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Tension percolation

Robert Connelly�� Konstantin Rybnikovyz and Stanislav Volkovx

May �� ����

Abstract

We introduce a new class of bootstrap percolation models where the local rules

are of a geometric nature as opposed to simple counts of standard bootstrap perco�

lation� Our geometric bootstrap percolation comes from rigidity theory and convex
geometry� We outline two percolation models� a Poisson model and a lattice model�

Our Poisson model describes how defects�holes is one of the possible interpreta�

tions of these defects�imposed on a tensed membrane result in a redistribution or

loss of tension in this membrane� the lattice model is motivated by applications of

Hooke spring networks to problems in material sciences� An analysis of the Poisson

model is given by Menshikov� Rybnikov� and Volkov �	


�� In the discrete set�up

we consider regular and generic triangular lattices on the plane where each bond

is removed with probability 	� p� The problem of the existence of tension on such

lattice is solved by reducing it to a bootstrap percolation model where the set of

local rules follows from the geometry of stresses� We show that both regular and

perturbed lattices cannot support tension for any p � 	� Moreover� the complete
relaxation of tension�as de�ned in Section 
�occurs in a �nite time almost surely�

Furthermore� we underline striking similarities in the properties of the Poisson and

lattice models�

Keywords� Equilibrium tension� self�stress� spider web� triangular lattice� percolation on
graphs� bootstrap percolation� graph rigidity

� Introduction

Consider a planar tensed membrane in space clamped on its boundary� What happens

when holes are created in this structure� When will it still support tension� When will

there be �oppy portions that bend and �ex� When will the whole structure become

�oppy with tension vanishing throughout the membrane� Naturally this depends on how
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the holes are distributed and just what the structure of the membrane is� We present two

classes of percolation models� both discrete� where tension can exist in a natural sense�

and where the creation of holes can have the consequence of relieving the tension� One

approach is a continuous bootstrap�like percolation of compact defects distributed with

a Poisson Law� The other is a bootstrap percolation on a triangular lattice� In both of

these models it is the geometric properties of the underlying structure 	after the holes are

created
 that determines whether or not the tension exists� Thus� our paper introduces

a new class of percolation models� geometric bootstrap percolation models�

We prove here that an in�nite triangular 	regular or perturbed
 lattice� where each

edge has been removed independently with probability � � p � �� cannot support an

equilibrium tension almost surely 	a�s�
throughout the text
� There are strong parallels

between this result and the result described in Menshikov� Rybnikov and Volkov 	����
�

our continuous model� In the continuous model the positions of numerous holes are

distributed homogeneously in the plane according to a Poisson Law with � � �� and their

shapes are independently identically distributed 	i�i�d�
throughout the text
 random

functions on a circle independent of the Poisson Process� As with the lattice model�

tension vanishes almost surely� But in this model� the criterion for having tension exist is

that there is some triangulation of the complement of the holes such that an equilibrium

tension exists in the ��skeleton of that framework�

In our de�nition� stress 	and� in particular� tension
 is a real scalar quantity �ij � �ji

associated to each edge ij between vertex i and vertex j of a graph underlying a framework

that triangulates the region in the plane� This stress is said to be an equilibrium stress

if the vector sum
P

j �ij	vi�vj
 � � for each vertex vi 	treated as a vector in Euclidean

space
 of the graph other than pinned vertices� There is no equilibrium condition for

pinned vertices� If an edge 	i� j
 has �ij � �� it is said to be in tension� When a

framework is connected and has all of its edges in tension it is easy to show that this

framework is rigid� This is one of the main tools to show rigidity and one of the main

reasons that the existence of an equilibrium stress with all of its members in tension is

of interest here� But the stress� as it is de�ned here� is more accurately thought of as a

stress coe�cient� rather than what might be usually referred to as a stress in physics or

�



engineering� Each �ij is not a force by itself� The vector quantity �ij	vi�vj
 is essentially
the physical force involved� But the �ij are more easily dealt with mathematically� and

they are what has been used in the mathematical literature�

When the percolation process of edge removal or hole creation is performed� for any

particular graph 	lattice model
 or complement of the holes 	Poisson model
� the deter�

mination of whether there exists an equilibrium stress that is positive on all the edges of

some graph can be di�cult to determine� Fortunately� however� to calculate the critical

tension threshold for the Poisson model it is enough to consider only the situation where

convex holes intersect� If there is a region in the plane that is removed� creating a hole

that is not convex� then the convex hull of a connected component has no tension in its

interior� We call such an area defective� It turns out that with high probability� these

holes coalesce into defective areas that and eventually cover the entire plane in the in�nite

case� The proof of this is one of the main points of the paper by Menshikov� Rybnikov

and Volkov 	����
�

In Section ��� we carefully de�ne the notions of stress and rigidity� In Section ���

we show how the discrete approach based on these notions can be applied to help to

understand the rigidity of regions in the plane� Section � treats the continuous membrane

model and recent probabilistic results for it� The main probabilistic result of this paper

states that the relaxation of tension on a triangular lattice 	regular or slightly perturbed


where each edge has been removed independently with probability �� p � � occurs in a

�nite time 	discrete time for our bootstrap process is de�ned in Section �
 almost surely�

this is proved in Section �� Menshikov et al� 	����
 showed that in the continuous

case the relaxation of tension also occures in a �nite time a�s� In Section � we analyze

similarities between the processes of tension relaxation for the continuous and discrete

cases� In addition� we conjecture that our methods used for triangular lattices can be

applied to a broader class of planar graphs� In the last section we discuss connections

between the problem of tension percolation for the in�nite regular triangular lattice and

the same problem for �nite subgraphs of this lattice�

Both models assume that after the edge removal or hole creation the remaining

medium remain static� i�e�� it is not plastic� If the medium� lattice or membrane� has
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Figure �� Perturbed fragment of a sub�graph of the triangular lattice� vertices marked
with circles may be adjacent to other edges of the sub�graph

the property that it can deform and recreate another stressed con�guration after the

removal of the edges 	lattice model
 or the holes creation 	continuous model
� it could

arrive at a new stressed con�guration in equilibrium� If the medium has such plastic

properties� both results should rather be interpreted not as immediate relaxation� but as

an inevitable displacement restoring the ability of the system to support tension� in other

words� to preserve strong stability the system has to rearrange itself� For example� in the

lattice model a star of ��type 	see Figure �� in Section �
 can reshape into the star that

can support tension 	see Figures � and �
� In the continuous model the displacement can

be pictured in many di�erent ways� Of course� if the probability distribution is such that

the medium is not even connected� then the material will not even be able to rearrange

itself after the edges have been cut or the holes have been created� Note� that unlike

tension percolation� this connectivity percolation has a critical probability value below

which the medium remains connected� almost surely� and above which it is disconnected�

almost surely 	Menshikov� Sidorenko ����
�

In other words� to preserve stability� the system has to rearrange itself� Figure �

shows an example of this sort of phenomenon�

��� Frameworks� Rigidity and Stresses

A bar�and�joint framework is a graph 	possibly� with countably many vertices
 together

with its realization in Rd � We consider only discrete frameworks� any compact subset of

