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Abstract

An equation for the dynamics of the vesicle supply center model of tip growth
in fungal hyphae is derived. For this we analytically prove the existence and
uniqueness of a traveling wave solution which exhibits the experimentally ob-
served behavior. The linearized dynamics around this solution is analyzed and
we conclude that all eigenmodes decay in time. Numerical calculation of the
first eigenvalue gives a timescale τ in which small perturbations will die out.

1 Introduction

Tip growth is a process in which single-celled organisms grow roots or hairs,
called hyphae, which lengthen at a constant speed, often achieving lengths much
larger than their diameters. It is a mechanism by which organisms increase the
ratio of surface area to volume probably in order to increase nutrient uptake.
Experiments using markers on the cell wall [2] indicate that the wall expands
orthogonally to its surface, with growth highly localized in the tip.

The concept of a vesicle supply center (VSC), first proposed by Bartnicki-
Garcia et al [1], [3], lies at the basis for a whole hierarchy of mathematical
models which attempt to explain tip growth. It assumes that there is a point
source in the tip which distributes cell wall material for the tip. Vesicles travel
from the VSC to the cell wall, producing growth of the cell wall orthogonal to
the wall surface. A common result of these models is that the location of the
VSC physically coincides with a body called a Spitzenkörper within the tip.
This body was already suspected to play a role in tip growth.

The ballistic VSC model assumes that vesicles uniformly emanate from the
VSC in all directions and travel in straight lines to the cell wall. Bartnicki-Garcia
et al first derived an analytical expression for the shape of the traveling wave
solution for two dimensional cells [1], and later numerically calculated the shape
of the three dimensional traveling wave solutions [3]. Koch [9] suggests replacing
ballistic motion of the vesicles by a diffusive process. Tindemans [10], [11] has
expanded further on this idea and has numerically calculated the shape of the
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traveling wave solutions. Other possible modifications of the model include
adding elasticity of the cell wall [6], cell wall aging [4] or nonzero absorption
times for vesicles [11].

Thus far, all research on VSC type models has focused on numerically de-
termining the shape of the traveling wave solution, little analytical work has
been done and no stability results have been proven. In this article we examine
the mathematically simplest of the three dimensional models, the ballistic VSC
model. We derive a second order parabolic PDE for the evolution of the tip
shape and analytically prove the existence, uniqueness and linear stability of
the hyphoid solution. We numerically calculate the eigenvalues of the linearized
operator, which should give an indication of the timescale in which small pertur-
bations of the cell wall disappear. In a forthcoming paper we intend to combine
the approach in this paper with a Schauder fixed point argument to establish
the existence of hyphoid solutions for the diffusive VSC model.

The ballistic VSC model is based on the following assumptions:

• The hyphae are rotationally symmetric around the z axis.

• The VSC is located on the z axis and moving at a fixed velocity c. (A
stationary VSC would result in a spherical cell)

• Vesicles are emitted uniformly in all direction and travel in straight lines
from the VSC to the cell wall where they immediately are absorbed re-
sulting in orthogonal growth. (Whether the VSC produces vesicles or
redistributes vesicles produced elsewhere is irrelevant for modeling pur-
poses, in either case we will refer to the total amount surface area added
to the cell wall per unit of time as the production rate P of the VSC.)

• The amount of vesicles is large enough that this process can be approxi-
mated by a continuous flux of material arriving at the cell wall.

Eggen [4] showed that with these assumptions, the dynamics of the model can
be expressed in terms of the mean curvature of the surface, we continue with
this idea.

2 The evolution equation

We will model the cell wall as a 2D manifold M(t), axisymmetric around the
z axis, star-shaped with respect to the location of the VSC, and embedded in
3D Euclidean space. If we consider the evolution of any piece of the cell wall
A(t) ⊂ M(t), with surface area also denoted as A(t), flowing according to a
velocity field ~u defined in a neighborhood of A(t), we have Gauss’ formula for
the first variation of area:

dA

dt
= −

∫

A(t)

H(~u · n̂)dA +

∮

∂A(t)

(n̂s · ~u)ds (2.1)

2



 

 

d

r

n̂

M(t)

M(0)

rmax

V SC ztip z

Figure 1: The manifold M(t) and model definitions.

where n̂ is the outward pointing normal, n̂s is the normal to the boundary curve
lying in the tangent space of M(t), and H is the mean curvature. Note that,
due to our choice of normal, the mean curvature would be negative for a concave
surface. We assume the velocity field to be normal to the surface, ~u = unn̂, the
boundary term vanishes and only the integral over unH remains.

