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Preface

In 2005, I worked with analysts at Disaster Management Center, National Remote Sens-
ing Center (NRSC) in Hyderabad. This was an exciting opportunity and a big motivation
to pursue this research work. Analysts had to handle large volumes of remote sensing
and attribute data for assessing and managing disasters such as floods, draught, cyclones
and earth quakes. One of the major problems they faced is the management of the anal-
yses results and provenance. To achieve a solution for the above mentioned, I wanted
to bank on Geo-informatics to design and develop few geovisualization tools to support
their analysis. During this collaboration, analysts expressed interest to capture visualiza-
tion views along with notes that can ease their report writing process. I developed a report
organization tool called ‘Vritrahan’ to support this reporting process. This tool, however,
captured only screenshots of the visualization views (similar to Microsoft OneNote) and
did not capture the provenance information. During this collaboration, it occurred to me
how most of the analysis tools only support the process of converting data to useful in-
formation, and stop right after there. Analysts faced a hectic task of managing the inputs
and results of different iterations of an analysis.

In 2006, I came across the NWO ‘Expression of Interest’ project proposal through the
Academic Transfer website. The proposal had a section on supporting user navigation
in interactive visualizations. It aimed at managing user interest on data items during an
exploration process by intuitively capturing and presenting user interest, on data items. I
felt that there was a match between the problem recorded earlier while interacting with
analysts and the problem described in the proposal. So, I was stimulated to apply for this
PhD position.

After a the telephonic interview, in a few days Prof. Jarke van Wijk invited me for a
personal interview. Due to my job commitments I was unable to travel abroad. Alterna-
tively, he spoke to my masters supervisor Prof. Menno-Jan Kraak, and decided to provide
me with the fortunate opportunity to further explore my potentials under his guidance. I
am very thankful to Prof. Jarke van Wijk for being flexible with me in this regard and
taking the risk of hiring me without an initial meeting also; and Prof. Menno-Jan Kraak
for recommending me for this position, even when he was also arranging a PhD position
for me in the meantime. I also thank the Netherlands Organisation for Scientific Research
(NWO) for funding my PhD Project (Project no. 643.100.502).

When I started to work at TU/e in May 2006, I knew little about Prof. Jarke van Wijk,
who was known as Jack in the visualization group. We met weekly and discussed about
my work. Soon, I learnt he is an easy to approach, extremely bright and smart person.

v
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I had a relatively simple idea to solve the above problem that only looked new due to
the combination of existing techniques. Also, the complete implementation of the idea
took over a year. Aruvi was my first C++ GUI program as well as the largest application I
developed. Because of Jack’s sharp guidance and patience with me, the idea saw the light,
and was well-received in the visual analytics community. In this process, he taught me
how to pursue research, and also, he identified one of my strengths — networking which
were never realized until then. One afternoon, when we had a walking meeting, I asked
him a question, “what is the purpose of doing a PhD?” expecting from him an answer
that gives some career guidance. But he gave an enlightening reply: “for me, PhD is the
process of making of a person. You test your strengths, identify your weaknesses and
learn how to handle them.” This reply has a great impact on the personal account and also
helped me to remain positive during the undulating course of the PhD research. The way
he pursued his hobby project was really amazing and inspiring. His PhD students never
realized that he was on sabbatical to work on his hobby project, because he was always
available for discussions during this period. Jack, you have led us by example. I have
quite a number of situations that are retained in my memory and will keep me motivated.
Thank you so much for being such a great advisor.

I thank Prof.dr. Helwig Hauser (University of Bergen, Norway), Prof.dr. Menno-
Jan Kraak (University of Twente, The Netherlands), Prof.dr.ir. J.B.O.S. (Jean-Bernard)
Martens (Technische Univeriteit Eindhoven) and Prof.dr.ir. Robert van Liere (Centrum
voor Wiskunde en Informatica, The Netherlands) for taking part in the core doctoral com-
mittee. Your comments were useful in strengthening this dissertation. I also thank David
Gotz (IBM Research, NY, USA) and Prof. dr. M.G.J. (Mark) van den Brand (Technische
Univeriteit Eindhoven) for participating in the extended committee. I am thankful to Dr.
Tamara Munzner (University of British Columbia, Canada) and Prof.dr. John T. Stasko
(Georgia Institute of Technology, USA) for productive discussions during their visit to
Eindhoven.

Throughout the four years of my PhD I have enjoyed the company of my colleagues
at the visualization group, with whom I had fruitful and sometimes fun filled discussions.
I thank my fellow doctoral students and post-docs Hannes Pretorius, Lucian Voinea, Jing
Li, Dennie Reniers, Danny Holten, Koray Duhbaci, Romain Bourqui, Mickeal Verschoor
and Niels Willems. I also thank senior researchers at our group, Huub van de Wetering,
Alex Telea, Kees Huizing, Michel Westenberg and Andrei Jalba. I also thank Frank van
Ham (IBM/ILOG, France) for his motivation and guidance. I also thank Ajay, Christian
Lange, Serguei Roubtsov, Reinier Post, and Joost Gabriels for their feedback on Aruvi.
I am grateful to Tineke van den Bosch, Elisabeth Melby, and the personnel affairs staff
members for their support in the complex administrative procedures. I also thank Cicek
Guven and Elena for their support while I carried out my tasks as a chairman at the
PromoVE board.

I thank David Gotz for providing me an opportunity to do an internship at IBM Re-
search NY, USA. It was a good experience to work in a world class industry lab. The
collaboration work was successfully turned into a paper and two IPs. I also thank Jennifer
Lai, Jie Lu, Shimei Pan, Zhen Wen, Peter Kissa and Michelle Zhou.

This PhD study would not have been possible without the help of the people who
helped me to shape my foundation in both studies and personal development. I am grate-



i
i

“thesis” — 2010/5/19 — 9:27 — page vii — #13 i
i

i
i

i
i

vii

ful to prof.dr.Menno-Jan Kraak who inspired me to pursue visualization research through
his interesting lectures and his guidance during master’s thesis. I thank prof.dr. Sanjeevi
for motivating me to pursue research, during my undergraduate studies. I also thank my
school teachers Natesan (Physics), Viswanathan (Social Science) and Babu (English) who
helped me groom my analytical and leadership skills at school and remain as a big inspi-
ration for me till date. I also thank my senior colleagues at NRSC, Dr. Y.V.S Moorthy,
G. Srinivasa Rao, Dr. P.S. Roy and Dr. K. Radhakrishnan for their encouragement in
pursuing a research career. I also thank my college seniors Ashok Subramanian (Shinota
NLP consulting) for exposing me personality management and Narayanan Ramanathan
(Satyam Computer Services Ltd) for supporting my NUFFIC application that helped me
to visit the Netherlands.

On a personal level, support from my friends was really appreciated. I thank Suhasini
Natarajan, Thulasiraman, Sudhira, Ajay, JP, Archana, Kavitha. J, Murali Krishnan, Ka-
rade, Bhole, Abhinav, PP, Kaushik, Subbu, Ravi, Sunil, KMJ, and Ujwal. Kuru, you are
such a simple and considerate person. I enjoy every second being with you. Thank you
so much.

This dissertation is dedicated to my Mother. She has been the source of my inspiration.
She always hid all the pains, and made us see only the beautiful side of the life. She is
always there to support me. She and my Father (Nina) were supportive and encouraged
me to pursue all my dreams. Nina, you have been my strength. I thank my Sister Janaki,
my Brother-in-law Sathish kumar, and my nephews Akshay and Aryia for their unlimited
support and motivation.
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Chapter 1

Introduction

The power of the unaided mind is highly overrated. Without external aids,
memory, thought and reasoning are all constrained. But human intelligence
is highly flexible and adaptive, superb at inventing procedures and objects
that overcome its own limits. The real powers come from devising exter-
nal aids that enhance cognitive abilities. How have we increased memory,
thought and reasoning? By the invention of external aids: It is things that
make us smart. — Donald A. Norman, Things That Make Us Smart: De-
fending Human Attributes In The Age Of The Machine, 1993.

Visual analytics is the science of analytical reasoning facilitated by interactive visual
interfaces [122]. It involves representing information visually and allowing the human
to directly interact with it, to gain insight, to draw conclusions, and to ultimately make
better decisions [78]. It aims to support the sensemaking process in which information is
collected, organized and analyzed to form new knowledge and inform further action [30].
A recent report [122] identifies developing tools and techniques for supporting the sense-
making process as a grand challenge in the visual analytics research agenda.This disser-
tation focuses on developing external aids to support the sensemaking process in visual
analytics during interactive data exploration.

Pirolli and Card [103] identified two major loops in the sensemaking process — the
information foraging loop and the sensemaking loop. They also found that analysts op-
portunistically mix these two loops during that process. During the information foraging
loop, analysts transform data into meaningful information and get insight into the prob-
lem. In the sensemaking loop, they review and organize insights to build a case and
present it to others. Often they tend to refer back to the analysis process and the find-
ings during the sensemaking loop. However, until recently, researchers, designers and
developers of analytical systems have given most emphasis on just developing tools and
techniques for supporting the information foraging loop.

1
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2 CHAPTER 1. INTRODUCTION

1.1 Making Sense of Data
Today, data is abundant. We collect data about our daily activities and about objects
that we interact with during those activities. We need to make sense of such abundant
data for making effective decisions. The management of large and complex data was
a challenging task until the development of various database technologies. Now using
databases, we can organize large volumes of structured and unstructured data at home, at
enterprises and on the Internet. An important aim for collecting and organizing data is to
facilitate data analysis for effective decision making. In this context,

The major obstacle to solving modern problems isn’t the lack of information,
solved by acquiring it, but the lack of understanding, solved by analytics.

- Malcolm Gladwell, journalist and writer, SAS Institutes Innovators Sum-
mit, 2009.

During data analysis, analysts engage in confirming or deriving hypotheses by interac-
tively exploring data using various techniques such as information visualization, statistical
analysis, spreadsheets, and data mining, to name a few. They often perform analytical ac-
tivities such as summarizing data, making predictions and identifying trends, patterns and
outliers to derive new knowledge [96]. However, deriving new knowledge is not the end
of the sensemaking process. The new knowledge creates more questions and hypotheses
that require further analysis of the data. Hence, analysis is an iterative process. Each iter-
ation produces new insight which analysts have to manage for effective reasoning during
a long exploration process.

Visual analytics has a wide range of application areas including business, biology,
health care, engineering, cyber security, public safety and security, governance, environ-
mental protection, and personal information management. Visual analytics research fo-
cuses on handling complex and large data. Stock market analysis, portfolio analysis and
risks management in the financial business need to handle large amounts of historic and
real-time data. Analysts carry out complex analysis processes to make business decisions
such as market and customer analysis and business process optimization. Also, in the
case of public safety and security, data from heterogeneous sources such as text data from
news articles, intelligence report, and blogs; network data from telephone calls and social
network have to be integrated and analyzed for making effective security decisions.

On the other hand, Christian Chabot, CEO of Tableau Software, during his keynote
speech at VAST 2008, emphasized on a general misconception that ‘people adopt visual
analytics primarily to help them see and understand only massive and complex data.’
Most people handle massive simple data; often stored in Excel spreadsheets and Access
databases. Also, he argued that people often don’t only look for hidden insights. They use
visual analytics tools in more mundane tasks that help them to get out of the way, and think
about the data; rather than distracted by the mechanics of using the software. For instance,
some data encountered at home such as income expenditure, energy consumption, and
health care, though small, can become large as these accumulate over a long time period.
Thus, we encounter much data that are either complex or simple, both at work as well as
at home; and have to make sense of this. We do not keep track of all the findings and key
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aspects of those analysis processes; hence, we cannot review or reuse them for making
effective decisions in a timely manner.

Often sensemaking of data is a social process [67, 130]. Many analysts collabora-
tively investigate the data with different analysis goals within an organization. They need
to review and share their findings as well as their analysis process. They also have to
be aware of their collaborators findings to avoid redundant rediscovery and lose time by
inadvertently repeating an analysis process. Thus, an approach to support the sensemak-
ing process in visual analytics should consider both the analysts and their collaboration
environment.

1.2 Research Problem and Approach
The central theme of this dissertation is

How to support users in their sensemaking process during interactive explo-
ration of data?

One approach to support the sensemaking process in visual analytics is to enable analysts
to capture aspects of interest while interactively exploring data; and to support analytical
tasks such as reviewing, reusing and sharing these. The key aspects of interest while
interactively exploring the data concern the analysis process and the findings. In addition
to developing tools and techniques to interactively explore data and get insight, we argue
that for an effective sensemaking process users must be enabled to

• capture the key aspects of interest along with the rationale by which a finding is
derived;

• reuse the key aspects of interest during the exploration process to simplify and
derive insights in a rapid manner;

• review and share the analysis process and the findings; and

• identify connections between findings.

Our approach is shown in Figure 1.1. When analysts explore the data using interactive
visualization, we enable them to capture and archive the key aspects of interest concerning
the analysis process and the findings. Later, they can retrieve those key aspects of interest
from past analyses to reuse these in the current analysis. They can also organize their
findings and engage in discussion by sharing or presenting these to their collaborators.
During discussion several questions can be raised or hypotheses can be formed. Next,
analysts can retrieve and review their previous analyses or seek out an alternate line of
inquiry to verify them. The new findings are again captured. Thus, analysts can revisit,
reuse, review and share their analysis process and findings.

Therefore, to support the sensemaking process in visual analytics, we mainly focus on

How to support users to capture, reuse, review, share and present the key
aspects of interest concerning the analysis process and the findings during
interactive exploration of data?
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Figure 1.1: An approach to support the sensemaking process in visual analytics.

1.3 Contribution

The key contributions of this dissertation are as follows:

1. A new information visualization framework that contains three linked views: a data
view, a navigation view and a knowledge view for supporting the sensemaking pro-
cess in visual analytics. The data view offers interactive data visualization tools.
The navigation view automatically captures the interaction history using a seman-
tically rich action model and provides an overview of the analysis structure. The
knowledge view is a basic graphics editor that helps users to record findings with
provenance and to organize findings into claims using diagramming techniques.
Thus, users can exploit the automatically captured interaction history as well as
manually recorded findings to review and revise their visual analysis. Finally, the
analysis process can be archived and shared with others for collaborative visual
analysis.

2. Semantic Zones: areas in data space with a clear semantic meaning. Users are
enabled to define zones using data selection techniques such as dynamic queries
and direct manipulation while interactively exploring the data. A Select & Slice
table is used to project slices of data on different zones. Semantic zones and data
slices are arranged along the horizontal and vertical headers of a table, each cell
contains a set of items of interest obtained by projecting a semantic zone on a data
slice. These sets can be visualized in various ways, ranging from just a count, an
aggregation of a measure to a separate visualization, such that the table gives an
overview of the relation between zones and slices. Furthermore, users can reuse
zones, combine zones, and compare and trace items of interest across different
semantic zones and data slices.
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3. Support for exploration awareness via an overview of what has been done and found
during an analysis process. Users are enabled to develop exploration awareness
through a key aspects overview. A users’ information interest model is developed
to extract key aspects of a visual analysis and an overview of these is presented.
The key aspects of the exploration process are the visualization specification, the
data specification, viewed objects and selected objects. By interactively exploring
the analysis structure and the key aspects overviews, users can identify analysis
strategies used in a visual analysis. Such overviews help to review and continue a
past visual analysis.

4. Searching techniques to retrieve visualizations and notes from the past analyses for
supporting a review process, based on keywords, content similarity and context.
Also, related notes and visualizations are recommended to users during a visual
analysis using a context based retrieval algorithm. Thus, they can identify connec-
tions between findings discovered at various point of time that would normally go
unnoticed during a visual analysis.

5. Aruvi is a research prototype developed to study the implications of these models
on a user’s sensemaking process. Currently, data analysts from different domains
such as software quality analysis and urban planning use Aruvi to carry out some of
their data analysis tasks. They participated in short-term and long-term case stud-
ies conducted to investigate the impact of the Aruvi system on their sensemaking
process. The observations of the case studies are used to evaluate the models.

1.4 Outline

The remainder of this dissertation is organized as follows:
Chapter 2 discusses background work related to visual analytics and the sensemaking

process.
Chapter 3 introduces an information visualization framework to support the analyti-

cal reasoning process. It consists of three views: a data view, a navigation view, and a
knowledge view. We present Aruvi, an information visualization prototype that supports
the analytical reasoning process in information visualization using the new framework.
It helps analysts to capture the analysis process and findings and to link findings to vi-
sualization states. We also present a user study that evaluates the support offered by the
framework.

Chapter 4 introduces semantic zones and presents techniques to capture them during
a visual data analysis. We present a Select & Slice table to project zones on different
data slices. Finally, we discuss the implications of the Select & Slice table during the
exploration process using case studies.

Chapter 5 introduces the concept of exploration awareness and the user’s information
interest model. We present our method to provide the analysis structure and the key
aspects overview. Next, we describe two search and retrieval mechanisms - keyword
based and content similarity based — to retrieve visualizations from past analysis. Finally,
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we present three case studies to evaluate the support for exploration awareness during the
exploration process.

Chapter 6 presents an analysis context based retrieval algorithm that supports connec-
tion discovery during exploration process. For a given visualization state, it retrieves
related notes and related concepts from past analyses. A recommendation feature is
implemented in HARVEST, a web based visual analytics system, based on the context
based retrieval algorithm. This work was done by the author during his internship at IBM
Hawthorne in 2008.

Chapter 7 presents the lessons learned from analysts using Aruvi.
Chapter 8 concludes this dissertation and presents future work.
Parts of this dissertation have been published before, specifically

• Shrinivasan, Y.B. and Van Wijk, J.J. 2008. Supporting the analytical reasoning
process in information visualization. In Proc. ACM SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, 1237–1246. (Chapter 3);

• Shrinivasan, Y.B. and Van Wijk, J.J., Supporting exploratory data analysis using the
Select & Slice table, Computer Graphics Forum: Eurographics/IEEE Symposium
on Visualization (EuroVis ’10), To appear, 2010.(Chapter 4)

• Shrinivasan, Y.B. and Van Wijk, J.J. 2009. Supporting exploration awareness in
information visualization. IEEE Computer Graphics & Applications. 29, 5 (Sept.
2009), 34–43. (Chapter 5);

• Shrinivasan, Y.B. Gotz, D. and Jie Lu. 2009. Connecting the dots in visual analyt-
ics, Proc. of IEEE VAST, 123–130. (Chapter 6);
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Chapter 2

Background

From the smallest necessity to the highest religious abstraction, from the
wheel to the skyscraper, everything we are and everything we have comes
from one attribute of man - the function of his reasoning mind. — Ayn
Rand.

In Chapter 1, we discussed our aim to support the sensemaking process in visual
analytics during interactive data analysis. In this chapter, we discuss background work
related to visual analytics and the analysis process. Visual analytics primarily has evolved
out of the field of visualization. First, we discuss visualization, and then introduce visual
analytics research and its scope. Next, we review models that support the analysis process
in visual analytics. Based on this discussion, we derive requirements for supporting the
sensemaking process during visual data analysis. Finally, we present an overview of the
state-of-the-art in visual analytics, and position our dissertation in this work.

2.1 Visualization

Visual analytics has evolved out of the fields of information visualization, scientific visu-
alization and geovisualization. The idea behind these visualization fields is to represent
data or concepts using graphical representations, and enable users to interactively explore
these. These fields engage human visual information processing capabilities to reason
about data following the saying ‘A picture is worth thousand words.’ These data graphics
acts as an external aid to enhance human cognition on data. Card et al. define visual-
ization as ‘the use of computer-supported, interactive, visual representations of data to
amplify cognition’ [30]. With the advent of computing technology, large datasets can be
quickly transformed into meaningful visualizations. Therefore, users can quickly see and
explore representations of large data under investigation on a computer screen.

Scientific visualization handles large sets of scientific data to enhance scientists’ abil-
ity to see phenomena in the data [93]. It concerns interactive investigation of physical data
— the human body, the earth, molecules or other [30]. Information visualization handles

7
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8 CHAPTER 2. BACKGROUND

non-physical information such as finance data, business information, documents and ab-
stract conceptions. This information does not have an obvious spatial mapping. Hence,
the fundamental challenge in information visualization is about choosing or developing
representations to visualize these abstract data. Geovisualization handles geographic data
and helps to gain insight into geographic processes such as transportation, urbanization,
demographics, and natural or man-made hazards, to name a few. It is a form of infor-
mation visualization in which principles from cartography, geographical information sys-
tems, exploratory data analysis and information visualization are integrated to facilitate
exploration, analysis, synthesis and presentation of geo-referenced information [47]. An
interactive geographic map is the key visual representation on top of which layers of ge-
ographic information are visualized. General guidelines for design and development of
visualizations are detailed elsewhere [22, 125, 124, 126, 133, 55, 56].

In the following subsections, we present a basic visualization reference model that
focuses on transforming data into visualizations. Next, we discuss design principles that
help to build interactive visualization systems. Finally, we present models that describe
the application of these visualization systems.

2.1.1 Visualization Reference Model
In scientific visualization, data-flow networks are used to represent the process of con-
structing visualizations [127, 62, 4, 110]. In information visualization, Lee and Grin-
stein [85] presented a conceptual model for visual database exploration, which describes
the analysis process as a series of value-to-value, value-to-view, view-to-value, and view-
to-view transformations. Card and Mackinlay [29], and Chi and Riedl [34] provide in-
formation visualization frameworks to facilitate the design of interactive visualization
systems.