R
dmay contain only a �nite number of vertices of a framework� Denote by G	E� V� V��p
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Figure �� � ��star can reshape into a star supporting tension

a framework in R
d with the edge set E� and the vertex set V with pinned 	�xed in R

d


subset of vertices V� � V � here p is the set of all the coordinates of the vertices of the

framework� We will denote the graph of the framework by G	E� V� V�
� where V� is the

set of vertices that must be pinned in a realization� Thus� in our notation p de�nes a

realization of the graph G	E� V� V�
 in R
d � Vertices that are not pinned are called free�

If V� � �� we will write simply G	E� V �p
� Notice� that in the mathematics of rigidity

there is a tendency to use term framework instead of network preferred by physicists�

Denote by vi the vector of coordinates of vertex vi � V �

De�nition ��� An equilibrium stress �or self�stress� is an assignment of real numbers

�ij � �ji to the edges� a tension if the sign is positive� or a compression if the sign is

negative� so that the equilibrium conditions

X
fj j �ij��Eg

�ij	vj � vi
 � �

hold at each vertex vi � V nV� �see Fig� ���

De�nition ��� A framework G	E� V� V��p
 that has an equilibrium stress� positive on

all edges� is referred to as a spider web�

In other words� G	E� V� V��p
 is a spider web if it supports an equilibrium tension�

For example� an in�nite regular triangular lattice is� obviously� a spider web 	see Figure

� for a piece of such grid
� The following obvious observations immidiately follow from

the de�nition of stress�

�



Figure �� Equilibrium stress

Figure �� Triangular grid
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Proposition ��� If G � 	E� V �p
 is a spider web in R
d � then G has in�nitely many

edges and vertices and their convex hull is an a	ne subspace of Rd �

Proposition ��� If G	E� V �p
 is a spider web� then for each vertex v of G the convex

hull of the vertices adjacent to v contains v�

Denote the set of vertices adjacent to v by A	v
� The following proposition follows from

the de�nition of spider web�

Proposition ��� Let v be a vertex of a spider web G � 	E� V �p
 in R
d � Suppose there

is a subset of vertices of A	v
 such that its convex hull a	nely spans a hyperplane in

R
dpassing through V � Then� if A	v
 a	nely spans Rd � the convex hull of A	v
 intersects

both open half�spaces determined by this hyperplane�

Two frameworks in Rd are called edge equivalent if they have the same graph and the

same lengths of all edges� Two edge equivalent frameworks in R
d are called congruent

if all distances between corresponding pairs of vertices are the same� Notice� that for a

�nite framework the set of the vertex coordianates p can� obviously� be regarded as a

point p	G
 in the space of parameters RdjV j�

De�nition ��	 A �nite framework G	E� V� V��p
 in R
d is called rigid in R

d if there is

a neighborhood Np � R
djV j of p such that any other realization q of graph G	E� V� V�


satisfying the following conditions �
����� is congruent to G�

�
� G	E� V� V��q
 is edge equivalent to G	E� V� V��p
�

��� q � Np�

��� the pinned vertices of G� coincide with the pinned vertices of G�

If a framework G satis�es the above de�nition with Np � R
djV j� it is called globally

rigid in RdjV j� Note that a globally rigid framework is automatically rigid� A framework

that is not rigid is called 
exible� It is important to specify the dimension of the space

where our framework G is considered� A graph can be rigid in R
� � but not rigid in R

� �

for example� the graph depicted in Figure � has motions that keep the boundary vertices

on the plane� but move the vertices U� V and W � lying inside the tringle� from the plane

�



	dashed lines show that the extensions of the edges do not have a common point� this

is a su�cient condition for this graph to be �exible in the space
� There are a few ways

to de�ne rigidity for in�nite graphs� but the existing tools of rigidity theory allow one

to work only with those de�nitions where the rigidity of an in�nite graph is understood

as the rigidity of its �nite subgraphs� It is natural to refer to this type of rigidity as

�nite rigidity 	see Connelly 	����

� Since in this paper we deal only with �nite types of

rigidity we shall omitt the word �nite throughout the rest of the paper�

In the following de�nition all frameworks are assumed to have no pinned vertices�

De�nition ��
 An in�nite framework G	E� V �p
 in Rd is referred to as rigid if any �nite

sub�framework of G	E� V �p
 is contained in a rigid �nite sub�framework of G	E� V�p
�

The above de�nition of rigidity was adopted by Holroyd 	���������
 in his studies of

generic rigidity percolation on lattices 	see also Grimmett 	����

� Since the de�nition

of rigidity for �nite graphs can be applied to in�nite graphs with all but �nitely many

vertices pinned� the following de�nition of pseudorigidity is consistent�

De�nition ��� An in�nite framework G	E� V �p
 in Rd is referred to as �globally� pseu�

dorigid if for any �nite subset V � of V the framework obtained from G	E� V �p
 by pinning

all of the vertices in V nV � is �globally� rigid�

To avoid confusion� let us notice that in some papers 	e�g� Connelly 	����

 the above

property is called �nite rigidity� Rigidity in R
d obviously� implies pseudorigidity in R

d �

However� rigidity in R
� does not imply pseudorigidity in R

� � For example� an in�nite

graph triangulating R� is always rigid in the plane� however� if it has a subgraph shown

in Figure �� it is not pseudorigid in the space� Let us illustrate the di�erences between

rigidity and pseudorigidity� the regular triangular lattice is rigid in R
� and pseudorigid

in R� � but not rigid in R� � whereas the square lattice is pseudorigid in R� � but not rigid

in R
d	r � �
� The pseudorigidity of the square lattice follows from the basic properties

of spider webs 	see Connelly 	����

�

Our motivation for introducing tension percolation models was to study the properties

of random graphs that guarantee the rigidity not only in R
� � but also in R

� � One of

such properties is the existence of an equilibrium tension 	Connelly 	����
� Connelly�

�
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Figure �� Rigid in the plane� but not in the space

Whiteley 	����

� An in�nite framework can be rigid in R
� but not even pseudorigid

in R
� � For example� let ABC be a triangle in the regular triangular lattice� Now� add

a triangle UVW and edges BU � AU � and CW to the lattice� as it is shown in Figure

�� The resulting in�nite graph will still be rigid in the plane� but not in the ��space�

since the added vertices can be lifted from the plane without changing the lengths of the

edges� The computer simulation program of Jacobs and Thorpe 	����� ����
 constructs

large rigid clusters 	�nite� indeed
 by pseudorandom edge removal from the triangular

lattice� it is interesting that most of these clusters are rigid in R
� � but �exible in R