In the ballistic model, the VSC is moving at constant speed c in the z
direction and is assumed to start at the origin at time zero. So its position is
ctêz. It radiates vesicles in all directions, this can be described by a flux field ~Φ
of the form:

~Φ(~x) =
P

4π

(~x− ctêz)
|~x− ctêz|3

(2.2)

where P is the rate of change of the total area of the manifold, or the production
rate of the VSC. The amount of material absorbed in A(t) is:

dA

dt
=

∫

A(t)

(~Φ · n̂)dA (2.3)

Combining (2.1) and (2.3) to maintain mass balance gives

−
∫

A(t)

unHdA =

∫

A(t)

(~Φ · n̂)dA (2.4)

Since A(t) was chosen arbitrarily, the terms in the integrals must be equal:

un = −
~Φ · n̂
H

. (2.5)

This equation defines a geometric flow which is similar, differing only in
the factor ~Φ · n̂, to the inverse mean curvature flow which has been studied
extensively by Gerhardt [5], Huisken [7], [8], Urbas [13] and many others. Un-
fortunately, since we are interested in solutions which are not closed surfaces
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and because the flux term ~Φ · n̂ depends not only on the shape of the manifold,
but also on the position, it is not clear whether their results and methods can
be used for this problem.

The manifold M(t) is embedded in R3 and we define F : Ω × [0, T ) → R3

for Ω ⊂ R2 to be the embedding map. The manifold is now given by

M(t) = {F (x, t)|x ∈ Ω} , (2.6)

here x is a Lagrangian marker of some particle of the cell wall, and F (x, t) gives
its location in R3. The Laplace-Beltrami operator ∆M(t) on a quantity A is
defined as

∆M(t)A =
1√
g
∂i(
√
ggij∂jA), (2.7)

and a standard result from differential geometry relates the mean curvature
vector to the Laplace-Beltrami operator on the embedding map, Hn̂ = ∆M(t)F .
Equation (2.5) can now be written as

∂F

∂t
·∆M(t)F = − P

4π

n̂ · (F − ctêz)
||F − ctêz||3

, (2.8)

and the condition that the velocity is normal to the surface of the manifold
becomes

∂F

∂t
· ∂iF = 0, for i = 1, 2. (2.9)

One now sees that if F satisfies (2.8) with c = 1 and P = 4π, one can scale
space and time and substitute

F̃ =
P

4πc
F (x,

4πc2

P
t) (2.10)

into (2.8) to see that F̃ solves the equation for arbitrary c and P . So for the rest
of this article we shall concern ourselves only with the case c = 1 and P = 4π.

3 Traveling waves

We want to study rotationally symmetric solutions of (2.8) with P = 4π and
c = 1. So Ω = I × S1 where I is an interval, p ∈ I ⊂ R, and we split F into a
radial component r(p, t) and a component in the z direction z(p, t),

F (p, θ, t) = r(p)êr(θ) + z(p)êz. (3.1)

We wish to study traveling wave solutions which move at a speed of one in the
z direction. So

M(t) = M(0) + têz. (3.2)

In other words, for every p there is an unique q such that

F (p, θ, t) = F (q, θ, 0) + têz. (3.3)
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Each point on M(t) can be seen as a point (with a different coordinate p) of
M(0) displaced in the z direction, we define the map ξ : I × [0, T ) → I which
maps p into q as described above. Clearly ξ(p, 0) = p and

F (p, θ, t) = F1(ξ(p, t), θ) + têz = r1(ξ(p, t))êr + (z1(ξ(p, t)) + t)êz , (3.4)

where F1(p, θ) = F (p, θ, 0), r1(p) = r(p, 0) and z1(p) = z(p, 0). The curve
(r1(p), z1(p)), p ∈ I describes the traveling wave solution in a coordinate frame
moving at speed c = 1 in the z direction. Physically, if one were to place an ink
marker on the fungal hyphae at coordinates (p, θ) at time zero, F (p, θ, t) would
describe how this ink marker would move through space (the dotted curves in
Figure 1 ), in a stationary reference frame the ink marker would appear to
move in a direction perpendicular to the cell surface. If, however, one were to
move along with the cell tip, the fungal hyphae would appear stationary and
ξ(p, t) would describe the p-coordinate of the ink marker as it appears to move
backwards along the surface.

3.1 Geometry

We now calculate, using (2.8) and (3.4) some geometric quantities for the man-
ifold M(t). The tangent vectors at coordinates (p, θ) are given by,

∂F

∂p
=
∂ξ

∂p
(r′1(ξ(p, t))êr + z′1(ξ(p, t))êz) ,

∂F

∂θ
= r1(ξ(p, t))êθ,

(3.5)

and so the metric tensor is

gij =

( (
∂ξ
∂p

)2

v2 0

0 r2
1

)
, (3.6)

where v2 = r′1
2 + z′1

2. The unit normal is given by

n̂ = ±1

v
(z′1êr − r′1êz), (3.7)

where the sign is chosen such that the normal points outward. If the parameter
p is such that larger values denote points closer to the tip then the positive sign
is chosen. This allows us to write the right hand side of (2.8) as

n̂ · (F − têz)
|F − têz|3

= ±1

v

z′1r1 − r′1z1

(r2
1 + z2

1)
3
2

. (3.8)