Card et al. [30] provide a basic reference model for visualization (Figure 2.1). Visual-
ization is described as the mapping of data to visual form that supports human interaction
in a workspace for visual sensemaking of data. There are three processes to support the
sensemaking tasks — data transformations, visual mapping and view transformations.
Data transformation maps raw data into data tables with relational descriptions of the
data along with metadata. Visual Mappings transform data tables into visual structures
that combine spatial substrates, marks, and graphical properties. View transformations
create views of the visual structures by specifying parameters such as position, scaling,
and clipping. Users can interactively change these transformations to perform their visual
sensemaking tasks.

2.1.2 Visualization Design Models
To explore large volumes of data using interactive visualization, Shneiderman’s visual
information seeking mantra [114] —

overview first, zoom and filter, then details-on-demand

— is widely adopted in the design of interactive visualization systems. First, users are
provided with an overview of data to identify global patterns, relations and outliers. Next,
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Data 
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Figure 2.1: Visualization Pipeline of Card et al. [30]

they can drill down to particular areas or objects of interest, and access details of the data.
During an exploration process, users may iterate these steps. It is important that visu-
alization systems support smooth transitions between these steps. Over the years, many
interaction techniques have been developed for this, including dynamic filtering [113],
zoom-in and zoom-out, animation, overview + detail, focus + context (fish-eye [57], dis-
tortions [90] and table lens [104]).

Other tasks emphasized by Shneiderman [114] for effective visualization design are
relate, history and extract. Relate allows users to view relationships between items us-
ing techniques such as linking and brushing [20]. History allows users to keep track of
actions for supporting undo, replay, and progressive refinement. Extract allows users to
capture data subsets or query parameters, and reuse these later in the analysis or in other
computing systems. Craft and Cairns [39] provide an overview of how the visual informa-
tion seeking mantra is used in visualization systems by reviewing 52 visualization papers.
They found that the mantra was merely used as a guideline, and often interpreted as a
prescriptive framework. Most of the current visualization systems offer limited support
for history and extract tasks.

Amar and Stasko [15] provided a knowledge task-based framework for the design
and evaluation of visualization systems. They argue that successful decision-making and
analysis are more a matter of serendipity and user experience than of support offered by
visual information seeking tasks. They identified analytical gaps for facilitating higher-
level analytic tasks such as decision-making and learning in visualization. To bridge
these gaps, they propose a design and evaluation framework for information visualization.
Visualization systems should allow users to determine domain parameters (by providing
facilities for creating, acquiring, and transferring knowledge or metadata about important
domain parameters within a data set); to expose multivariate explanation (by providing
support for discovery of useful correlative models and constraints); to facilitate hypothesis
testing; to expose uncertainty; to concretize relationships (by clearly presenting what
comprises the representation of a relationship and presenting concrete outcomes where
appropriate); and to expose cause and effect (by clarifying possible sources of causation).
Although this framework provides extensive details for designing a visualization system,
it is not explicitly used in the implementation of current visualization systems.

Keim et al. [78] recommend that visualization can be used as a means to efficiently
communicate and explore the information space when automatic methods fail. On a sim-
ilar note, Van Wijk [128] calls for effective visualization design through “visualization is
not ’good’ by definition; developers of new methods have to make clear why the infor-
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mation sought cannot be extracted automatically.” He presented an abstract model for
visualization in which gaining knowledge through visualization is the main goal of the
interactive visualization. This model of visualization is shown in Figure 2.2. Data (D)
is transformed into an image (I) based on the user’s specification (S). The specification
includes data, visualization and view transformations. After perceiving (P) the image, the
user gains knowledge (dK/dt) and provides a new specification (dS/dt) to the visualization.
Thus, the user continues to explore (E) the data by iteratively changing the specification
to the visualization system. He also argues that a good visualization design has to enable
users to gain positive knowledge and rapidly achieve their goals.

Visualization UserData

D KV P

ES

I dK/dt

dS/dt

Figure 2.2: Van Wijk’s model of Visualization [128].

Recently, Munzner [95] presented a nested process model for the design and validation
of visualization systems. It contains four nested layers — characterize the task and data
in the vocabulary of the problem domain, abstract into operations and data types, design
visual encoding and interaction techniques, and create algorithms to execute techniques
efficiently. It is a prescriptive framework that helps authors of visualization papers to ana-
lyze the threats, and validate approaches possible at each level for their new visualization
design.

Most of these design models for building interactive visualization systems are pre-
scriptive in nature. Hence, these models are not extensively used to review visualization
systems for supporting data analysis.

2.1.3 Application Models

Keim et al. [78] describe visualization techniques based on the goal of the visualization —
presentation, confirmatory data analysis and exploratory data analysis. For presentation
purposes, the facts to be presented are well known in advance. The main user task is
to choose appropriate presentation techniques to effectively communicate the results of
an analysis. For confirmatory data analysis, analysts have one or more hypotheses about
the data as a starting point. It is a goal-oriented approach where visualization can help
analysts to accept or reject these hypotheses. In exploratory data analysis, analysts search
and analyze databases to find implicit but potentially useful information. They have no
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hypothesis about the data to start with. However, domain expertise and understanding of
the data attributes are obviously very helpful.

Similarly, MacEachren [88] summaries the application of geovisualization tools for
data exploration and presentation using a map-use cube (Figure 2.3). The dimensions of
the interaction space are defined by three continua: from map use that is private (indi-
vidual) to public (designed for a wide audience); map use that is directed towards reveal-
ing unknown (exploration) versus presenting known (presentation) information; and map
use that has high interaction versus low interaction. The aim of the map-use cube is to
clearly distinguish exploratory geographic visualization, which is located in the private,
exploratory and high interaction corner; and map communication, which is located in the
opposite corner. Nowadays, interactive visualization also plays a major role in the com-
munication of the results of an analysis. Instead of static reports, interactive visualization
based discussion blogs, for instance Many Eyes [131], and interactive dashboards in vi-
sualization systems such as Tableau [9] and Tibco Spotfire [10] have become a medium
of communication, and also support collaboration processes.
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Figure 2.3: The map-use cube [88].
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During a complex analysis process, large amounts of data have to be investigated
in a timely manner. Though interaction techniques can come in handy to explore large
datasets, it can be effective to automatically identify interesting pieces of information
from large datasets and visualize these. Often visualization techniques do not scale to han-
dle large datasets due to limitations on the amount of information that can be shown on a
digital display. Automated analysis techniques such as knowledge discovery in databases,
statistics and mathematics are used to analyze and extract information of interest. Al-
though for many users automated analysis techniques remain a black box, these are a well
proven approach to handle large datasets. In the next section, we introduce the field of
visual analytics that combines interactive visualization and automated analysis techniques
to support sensemaking of large datasets in a timely manner.

2.2 Visual Analytics
Visual analytics is the science of analytical reasoning facilitated by interactive visual in-
terfaces [122]. It is a multi-disciplinary field of research that combines techniques from
information visualization, statistics, machine learning, cognitive psychology, and human
factors for analyzing data. Analysts use various computing technologies to analyze data
and solve problems in domains such as defense, health, governance, business and cy-
berspace, to name a few. During a complex analysis process, analysts need to integrate
solutions obtained by investigating data using various technologies.

The definition of visual analytics claims a multi-disciplinary approach to support rea-
soning process. Previously, data visualization, statistics and automated data analysis were
considered different approaches to solve a problem. These approaches provide different
perspectives on the problem, and help users to make informed decisions. Visual analyt-
ics was developed due to the need for integrating these approaches to solve problems in
a holistic manner, especially after the 9/11 terrorists attack in the USA. Following that,
Jim Thomas set the research agenda for visual analytics in ‘Illuminating the Path’ [122],
strongly focusing on Homeland Security in the USA. The goal of visual analytics is to
facilitate the analytical reasoning process through the creation of software that maximizes
human capacity to perceive, understand and reason about complex and dynamic data and
situations [122]. Recently, application areas of visual analytics have been extended to
fields such as health, governance, astronomy, cyber security, business and finance, to
name a few. We now discuss the scope of visual analytics research and how it combines
the strengths of automated data analysis and interactive visualization techniques to handle
analytical problems.

2.2.1 Scope of Visual Analytics

An analysis process involves management of human background knowledge, intuition
and bias in addition to data exploration. Hence, visual analytics extends beyond the com-
bination of the fields of visualization. It can be seen as an integration of visualization,
automated data analysis and human factors [78]. Figure 2.4 illustrates the scope of vi-
sual analytics. Visualization concerns the integration of methodologies from information
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visualization, geospatial visualization, and scientific visualization. With respect to auto-
mated data analysis, visual analytics furthermore profits from methodologies developed
in the fields of data management & knowledge representation, knowledge discovery, and
statistical analytics. Human factors play a key role in the analytical discourse — com-
munication between human and computer — as well as in collaborative decision-making
processes.

Finally, production, presentation and dissemination of the analysis results are impor-
tant and often the most time consuming part of analysis [122]. Production is defined as
the creation of materials that summarize the results of an analytical effort. Presentation
involves the packaging of those materials in a way that helps the audience understand
the analytical results in context using terms that are meaningful to them. Dissemination
concerns the process of sharing that information with the intended audience.

Scope of 
Visual Analytics

Geospatial 
Analytics

Scientific Analytics

Statistical Analytics

Knowledge 
Discovery

Presentation, 
production, and 

dissemination

Cognitive and 
Perceptual Science 

Interaction

Information 
Analytics

Data Management 
& Knowledge 

Representation

Figure 2.4: The scope of Visual Analytics [78].

Depending on the problem at hand, visual analytics applications will exploit different
tools and techniques from the fields of visualization, automated data analysis and hu-
man factors, to support analytical reasoning, collaboration, production, presentation and
dissemination during an analysis. Initially, visual analytics was introduced for solving
challenging problems that were unsolvable using automatic or visual analysis. Automatic
Analysis methods can be used to solve analytical problems, in particular, when we have
means for measuring and comparing the quality of candidate solutions to the problem at
hand. These methods may fail when algorithms are trapped in local optima, which are un-
related to the globally best solution [79]. Visualization methods use human background
knowledge, creativity and intuition to solve the problems at hand. Keim et al. [79] argue
that these approaches often give good results for small datasets, however, they fail when
the available data for solving the problem is too large to be captured by a human analysts.
Visual analytics combines the strengths of these two methodologies to solve analytical
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problems. On the one hand visual analytics takes advantage of intelligent algorithms and
vast computational power of modern computers and on the other hand it integrates hu-
man background knowledge and intuition to find a good solution. This potential of visual
analytics is shown in Figure 2.5.

Tight integration of Visual 
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Figure 2.5: The potential of visual analytics [79].

Keim et al. [79] describe the potential of visual analytics using two problem classes:
analytical problems and general application areas of IT, and three methodologies to solve
these problems: Automatic analysis, Visualization and Visual Analytics. Figure 2.6 shows
this scope of visual analytics in general application areas of IT. They demonstrate that
visual analytics can be used to solve simpler problems that are also solvable by automatic
or visual analysis means. For example, a visual tool that supports users to archive their
e-mails into several folders based on content similarity, and a visual interface that displays
ranking of the most relevant folders solve a task, which can be solved using traditional
approaches. In these cases, visual analytics focuses on improving the effectiveness and
efficiency of the reasoning process of the user, as well as the quality of the solution to a
problem.

Visual Analytics gives high priority to data analytics from the start and through all
iterations of the sensemaking process compared to data visualization [77]. Most research
efforts in data visualization have focused on the process of producing views and cre-
ating valuable interaction techniques for a given class of data (social network, multi-
dimensional data, etc.). However, there is less emphasis on how user interactions on the
data can be turned into intelligence to support the sensemaking process. For instance, a
system might observe that most of the user’s attention concern only a subpart of an ontol-
ogy (through queries or by repeated direct manipulations of the same graphical elements,
for instance). Keim et al. [77] argue that this knowledge about the user’s interest can be
used to update various parameters by the system (trying to systematically place elements
or components of interest in center view, even taking this fact into account when driving
a clustering algorithm with a modularity quality criteria, for instance).
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Figure 2.6: The scope of visual analytics in general application areas of Information
Technology (IT) [79].

2.2.2 Visual Analytics Process

Keim et al. [78] present an insight-centric model for visual analytics. They explicitly dis-
tinguish the support offered by automated analysis methods and interactive visualization
during data analysis. This model is shown in Figure 2.7. The input for the datasets used
in the visual analytical process is organized from heterogeneous data sources (S) such as
the Internet, newspapers, books, scientific experiments and expert systems. Insight (I)
into these data is either directly obtained from the set of visualizations (V ) or through
confirmation of hypotheses (H) as the results of automated analysis methods such as data
mining and statistics. The visual analytical process is a transformation F : S → I ,
where F is a concatenation of functions f such as data pre-processing (Dw), hypothe-
ses generation processes (HV and HS), visualization (VH and VS) and interactions with
visualizations (UV and UCV ) and hypotheses (UH and UCH ).

Unlike interactive visualization, the visual analytics process often combines automatic
analysis methods before and after interactive visual representations are used. This is pri-
marily due to the fact that data sets are complex on the one hand, and too large to be
visualized straightforwardly on the other hand. Therefore, a general approach recom-
mended by Keim et al. [78] for designing visual analytics systems to support exploration
of large datasets in the visual analytics is

Analyze first; Show the important; Zoom, Filter and Analyze Further; and
Details-on-demand.
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Figure 2.7: Visual Analytics Process of Keim et al. [78].

This visual analytics process model and mantra focus on designing and developing vi-
sual analytics systems for supporting the exploration process; and do not directly support
the management of insights gained during data analysis. Therefore, systems based on just
this process model and mantra do not enable users to review and validate their findings or
analysis process, in order to support an effective reasoning process.

2.3 The Sensemaking Process
Analytical reasoning is the central part of an analysis process. Analytical reasoning in-
volves applying human judgment to reach a conclusion from a combination of evidence
and assumptions [122]. Human judgment will help to assess and understand situations, to
forecast future scenarios, and to develop options [96]. Analysts pursue smaller questions
related to the overall large question to be answered, and engage in the iterative refinement
of procedures or parameters during the analysis. They may also refer to similar situa-
tions in past analyses to compare results: to take alternative views, or to reuse procedures.
Finally, they have to identify solutions for problems in a timely manner with a decent
accuracy, or limited and conflicting information.

Making judgments is the first step in the reasoning process. Subsequently, these judg-
ments have to be revised and verified before valid conclusions are reached [73]. Often,
analysts have to defend their judgment when they present it to others. They need to build
knowledge structures using estimations and inferential techniques to form a chain of rea-
soning that articulate and defend their judgments [31]. Defending a judgment means that
the reasoning, evidence, level of certainty, key gaps, and alternatives are made clear [122].

Analysis is often a collaborative process [122]. It involves analysts collaborating at
the same place and time, at different places at the same time, as well as at different places
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and times. During an analysis, analysts use different strategies to uncover findings and
make judgments. They need to effectively communicate their analysis process to defend
their judgment. Analysts must be aware of what has been done and found by others for
this. Unless they externalize their strategies, automatically uncovering these is a complex
process. Therefore, a common ground for sharing an analysis and its results among them
that promotes shared understanding has to be established. We refer to the process of
creating a common ground for sharing an analysis as grounding analysis.

Clark and Barren [36] discuss eight criteria for creating effective common grounds for
sharing information among people across different media. They are copresence (can see
the same things), visibility (can see each other), audibility (can hear each other), cotem-
porality (messages received at the same time as sent), simultaneity (can both parties send
messages at the same time or do they have to take turns), sequentiality (can the turns
get out of sequence), reviewability (can they review messages, after they have been first
received), and reviseability (can the producer edit the message privately before sending).
Now with the advent of collaboration support tools such as video conferencing, workspace
sharing and discussion forums, to name a few, most of these criteria are well supported.
The criteria most relevant for collaborative analysis process are the reviewability and re-
viseability of the analysis process, analysts’ strategies and their findings for grounding
their analysis, and defending their judgments. Therefore, analysts must be enabled to per-
form three activities while making sense of data during an analysis — to make judgments,
to ground their analysis, and to defend these for collaborative analysis. These activities
are summarized in Figure 2.8.

Data
Make 

Judgment
Ground 
Analysis

Defend 
Judgment

Figure 2.8: A model for analyst’s sensemaking activities during an analysis process.

To understand the requirements for supporting the sensemaking process in visual an-
alytics during an analysis, we first take a close look at the sensemaking model of Pirolli
and Card [103] for intelligence analysis, which was derived from a cognitive task analy-
sis. They present a data flow where raw data is transformed into reportable results (Fig-
ure 2.9). External data sources contain the raw evidence, largely text data. The shoebox
is the much smaller subset of that external data that is relevant for processing. The evi-
dence file contains snippets extracted from items in the shoebox. Schemas are derived by
re-representing or organizing information from evidence files, and help to draw conclu-
sions. Hypotheses are the tentative representations of those conclusions with supporting
arguments. Finally, the conclusions and hypotheses are presented.

In this analysis process, there are two major activities: the information foraging loop
and the sensemaking loop. In the information foraging loop, analysts seek information,
search and filter it, and read and extract information possibly into some schema [102]. In
the sensemaking loop, they iteratively develop a mental model (a conceptualization) from
the schema to support a claim [107]. In these activities, Pirolli and Card identify two
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Figure 2.9: The Sensemaking Model for Intelligence Analysis, Pirolli and Card, [103].

processes: a bottom-up process (from data to theory) and a top-down process (from theory
to data). They found that analysts opportunistically mix the two processes. The bottom-
up process involves search and filter raw data; read and extract information; organize
information into schemas; build a case; and tell a story to some audience. The top-
down process involves re-evaluation of feedback from the audience; search for support
from schema; search for evidence and relations in evidence files; and again search for
information from the raw data.

In interactive visual data analysis, many tools and techniques have been developed
that focus on the foraging activity. The visualization pipeline model and visual analytics
process model focus on exploring and gaining insight into data. However, little support
is offered by visual analytics systems to capture findings (into evidence files), organize
these findings (into schemas), construct arguments to validate hypotheses, and present
these. Hence, we argue that for supporting the sensemaking process in visual analytics
during an analysis, the user must be enabled to

• perform both foraging and sensemaking activities; and
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• carry out bottom-up and top-down processes during these activities.

2.4 Supporting the Sensemaking Process
In the following, we describe our approach to support the sensemaking process in visual
analytics (Figure 2.10).

Data (D) is transformed into information (I) based on the users’ specification (S). I
includes automated data analysis results, text summaries and visualizations. They gain
knowledge (K) by reasoning with I, and continue to explore until the analysis goal is
reached. During a long analysis session, they may not keep track of all the interesting
knowledge. Therefore, the system automatically captures S and I, and archives these as
an action trail. An action trail contains a sequence of S, specified by the users during
interactive data exploration. Also, they can manually externalize and archive findings (F),
such as notes, schemas, entity-relationships and images, during the exploration process.

Later, users can review S, I and F of past analyses. For this, the system automatically
provides interactive overviews of the past analyses. Also, they can search and retrieve
specific S, I and F from the archive. Next, they can reuse S from a past analysis in the
current analysis. During the review process, they can also obtain new findings, or edit the
previous findings. Finally, they can share or present their analysis process and findings
to others. The archive can be synchronously or asynchronously accessed to support col-
laborative analysis. In summary, we argue that a visual analytics system should meet the
following requirements. Users must be enabled:

• to automatically capture and manually externalize the interesting aspects of the
analysis;

• to review the analysis process and the findings using overviews of the analysis; and
to search & retrieve specifications, processed information and findings; and

• to reuse, share, and present the interesting aspects of the analysis.

2.5 State of the Art
In this section, we review a number of visualization and visual analytics systems, based
on the requirements for supporting the sensemaking process in visual analytics: capture;
review; reuse, share and present interesting aspects of the analysis process. Table 2.1
provides an overview of widely used visual analytics systems and their support for the
sensemaking process.

Vistrails is a popular scientific workflow management system [19]. It supports the
creation of data flow diagrams by composing various scientific visualization operators.
It captures changes to a workflow using a history tree representation. Users can query
for workflows from history, and review and reuse them [109]. They can reuse workflows
for different sets of parameters, reuse visualizations across different data and compare the
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Figure 2.10: A model for supporting the sensemaking process in visual analytics. The
items in orange highlight requirements for supporting the sensemaking process in visual
analytics. D: Data; I: Information; S: Specification; K: Knowledge; F: Findings.



i
i

“thesis” — 2010/5/19 — 9:27 — page 21 — #35 i
i

i
i

i
i

2.5. STATE OF THE ART 21

different visualizations by arranging them side-by-side. It supports real-time collaborative
design of workflows [50].