�

with the boundary pinned� Our main result explains� to some extent� why these clusters

should not be rigid in R� with the boundary pinned� a spider web is always pseudorigid

	Proposition ����
� but for a triangular lattice T any non�neglectable edge removal has

the consequence that no in�nite subset of T is a spider web 	Theorem ���
�

The rigidity and elasticity properties of a glass are related to how amenable the glass

is to continuous deformations requiring little energy� From a physical point of view it

is not enough to declare that the distance constraints force the structure to have only

one con�guration� since the bonds in a physical network do not behave as ideal bars in

a framework� There should be a way of describing the behavior of the system as it is

perturbed� That is why physicists often consider the energy function de�ned on the edges

of a network of Hooke springs� each spring has some optimal length at which its energy

is minimal� stretching or shortening a spring increases the energy of this connection�

A tensegrity framework is a generalization of this model where besides Hooke springs

�



there are members whose energy increases with the distance� and members whose energy

decreases with the distance� In context of energy considerations it is often useful to work

with the notion of tensegrity framework 	Roth� Whiteley 	����
� Connelly� Whiteley

	����

�

In a tensegrity framework all edges are partitioned into three types� cables E�� struts

E�� and bars E�� i�e� E � E� � E� � E�� Together� struts� cables� and bars are called

members� If a cable is stretched� the energy in the cable increases� if a strut is shortened�

the energy in it increases too� Any change in the length of a bar forces the energy to

increase� Therefore� networks of Hooke springs are bar tensegrities from a mathematical

point of view�

Let G	E�� E�� E��V� V��p
 be some tensegrity framework in R
d � The energy Hij of

member 	ij
 considered as the function of its squared length l�ij

� is monotone increasing if 	ij
 is a cable�

� is monotone decreasing if 	ij
 is a strut�

� has a strict local minimum at l�ij called the equilibrium length of 	ij
� if 	ij
 is a

bar�

It is natural to de�ne the energy function H of a �nite tensegrity framework 	�nite

network of Hooke springs
 as the sum of the energy functions of its members� Thus�

H �
�

�

X
�ij��E

Hij	jvj � vij�
 � �

�

X
�ij��E

Hij	l
�
ij
�	�


When all members are bars the simplest way to de�ne the energy function is as follows

H �
�

�

X
�ij��E

aij	lij � l�ij

��	�


where the sum is over all ordered pairs of vertices of the framework� lij is the length of

the bond between i and j� l�ij is the equilibrium bond length� and aij � � is the spring

constant of the bond between vertices vi and vj� Here Hij	x
 � x � 	l�ij

� � �

p
xl�ij�

In the spirit of the de�nition of equilibrium stress we assume that a strut can support

only compression� a cable can support only tension� and a bar can be under either type

of stress� depending on whether its length is larger or smaller than l�ij� For more detailed

information on tensegrities see the works of Roth and Whiteley 	����
� Connelly and

Whiteley 	����
� and Connelly 	����
�

��



De�nition ��� A �nite tensegrity framework G	V�E� V��p
 in R
d with pinned vertices

V� � V is called prestress stable if

�
� The �rst derivatives of Hij	x
 evaluated at x � jvi�vj j � constitute an equilibrium

stress on G�

��� the second di�erential of H	jvi � vj
 j �
�regarded as the function of the coor�

diantes of point p � R
djV j�is a positive semide�nite quadratic form whose kernel re�

stricted to in�nitesimal motions leaving V� unmoved consists of trivial in�nitesimal mo�

tions of the framework�

As in the case of rigidity this de�nition can be applied to in�nite frameworks with

only �nitely many free vertices
and we use this in the following de�nition�

De�nition ���
 An in�nite framework G	E� V �p
 in Rd is called prestress stable if for

any �nite subset V � of V there is an interpretation of the edges with at least one vertex in

V � as either cables or struts such that the tensegrity framework obtained from G	E� V �p


by pinning all of the vertices in V nV � is prestress stable in R
d �

The concept of prestress stability comes from engineering and� basically� accounts

for local minima of the energy function� This concept is de�ned in Connelly 	����


and Connelly and Whiteley 	����� ����
� If Hij are twice continuously di�erentiable�

a prestress stable framework realizes a local minimum of the global energy function H

	Connelly� Whiteley 	����

� Note that if Hij are de�ned by formula �� they are twice

continuously di�erentiable on 	���
�

��� Tension

The existence of a tension 	a positive equilibrium stress
 on a framework in the plane

implies some important rigidity properties for this framework considered living in the

three�space� This may have some interesting consequences for modeling physical proper�

ties of materials with networks of Hooke springs and geometry of convex surfaces� The

rigidity properties of in�nite graphs 	lattices
 drew the attention of physicists since thr

early ���s� It turns out that real glasses are well represented by random central�force

networks of Hooke springs 	Thorpe 	����

� The sucsess of these methods resulted in

��



good characterization of elastic properties of glasses like GexAsySe��y 	Thorpe 	����

�

In their experiments the variation of the parameters x and y is directly linked to vari�

ation of the probability of edge removal in the independent rigidity percolation model

on the triangular lattice� The rigidity analysis of random networks has also been used

for modeling physical properties of proteins� polymers and semiconductors 	Thorpe and

Duxbury 	����

�

Let G be an in�nite framework rigid in R� � The example discussed in Secion � clearly

demonstrates that G need not be rigid in R
� � The pictures produced by Jacobs and

Thorpe�s program 	����� ����
 also give examples of R� �rigid� but not R� �rigid random

graphs� Meanwhile� the spider web property implies the pseudorigidity in R
d for any

d � ��

Proposition ���� Let G	E� V� V��p
 be a �possibly in�nite� spider web in R
� with pinned

vertices V� � V � Then


� G	E� V� V��p
 is globally pseudorigid in R
d�d � ���

�� G	E� V� V��p
 is prestress stable in R
d�d � ���

The �rst part can be derived from Connelly 	����
� where it is proved for �nite

frameworks 	see also Connelly 	����
 and Connelly� Whiteley 	����

� This proof di�

rectly applies to in�nite frameworks� since the pseudorigidity has been de�ned via �nite

subgraphs of G� The second part is non�trivial� the proof will appear elsewhere 	men�

tioned in Connelly ����
�

� Poisson Model

��� Tension in a membrane

Let M be a tensed membrane 	�lm
 clamped on its boundary� A small convex hole made

in the membrane results in the redistribution of tension in the rest of the membrane�

Clearly� if we have a non�convex hole 	which can also be interpreted as the union of a

number of convex overlapping holes
 tension ought to vanish on the convex hull of this

set 	see Fig� 	
�

��



Figure �� Two overlapping holes� tension must disappear on the convex hull of them