The velocity vector is

∂F

∂t
=
∂ξ

∂t
(r′1(ξ(p, t))êr + z′1(ξ(p, t))êz) + êz. (3.9)
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Since the velocity vector is perpendicular to the tangent vectors,

∂F

∂t
· ∂F
∂p

=
∂ξ

∂p

(
∂ξ

∂t
v2 + z′1

)
= 0 (3.10)

and we can solve for the time derivative of ξ

∂ξ

∂t
= − z

′
1

v2
. (3.11)

The mean curvature vector, given by the Laplace-Beltrami operator on the
embedding map, is

∆M(t)F =
1

r1v
∂ξ
∂p

[
∂

∂p

(
r1

v ∂ξ∂p

∂F

∂p

)
+

∂

∂θ

(
v ∂ξ∂p
r1

∂F

∂θ

)]
,

=
1

r1v
∂ξ
∂p

∂

∂p

(r1

v
(r′1êr + z′1êz)

)
− 1

r1
êr.

(3.12)

We now change to a new variable ξ = ξ(p, t) and use the chain rule, the term
∂ξ
∂p disappears

∆M(t)F =
1

r1v

∂

∂ξ

(r1

v
(r′1êr + z′1êz)

)
− 1

r1
êr, (3.13)

and we can write the left hand side of (2.8) as

−∂F
∂t
·∆M(t)F =

r′1
v

(
z′1r
′′
1 − r′1z′′1
v3

− z′1
r1v

)
(3.14)

and (2.8) can be written entirely in terms of the initial manifold, as described
by r1(ξ) and z1(ξ).

r′1

(
z′1r
′′
1 − r′1z′′1
v3

− z′1
r1v

)
= ±z

′
1r1 − r′1z1

(r2
1 + z2

1)
3
2

(3.15)

4 Hyphoid solutions

We call a traveling wave solution which approximates a cylinder of radius rmax
far away from the tip, a hyphoid solution. In order to study the existence and
uniqueness of such hyphoid solutions we choose our parameter p such that it is
the z coordinate at time zero, I = (−∞, ztip). So for all p, z1(ξ(p, 0)) = z1(p) =

p and clearly z′1 = 1 and z′′1 = 0. Now since ∂
∂tz1(ξ(p, t)) = ∂ξ

∂t z
′
1 = ∂ξ

∂t we see
that ξ(p, t) = z1(ξ(p, t)). Setting z = ξ(p, t) we can describe our manifold as the
graph of a function r1(z). Using this parametrization (3.15) becomes

r′1

(
r′′1
v3
− 1

r1v

)
=

r1 − r′1z
(r2

1 + z2)
3
2

(4.1)
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where v2 = 1 + r′21 . Multiplying by r1 we see that this is equivalent to

− d

dz

(
r1√

1 + r′21

)
=

d

dz

(
z√

r2
1 + z2

)
. (4.2)

Integrating, we get a first order ODE,

r1√
1 + r′21

= 1− z√
r2
1 + z2

(4.3)

where we have chosen the integration constant such that there is a ztip such
that r1(ztip) = 0. If we assume that r1 has an asymptote r1 → rmax, r′1 → 0 as
z → −∞, we get rmax = 2 as expected from mass balance.

Solving for the derivative of r1 gives

r′1 = −

√√√√r2
1

(
1− z√

r2
1 + z2

)−2

− 1 = f(z, r1). (4.4)

This ODE is defined in the region

r ≥ 1− z√
r2 + z2

(4.5)

outside this region, no traveling wave solutions can exist. Define B to be the
lower boundary,

B =

{
(z, r)|r = 1− z√

r2 + z2

}
. (4.6)

Solutions which hit B at some point cease to exist to the left of this point. Note
that B lies below the line r = 2. We will refer to the region below B as the
forbidden zone.

Note that we have chosen the negative solution, r′1 = f(z, r1) ≤ 0, since we
are looking for solutions with ztip > 0 and extending in the negative z direction
with a positive asymptote r1 → 2. Choosing the positive square root would
result in unrealistic solutions r1 < 0 mirrored over the z axis.

Since any solution is decreasing (and thus solutions above the line r = 2 will
always stay above this asymptote as z → −∞), we know that for a hyphoid
solution:

1− z√
r2
1 + z2

≤ r1 < 2 (4.7)

4.1 Existence and uniqueness

Theorem 4.1 (Existence and Uniqueness) There exists a unique hyphoid solu-
tion.

