:=

∫ t

0
1{Ls<Rs}dB

l
t,

B̃r
Tt

:=

∫ t

0
1{Ls<Rs}dB

r
t ,

B̃s
St

:=

∫ t

0
1{Ls=Rs}dB

s
t .

(2.13)

Then (B̃l
t)t∈[0,T∞), (B̃r

t )t∈[0,T∞), and (B̃s
t)t∈[0,S∞) can be extended to independent Brownian

motions defined for all t ≥ 0, yielding a solution to (2.11). This completes the proof of
part (i).

2.2 Left-right coalescing Brownian motions

In this section, we give a rigorous definition of a collection lz1 , . . . , lzk
, rz′1 , . . . , rz′k′

of paths

of left-right coalescing Brownian motions, started at points z1, . . . , zk, z
′
1, . . . , z

′
k′ ∈ R2. Write

zi = (xi, ti) and z′i = (x′i, t
′
i). The times t1, . . . , tk, t

′
1, . . . , t

′
k′ divide R into a finite number

of intervals. It suffices to define a Markov process that specifies the time evolution of the
left-right coalescing Brownian motions during each such interval.

Thus, we need to construct a Markov process (L1,t, . . . , Lk,t;R1,t, . . . , Rk′,t)t≥0 in Rk+k′
such

that (L1,t, · · · , Lk,t) and (R1,t, · · · , Rk′,t) are each distributed as coalescing Brownian motions
with drift −1 and +1 respectively, and the interaction between paths in (L1,t, · · · , Lk,t) and
(R1,t, · · · , Rk′,t) is that of the left-right SDE (1.11). Instead of characterizing the joint process
(L1,t, . . . , Lk,t;R1,t, . . . , Rk′,t) as the unique weak solution of a system of SDEs, which is rather
laborious, we give an inductive construction using the distribution of (Lt, Rt).

We first construct the system up to the first time two left Brownian motions coalesce,
or two right Brownian motions coalesce, or a right Brownian motion hits a left Brownian
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motion from the left. In the last case, the right Brownian motion has to continue on the
right of the left Brownian motion, so we call this a crossing. If our left and right coalescing
Brownian motions are initially ordered as LRRLRLRLLLRRLR, say, then we partition them
as {LR}{R}{LR}{LR}{L}{L}{LR}{R}{LR}, letting all pairs of a left Brownian motion
followed by a right Brownian motion constitute a partition element with two members, and
putting all remaining Brownian motions into partition elements with one member. We let
the partition elements evolve independently until the first coalescing or crossing time. Here
partition elements containing two members evolve according to the left-right SDE (1.11), while
partition elements containing one member are just Brownian motions with drift +1 or −1. At
the first coalescing or crossing time, we respectively coalesce or cross the motions that have hit
each other, repartition the remaining Brownian motions and continue the process. Note that
there can be at most k + k′ coalescence events and at most kk′ crossings, so this procedure is
iterated at most finitely often and eventually leads to a single pair (L,R).

The above construction uniquely defines the system of left-right coalescing Brownian mo-
tions lz1 , . . . , lzk

, rz′1 , . . . , rz′k′
. By the Feller property of coalescing Brownian motions and

solutions to the left-right SDE, it is clear that the law of (lz1 , . . . , lzk
, rz′1 , . . . , rz′k′

) depends

continuously on the starting points z1, . . . , zk, z
′
1, . . . , z

′
k′ , and the marginal distribution of a

subset of paths in {lz1 , . . . , lzk
, rz′1 , . . . , rz′k′

} is also a system of left-right coalescing Brownian

motions. This consistency property allows the definition of a countable system of left-right
coalescing Brownian motions.

2.3 The left-right Brownian web

We now construct the left-right Brownian web and prove Theorem 5.

Proof of Theorem 5 We need to show existence and uniqueness of a K(Π) × K(Π)-valued
random variable (W l,Wr) satisfying properties (i)–(iii) in Theorem 5. Fix countable dense sets
Dl,Dr ⊂ R2. By our construction in Section 2.2 and the consistency of left-right coalescing
Brownian motions when more paths are added, applying Kolmogorov’s extension theorem,
there exists a ΠDl ×ΠDr

-valued random variable
(

(lz)z∈Dl , (rz′)z′∈Dr

)

, unique in distribution,
such that for any two finite sets {z1, . . . , zk} ⊂ Dl, {z′1, . . . , z′k′} ⊂ Dr, (lz1 , . . . , lzk

, rz′1, . . . , rz′k′
)

is distributed as a system of left-right coalescing Brownian motions starting from z1, . . . , zk
and z′1, . . . , z

′
k′ . By property (iii), this proves uniqueness in law. To show existence, define

W l := {lz : z ∈ Dl}, Wr := {rz′ : z′ ∈ Dr}. (2.14)

Then W l and Wr is each distributed as a standard Brownian web with drift −1 and +1
respectively. Properties (i) and (iii) then follow from the analogous properties for the stan-
dard Brownian web. It only remains to show (ii). Let {u1, · · · , uk} and {u′1, · · · , u′k′} be
deterministic finite subsets of R2. By (i), almost surely, a unique path lui ∈ W l starts from
each ui, 1 ≤ i ≤ k, and a unique path ru′

j
∈ Wr starts from each u′j, 1 ≤ j ≤ k′. Choose

zn,i ∈ Dl, z′n,j ∈ Dr such that zn,i → ui and z′n,j → u′j as n → ∞. Since the Brownian web is
a.s. continuous at deterministic points (see Proposition 19), we have lzn,i → lui and rz′n,j

→ ru′
j

in Π, and hence

L
(

lzn,1 , . . . , lzn,k
, rz′n,1

, . . . , rz′
n,k′

)

=⇒
n→∞

L
(

lu1 , . . . , luk
, ru′

1
, . . . , ru′

k′

)

. (2.15)

By the continuity of left-right coalescing Brownian motions in its starting points, it follows that
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(lu1 , . . . , luk
, ru′

1
, . . . , ru′

k′
) is distributed as a system of left-right coalescing Brownian motions

starting from u1, . . . , uk, u
′
1, . . . , u

′
k′ , verifying property (ii).

3 Properties of the left-right Brownian web

In Sections 3.1–3.3 below, we collect some properties of solutions to the left-right SDE, the
Brownian web and its dual, and the left-right Brownian web and its dual, respectively.

3.1 Properties of the left-right SDE

Recall that a set X is perfect if X is closed and x ∈ X\{x} for all x ∈ X, i.e., X has no
isolated points.

Proposition 18 (Properties of the left-right SDE)
Let (Lt, Rt)t≥0 be the unique weak solution of the SDE (1.11) with initial condition (L0, R0) ∈
R2, subject to the constraint that Lt ≤ Rt for all t ≥ T := inf{s ≥ 0 : Ls = Rs}. Let
I := {t ≥ 0 : Lt = Rt} and let µI be the measure on R defined by µI(A) := ℓ(I ∩A), where ℓ
denotes Lebesgue measure. Then

(a) Almost surely, I is a nowhere dense perfect set.

(b) Almost surely, I is the support of µI .

Proof If T = ∞, the lemma is vacuous. Since (Lt, Rt)t≥0 is a strong Markov process and T is
a stopping time, we may assume without loss of generality that T = 0, i.e., L0 = R0. Define
W as in (2.4), put W̃τ := Wτ + 2τ (τ ≥ 0), and

Xτ := W̃τ +Rτ where Rτ := − inf
0≤s≤τ

W̃s (τ ≥ 0). (3.1)

Then X is a Brownian motion with diffusion constant 2 and drift 2, instantaneously reflected
at zero. It is well-known (and not hard to prove) that {τ ≥ 0 : Xτ = 0} is the support of dR.

Setting Dt := Rt − Lt (t ≥ 0), we see by (2.6), (2.7), and (2.11) (iii) that

Dt = XTt where Tt :=

∫ t

0
1{Ds>0}ds (t ≥ 0). (3.2)

It follows that I = {t ≥ 0 : Dt = 0} is the image of {τ ≥ 0 : Xτ = 0} under the map τ 7→ T−1
τ .

Since by (2.7) and (2.11) (iv),

St =

∫ t

0
1{Ds=0}ds = 1

2RTt (t ≥ 0), (3.3)

the measure µI is the image of the measure 1
2dR under the map T−1. Since T−1 is a continuous

open map, it follows that supp(µI) = T−1(supp(dR)) = T−1({τ ≥ 0 : Xτ = 0}) = I. This
proves part (b). It follows that I has no isolated points, i.e., is perfect. To see that I is nowhere
dense, by the Markov property, it suffices to show that Dt leaves the origin immediately.
Indeed, setting σ := inf{t ≥ 0 : Dt > 0} and using (2.2), we see that 0 = Dσ =

∫ σ
0 2dt = 2σ

a.s. This proves part (a).
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(1; 2)r=(1; 2)r(1; 2)l=(1; 2)l(2; 1)=(0; 3)(1; 1)=(0; 2)(0; 2)=(1; 1)(0; 1)=(0; 1)

:

(0; 3)=(2; 1)
Figure 6: Types of points in the Brownian web and its dual (W, Ŵ).

3.2 Properties of the Brownian web

In this section, we recall some properties of the standard Brownian web W and its dual Ŵ,
which can all be found in [FINR04, FINR06, STW00, TW98]. Recall that σ̂π̂ denotes the
starting time of a dual path π̂. Thus, a dual path is a map π̂ : [−∞, σ̂π̂] → [−∞,∞]∪{∗} such
that π̂ : [−∞, σ̂π̂]∩ R → [−∞,∞] is continuous, and π̂(±∞) := ∗ whenever ±∞ ∈ [−∞, σ̂π̂].

Proposition 19 (Properties of the Brownian web)
Let W be the Brownian web and Ŵ its dual. Then

(a) (W, Ŵ) is equally distributed with −(Ŵ ,W).

(b) Almost surely, paths in W coalesce when they meet, i.e., for each π, π′ ∈ W and t >
σπ ∨ σπ′ such that π(t) = π′(t), one has π(s) = π′(s) for all s ≥ t.

(c) Almost surely, paths and dual paths do not cross, i.e., there exist no π ∈ W, π̂ ∈ Ŵ,
and s, t ∈ [σπ, σ̂π̂] such that (π(s) − π̂(s)) · (π(t) − π̂(t)) < 0.

(d) Almost surely, paths and dual paths spend zero Lebesgue time together, i.e., we have
∫ σ̂π̂

σπ
1{π(t)=π̂(t)}dt = 0 for all π ∈ W and π̂ ∈ Ŵ.

(e) Almost surely, for each point z = (x, t) ∈ R2, x−n ↑ x, x+
n ↓ x, π−n ∈ W(x−n , t), and

π+
n ∈ W(x+

n , t), the limits πz− := limn→∞ π−n and πz+ := limn→∞ π+
n exist and do not

depend on the choice of π−n ∈ W(x−n , t) and π+
n ∈ W(x+

n , t).

Points z ∈ R2 in the Brownian web are classified according to the number of disjoint incoming
and distinct outgoing paths at z. By definition, an incoming path at z = (x, t) is a path π ∈ W
such that σπ < t and π(t) = x. Two incomng paths π, π′ at z are equivalent if π = π′ on [s,∞],
for some σπ ∨ σπ′ ≤ s < t. Let min(z) denote the number of equivalence classes of incoming
paths in W at z, and let mout(z) denote the cardinality of W(z). Then (min(z),mout(z)) is
the type of the point z in W. Points of type (1, 2) are distinguished into points of type (1, 2)l
and (1, 2)r, according to whether the incoming path continues along the left or right of the two
outgoing path. We let (m̂in(z), m̂out(z)) denote the type of a point z in Ŵ, which is defined to
be the type of −z in −Ŵ, the rotation of Ŵ by 180o around the origin. We denote the joint
type of z with respect to (W, Ŵ) by (min(z),mout(z))/(m̂in(z), m̂out(z)). The next lemma,
which was first established in [TW98] (see also [FINR06, Theorems 3.11 and 3.14]), classifies
all points in R2 according to their types in (W, Ŵ). Note the relations m̂out = min + 1 and
mout = m̂in + 1.