Figure �� Three non�overlapping holes� tension must disappear on the convex hull of
them

��



Figure �� A triangulation

It is� however� less intuitive that tension may vanish at some subset of the complement

of a collection of convex non�overlapping holes� For example� the convex hull of three holes

shown on Fig� 
 cannot support tension� this can even be veri�ed with a sheet of some

elastic material and scissors� Therefore� if the area where tension vanishes is interpreted

as defective� all three polygons on Fig� 
 ought to coalesce into one big defect� A

mathematical explanation of this coalescence e�ect of a �pinwheel con�guration� is given

in Menshikov et al� 	����
� Roughly speaking� the non�existence of tension on the convex

hull of the three holes is due to the visible �swirl� in the area where the triangles �almost�

meet�

By a 	convex
 tiling of a closed planar set with piecewise�linear or no boundary we

mean a locally �nite partition of this set into subsets of three types� open convex polygons

called ��cells� open segments called edges or ��cells� and points called vertices or ��cells�

The ��skeleton of a tiling is a framework whose vertex set is the vertex set of the tiling�

and whose edge set is the tiling�s edge set� A triangular tiling where any two triangles

whose closures intersect can only make contact either at a common vertex or at a full

common edge is called a triangulation 	see Fig� �


De�nition ��� Let M be a set with a polygonal or no boundary in R
� �M might be all

of R��� and let H be a collection of open polygons in M � such that the number of polygons

intersecting any compact subset of R� is �nite� We call the elements of H holes and

denote by H the pointwise union of the holes�

De�nition ��� In the context of the above de�nition we say that MnH supports tension

��



if MnH admits a partition with the edge set E and vertex set V such that the framework

	E� V� V � �M
 is a spider web� Let S be a closed subset of MnH� We say that tension

is lost on S if there is no closed subset A of MnH such that A supports tension and

contains S�

Evidently� in this de�nition a general convex tiling can be replaced by a triangulation

without any loss of generality� A direct generalization of this de�nition to the case

of general dimension is possible� but not quite natural� since not all spider webs in

dimensions higher than � can be interpreted as ��skeletons of polyhedral tilings 	see

Connelly and Whiteley 	����

� In the planar case the situation is simpli�ed by the

fact that any spider web with self�intersections can be turned into the ��skeleton of a

polygonal tiling by adding points of self�intersections to the vertex set of the framework�

and modifying the edge set accordingly� the cone of positive stresses of the ��skeleton

of the new partition contains the cone of positive stresses of the original skeleton� A

more natural de�nition for the general dimension would be one in which we require the

existence of a three�dimensional spider web in the complement of the holes such that

each vertex of each hole is incident to at least one edge of the web�

Let us now make some observations about holes� First� if a hole is non�convex�

then there is no triangulation of the complement such that its ��skeleton 	vertices on the

boundary ofM are pinned� indeed
 supports a non�zero equilibrium tension� For instance�

the equilibrium of forces at vertex v in Fig� � is impossible� if all edges incident to this

vertex are under tension� Therefore� if two holes overlap� and their union is not convex�

such as in Fig� 	� tension vanishes on all of their convex hull� Intuitevely� the vanishing

of tension is rather obvious
the pieces ABC and EFG are ��oppy� in the space� This

is called the coalescence e�ect of overlapping holes� We summarize this observation in

the following proposition�

Proposition ��� Let H be a an open polygonal subset of R� � If R�nH supports tension�

all connected components of H are convex polygons�

Notice� that the above proposition is not valid for dimensions greater than two� Obvi�

ously� a saddle point of a ��dimensional hole can serve as a vertex of a spider web realized
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Figure �� Non�convex hole

in the complement of the hole� Nevertheless� by Proposition ��� a set supporting tension

in Rd cannot have points of strict convexity�

Proposition ��� �Menshikov et al� �
����� Let M be a convex subset of R� with a

polygonal or no boundary �M might be all of R��� For a �nite set of polygonal holes

H there is a supporting tension subset Smax of MnH such that any subset of MnH
supporting tension is contained in Smax�

Thus� when the number of holes is �nite� MnH can be partitioned into two polygonal

subsets� the unique maximal 	with respect to inclusion
 subset supporting tension and

its complement where tension vanishes� The case of in�nite system of holes is more

complicated� Even under additional restrictions on the system of holes� for example� if

the vertices of the holes form a discrete point system where the distance between every

two point is no less than some r� and there is no empty circle of radius greater than some

R� or� that the sizes of the holes are uniformly bounded both from above and below� it is

not obvious that the union of all subsets of holes supporting tension can be represented

as the complement of a discrete set of non�overlapping polygons�

Conjecture ��� Let H be an in�nite discrete system of polygons in R� � Then the union

of all subsets of R�nH supporting tension can be represented as the complement of a

discrete set of edge�disjoint convex polygons�

Let us summarize the implications of the existence of tension in the complement of

��



the holes� They directly follow from 	non�trivial
 Theorem ���� the �rst part of which

can be derived from the results of Connelly 	����
 and Connelly� Whiteley 	����
�

Proposition ��	 Let H be a discrete collection of convex open polygons in R
� possibly

overlapping� If Mn	H � �M
 supports tension� then the 
�skeleton of any triangulation

of R�nH is globally pseudorigid and prestress stable in R
� �

There are also interesting connections between our model and convex geometry that�

in its original form� are due to Maxwell 	����� ���������
 and Cremona 	����
� they are

outlined in Menshikov et al� 	����
�

��� Bootstrap Percolation of Convex Defects

Menshikov et al� 	����
 assume that holes are associated with the nodes of a Poisson

point process on R
� � They show that if the �centers� of the holes are distributed in R

�

according to a Poisson law and their shapes are i�i�d�� tension disappears on all of R� a�s�

In fact� this result follows from a more general theorem of the authors on the behavior of

iterated convex hulls of connected subsets of Rd � where the initial con�guration of subsets

is distributed according to a Poisson law� and the shapes of the elements of the original

con�guration are independent of this Poisson distribution� For the latter problem they

establish the existence of a critical threshold in terms of the number of iterated convex

hull operations required for covering all of Rd � Below we give a short account of their

results�

De�nition ��
 A hole �G�hole� centered at p � R
d is a region

H	p� f
 � fp� f	
x

jjxjj
x
�� jjxjj 	 �g

where G is a continuous positive function de�ned on a unit 	d� �
�sphere�

Therefore� each hole is a continuous function on a unit circle� Consider a d�dimensional