Proof Since a hyphoid solution must lie between the line rmax = 2 andB, it will
pass through a point (0, x) where x ∈ (1, 2). For x ∈ (1, 2) let γx(z) : I → R+
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be the solution to (4.4) which passes through (0, x), with I the corresponding
existence interval.

d

dz
γx(z) = f(z, γx(z)), γx(0) = x. (4.8)

We will first examine those values of x for which γx is not a hyphoid solution.
Let

Σ− =

{
x ⊂ (1, 2)|∃z ∈ (−∞, 0) : γx(z) = 1− z√

γx(z)2 + z2

}
(4.9)

be the set of values of x for which γx hits the boundary B of the forbidden zone.
Let

Σ+ = {x ⊂ (1, 2)|∃z ∈ (−∞, 0) : γx(z) = 2} (4.10)

be the set of values of x which hits the line r = 2. Since the solutions γx are
ordered, Σ− and Σ+ are intervals. For z∗ < 0 let γz∗(z) be a solution to (4.4)
with (z∗, γz∗(z∗)) ∈ B and let I be the corresponding existence interval. Then
γz∗(z) ≤ γz∗(z

∗) < 2 for all z ∈ I because r′1 = f(z, r1) < 0 outside B and
f(z, r1) = 0 if (z, r1) ∈ B. Consequently γz∗(z) remains bounded and away
from B for z∗ < z < 0, therefore 0 ∈ I and γz∗(0) ∈ (1, z∗) so Σ− 6= ∅. In an
analogue way one sees that Σ+ 6= ∅. Straightforward perturbation arguments
yield that Σ+ is an open interval. Finally, the mapping Ψ : Σ− → (−∞, 0)
given by:

Ψ(r) = Πz (graph(γr) ∩ B) , (4.11)

with Πz the projection operator to z, is monotone and maps onto the open
interval (−∞, 0) and thus Σ− is open. Since Σ− ⊂ (1, 2),Σ+ ⊂ (1, 2) and
Σ− ∩ Σ+ = ∅ the set Σ0 = (1, 2) \ (Σ− ∪ Σ+) is closed, not empty and for
x ∈ Σ0, γx is a traveling wave solution.

We show now that Σ0 has only one element, otherwise Σ0 would have interior
points. We examine the asymptotic behavior of solutions γx̃ with x̃ in the
neighborhood of an interior point x. Differentiating (4.8) with respect to x
results in the following linear ODE for ρ(z) = ∂

∂xγx(z):

∂

∂z
ρ(z) =

∂f

∂x
(z, γx(z))ρ(z), ρ(0) = 1, (4.12)

where
∂f

∂r
(z, r) =

1

f

(
r
(

1− z

d

)−2

−
(

1− z

d

)−3
(
zr3

d3

))
(4.13)

Since f is negative, negative z implies ∂f
∂r (z, r) < 0 and limz→−∞

∂f
∂r (z, γx(z)) =

−∞, so ρ(z) increases exponentially as z → −∞ and a solution close to γx
diverges from γx as z → −∞ and so cannot have the same asymptotic behavior.
Therefore Σ0 cannot have interior points and this interval must consist of a
single point.
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4.2 Properties of the hyphoid solution.

0

2

–4 –2 2

B

rmax = 2

H = 0

r̂

ẑ

C

Figure 2: Solid lines: solutions γx to (4.8) for x = 1.01, x = 1.1 in Σ− and
x = 1.1804, x = 1.5 in Σ+, Dashed lines: the line r = 2, and the curves defined
in (4.6), (4.16) and (4.18).

Lemma 4.2 (Properties of the hyphoid solution) The hyphoid solution has the
following properties:

1. The tip has no corner.

2. The tip is the closest point to the VSC, and is the only extremum of the
distance d to the VSC.

3. The solution is star-shaped and the mean curvature is strictly negative.

4. The solution is concave.

Proof 1. Tip shape.

Note that if r′1 is finite then the left hand side of (4.4) is O(r1) as r1 → 0
while the right hand side is O(r2

1) for positive z; this yields a contradiction,
hence r′1 → −∞ as r1 → 0. This means that the tip has no corner.

2. Tip location.

Since the tip has no corner, the distance d to the VSC has an extremum at

the tip. If we consider other extrema of the distance, where d′ =
r1r
′
1+z
d =

0 or r′1 = − z
r1

then, since r′1 is negative, these extrema can only occur
if z ≥ 0. Substituting (4.4) we get an expression for the set of points
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(z, r) where f(z, r) = − z
r . We show that this curve does not intersect the

hyphoid solution. Solving for r gives the trivial solution r = 0 and

r2 = 1− 2z, 0 ≤ z ≤ 1

2
(4.14)

This parabola hits the line r = 0 at z = 1
2 and hits the curve B at

(z, r) = (0, 1). Differentiating to get the slope m of the tangent to this
curve, we get

m = −1

r
< −z

r
= f(z, r) (4.15)

so any solution to (4.4) which has an extremum in the distance d other
than at the tip, passes through this parabola from left to right and must
originate from B. The hyphoid solution does not originate from B and
therefore cannot intersect this parabola. So it only has one extremum in
d which must be a minimum, the tip is the closest point to the VSC.

3. Star-shapedness.

For the VSC model to make sense, the hyphoid solution has to be star-
shaped with respect to the origin (the location of the VSC) and to have
nonzero (and thus negative, due to our choice of normal n̂) mean curvature.