Lemma 20 (Classification of points in the Brownian web)
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(a) Almost surely, all z ∈ R2 are in (W, Ŵ) of one of the types (0, 1)/(0, 1), (0, 2)/(1, 1),
(0, 3)/(2, 1), (1, 1)/(0, 2), (1, 2)l/(1, 2)l, (1, 2)r/(1, 2)r, and (2, 1)/(0, 3). See Figure 6.

(b) For each deterministic t ∈ R, almost surely each point on R×{t} is of either type (0, 1),
(0, 2), or (1, 1) in W.

(c) Each deterministic point z ∈ R2 is almost surely of type (0, 1) in W.

The next lemma shows that convergent sequences of paths in W converge in a rather strong
sense.

Lemma 21 (Convergence of paths)
Let W be the standard Brownian web. Then

(a) Almost surely, for any {πn}n∈N, π ∈ W such that πn → π, one has σπn → σπ and
sup{t ≥ σπn ∨ σπ : πn(t) 6= π(t)} −→

n→∞
σπ.

(b) Let D be a deterministic countable dense subset of R2. Let {πz}z∈D be the skeleton of
W relative to the starting set D. Then almost surely, for all π ∈ W and ε > 0, there
exists z = (x, t) ∈ D such that t ∈ (σπ − ε, σπ + ε) and πz(s) = π(s) for all s ≥ σπ + ε.

Proof By [FINR04, Prop. 4.1], Wt,δ := {γ(t) : γ ∈ W, σγ ≤ t − δ} is a.s. locally finite
for each t, δ ∈ Q with δ > 0. Therefore πn → π implies that for each σπ < t ∈ Q, πn(t)
eventually equals π(t), and hence πn = π on [t,∞), which proves part (a). Part (b) is a
trivial consequence of part (a) and Theorem 2 (see also Prop. 2.2 of [TW98] and Prop. 4.2 of
[FINR04]).

In applications of Lemma 21, one mostly needs part (b). Typically, a property is proved first
for skeletal paths, and then extended to all paths in the web by Lemma 21 (b).

We say that a path π1 crosses a path π2 from left to right if there exist σπ1 ∨ σπ2 ≤ s < t
such that π1(s) < π2(s) and π2(t) < π1(t). Likewise, we say that a path π1 crosses a dual path
π̂2 from left to right if there exist σπ1 ≤ s < t ≤ σ̂π̂2 such that π1(s) < π̂2(s) and π̂2(t) < π1(t).
The next lemma will be useful in what follows.

Lemma 22 (Equivalence of crossing)
Let (W, Ŵ) be the Brownian web and its dual. A path γ ∈ Π crosses some π ∈ W from left
to right if and only if it also crosses some π̂ ∈ W from left to right. The same is true if we
interchange left and right.

Proof Assume γ ∈ Π crosses π ∈ W from left to right, i.e., γ(s) < π(s) and γ(t) > π(t)
for some σγ ∨ σπ ≤ s < t. Then by the noncrossing property of paths in W and Ŵ, for any
π̂ ∈ Ŵ(x, t) with x ∈ (π(t), γ(t)), we have γ(s) < π(s) ≤ π̂(s). Hence γ crosses π̂ from left
to right. The proof of the converse implication is similar. By symmetry, the same statements
hold for crossings from right to left.

3.3 Properties of the left-right Brownian web

In this section, we collect some basic properties of the left-right Brownian web (W l,Wr) and its

dual (Ŵ l, Ŵr). Recall the definitions of intersection times and crossing times from Section 1.4.
For any π1, π2 ∈ Π, we let

I(π1, π2) := {t ∈ (σπ1 ∨ σπ2,∞) : π1(t) = π2(t)} (3.4)
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denote the set of intersection times of π1 and π2.

Proposition 23 (Properties of the left-right Brownian web)

Let (W l,Wr, Ŵ l, Ŵr) be the standard left-right Brownian web and its dual. Then, almost
surely,

(a) For each l ∈ W l and r ∈ Wr such that σl ∨ σr < ∞, one has Tcros := inf{t > σl ∨ σr :
l(t) < r(t)} = inf{t > σl ∨ σr : l(t) ≤ r(t)} <∞, and l(t) ≤ r(t) for all t ≥ Tcros.

(b) For each l ∈ W l and r ∈ Wr, I(l, r) is a (possibly empty) nowhere dense perfect set.

(c) For each l ∈ W l and r ∈ W l such that σl ∨ σr < ∞, the set I(l, r) is the support of
the measure µI on (σl ∨ σr,∞) defined by µI(l,r)(A) := ℓ(I(l, r) ∩ A), where ℓ denotes
Lebesgue measure.

(d) Paths in W l cannot cross paths in Ŵr from left to right, i.e., there exist no l ∈ W l,
r̂ ∈ Ŵr, and σl ≤ s < t ≤ σ̂r̂ such that l(s) < r̂(s) and r̂(t) < l(t). Similarly, paths in

Wr cannot cross paths in Ŵ l from right to left.

Proof Let Dl and Dr be deterministic countable dense subsets of R2, and let {lz}z∈Dl and
{rz}z∈Dr be the corresponding skeletons of W l and Wr. By Theorem 5 and Lemma 21 (b),
it suffices to prove parts (a)–(c) for skeletal paths, and hence for deterministic pairs (lz, rz′)
where z ∈ Dl and z′ ∈ Dr. Since such deterministic pairs satisfy the SDE (1.11) by Theorem 5,
parts (a)–(c) follow readily from Proposition 18 (a) and (b). Property (d) is a consequence of
(a) and Lemma 22.

4 The Brownian net

Let (W l,Wr, Ŵ l, Ŵr) be a left-right Brownian web and its dual, and set

Nhop := Hcros(W l ∪Wr). (4.1)

Note that if Dl,Dr ⊂ R2 are deterministic countable dense sets, then by Lemma 21 (b), we

also have Nhop = Hcros(W l(Dl) ∪Wr(Dr)). Define Nmesh and Nwedge by formulas (1.16) and
(1.24), respectively. In Sections 4.1 and 4.2, we prove the inclusions Nhop ⊂ Nwedge and
Nwedge ⊂ Nhop, respectively. As an application, in Section 4.3, we establish Theorems 3
and 10, as well as Lemma 6. In addition, we prove Theorem 9 in Section 4.2, and, as a
preparation for the characterization of the Brownian net using meshes, we prove the inclusion
Nhop ⊂ Nmesh in Section 4.1. The proof of the other inclusion is more difficult, and will be
postponed to Section 7.

4.1 Nhop ⊂ Nwedge

Set
Pnoncros :=

{

π ∈ Π : π does not cross paths in W l from right to left
or paths in Wr from left to right

}

.
(4.2)

Lemma 24 (Closedness of constructions)
The sets Nwedge, Nmesh, and Pnoncros are closed.
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Proof Note that if a path π ∈ Π enters a mesh with bottom time t > σπ, then it must enter

from outside. Likewise, if π crosses a dual path l̂ ∈ Ŵ l from right to left, then it enters the
open set {(x, t) ∈ R2 : t < σ̂l̂, x < l̂(t)} from outside. Thus, taking into account Lemma 22,
all statements follow from the fact that if πn, π ∈ Π satisfy πn → π, and π enters an open set
A from outside, then for n sufficiently large, πn also enters A from outside.

Lemma 25 (Noncrossing property)
We have Nhop ⊂ Pnoncros a.s.

Proof It suffices to show that no path π ∈ Nhop crosses paths in W l from right to left.
By Lemma 24, it suffices to verify the statement for paths in Hcros(W l ∪ Wr). By Proposi-
tions 19 (b) and 23 (a), paths π ∈ W l ∪ Wr have the stronger property that there exist no
σπ < s < t and l ∈ W l such that l(s) ≤ π(s) and π(t) < l(t). It is easy to see that this
stronger property is preserved under hopping.

Let A be either a mesh or wedge with (finite) bottom point z = (x, t). We say that a path
π ∈ Π enters A through z if σπ < t and there exists s > t such that (π(s), s) ∈ A and
(π(u), u) ∈ A for all u ∈ [t, s]. Note that if a path enters a mesh (wedge) from outside, then
it must either cross a left-most or right-most (dual) path in the wrong direction, or enter the
mesh (wedge) through its bottom point.

Lemma 26 (Finite wedges contained in meshes)
For every wedge W with bottom point z there exists a mesh M with bottom point z such that
W ⊂M .

Proof Write z = (x, t) and let r̂, l̂ be the left and right boundary of W . By Lemma 20, there
exist r ∈ Wr(z) and l ∈ W l(z) such that r(s) ≤ r̂(s) for all s ∈ (t, σ̂r̂) and l̂(s) ≤ l(s) for all
s ∈ (t, σ̂l̂). It follows that r and l are the left and right boundary of a mesh containing W (see
Figure 3).

Lemma 27 (Hopping construction contained in mesh construction)
We have Nhop ⊂ Nmesh a.s.

Proof By Lemma 24, it suffices to show that Hcros(W l ∪Wr) ⊂ Nmesh. We will show that,
even stronger, paths in Hcros(W l ∪Wr) do not enter meshes regardless of their bottom times.
It is easy to see that this stronger property is preserved under hopping, so it suffices to show
that paths in W l ∪Wr do not enter meshes. By symmetry, it suffices to show this for paths
in W l. By Propositions 19 (b) and 23 (a), it suffices to show that paths in W l cannot enter
meshes through their bottom point. Let M = M(r, l) be a mesh with left and right boundary
r and l and bottom point z = (x, t). Let l′ := lz− and r′ := rz+ be the left-most path in W l(z)
and the right-most path in Wr(z), respectively, in the sense of Proposition 19 (e). Then, by
Proposition 23 (a), l′(s) ≤ r(s) and l(s) ≤ r′(s) for all s ≥ t (see Figure 3.) If some l′′ ∈ W l

enters M through z, then by Lemma 20, z must be of the type (1, 2)l or (1, 2)r in W l, and
therefore, l′′ continues along either l or l′. In either case, l′′ does not enter M .

Lemma 28 (Hopping construction contained in wedge construction)
We have Nhop ⊂ Nwedge a.s.
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Proof By Lemma 24, it suffices to show that Hcros(W l ∪Wr) ⊂ Nwedge. Thus, we must show

that paths in Hcros(W l ∪ Wr) do not cross paths in Ŵ l, Ŵr in the wrong direction or enter
wedges through their bottom points. The first assertion follows from Lemmas 22 and 25, while
the second assertion is a result of Lemmas 26 and 27.

4.2 Nwedge ⊂ Nhop

In this section we prove that Nwedge ⊂ Nhop. We start with a preparatory lemma.

Lemma 29 (Compactness of Nhop)
Nhop ∈ K(Π) a.s.