Generally, most of the information visualization tools such as Improvise [134] and Jig-
saw [119], to name a few, focus on interactive data exploration; and offer limited support
to capture interesting aspects of the analysis process, for instance by taking screenshots.
Visual Analytics Inc.’s VisualLinks and DataClarity [11], and Magnaview [5] support
bookmarking visualizations and sharing these visualizations with collaborators through
the Internet. General Dynamics’s CoMotion Discovery, CoAction and Command Post of
the Future [1] enables users to annotate and record notes over a visualization workspace
and synchronously share them. Tibco Spotfire [10] supports capturing visualizations with
annotations and sharing these on the Internet. Sense.us [67] is a web-based asynchronous
collaborative visualization system that supports users to annotate and share visualizations.
It also enables users to review notes and have discussion on visualizations, similar to
IBM’s ManyEyes [131]. Tableau [9] enables users to share visualizations with annotation
through a web based interactive dashboard. During an analysis, users can also capture
sets of objects as computed sets, and reuse these.

Often visual analytics systems have to handle unstructured data such as documents
and email corpus, news stream and blogs, to name a few. Analysts are interested in
extracting entities, events and their relationship from these data. Visual analytics sys-
tems such as Oculus Info [6], Xerox Parc’s Entity Workspace [24] and i2 Analyst’s Note-
book [3] support analyzing large collections of unstructured data. Entities and their rela-
tionships are automatically extracted. Users can edit them and reuse them to find similar
entities and documents from the archive.

Oculus Info (nSpace and Geotime) helps users to manage entities and create stories
based on visualizations, entities and notes for sharing the analysis results. Xerox Parc’s
Entity workspace supports evidence marshalling using the entity graph. During collab-
orative analysis, it helps analysts to identify entities of mutual interest. In addition to
entity-relationship, the Analyst’s Notebook supports analysts to capture, review, reuse
and share events and domain-specific knowledge. X-media project [40, 41], a knowl-
edge management system, captures a domain-specific ontology in a distributed analysis
environment. Users can interactively explore the ontology using knowledge lenses and
graphs during an analysis. They can review, reuse and share the ontology during an anal-
ysis. Most of these systems help analysts to capture findings for sharing and presentation
purposes; they do not capture the analysis process. So, they do not enable their users
to revisit and review analysis process. Hence these systems do not directly support the
sensemaking process during data exploration.

Very few visual analytics systems capture both the analysis process and the findings.
HARVEST [59], a web based visual analytics system, captures the analysis process as ac-
tion trails. While interactively visualizing data, users can record notes, which are captured
as a part of the action trail. An action trail is archived only when users bookmark a visual-
ization state. It does not maintain an integrated action trail of the entire analysis process.
A list of bookmarks is shown to the users. They can revisit and reuse action trails via
the bookmarks list. Palantir’s Government and Finance [7] captures action trails, entity
relationships and events during an analysis; and users can share annotated action trails
for collaborative analysis. Analysts can do keyword search to retrieve action trails; also
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they can edit and combine different action trails. However, they cannot get an overview
of what has been and found during the analysis process. PNL’s Scalable reasoning system
[101] aims to support teams of collaborating analysts to capture, share, and reuse analysis
processes and their reasoning strategies through a combination of desktop and mobile en-
vironments. This is currently a work-in-progress. Though these visual analytics systems
capture both the analysis process and findings, they do not offer enough support for the
users to get an overview of the archived analysis processes and findings for an effective
sensemaking process.

2.6 Research Scope

The workflow model, described in Section 2.4, to support the sensemaking process in
visual analytics is developed based on Pirolli and Card’s sensemaking model for intelli-
gence analysis. The workflow model contains four key processes: capture, reuse, review
and share of interesting aspects of a data exploration to support the sensemaking process.
These processes may require different sets of tools and techniques for handling different
interesting aspects concerning the analysis processes and findings.

In this dissertation, we describe generic models and tools to support the sensemaking
process in visual analytics during an analysis. We begin by looking at a simpler problem
and try to show that the quality of results and the effectiveness of the reasoning process can
be improved by supporting the four sensemaking tasks: capture, reuse, review, and share.
For this, we consider a simple interactive visualization tool consisting of visualizations
such as scatterplots and barcharts attached with dynamic query interface. We apply the
generic models and tools which we developed to support the sensemaking process on this
visualization tool. We have implemented these models and tools using Aruvi, a research
prototype. Some of these models are implemented in HARVEST during a collaborative
research work.

We enable users to capture interesting aspects such as action trails, objects of interest,
selections and notes during interactive data exploration; and provide users tools to gain
overview of the analysis process and findings, and effectively review and reuse these
during the analysis process. In the future, other interesting aspects of the exploration
process can emerge that are useful for supporting the sensemaking process. We believe
that the models and tools described in this dissertation can be used as a starting point for
effectively capturing, reviewing, reusing and sharing such new interesting aspects.

2.7 Evaluation

Evaluation in visual analytics is challenging and notoriously hard. The visual analytics
research agenda [122] identifies three levels that can be considered for evaluation: com-
ponent, system, and work environment. At the component level, the evaluation focuses
on analytical algorithms, visual representations, interaction techniques, and interface de-
sign. At the system level, visual analytics combines multiple components to support an
analytical reasoning process. An evaluation at the system level can be done by comparing
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with the technology currently used by the target user. At the work environment level, the
evaluation focuses on technology adaptation and productivity.

Plaisant [105] identifies three main methods for user centered evaluation in informa-
tion visualization: controlled experiments, usability evaluation and case studies. In con-
trolled experiments a novel visualization system is compared with the state of the art to
determine if it performs better. Since the work presented in this dissertation is empirical
and significantly different from techniques discussed in Section 2.5, direct comparison to
these existing techniques is not possible. Usability evaluation provides feedback on the
problems encountered while users interact with a system. The system is evaluated based
on the accuracy or efficiency of the users completing certain tasks [112]. Usability eval-
uation was difficult to apply, as it is difficult to create generalized sensemaking tasks and
analysis goals to enable comparison of users’ feedback. Case studies involve studying the
feasibility of tools in a real-use context, that is, real users performing real data analysis
in their work environment. The advantage of case studies is that they report on users in
their natural environment doing real tasks, demonstrating feasibility and in-context use-
fulness. The disadvantage is that they are time consuming to conduct, and results may not
be replicable and generalizable [105].

We primarily used case studies approach to study the implications of new tools for
supporting the sensemaking process. In particular, we used our prototype as a technology
probe that exposes users to new ideas and then use this as the means to obtain qualitative
feedback. A technology probe involves installing a technology into a real use context,
watching how it is used over a period of time, and then reflecting on this use to gather
information about the users and inspire ideas for new technologies [69]. It is not just a
prototype, but a tool to help to determine which kinds of technologies would be interesting
to design in future. Users can adapt to the new technology in creative new ways for their
analysis process [89].

In chapter 3, we present a sensemaking framework based on an empirical approach
starting by closely looking at models presented in Figures 2.1, 2.2, 2.9, and 2.10. We eval-
uated the framework by deploying Aruvi as a technology probe in the real use context and
gathering analysts’ feedback. Then we analyzed the usage pattern and analysts’ feedback
to check if the sensemaking framework is useful during an analysis. Also, we encoun-
tered some new issues related to supporting the sensemaking process in visual analytics.
Subsequent chapters address three of the many issues identified.
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Chapter 3

A Sensemaking Framework for
Visual Analytics

The goal of mankind is knowledge. Now this knowledge is inherent in man.
No knowledge comes from outside; it is all inside. What we say a man
‘knows’, should, in strict psychological language, be what he ‘discovers’
or ‘unveils’; what man ‘learns’ is really what he discovers by taking the
cover off his own soul, which is a mine of infinite knowledge. — Swami
Vivekananda.

For effective analytical reasoning during data analysis, analysts need an integrated
analysis framework which enables them to capture interesting aspects of the exploration
process; and review, reuse and share these. In this chapter, a new visual analytics frame-
work is presented by considering analytical reasoning in general, as well as in combi-
nation with visualization. Using this framework, analysts can capture and review the
analysis, validate the findings and revise them. They can also organize the findings to
build a case. The analysis process can be saved and presented to others along with the
findings. We have developed a prototype, Aruvi, based on this framework. A user study is
presented to evaluate the perceived usefulness of the framework, using Aruvi. Following
that, two case studies are presented.

3.1 Introduction
As discussed in the previous chapters, the grand challenge in the visual analytics research
agenda [122] calls for developing interactive visual interfaces to perform data analysis as
well as structured reasoning. This includes the construction of arguments, convergent-
divergent investigation and evaluation of alternative hypotheses. The fields of visualiza-
tion, automated data analysis and human factors are used to build the interactive visual
interface. Information visualization tools and techniques act as a frontend to automated
data analytics: to provide input and to analyze its output; in addition to supporting in-
teractive data exploration using abstract visual representations [30]. During interactive

27
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visualization, users can encounter many discoveries in terms of relations, patterns, out-
liers and so on.

Sensemaking involves seeking information, organizing and analyzing it, and possibly
forming new knowledge and informing further action [30]. Pirolli and Card [103] orga-
nize the sensemaking process of analysts into two major loops: the information foraging
loop and the sensemaking loop as discussed in section 2.3; where analysts opportunis-
tically mix the two loops for effective analytical reasoning. In practice, the support of
visualization tools for the sensemaking process is limited to the information foraging
loop, and the sensemaking loop has to be done in the analyst’s mind. It is difficult for the
human working memory to keep track of all findings. Hence, synthesis of many different
findings and relations between those findings increases the cognitive overload [103]; and
thereby hinders the reasoning process. In the following section, we derive requirements
for developing such a framework by considering analytical reasoning in general, and then
in combination with visualization.

3.2 Analytical reasoning - a close look

The analytical reasoning process is often not a systematic process. Information foraging
in information visualization can be described as navigation through an information space
facilitated by various interactions such as dynamic query [113], overview + detail [106],
direct manipulation [35], focus + context [57] and so on. These interactions enable the
analyst to view the data in different ways during the exploration process. The exploration
evolves based on the analyst’s prior knowledge, and clues or findings in each visualiza-
tion state. It is similar to berry picking [17] in which the evolution of the navigation is
opportunistic, and information is gathered in bits and pieces. In this context, the knowl-
edge creation process is unsystematic, continuously evolving and emergent [23]. Hence,
analysts must be aware of what has been done and found during the exploration process
to perform effective reasoning.

During data analysis, analysts looks for evidence from the data to construct, confirm
or contradict a claim. Based on the relations that the evidence has with the data in context
of the analysis’ purpose, their mind constructs mental models of the information structure
[73]. In the context of interactive information visualization, the evidence can be found
in terms of patterns or outliers by changing visualization and data specifications. If the
argumentation process is complex, it is important to externalize the evidence and causal
links between them for effective reasoning [99].

To further understand the requirements for the analytical reasoning process during
visual data analysis, we looked at traditional well-founded reasoning theories. Johnson-
Laird and Byrne [74] observed that there are three basic stages in different reasoning
theories such as spatial reasoning, propositional inferences, syllogisms, and so forth. They
are model construction, revision and falsification. In the first stage, the argument premises
are understood and mental models are constructed based on the premises’ content. In
the second stage, the model is revised to formulate a putative conclusion. In the third
stage, alternate models are searched for to contradict the putative conclusion. If there are
no alternative models, the conclusion is accepted; otherwise, the analyst returns to the
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second stage to assert the validity of the other conclusions against the alternate models.
Therefore, it is clear that externalization of the mental models is not enough to support
the entire reasoning process. The two other analytical reasoning phases — revision and
falsification — also have to be supported.

Further, it is important to communicate what has been found during the exploration
process to others for a collaborative decision making process. Viégas and Wattenberg
strongly argument for communicating insights along with visualization to others through
their communication-minded visualization framework [130]. Further design consider-
ations for sharing insights in collaborative visual analytics are discussed by Heer and
Agarwal [64].

From the above discussion, we set out the following requirements for a visual analytics
framework to support the analytical reasoning process. An analyst has to be enabled to:

1. externalize the analysis artifacts such as evidence, hypotheses, assertions and causal
links between them;

2. organize the analysis artifacts and the causal links between them to support or con-
tradict a claim;

3. review and revise the exploration process;

4. link externalized analysis artifacts and visualizations to support these;

5. present his findings along with his analysis process to others.

In summary, for an effective reasoning process, the user must have an overview of
what has been done and found. Therefore, to keep track of the exploration process and in-
sights, a history tracking mechanism and a knowledge externalization mechanism respec-
tively are essential. Hence, to support the analytical reasoning process in visual analytics,
a framework with both a history tracking mechanism and a knowledge externalization
mechanism is required.

3.3 Related work
We now present previous work in history tracking and in knowledge externalization.

3.3.1 History Tracking
A common approach to automatically record the exploration process is to capture low-
level user actions such as mouse events, keyboard events and to provide a linear history.
The user can revisit the linear history using an undo-redo mechanism. It is used for
recovery and reversal operations [12]. On performance of a new action by the user after
backtracking, the recent forward actions are deleted. Hence, the complete navigation is
not captured.

Another approach is to use a tree structure to capture the exploration process. In
GRASPARC [25], a problem solving framework which integrates the computation and
visualization process, a history tree is used to model the search for an optimal solution
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to numerical simulations. The nodes of the history tree hold snapshots of the parameters,
raw data and image representations at various stages of the analysis, and edges represent
the user navigation. It allows the user to select a snapshot as a new branch point, or to
select a sequence of snapshots for visualization.

In image-graphs [87], a graph representation is used to capture the parameter settings
during visual data exploration. The edges hold parameters, nodes display the resulting
images. The user can perform operations on the edges and nodes to produce new visu-
alizations. Since the image graph is a parameter-based interface, the rate of growth of
parameter settings makes it difficult to display and compare resulting images. A branch-
ing time model is used in Visage [44] to capture direct manipulation tasks during visual
data exploration. A time-travel interface is used to visualize the branching time model
that allows the user to revisit the analysis and reuse a sequence of direct manipulations on
a new branch timeline.

In scientific visualization, there is a growing interest in the management of scientific
data and the visualization process. Often, the scientific data changes during analysis and
the specifications of the visualization pipeline have to be tweaked for accurate results.
VisTrails [19], a scientific visualization workflow system, allows the creation and main-
tenance of visualization pipelines, and optimizes their execution.

The models described above provide solutions for backtracking visualization states
using history or workflow mechanisms. However, they do not enable analysts to capture
their reasoning while viewing the data.

3.3.2 Knowledge Externalization

The scope of information visualization tools is often limited to interactive visualization
to explore the data, and little support for information synthesis for analytical reasoning is
offered. Sometimes, users can annotate interesting patterns or objects in the visualization.
Annotations can be attached to hand-drawn marks that are used to highlight interesting
patterns or objects, for instance, encircling a region in the visualization. Denisovich [42]
uses hand-drawn marks on top of a map to select objects, similar to lasso selection, and
attaches annotations to them. The user can access the findings from the annotations list.
Ellis and Groth [49] use annotations to share discoveries in their collaborative data visu-
alization environment. The annotations are stored in a separate layer on top of the data
and enable expression of free thoughts. Often, annotations are used as attention pointers
to the synthesized information. If the number of annotations on top of the visualization is
large, it is difficult to express relations among the annotations.

In Harvest [61], knowledge is represented as concept instances. A concept is described
using a data ontology based on type, parent type and user-defined attributes. Users can
create a new concept or collect evidence to an existing concept. The concepts can be
modified, merged, or removed. The links between the concepts and evidence are main-
tained by the synthesis manager based on the data ontology. The synthesized knowledge
is visualized using a graph-like structure in the synthesis space. Sandbox [139] allows
analysts to jot down hypotheses and evidence using a white board metaphor within the
TRIST framework [75]. They can save references to any relevant information, including
documents, snippets, images, tables, etc.. Concept maps are automatically generated by
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Sandbox based on the text-to-concept map algorithm. Harvest and Sandbox offer support
for evidence marshalling. However, they do not associate synthesized concepts with any
visualization. It is not possible to review the synthesized concept using the corresponding
visualization that leads to the finding.

In sense.us [67] a discussion forum is used to express opinions on visualizations.
Users can share their findings or free thoughts by starting a new thread or adding to an
existing thread along with a link to the visualization. The threads within the discussion
forum are independent and do not provide an overview of the causal links between the
findings shared in the discussion forum. While performing complex analysis, it becomes
difficult for the human working memory to maintain causal links between various propo-
sitions in the discussion forum [21]. Jigsaw [118], a visual analytics system, helps to
visualize connections and relationships between entities extracted from document collec-
tions. It has a shoebox that enables users to capture entities and documents, to record hy-
potheses and to organize these into groups. Visualizations in Jigsaw can be bookmarked,
and linked to the items in the shoebox.

In summary, current visualization systems help to capture annotations on top of visual-
izations; and interesting findings such as notes, hypotheses, entities and their relationship
in the shoebox. Only Sense.us and Jigsaw maintain links between findings and visualiza-
tions. However, these systems do not capture the analysis process along with bookmarked
visualizations. Hence, it can be difficult to review items in the shoebox within the context
of the exploration process. Hence, they do not meet the requirements for supporting the
analytical reasoning process.

3.4 Approach
To satisfy the requirements for the analytical reasoning process through information vi-
sualization, we argue that the user has to be provided with three different types of visual
representations:

• Data view: visual representation(s) of the data;

• Navigation view: visual representation(s) of the exploration process;

• Knowledge view: visual representation(s) of the analysis artifacts and their causal
links.

The data view consists of interactive information visualization tools. The navigation
view provides an overview of the exploration process by capturing the visualization states
automatically. The knowledge view enables users to record their analysis artifacts and the
causal links between them. They can also organize the analysis artifacts in the knowledge
view to build a case to support or contradict an argument. They can establish a link be-
tween an analysis artifact in the knowledge view and a visualization state in the navigation
view. Hence, they can revisit a visualization state from both navigation and knowledge
views to review their analysis and validate their findings. After revisiting the visualization
state, they can reuse it to look for alternative views. Thus, the three phases of the ana-
lytical reasoning process (model construction, revision and falsification) are supported.
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This information visualization framework for supporting the analytical reasoning process
is shown in Figure 3.1.

Data View

Navigation View

Knowledge View

Figure 3.1: A visual analytics framework for supporting the analytical reasoning process.

A key feature in this framework is that it allows the user to establish a link between
the externalized knowledge artifact in the knowledge view and a particular visualization
state asynchronously. A visualization state can be associated with more than one analysis
artifact in the knowledge view. In the following sections, we describe the components of
the framework in detail.

3.4.1 Data View

The data view is a container for interactive information visualization tools to explore the
data. It has two components: visual representations and interactions. Visual represen-
tations can vary from a single visualization to multiple visualizations depending on the
nature of the data and the analysis. Often, the data is large and complex such that static
visualizations fall short. Hence, interactions are needed to explore the data by modifying
the data transformation, visual mappings and view transformation [30].

An interaction interface is defined as an interface that translates user actions such as
mouse events, key events and other input events into visualization specifications. These
interaction interfaces enable the user to apply changes to various stages in the visualiza-
tion pipeline [30] such as the data organization, data filtering, data mapping onto visual
representations and displaying these to the user. A dynamic query interface is used for
specifying data filters. A visual mapping interface is used to specify transformations from
data to visual representations, for instance to change shape encodings and color maps, and
to reconfigure axes. Direct manipulation is used to select objects for tracking or empha-
sis. A view settings interface is used to change camera parameters, overview and details,
panning and zooming. These interfaces are some examples of how interaction interfaces
help to specify visualizations interactively and to explore complex datasets rapidly.

3.4.2 Navigation View

The navigation view provides an overview of the exploration process by capturing the vi-
sualization states automatically. We now describe a history tracking mechanism to capture
the visualization states automatically.
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In interactive visualization, the dataset D is transformed into an image I based on a
specification S [128]. S includes visualization methods, attribute filters, graphical filters
applied through direct manipulation, color mappings, clustering and so forth. The user
provides the specification St to the system based on the current knowledge Kt−1 to gen-
erate the image It. Kt is the total knowledge gained by the user. The user repeats the
process of generating a new image It+1 by providing a new specification St+1 based on
Kt, until the desired results are achieved. Thus, the user navigates through the data by
changing S. Figure 3.2 shows the visualization state in the user navigation at time t.

System

User

St(D)

Kt-1 St

It

Kt

Figure 3.2: The visualization state in the user navigation at time t.

A new visualization state is recorded automatically when the visualization specifica-
tion is changed via an interaction interface. This allows users to roll back to previous
visualization states. When a visualization state is revisited, the image I is regenerated
based on S and D of that state. Then, they can reuse the revisited visualization state by
changing S and D. This creates a new branch, resulting in a tree structured navigation
path that is similar to a history tree representation [25].

a1 a2 a3 a4

a5 a6

a7 a8

(a) History tree showing navigation structure

a1 a2 a3 a4

a5 a6

a7 a8

t0 tn
time

(b) History tree showing navigation structure ordered by time

Figure 3.3: The navigation view.

Initially, we used a history tree representation to show the structure of the exploration
process where nodes represent visualization states, and edges between adjacent nodes
are labeled with the user action (see Figure 3.3(a)). The history tree is drawn using a
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a b c

d

Figure 3.4: An implementation of the navigation view using the history tree representa-
tion. (a) The settings interface. (b) A node marked with a star that represents a visu-
alization state with links to objects in the knowledge view. (c) The visualization state
description. (d) An overview of the exploration process captured by the navigation view.

horizontal-vertical tree layout. A new node is appended to the tree at the right in the
horizontal direction. A new branch is created below existing ones in the vertical direction.
To avoid cluttering between edges, a right heavy horizontal-vertical layout algorithm is
used [123]. Figure 3.3(a) shows the structure of the navigation. A branch represents a
revisit and reuse of an already existing visualization state.