Poisson point process with rate �� Let Y � Y 	�
 be the collection of nodes of some re�

alization � of the process� Each node y � Y 	�
 is the center of a hole H	y� fy
� where

function Gy is positive and continuous� Let 	 be a probability measure on some subset
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of positive continuous functions on the unit 	d� �
�sphere� Suppose that for each y the

function Gy is chosen from a distribution 	 independently of the other functions and the

con�guration �� Therefore� the holes H	y� fy
 are i�i�d��

De�nition ��� Let H be a set of holes� Elements of H are called defects of �th genera�

tion�

De�nition ��� A connectivity component �understood topologically� of defects of the kth

generation is referred to as a k�cluster�

De�nition ���
 A defect of the 	k � �
th generation is the convex hull of a k�cluster�

Lemma ���� �Menshikov et al� �
����� Let our membraneM be all of R� � Then tension

vanishes on a defect of any generation�

The following theorem from Menshikov at al�� ���� is the main result for the inde�

pendent Poisson model of tension percolation�

Theorem ���� For any distribution 	 and any � � � there exists a non�random non�

negative integer N � N		� �
 such that N�cluster coincides with Rda�s�

In this paper we establish a similar result for tension percolation on a triangular

lattice� There are strong parallels between the continuous and the lattice models� The

probability � � p of independent edge deletion plays the role of the Poisson density ��

The number of applications of local rules 	see Theorem ���
 required to eliminate all the

in�nite connected components in the triangular lattice Tp is� in a way� similar to the

number N � N		� �
 from the above theorem� M	p
 and N � N		� �
 are both referred

to as the destruction time�

� Triangular Lattice Models

We consider a regular or slightly perturbed triangular lattice T on the plane where each

edge is removed independently with probability � � p� p � �� Is there a critical value

pc 
 �� such that for p � pc there is an in�nite spider web subgraph a�s�� We show that
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Figure ��� Local removal rules

for any p 
 � there no spider web subgraph a�s� Thus� no non�trivial pc exists� Our

percolation model is related to so�called �bootstrap percolation� introduced on trees by

Chalupa� Leath� and Reich 	����
 and� later� on d�dimensional lattices by Kogut and

Leath 	����
� In these models� points are independently occupied with a low density

and the resulting con�guration is taken as the initial state for dynamics based on some

collection of local rules� in which the occupation status of a point is updated according

to the con�guration of its neighbors� Van Enter 	����
 conducted a rigorous analysis

of theses models 	see also Aizenman and Lebowitz 	����

� For a review of bootstrap

percolation models see Adler 	����
� For the latest results on bootstrap percolation see

Dehghanpour and Schonmann 	����
�

Consider the a�ne plane R� and two vectors 
e� and 
e� with coordinates 	�� �
 and

	
p
�
�
� �
�

 respectfully � Also� set 
e� � 
e� � 
e�� The regular triangular lattice T is a

framework whose vertex set is the collection of all points with coordinates V 	T
 � fi
e��
j
e�� 	i� j
 � Z

�g� and whose edge set E	T
 consists of all edges between vertices a�b �
V 	T
 such that a � b � 
ek or a � b � �
ek for k � �� � or �� Let us denote an edge

between a and b by 	a�b
�

Suppose some edge have been removed from T� Denote the resulting lattice by T�� By

Proposition ��� edges in con�gurations congruent to those depicted in Figure �� cannot

support tension� We call con�gurations in Figure �� ��� ��� ��� and � �con�gurations

respectfully� and refer to any such con�guration as relaxed� By Proposition ��� edge

	va
 and edges 	wa
 and 	wb
 in Figure �� cannot support tension� We call such edges

legs in �� and ��con�gurations� We refer to �� and ��con�gurations as partially relaxed�

Therefore� if T� contains a spider web as a subgraph� this spider web does not have edges
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Figure ��� Local partial removal rules

in con�guration depicted in Figure �� and edges that are legs in �� or ��con�gurations�

Assume we have an in�nite parallel Turing machine that can operate on the stars

of the vertices of an in�nite 	but locally �nite
 grid� the machine works on all stars

similtaneously� Once the machine sees a star where edges form one of the con�gurations

congruent to those depicted in Figure �� or Figure �� 	�� �� �� �� �� �
� it removes all the

edges that cannot support tension� The machine proceeds for as long as there are edges

that can be removed using the local rules given by Figure �� and Figure ���

In Section � we show that if the initial lattice Tp was obtained from T as the result

of the independent edge removal with probability � � p� the parallel machine operating

on the grid requires only a �nite number of steps to turn Tp into a graph with no in�nite

connected components�

Our main result is

Theorem ��� For any p 
 � the lattice Tp obtained from the regular or perturbed tri�

angular lattice T as the result of the independent edge removal with probability �� p � �

cannot support tension almost surely�

However� �rst we want to prove

Lemma ��� With a positive probability Tp cannot support tension�

Proof of the Lemma� By Proposition ��� an edge incident to a vertex whose star is

congruent to one of the stars depicted in Figure �� cannot support tension� Therefore�

the lattice Tp can support tension if and only if the lattice Tp	�
 obtained from Tp by

removing all edges in such relaxed con�gurations can support tension� We call these edges

implicitly removed� as opposed to initially removed edges� that is� E	TnTp
� Similarly� we
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construct the lattice Tp	�
 by removing all edges from Tp	�
 in con�gurations congruent

to the ones in Figure ��� In the same manner we de�ne lattices Tp	�
� Tp	�
� � � � � etc�

Notice� that if Tp	n � �
 
 Tp	n
 for some n� then Tp	n � k
 
 Tp	n
 for any positive

integer k�

Let k be a positive integer and H	k
 be a regular hexagon centered at the origin

with a side of length k� i�e�� the hexagon with the vertices k
e�� k
e�� k
e�� 	�k

e�� 	�k

e�
and 	�k

e�� Let F 	k
 denote the event �all interior edges of H	k
 have been� possibly

implicitly� removed from Tp	k
 for some k�� It is obvious from geometric observations

that for any k� 
 k

P

�
F 	k � �
 j

k�
i�k�

F 	i


�
� P	F 	k � �
 jF 	k

�	�


Let us show that

P

� ��
i�k���

F 	i
 jF 	k�


�
�

�Y
k�k�

P 	F 	k � �
 jF 	k

�

Indeed� for k � k�

P

�
k�

i�k���

F 	i
 jF 	k�


�
�
P

�
F 	k
 j Tk��

i�k�
F 	i


�
P

�Tk��
i�k�

F 	i

�

P	F 	k�



� P	F 	k
 jF 	k� �

P

�
k���

i�k���

F 	i
 jF 	k�


�
� � � � �

kY
i�k�

P	F 	i� �
 jF 	i



Letting k �� proves 	�
�

We are about to show that for large k the probability of the event G	k � �
 j G	k
 is

greater than �� �k� for some sequence f�kg� such that
P�

k�k�
�k 
�� This would yield

P

� ��
i�k���

F 	i
 jF 	k�


�
�

�Y
k�k�

	�� �k
 � ��

which� in turn� would prove the Lemma� since P 	F 	k�

 � � for any �xed k� and positive

p�

Indeed� the probability that on each of the six sides of H	k
 at least one edge has

been initially removed is

�
�� 	�� p
k

		
�
�
�� e��k

		
� �� �e��k

��



where � � � log	�� p
 � �� Now� pick k� so large that �� �e��k is positive as soon as

k � k�� Set �k � e��k� Then
P

�k is� indeed� �nite� Meanwhile� as one can conclude

upon studying Fig� ��� whenever there are no edges inside H	k
� and at least one edge is