Proof Recall (Θ1,Θ2) from (1.4). From the definition of the topology on Π introduced in
Section 1.2, by Arzela-Ascoli, we note that a set K ⊂ Π is precompact if and only if the
set of functions defined by the images of the graphs of π ∈ K under the map (Θ1,Θ2) is
equicontinuous, i.e., the modulus of continuity of K,

mK(δ) := sup
{

|Θ1(π(t), t) − Θ1(π(s), s)| : π ∈ K, s, t ≥ σπ, |Θ2(s) − Θ2(t)| ≤ δ
}

(4.3)

satisfies mK(δ) ↓ 0 as δ ↓ 0.
Lemma 25 implies that for each π ∈ Nhop and s ≥ σπ, we have l ≤ π ≤ r on [s,∞), where

l := l(π(s),s)− and r := r(π(s),s)+ denote respectively the left-most and the right-most path in

W l(π(s), s) and Wr(π(s), s), in the sense of Proposition 19 (e). It follows that for any t > s,

|Θ1(π(t), t) − Θ1(π(s), s)| ≤ |Θ1(l(t), t) − Θ1(l(s), s)| ∨ |Θ1(r(t), t) − Θ1(r(s), s)|. (4.4)

Taking the supremum over all π ∈ Nhop and σπ ≤ s < t such that |Θ2(s) − Θ2(t)| ≤ δ, we
see that mNhop

(δ) ≤ mW l∪Wr(δ) (in fact, equality holds since W l ∪ Wr ⊂ Nhop), hence the

compactness of Nhop follows from the compactness of W l ∪Wr a.s.

The next lemma is the main result of this section. This lemma and Proposition 8, which will
be proved in Section 7, are the key technical results of this paper.

Lemma 30 (Wedge construction contained in hopping construction)
We have Nwedge ⊂ Nhop a.s.

Proof We must show that any path π ∈ Nwedge can be approximated by a sequence of paths
πn ∈ Hcros(W l ∪Wr). By the compactness of Nhop (Lemma 29), it suffices to show that for
any π ∈ Nwedge, ε > 0, and σπ < t1 < · · · < tn < ∞, we can find πε ∈ Hcros(W l ∪Wr) such
that σπε ∈ (σπ, t1) and |πε(ti) − π(ti)| ≤ ε for all i = 1, . . . , n.

Our strategy is to first introduce piecewise continuous functions r̂ and l̂ on [t1, tn], such that
r̂(s) ≤ π(s) ≤ l̂(s) for s ∈ (t1, tn] and |r̂(ti)− π(ti)| ∨ |l̂(ti)− π(ti)| ≤ ε for i = 2, . . . , n. These

functions will be constructed by piecing together paths in Ŵr and Ŵ l. We then construct πε

by steering a hopping path between r̂ and l̂.
We inductively choose n = n1 > · · · > nm > 1 and r̂1, . . . , r̂m such that

r̂k ∈ Ŵr
(

π(tnk
) − ε, tnk

)

and nk+1 := sup{ i : nk > i > 1, r̂k(ti) < π(ti) − ε}. (4.5)

This process terminates if r̂k(ti) ≥ π(ti) − ε for all nk > i > 1. In this case we set m := k.
We define r̂ := r̂k on (tnk+1

, tnk
] (k = 1, . . . ,m − 1) and r̂ := r̂m on [t1, tnm ]. By left-right

symmetry, we define n = n′1 > · · · > n′m′ > 1, l̂1, . . . , l̂m′ , and l̂ analoguously. We claim that
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Figure 7: Construction of a hopping path in the ‘fish-trap’ (r̂, l̂).

(1) r̂ ≤ π ≤ l̂ on [t1, tn].

(2) ε′ := infs∈[t1,tn]

(

l̂(s) − r̂(s)
)

> 0.

(3) |r̂(ti) − π(ti)| ∨ |l̂(ti) − π(ti)| ≤ ε for i = 2, . . . , n.

(4) limt↓ti r̂(t) ≤ r̂(ti) and limt↓ti l̂(t) ≥ l̂(ti) for i = 2, . . . , n− 1, which are the only possible

discontinuities of r̂ and l̂.

Properties (1) and (2) follow from our assumption that π does not enter wedges whose left
and right boundaries are any of the dual paths r̂1, . . . , r̂m and l̂1, . . . , l̂m′ . Properties (3) and
(4) are now obvious from our construction. The pair (r̂, l̂) resembles a fish-trap (see Figure 7).

We now construct a path πε ∈ Hcros(W l∪Wr) such that σπε ∈ (σπ, t1), |πε(t1)−π(t1)| ≤ ε,
and r̂(s) ≤ πε(s) ≤ l̂(s) for all s ∈ [t1, tn]. To this aim, we inductively choose l1, l3, l5, . . . ∈ W l,
r2, r4, r6, . . . ∈ Wr, and τ1, τ2, . . . such that τi is a crossing time of li and ri+1 if i is odd and
a crossing time of ri and li+1 if i is even, in the following way. First, we choose l1 such
that σl1 ∈ (σπ, t1) and l1(t1) ∈ (r̂(t1), l̂(t1)) ∩ [π(t1) − ε, π(t1) + ε]. Assuming that we have
already chosen l1, . . . , li and r2, . . . , ri−1, we proceed as follows. If r̂(s) < li(s) ≤ l̂(s) for
all s ∈ [τi−1, tn] (where τ0 := t1), the process terminates. Otherwise, since paths cannot
cross dual paths (Proposition 19 (c)), li must hit r̂ before time tn. In this case, we set
σi := inf{s ∈ [τi−1, tn] : li(s) = r̂(s)}. Using Proposition 19 (c) and 23 (a), we can choose
δ > 0 sufficiently small and ri+1 ∈ Wr started in {(x, s) : σi − δ < s < σi, r̂(s) < x < li(s)},
such that ri+1 crosses li at a time τi ∈ (σi − δ, σi) and ri+1(τi) − r̂(τi) ≤ 1

3ε
′. In case the last

path we have chosen is a right-most path, by left-right symmetry, we proceed analogously. This
process must terminate after a finite number of steps, for if this were not the case, then τi ↑ τ∞
for some τ∞ ≤ tn. By the piecewise continuity of l̂ and r̂, we have |ri(τi) − ri(τi−1)| ≥ 1

4ε
′ for

all sufficiently large even i, which contradicts the local equicontinuity, and hence compactness
of Wr.

Defining πε ∈ Hcros(W l ∪Wr) by hopping between the paths l1, l3, . . . and r2, r4, . . . at the
times τ1, τ2, . . ., we have found the desired approximation of π by hopping paths.

Since it is very similar to the proof of Lemma 30, we include here the proof of Theorem 9.
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Proof of Theorem 9 Let Wwedge be defined by the right-hand side of (1.21). Since paths

in W cannot cross paths in Ŵ, to show that W ⊂ Wwedge, it suffices that paths in W cannot

enter wedges of Ŵ through their bottom points. This can be proved by mimicking the proofs
of Lemmas 26 and 27.

The inclusion Wwedge ⊂ W can be proved in the same way as the proof of Lemma 30.
Since W is compact, it suffices to show that path that does not enter wedges from outside can
be approximated by paths in W. We can define a ‘fish-trap’ whose left and right boundary are
constructed by piecing dual paths together. In this case, any path in W entering the fish-trap
from below must stay between its left and right boundary, so no hopping is necessary.

4.3 Characterizations with hopping and wedges

Proof of Theorem 3, Lemma 6, and Theorem 10 Let (W l,Wr, Ŵ l, Ŵr) be a left-right
Brownian web and its dual, and let Nwedge be defined as in (1.24) and Nhop be defined as
in (4.1). By Lemmas 28 and 30, Nhop = Nwedge. It follows from Lemma 25 that for every
z = (x, t) ∈ R2, we have lz−(s) ≤ π(s) ≤ rz+(s) for all π ∈ Nhop(z) and s ≥ t, where lz−, rz+

are defined for W l,Wr as in Proposition 19 (e). In particular, for deterministic z, the a.s.
unique paths lz ∈ W l(z) and rz ∈ Wr(z) are respectively the left-most and right-most paths
in Nhop(z). Setting N := Nhop = Nwedge, we have found a K(Π)-valued (by Lemma 29)
random variable that satisfies conditions (i)–(ii) of Theorem 3. To see that condition (iii) is

also satisfied, note that by Lemma 21 (b), Nhop = Hcros(W l(Dl) ∪Wr(Dr)) for any determin-
istic countable dense sets Dl,Dr ⊂ R2. Since a random variable satisfying the conditions of
Theorem 3 is obviously unique in distribution, the proof of Theorem 3 is complete.

Since for each deterministic z, the a.s. unique paths lz ∈ W l(z) and rz ∈ Wr(z) are the
left-most and right-most paths in N , this also shows that to each Brownian net, there exists
an associated left-right Brownian web, which is obviously unique by properties (i) and (ii) of
Theorem 3. This proves Lemma 6.

Finally, since N = Nwedge, we have also proved Theorem 10.

5 Convergence

In this section, we prove Theorem 1. In fact, we prove something more: we prove the joint
convergence under diffusive scaling of the collections of all left-most and right-most paths (and
their dual) in the arrow configuration ℵβ to the left-right Brownian web (and its dual), and
of the collection of all ℵβ-paths to the associated Brownian net. Throughout this section,
N denotes the (standard) Brownian net, defined by the hopping or dual characterization
(Theorem 3 or 10), which have been shown to be equivalent. We will not use the mesh
characterization of the Brownian net (Theorem 7, yet to be proved) in this section.

In Section 5.1, we prove the convergence of a single pair of left-most and right-most paths
in the arrow configuration ℵβ to a solution of the left-right SDE (1.11). In Section 5.2, we
prove the convergence of all left-most and right-most paths and their dual to the left-right
Brownian web and its dual. Finally in Section 5.3, we prove Theorem 1.
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5.1 Convergence to the left-right SDE

Recall the definition of ℵβ and Uβ from Section 1.1. Let U l
β (resp. U r

β) denote the set of
left-most (resp. right-most) paths in Uβ, i.e., ℵβ-paths which follow arrows to the left (resp.
right) at branching points. We have the following convergence result for a single pair of paths
in (U l

βn
,U r

βn
). Below, CRn [0,∞) denotes the space of continuous functions from [0,∞) to Rn,

equipped with the topology of uniform convergence on compacta.

Proposition 31 (Convergence of a pair of left and right paths)
Let βn, εn → 0 with βn/εn → 1. Let x(n), y(n) ∈ Zeven such that (εnx

(n), εny
(n)) → (x, y) for

some (x, y) ∈ R2. Let (L
(n)
t )t≥0 denote the path in U l

βn
starting at (x(n), 0), and (R

(n)
t )t≥0 the

path in U r
βn

starting at (y(n), 0). Then

L
(

(εnL
(n)
t/ε2

n
, εnR

(n)
t/ε2

n
)t≥0

)

=⇒
n→∞

L
(

(Lt, Rt)t≥0

)

, (5.1)

where ⇒ denotes weak convergence of probability laws on CR2 [0,∞), and (Lt, Rt)t≥0 is the
unique weak solution of (1.11) with initial state (L0, R0) = (x, y), subject to the constraint
that Lt ≤ Rt for all t ≥ T := inf{s ≥ 0 : Ls = Rs}.

Proof Set Tn := inf{s ≥ 0 : L
(n)
s = R

(n)
s }. Since up to time Tn, L(n) and R(n) are independent

random walks with drift −βn and +βn respectively, it follows from Donsker’s invariance prin-
ciple and the almost sure continuity of the first intersection time between two independent
Brownian motions with drift ±1, that

L
(

(εnL
(n)
t/ε2

n∧Tn
, εnR

(n)
t/ε2

n∧Tn
)t≥0

)

=⇒
n→∞

L
(

(Lt∧T , Rt∧T )t≥0

)

. (5.2)

Therefore, it suffices to prove Proposition 31 for the case x(n) = y(n). By translation invariance,
we may take x(n) = y(n) = 0.

Note that (εnL
(n)
t/ε2

n
)t≥0 and (εnR

(n)
t/ε2

n
)t≥0 individually converges weakly to a Brownian mo-

tion with drift −1, respectively, +1. This implies tightness for the family of joint processes

{(L(n), R(n))}n∈N. Our strategy is to represent (L
(n)
t , R

(n)
t )t≥0 as the solution of a difference

equation, which in the limit yields an SDE with a unique solution. Since the discontinuous
coefficients of the SDE (1.11) are problematic, we prefer to work with (2.2), which behaves
better under limits.