To understand the temporal context, it is important to see the sequence of visualization
states along with the structure of the navigation. Figure 3.3(b) shows the structure of the
navigation ordered by time in the horizontal direction. Users can toggle between the two
representations during the analysis via the settings interface (see Figure 3.4(a)). They can
revisit the visualization states sequentially in the order of creation using back and forward
arrow keys. This action is similar to the undo-redo mechanism. Also, they can hover over
a node to get information about the visualization state (see Figure 3.4(c)) and jump to any
visualization state in the navigation view. An overview window is used for panning over
the history tree (see Figure 3.4(d)).

When a visualization state is linked to objects in the knowledge view, it is marked with
a star in the navigation view (see Figure 3.3 and Figure 3.4(b)). The current visualization
state in the navigation is highlighted in yellow.

3.4.3 Knowledge View

According to Larkin and Simon [84], a diagrammatic representation is better than a sen-
tential representation for searching and recognizing concepts and their relations. The use
of an appropriate diagram helps analysts to make all the possibilities explicit and reason
more rapidly and accurately [18]. Based on these premises, numerous diagramming tech-
niques such as mind maps, concept maps, cognitive maps, affinity diagrams, causal maps,
and so forth have been developed to facilitate the reasoning process [26]. However, in
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Add insight
Delete insight

Add note

Connector line

Group Note
Add Image

Slide Navigation

Figure 3.5: The knowledge view.

some cases just placing the concepts next to each other in some meaningful order will
already be sufficient. Hence, a knowledge view should be a flexible environment for an-
alysts to structure the analysis artifacts according to their thought process. We therefore
have chosen to design the knowledge view as a basic graphics editor. The knowledge
view is shown in Figure 3.5. It helps the users to construct diagrams to externalize their
mental models and structure arguments.

A note is the basic entity to record the findings. A note is shown as a rectangle or
an ellipse with centered text. A bitmap image from an external source, or a visualization
snapshot from the data view can be included in a note. Notes can be organized into a
group: a rectangle with a title. The tool supports multiple group levels. A connector line
can be drawn between notes, groups, and a note and a group. The connector line can
be drawn with or without directed arrows to represent causal relations between findings.
These entities enable analysts to record the analysis artifacts such as findings, assump-
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tions, hypotheses and causal relations; organize them into some schema; and build a case
to support or contradict an argument using a diagramming technique. Thus, the output
of the knowledge view can vary from simple placement of notes next to each other to a
highly structured and systematic argumentation based on a diagramming technique. The
knowledge view canvas can be panned in all directions if more space is needed. The
knowledge view uses a flip-chart metaphor, such that the analyst can create any number
of sheets to record the findings. In Figure 3.5, our aim to support the analytical reason-
ing process based on the processes in traditional reasoning theories is shown using the
diagramming techniques available in the knowledge view.

When an entity in the knowledge view is linked to a visualization state, it is marked
with a star as shown in Figure 3.5. Analysts can revisit visualization states by clicking on
the starred entities in the knowledge view. The knowledge view supports an undo and redo
mechanism for creating entities, rearranging and linking with a visualization state. The
linking is synchronized with the history tracking mechanism, described in the previous
section.

3.5 Prototype
For understanding the support offered by the visual analytics framework for analytic rea-
soning process, we implemented a prototype of the framework: Aruvi1. We developed
a data view consisting of a dynamic query interface, a scatterplot and a current selection
list, see Figure 3.6(a), (b) and (c) respectively. Scatterplots are extensively used in mul-
tivariate data analysis to identify correlations between attributes. A classic example of a
scatterplot combined with a dynamic query interface is the Dynamic Home Finder appli-
cation [136]. This approach is also found in many modern tools such as SpotfireTMand
GapMinderTM, to name a few.

The scatterplot in the data view can plot ordinal and nominal attributes on the x and y-
axes. In case of nominal attributes, the unique values of the attribute are sorted alphabeti-

1Aruvi means waterfall in Tamil, an Indian language. The flow of an exploratory data analysis is similar to
the flow of water. An analysis path is opportunisitic and non-linear similar to how a natural watercourse flows
towards a lake, a sea or an ocean from an elevation such as mountains. Also, there is a lot of variation within
the analysis path based on an analyst’s background knowledge, and data and tools availability similar to the
different types of waterfall. There are around 10 types of waterfall [76]: Block (water descends from a relatively
wide stream or river); Cascade (water descends a series of rock steps); Cataract (a large, powerful waterfall);
Fan (water spreads horizontally as it descends while remaining in contact with bedrock); Horsetail (descending
water maintains some contact with bedrock); Plunge (water descends vertically, losing contact with the bedrock
surface); Punchbowl (water descends in a constricted form and then spreads out in a wider pool); Segmented
(distinctly separate flows of water form as it descends); Tiered (water drops in a series of distinct steps or falls);
and Multi-step (a series of waterfalls one after another of roughly the same size each with its own sunken plunge
pool).

The flow of water is also similar to the flow of mind. Edward de Bono, a famous physician and an author,
is the originator of the term ‘lateral thinking.’ He proposed a water logic against the traditional thinking. He
contends that traditional logic is static, based on the solid foundations of ‘is’ and identity. In contrast to this
traditional ‘rock logic’, the ‘water logic’ is based on ’to’ and the flow of the mind: “What does this lead to?” as
opposed to “What is...?” According to him, this new logic results in a visual ’flowscape’, which allows you to
lay out and then look at your thinking.

Inspired by the water flow and its analogy to our thinking, we named our prototype Aruvi. Moreover, ‘vi’ in
Aruvi is a prelude to visual, visualization or visual analytics.
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Figure 3.6: The Aruvi prototype. The data view consists of (a) a Dynamic query interface,
(b) a scatterplot and (c) a current selection list. (d, e) The navigation view. (f) The
knowledge view.

cally and mapped onto an axis. When the attribute mapping of an axis of the scatterplot is
changed via a drop-down menu, the transition to a new mapping is animated. When one
of the axes is kept constant and the other axis is changed continuously, it aids to recognize
the change in the correlation between the new attribute and the previous attribute.

Three different mappings of the data are available in the scatterplot based on size
encoding. First, objects can be plotted on the scatterplot without size encoding. This
view helps to understand the correlation between the two attributes. Second, the objects
can be grouped according to the x- and y- axes values and the density of the objects at
each data point on the scatterplot can be plotted using size. Third, the object size can be
set based on an attribute value. This mapping enables comparison of three attributes at
the same time. These different mappings can be chosen via the size interface.

In a later version of Aruvi, a barchart visualization was added. The data shown in
the barchart can be sliced based on the values for a nominal attribute or intervals of an
ordinal attribute. The bar represents the count of objects within a category or a measure
of a category. The barchart is shown in Figure 3.7.

The visualizations in Aruvi are attached to a dynamic query interface. The dynamic
query interface automatically generates query widgets for the data attributes according
to the data type. For text and boolean data types, check box lists with unique values are
created. For numeric data types, sliders are created to specify range selection. Any change
in the attribute filters is reflected on the scatterplot dynamically. An attribute filter is reset
using the reset button.
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Figure 3.7: A barchart visualization in Aruvi.

The visualizations in Aruvi implement a Degree of Interest (DOI) model based on at-
tribute filtering through a dynamic query interface, and selection through a direct manip-
ulation technique. The objects on the visualizations are selected or unselected by picking,
and rectangles or lasso drawn on top of the visualizations. There are three levels of DOI:
low (objects that do not satisfy the attribute filters), medium (objects that satisfy the at-
tribute filters), and high (objects that satisfy the attributes filters and are selected through
direct manipulation). The color encodings for the three levels of DOI are gray, green and
orange respectively. Only the objects with medium DOI can be selected through direct
manipulation. The DOI of the objects does not change when the data mapping is changed
by changing the axes or size. Hence, it is possible to track or emphasize the interesting
objects during the entire exploration process. Analysts can also choose to show or hide
the low DOI objects. The three levels of DOI facilitate convergent analysis. However,
analysts can revert back to a previous DOI of the objects using the history tracking mech-
anism and continue the analysis with different DOIs for the objects. Hence, divergent
analysis is also supported.

The current selection list interface displays the list of objects with high DOI. When
there is no selection, it displays the list of objects with medium DOI. The object list in the
current selection interface can be added as a note in the knowledge view using the paste as
new note interface. The scatterplot allows zoom-in to a particular region of the scatterplot
via the Zoom in interface. The settings interface toggles the display of the size and show
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only filtered data interfaces. An information bar interface is used to display details about
the selection and size encoding. Finally, analysts can save, reopen or recover the last
analysis using a file menu.

3.5.1 Implementation Notes

Aruvi is implemented in C++ using Qt2, a cross-platform application and UI framework.
The Aruvi user interface has three views: the data view, the navigation view and the
knowledge view. These three views are loosely coupled using a backend system.

The backend system has three components: a data manager, a visualization factory and
a mediator. Qt’s signal and slot mechanism is used to coordinate interaction among these
components. Figure 3.8 shows the implementation architecture of Aruvi. It represents the
user interface and backend system components, and the key signals that loosely bind the
three views.
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Figure 3.8: Aruvi implementation architecture. It represents the user interface and back-
end system components, and the key signals that loosely binds the three views.

2http://qt.nokia.com/products
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The data manager loads data, processes queries and maintains objects’ Degree of In-
terest (DOI). We have designed an abstract data interface to support different data models
such as relational data, XML data, and so on. Currently, we have implemented support
for relational data, and the SQL query model is used to process queries. The primary key
of a dataset is used as object identifier. A DOI map is used to maintain objects’ DOI.
The data manager updates the hash table after processing queries, and emits a dataStat-
eChanged(String changeType) signal. The data change type includes data filtering via
dynamic queries and direct manipulation of objects in visualizations.

The visualization factory adopts the factory method design pattern to create visual-
izations using a type name. An abstract visualization interface defines a basic set of
methods such as create(String TypeName), setProperties(Map Properties), and getProp-
erties() methods; and a visualizationStateChanged(String changeType) signal. A new
visualization class defined in Aruvi inherits the AbstractVisualization interface, and has a
unique type name. Also, it has to emit the visualizationStateChanged signal, when a user
changes its specification. The visualization change type includes visual mapping (such
as axis-mapping), view setting (such as zooming and panning), and formatting (such as
resizing and rearranging visualization windows).

The mediator contains two components: a data view coordinator (DVC) and a history
tracking module (HTM). The DVC coordinates the interaction between the data manager
and the data view. The data view can request the data manager to process queries and
retrieve objects information via the DVC. The DVC also contains the description of the
current visualization state that includes properties of visualizations in the data view, data
query specifications and the DOI map.

The HTM processes requests for archiving a visualization state, restoring a visual-
ization state, and retrieving notes attached to a visualization state. The DVC sends an
ArchiveVisState request to the HTM, when the data manager emits the dataStateChanged
signal or a visualization emits the visualizationStateChanged signal. Based on the change
type, the HTM archives the current visualization state as a new visualization state or
merges it with the recent visualization state. The granularity of the history tracking can
be chosen in various ways. For instance, all changes to the visualization specification can
be captured. However, some heuristics can be applied to avoid too much low level detail.
For instance, in Aruvi when a user continuously changes the data filter in the dynamic
query interface, the changes are reflected in the visualizations, but are not captured by the
history tracking module. We found it to be convenient just to capture the visualization
state when the mouse pointer leaves the dynamic query interface and if at least one of the
filters has been changed. Other heuristics, like detection of (not necessarily continuous)
change patterns could be used and will be studied in the future. The base model itself
does allow for a variety of choices here.

The HTM maintains links between notes and visualization states. These links are
represented by stars both in the history tree representation and the knowledge view. The
HTM processes a user’s request to showVisState via either the history tree representation
or the knowledge view. It retrieves the description of the visualization state from the
archive, and requests the DVC to restore the visualization state in the data view. Also, it
processes a user’s request to retrieve a note via the history representation, and highlights
the matching note in the knowledge view.
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3.6 Use case

We now present a simple use case where a user explores a digital camera dataset (565
cameras with 15 attributes) using Aruvi. This use case is a constructed example to demon-
strate the support offered by Aruvi for the sensemaking process. There are several tasks
that the user might perform with the data, such as detecting trends and finding cameras
that meet his requirements. In the use case, we specifically emphasize on the sense-
making tasks: capture, review, reuse, share and present (discussed in Section 2.4 and in
Figure 2.10). The use case video is available at http://www.win.tue.nl/%7Eyedendra/ imgs/
chi1145-shrinivasan.mov.

To perform trend analysis, the user compares the digital camera attributes for different
years. For this comparison, he uses an interactive scatterplot in the data view. He records
the findings in the knowledge view using a mind map. The mind map is a diagram used to
represent ideas linked to and arranged radially around a central idea [27]. He records the
central idea — trend analysis — in note 1 (see Figure 3.6(1)). Firstly, he plots the number
of megapixels over the years. He records the finding in note 2 and links the note to the
current visualization state in the navigation view. Subsequently, he compares the zoom-
ratio, eyepiece and download interface attributes against year by changing the scatterplot
y-axis. Notes 3, 4 and 5 are his findings; each of these notes is linked to the corresponding
visualization state in the navigation view. He then checks whether the selected cameras
have internal memory and records the findings in note 6. He completes the mind map by
connecting notes 2, 3 and 4 with note 1, and note 6 with note 5 using the connector line
with arrow.

Based on the trend analysis, the user defines requirements for selecting a camera. He
revisits the visualization states by clicking on the notes recorded in the knowledge view
to gain an overview of his analysis. He records those requirements in note 7. In this
case, he is looking for a recent camera from manufacturers such as Canon, Nikon, and
Sony with 7 megapixels and with a digital TTL (through-the-lens) eyepiece. He revisits
the visualization state where the cameras with digital TTL were selected by clicking on
note 4. Then he changes the size encoding to the megapixels attribute. This creates a new
branch in the navigation view (see Figure 3.6(d)).

Using the dynamic query interface, the user selects those manufacturers recorded in
note 7 and sets the megapixels attribute range to above 7 megapixels. Three cameras
match the requirements. He records this finding in note 9. Then, he plots the zoom-ratio
attribute against year, and picks the most recent camera with high zoom-ratio satisfying
his requirements. The scatterplot in Figure 3.6(b) highlights this camera. He records this
state with note 10. The user connects notes 4 and 9, and 9 and 10 to indicate the selection
process. He then groups notes 7, 9 and 10 used for the camera selection. Finally, he
archives the analysis along with his findings and decision. This archived analysis can be
shared and presented to others using Aruvi.

In this use case, the user combined both the information foraging loop and sensemak-
ing loop opportunistically to reason about the camera dataset and to select cameras. The
sensemaking tasks highlighted by this use case are to capture key aspects of the analysis
(by recording notes and visualization states, and connecting and grouping notes); and to
review the analysis (by revisiting visualization states via notes, and revising visualiza-
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tion states). The share and present tasks were not much emphasized here. Currently, in
Aruvi, we support only asynchronous sharing of analysis and findings. Thus, using the
three views in Aruvi, the user can capture, review, reuse and share the exploration process
and findings which are requirements for supporting the sensemaking process in visual
analytics (as discussed in Section 2.4).

3.7 User Study
We conducted a user study to understand the support offered by Aruvi to the analytical
reasoning process. The user experiment focused on the quality of results achieved using
Aruvi. Further, the user requirements were captured for adding new features and for
enhancing the existing features of Aruvi to improve the analysis process.

We invited analysts from different domains to participate in the user study. Four
analysts participated in the final user study. The analysts came up with their own datasets.
Analyst 1, a usability researcher, was interested in understanding the qualitative output of
a usability analysis. The analyst was using a scatterplot to generate hypotheses on the data
and perform an initial assessment to decide on the choice of statistical analysis method
to draw clear conclusions. Analyst 2, a software quality consultant, was interested in
the correlation between the software metrics of a software project to assess the software
maintainability and design test cases. The analyst so far was using a pivot table [72] to
arrange and sort the columns for comparison. Analyst 3, a software quality modeling
researcher, was interested in identifying the outliers and build a case for software analysis
based on the software metrics data of a software project. Analyst 4, an urban planning
researcher, was interested in chronological building characterization for a city in India to
understand how the buildings were developed and their attributes were shaped.

The study had four steps: a training session, an exploration session, an exit ques-
tionnaire and an interview with the analyst. Following the training session, the analysts
were asked to perform an analysis of their own dataset using Aruvi without a time limit.
Usage characteristics were captured while the analysts performed the analysis. After the
exploration session, each analyst was interviewed to reflect on the following:

• Which features of Aruvi made a difference in their analysis process?

• Why were those features important for them?

• Express opinions on the prototype in general, especially, its positive and negative
aspects.

Further, if there were any interesting usage patterns observed during the exploration
sessions, the analyst was asked to explain the intention of such usage behavior.

3.7.1 Data View Usage
The analysts were satisfied with the fairly straightforward visualization offered. They
commented that the interactive scatterplot visualization improved their analysis process.
The analysts expressed that the interactive scatterplot was quite handy since they need not
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look back into the data to modify the data selection and visualize it. Figure 3.9 summa-
rizes the usage pattern of the scatterplot with dynamic query in the data view. The usage
pattern varied based on the different analysis processes of each analyst. Analyst 1 used
mostly dynamic query and toggle show selected interfaces; while other analysts predom-
inantly changed axes. The analysts commented that size encoding is useful. Analyst 4
used size coding based on object density for the entire analysis. Analyst 2 and 3 used se-
lection to track software modules’ behavior while comparing various different attributes.
Analyst 2 suggested adding trend lines to the scatterplot, and displaying statistical infor-
mation such as x and y axes averages, and correlation coefficients of the current selection
against the entire dataset. They also expressed a need for more visualizations. Analyst
1 asked for a scatterplot matrix for simultaneously plotting different datasets. Analysts 2
and 3 said linking scatterplot visualizations to an UML diagram would help them to have
an overview of the architecture of the software. Analyst 4 asked for a map visualization
to get a spatial context of a pattern seen in the scatterplot.
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Figure 3.9: The data view usage pattern.

3.7.2 Sensemaking Process Summary

To support sensemaking process during an analysis process, we designed the knowledge
view that enables analysts to capture and organize findings along with links to visual-
ization states. Analysts can review analysis via findings in the knowledge view, and via
exploration overview in the navigation view. We summarize the knowledge view and the
navigation view usage pattern of analysts during their sensemaking process.
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Capture and Organize Findings

Analysts recorded findings using notes in the knowledge view. To build a case, analysts
grouped notes, and created causal relationship between notes using arrows. Figure 3.10
shows artifacts used by the analysts during their sensemaking process. We found analysts
either used sheets or groups to organize findings into topics. Analyst 2 used only sheets
for this purpose. Analysts 1 and 4 organized major topics using sheets, and grouped notes
into sub-topics within each major topic. Most of the notes recorded were findings, and
few were assumptions, hypotheses and reminders.
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Figure 3.10: The knowledge view usage pattern.

After recording notes, analysts spatially rearranged notes and moved notes to differ-
ent groups. Analyst 1 had a high artifacts rearrange rate. She rearranged the analysis
artifacts quite often in the middle of the analysis. Later, during the interview, she ex-
plained that rearranging notes helped her to restructure the analysis process and look for
clear conclusions. We discuss her analysis process in Section 3.8.2. Analyst 3 recorded
findings at random locations in the sheets during his analysis. After completing his anal-
ysis, he rearranged and moved notes to different groups. His analysis process is discussed
in Section 3.8.1. Figure 3.11 summarizes the artifacts rearrange rate for the analysts.

Analysts found linking visualization states and artifacts in the knowledge view help-
ful. Figure 3.12 summarizes the linking pattern of analysts. More than 60% of the ar-
tifacts in the knowledge view were linked to visualization states. By connecting notes
using arrows, analysts created a semantically richer analysis structure than the automatic
analysis structure captured by the history tree representation. On average, 35% of the
visualization states were externalized. Analysts found externalizing visualization states
with notes in the knowledge view intuitive. It helped them to capture important aspects
of the exploration process, and to easily keep track of them during their entire analysis
process.
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Figure 3.11: Artifacts rearrange rate expressed as the total number of artifacts rearranged
as a percentage of the number of artifacts.
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Review and Revise Analysis

Analysts reviewed past visualization states during their sensemaking process. They revis-
ited visualization states either using linked artifacts in the knowledge view or the history
tree representation. Mostly, analysts reviewed visualization states via notes. They used
the navigation view either to refer back to recent steps and to compare results, or to undo
actions. Figure 3.13 presents an overview of visualization state revisits by analysts.
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Figure 3.13: Visualization states revisit pattern.

After revisiting visualization states, most often analysts reused visualization states.
They mainly reused visualization states to look for alternative solutions. Figure 3.14
summarizes the branching in the analysis process created by reuse of visualization states.
Analyst 1 had two main hypotheses that she tried to verify using different analysis paths.
Analyst 4 investigated characterized buildings using three analysis paths, which is clearly
reflected by his branching pattern. He affirmed this reasoning behind the branching pat-
tern during the interview. Analysts 2 and 3 revisited and reused last visualization states to
undo actions during their analysis. Also, Analysts 1 and 4 edited links between visualiza-
tion states and notes when they found a better visualization state supporting their findings.
Figure 3.15 presents an overview of link edit percentages for analysts.