Figure ��� Typical propagation of a regular hexagon� Solid lines are remaining edges�
dotted lines are removed ones� Dark circles are vertices of H	k
� and grey circles are
vertices of H	k � �


removed on each side of it� an incremental application of the removal rules will eventually�

	in a number of steps not exceeding k
� delete all edges inside H	k��
� Therefore� with a

positive probability the event F 	k
 implies that all the edges of our lattice are eventually

removed� �

Notice that in our model an empty hexagon propagating to in�nity plays the role

of a �critical droplet�� sometimes called �Straley void�� Before returning to our main

theorem we would like to make a few important observations� Below� we will refer to the

process described in the above proof as �hexagon propagation�� We will make use of the

following de�nition�

De�nition ��� We say that the sequence of planar lattices L	n
 eventually disappears

and write L	n
 � �� if for any �xed bounded subset A of the plane there exists N � �

such that L	n

T
A � � for all n � N �

Therefore� the above Lemma immediately implies

Corollary ��� With a positive probability� Tp	n
 � �� Moreover� conditioned on the

event Rk ��all edges are initially removed in H	k
��

P	Tp	n
� � jRk
� �

��



as k ���

We would like to make another observation about the proof of Lemma ���� Suppose

the interior of H	k
 is empty� Evidently� to remove all edges from H	k � �
 using local

removal rules described above we need that at least one edge is absent 	initially removed


on each side of H	k
� Suppose we are not allowed to look for such initially removed edges

in the planar cones 	angles
 de�ned by inequalities j�j 	 ��o and j�����oj 	 ��o� in the

polar coordinate system 	�� �
 	see Fig� ��
� It is not hard to check that the arguments

Figure ��� Hexagon propagation avoiding two angles

of the proof of Lemma ��� can be carried through virtually unchanged� Thus we have

Corollary ��� Independently of the initial con�guration inside the above mentioned

cones

P	Tp	n
� � jR	k

� �

as k ���

Let us return to our main statement�

Proof of Theorem ��
� Fix � � �� By Corollary ��� there is N such that if each

edge in H	N
 has been removed� the probability that Tp	n
� � is greater than �� ����

regardless of the con�guration inside the two cones� Let q � q	N
 be the probability

that all edges inside H	N
 have been initially removed� Obviously� q � � for any positive

p� There is a positive integer M such that

�� 	�� q
M � �� ����

��



Figure ��� M hexagons� with probability �� ��� all edges are removed in at least one of
them

Consider M non�overlapping hexagons Hi	N
� i � �� � � � �M � � of size N along the

horizontal axis with the centers at 
� N
e�� �N
e�� � � � � 	M � �
N
e� 	see Fig� ��
� Notice�

that each of the hexagons lies fully inside 
��o angles for all the others� therefore� due to
the symmetry and space homogeneity� there is N � � such that each Hi	N
 propagates

to in�nity in the way described in the proof of Lemma ��� 	with an angular restriction of

Corollary ���
 with probability at least �� ��� independently of the initial con�guration

inside the others� Thus� the probability that inside of at least one of the M hexagons all

the edges have been initially removed� and it will propagate to in�nity is greater than

	�� ���
� � �� ��

Now� recall the de�nition of tension� A framework supports tension if there is a subgraph

of this framework that can bear an equilibrium tension� The local rules cull only those

edges that cannot support tension� The arguments above show that eventually all edges

are bound to be removed with probability at least � � �� Since � � � is arbitrary�

Theorem ��� holds� �

Studies of rigidity percolation 	Jacobs et� al� 	��������������
� Holroyd ����
 show

that the behavior of a regular triangular lattice may di�er from the behavior of a generic

triangular lattice� A generic lattice in a strong sense is a realization of a graph in Rd where

the dimension of the space of stresses of any �nite subgraph of the lattice is minimal�

All theorems and lemmas in this section hold not only for a regular triangular lattice

T� but also for any generic triangular lattice obtained from T by a su�ciently small

perturbation� for we essentially need only three removal rules� the ��rule� the ��rule� the
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��rule� and the ��rule� which are �robust� to such perturbations� 	see Lemma ��� and

Figure ��
� Of course� our tension percolation problem for a perturbed triangular lattice

makes sense only if there are perturbations of the regular lattice preserving the property

of the lattice to support an equilibrium tension� It follows from the results of Baranyi

and Dolbilin 	����
 or Connelly 	����
 on the uniform stability of sphere packings that

there is � � � such that any ��perturbation of the regular triangular lattice supports an

equilibrium tension 	see also Bezdek� Bezdek and Connelly 	����

�

We suspect that all our results hold for a larger class of generic triangular lattices�

although our method cannot be applied staightforwardly to the case of an arbitrary

generic triangular lattice� because a perturbation can turn a relaxed con�guration into a

non�relaxed con�guration 	see Fig� �
�

A general tension percolation problem can be stated as follows� Let G be an in�nite

framework in Rd with discrete vertex set� Remove each edge with probability �� p inde�

pendently of the other edges� and denote the resulting graph by Gp� What is the in�num

of p�s such that Gp supports tension a�s�� We call this number the critical probability of

tension percolation� We have a general conjecture about tension percolation on planar

graphs� To formulate this conjecture we need to introduce the notion of directional spec�

trum of a framework� By the direction of a line on the plane we understand the angle

this line forms with� say� the horisontal axis� If G is a framework on the plane� the set of

directions de�ned by the edges of G is called the directional spectrum of G� The edge set

of a framework G is said to have the 	l� L
 property if the edge lengths of G are bounded

from below by some l � � and from above by some L � ��

Conjecture ��	 Let G � 	E� V� V�
 be an in�nite framework on the plane realized with�

out self�intersections� Suppose the directional spectrum of G is �nite� and E has the 	l� L


property� Then the critical probability of tension percolation is 
�

The notion of an 	r� R
 point set is widely used in discrete geometry and mathematical

crystallography� A point set V is called an 	r� R
�system� or a Delaunay system� if