Let (V l
t )t∈N0 , (V r

t )t∈N0 , and (V s
t )t∈N0 be independent discrete-time simple symmetric ran-

dom walks starting at the origin at time zero. For α = l, r, s, let (D
(n),α,−
t )t∈N0 be a process

such that whenever V α
t jumps one step to the right, D

(n),α,−
t with probability βn jumps two

steps to the left. Likewise, let (D
(n),α,+
t )t∈N0 be the process that with probability βn jumps

two steps to the right whenever V α
t jumps one step to the left. As a result, V α

t +D
(n),α,−
t is

a random walk with drift −βn, and V α
t +D

(n),α,+
t is a random walk with drift +βn.

The unscaled process (L
(n)
t , R

(n)
t ) at integer times can be constructed as the solution of

L
(n)
t =V l

T
(n)
t

+D
(n),l,−
T

(n)
t

+ V s

S
(n)
t

+D
(n),s,−
S

(n)
t

,

R
(n)
t =V r

T
(n)
t

+D
(n),r,+

T
(n)
t

+ V s

S
(n)
t

+D
(n),s,+

S
(n)
t

,

T
(n)
t =

∑t−1
s=0 1{L(n)

s <R
(n)
s } ,

S
(n)
t =

∑t−1
s=0 1{L(n)

s =R
(n)
s } ,

(5.3)
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(compare with (2.11)). We define L
(n)
t , R

(n)
t , V α

t ,D
(n),α,±
t , T

(n)
t , and S

(n)
t at non-integer times

by linear interpolation. Note that dT
(n)
t = 1{L(n)

⌊t⌋<R
(n)
⌊t⌋}

dt. The rescaled process then satisfies

(compare with (2.2))

(i) εnL
(n)
t/ε2

n
= εn(V l +D(n),l,−)

T
(n)

t/ε2n

+ εn(V s +D(n),s,−)
S

(n)

t/ε2n

,

(ii) εnR
(n)
t/ε2

n
= εn(V r +D(n),r,−)

T
(n)

t/ε2n

+ εn(V s +D(n),s,−)
S

(n)

t/ε2n

,

(iii) ε2n(T (n) + S(n))t/ε2
n

= t,

(iv)

∫ t

0
1{
εnR

(n)
s/ε2

n
− εnL

(n)
s/ε2

n
> εn

}d
(

ε2nS
(n)
s/ε2

n

)

= 0,

(5.4)

where in the indicator event in (iv), we impose the lower bound of εn instead of 0 for εnR
(n)
s/ε2

n
−

εnL
(n)
s/ε2

n
to compensate the effect of linearly interpolating S(n) between integer times.

Clearly

(

εnV
l
t/ε2

n
, εnV

r
t/ε2

n
, εnV

s
t/ε2

n
, εnD

(n),l,−
t/ε2

n
, εnD

(n),r,+
t/ε2

n
, εnD

(n),s,+
t/ε2

n
, εnD

(n),s,−
t/ε2

n

)

t≥0
(5.5)

converge weakly in law on CR7 [0,∞) to

(

B̃l
t, B̃

r
t , B̃

s
t , t, t, t, t

)

t≥0
. (5.6)

We have noted that the laws of {(εnL(n)
t/ε2

n
, εnR

(n)
t/ε2

n
)t≥0}n∈N are tight. Since t 7→ ε2nT

(n)
t/ε2

n

increases with slope at most 1, the laws of {(ε2nT
(n)
t/ε2

n
)t≥0}n∈N are also tight. The same is true

for {(ε2nS
(n)
t/ε2

n
)t≥0}n∈N. Therefore for n ∈ N, the laws of the 11-tuple, which consists of the

7-tuple in (5.5) joint with (εnL
(n)
t/ε2

n
, εnR

(n)
t/ε2

n
, ε2nT

(n)
t/ε2

n
, ε2nS

(n)
t/ε2

n
)t≥0, are also tight. By going to a

subsequence, we may assume that the 11-tuple converges weakly to some limiting process

(

B̃l
t, B̃

r
t , B̃

s
t , t, t, t, t, Lt, Rt, Tt, St

)

t≥0
. (5.7)

By Skorohod’s representation theorem (see e.g. Theorem 6.7 in [Bi99]), we can couple the
11-tuples for n ∈ N and the limiting process in (5.7), such that the convergence is almost sure
in CR11 [0,∞).

Assume this coupling, we claim that (Lt, Rt, Tt, St)t≥0 solves the equation (2.2), and is
therefore determined uniquely in law by Lemma 17. Indeed, (2.2) (i)–(iii) follow immediately
by taking the limit n→ ∞ in (5.4) (i)–(iii). We claim that (2.2) (iv) follows from (5.4) (iv). For
each δ > 0, choose a continuous nondecreasing function ρδ : [0,∞) → R, such that ρδ(u) = 0
for u ≤ δ and ρδ(u) = 1 for u ≥ 2δ. Then, using (5.4) (iv) and taking the limit n → ∞, we
find that

∫ t

0
ρδ(Rs − Ls) dSs = 0 (5.8)

for each δ > 0. Letting δ ↓ 0, we arrive at (2.2) (iv).
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5.2 Convergence to the left-right Brownian web

In this section we prove the convergence, under diffusive scaling, of the collections of all left-
most and right-most paths in the arrow configuration ℵβ (and their dual) to the left-right
Brownian web (and its dual). As a corollary, we also prove formula (1.22).

Recall the scaling map Sε defined in (1.7).

Proposition 32 (Convergence of multiple left-right coalescing paths)

Let βn, εn → 0 with βn/εn → 1. Let z
(n)
1 , . . . , z

(n)
k , z

′(n)
1 , . . . , z

′(n)
k′ ∈ Z2

even be such that

Sεn(z
(n)
i ) → zi and Sεn(z

′(n)
j ) → z′j for i = 1, . . . , k and j = 1, . . . , k′. Let l

(n)
i denote the

path in U l
βn

starting from zi, and let r
(n)
j denote the path in U r

βn
starting from z′j. Then on

the space Πk+k′
,

L
(

Sεn(l
(n)
1 , . . . , l

(n)
k , r

(n)
1 , . . . , r

(n)
k′ )

)

=⇒
n→∞

L(l1, . . . , lk, r1, . . . , rk′), (5.9)

where (l1, . . . , lk, r1, . . . , rk′) is a collection of left-right coalescing Brownian motions as defined
in Section 2.2, starting from (z1, . . . , zk, z

′
1, . . . , z

′
k′).

Proof Recall the inductive construction of (l1, . . . , lk, r1, . . . , rk′) from Section 2.2. Note that

(l
(n)
1 , . . . , l

(n)
k , r

(n)
1 , . . . , r

(n)
k′ ) can be constructed using the same inductive approach. Since the

inductive construction pieces together independent evolutions of sets of paths, where each
set consists of either a single left-most or right-most path or a pair of left-right paths, the
proposition follows easily from Proposition 31 and the observation that the stopping times
used in the inductive construction are almost surely continuous functionals on Πk+k′

with
respect to the law of independent evolutions of paths in different partition elements.

Let ℵ̂β denote the arrow configuration dual to ℵβ, defined exactly as in (1.17), and let Ûβ

denote the set of all ℵ̂β-paths. Let Û l
β (resp. Û r

β) denote the set of ℵ̂β-paths dual to U l
β (resp.

U r
β), i.e., the set of all left-most (resp. right-most) paths in Ûβ after rotating the graph of Ûβ

by 180o. Let Π̂ := {−π : π ∈ Π}, the image space of Π under the rotation map −, while
preserving the metric. We have

Theorem 33 (Convergence to the left-right Brownian web and its dual)
Let βn, εn → 0 with βn/εn → 1. Then Sεn(U l

βn
,U r

βn
, Û l

βn
, Û r

βn
) are K(Π)2 × K(Π̂)2-valued

random variables, and

L
(

Sεn(U l
βn
,U r

βn
, Û l

βn
, Û r

βn
)
)

=⇒
n→∞

(W l,Wr, Ŵ l, Ŵr), (5.10)

where (W l,Wr, Ŵ l, Ŵr) is the left-right Brownian web and its dual.

Proof It follows from Theorem 6.1 of [FINR04], Theorem 2 and Proposition 19, that

L(Sεn(U l
βn
, Û l

βn
)) =⇒

n→∞
L(W l, Ŵ l) and L(Sεn(U r

βn
, Û r

βn
)) =⇒

n→∞
L(Wr, Ŵr). (5.11)

Therefore
{

Sεn(U l
βn
,U r

βn
, Û l

βn
, Û r

βn
)
}

n∈N
is a tight family. Let (X l,Xr, X̂ l, X̂r) be any weak

limit point. Then (X l, X̂ l) and (Xr, X̂r) are distributed as (W l, Ŵ l) and (Wr, Ŵr) respectively.
Therefore (X l,Xr) satisfies conditions (i) and (iii) of Theorem 5. By Proposition 32, (X l,Xr)
also satisfies condition (ii) of Theorem 5, and therefore (X l,Xr) has the same distribution as
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the standard left-right Brownian web (W l,Wr). Since W l and Wr determine their duals Ŵ l

and Ŵr almost surely, (X l,Xr, X̂ l, X̂r) has the same distribution as (W l,Wr, Ŵ l, Ŵr).

Proof of formula (1.22) Since the analogue of (1.22) obviously holds in the discrete setting,
(1.22) is a consequence of the convergence in (5.10).

5.3 Convergence to the Brownian net

In this section, we prove Theorem 1. It suffices to prove (1.8) for b = 1 and b = 0. The
general case b > 0 follows the same proof as for b = 1 if we set L(Nb) := L(S1/b(N )), which
automatically gives the scaling relation (1.9). Thus, Theorem 1 is implied by the following
stronger result.

Theorem 34 (Convergence to the associated Brownian net)
Let βn, εn → 0 with βn/εn → b ∈ {0, 1}. Then Sεn(Uβn ,U l

βn
,U r

βn
, Û l

βn
, Û r

βn
) are K(Π)3×K(Π̂)2-

valued random variables. If b = 1, then

L
(

Sεn(Uβn ,U l
βn
,U r

βn
, Û l

βn
, Û r

βn
)
)

=⇒
n→∞

L(N ,W l,Wr, Ŵ l, Ŵr), (5.12)

where N is the (standard) Brownian net and (W l,Wr, Ŵ l, Ŵr) is its associated left-right
Brownian web and its dual. If b = 0, then

L
(

Sεn(Uβn ,U l
βn
,U r

βn
, Û l

βn
, Û r

βn
)
)

=⇒
n→∞

(W,W,W, Ŵ , Ŵ), (5.13)

where (W, Ŵ) is the Brownian web and its dual.

Proof We start with the case b = 1 and then say how our arguments can be adapted to cover
also the case b = 0.

Recall the modulus of continuity mK(·) of K ∈ K(Π) from (4.3). Just as in the proof of
Lemma 29, we see that

mSεn(Uβn )(δ) ≤ mSεn (U l
βn

∪Ur
βn

)(δ), (5.14)

hence the tightness of {Sεn(Uβn)}n∈N follows from the tightness of the Sεn(U l
βn

) and Sεn(U r
βn

).
Thus, by going to a subsequence, we may assume that the laws in (5.12) converge to a

limit L(N ∗,W l,Wr, Ŵ l, Ŵr), where by Theorem 33, (W l,Wr, Ŵ l, Ŵr) is the left-right Brow-
nian web and its dual. We need to show that N ∗ is the Brownian net associated with
(W l,Wr, Ŵ l, Ŵr). Our strategy will be to show that Nhop ⊂ N ∗ ⊂ Nwedge, where Nhop

and Nwedge are defined as in Section 4. It then follows from the equivalence of the hopping
and dual constructions of the Brownian net (Theorems 3 and Theorem 10) that N ∗ = N .