3.7.3 Questionnaire Results
After the analysis session, the analysts were asked to fill out an exit questionnaire about
their experiences. The questionnaire is based on the Unified Theory of Acceptance and
Use of Technology (UTAUT) model. The model provides guidance to assess the likeli-
hood of success for new technology introductions and helps them understand the drivers
of acceptance in order to proactively design interventions targeted at populations of users
that may be less inclined to adopt and use new systems [129]. The model provides four
core determinants of intentions to use information, such as performance expectancy, ef-
fort expectancy, social influence and facilitating conditions, and up to four moderators,
such as gender, age, voluntariness and experience for each determinant.
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Figure 3.14: Branching pattern. A branch in the exploration process is created when an
analyst revisits and reuses a past visualization state.
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alization state when they found a better visualization state supporting their findings.
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Performance expectancy focuses on the usefulness of the system; effort expectancy
focuses on the degree of ease of use; social influence focuses on the degree to which an
individual perceives that important others believe he or she should use the new system;
and facilitating conditions focuses on the degree to which an individual believes that an
organizational and technical infrastructure exists to support use of the system.

For the preliminary assessment of Aruvi, we choose two determinants of intentions
to use — performance expectancy and effort expectancy to reflect on the quality of the
results and ease of use. Of the four moderators, gender, age and experience influence the
performance expectancy and the effort expectancy.

Items for the performance expectancy include perceived usefulness of Aruvi to syn-
thesize findings, improve the performance of the analysis, improve the productivity of the
analyst and improve the effectiveness of the analyst. Items for the effort efficiency in-
clude ease of use for exploring the data, recording the findings, synthesizing the findings
to build a case and disseminating the findings. The analyst is asked to rate these items on
a 5-point Likert scale.

3.7.4 Analysts’ Feedback
The questionnaire and the analysts’ feedback are presented in Table 3.1. Since the number
of the test subjects is small, statistical analysis is not possible; and the moderators such
as gender, age and experience do not affect the summation of item responses to create a
score for it. Figure 3.16 summarizes the results of the exit questionnaire on performance
expectancy and ease of use. Overall, the analysts agreed that Aruvi improved their quality
of results by effectively supporting information synthesis (capture and review findings)
process.
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Figure 3.16: A summary of exit questionnaire results on performance expectancy and
ease of use. The complete results are shown in Table 3.1.

The knowledge view was one of the key features that supported the sensemaking
process by building a bridge between visualization and knowledge gained. They found
recording the findings, linking them to the visualizations and organizing them very impor-
tant for their analysis process, and the use of Aruvi improved the quality of their results.
The knowledge view helped to visualize a variety of aspects, for instance, the analyst’s
hypotheses and assertions, and restructure the analysis to build a case. They also recorded
their free thoughts apart from the analysis artifacts linked with visualizations.
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Analyst 1 said “the knowledge view is simple and easy to use for grouping hypothe-
ses, and for quickly constructing and visualizing the structure of all hypotheses.” Also,
she said that rearranging artifacts in knowledge view during the analysis helped her to
restructure the analysis process to look for clear conclusions. Analyst 2 said “Aruvi is
really cool to explore the software metrics rapidly and it will help me create an optimal
method for analyzing the data in the future.”

The analysts found the data view (interactive scatterplot and dynamic query interface)
and the knowledge view easy to use. However, interacting with Aruvi without any previ-
ous training required some mental effort. They experienced difficulty in comparing past
visualization states during a review process. The history tree representation also became
incomprehensible for a lengthy analysis process, and did not help in gaining overview of
the analysis process.

For analyst 2, the sequence in the navigation view was important, since it represents a
workflow. He wanted to rearrange and purge certain visualization states in the navigation
view to create an optimum analysis workflow template. This is particularly important
for the analyst since this analysis has to be repeated for different datasets quite often.
Since the history tracking module captures the dataset and visualization specification of
the visualization states separately, workflow template extraction is possible. This is a
promising use case for reusing visualization exploration processes.

Analyst 3 expressed difficulties in finding the relevant notes in the knowledge view
and suggested a text based search to locate the notes within the knowledge view. He felt
that the branching in the history tree showed the reuse pattern, but it did not clearly bring
out his implicit thought process. Also, he wanted to group visualization states between
axis changes in the scatterplot to get an overview of the analysis.

For analyst 1, the revisit from the knowledge view was easier and more meaningful
than from the navigation view. However, the analyst used the navigation view to back
track recent visualization states. The analyst also recorded notes on the revisited nodes.
It supports the fact that knowledge creation is an unsystematic process; and the analyst
wants to back track to see what has happened in the recent history to affirm a thought.
Since the history tracking mechanism captures the visualization states automatically, the
analyst can get access to the exhaustive list of visualization states via the navigation view.
On the other hand, the knowledge view enables the analyst to record visualization states
selectively. Hence, the analysts can opportunistically use the navigation view and knowl-
edge view to revisit the visualization states for reviewing and validating their findings,
and reusing the visualization to look for alternate views. Analysts 1, 2 and 4 expressed a
need for export of the output of the knowledge view and visualizations as a report or pre-
sentation file. The analysts appreciated the possibility to save and restore their analysis.

3.8 Case Studies

We next present two case studies based on the analysis process of two analysts (1 and 3)
who participated in the user study discussed in the previous section.
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3.8.1 Software quality analysis

In this case study, we describe an analysis process where a software quality analyst ex-
plored software metrics data of a software project. The analyst explored the software
metrics data to identify a so called god class (a single class that does everything and lacks
any abstraction) and to understand the complexity in the interaction among classes in the
project. A scatterplot attached to a dynamic query interface is used to understand the
relationship between software metrics of the project.

The analyst first compared the number of classifier instantiation attribute against the
number of setter methods and number of messageSent attributes. The analyst recorded
his findings in notes 1 and 2 as shown in figure 3.17. The analyst recorded a reminder
on how to use size encoding in the scatterplot using note 3. Subsequently, the analyst
chose size encoding based on the numOps (number of operations) attribute. The analyst
found immediately an outlier — a class with a large number of operations that was neither
instantiated nor sent any messages (highlighted in Figure 3.19). The analyst suspects this
class is a god class. The analyst recorded this finding using note 4, and wanted to further
validate this assert.

As the analyst continued the exploration, he also recorded some more classes as god
class suspects. These classes were recorded using notes 5 and 7. For validating the claim,
the analyst compared the depth of inheritance tree (DIT) against the class to leaf depth
(the longest path from the class to a leaf node in the inheritance hierarchy below the class)
and numOps attributes. The findings were recorded using notes 6 and 8. The analyst was
surprised to see a lack of positive correlation between the DIT and the numOps.

Next, the analyst investigated the class association. The analyst found that the sus-
pected god class did not have many associations. The analyst elaborates this finding
using notes 9 and 10. Then, the analyst studied the interaction pattern of the classes.
First, the analyst compared the number of variables against the numOps (note 11). Next,
the number of messageSent attribute was compared with the number of messageReceived
attribute. Since the suspected god class did not have any interactions, it was confirmed to
be a god class. The analyst elaborated his reasoning for identifying the god class using
note 13, and wanted to investigate the class using an UML diagram, which is not sup-
ported in the prototype. Towards the end of the analysis, the analyst recalled the lack of
correlation between the DIT and the numOps was because the inherited operations were
not considered while counting the numOps. The analyst then compared the DIT against
the inherited operations attribute (note 15).

After completing the analysis, the analyst organized his findings into four groups.
The analyst grouped uninteresting views into the initial exploration group (see figure
3.18(a)); findings concerning the interaction pattern study into the interaction group (see
figure 3.17(b)); findings related to the DIT attribute into the inheritance group (see fig-
ure 3.18(c)); and findings related to class association into the structure group (see figure
3.18(d)). The analyst expressed the organization of the findings into the interaction group
clearly summarized the identification of the god class.
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Figure 3.17: The knowledge view of the software quality analyst during the exploration
process.
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Figure 3.18: Findings organized by the software quality analyst after the exploration pro-
cess.
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Figure 3.19: The scatterplot showing an outlier class (highlighted in orange) which the
software quality analyst suspected to be a god class.

3.8.2 User experiment data analysis
A usability analyst was interested in understanding the results of perceptual user experi-
ments. The analyst conducted a user experiment to evaluate how people perceive corre-
lation from graphical representations of data. Two such representations, scatterplot and
parallel coordinate plots, were used, and furthermore the number of samples (nSize), the
correlation coefficient (zScore) and the time limit (tlimit) were varied. Users were re-
quested to give their judgment of the correlation on a five point scale (user input). The
analyst wanted to generate hypotheses by understanding the relationship between the con-
trol variables and the user observed correlation during the experiment. Based on this ini-
tial assessment the analyst wanted to choose appropriate statistical analysis methods that
will help her to draw clear conclusions.

First, the analyst focused on the effect of the sample size on the correlation judgment.
The findings were recorded using notes 2 and 3 (figure 3.20(2) and figure 3.20(3)) and
were grouped into Hypothesis 1 (figure 3.20(1)). Further the analyst refined the hypothe-
ses for each graph type considering the time limit control variable. The refined hypotheses
were recorded using notes 5, 6, 8, and 9 and were summarized using group boxes 4 and
7. The analyst bookmarked the key visualization states using notes 2, 3, 11, and 14.
These notes were often used to revisit the key visualization states and revise them to re-
fine the hypotheses. This reuse pattern is clearly seen in the branching structure of the
analyst’s exploration presented in the navigation view (figure 3.21). Finally, the analyst
linked notes 12 and 15, and 13 and 16 to represent a weak relation between the hypotheses
generated on the two graphical representations.
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Figure 3.20: The knowledge view of the user experiment data analyst. The numeric labels
are used to describe her analysis process.
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Next, the analyst investigated the correlation between the shown and perceived cor-
relation. The findings were recorded using notes 11 to 16, and grouped into Hypothesis
2 (see figure 3.20(10)). During the interview, the analyst expressed that “the knowledge
view is simple and easy to use for grouping hypotheses, and for quickly constructing and
visualizing the structure of all hypotheses”. The analyst rearranged the notes quite often
in the middle of the analysis. She explained that rearranging helped to restructure the
analysis process.

Figure 3.21: The navigation view shows an overview of the exploration process done by
the user experiment data analyst.

3.9 Discussion
Currently, visual analytics designers focus on creating interactive visual interfaces to ex-
plore data using design models explained in Section 2.1.2 and Section 2.2.2. For interac-
tive visualization, Shneiderman [114] provides a list of seven high level tasks — overview,
zoom and filter, details-on-demand, relate, history, and extract — to support interactive
data exploration. Extending these tasks to visual analytics, Keim et al. [78] emphasize on
analyze first; show important; zoom, filter and analyze further; and details on demand.
Interactions in visual analytics systems are designed to accomplish these basic tasks. For
solving well-defined problems, users can compose these tasks in a structured way. How-
ever, for solving complex problems involving large data, they compose these basic tasks
opportunistically, and often the structure of the analysis process tends to be complex.

Klein’s recognition-primed decision making model [80] states that “the analysis pro-
cess in a complex problem solving rarely arises straightforwardly, but rather results from a
long and recursive process with back tracking and erratic switching among the following
activities: thinking about ideas, production, reorganization, modification, and evaluation.”
However, to support these activities the user must be aware of ‘what has been done and
found’. Mica [52] claims that maintaining an awareness about the decision process is
critical because “there is considerable evidence that a person’s manner of characterizing
a situation will determine the decision process chosen to solve a problem.” It is necessary
for the analyst to identify important elements of the situation and relationships between
these elements for maintaining the awareness about the decision process [14].
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We found an interesting usage pattern emerging from the problem solving process of
the analysts participating in our user study. The analysts explicitly used the knowledge
view and the navigation view to support their awareness of the analysis context. The an-
alysts opportunistically exploited the possibility of linking the findings in the knowledge
view to the visualization states in the navigation view. They selectively placed the impor-
tant visualization states (for the analyst) in the analysis path as notes in the knowledge
view. They used the knowledge view as a hypertext editor to refer to key visualizations.
These notes were used to revisit and review the visualizations to get an overview of what
has been done. The analysts also used those notes to revisit and reuse the visualization for
searching alternative solutions or hypotheses. By connecting notes, they could not only
structure their analysis output, but also build a semantically richer analysis structure than
the automatically captured analysis structure shown in the history tree representation.

In general, we believe that our user studies reveal that incorporation of a knowledge
view, consisting of a simple graphical editor with the possibility to link to visualization
states, is a useful addition to a standard visual analytics tool. Also, the history tree rep-
resentation is useful, but it does not seem optimal to provide an overview of the analysis.
It only presents the structure of the exploration process, but fails to present important ele-
ments of the analysis and relationship among these elements. Hence, we need to identify
better visual representations for the navigation view to automatically provide an overview
of the analysis process. Figure 3.22 summarizes the topics discussed in this dissertation
based on the feedback of the analysts and the reviewers (of the paper [117] based on
which this chapter is written).

Chapter 3
User study

1. Create analysis 
templates  for reuse 
and compare purposes;

2. Better automatic 
exploration overviews; 

3. Manage large collection 
of notes.

Chapter 4
Selection 

Management

Chapter 5
Exploration 
Awareness

Chapter 6 
Connection 
Discovery

Figure 3.22: The topics discussed in this dissertation based on analysts’ and reviewers’
feedback.

3.10 Conclusion
In this chapter, we presented a sensemaking framework for visual analytics that contains
three integrated views: a data view, a navigation view, and a knowledge view. The sense-
making is facilitated by extending visualization support to externalize the mental models
and link the analysis artifacts to the visualizations. It also enables the analysts to revisit
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the visualization states to review and validate the findings, and reuse these to look for
alternate solutions or hypotheses. Finally, the analyst can organize the externalized anal-
ysis artifacts to build a case. Thus, users can capture, review, reuse and share an analysis
process using the navigation view; and findings using the knowledge view. Four analysts
participated in a user study with their own datasets. The perceived usefulness of Aruvi
was discussed based on the usage pattern of the exploration sessions and the interviews
conducted with the analysts. Analysts found that recording the findings, and linking them
to the visualizations and organizing them were very important for their analysis process.
Analysts agreed that the use of Aruvi improved the quality of their results.

During exploratory data analysis, selection techniques such as dynamic queries and
brushing help users to progressively converge on interesting data items. Also, they can
edit these selections, and thereby perform a divergent analysis. These convergent and
divergent analyses using selection techniques are illustrated in the use case discussed in
Section 3.6. In the next chapter, we present an approach to capture and reuse these selec-
tions more explicitly during exploratory data analysis; and enable analysts to effectively
reason based on data selection.
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Chapter 4

Select & Slice

Divide and conquer — A political maxim advocated by the ancient Roman
and French rulers, and widely used by the British colonization during the
18th and 19th century.

During exploratory data analysis, selection techniques such as dynamic queries and
brushing are used to specify and extract items of interest. In other words, users define
areas of interest in data space that often have a clear semantic meaning. We call such
areas Semantic Zones, and argue that support for their manipulation and reasoning with
them is highly useful during exploratory analysis. An important use case is the use of
these zones across different subsets of the data, for instance to study the population of
semantic zones over time. To support this, we present the Select & Slice Table. Using
this table, users can capture, reuse and combine zones; and compare and trace items of
interest across different semantic zones and data subsets. We present four case studies to
illustrate the support offered by the Select & Slice table during exploratory analysis of
multivariate data.

4.1 Selection Management
During interactive data exploration, users select data items to drill down or highlight items
in the visualizations. For selecting these data items, they use interaction techniques such
as dynamic queries [13] and brushing [20, 32], to specify conditions over functions of
data attributes. During exploratory analysis, these selection techniques help users to pro-
gressively converge on interesting data items. Also, they can edit a selection specification,
and thereby perform a divergent analysis.

Current visual analytics systems offer limited support to explicitly capture and reuse
selections during an analysis. Often, brushing leads to selection of items, and when users
change the visual mapping they can keep track of these selected items [65, 2, 9, 132].
When they specify a new selection, the previous selection is lost. Hence, data selection
is often transient in these visualization systems. It is difficult for users to manually keep
track of these selection specifications during a long analysis process. Also, they cannot

59
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effectively reuse selection specifications, and compare the results of these specifications.
Therefore, for effective reasoning based on data selection, we argue that support for cap-
turing and manipulating selection specifications is highly useful during an exploratory
analysis.

Areas of interest in data specified by data selection usually have a clear semantic
meaning, unless users select items by accident. We enable users to capture such areas
of interest in data as Semantic Zones or simply Zones. A zone holds either a selection
specification, or a set of items extracted using the selection specification. It has a label
provided by a user. Figure 4.1 shows four zones: rich nations; developing nations; poor
nations; and India, Brazil, and Kenya. Also, in current visual analytics systems, users
cannot quickly slice and dice the selected items over different subsets of the data to study
the distribution of these items. Examples of such tasks are ‘how many nations in different
continents belong to each zone?’ and ‘how did the nations move to different zones over
time?’

A popular approach to slice and dice a multi-dimensional dataset is a pivot table.
The pivot table provides an aggregate summary of a data attribute by cross-tabulating the
dimensions of a dataset. A visualization spreadsheet is another approach that helps users
to compare visualizations representing different data sets side-by-side [34]. It provides
extensive cell manipulation operations similar to a spreadsheet. However, none of these
interfaces can be directly used to manage and manipulate zones during an exploratory
data analysis, for instance to see the contents of zones for different subsets of the data.

In this chapter, we present a table interface that enables users to capture and manip-
ulate zones during an exploratory analysis (see Figure 4.2). The table interface is used
in addition to a data view that contains interactive data analysis tools including visual-
izations. Firstly, users can externalize zones from the data view and archive these in the
header along one axis of the table. The labels of zones are displayed in the header of the
axis. Secondly, users can retrieve items from different data subsets. The data subsets are
arranged along the other axis of the table; the labels of the data subsets are displayed in
the header of the axis. A cell contains a set of items from a data subset that matches the
specification of a zone. Thus, items of datasets are sliced based on the specifications of
zones in the table. Hence we call this interface the Select & Slice table. Items in cells can
be visualized in various ways, as a count, as an aggregation of a measure, or as a separate
visualization, such that the table gives an overview of the relationship between zones and
data subsets.

Next, users can edit specifications of zones using a zone editor attached to the Select
& Slice table. During an analysis, they can reuse a zone specification by dragging its label
from the table onto the data view. Then, users are enabled to drill down to a particular data
set from the Select & Slice table in the data view. Next, they can logically combine the
sets of items in the cells, and highlight the resulting items in the data view using simple
mouse operations. Also they can study the distribution of items in the table using a set
comparison operation and a keyword search. Thus, we adopt Shneiderman’s information
visualization mantra — overview first, zoom and filter, and details on demand — for
manipulating zones during an exploratory analysis. Finally, we present four case studies
that were conducted to understand the support offered by the Select & Slice table during
exploratory analysis of multivariate data.
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Figure 4.1: Four semantic zones shown in two visualizations. A zone has either a data
selection specification or a set of items extracted using a data selection specification. It
has a label provided by a user.
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Figure 4.2: A Select & Slice table showing the distribution of items of the four zones
across different subsets of two datasets (Data 1992 and Data 2004). The length of a bar
in a cell represents the number of nations.
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4.2 Related Work
First, we discuss existing techniques to capture and archive selections in visualization
systems. Next, we present visualization techniques that are closely related to the Select
& Slice table.

4.2.1 Selection Management
Several visualization systems help users to capture areas of interests in data specified
through selection techniques. Visualization systems such as Aruvi [117], Cross-filtered
views [135], Gapminder [2] and Flare [65] capture brushing as a declarative query, and
reuse it when the view is transformed. QlikView [8] tracks the users’ selection process
and helps them to define alerts based on the data attribute criteria. Doleisch et al. [46]
present a framework for capturing features using brushing, and archive these features
using a feature definition language. They use a tree view to archive and edit the features.
These archived features are used to steer 3D visualization of computational simulation
data. Similarly, streamline predicates [108] are used for capturing flow structures while
visualizing flow simulation data. In interactive analysis of simulation data [82], function
graphs of attributes are used to specify areas of interest. These systems mainly focus on
archiving and editing those regions of interests during exploratory analysis. They do not
support reuse of selection specifications on subsets of data, and the comparison of the
results of these specifications.

In Tableau [9], users can create and analyze subsets of data using computed sets. A
computed set is used as a derived dimension in the analysis. However, the computed sets
cannot be simultaneously sliced across different subsets of data. Visualization systems
such as XMDV [91] and Mondrian [121] support brush editing. Users can change the
logical composition of brushes during an exploration process. XMDV can simultane-
ously display multiple N-dimensional brushes to compare brush results. Using a similar
approach, Elmqvist [51] supports multiple brushes in a scatterplot. Chen [32] uses a
data-flow model to define multidimensional brushes. The number of brushes that can be
simultaneously displayed in visualizations (XMDV and Mondrian), and tracked during
animation (Aruvi, Gapminder and Flare) is limited. Moreover, in all these systems, users
cannot simultaneously reuse these brushes on different subsets of data, and compare the
results of these brushes side by side.