Since the flux ~F always points away from the VSC, (2.5) says that the two
requirements are equivalent. While it is possible to find solutions to (4.3)

in which H and ~F ·n̂ are zero or switch signs, these solutions are physically
unrealistic. A solution is not star-shaped with respect to the origin if at
any point r − zr′ < 0. Since r is positive and r′ is negative, this can
only occur at negative z. We now consider the points where r − zr′ = 0,
combining this with (4.3) and solving for r at negative z one gets:

r = 2
z2

z2 − 1
(4.16)

since for z < −1 this curve lies above the line r = 2, any bounded solu-
tion to (4.3), in particular the hyphoid solution, will not cross this curve.
Since, for the hyphoid solution, r− zr′ is positive at the tip, it is positive
everywhere and the hyphoid solution is star-shaped with respect to the
origin and has negative mean curvature.

4. Concavity.

Differentiating (4.4) gives:

r′′ =
rd2

(d− z)2
− r3z

(d− z)3
+

1

f(z, r)

r4

(d− z)3
(4.17)

where f(z, r) is given by (4.4). This equation gives the second derivative
of r for any traveling wave solution passing through the point (z, r). We
now consider the curve C where r′′ = 0

C =

{
(z, r)|f(z, r) =

r3

r2z − d2(d− z)

}
. (4.18)
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Figure 3: Ratio of the slope m of the curve C to the slope r′ of the solution.

We parametrize this curve in polar coordinates r = ρ(φ) sin φ, z = ρ(φ) cosφ,
d = ρ(φ). Substituting this in the definition (4.4) of f and the equation
(4.18) for the curve C we get

−
√
ρ(φ)2 sin2 φ

(1− cosφ)2
− 1 =

sin3 φ

(1− cosφ)(cos2 φ+ cosφ− 1)
. (4.19)

Since f(z, r) is negative and sinφ is positive, the term cos2 φ + cosφ − 1
on the right hand side must be negative and we see that C stays above

the line at angle φmin = arccos(
√

5−1
2 ). Solving for ρ(φ)2 gives

ρ(φ)2 =
sin4 φ

(cos2 φ+ cosφ− 1)2
+

(1− cosφ)2

sin2 φ
(4.20)

and
C = {(ρ(φ) cosφ, ρ(φ) sin φ)|φmin < φ < π} . (4.21)

If we now examine the slope m of the curve C

m =

d
dφ (ρ(φ) sinφ)

d
dφ (ρ(φ) cosφ)

(4.22)

and compare this to the slope r′ = f(ρ(φ) cosφ, ρ(φ) sin φ) of the traveling
wave solution intersecting C we find, using Maple, a symbolic mathemat-
ical analysis program, that m

r′ has a supremum of 1 as φ→ π, so r′ < m.
See also figure 3. So traveling wave solutions cross the curve C from
above to below as z increases, and can cross the curve C at most once.
The hyphoid solution has r′′ < 0 in the tip. If the hyphoid solution were
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to intersect C, this would imply r′′ is positive as z → −∞ which is in
contradiction with the fact that r′ < 0 and r′ → 0 as z → −∞. So the
hyphoid solution cannot intersect C and must be concave.

5 Stability of the hyphoid solution

In order to study the stability of the hyphoid solution we consider the manifold
to be the graph of the function z(r, t) in a frame of coordinates moving along
with the VSC. If a particle p is at radius r(p, t) at time t the embedding map
can now be written as

F (p, θ, t) = (z(r(p, t), t) + ct) êz + r(p, t)êr. (5.1)

As it will be helpful later to consider variations with respect to c, we choose to
leave the parameter c in our equations, although we will do all our calculations
at c = 1. The normal n̂ and tangent m̂ unit vectors to the manifold are now
given by

n̂ =
1

v
(êz − z′êr) m̂ =

1

v
(z′êz + êr) v2 = 1 + z′2. (5.2)

Examining the partial derivatives of F we get

∂F

∂p
= r′vm̂, g11 = r′2v2,

∂F

∂θ
= rêθ, g22 = r2, (5.3)

∂F

∂t
= ṙvm̂+ (ż + c)êz ,

√
g = r′vr.

Since ∂F
∂p · ∂F∂t = 0 we can solve for ṙ, and obtain

ṙ = − (ż + c)z′

v2
,

∂F

∂t
=

(ż + c)

v
n̂. (5.4)

Now the evolution equation (2.8) can be written as a PDE for z(r, t) as

Φ(ż, z′′, z′, z, c) = (ż + c)H − z′r − z
(r2 + z2)

3
2

= 0 (5.5)

where the mean curvature H is given by

H =
z′′

v3
+
z′

rv
. (5.6)

In section 4 we showed the existence of an unique hyphoid solution r1(z) for
c = 1, since r′1 < 0 we can invert this to get a stationary solution z1(r) to (5.5)
at c = 1. Using the scaling (2.10) we see that for arbitrary c,

zc(r) =
1

c
z1(cr) (5.7)

is an equilibrium solution to the PDE, we will require this function in the proof
of theorem 5.5.