�
 for any point v � V the ball of radius r centered at v does not contain any other

vertices of V � and

��



�
 any ball of radius R contains at least one point of V �

Notice� that for a graph with a �nite directional spectrum the 	l� L
�property of the edge

set is equivalent to the 	r� R
�property of the vertex set�

� Finite Time of Relaxation

Assume that it takes one unit of time for an in�nite parallel Turing machine to remove all

the con�gurations of edges congruent to those depicted in Figure ��� Thus� the lattice Tp

is transformed to Tp	n
 by time n� Let us call this process the relaxation of tension on Tp�

and say that tension has been completely lost if there is no in�nite connected component

of non�removed edges on the lattice� We shall show that the complete relaxation of

tension occurs in a �nite time a�s� We shall also show that there is a non�random time

N � � such that Tp	N
 has no in�nite connected components a�s�� but Tp	N � �
 has

an in�nite component a�s� 	by convention� we let Tp	�
 � T� the triangular lattice we all

edges
�

Lemma ��� The event T 	p�N
 ���Tp	n
 has an in�nite connected subgraph� is a tail

event�

Proof� We need to show that this event does not depend on the state of any �nite subset

of T� Let T� and T� be two subgraphs of our triangular lattice T such that T� can

be obtained from T� by adding and or removing only a �nite number of edges� Let E

be those edges of T� that are absent in T�� Denote by T�	n
 and T�	n
 the results of

n iterated applications of the local rules to T� and T�� Suppose T�	n
 has an in�nite

connected component C� If T�	n
 has no in�nite connected component� T�	n
 di�ers

from T�	n
 at in�nitely many places� An edge e of C can be absent from T�	n
� only

if there is an edge path on T of length no greater than n connecting a vertex of e to

one of the vertices of E� Thus� only those edges of C can be missing from T� that lie

at distance no greater than n from the vertex set of E� The number of such edges is

�nite� Therefore T� contains an in�nite connected component of C which is� in turn� is

an in�nite connected subgraph of T� �

��



Theorem ��� There is a non�random number Ncr such that Tp	Ncr
 is a union of �nite

disjoint graphs a�s�� but Tp	Ncr��
 has an in�nite connected component a�s� �and Tp	�
 

T as before��

Proof� From the above lemma and Kolmogorov�s � � � law it follows that P	T 	p� n



is either zero or one� Moreover� this probability is non�increasing as n grows� and

P	T 	p� �

 � �� Therefore� either there is Ncr such that P	T 	p�Ncr � �

 � � and

P	T 	p�Ncr

 � �� or P	T 	p� n

 � � for all n� To rule out the second possibility� it su��

cies to show that there is positive integer N such that Tp	N
 has no in�nite connected

component a�s�

The idea of the proof is based on Theorem ���� Let N and M are the same as in the

proof of Theorem ���� Pick � 
 �
��

and N and M corresponding to this �� Consider a

partition of the plane into the boxes with the side length S � ��	M � �
N � 	�
p
� �

�
	M��
N � Assume one of the boxes � call it B� � is centered at 
� In this box consider

hexagons with the side N centered at 
� N
e�� �N
e�� � � � � 	M � �
N
e��

We call box B� open if 	�
 one of these hexagons has all the edges removed� 	�
 using

the procedure of implied edge removal as described by Lemma ��� and avoiding 
��o

cones� it will grow till its upper and lower sides coincide with those of the box B� and

	�
 one of the edges on its upper side with the X�coordinate between � and 	M � �
N

has been initially removed 	see Fig� �� and ��
�

Figure ��� Hexagon propagation inside a box

Following the line of arguments in Theorem ���� we can conclude that the probability

that B� is open can be made greater than ��� 	however� we might need to have N quite

large
� The same is true about the other boxes of the tiling fB�� i
e�� j� 
	�� 

� 	i� j
 �

��



Z
�g� Moreover� both vertical and horizontal neighbors are open independently� since

they �look for� di�erent initially removed edges 	this is because we ignore the interior of

the cones described between Corollaries ��� and ���
� Therefore� all the boxes are open

independently of each other� Besides� if two neighboring 	at a side
 boxes are open� their

inside areas where edges are removed are connected�

Now� let us couple the boxes with the vertices in the site percolation model on Z
�

where each site is open with probability ��� and closed otherwise� There is a unique

open cluster of open sites and no in�nite cluster of closed sites 	e�g� see Aizenman et

al� 	����
 or Grimmett 	����

� Therefore� each cluster of closed sites is surrounded

by a �nite contour of open site� Geometrically� for our triangular lattice� it implies that

each connected component of non�removed edges is surrounded by a contour of removed

ones� and therefore each such component is �nite� Thus� after N 	or even less
 iterations

Tp	N
 has no in�nite connected component a�s� �

� Tension on Finite Subgraphs

of a Triangular Lattice

While discussing tension on �nite graphs� we assume that some of the vertices are pinned�

For example� if a �nite graph can be regarded as the ��skeleton of a tiling of a convex

polygon 	e�g like in Figures � and �
� we normally assume that all the boundary vertices

of the polygon are pinned� There are a few reasons to study tension percolation on �nite

subgraphs of a regular in�nite graph� First� a �nite spider web has desirable properties

	see Section ���
� Second� it is reasonable to suggest that in some cases a very large �nite

piece of a triangular lattice decribes the behavior of a physical system better than an

in�nite triangular lattice� Third� to study tension percolation on ��dimensional lattices

it is important to understand quantitatively the e�ect of edge removal on the ability

of a �nite subset of a ��lattice to support tension� While the method developed in the

previous sections explains how a triangular lattice loses the ability to support tension as

a result of any non�neglectable edge removal� it barely helps to estimate the probability

of the existence of tension on a subset of a triangular lattice where each edge has been

��



removed with probability �� p as a function of the size of the subset�

Let us denote by Hn a hexagonal chunk of a regular triangular lattice with each side

of length n� We de�ne the distribution function Fn	p
 	where � 	 p 	 �� pn � Z


as the ratio of the number of supporting tension subgraphs of Hnn�Hn on pn edges

	with �Hn pinned
 and the total number of subgraphs of Hnn�Hn on pn edges� Fn	p


can be� indeed� interpreted as the probability that after the independent deletion of pn

edges Hn still supports tension 	with the boundary pinned
� Obviously� for each n it is a

decreasing function of p� Numerical experiments also show that for each p Fn	p
 decreases

as n��� For large n function Fn	p
 should look like a non�decreasing function of p with

one in�exion point� although it is very hard to formally prove that Fn	p
 converges to

such a function� It is known that for the connectivity and rigidity percolation problems

the analogous distribution function has such a shape� In connectivity percolation it

is the proportion of the subgraphs on pn edges having a component connecting two

opposite sides of a rectangle 	hexagon
 of size n� In the case of rigidity percolation it

is the proportion of the subgraphs on pn edges having a rigid component connecting

two opposite sides of a rectangle 	hexagon
of size n� Jacobs� Thorpe� and Duxbury�s

simulation results suggest that in the case of rigidity percolation the distribution function

converges to an increasing function with one in�exion point� We believe that the limiting

behavior of Fn	p
� as n��� is described by the distribution function for the probability

model described in Section �� Let P	p
 be the probability that Tp supports tension�

or in other words� that it has a subgraph which is a spider web� We conjecture that