4.2.2 Visualization techniques
Visualization techniques help users to interactively explore multi-dimensional data. Ex-
amples of such techniques are interactive axis reconfiguration, tables, re-orderable matrix,
multi-dimensional scaling, dimensional stacking and glyphs. The Select & Slice table
uses a tabular approach to slice and dice items of datasets using zones. This approach is
closely related to spreadsheets and pivot tables.

A spreadsheet displays a grid of cells. A spreadsheet cell contains a value, or a formula
that defines the content of the cell by combining values of other cells in the spreadsheet.
When the content of a cell is changed, the sheet is automatically re-calculated. In a vi-
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sualization spreadsheet [34], cells contain visualization operators that transform data into
views. When the content of a cell is changed, all views in the spreadsheet are automat-
ically updated. In contrast to a spreadsheet, users cannot directly edit contents of cells
in the Select & Slice table. They can only edit the specifications of zones and subsets of
datasets to change the contents of cells; and cells provide an overview of the relationship
between zones and data sets. As a result, spreadsheets offer much flexibility and focus on
management and reuse of data flows; whereas the Select & Slice table aims at offering
ease of use for the management and reuse of selection specifications.

A pivot table, found in spreadsheet programs such as Microsoft Excel and OpenOf-
fice.org Calc, helps to slice and dice multi-dimensional data. A pivot table provides an
aggregate summary of a data attribute by cross-tabulating the dimensions of a dataset. The
pivot table has hierarchical clusters of data attributes along its row and column headers.
Polaris [120] adopts a tabular layout similar to a pivot table; its cells have visualizations
automatically chosen based on the composition algebra and the graphic design criteria. In
contrast to the pivot table and Polaris, the Select & Slice table headers have zones along
one axis of the table and subsets of data along the other axis of the table. Also, a cell con-
tains items retrieved from a data subset that match the specification of a zone. It provides
visual summaries of the items in various ways, as a count, an aggregation of a measure,
or as a separate visualization. The pivot table shows grand summaries of the data field
at the end of the rows and columns. Items in the cells of the Select & Slice table are not
mutually exclusive, as the zones can define overlapping areas of interest in data. Hence,
the table cannot show grand summaries at the end of rows and columns.

In summary, a spreadsheet offers much flexibility, but does not directly support han-
dling of user defined semantic zones and subsets of the data; a pivot table is too rigid in
the sense that along both dimensions of the table the data have to be partitioned. We argue
that the solution that we provide, that is, a combination of user defined zones and dataset
slicing, is often very useful for analysis and visualization purposes. In the following sec-
tion, we describe the implementation of the Select & Slice table to support capturing and
manipulating zones during an exploratory analysis.

4.3 Approach
To support reasoning based on data selection in visual analytics, we enable users to

• construct the Select & Slice table during an exploration process by

– capturing the selection specifications or selected items from the data view as
zones with user-defined labels;

– retrieving items from different subsets of data using zones; and

– visualizing the retrieved items in various ways, as a count, as an aggregation
over a measure, or as a separate visualization.

• study the distribution of the items in the table;

• support drilling down to a particular subset of data from the table in the data view.
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The Select & Slice table is implemented in Aruvi discussed in Section 3.5. The archi-
tecture of Aruvi was modified to simultaneously access multiple data sets from different
databases during an analysis. Users provide a unique identifier to a dataset while loading
it into Aruvi. The Select & Slice Table is implemented as a part of the knowledge view. So
far, the knowledge view enabled users to capture interesting aspects of their exploration
process by bookmarking visualizations, and recording and reordering findings using dia-
gramming techniques. They can organize findings to build a case. Similarly, the Select &
Slice table can also be used to build a case by manipulating zones, and by studying the
distribution of items retrieved from datasets for zones.

We make use of a classic cars dataset from the 1983 ASA Statistical computing and
graphics data expo (http://stat-computing.org/dataexpo/1983.html) to illustrate the fea-
tures of the Select & Slice table. The dataset contains 406 cars with 9 attributes such as
model name, mpg, number of cylinders and acceleration.

4.3.1 Constructing the Select & Slice Table

Encoding Selection

We encode selections specified by users in the data view using a SQL-like query lan-
guage as in earlier systems (e.g., [100, 65, 86, 43]), and graphics operations such as
object in polygon test. A selection specification consists of conditions over functions of
data attributes. In Aruvi, users can specify a selection using dynamic query widgets and
brushing. First, items are optionally filtered using dynamic query widgets. These dy-
namic queries are directly expressed using SQL clauses. Then, a brush can be used to
select items in the visualizations. A brush is specified by picking items, by dragging a
rectangle, or by drawing a lasso over items in the visualizations. Picking selects an item
using its object id (primary key). A rectangle brush is expressed using SQL BETWEEN
or IN operators. For a lasso selection, first its bounding box is expressed as a rectangle
brush; then, the selected items are identified using an object in polygon test. The type of
visualization determines how these SQL and graphics operators are applied on attributes
to select items in the visualization. For instance, in a scatterplot, a rectangle brush is ex-
pressed as the intersection of range queries on x- and y- axes attributes; in a barchart, it
is expressed as the intersection of a range query on the measure axis, and a set of items
selected in the category axis. Finally, the current selection in the data view is defined by
intersecting dynamic queries (Figure 4.3a) and brushing (Figure 4.3b).

Creating a new Select & Slice Table

When a new Select & Slice table is created, it is populated with a current zone and the
current dataset as shown in Figure 4.4a. The current zone holds the current selection
specification from the data view throughout an exploration process. The current dataset
is highlighted in blue in the Select & Slice table. It also shows the number of items
selected from the current dataset based on the current selection in the data view, using a
bar representation.
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a b
dc

e

Figure 4.3: The Select & Slice Table is shown as a part of the knowledge view in the
Aruvi visualization system. A filter (a) and a brush (b) are combined to define the current
zone (c). Users can define a new zone by dragging the current zone, an existing zone or a
cell on to the ‘new zone’ place holder (d). (e) The new zone composition menu.

Defining Zones

A new zone is defined by dragging the current zone header onto the ‘New Zone’ place-
holder (Figure 4.3d). Next, users can choose to store either the selection specification
or the selected items (Figure 4.3e); and provide a label for the new zone. Figure 4.4b
highlights a newly defined zone in green.

Defining Datasets

Users can obtain more insight in the distribution of items in zones by defining subsets of
datasets. For instance, in Figure 4.4b the original dataset is split up according to Origin
countries. Users can subset a dataset based on one of its attributes. A nominal attribute can
be used to subset data using either its unique domain values or groups of these. An ordinal
attribute can be used to subset data using a clustering method such as equal intervals,
quartile, percentile, standard deviation, unique values and custom intervals. A temporal
attribute can be used to subset data by monthly, quarterly, yearly or custom intervals.
Figure 4.5 shows the data subset definition interface in Aruvi. Also, they can change the
current dataset in the data view by selecting a dataset in the table.
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(a)

(b)

Figure 4.4: (a) A new Select & Slice Table. (b) The table with a new zone (highlighted in
green), and three new subsets of the data based on attribute slicing (highlighted in red).

Cell Contents

Each cell contains a set of items. Users can request to show a summary (the number of
elements, the average value of an attribute, etc.) or a visualization of all items. A bar or a
bubble is used to visualize a summary of the items in a cell. First, the number of items, or
a measure such as a total or an average value of an attribute is used to determine the length
of a bar or the radius of a bubble in a cell. The lengths of bars and the radii of bubbles
are normalized across cells of the table to simplify comparison across rows and columns.
Bars can be aligned either to the center, or to the left of cells; bubbles are placed at the
center of cells. A label showing the number of items is placed below a bar or a bubble.
Users can choose either a linear or a logarithmic scale for mapping the number of items
onto a bar and a bubble.

To show all items, the active visualization from the data view can be shown in each
cell and the items in the cell are plotted in that visualization. In this way, a visualization
matrix is created to provide an overview of items in the cells of the table. Currently, in
Aruvi a scatterplot can be shown in each cell (Figure 4.6).
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a b
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d

Figure 4.5: Data subset definition interface. (a) A list of available datasets using unique
dataset identifiers provided by the user. (b) A list of subsets of datasets. The labels for the
subsets are automatically generated by combining the dataset identifier, and the attribute
name that is used for subsetting. Users can rearrange, show, hide or remove a selected
dataset from the list. (c) A subset definition panel. (d) The subsets of a selected dataset.
An ordinal interval is represented using a standard interval notation; where [3, 6) means
3 <= x < 6.

Manipulating Zones

Dataset header elements hold selection specifications for data subsets. Cells contain the
selection specifications of both zones and data subsets to retrieve items. Hence, each
element of the headers and also each cell can be considered as a zone. So, we enable
users to define new zones also by dragging a header element or a cell onto the ‘New
Zone’ placeholder. Existing zones can be combined using one of the operations union,
intersect, subtract and replace (Figure 4.3e). They can also reuse a zone definition (filters
and brushes) in the data view by dragging a zone onto the current zone in the table.

Most operations on zones can be done using simple manipulations. For cases where
detailed inspection and editing is needed, users can also manipulate zones using a zone
editor. The zone editor has two components: a combination editor (Figure 4.7a) and a
list of selection specifications (Figure 4.7b). The combination editor allows users to log-
ically compose selection specifications using a parse tree representation. A parse tree
completion assistant helps users to construct a valid combination of selection specifica-
tions. Below the combination editor, a list of selection specifications is shown. Users can
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Figure 4.6: Scatterplot Matrix in the Select & Slice Table.

directly edit the selection specifications created using dynamic query widgets in the data
view. For those selection specifications created using brushing, they can directly edit the
corresponding brushes by restoring the original visualization state via the ‘Edit Brush’
button. An undo and redo mechanism is provided to the users for zone manipulation.

4.3.2 Studying Items Distribution

A set comparison operation and a keyword search are provided to study the distribution
of items in the Select & Slice table. The zones and data subsets can be rearranged and
rotated to support side-by-side comparison.
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a

b

Figure 4.7: Semantic zone editor. (a) Zone composition editor with a parse tree com-
pletion assistant. (b) A list of selection specifications (filters and brushes) that defines a
semantic zone.

Set Comparison

A user can compare items of a cell with items of the other cells in the table. When the user
double-clicks a cell, the Select & Slice table enters comparison mode. The selected cell
used for comparison is filled with light red (Figure 4.8a). To identify the number of similar
items in a cell with respect to the selected cell, the items of the cell are intersected with
the items of the selected cell. The number of similar items in each cell with respect to the
selected cell is shown as a ratio in blue below the bars or bubbles. Also the similarity ratio
is visualized through a blue filling in the bars or bubbles. Using this comparison view,
users can trace items across different zones and data subsets. For example, Figure 4.8
shows the distribution of Japanese cars (Figure 4.8a) across different zones and different
subsets of the car dataset. One-fourth of the ‘cars having good acceleration’ (51 out of
220 cars) are Japanese in the dataset; and these Japanese cars (50 out of 51 cars) have
between 3 and 6 cylinders (see Figure 4.8b). All these 51 Japanese cars weigh less than
3000 pounds (Figure 4.8c). This items distribution study shows Japanese car industry
did not focus on producing powerful and heavy cars, but manufactured lightweight cars
with good acceleration. For other aggregations apart from count, a blue filling and a gray
filling in a cell represent a summary for the similar items and all items respectively.
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a

b c

Figure 4.8: Set comparison view shows the distribution of Japanese cars (a). (b) One-
fourth of the ‘cars having good acceleration’ are Japanese in the dataset; these Japanese
cars (50 out of 51 cars) have between 3 and 6 cylinders. (c) All these 51 Japanese cars
weigh less than 3000 pounds.

Keyword Search

Users can search for individual items in the table using a keyword search interface (Fig-
ure 4.9a), with an item suggestion list (Figure 4.9b). The keywords are separated by a
‘+’ character and assigned a color. The search results are visualized using colored dots
in cells. A dot is colored based on the corresponding keyword color in the search inter-
face. Figure 4.9 shows a user searching for three cars: ‘mazda glc 4’, ‘Chevrolet malibu’
and ‘Chevrolet chevelle malibu’. The search results are shown using colored dots in cells
(Figure 4.9c). Currently, Aruvi does a wild card matching for a keyword. One dot is
shown in a cell for a keyword even though many items in the cell can match the keyword.
Using this keyword search, the user could infer that the three cars have good acceleration;
and also identify their country of origin and cylinder specification.

4.3.3 Drill Down Analysis
During an exploratory analysis, users can compose a complex brush by selecting items in
the table, and drill down to investigate these items in the data view. The brush is defined
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a
b

c

Figure 4.9: (a) Keyword search interface. (b) An item suggestion list. (c) Search results
are visualized using colored dots in cells. A dot is colored based on its corresponding
keyword’s color in the search interface.

by logically combining the selected cells. Cells can be added, intersected or subtracted
using click, shift+click, and ctrl+click; and these cells are marked green, red and blue
respectively. When a user selects a cell, the selection status of that cell is toggled and the
selection status of other cells is kept constant, similar to multi-selection mode in a list box
widget. The order of the selection sequence is shown in the highlighted cells. The selec-
tion is cleared by pressing the escape key. In Figure 4.10, the selected cells in the Select
& Slice table show ‘American cars with 8 cylinders that are not heavy’ (green ∩ blue \
red). These cars are highlighted in the scatterplot (Figure 4.10a). Detailed information
about items selected by the brush is shown in the table’s context menu (Figure 4.10b).
They can also archive these items along with detailed information as a comma-separated
file to study them in other software systems or for reporting purposes.

4.4 Case Studies
We present analysis processes of four data analysts to illustrate the support offered by the
Select & Slice table for an exploratory analysis. The analysts are experts from different
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a

b

Figure 4.10: Support for drill-down analysis. The selected cells 1, 2 and 3 highlighted in
green, blue and red respectively compose a brush – ‘American cars with 8 cylinders that
are not heavy’. These cars are highlighted in the scatterplot (a). (b) Detailed information
about those cars.
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domains such as software quality analysis, embedded systems and urban planning. They
often use visualization tools for their day-to-day data analysis tasks.

First, analysts carried out their domain specific data analysis tasks using the Aruvi
visualization system. Following that we conducted an informal interview to understand
the usefulness of the Select & Slice table. We present our observations of their analysis
processes, and discuss their feedback on the Select & Slice table.

4.4.1 Software Quality Analysis
The first analyst is a software quality consultant at the Laboratory for Quality Software,
TU/e, The Netherlands. He derives software metrics, package structure and call-graphs
for software systems from source-code and visualizes them to check their design quality.
There are ten package design principles for developing an ideal package structure for a
software system [92]. Software quality analysts often use two metrics to study the quality
of a package design: the stability metric (I), which measures the stability of dependencies,
and the abstractness metric (A) [Roubtsov, personal communication]. There are three
zones based on the relationship between A and I (Figure 4.11a). A zone of pain, where A
and I are close to 0, contains packages that are rigid and cannot be changed or extended. A
zone of uselessness, where A and I are close to 1, contains packages that are abstract and
have no dependencies. The acceptable packages are close to the diagonal line connecting
(A=0, I=1) and (A=1, I=0).

The analyst used Aruvi to compare two versions of JBoss, an enterprise application
server. Initially, he loaded two datasets — JBoss 4.0 and a recent version of JBoss (JBoss
4.3) into Aruvi. He started exploring the JBoss4 dataset using a scatterplot. He plotted A
along the x-axis and I along the y-axis. Using this view, he defined three zones — Zone
of pain, Zone of uselessness and Acceptable packages in the Select & Slice table. Using
these definitions, he carried out two different analyses.

In the first analysis, he constructed a Select & Slice by slicing the two JBoss datasets
with the three zones. He compared the recent version of JBoss (JBoss 4.3) against the
previous version (JBoss 4.0) using the table. For this, he selected the acceptable packages
of JBoss4, and switched to comparison mode. The Select & Slice table in Figure 4.11a
shows this comparison. Based on this comparison, he studied the evolution of packages
across two versions. He found that four of the acceptable packages from JBoss 4.0 have
moved to the zone of pain in JBoss 4.3. He highlighted the four packages in the scatterplot
(Figure 4.11a) that visualizes the JBoss 4.0 dataset. From this, he identified that one of the
four packages was strongly affected (see purple arrow in Figure 4.11a); while the other
three were already in the borderline. He hypothesized that the package might be strongly
affected due to the changes made to incorporate some new features.

In the second analysis, he studied two finance management software systems from two
different vendors — System A and System B (their names are sanitized), using the same
approach as in the previous analysis. He reused the zones definition from the previous
analysis. He compared the two systems by comparing the number of packages in the
Zone of Pain and Zone of Uselessness. Based on these numbers, he found that system B
has a good package design compared to system A.

The analyst usually follows a mathematical approach based on the normalized dis-
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Zone of pain Acceptable packages

Zone of uselessness

(b)

(a)

Figure 4.11: Software quality analysis. (a) Comparison of two different versions of JBoss,
an enterprise application server. (b) Comparison of two different financial management
software systems.
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tance (Dn) to the diagonal line for identifying the acceptable packages. According to this
approach [111], packages that have Dn < (µDn + 2σDn) are acceptable packages. How-
ever, this approach cannot explicitly identify if a package belongs to a zone of pain or
zone of uselessness. To verify this approach, he constructed a new Select & Slice table by
slicing the three zones with six data subsets (3 subsets for both systems). He divided the
two datasets based on their Dn attribute (D) into three bins, using the standard deviation
clustering method. This table is shown in Figure 4.11b. He found that some of the pack-
ages are found acceptable in the Select & Slice table, even when Dn > (µDn + 2σDn).
Also, he could locate and visualize these packages in the scatterplot, to support this claim.
Thus, in addition to validating the results using the mathematical approach, he could also
explicitly identify the packages and understand their distribution using the Select & Slice
table and the data view.

Afterwards, we asked the analyst to explain the key aspects of the Select & Slice
table that made a difference in his analysis process. He said that “defining zones using
lasso selection in the scatterplot to analyze data based on design principles was a quite
handy and natural way of doing analysis. I could also verify the zones approach with our
mathematical approach.”

4.4.2 Social Data Analysis

The second analyst is an urban planner working at the Centre for Environmental Planning
& Technology University, Ahmedabad, India. He investigated socio-economic data for
slums in Ahmedabad using Aruvi. His analysis had two main goals: to understand the
factors affecting the medical expenses of people in slums, and to understand the reason
behind such trends.

For this analysis, he loaded the socio-economic data (slumsinahd) into Aruvi, and ex-
plored it using a scatterplot. During the exploration process, he identified 7 factors based
on the demographics and socio-economic indicators to locate slums having poor living
conditions. He used dynamic query widgets to specify these factors, and externalized
these into 7 separate zones. They are the percentage of economical backward class peo-
ple in a slum (SCST > 30%), the number of people having temporary jobs (daily wage >
50), the number of uninsured people (insurance < 30), the number of people who have
stayed in slums over 7 years (stayslum > 7), the monthly medical expenses (medexp >
100 Indian Rupee - INR), the number of people who have access to the public distribution
system (Ration > 50) and the number of people below the poverty line (BPL > 10).

To understand the trends in the medical expenses, the analyst divided the dataset using
mean monthly medical expenses into 5 custom interval bins. The Select & Slice table in
Figure 4.12 shows an overview of the relationship between the 7 factors and the mean
monthly medical expenses. He found that around 60% of slums (49 out of 80) have
mean monthly expenses below 200 INR. Most of these slums fell under the poor socio-
economic conditions described in zones such as daily wage (44 out of 49 slums) and
stay in slums over 7 years (48 out of 49 slums). Then he compared the slums below the
poverty line (BPL > 10, highlighted in Figure 4.12) against the other factors in the first
column. He found that for most of the slums below the poverty line (18 out of 25 slums)
the monthly medical expenses constituted more than 50% of their monthly earnings (BPL
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Figure 4.12: Socio-economic data investigation: Medical Expenses trend analysis.

in Ahmedabad is at 436 INR per month. The monthly medical expenditure is about 200
INR).

By analyzing the table in Figure 4.12, he hypothesized that the high level of temporary
jobs (like daily waged labor, unskilled labor) are because of the illiteracy prevailing in the
slums. Subsequently, they are not able to improve their economic background as they do
not have access to better education and training. Therefore, they are stuck in poor living
conditions. However, the poor living conditions lead to high medical expenses. To prove
these hypotheses, he projected these zones on the dataset divided using total illiteracy rate
into 5 custom interval bins above 20% of total illiteracy rate (20% of the population is
elderly and kids). The new Select & Slice table is shown in Figure 4.13. He found that
most of the slums have between 20 and 40% total illiteracy rate. Also all these slums
have a high number of people with temporary jobs and high monthly medical expenses.
Based on this view, he could affirm his hypotheses. He also concluded that these slums
are the intrinsic vulnerable slums which are vulnerable to even small fluctuations in the
socioeconomic conditions.

During the informal interview session, the analyst explained the key differences made
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Figure 4.13: Socio-economic data investigation: The relationship between illiteracy and
the seven zones helped the analyst to identify the intrinsic vulnerable slums.

by the Select & Slice table in his analysis process. Usually, he uses Microsoft Excel for
analyzing the data. He would study the effects of the factors one at a time; however, he
could not analyze them simultaneously. Also, he noted that a pivot table cannot be used
for this purpose, where items are partitioned over the row and column attributes. He said
“possibly I could have done this in Microsoft Excel. However, I could have never done
the analysis so quickly and without breaking my head. Slicing Zones by different subsets
of data helped me to put all my conditions parallel and compare them simultaneously.”
However, he felt that if these slum locations are plotted geographically, he could correlate
the attribute values with other spatial accessibility functions, in order to make a better
conclusion.