12



5.1 The linearized evolution equation

Linearizing around the solution at c = 1, z(r, t) = z1(r) + w(r, t) results in the
following linear evolution for w

ẇ + L[w] = O(w2) (5.8)

with
L[w] = a(r)w′′ + b(r)w′ + c(r)w (5.9)

where

a(r) =
∂Φ

∂z′′

/∂Φ

∂ż
=

1

v3H
, (5.10)

b(r) =
∂Φ

∂z′

/∂Φ

∂ż
=

1

H

(
−3z′′1z

′
1

v5
+

1

v3r
− r

d3

)
, (5.11)

c(r) =
∂Φ

∂z

/∂Φ

∂ż
=

1

H

(
1

d3
+

3z1(z′1r − z1)

d5

)
. (5.12)

Here d2 = r2 + z1(r)2, v2 = 1 + z′1(r)2, and H is the mean curvature of the
unperturbed surface.

5.2 Divergence form

If we write w(r, t) = Y (r)φ(r, t) for Y (r) nonzero everywhere, and define the
linear operator

L̃[φ] =
1

Y
L[Y (r)φ(r, t)] = aφ′′+

(
2aY ′

Y
+ b

)
φ′+

(
a
Y ′′

Y
+ b

Y ′

Y
+ c

)
φ. (5.13)

then, with suitable choices of Y , the operator L̃[φ] can be written either in 1D

or 2D divergence form. If Y is chosen such that 2aY ′

Y + b = a′ + a
r , or

log Y =

∫
a′ + a

r − b
2a

dr (5.14)

then L̃[φ] is in 2D-divergence form.

L̃[φ] = −1

r

∂

∂r

(
rα(r)

∂

∂r
φ(r, t)

)
+ β(r)φ(r, t), (5.15)

where

α(r) = −a(r), (5.16)

β(r) = a(r)
Y ′′

Y
+ b(r)

Y ′

Y
+ c(r) (5.17)

= a

(
d

dr

(
a′ + a

r − b
2a

)
+

(
a′ + a

r − b
2a

)2
)

+ b

(
a′ + a

r − b
2a

)
+ c.
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5.3 Asymptotics

One can find formal series solutions for the hyphoid solution z1(r), its deriva-
tives, and thus for the functions a(r), b(r), c(r), Y (r), α(r) and β(r) in the tip as
r → 0 and in the asymptote as r → 2. Using standard techniques from asymp-
totic analysis one can show that these formal series are asymptotic expansions.
To first order this gives the following estimates,

(r → 0) (r → 2)

z1 = ztip +O
(
r2
)
, z1 = −

√
2(2− r)− 1

2 +O
(

(2− r) 1
2

)
,

z′1 = − 1

2z2
tip

r +O
(
r3
)
, z′1 = −

√
2

2
(2− r)− 3

2 +O
(

(2− r)− 1
2

)
,

z′′1 = − 1

2z2
tip

+O
(
r2
)
, z′′1 = −3

√
2

4
(2− r)− 5

2 +O
(

(2− r)− 3
2

)
,

H = − 1

z2
tip

+O
(
r2
)
, H = −1

2
+O (2− r) ,

a = −z2
tip +O

(
r2
)
, a = −4

√
2(2− r) 9

2 +O
(

(2− r) 11
2

)
,

b = −z2
tip

1

r
+O (r) , b =

√
2(2− r) 3

2 +O
(

(2− r) 5
2

)
,

c =
2

ztip
+O

(
r2
)
, c = −3

√
2

2
(2− r) 1

2 +O
(

(2− r) 3
2

)
,

logY =

(
3

4z2
tip

− 1

4z3
tip

)
r2 +O

(
r4
)
, logY =

1

16
(2− r)−2 +O

(
(2− r)−1

)
,

α = z2
tip +O

(
r2
)
, α = 4

√
2(2− r) 9

2 +O
(

(2− r) 11
2

)
,

β =
3

ztip
− 3 +O

(
r2
)
, β =

√
2

16
(2− r)− 3

2 +O
(

(2− r)− 1
2

)
.

From these asymptotics we can prove the following properties of α and β.

Lemma 5.1 Properties of α and β.

• α is positive and bounded for all r, near the tip α stays away from zero.

• β is bounded near the tip, and is bounded by below by its minimum β0.

Proof Positivity of α follows from negativity of H . In the tip v = 1, so α = − 1
H .

Since in the tip z′1 = 0, from (5.6) we get H(ztip) = − 1
z2
tip

and so α(ztip) = z2
tip.

In the asymptote r → 2, α(r) = O((2− r) 9
2 ) and so α stays bounded.

From the asymptotics at r → 0 it follows that β is bounded near the tip.
From the asymptotics at r → 2 it follows that β is positive and explodes as

14



r → 2, by continuity it follows that it is bounded from below, we define β0 to be
its minimum. Numerical calculations in Section 6 suggest that β0 ≈ 0.56 and
thus positive, however for now we shall assume nothing about its sign.