Let Dl,Dr ⊂ R2 be deterministic countable dense sets. For each z ∈ Dl (resp. z′ ∈ Dr), we
fix a sequence zn ∈ Z2

even (resp. z′n ∈ Z2
even) such that Sεn(zn) → z (resp. Sεn(z′n) → z′), and

we let l̂
(n)
z (resp. r̂

(n)
z′ ) denote the path in Sεn(Û l

βn
) (resp. Sεn(Û r

βn
)) starting in Sεn(zn) (resp.

Sεn(z′n)). Let
τ(π̂1, π̂2) := sup{t < σ̂π̂1 ∧ σ̂π̂2 : π̂1(t) = π̂2(t)} (5.15)

denote the first meeting time of the two dual paths π̂1, π̂2. Since, up to their first meeting

time, l̂
(n)
z and r̂

(n)
z′ are independent random walks, and since random walk paths joint with
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their first meeting time converge under diffusive scaling to Brownian motions joint with their
first meeting time, we have

L
(

Sεn(Uβn ,U l
βn
,U r

βn
, Û l

βn
, Û r

βn
),

(

τ(l̂(n)
z , r̂

(n)
z′ )

)

z∈Dl, z′∈Dr

)

=⇒
n→∞

L
(

N ∗,W l,Wr, Ŵ l, Ŵr,
(

τ(l̂z , r̂z′)
)

z∈Dl, z′∈Dr

)

.
(5.16)

By Skorohod’s representation theorem, we can construct a coupling such that the convergence
in (5.16) is almost sure. Assuming such a coupling, we will show that Nhop ⊂ N ∗ ⊂ Nwedge.

To show that Nhop ⊂ N ∗, it suffices to show that Hcros(W l(Dl) ∪ Wr(Dr)) ⊂ N ∗. Any
π ∈ Hcros(W l(Dl) ∪ Wr(Dr)) is constructed by hopping at crossing times between left-most
and right-most skeletal paths π1, . . . , πm as in (1.12). By the a.s. convergence of Sεn(U l

βn
,U r

βn
)

to (W l,Wr), there exist π
(n)
i ∈ Sεn(U l

βn
∪ U r

βn
) such that π

(n)
i → πi (i = 1, . . . ,m). By the

structure of crossing times (Proposition 23 (a)), the crossing time between π
(n)
i and π

(n)
i+1

converges to the crossing time between πi and πi+1 for all i = 1, . . . ,m − 1. Therefore, the

path π(n) that is constructed by hopping at crossing times between π
(n)
1 , . . . , π

(n)
m converges

to π. Since π(n) ∈ Sεn(Uβn) by the nearest-neighbor nature of ℵβn-paths, this proves that
Hcros(W l(Dl) ∪Wr(Dr)) ⊂ N ∗.

To show that N ∗ ⊂ Nwedge, we need to show that a.s. no path π ∈ N ∗ enters a wedge

W (r̂, l̂) from outside. If π ∈ N ∗ enters a wedge W (r̂, l̂) from outside, then by Lemma 21 (b),
π must enter some skeletal wedge W (r̂z′ , l̂z), with z ∈ Dl and z′ ∈ Dr, from outside. By the
a.s. convergence of Sεn(Uβn) to N ∗, there exist π(n) ∈ Sεn(Uβn) such that π(n) → π. By the

a.s. convergence of r̂
(n)
z′ and l̂

(n)
z to r̂z′ and l̂z and the convergence of their first meeting time,

for n large enough, π(n) must enter a discrete wedge from outside, which is impossible.
This concludes the proof for b = 1. The proof for b = 0 is similar. Note that if in the left-

right SDE (1.11), one removes the drift terms ±dt, then solutions (L,R) are just coalescing
Brownian motions. Using this fact, it is not hard to generalize Propositions 31 and 32 in the
sense that if βn/εn → 0, then left-most and right-most paths converge to coalescing Brownian
motions (with zero drift). Modifying Theorem 33 appropriately, we find that

L
(

Sεn(U l
βn
,U r

βn
, Û l

βn
, Û r

βn
)
)

=⇒
n→∞

(W,W, Ŵ , Ŵ). (5.17)

By going to a subsequence if necessary, we may assume that Sεn(Uβn) converges to some limit
W∗. The inclusion W ⊂ W∗ is now trivial, while the other inclusion can be obtained by
showing that no path in W∗ enters a wedge of Ŵ from outside, applying Theorem 9.

6 Density calculations

In this section, we carry out two density calculations for the Brownian net N , based on the
hopping and dual characterizations (Theorem 3 and Theorem 10), which have been shown in
Section 4 to be equivalent. In Section 6.1, we calculate the density of the set of points on R×{t}
that are on the graph of some path in N starting at time 0, i.e., we prove Proposition 12. In
Section 6.2, we estimate the density of the set of times that are the first meeting times between
l ∈ W l(0, 0) and some path in Nhop starting to the left of 0 at time 0. Our calculations show
that both sets are a.s. locally finite. The second density calculation gives information on the
configuration of meshes on the left of a general left-most path l, which will be used in Section 7
to prove that paths in Nmesh cannot enter the area to the left of l. From this, we then readily
obtain Theorem 7, as well as Propositions 4, 8, and 13.
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6.1 The density of the branching-coalescing point set

In this section, we prove Proposition 12. Let N be the Brownian net, defined by the hopping
or dual characterization (Theorem 3 and Theorem 10). Set

ξt := {π(t) : π ∈ N , σπ = 0} (t > 0). (6.1)

Note that ξt = ξ
R×{0}
t , the branching-coalescing point set (defined in Section 1.9) started at

time zero from R. The exact computation of the density of ξt is based on the following two
Lemmas.

Lemma 35 (Avoidance of intervals)
Almost surely, for each s, t, a, b ∈ R with s < t and a < b, there exists no π ∈ N (R × {s})
with π(t) ∈ (a, b) if and only if there exist r̂ ∈ Ŵr(a, t) and l̂ ∈ Ŵ l(b, t) such that sup{u < t :
r̂(u) = l̂(u)} > s.

Proof If r̂, l̂ with the described properties exist, then by the dual characterization of the
Brownian net (Theorem 10), no path in N starting at time s can pass through (a, b) × {t}.
Conversely, if there exists no π ∈ N (R×{s}) such that π(t) ∈ (a, b), then for each ε > 0 and for

each r̂ε ∈ Ŵr(a+ε, t) and l̂ε ∈ Ŵ l(b−ε, t), we must have τε := sup{u < t : r̂ε(u) = l̂ε(u)} > s.
For if τε ≤ s, then by the steering argument used in the proof of Lemma 30, for each δ > 0
we can construct a path in Hcros(W l ∪Wr) starting at time s+ δ in (r̂ε(s+ δ), l̂ε(s+ δ)) and
passing through [a+ε, b−ε]× t. Letting r̂, l̂ denote any limits of paths r̂εn , l̂ε′n along sequences

εn, ε
′
n ↓ 0, we see that τ := sup{u < t : r̂(u) = l̂(u)} > s. In fact, by Lemma 21 (a), we must

have τ > s.

Lemma 36 (Hitting probability of a pair of left-right SDE)
Let Ls and Rs be the solution of (1.11) with initial condition L0 = 0 and R0 = ε for some
ε > 0. Let Tε = inf{s ≥ 0 : Ls = Rs}. Then

1 − Ψε(t) := P[Tε < t] = Φ

(

−
√

2t− ε√
2t

)

+ e−2εΦ

(√
2t− ε√

2t

)

, (6.2)

where Φ(x) =
∫ x
−∞

e−
y2

2√
2π

dy.

Proof Let Yt = Bt +
√

2t with Y0 = 0, and let Mt = − inf0≤s≤t Ys. Clearly Rt − Lt − ε is
equally distributed with

√
2Yt before it reaches level −ε. Therefore P[Tε < t] = P[Mt ≥ ε/

√
2].

We compute this last probability by first finding the joint density of B′
t, a standard Brownian

motion, and M ′
t = − inf0≤s≤tB

′
s. We then apply Girsanov’s formula to change the measure

from (B′
s)0≤s≤t to that of (Ys)0≤s≤t.

For a standard Brownian motion B′
t, it is easy to check by reflection principle that for

x ≥ 0 and y ≥ −x,

P[M ′
t ≥ x,B′

t ≥ y] = P[B′
t ≥ 2x+ y] =

∫ ∞

2x+y

e−
z2

2√
2π

dz . (6.3)

Differentiating with respect to x and y gives the joint density

P[M ′
t ∈ dx,B′

t ∈ dy] =
1√
2πt

· 2(2x+ y)

t
· e−

(2x+y)2

2t dxdy x ≥ 0, y ≥ −x. (6.4)
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By Girsanov’s formula, the measure for (Ys)0≤s≤t is absolute continuous with respect to the

measure for (B′
s)0≤s≤t with density e

√
2B′

t−t. Therefore

P

[

Mt ≥
ε√
2

]

=

∫ ∞

ε√
2

∫ ∞

−x
e
√

2y−t 1√
2πt

· 2(2x+ y)

t
· e−

(2x+y)2

2t dydx (6.5)

Split the integral into two regions: I =
∫ ∞

−ε√
2

dy
∫ ∞

ε√
2

dx; and II =
∫

−ε√
2

−∞ dy
∫ ∞
−y dx. Then we have

I = e−t

∫ ∞

−ε√
2

e
√

2y

√
2πt

dy

∫ ∞

ε√
2

2(2x + y)

t
· e−

(2x+y)2

2t dx

= e−t

∫ ∞

−ε√
2

1√
2πt

e
√

2y− (y+
√

2ε)2

2t dy

= e−2ε

∫ ∞

−ε√
2

1√
2πt

e−
(y+

√
2ε−

√
2t)2

2t dy = e−2εΦ

(√
2t− ε√

2t

)

. (6.6)

Similarly,

II = e−t

∫ −ε√
2

−∞

1√
2πt

e
√

2y− y2

2t dy

=

∫ −ε√
2

−∞

1√
2πt

e−
(y−

√
2t)2

2t dy = Φ

(

−
√

2t− ε√
2t

)

. (6.7)

This concludes the proof.

Proof of Proposition 12 It follows from Lemmas 35 and 36, and the continuity of ε 7→ Ψε(t)
that

P[ξt ∩ (a, b) 6= 0] = P[ξt ∩ [a, b] 6= 0] = Ψb−a(t) (t > 0) (6.8)

for deterministic a < b. Since the law of ξt is clearly translation invariant in space, to prove
(1.28), without loss of generality, we may assume [a, b] = [0, 1]. Let R = { i

2n : n ∈ N, 0 ≤ i ≤
2n} denote the dyadic rationals. By (6.8), P[x ∈ ξt] = 0 for each deterministic x ∈ R. Since
R is countable, we may assume that almost surely ξt ∩R = ∅. Then

|ξt ∩ [0, 1]| = lim
n→∞

∣

∣

{

1 ≤ i ≤ 2n : ξt ∩
[

i−1
2n ,

i
2n

]

6= ∅
}∣

∣ . (6.9)

By monotone convergence and translation invariance,

E [|ξt ∩ [0, 1]|] = lim
n→∞

2nP
[

ξt ∩
[

0, 1
2n

]

6= ∅
]

= ∂
∂εΨε(t)

∣

∣

ε=0
, (6.10)

which yields equation (1.28).