Fn	p
� P	p
� as n���

Before having proved that the critical probability for the ��dimensional problem is

one� we had conducted numerical experiments for the hexagonal fragments of the regular

triangular lattice of sizes n � ������ The purpose of the experiments was not only

to see the behavior of the value of the critical threshold� but also to produce pictures

for subsequent visual analysis� We also compared two algorithms �nding the maximum

spider web in a graph� One of these algorithms is an integer LP algorithm which solves an

optimization problem for the stress matrix of the graph� The other one is a combinatorial

approximation algorithm that removes edges from the graph according to the local rules

��



	see above
� When it cannot �nd a removable con�guration of edges it declares the

remaining subgraph a �spider web�� which may not be true� The advantage of this

algorithm is its linear running time�

The threshold value of p was estimated through Monte�Carlo trials of the following

kind� Remove independently a fraction of edges� and check if the remaining subgraph

T
� supports tension� If not� then remove a smaller fraction of edges and start from the

beginning� Otherwise remove an edge at random from T
�� and check if the resulting graph

still has a spider web subgraph� do it until it does not have a spider web component� The

concentration of the remaining edges is the threshold value of the conducted trial� For

each concentration the average of the threshold values of di�erent trials 	we used ������

trials
 was taken as its threshold value� In fact� we veri�ed the existence of a spider

web subgraph only for small values of n� For larger sizes 	� ��
 we con�ned ourself to

applications of local rules 	see above
� Therefore� we got the estimates of the threshold

value from below� however� for sizes ����� we did not encounter any situations were local

rules were not able to establish the absence of a spider web subgraph�

The exact algorithm needs an integer linear programming 	LP
 routine over integers�

since the matrix of stresses for a piece of a regular triangular grid has only �� �� and

� entries� most of which are �� Of course� at the implementation stage it is possible to

replace an integer LP feasibility routine by a �oating number LP routine� but it did not

work well for LP implementations that we used�

Physicists are convinced that in connectivity and rigidity percolation the value of the

critical threshold for a �nite system 	which is de�ned di�erently for di�erent problems


approximately follows the power law� namely Y 	n
 � Pc � A	 �
n

B� here n is the linear

size of the system� Y 	n
 is the value of the critical threshold for a piece of linear size

n 	we used a regular hexagonal piece � Hn in our notation
� Pc is the value of critical

probability for the in�nite lattice� and A� B are positive constants 	see Stau�er 	����
�

Jacobs 	����

� However� if the crytical probability is �� Y 	n
 is more likely to behave

as Pc � C

lnN
� C � � 	see Aizenman� Lebowitz 	����

� or as Pc � C

ln lnN
� C � � 	see

Cirillo�Cerf 	����

� Below we give the estimates of C in cases the �nite�size correction

follows the inverse logarithmic and inverse double logarithmic law respectfully� 	Pc � �

��



by Theorem ���
�

V alue Std�Error Res�Std�Error
C ������ ������ �������

Table �� Parameters of the model Y � �� C

lnN

V alue Std�Error Res�Std�Error
C ������ ������ �������

Table �� Parameters of the model Y � �� C
ln lnN

��� ��Dimensional Lattices

Let us sketch the connections between tension percolation on a ��dimensional triangular

lattice and spider web properties of �nite subgraphs of a ��dimensional triangular lattice�

To introduce a three�dimensional analog of T we need to enlist the notion of point lattice�

Recall� that a point lattice is the set of all points in the a�ne space Rd that can be

represented as integer linear combinations of the vectors of a �xed coordinate frame� A

face�centered cubic lattice of points
fcc lattice
is constructed by adding the centers

of all the facets of a tiling by cubes to the set of vertices of this tiling� lattice Z�� This

lattice is a natural ��dimensional generalization of the hexagonal point lattice 	the vertex

set of what is known in percolation theory as the regular triangular lattice
� since it is

generated by the edge set of a regular ��simplex� Denote by T� the graph whose vertex

set is the fcc lattice� and whose edge set consists of all unordered pairs of vertices 	a�b


such that a� b is the shortest vector of our fcc lattice� Remove each edge independently

with probability �� p and denote the resulting lattice by T�
p� For what values of p does

the modi�ed lattice support tension with a positive probability� Suppose we want to

approach this problem in the same way we approached the ��dimensional problem� Here�

instead of a propagating hexagon we have a propagating ��polytope 	see Lemma ���
�

Notice� that regular triangular and square lattice are the only types of ��sublattices of T��

We call a polytope a lattice polytope if all its faces lie on periodic subgraphs of T�� note�

that our de�nition of a lattice polytope di�ers from the standard de�nition of a lattice

polytope used in the theory of lattice points� Thus� the facets of a lattice ��polytope can

��



be of only two sorts� lying on a square sublattice and lying on a triangular sublattice�

The geometry of a facet as well as the geometry of a lattice polytope is not important�

since there are only a �nite number of lattice polytopes in T
� up to homothety� From

this remark it becomes clear that� in principal� tension percolation on T
� is no di�erent

from tension percolation on any periodic graph in R
� with triangular planar subgraphs�

Now� let us compare the hexagon propagation and the polytope propagation� If a side of

the propagating hexagon misses an edge� an entire side has to go� however� one missing

edge on a facet of a triangular type is not enough to conclude that the rest 	with �xed

boundary
 is not able to bear tension� Let n be the length of the longest edge of a

facet of T�� Denote by Pp	n
 the probability that after the independent edge removal

from a facet of size n with probability �� p the resulting graph with �xed boundary can

support tension in internal edges� If
P

n Pp	n
 converges� the arguments of Lemma ���

and Theorem ��� work� and T�
p� p 
 � cannot support tension a�s�

If for T� the critical concentration approches the critical probability according to

the inverse logarithmic law 	see above
� the power series
P

n Pp	n
 introduced above

diverges� and Lemma ��� will not work for T�� In other words� in this case T� does not

have the property that once the tear starts 	see Lemma ���
� it propagates to in�nity

with a positive probability� Of course� even if Lemma ��� does not work in dimension ��

the critical probability of tension percolation for T� may well be �� Our considerations

here are somewhat related to Schonmann�s work 	����
� We end up with the following

problem�

Problem ��� Is it true that the critical probability of tension percolation for T� is less

than 
�

We tend to think that the answer to the above problem is yes�
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