4.4.3 Wireless Sensor Network
The third analyst is a graduate student at the Embedded Systems Institute, the Nether-
lands. One of his research goals is to identify optimal configurations for sensor nodes in
a wireless sensor network. As the number of sensor nodes increases, the design space ex-
ploration for identifying optimal configurations becomes highly complex. For this, he and
his colleagues [97] have come up with a set of configuration guidelines based on power,
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reliability and latency measures. He uses a genetic algorithm (GA) approach to seed the
configurations based on a number of parameter on the nodes in the network. Each seed
produces a set of configurations and the configuration’s power, reliability and latency per-
formance measures are derived. He visualizes these measures for each seed to inspect the
performance of the configuration, and updates the GA seed parameters to seed a new con-
figuration. For achieving optimal configurations, he typically seeds 400 configurations.
During this design space exploration process, he has to maintain an overview of all the
seed parameters and their performance. He maintains a note detailing the performance of
each seed. However, he cannot compare on the performances of arbitrary seeds.

During this analysis, he loaded a dataset that contains the performance measures of
400 configurations for a sensor network having around 300 random sensor nodes into
Aruvi. He plotted the dataset using two scatterplots: one comparing latency and power
measures, and the other comparing power vs reliability measures. Using these scatter-
plots, he defined three zones: Latency efficient, Power Efficient and Reliability Efficient.
He divided the dataset based on the configuration id into 400 data subsets. Using the Se-
lect & Slice table, he retrieved items from these subsets for the three zones (Figure 4.14).
By simply scrolling down the table and rearranging data subsets, he could understand the
performance of GA and quality of the configurations seeded by the algorithm. Finally,
he said that “I could quickly change the definition of the zones and compare the perfor-
mances of the GA seeds, which I never could study previously. Moreover, I don’t have to
keep track of the performance details of each seed, as I could easily get an overview of
them from the Select & Slice table.”

4.4.4 Who are the best skaters?

The fourth analyst, who is a fan of speed skating, investigated a speed skating dataset. He
is also an assistant professor at the mathematics and computer science department, TU/e
and teaches information visualization. The dataset contains male all round performers
in both short and long distance speed skating. He was interested in identifying the best
skaters before the clap skates were introduced to the international skating competitions.
He was sure that clap skates were used at 1998 Winter Olympics in Nagano, Japan due to
which many world records were broken. Also, there was an assumption that the skaters
from Norway, the Netherlands and USA have high success rates at world championships.

To verify these hypotheses, he created five zones - three for the countries and one for
skaters who appeared before the Nagano Olympics and one for skaters who appeared at
and after the Nagano Olympics (see Figure 4.15). He projected these five zones on to the
six equal interval bins of ranking attribute. He used a scatter plot for comparing points
achieved (cumulative of times at 500m, 1000m, 5000m and 10000m in seconds) against
the age of the skaters (see Figure 4.15). He compared the performance of the skaters from
the three countries by alternatively highlighting skaters from the high ranking bin of these
countries (first dataset column in the table) in the scatter plot. He found that though the
Netherlands had more people in the high ranking bins, none of them converted them into a
championship award. However, Norway with few participants was moderately successful.
The rows ‘>= Nagano’ and ‘< Nagano’ in the table prove the drastic shift in the ranking
after the introduction of clap skates in 1998.
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Figure 4.14: Wireless sensor network - design space exploration analysis
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Figure 4.15: Best speed skaters before 1998 Nagano winter Olympics.
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The analyst carried out a very simple analysis using the zones. He also agreed that
he could have identified the best skaters by simply applying dynamic queries. However,
he said “to have criteria in the table (as zones) helped me to do the analysis comfortably
and wouldn’t lose focus on my analysis. Moreover, the before Nagano and from Nagano
rows clearly show the difference created by the clap skates.” He mostly played around by
selecting items in the table and highlighting these in the scatterplot. He said “selecting
cells and highlighting items in the scatterplot is like applying quick or preset dynamic
queries during the analysis.”

We also found the analysts used only the scatter plot as they didn’t find a need to use
a bar chart, the other visualization supported in the Aruvi visualization system. Only,
analysts 1 and 3 manipulated their zones after defining them. Also, three of the analysts
recommended that the percentage of items in cells similar to the items of the origin cell
can be displayed as labels in the comparison view. Overall, from the case studies, we
conclude that the analysts mainly engaged in defining zones, retrieving items from differ-
ent data subsets for zones, studying items distribution in the table, and highlighting items
in visualizations by selecting cells in the table during their analysis. Thereby, they used
zones to reason with their domain-specific hypotheses during interactive data exploration.

4.5 Conclusion
In this chapter, we presented the Select & Slice table that helps to cross-tabulate seman-
tic zones and data subsets. Semantic zones are areas of interest in data space specified
through conditions over data attributes or as functions of data attributes that have a clear
semantic meaning. Using the Select & Slice table, users can define and manipulate zones;
and understand the relationship between zones and data subsets, visually and interactively.
In addition, they can drill-down to a particular data subset, and investigate items of the ta-
ble in the data view using drag & drop and other simple mouse operations. They can also
get an overview of the distribution of items in the table using a set comparison operation,
and a keyword search. Finally, we presented four case studies that illustrated the support
offered by the Select & Slice table for exploratory data analysis.

In the next chapter, we present our approach and tools to support users for gaining
exploration awareness based on their action trails. Using these tools, analysts can get an
overview of key aspects of the exploration process; as well as search and retrieve parts of
the analysis processes for reviewing purposes.
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Chapter 5

Exploration Awareness

One faces the future with one’s past. — Pearl S. Buck

In Chapter 3, we presented a sensemaking framework for visual analytics. Using this
framework, we enabled users to capture interesting aspects of the analysis such as notes,
zones and visualizations. In addition, we also automatically captured the analysis pro-
cess of the users using action trails. We used a history representation (discussed in Sec-
tion 3.4.2) to provide an overview of the analysis process. However, the history tree rep-
resentation is overly abstract to comprehend the interesting aspects of a lengthy analysis
process. Hence, users cannot review previous analysis processes.

When users want to continue an analysis performed in the past, either their own or a
collaborator’s, they need an overview of what has been done and found so far. Such an
overview helps them to gain a shared knowledge about each others’ analysis strategy and
continue the analysis. We aim to support users in this process, and thereby support their
exploration awareness.

In this chapter, we consider three linked processes: overview, search and retrieve
for developing exploration awareness during an analysis. Support for these processes is
added to the sensemaking framework for visual analytics discussed in chapter 3. To sup-
port these processes, we first present a user’s information interest model that captures key
aspects of the exploration process. Next, using these key aspects we provide interactive
exploration overviews, and enable analysts to retrieve parts of past analyses using key-
word and similarity based search mechanisms; to enable them to review past analyses.
Finally, we present three case studies and discuss the support offered by the three linked
processes for developing exploration awareness.

5.1 Introduction
Analysis is often a collaborative process [122]. During collaborative visual analysis, an-
alysts need to develop exploration awareness — an overview of what has been done and
found, by themselves or by their collaborators’. Such an overview helps them to establish
a common ground for sharing their analysis, and defending their judgments. Analysts

83
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working at the same place and time can directly observe their collaborators’ analysis
strategy, however, during synchronous collaboration at different places or asynchronous
collaboration at different places and times, it is difficult for them to understand their col-
laborators’ analysis strategy. Also, when they resume their own analysis later, they may
have limited recall of the key aspects of their previous analyses.

To understand the analysis strategy of a collaborator and continue his analysis, ana-
lysts must be enabled to get an overview of the key aspects of the previous exploration
processes, and search and retrieve past visualizations for reviewing findings. While re-
trieving past visualizations, they have to be aware of what has been done and found around
these visualizations to reason about the collaborators’ analysis strategy. We summarize
our aim to support the process of getting an overview of what has been done and found
during an analysis as increasing exploration awareness.

Current visualization systems offer support for recovering from mistakes, archiving
interesting visualizations, and reusing archived visualizations. Most of these systems of-
fer limited support to users for retracing visualizations from past analysis that are neither
bookmarked nor annotated. Keyword search is widely used to retrieve documents, images
and videos on the Internet. A similar approach can be useful for retrieving visualizations
from past analysis, by enabling users to retrieve visualizations using keywords, for in-
stance based on labels of selected items, names of attributes used for axes, and filters
employed during the exploration process. Query by example is another popular approach
that helps to retrieve documents and images based on content similarity. In this chapter,
we present models and tools that enable analysts to develop exploration awareness for re-
viewing a visual analysis by exploiting exploration overviews and keyword and similarity
searches.

5.2 Related Work
We now consider previous work on exploration models and retrieval mechanisms in visu-
alization and visual analytics tools.

5.2.1 Exploration Model

Heer et al. [66] provide an overview of design considerations for history models in in-
formation visualization. The interaction history can be modeled as a sequence of actions,
states, or both. HARVEST [60] captures the user interaction history as an action trail. The
action trail representation is optimized by grouping consecutive similar actions. Users can
bookmark action trails, and revisit and reuse them. Jankun-Kelly et al. [71] model visu-
alization states as sets of parameters, and actions as transformations of these parameters.
They also present a derivation model to identify intermediate steps between two states.

Aruvi uses a hybrid action-state model to capture the interaction history as discussed
in Section 3.4.2. A detailed state description is captured to provide readable information
that highlights changes to a visualization state. A history tree representation is used to
visualize the interaction history. Users can revisit and reuse a state, and attach notes to
it. Tableau [66], a commercial visualization system, records states as VizQL statements
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and maintains an action log. User actions are grouped based on a custom classification,
based on the Tableau visualization system. It also optimizes history management using
an undo-as-delete metaphor and some chunking rules. A sequence of thumbnails is used
to represent this optimized interaction history.

The above visualization state models focus on optimizing the archival of an explo-
ration process. Their visualization state description only supports recreation of the vi-
sualization state. However, the description does not explicitly capture key aspects that
represent the users’ information interest during the exploration process.

5.2.2 Retrieval Mechanism

The history mechanisms in most data analysis tools offer support for recovering from
mistakes [44] and analyzing exploration session logs [58, 85]. Commercial visualization
tools such as Spotfire and MagnaView support archiving interesting visualizations and
reusing them. However, they do not support retrieval of visualizations from the past
analysis that are neither bookmarked nor annotated.

Vistrail [28] helps to retrieve the visualization dataflows based on the specifications to
the dataflows and user actions. Tableau [66] offers support to retrieve visualizations from
past analysis based on data fields used in visualizations and visualization types. However,
it does not provide an overview of key aspects of an analysis for developing exploration
awareness. Just a list of visualizations matching keywords seems to be too limited to fully
support a review process [63].

Sense.us [67], a web based information visualization system supports asynchronous
collaboration by sharing views and discussions. It uses a similarity mechanism to iden-
tify identical visualization views that have different parametric representations and attach
discussions from other collaborators to those views. Yang et al. [140] discuss a similarity
metric for visual queries in visualization systems for optimizing archival of interesting
and repeated user queries while exploring large datasets. However, these approaches do
not show an overview of similar visualization states for supporting a review process.

In the following sections, we present our approach and solutions that enable users to
develop exploration awareness on a visual data analysis.

5.3 Approach
To support users to develop exploration awareness during visual data analysis, we look
at how a reader develops awareness on a book’s content. A table of contents, a list of
figures and tables, and a keyword index provide an overview of key aspects of the book.
In addition, the table of contents provides an overview of the structure of the book. These
key aspects also have page numbers attached to them that help readers to easily transit
from the overview to the corresponding detailed information inside the book.

When they want to review the book or retrieve specific pieces of information from it,
they iteratively search through it using the overview of the key aspects and the links to
the detailed information inside it. In a digital version of the book, a keyword search also
helps to retrieve specific pieces of information. The keyword search results are shown
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with some metadata that help the readers to narrow down the search results. Hence, there
are three linked processes: overview, search and retrieve that help the readers to develop
awareness of a book. A visual data analysis that has to be understood is similar here to
the contents of a book. It has detailed information about what has been done and found
so far by users. To support developing exploration awareness on a visual data analysis,
we argue that the users must be enabled to perform the three linked processes shown in
Figure 5.1.

Overview

RetrieveSearch

Figure 5.1: The three linked processes for supporting exploration awareness.

Hence, we argue that the users must be provided with the following components to
support the three linked processes for developing exploration awareness in visual analyt-
ics:

• Overview: visual representation(s) that provide an overview of the structure and
key aspects of the exploration process;

• Search: A keyword based and similarity based visualization retrieval mechanism;
and

• Retrieve: visual representation(s) that provide an overview of the search results and
help users to retrieve specific visualizations from the analysis.

In the following sections, we first present a user’s information interest model that cap-
tures the key aspects of the exploration process. These key aspects are indexed during an
exploration process. Next, we provide our solutions to present an overview of the explo-
ration. Following that we present a keyword based and a similarity based visualization
retrieval mechanism.

5.4 User’s Information Interest Model
Gotz and Zhou [60] classify user actions in a visual analytic system into three broad cat-
egories: exploration actions; insight actions; and meta actions. Exploration actions alter
the data and visualization specifications in a visual analytics system and create new visual-
ization states. Insight actions enable users to record annotations, bookmark visualizations
or organize notes recorded during an analysis. Meta actions enable users to revisit, undo,
redo, delete or edit a past exploration or insight action.
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We argue that exploration actions represent changes in a user’s information interest,
besides, producing new visualization views. For this, we take a closer look into the inter-
active visualization model [128] and information visualization pipeline [30].

User Interaction (Exploration actions)

Data
Visual 

Structures
Views

Interest  
(OIP)

Images

Data 
Transformations

Visual 
Transformations

User
Raw 
Data

Interest Transformations

Figure 5.2: The visualization pipeline, based on Card’s model [30], modified to show
interest transformations. The Object Interest Profile (OIP) is used to highlight objects in
the resulting images of an exploration action.

In interactive visualization, a dataset D is transformed into an image I based on a
specification S given by the user. S consists of two components - data transformations (d)
that denote what subset of the data has to be shown, and visualization transformations (v)
that denote how it has to be shown. The former includes for instance filters and cluster-
ing used; the latter includes the type of plot(s) and visual encoding used, for instance the
axes selected for a scatterplot. By specifying S, a user implicitly attaches some degree of
interest to the objects of the dataset. We refer to these as interest transformations (see Fig-
ure 5.2). The degree of interest can range from none (items not selected for visualization)
to high (items manually picked in visualization), and have values in between. We call a
list of degrees of interest per object an Object Interest Profile (OIP). Hence, in addition to
the image It, the specification St also transforms the OIP. Therefore, when users provide
specifications St based on the current knowledge Kt−1, a visualization system generates
It and changes OIPt. Figure 5.3 shows the visualization state at time t.

St (d, v)

V(St) It, OIPt

Kt Kt-1 St+1(d, v)

System

User

Figure 5.3: The visualization state in the user navigation at time t.

We use a simple model for the Object Interest Profile. It has three levels, based on
the specifications to a visualization system through exploration actions. When data ob-
jects are not visible, because they are either filtered out through attribute criteria, moved
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out of the viewing area of visualization using zoom-in and pan actions, or collapsed in
hierarchical or graph views, they are assigned a low interest value. When data objects are
either directly selected on a visualization view or when clusters containing these objects
are selected, they are assigned a high interest value. Visible, but non-selected objects are
assigned a medium interest value. Both data and visual transformations can change the
OIP of a dataset.

Thus, a user’s exploration process can now be described at the system level as a set
of specifications to a visualization system S = Sn(d, v): 0≤n≤t; a set of images I = In:
0≤n≤t; and a set of object interest profiles OIP = OIPn: 0≤n≤t. Hence, we selected the
following four key aspects to describe the exploration process:

1. the visualization and data transformations (S);

2. the data dimensions specified through S;

3. viewed objects (medium interest objects from OIP); and

4. selected objects (high interest objects from OIP).

Based on this user’s information interest model, we have redesigned the history mech-
anism of Aruvi to capture the key aspects of an exploration process. In addition, we added
support for multiple users within an analysis to facilitate asynchronous collaboration.

5.5 Exploration Overview
We have designed two different means to enable the user to get an overview of an ex-
ploration process: the structure overview, with an emphasis on the process; and the key
aspects overview with an emphasis on the contents.

5.5.1 Structure Overview
The structure overview can be provided based on a user’s action trail. In Aruvi (Chapter
3), a history tree representation is used for this. A branch in the history represents a revisit
and reuse of a past visualization state. A node represents a visualization state and an edge
between the adjacent nodes is labeled with the user action. In Tableau [66], a thumbnail
strip is used to represent a user’s action trail. Each thumbnail has a text description of
the user’s action. In Harvest [60], a sequence of action labels is used to represent a
user’s action trail. Each label has a thumbnail tool tip that represents the corresponding
visualization state. A thumbnail strip provides an easy to understand overview, and we
have added this feature to Aruvi as well.

A bare-bone history tree representation, with just labels for user interactions on the
edges, is abstract. To support the user, we added a thumbnail tool tip to show the state
more understandably (Figure 5.4(a)). The thumbnails are generated using a similar ap-
proach as presented in [66]. In addition to a text description of the user action, each
thumbnail has a list of key aspects of the visualization state on the right. Key aspects
that have changed compared to the previous visualization state are highlighted in green
(Figure 5.4(b)).
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e

a
b

c d

Figure 5.4: History tree representation. (a) Thumbnail tool tip for the visualization state
highlighted orange. (b) A new key aspect (Megapixels) compared to the previous visu-
alization state is highlighted in green. (c) Overview area. (d) Focus area. (e) Horizontal
and vertical scrollbars help the user to change the focus area, and highlight the location
of the current visualization state (yellow bar) and a note (orange bars).

During a large and complex exploration process, it is difficult to get an overview of
the exploration process if all the visualization states are displayed as thumbnails or as
a history tree. Based on feedback from users [117], we developed a focus + context
technique in the history tree that enables a user to focus on a few visualization states
around a certain visualization state with an overview of the entire exploration process. In
the overview area, only the structure of the exploration process is shown without details
about the visualization states (Figure 5.4(c)). In the focus area, details about visualization
states and user actions are shown (Figure 5.4(d)). A vertical scrollbar and a horizontal
scrollbar attached to the history tree (Figure 5.4(e)) enable the user to change the focus
area. A yellow line on the scroll bar indicates the location of the current visualization
state; orange lines on the scroll bar indicate visualization states with a note.

Complex analysis processes can involve an extended time period and many users. To
support users to focus on a specific time period, they can specify this through a time
interface (Figure 5.5(a)), and also they are enabled to focus on a subset of all users, via
the users list (Figure 5.5(b)). Both these options can be used for all exploration awareness
tasks. For the history tree, the focus provided is used to constrain the overview given.
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5.5.2 Key Aspects Overview
We identified four key aspects of the exploration process based on our user’s information
interest model: visualization and data transformations, data dimensions specified through
S, selected objects and viewed objects. The key aspects overview shows the most impor-
tant items for each key aspect using tag cloud representations (Figure 5.6). The size of
an item denotes its importance and is derived from its frequency of occurrence during the
exploration process. The items are sorted in descending order based on their frequency of
occurrence within a key aspect. The key aspects overview is provided for a time period
specified through the time interface (Figure 5.5a) from a group of users’ analysis selected
from the users list (Figure 5.5b).

We display the four key aspects one below another, instead of integrating them in one
list. With this, users can quickly see which visualizations tools were used most, which
data aspects were investigated most with these tools and which data objects got most
attention during that investigation. For example, Figure 5.6 from the first case study in
section 5.8, tells us that this user used scatterplots to study bicycles, buses, a particular
range of incomes, and that he focused on a specific set of (geometric) zones. Also, users
can drill-down via this overview. By selecting items, the focus is limited to visualizations
where these items are used, and the tag-clouds are adapted accordingly (see Figure 5.12a
and Figure 5.12b).

Frequency counts give relevant information and show global patterns, but we acknowl-
edge that they do have limitations. If a user has seen something special in just one view,
and has not marked this item or made a note, the frequency counts do not help to find
these back. Also, it can happen that part of the analysis was wrong. Concerning this,
we assume analysts remove mistakes or wrong analysis path using the undo mechanism
or directly deleting visualization states via the history tree representation. However, if
analysts missed to identify wrong analysis paths, they can identify these mistakes in the
key aspects overview, when an unexpected or unwanted item gets too much emphasis.
In addition, some chunking rules are used to optimize the capturing of the visualization
states such as grouping a quick succession of filter actions. This chunking helps to reduce
the increasing importance of an item due to redundant specifications by the user.

5.6 Keyword based Search and Retrieval
We enable users to perform keyword search on all text that plays a role in visualization
and data transforms, data aspects, viewed and selected objects; and notes in the knowl-
edge view. Keywords are matched with labels of items and names of attributes used for
axes, visualization types, filters, selection and filtered objects during the exploration pro-
cess. States that match a keyword search are highlighted (in green) in the history tree
view (Figure 5.7a), the thumbnail view (Figure 5.7b) and the exploration overview (Fig-
ure 5.8e). The keyword search is confined to a time period specified through the time
interface (Figure 5.5a) and to a group of users selected from the users list (Figure 5.5b).
In the search interface (Figure 5.8a), each keyword typed by a user is color coded, and
keywords are separated by a plus symbol.