6.2 The density on the left of a left-most path

Let N be the Brownian net, defined by the hopping or dual characterization (Theorem 3 and

Theorem 10), and let (W l,Wr, Ŵ l, Ŵr) be its associated left-right Brownian web and its dual.
For each l ∈ W l, let

C(l) :=
{

t > σl : ∃π ∈ N s.t. σπ = σl, π(t) = l(t), π(s) < l(s) ∀s ∈ [σl, t)
}

(6.11)
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be the set of times when some path in N , started at the same time as l and to the left of l,
first meets l. We will prove that almost surely, C(l) is a locally finite subset of (σl,∞) for
each l ∈ W l. By Lemma 21 (b), it suffices to verify this property for l ∈ W l with deterministic
starting points, in particular, l started at (0, 0), which is implied by the following lemma.

Proposition 37 (Density on the left of a left-most path)
Let l be the a.s. unique path in W l starting at the origin. Then, for each 0 < s < t,

E
[

|C(l) ∩ [s, t]|
]

≤
∫ t

s
2ψ(u)2du, (6.12)

where ψ(t) := ∂
∂εΨε(t)

∣

∣

ε=0
= e−t√

πt
+ 2Φ(

√
2t) is the density of the branching-coalescing point

set in (1.28).

Proof By a similar argument as in the proof of Proposition 12, it suffices to show that

lim sup
ε→0

1

ε
P
[

C(l) ∩ [t, t+ ε] 6= ∅
]

≤ 2ψ(t)2. (6.13)

For t > 0, let r̂[t] be the left-most (viewed with respect to the graph of (Wr, Ŵr)) path in

Ŵr(l(t), t) and let l̂[t] be the right-most path in Ŵ l(l(t), t) that lies on the left of l. Note that

by Lemma 20 (b), for each deterministic t > 0, Ŵ l(l(t), t) almost surely contains two paths,
one lying on each side of l. Similar arguments as in the proof of Lemma 35 show that

P[C(l) ∩ [t, t+ ε] 6= ∅] = P
[

r̂[t+ε](s) < l̂[t](s) ∀s ∈ (0, t)
]

. (6.14)

Set
Ls := l(t+ ε) − l(t− s), s ∈ [−ε, t],
L̂s := l(t+ ε) − l̂[t](t− s), s ∈ [0, t],

R̂s := l(t+ ε) − r̂[t+ε](t− s), s ∈ [−ε, t].
(6.15)

It has been shown in [STW00] (see also [FINR06]) that paths in W and Ŵ interact by Skorohod
reflection. Similar arguments show that if a path r̂ ∈ Ŵr is started on the left of a path l ∈ W l,
then r̂ is Skorohod reflected off l. Therefore, on the time interval [−ε, 0], the process (Ls, R̂s)
satisfies L ≤ R̂ and solves the SDE

dLs = dBl
s − ds,

dR̂s = dB r̂
s + ds+ d∆′

s,
(6.16)

where Bl and B r̂ are independent Brownian motions, and ∆′
s is a reflection term that increases

only when Ls = R̂s. Set σ := inf{s > 0 : L̂s = R̂s} ∧ t. Then on the time interval [0, σ], the
process (Ls, L̂s, R̂s) satisfies L ≤ L̂ ≤ R̂ and solves the SDE

dLs = dBl
s − ds,

dL̂s = dB l̂
s − ds+ d∆s,

dR̂s = dB r̂
s + ds,

(6.17)
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where Bl, B l̂, B r̂ are independent Brownian motions and ∆s increases only when Ls = L̂s. By
Lemma 38 below,

P
[

L̂s < R̂s ∀s ∈ (0, t)
]

≤
∫

P[R̂0 − L0 ∈ dη]Ψη(t)
2. (6.18)

Set Xs := R̂s−ε−Ls−ε (s ∈ [0, ε]). Then X is a Brownian motion with diffusion constant 2 and

drift 2, Skorohod reflected at 0, which has the generator ∂2

∂η2 + 2 ∂
∂η with boundary condition

∂
∂ηf(η)|η=0 = 0. Therefore,

lim
ε→0

ε−1

∫

P[R̂0 − L0 ∈ dη]Ψη(t)
2 = lim

ε→0
ε−1E[ΨXε(t)

2] =
(

∂2

∂η2 + 2 ∂
∂η

)(

Ψη(t)
2
)
∣

∣

η=0
= 2ψ(t)2,

(6.19)
where we have used that for fixed t > 0, η 7→ Ψη(t)

2 is a bounded twice continuously differen-
tiable function satisfying our boundary condition.

Lemma 38 (Hitting estimate)
Let (L, L̂, R̂) be a solution to the SDE (6.17) started at (L0, L̂0, R̂0) = (0, 0, η). Then

P
[

L̂s < R̂s ∀s ∈ (0, t)
]

≤ Ψη(t)
2, (6.20)

where Ψη(t) is defined in (6.2).

Proof We introduce new coordinates:

Vt := L̂t − Lt,

Wt := R̂t − Lt.
(6.21)

The process (V,W ) lives in the space {(v,w) ∈ R2 : 0 ≤ v ≤ w} up to the time τ := inf{t >
0 : Vt = Wt} and solves the SDE

dVt := dB l̂
s − dBl

s + d∆s,

dWt := dB r̂
s − dBl

s + 2ds,
(6.22)

where ∆s is a reflection term, increasing only when Vs = 0. Changing coordinates once more,
we set

Xt :=Wt − Vt,
Yt :=Wt + Vt.

(6.23)

Then (X,Y ) takes values in {(x, y) ∈ R2 : 0 ≤ x ≤ y} up to the time τ := inf{t > 0 : Xt = 0}
and solves the SDE

dXs := dB r̂
s − dB l̂

s + 2ds− d∆s,

dYs := dB r̂
s + dB l̂

s − 2dBl
s + 2ds+ d∆s,

(6.24)

where ∆s increases only when Xs = Ys. Our strategy will be to compare (X,Y ) with a process
(X ′, Y ′) of the form X ′ = U1 ∧U2 and Y ′ = U1 ∨U2, where U1, U2 are independent processes

with generator ∂2

∂u2 +2 ∂
∂u . We will show that X hits zero before X ′. Note that if U i

0 = u, then

P[U i
s > 0 ∀s ∈ [0, t]] = Ψu(t), which is defined in (6.2). Therefore

∂
∂tΨu(t) = ( ∂2

∂u2 + 2 ∂
∂u)Ψu(t). (6.25)
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Figure 8: Meshes stack up on the left of a leftmost path l ∈ W l.

Moreover, if (X ′, Y ′) is started in (x, y), then P[X ′
s > 0 ∀s ∈ [0, t]] = P[U1

s > 0 ∀s ∈
[0, t]] P[U2

s > 0 ∀s ∈ [0, t]] = Ψx(t)Ψy(t). With this in mind, we set

F (t, x, y) := Ψx(t)Ψy(t). (6.26)

Let G be the operator
G := ∂2

∂x2 + 2 ∂
∂x + 3 ∂2

∂y2 + 2 ∂
∂y . (6.27)

By Itô’s formula,

dF (t− s,Xs∧τ , Ys∧τ ) =
(

− ∂
∂t + 1{s<τ}G

)

F (t− s,Xs∧τ , Ys∧τ )ds

+1{s<τ}
(

∂
∂y − ∂

∂x

)

F (t− s,Xs∧τ , Ys∧τ )d∆s

(6.28)

plus martingale terms. It follows from the definition of Ψu(t) that ∂
∂tΨu(t) ≤ 0 and ∂

∂uΨu(t) ≥
0, and therefore, by (6.25), ∂2

∂u2 Ψu(t) ≤ 0. As a result, using (6.25) and (6.26), we see that
(

∂
∂y − ∂

∂x

)

F (t, x, y)
∣

∣

x=y
= 0 and

(− ∂
∂t +G)F (t, x, y) = 2 ∂2

∂y2

(

Ψx(t)Ψy(t)
)

≤ 0. (6.29)

Inserting this into (6.28), we find that (F (t−s,Xs∧τ , Ys∧τ ))s∈[0,t∧τ ] is a local supermartingale,
which implies that

P[τ > t] = E[F (t− t ∧ τ,Xt∧τ , Yt∧τ )] ≤ F (t,X0, Y0) = Ψη(t)
2. (6.30)

As a corollary to Proposition 37, we obtain the following lemma, which describes the
configuration of meshes on the left of a left-most path. (See Figure 8.)

Lemma 39 (Meshes on the left of a left-most path)
Almost surely, the set C(l) in (6.11) is a locally finite subset of (σl,∞) for each l ∈ W l. For
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each consecutive pair of times t, u ∈ C(l) (i.e., t < u and C(l) ∩ (t, u) = ∅), there exists a
mesh M(r′, l′) with bottom time s ∈ (σl, t) and top point (l(u), u), such that l′ < l on [s, t) and
l′ = l on [t, u]. If C(l) has a minimal element t, then there exists a mesh M(r′, l) with right
boundary l, bottom point (l(σl), σl), and top point (l(t), t).

Proof For any path π and ε > 0, define a trunctated path by π〈ε〉 := {(π(t), t) : t ∈ [σπ+ε,∞]}.
Let l(0,0) be the a.s. unique left-most path starting in the origin. The proof of Proposition 37

applies to l
〈ε〉
(0,0) as well; in particular, C(l

〈ε〉
(0,0)) has the same density as C(l(0,0)) for each ε > 0.

By Lemma 21 (b), if follows that a.s., C(l〈ε〉) is a locally finite subset of (σl + ε,∞) for each
l ∈ W l and ε > 0. Since C(l〈ε〉) ∩ (σl + δ,∞) decreases to C(l) ∩ (σl + δ,∞) as ε ↓ 0, for each
fixed δ > 0, it follows that a.s., C(l) is a locally finite subset of (σl,∞) for each l ∈ W l.

For any l ∈ W l (see Figure 8), consider t, u ∈ C(l)∪{σl} such that t < u and C(l)∩(t, u) =
∅, i.e., either t, u is a consecutive pair of times in C(l), or t = σl and u is the minimal element
of C(l). By an argument similar to the proof of Lemma 35, there exist r̂[u] ∈ Ŵr(l(u), u) and

l̂[t] ∈ Ŵ l(l(t), t) such that r̂[u] ≤ l on [σl, u], l̂[t] ≤ l on [σl, t], and τt,u := sup{s ≤ t : r̂[u](s) =

l̂[t](s)} satisfies τt,u > σl if τt,u < t. (Note that possibly τt,u = t.)
Set zt,u := (r̂[u](τt,u), τt,u). Let r[u] denote the left-most path in Wr(zt,u). Let l[t] denote

the right-most path in W l(zt,u) if τt,u < t, and let l[t] denote the path in W l(zt,u) that is
the continuation of l if τt,u = t. Set u′ := inf{s > τt,u : r[u](s) = l(s)} and t′ := inf{s >
τt,u : l[t](s) = l(s)}. By Proposition 19 (c) and (e), r[u] ≤ r̂[u] on [τt,u, u], and therefore, by

Propositions 23 (a),(b), u′ ≥ u. Likewise, since l[t] ≥ l̂[t] on [τt,u, t], we have t′ ≤ t. Now r[u] and
l[t] are the left and right boundary of a mesh M(r[u], l[t]) with bottom time τt,u and top point
(l(u′), u′), such that l[t] < l on (τt,u, t

′) and l[t] = l on [t′, u′]. Since Nhop ⊂ Nmesh (Lemma 27)
and both t (if tσl) and u are times when a path in Nhop starting at time σl first meets l from
the left, it follows that t′ = t and u′ = u. (If t = σl, then obviously τt,u = σl = t = t′.) To
complete the proof, we must show that τt,u < t if t > σl. This follows from Lemma 40 below.

Lemma 40 (Top and bottom points of meshes)
Almost surely, no bottom point of one mesh is the top point of another mesh.