Corollary 5.2 L̃ is bounded from below.

Proof Integrating by parts we obtain,

(L̃u, u)L2 =

∫ 2

0

(αu′2 + βu2)rdr ≥ β0||u||2L2 (5.18)

5.4 Eigenvalues of L̃[φ]

Naively, since in Section 4 we found a class of traveling wave solutions of which
the hyphoid solution was a special case, one would expect a zero eigenvalue.
However this is not the case. Consider those solutions rp(z) which cross the line
r = 2 at the point (r, z) = (2, p). Since r′(z) < 0 we can invert these solutions
to get functions zp(r) for r ∈ [0, 2]. If one were to linearize around one such
solution at finite p we would certainly get a zero eigenvalue with eigenfunction
∂zp
∂p . The hyphoid solution can be considered to be the point wise limit of zp(r)

as p→ −∞. Since for r < 2 the functions zp(r) are bounded from below by the

hyphoid solution, and since these solutions are ordered,
∂zp
∂p (r) → 0. However,

by construction,
∂zp
∂p (2) → 1. So the pointwise limit as p → −∞ of the zero

eigenfunction. In fact, in this section we will show that all eigenvalues are
positive.

We now construct an energetic Hilbert space V as a subspace of L2(0, 2)
with measure rdr (or equivalently, L2 on the disc of radius 2 with the stan-
dard area measure, restricted to rotationally symmetric functions), and define
the Friedrichs’ extension of L̃, also denoted as L̃ on V . For more details see
Weidmann [14] §5.5.

For test functions u, v ∈ C∞0 (0, 2) the inner product on V is given by

〈u, v〉V = (1− β0)(u, v)L2 + (L̃[u], v)L2

=

∫ 2

0

(αu′v′ + (1 + β − β0)uv)rdr.
(5.19)

The space V is the completion of test function under the norm ||u||2V = 〈u, u〉V .
The extended operator L̃ : D(L̃) → L2 has a domain dense in V and is self-
adjoint on L2.

Lemma 5.3 V is compactly embedded in L2.

V ⊂⊂ L2(0, 2) (5.20)

Proof By construction, V is continuously embedded in L2. Now choose a
bounded sequence {φn} in V . Since β = O((2 − r)−

3
2 ) there are constants
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A > 0 and r0 such that for all r ∈ (r0, 2), 1 + β(r) − β0 ≥ A(2 − r)− 3
2 . So for

positive δ ≤ 2− r0, if 2− δ < r < 2 then 1
Aδ

3
2 (1 + β(r) − β0) ≥ 1 and

∫ 2

2−δ
φ2
nrdr ≤

1

A
δ

3
2

∫ 2

2−δ
(1 + β − β0)φ2

nrdr ≤
1

A
δ

3
2 ||φn||2V . (5.21)

and
lim
δ→0
||φn||L2(2−δ,2) = 0 uniformly in n. (5.22)

As {φn} is bounded in L2 it has a subsequence, again denoted by {φn}, which
weakly converges to some φ ∈ L2. For k = 1, 2, . . ., define δk ∈ (0, 1) such that

||φ||L2(2−δk,2) <
1

3k
, and

||φn||L2(2−δk,2) <
1

3k
.

(5.23)

Note that by Lemma 5.1, α and β are well behaved outside the asymptote r → 2,
so the sequence of restrictions of φn to (0, 2− δk) is bounded in H1(0, 2− δk).
Due to the compactness of the embedding H1(0, 2 − δk) ↪→ L2(0, 2 − δk) (one
sees this compactness by considering these spaces with measure rdr as function
spaces on the disc with the usual area measure) we find a subsequence {φnk}
such that

||φnk − φ||L2(0,2−δk) <
1

3k
. (5.24)

Hence
||φnk − φ||L2(0,2) ≤ ||φnk − φ||L2(0,2−δk)

+ ||φnk ||L2(0,2−δk)

+ ||φ||L2(0,2−δk) <
1

k
,

(5.25)

and we see that the subsequence {φnk} converges to φ strongly in L2.

Corollary 5.4 L̃ has a pure point spectrum.

Proof From Lemma 5.3 this follows directly by Rellich’s criterion ([12] Theorem
4.5.3).

Theorem 5.5 Linear stability of the hyphoid solution All eigenvalues of L̃ are
positive.