Proof Assume that z ∈ R2 is the bottom point of a mesh M(r, l) and the top point of another
mesh M(r′, l′). By Propositions 19 (c) and 23 (d), any r̂ ∈ Ŵr starting in M(r, l) must
pass through z (and likewise for l̂ ∈ W l). Therefore, l′, r′, and r̂ are three paths entering z
disjointly. This can be ruled out just as in the proof of Theorem 3.11 in [FINR06], where it is
argued that a.s. there is no point z ∈ R2 where two forward and one backward path in (W, Ŵ)
enter z disjointly.

7 Characterization with meshes

In this section, we prove Theorem 7, as well as Propositions 4, 8, and 13. We fix a left-

right Brownian web and its dual (W l,Wr, Ŵ l, Ŵr) and define Nhop,Nwedge, and Nmesh as in
Section 4. The key technical result is the following lemma, which states that Proposition 8
holds for Nmesh.

Lemma 41 (Containment by left-most and right-most paths)
Almost surely, there exist no π ∈ Nmesh and l ∈ W l such that l(s) ≤ π(s) and π(t) < l(t) for
some σπ ∨ σl < s < t. An analogue statement holds for right-most paths.
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Proof Without loss of generality, we may assume that σl > σπ; otherwise consider a left-most
path starting at any time in (σπ, s) that is the continuation of l. By Lemma 39, there exists
a locally finite collection of meshes on the left of l, with bottom times in [σl,∞), that block
the way of any path in Nmesh trying to enter the area to the left of l. (See Figure 8.)

Proof of Theorem 7 and Proposition 8 We start by proving that Nmesh ⊂ Nwedge. Since
by Lemma 26, paths in Nmesh do not enter wedges through their bottom points, it suffices
to show that paths in Nmesh do not cross dual left-most and right-most paths in the wrong
direction. By Lemma 22, it suffices to show that paths in Nmesh do not cross forward left-most
and right-most paths in the wrong direction. This follows from Lemma 41.

Since it has already been proved in Lemmas 27, 28, and 30 that Nmesh ⊃ Nhop = Nwedge,
it follows that all these sets are a.s. equal. This proves Theorem 7. Lemma 41 now translates
into Proposition 8.

Proof of Proposition 4 By Theorem 7 and Proposition 8, the Brownian net N associated
with a left-right Brownian web (W l,Wr) consists exactly of those paths in Π that do not enter
meshes. It is easy to see that this set is closed under hopping.

Proof of Proposition 13 Let (W l,Wr) be the left-right Brownian web associated with
N . We have to show that for each t ∈ [−∞,∞] and π ∈ Πt such that π ⊂ ∪(N ∩ Πt),
we have π ∈ N . By Theorem 7, each mesh of (W l,Wr) with bottom time in (t,∞) has
empty intersection with ∪(N ∩ Πt), and therefore π does not enter any such mesh. Again by
Theorem 7, it follows that π ∈ N .

8 The branching-coalescing point set

In this section, we prove Theorem 11. We start with two preparatory lemmas.

Lemma 42 (Hopping paths starting from a closed set)
Let N be the Brownian net. Let K ⊂ R be compact, t ∈ R, and let Dl,Dr ⊂ R2 be deterministic
countable dense sets such that moreover, Dl ∩ (K × {t}) is dense in K × {t}. Then

N (K × {t}) = Π(K × {t}) ∩Hcros(W l(Dl) ∪Wr(Dr)). (8.1)

Proof The inclusion ⊃ is trivial. To prove the other inclusion, by the dual characterization of
the Brownian net (Theorem 10), it suffices to show that any path π starting in K × {t} that
does not enter wedges from outside can be approximated by paths in Hcros(W l(Dl)∪Wr(Dr))
starting in K × {t}. We use the steering argument from the proof of Lemma 30. For a path
π ∈ N with starting point (π(σπ), σπ) = (x, t), where x ∈ K, and for t = t1 < · · · < tn, and
ε > 0, we construct a ‘fish-trap’ with left and right boundary r̂, l̂ as in Figure 7. We need to
show that there exists a path πε that stays between r̂ and l̂. This will follow from the same
arguments as in the proof of Lemma 30, provided that ((r̂(t), l̂(t)) × {t}) ∩ Dl is nonempty.
Since t is deterministic and dual paths do not meet at deterministic times, we have r̂(t) < l̂(t).
Since K is closed, Kc is the countable union of disjoint open intervals. Denote the set of
endpoints of these intervals by B. We now distinguish the cases x /∈ B and x ∈ B. If x /∈ B,
then x ∈ K ∩ (x,∞) and x ∈ K ∩ (−∞, x) (or one of the two if x = ±∞). Since Dl∩(K×{t})
is dense in K × {t}, ((r̂(t), l̂(t)) × {t}) ∩ Dl is nonempty. If x ∈ B, then since B is countable
and dual paths do not hit deterministic points, r̂(t) < x < l̂(t) for all x ∈ B, hence also in
this case ((r̂(t), l̂(t)) × {t}) ∩ Dl is nonempty.
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Lemma 43 (Almost sure continuity)
Let N be the Brownian net, and let Kn,K ∈ K(R) and tn, t ∈ R be deterministic sets and
times satisfying Kn → K and tn → t. Then N (Kn × {tn}) → N (K × {t}) a.s.

Proof Using the compactness of N , by going to a subsequence if necessary, we may assume
that N (Kn × {tn}) → A for some compact subset A ⊂ N . Obviously, all paths in A have
starting points in K × {t}, so A ⊂ N (K × {t}). To prove the other inclusion, choose a
deterministic countable dense set D ⊂ R2 such that moreover, D ∩ (K × {t}) is dense in
K×{t}. For each z ∈ D∩ (K×{t}), choose zn ∈ Kn ×{tn} such that zn → z. Then lzn → lz.
If lz crosses a path r ∈ Wr, then for n large enough, lzn crosses r. Therefore, it is not hard to
see that

A ⊃ Π(K × {t}) ∩Hcros(W l(D) ∪Wr(D)). (8.2)

By Lemma 42, it follows that A ⊃ N (K × {t}).
Remark We conjecture that Lemmas 42 and 43 stay true if the set K × {t} is replaced by a
compact set K ⊂ R2

c such that K = K\{(∗,−∞)}, but we have not been able to prove this.
We do not even know how to prove the analogue statements for the Brownian web.

Proof of Theorem 11 The continuity of sample paths of (ξt)t≥0 is a direct consequence of
the definition of ξt and the fact that N is a K(Π)-valued random variable. The fact that ξt is
a.s. locally finite in R for deterministic t > s follows from Proposition 12.

For t ≥ 0, the transition probability kernel Pt on K(R) associated with ξ is given by

Pt(K, · ) := P[ξ
K×{s}
s+t ∈ · ], K ∈ K(R). (8.3)

Note that the right-hand side of (8.3) does not depend on s ∈ R by the translation invariance
of the Brownian net. By Lemma 43, if Kn → K and tn → t, then

Ptn(Kn, · ) = P[ξ
Kn×{−tn}
0 ∈ · ] =⇒

n→∞
P[ξ

K×{−t}
0 ∈ · ] = Pt(K, · ), (8.4)

proving the Feller property of (Pt)t≥0. We still have to show that (Pt)t≥0 is a Markov transition
probability kernel. This is not completely obvious, but it follows provided we show that, for
any s < t0 < t1,

P
[

ξt1 ∈ ·
∣

∣ (ξu)u∈[s,t0]

]

= Pt1−t0(ξt0 , · ) a.s. (8.5)

Let π|ts := {(π(u), u) : u ∈ [s, t] ∩ [σπ,∞]} denote the restriction of a path π ∈ Π to the time
interval [s, t], and for A ⊂ Π, write A|ts := {π|ts : π ∈ A}. In view of the definition of ξt, it
suffices to show that

P
[

N (K × {s})|∞t0 ∈ ·
∣

∣N (K × {s})|t0s
]

= P[N ′(ξt0 × {t0}) ∈ ·
]

, (8.6)

where N ′ is an independent copy of N . Let (W l,Wr) be the left-right Brownian web as-
sociated with N . By the properties of left-right coalescing Brownian motions, (W l,Wr)|t0−∞
and (W l,Wr)|∞t0 are independent, and therefore, by the hopping construction, it follows that

N|t0−∞ and N|∞t0 are independent. In particular, ξt0 and N (K × {s})|t0s are independent of
N (R × {t0}). To show (8.6), it therefore suffices to show that

N (K × {s})|∞t0 = N (ξt0 × {t0}) a.s. (8.7)

The inclusion N (K × {s})|∞t0 ⊂ N (ξt0 × {t0}) is trivial. To prove the converse, we need to
show that any path π ∈ N (ξt0 × {t0}) is the continuation of a path in N (K × {s}). By the
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definition of ξt0 , we can find π′ ∈ N (K × {s}) such that π′(t0) = π(t0). Let π′′ be the path
obtained by hopping at time t0 from π′ to π. We claim that π′′ ∈ N (K ×{s}). Indeed, if this
is not the case, then by the dual characterization of the Brownian net, π′′ must enter a wedge
from outside, which can only happen if (π(t0), t0) lies on the boundary of a dual path. This

is not possible since ξt0 is locally finite and independent of (Ŵ l, Ŵr)|∞t0 , and a.s. no Brownian
web path passes through a deterministic point.

To prove (1.27), note that K ∈ K′(R) if and only if supK < ∞, or sup(K ∩ R) = ∞ and
∞ ∈ K, and likewise at −∞. Thus, by symmetry, it suffices to show that, almost surely,

(i) sup(ξs) <∞ implies sup(ξt) <∞ ∀ t ≥ s,
(ii) sup(ξs ∩ R) = ∞ implies sup(ξt ∩ R) = ∞ ∀ t ≥ s,
(iii) ∞ ∈ ξs implies ∞ ∈ ξt ∀ t ≥ s.

(8.8)

Formula (i) follows from the fact that (sup(ξt))t≥s is the right-most path in N (ξs×{s}), which
is a Brownian motion with drift +1. Formula (ii) is easily proved by considering the right-most
paths starting at a sequence of points in ξs ∩R tending to (∞, s). Lastly, formula (iii) follows
from the fact that N (∞, s) contains the trivial path π(t) := ∞ (t ≥ s).

We end this section with a proposition that will be used in the proof of Lemma 46, and that
is of interest in its own right. Note that the statement below implies that, provided that
the initial states converge, systems of branching-coalescing random walks, diffusively rescaled,
converge in an appropriate sense to the branching-coalescing point set.

Proposition 44 (Convergence of branching-coalescing random walks)
Let βn, εn → 0 with βn/εn → 1. Let An ⊂ Zeven, A ∈ K(R) satisfy εnAn → A, where →
denotes convergence in K(R). Then

L
(

Sεn(Uβn(An × {0}))
)

=⇒
n→∞

L
(

N (A× {0})
)

. (8.9)

Proof Going to a subsequence if necessary, we may assume that L
(

Sεn(Uβn ,Uβn(An×{0}))
)

⇒
L

(

N ,A
)

for some compact subset A ⊂ N (A × {0}). To prove the other inclusion, choose a
deterministic countable dense set D ⊂ R2 such that moreover, D∩(A×{0}) is dense in A×{0}.
By the same arguments as those used in the proof of Theorem 34 to show that Nhop ⊂ N ∗,
we have

Π(A× {0}) ∩Hcros(W l(D) ∪Wr(D)) ⊂ A. (8.10)

By Lemma 42, it follows that N (A× {0}) ⊂ A.

9 The backbone

In Sections 9.1 and 9.2, we prove Propositions 14 and 15, respectively.