Proof We consider variations of the hyphoid solution with respect to the ve-
locity c of the VSC. From (5.5) and (5.7) we know that zc(r) = 1

cz1(cr) is a
solution to Φ(0, z′′c , z

′
c, zc, c) = 0. Differentiating by c at c = 1 one sees that

L[∂zc∂c |c=1] + 1 = 0. Now let ψ = − 1
Y
∂zc
∂c |c=1 = − 1

Y (z′1r − z1). Since, by
Lemma 4.2, the hyphoid solution is star shaped, z′1r − z1 < 0 and ψ is a pos-
itive function. Furthermore L̃[ψ] = 1

Y is positive. Since L̃ is a self-adjoint
operator, semi bounded from below, it has a discrete spectrum of eigenvalues
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with a smallest eigenvalue λ1 which can be calculated using the Rayleigh quo-
tient. Let φ1 be a function with ||φ1||L2 = 1 which minimizes (φ, L̃[φ])L2 ,
then λ1 is this minimum and φ1 lies in its corresponding eigenspace. The
absolute value of φ1 also minimizes the Rayleigh quotient, so without loss
of generality φ1 may be assumed positive. Now since φ1 is an eigenfunc-
tion, (ψ, L̃[φ1])L2 = (ψ, λ1φ1)L2 = λ1(ψ, φ1)L2 , but since L̃ is self-adjoint,
(ψ, L̃[φ1])L2 = (L̃[ψ], φ1)L2 = ( 1

Y , φ1)L2 . Since 1
Y , ψ, and φ1 are positive, and

the L2 inner product of two positive functions is positive, the smallest eigenvalue
λ1 must be positive.

5.5 Asymptotics of the eigenfunctions

One can find formal series solutions for the eigenfunctions of L̃. Using standard
techniques from asymptotic analysis one can show that these formal series are
asymptotic expansions. The asymptotic expansion of the eigenfunction φλ at
eigenvalue λ as r → 2 is

logφλ = − 1

16
(2− r)−2 − 1

2
(2− r)−1

+
√

2λ(2− r)− 1
2 − 15

32
log(2− r) +O

(√
2− r

)
.

(5.26)

Since wλ(r) = Y (r)φλ we can combine this with the asymptotic expansion for
Y

logY =
1

16
(2− r)−2 +

1

2
(2− r)−1

− 63

32
log(2− r) +

57

32
(2− r) +O((2− r)2).

(5.27)

We see that the first two terms of the expansion cancel out, resulting in the
following asymptotic expansion for the eigenfunctions w.

w = (2− r)− 3
2 e
√

2λ(2−r)− 1
2 +O(

√
2−r). (5.28)

For positive (stable) λ these eigenfunctions increase exponentially as r → 2.
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6 Numerical calculations
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Figure 4: Functions a(r), b(r), c(r), α(r) and β(r).

Starting from the second order ODE (5.5) with c = 1 and assuming ż = 0 we
get a second order ODE in z(r) for the shape of the hyphoid solution. Setting
z′1 = u we get the following first order system of differential equations.

∂

∂r

(
z1

u

)
=




u(
1+u2

r2+z2
1

) 3
2

(ur − z1)− u
r (1 + u2)


 (6.1)

Starting from r = 1.9951, z1 = −20 and u = −2050.3, as given by the asymp-
totic expansion as given in Section 5.3 we compute a numerical solution using
an initial value solver available in a package such as MatLab. The resulting
points (z1, z

′
1, r) enables us to calculate higher derivatives using central differ-

ence methods and thus we can calculate a(r), b(r), c(r), α(r) and β(r). These
functions are shown in Figure 4. From these, using finite difference methods
and assuming boundary conditions of dφ

dr (0) = 0, φ(2) = 0 we can discretize L̃
to obtain a tridiagonal matrix, of which the eigenvalues and eigenvectors can
subsequently be calculated.

The five smallest eigenvalues are λ1 · · ·λ5 = 0.7145, 1.4292, 2.1134, 2.7726,
and 3.4109, corresponding eigenfunctions are given in Figure 5. Note that it
is necessary to calculate the eigenfunctions of the symmetric operator L̃. The
eigenfunctions of the operator L are related to these by wλ = Y φλ but since
the factor Y grows faster than the eigenfunctions decay, the functions wλ will
reach the floating point upper boundary of a computer around r = 1.9.

This would imply a generic perturbation will die out at a rate dictated by
the first eigenvalue, so with a timescale of 1/λ1 ≈ 1.4. Given a generic hypha
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Figure 5: The first five eigenfunctions of the self-adjoint operator L̃.

with production factor P traveling at a velocity c one can use the rescaling
described in (2.10) to get the timescale τ in which perturbations die out. (For
convenience, using mass balance P = 2πrmaxc, we also express τ in terms of
the radius rmax of the base of the hypha.)

τ ≈ 1.4
P

4πc2
= 1.4

rmax
2c

(6.2)

7 Conclusions

We have shown that the VSC model has hyphoid solutions, traveling wave so-
lutions similar in shape to fungal hyphae. Moreover, we have shown that these
solutions are linearly stable. However, whether this implies nonlinear stability is
a nontrivial open problem, especially since the eigenfunctions of L do not decay
as r → 2. In this limit the operator degenerates to a transport operator (in
coordinates moving along with the tip) and a perturbation away from the tip
will move further down the asymptote without decaying. It should however be
possible, when restricting ourselves to a compact area near the tip, to show that
perturbations do decay at a rate dictated by the first eigenvalue. We intend to
discuss this in a forthcoming paper.
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