9.1 The backbone of branching-coalescing random walks

Let ℵβ be an arrow configuration. Recall the definition of ηA
t from (1.2). Let Zeven := 2Z and

Zodd := 2Z + 1. For any s ∈ Z and A ⊂ Zeven or A ⊂ Zodd depending on whether s is even or
odd, setting

ηt := η
A×{s}
t (t ∈ Z, t ≥ s) (9.1)
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defines a Markov chain (ηt)t≥s taking values, in turn, in the spaces of subsets of Zeven and
Zodd, started at time s in A. We call η = (ηt)t≥s a system of branching-coalescing random
walks. We call a probability law µ on the space of subsets of Zeven an invariant law for η if
L(η0) = µ implies L(η2) = µ, and a homogeneous invariant law if µ is translation invariant
and L(η0) = µ implies L(η1 + 1) = µ. Note that we shift η1 by one unit in space to stay on
Zeven.

It is easy to see that L(η
(∗,−∞)
0 ) defines a homogeneous invariant law for η. Our strategy

for proving Proposition 14 will be as follows. First we prove that the Bernoulli measure µρ

with intensity ρ = 4β
(1+β)2

is a homogeneous invariant law for η, and that µρ is reversible in

a sense that includes information about the arrow configuration ℵβ. Next, we prove Propo-
sition 14 (iii). From this, we derive that there exists only one nontrivial invariant law for η,

hence L(η
(∗,−∞)
0 ) = µρ, which proves part (i). Lastly, part (ii) follows from the reversibility of

µρ.
We first need to add additional structure to the branching-coalescing random walks that

also keeps track of the arrows in ℵβ that are used by the walks. To this aim, if (ηt)t=s,s+1,...

is defined as in (9.1) with respect to an arrow configuration ℵβ, then we define

ηt+ 1
2

:=
{

{x, x′} : x ∈ ηt,
(

(x, t), (x′, t+ 1)
)

∈ ℵβ

}

(t ∈ [s,∞) ∩ Z). (9.2)

Note that ηt+ 1
2

keeps track of which arrows in ℵβ are used by the branching-coalescing random

walks between the times t and t+1. It is not hard to see that (ηs+k/2)k∈N0 is a Markov chain.

Lemma 45 (Product invariant law)
The Bernoulli product measure µρ on Zeven with intensity ρ = 4β

(1+β)2
is a reversible homo-

geneous invariant law for the Markov chain (ηs+k/2)k∈N0 defined above, in the sense that, if
L(η0) = µρ, then for all even t ≥ 0,

L
(

η0, η 1
2
, . . . , ηt− 1

2
, ηt

)

= L
(

ηt, ηt− 1
2
, . . . , η 1

2
, η0

)

. (9.3)

The same holds for all odd t ≥ 1, provided that the configurations on the right-hand-side of
(9.3) are shifted in space by one unit.

Proof It suffices to prove the statement for t = 1, i.e., we need to prove that if L(η0) = µρ,
then

L
(

η0, η 1
2
, η1) = L(η1 + 1, η 1

2
+ 1, η0 + 1). (9.4)

Indeed, since (ηt/2)t∈N0 is Markov, (η0, . . . , ηs− 1
2
) and (ηs+ 1

2
, . . . , ηt) are conditionally indepen-

dent given ηs for all s ∈ [1, t] ∩ Z. The identity (9.3) for general even t ≥ 0, and its analogue
for odd t ≥ 0, then follow easily from (9.4) by induction.

Note that η1/2 determines η0 and η1 a.s. Indeed,

η0 = {x ∈ Zeven : ∃x′ ∈ Zodd s.t. {x, x′} ∈ η 1
2
},

η1 = {x′ ∈ Zodd : ∃x ∈ Zeven s.t. {x, x′} ∈ η 1
2
}. (9.5)

Therefore, (9.4) follows provided we show that

L(η1/2) = L(η1/2 + 1). (9.6)
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We will prove (9.6) by showing that if L(η0) = µρ with ρ = 4β
(1+β)2 , then L(η1/2) is a Bernoulli

product measure on the set of all nearest neighbor pairs of integers. Note that for x ∈ Zeven,
the event {x, x± 1} ∈ η1/2 means that the arrow from (x, 0) to (x± 1, 1) is used by a random
walker. Since L(η0) is a product measure, arrows going out of different x, x′ ∈ Zeven are
obviously independent. Thus, it suffices to show that for x ∈ Zeven, the events {x, x−1} ∈ η1/2

and {x, x+ 1} ∈ η1/2 are independent. Now, for x ∈ Zeven,

P
[

{x, x− 1} ∈ η1/2 and {x, x+ 1} ∈ η1/2

]

= ρβ, (9.7)

while
P
[

{x, x− 1} ∈ η1/2

]

= P
[

{x, x+ 1} ∈ η1/2

]

= ρ
(1−β

2 + β
)

. (9.8)

Thus, we obtain the desired independence provided that ρβ = (ρ1+β
2 )2, which has ρ = 4β

(1+β)2

as its unique nonzero solution.

Proof of Proposition 14 (iii) By going to a subsequence if necessary, we may assume that
Uβ(xn, tn) → A for some A ⊂ Uβ. Since all paths in A start at (∗,−∞), A ⊂ Uβ(∗,−∞). To
prove the other inclusion, it suffices to show that for each π ∈ Uβ(∗,−∞) and t ∈ Zeven, for
n sufficiently large we can find π′ ∈ Uβ(xn, tn) such that π′ = π on [t,∞) ∩ Z. By hopping,
it suffices to show that for each even N > 0 and t ∈ Zeven, there exists n0 such that for all
n ≥ n0,

[−N,N ] ∩ {π(t) : π ∈ Uβ(xn, tn)} ⊃ [−N,N ] ∩ {π(t) : π ∈ Uβ(∗,−∞)}. (9.9)

Let l̂ := l̂(−N−1,t) and r̂ := r̂(N+1,t) be the dual left-most and right-most paths in ℵ̂β started
from (−N − 1, t) and (N + 1, t), respectively. By the strong law of large numbers, almost
surely

lim
s→−∞

l̂(s)

−s = β and lim
s→−∞

r̂(s)

−s = −β. (9.10)

Therefore, by our assumptions on (xn, tn), we have r̂(tn) < xn < l̂(tn) for n sufficiently large.
Since forward paths and dual paths cannot cross, it follows that eventually l(xn,tn)(t) ≤ −N
and N ≤ r(xn,tn)(t). Therefore, any path π ∈ Uβ(∗,−∞) passing through [−N,N ]× {t} must
cross either l(xn,tn) or r(xn,tn). Since we can hop onto π from either l(xn,tn) or r(xn,tn), formula
(9.9) follows.

Proof of Proposition 14 (i) and (ii) It is not hard to see that L(η
(0,−∞)
0 ) is the maximal

invariant law of η with respect to the usual stochastic order. Proposition 14 (iii) implies that

P[η
(0,0)
2n ∈ · ] = P[η

(0,−2n)
0 ∈ · ] =⇒

n→∞
P[η

(0,−∞)
0 ∈ · ]. (9.11)

Using monotonicity, it is easy to see from (9.11) that L(η
(0,−∞)
0 ) is the limit law of η2n as

n → ∞ for any nonempty initial state η0. In particular, this implies that L(η
(0,−∞)
0 ) is the

unique invariant law of η that is concentrated on nonempty states, and therefore, by Lemma 45,

L(η
(0,−∞)
0 ) = µρ.
Part (ii) now follows from the reversibility of µρ as formulated in Lemma 45.
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9.2 The backbone of the branching-coalescing point set

In this section, we prove Proposition 15.

Proof of Proposition 15 (iii) This can be proved by the same arguments as in the proof
of Proposition 14 (iii), except we now need Proposition 4 to hop between paths in the net.

We will derive parts (i) and (ii) of Proposition 15 from their discrete counterparts, by means
of the following lemma.

Lemma 46 (Convergence of the backbone)
If βn, εn → 0 with βn/εn → 1, then

L
(

Sεn(Uβn(∗,−∞))
)

=⇒
n→∞

L
(

N (∗,−∞)
)

. (9.12)

Proof By going to a subsequence if necessary, using Theorem 1, we may assume that

L
(

Sεn(Uβ ,Uβn(∗,−∞))
)

=⇒
n→∞

L(N ,A), (9.13)

where N is the Brownian net and A ⊂ N . Since all paths in A start in (∗,−∞), obviously A ⊂
N (∗,−∞). To prove the other inclusion, it suffices to show that (using notation introduced
in the proof of Theorem 11)

N (∗,−∞)
∣

∣

∞
t

= A
∣

∣

∞
t
. (9.14)

for all t ∈ R. As a first step, we will show that

{π(t) : π ∈ N (∗,−∞)} = {π(t) : π ∈ A}. (9.15)

The inclusion ⊃ is clear. Taking the limit in Proposition 14 (i), we see that for all t ∈ R,
{π(t) : π ∈ A} is a Poisson point set with intensity 2. On the other hand, taking the limit in
Proposition 12, we see that {π(t) : π ∈ N (∗,−∞)} is a translation invariant point set, also
with intensity 2. Hence (9.15) follows.

Since the inclusion ⊃ in (9.14) is clear, it suffices to show that the law of N (∗,−∞)
∣

∣

∞
t

is stochastically dominated by the law of A
∣

∣

∞
t

with respect to the usual partial order of set

inclusion. Let P be the random set in (9.15). Clearly N (∗,−∞)
∣

∣

∞
t

⊂ N (P × {t}). By the
independence of N|t−∞ and N|∞t (see the proof of Theorem 11), it follows that N (P × {t})
is equally distributed with N (P ′ × {t}), where P ′ is a Poisson point set with intensity 2,
independent of N . By Proposition 44, the law of A

∣

∣

∞
t

is the same as that of N (P ′×{t}), and
the desired stochastic domination follows.

Proof of Proposition 15 (i) and (ii) The statements follow by a passage to the limit in
Propositions 14 (i) and (ii), using Lemma 46.

A Definitions of path space

In this appendix, we compare the definition of the path space Π and its topology used in
the present paper with the definitions used in [FINR02, FINR04]. Let P be the space of all
functions π : [σπ,∞] → [−∞,∞], with σπ ∈ [−∞,∞], such that t 7→ Θ1(π(t), t) is continuous
on (−∞,∞). For π1, π2 ∈ P, define d(π1, π2) by (1.5) and define d′ in the same way, but with
the supremum over all t ≥ σπ1 ∧σπ2 replaced by an unrestricted supremum over all t ∈ R. Call
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two elements π1, π2 ∈ P d-equivalent (resp. d′-equivalent) if d(π1, π2) = 0 (resp. d′(π1, π2) = 0),
and let Π (resp. Π′) denote the spaces of d-equivalence classes (resp. d′-equivalence classes) in
P. Then (Π, d) is in a natural way isomorhic to the set of paths defined in Section 1.2, while
(Π′, d′) is the space of paths used in [FINR02, FINR04]. The difference between these two
spaces is small. Indeed, two paths π1, π2 are d-equivalent if and only if

σπ1 = σπ2 and π1(t) = π2(t) ∀ σπ ≤ t <∞, (A.1)

while they are d′-equivalent if and only if

σπ1 = σπ2 <∞ and π1(t) = π2(t) ∀ σπ ≤ t <∞. (A.2)

Thus, the only difference between Π and Π′ is that while the former has only one path with
starting time ∞, the latter has a one-parameter family (π(r))r∈[−∞,∞] of such paths, given by

σπ(r) := ∞, π(r)(∞) := r (r ∈ [−∞,∞]). (A.3)

A sequence of paths πn converges in d′ to the limit π(r) if and only if σπn → ∞ and πn(σπn) → r.
Both the spaces (Π, d) and (Π′, d′) are complete and separable, and the former is the continuous
image of the latter under a map that identifies the family of paths (π(r))r∈[−∞,∞] with a single
path.

Of course, it is more natural to identify all paths starting at infinity. In fact, it seems that
the authors of [FINR04] used the metric in (1.5) in earlier versions of their manuscript, but
then by accident dropped the restriction that t ≥ σπ1 ∧ σπ2 in the supremum [C.M. Newman
pers. comm.].
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