During a review process, users might be interested in combinations of keywords. In
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a
b

Figure 5.5: (a) Time interface. (b) Users list

Figure 5.6: Key Aspects Overview.
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the current form, the feedback given in the history tree and thumbnail views is limited.
The history tree view offers few possibilities to show the occurrence of multiple key-
words and their association to the key exploration aspects. The thumbnail view takes
much screen space and addition of visual elements to show the occurrence of multiple
keywords and their association to the key exploration aspects will clutter the thumbnail
view. Therefore, we introduce a metadata view, based on a table metaphor, to visualize
the search results and their association to the key exploration aspects.

(a)

(b)

Figure 5.7: Visualization of the keywords search results. (a) The history tree and (b) the
thumbnail view highlight visualization states containing the keyword cycle in green.

5.6.1 Metadata View

The Metadata view visualizes the changes to the visualization and data transformations
and the influence of these changes to OIPs during an exploration process (see Figure 5.8).
It has five columns: time, visualization, data, viewed and selected objects. Each row
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represents a visualization state. When users create new visualization states, rows are
added at the bottom of the metadata view. Cells are filled in with light blue to indicate
changes in key aspects due to user interaction.

Overview Search

Retrieve

Key aspects overview Metadata view

Data view

a

b

cd
e

Figure 5.8: The orange arrows show the support for overview, search and retrieve. (a)
Search interface. (b) Keyword search results. (c) An overview of the occurrence of the
search results in the entire time of the metadata view. (d) A summary of the search results.
Search results are highlighted in the key aspects overview (e) and in the data view.

The metadata view shows the evolution of the exploration process when the rows are
sorted according to the time column. The time cell corresponding to the current visual-
ization state is highlighted in orange. A thumbnail tool tip is shown for each visualization
state similar to Figure 5.4a. The metadata view is linked to the history tree representa-
tion: when a user selects a visualization state in the metadata view, it is highlighted in the
history tree representation. The time cell of that visualization state is furthermore marked
with a ’r’ label in blue to represent the start of a new branch. Visualization states between
two ’r’ labels represent a thread in the analysis. When a visualization state has a note
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attached to it, its time cell is marked with a ’n’ label in red.
Matched keywords are visualized as colored dots in cells, which indicate that for a

certain key aspect a match was found for a certain state (Figure 5.8b). The order and color
of the dots in a cell follows the order and color of the keywords in the search interface.
An overview of the occurrence of the search results in the entire time of the metadata
view is shown at Figure 5.8c. Along with this overview, the order and colors of the circles
associated to keywords enable users to quickly scroll though the metadata view to gain
an overview of search results and their association to the key exploration aspects. Also
they can visually apply logical combinations of keywords. A summary of the keyword
search results is shown in Figure 5.8d. It has links to retrieve visualizations containing
each keyword or all keywords. In addition the thumbnail tool tip helps them to easily
narrow down on the search results without revisiting many visualization states.

When users revisit a visualization state that contains matched keywords, the visual-
ization retrieval loop is closed by highlighting those keywords in the visualizations of that
revisited state. If an axis label or a filter widget contains a keyword, it is drawn with a red
bounding box; and if a data object matches a keyword, it is encircled in red (see the data
view in Figure 5.8).

In the key aspects overview, items matching a keyword are identified using the key-
word’s color in the search interface (see Figure 5.8e). In addition to the time period
and the group of users, the overview is confined to those visualization states that contain
matched keywords. Users can add or remove keywords to the search interface by select-
ing or deselecting items in the key aspects overview respectively. In addition to users
iteratively getting an overview of relationships among items in the key aspects overview
as in Figure 5.12(a and b), they can retrieve past visualization states from the key aspects
overview through the metadata view. This support for the linked processes: overview,
search and retrieve as identified in Figure 5.1 is represented using the orange arrows in
Figure 5.8.

5.7 Similarity based Search and Retrieval

Searching visualizations via keywords is just one option, another one is to retrieve states
that are similar to a given visualization state. To this end, the key aspects of the visu-
alization state are compared with the key aspects of other visualization states from the
exploration process. One would like to express the similarity between states in a single
number, but this cannot be done straightforwardly, because most of the visualization states
are asymmetric to each other. For instance, Figure 5.9 shows two states A and B which
are asymmetric to each other in terms of all key aspects - visualization, data and interest.
State A has one scatterplot, two filters and four interesting data items. State B has one
scatterplot, one barchart, three filters and ten interesting data items. The similar items
between two visualization states in each key aspect are highlighted in red (Figure 5.9).

Suppose we want to compare the visualization aspects of A and B. Now, if we view
B relative to A, there is a complete match (one of the scatterplots of B is same as the
scatterplot of A) and we can rate the similarity between them to be high. However, if we
view A relative to B, there is only a partial match (A has only one scatterplot that is same
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State Visualizations Data Interest

A
Filters M
and N

{a, b, c, g}

B
Filters 
M,N and 
D

{r, t, a, c,
e, k, z, b,
s, g}

u

v

y

x

y

x

Figure 5.9: Schematic representation of states A and B. The similar items between states
A and B are highlighted in red.

as one of the scatterplots of B, and does not match with other visualizations of B) and the
similarity between them is low. This disparity in similarity is also found when comparing
other key aspects of A and B (Figure 5.9).

Our reasoning about the comparison of two asymmetric groups is similar to Fes-
tinger’s theory of social comparison processes [54] on people’s abilities: “people tend
to compete with those who have similar abilities to themselves and not with those much
higher or lower than themselves. These tendencies create a status structure, held in place
by both higher and lower groups.” If there is a similarity between a person from a lower
group and a person from a higher group, then the lower group seeks to show a stronger
influence. This is called minority influence [94]. In the above comparison of the visu-
alization aspects of A and B, A is a lower group as it exhibits a minority influence in
the comparison. We handle the asymmetry explicitly by comparing both B relative to A
(forward comparison) and A relative to B (backward comparison).

For each visualization state, the key aspects are compared with the key aspects of other
visualization states. We consider each key aspect of a visualization state as a composite
object. Each such object contains a set of object instances. A scatterplot, a barchart, a
treemap and other visualization methods are examples of visualization aspect objects. A
range filter, a nominal filter and a cluster of attributes are some examples of data aspect
objects. A set of primary keys of a dataset is an example of an interest aspect object. Each
object has a type and a set of properties.

Now, two objects A and B can be compared as follows. Suppose, object A has a set of
object instances Ai where each Ai has a type T (Ai) and a set of properties Aip. Object B
has a set of object instances Bj where each Bj has a type T (Bj) and a set of properties
Bjq. The forward comparison S(A,B) is computed by comparing the properties of the
set of object instances of the object B (Bjq) relative to the properties of the set object
instances of the object A (Aip), as below
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S(A,B) =
|A|∑
i

Si/|A|

with Si =
|B|

max
i
Sij(Ai, Bj)

and Sij = 0, if T (Ai) 6= T (Bj)
Sij = |{Aik|Aik = Bjk}|/|Aik|, k = 1, . . . ,M(Ai), otherwise.

where S(A,B) is the forward comparison between A and B; Si is the forward comparison
of object i of A against objects of B; Sij is the forward comparison of object i of A against
object j of B; and M(Ai) is the number of properties of Ai.

Similarly, the backward comparison S(B,A) is computed by comparing the object A
relative to the object B. We use a Venn diagram to visualize the comparison between the
two objects A and B. The object A is represented in red and the object B is represented
in blue. The sizes of the two objects A and B are |Aip| and |Bjq| respectively. Object A
is placed on one side of a vertical axis; object B is placed on the other side of the vertical
axis. In Figure 5.10, the vertical axis is in green; object A is placed on the right side of the
vertical axis; and object B is placed on the left side of the horizontal axis. The distance
of object A from the vertical axis f(A,B) is 1− S(A,B). The distance of object B from
the vertical axis f(B,A) is 1−S(B,A). Figure 5.10 shows all possible results of the two
objects comparison and their interpretation using the Venn diagram.

5.7.1 Similarity Search Results in the Metadata View

One obvious way of visualizing the similarity search results is the ranked list view. How-
ever, users have to be aware of why a visualization state is similar without having to revisit
that state. We visualize the similarity search results in the metadata view which offers the
advantages of the ranked list view, and has space to show users the reason behind the
ranked list of similar visualization states using the Venn diagrams.

For each key aspect, the current visualization state is considered as the object A and is
compared against every other visualization states’ key aspect. The metadata view shows a
Venn diagram to represent similarity in each cell of the key aspect columns (Figure 5.11).
When objects are completely different, the Venn diagram (Figure 5.10(7)) is not shown.
The time cell of the current visualization state is highlighted in orange. A summary
of the number of visualization states that are similar to the current visualization state
is shown below the metadata view (Figure 5.11(a)). The summary has hyperlinks to
sort similar visualization states based on the key aspects’ forward comparison values.
‘Similar’ hyperlink shows similar visualization states sorted by average similarity for all
key aspects (Figure 5.11(a)), but also a sorted list for one key aspect can be obtained
(Figure 5.11(b)).
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with      f(A,B) = 1 - S(A,B), and f(B,A) = 1 - S(B,A);
where  S(A,B) is the forward comparison between A and B, and
             S(B,A) is the backward comparison between A and B.

A and B are not the same

Object A

Object B

A and B are the same

A and B are of the same size but 
have some overlap between them

A is a lower group; overlaps with B

B is a lower group; overlaps with A

A is a lower group; B contains A

B is a lower group; A contains B

f(B,A) = 1 f(A,B) = 1

f(B,A) = f(A,B) = 0

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Figure 5.10: Venn diagrams for interpreting similarity between two visualization states.

5.8 Case Studies

We conducted three case studies to assess to what extent the three linked processes:
overview, search and retrieve help to develop an awareness of the past visual analysis
during asynchronous collaboration.

The first case study considers the asynchronous collaboration between two analysts
where the second analyst has to continue a past analysis of the first analyst. Two urban
transport researchers participated in the case study. The first analyst works at a university
and the second analyst works for a city corporation in India. They often use simple visu-
alization tools such as Microsoft Excel for their analysis. An urban zone level transport
dataset is used for the analysis. The dataset contains the zone wise information about pub-
lic transport usage, private transport usage, number of passengers categorized according
to age, income level and household, and demographics for about 250 zones. We explained
the features available in Aruvi to the analysts and answered queries regarding those fea-
tures during the analysis. The first analyst investigated the dataset for thirty minutes
using Aruvi. Since the exploration was at the early stage, he did not record any notes in
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(a)

(b)

Figure 5.11: Metadata view showing similar visualization states sorted by (a) average
similarity for all key aspects and (b) visualization aspect similarity. Red circle represents
the current visualization state. Blue circles represent the visualization states in each row.

the knowledge view. The analysis was archived to a file and the analysis file was handed
over to the second analyst. Figure 5.6 shows the key aspects overview of the analysis of
the first analyst.

The second analyst was asked to understand the highlights of the analysis using the
key aspects overview and search mechanisms. He used mostly the key aspects overview.
It became clear to him that the first analyst used only the scatterplot visualization to un-
derstand the relationship between attributes. Occasionally, the first analyst applied filters
and investigated/identified few interesting zones. Then, he looked at the most investigated
data aspects overview. Since ‘cycle’ and ‘bus’ are the most prominent items, followed by
the income category items and trip makers, he hypothesized that the first analyst tried
to understand the relationship among the usage of different modes of transport and the
passengers’ income levels and age in all zones. To confirm his hypothesis, he selected
the ‘cycle’ item to get an overview of the key aspects when the first analyst investi-
gated the cycle users (see Figure 5.12(a)). Then, he selected the next most frequent item
(‘Income 5000 10000’) in the ’most investigated data aspects’ to refine the key aspects
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overview (see Figure 5.12(b)). From this overview, he identified that the first analyst
tried to understand the relationship between ‘Income 5000 10000’ and different passen-
gers’ age categories (‘trip maker *’). Similarly, he checked for other income levels in
Figure 5.12(a). ‘Bus’ and ‘LCV’ (Longer Combination Vehicles - long bus) were also
prominent next to ‘cycle’ and ‘income’ level in most of the cases as in Figure 5.12(b).
He continued to iteratively select items and see the relationship among the key aspects.
Finally, he concluded that the first analyst tried to understand the relationship between
different income levels and age categories of the passenger. Further, he investigated the
effect of modes of transport (mainly cycle, bus and LCV) on these relationships. He also
understood from interactively refining the overview that the first analyst initially started
investigation with a larger number of zones and subsequent narrowed down to seven in-
teresting zones. He was curious why the first analyst narrowed down to these seven in-
teresting zones. Then he continued to investigate the effect of demographics and other
modes of transport.

After the session with the second analyst, we asked the first analyst if the second
analyst’s interpretation of his analysis was right. The first analyst confirmed this. He
further explained to us his analysis strategy in detail, and answered a few questions such
as why he narrowed down to seven zones and why he investigated only cycle and bus
users.

The second case study considers collaboration between two analysts who have worked
independently aiming at the same analysis goal, and are sharing their results with each
other. The two analysts (one male and one female) that participated in the case study are
graduate students in computer science who have had exposure to information visualization
tools through academic course work. They investigated a food nutrition dataset for finding
a meat replacement food plan. The dataset contains a food group description and the
amount of nutrients such as minerals, vitamins, fat, proteins, carbohydrates and energy
content for about 1500 food items.

After receiving a training on the features of Aruvi, they explored the dataset for around
45 minutes. Figure 5.13 shows a visualization state and the exploration overview of one of
the analysts taken during her analysis. They used scatterplot and barchart visualizations
during their analysis. After conducting their individual analysis, they came together and
discussed their analysis results. During this collaboration, each user took turns to present
his/her analysis to the other collaborator using their notes in the knowledge view. After the
presentation, the other collaborator interrogated the analysis. We found that users mostly
used the keyword search and the key aspects overview to retrieve key visualization states
from the past during the presentation and interrogation sessions. Multiple keywords were
used to search for the co-occurrence of some data items. For instance, one user was
asked if meat and dairy products had similar calcium content. The other user retrieved a
visualization state where he investigated the calcium content of the meat and dairy food
products and presented an overview of calcium content in them.

The food dataset contained a variety of similar food items, for instance, different types
of cheese. During the analysis session, one of the users used the keyword search to locate
all varieties of cheese in the scatterplot; and could see their distribution while studying
protein and fat contents of the food items. This keyword search helped her to understand
if all cheese products had similar protein and fat contents. At the end of the discussion,
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(a) (b)

Figure 5.12: (a) and (b) Key aspects overview is provided with respect to the items itera-
tively selected by the user.

the users understood each other’s analysis strategy. One user was focusing on selecting
the food items that have similar characteristics as meat products, while the other user
was selecting food items by considering vegetables and dairy products that are rich in
vitamins, minerals and protein contents; moderate in energy content and low in fat and
cholesterol contents.

The third use case considers continuation of an analysis process after a break. An
analyst who is an information visualization researcher reviewed his past analysis. He
analyzed the food nutrition dataset (used in the second use case) to find a balanced food
plan for anemia. He explored the dataset using the Aruvi visualization system for thirty
minutes after receiving a training on its features. During this exploration process, he
encountered some interesting facts and patterns that helped him to select some food items.
At the end of the analysis, the analyst listed food items that are rich in iron content. During
the analysis, he only used a scatterplot visualization. He revisited his analysis the next
day. During the review process, he found that the final list did not contain one of his
favorite food items, an apple. He was curious to find why he inadvertently left out his
favorite food item. Also, he wanted to make sure if the final list also appeared while he
was investigating zinc content.

For the first question, the user searched for ‘apple’ and inspected the keywords trail in
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a

b

Figure 5.13: Aruvi Prototype. (a) The metadata view enables users to search and retrieve
past visualizations. (b) The key aspects overview.

the metadata view. He found that apple was removed from the investigation when he used
iron and copper filters. He became aware of the fact that apple had low iron and copper
content as he always thought apples were good for anemia. For the second question, he
searched for ‘zinc’ and selected show similarity in the metadata view. Based on the Venn
diagram representation, he could only judge a partial match. However, he was expecting
a matching list of food items to be presented.

5.8.1 Limitations

The case studies mainly focused on extracting analysis strategies used by analysts in past
analyses which can be one of the many reasons why analysts want to review a past anal-
ysis. We developed three linked processes: overview, search and retrieve to enable users
to develop exploration awareness on a past visual data analysis. The tasks required for
extracting the analysis strategy did not require all the three processes. Analysts only used
the key aspects overview for extracting the analysis strategy. The ‘most used visualization
tools’ and the ‘most investigated data aspects’ helped analysts to understand the analysis
strategy. The ‘most selected object’ showed the focus of analysts on particular data items
that are a part of their analysis strategy.

We could gather only limited support for the search and retrieve processes due to
the analysis goals which only required analysts seek an overview of the analysis pro-
cess. In the second case study, one of the analysts used the keyword search during the
analysis process to understand the distribution of items matching keywords in the scatter-
plot. The similarity search was used in only one instance and we assume it will be used
only in complex analysis processes. Overall, we found that the key aspects overview was
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the dominant feature that helped the analysts to understand their collaborators’ analysis
strategies. However, we could not gather much support for the three linked processes:
overview, search and retrieve to develop exploration awareness on a visual data analysis
due to the limitation of the case study design. In future, we will study the three linked
process in detail.

5.9 Conclusion
In this chapter, we presented three linked processes: overview, search and retrieve to
support developing exploration awareness during a review process. For this, we first
presented a user’s information interest model that captures key exploration aspects such
as visualization and data transformations, data aspects in those transformations, viewed
(medium interest) and selected (high interest) objects. An exploration overview is pro-
vided using a key aspects overview and a history representation. A keyword based visu-
alization retrieval mechanism was discussed. The metadata view is used to visualize the
search results and their association to the key aspects. The visualization retrieval loop is
closed by highlighting the keywords in the visualizations once a visualization state that
contains matched keywords is revisited. Furthermore, a similarity based visualization re-
trieval mechanism that retrieves visualization states based on the content similarity to the
current visualization state was discussed. Three case studies were discussed. These case
studies revealed the support offered by the framework to develop exploration awareness
during asynchronous collaboration.

When analysts interactively explore complex datasets over multiple sessions, they
may uncover a large number of findings. They must often connect findings discovered at
various points of time for effective reasoning process. During long analysis sessions, they
may not notice all implicit connections between these findings as it is often difficult for
them to recall the past findings, views and concepts that are most relevant to their current
line of inquiry. In this chapter, we presented tools that help users to develop exploration
awareness for reviewing purposes by proactively searching on the key aspects of a visual
data analysis. In the next chapter, we describe our approach to support connection dis-
covery using a related notes, visualization and concepts recommendation system based
on a context based retrieval mechanism. In this way, we aim at supporting automated
connection discovery among findings, visualizations and concepts investigated during a
visual data analysis.
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Chapter 6

Connection Discovery

You can’t connect the dots looking forward; you can only connect them
looking backwards. So you have to trust that the dots will somehow connect
in your future. — Steve Jobs

During visual analysis, users must often connect insights discovered at various points
of time. This process is often called “connecting the dots.” When analysts interactively
explore complex datasets over multiple sessions, they may uncover a large number of
findings. As a result, it is often difficult for them to recall the past insights, views and
concepts that are most relevant to their current line of inquiry. This challenge is even
more difficult during collaborative analysis tasks where they need to find connections
between their own discoveries and insights found by others. In this chapter, we describe
a context-based retrieval algorithm to identify notes, views and concepts from users’ past
analyses that are most relevant to a view or a note based on their line of inquiry. We then
describe a related notes recommendation feature that surfaces the most relevant items to
the user as they work based on this algorithm, and conclude with a case study.

6.1 Introduction
Interactive visualizations allow users to investigate various characteristics of a dataset and
to reason based on patterns, trends and outliers. During complex visual analyses, users
must derive insights by connecting discoveries made at different stages of an investiga-
tion. However, during a long investigation process that can span hours, days or even
weeks, it becomes difficult for users to recall the details of their past discoveries. Yet
these details may form the key connections between their past work and current line of
inquiry. We believe that the difficulty in recalling past work often leads users to overlook
important connections. The challenge, therefore, is to develop techniques that assist in
connection discovery by uncovering connections to users’ past work that would normally
go unnoticed.

To address the challenge of recalling past work, users often externalize interesting
findings or new hypotheses using either annotations on top of visualizations or through

103
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bookmarks in electronic notes. These notes help users to manually revisit and review
their past analysis. However, as the number of notes and annotations grows larger, users
again have difficulty recalling the details of each previous discovery. Therefore, users
must be enabled to more easily retrieve views (visualization states with one or more vi-
sualizations), notes and concepts (including data characteristics investigated in the views
and entities from notes) from their past analyses. These related views, notes and concepts
can then help them to find interesting connections within their analysis.

In this chapter, we describe a context-based retrieval algorithm that retrieves views,
notes and concepts from a user’s past analysis related to a view or a note based on their line
of inquiry. Whenever users create a view or record a note, we derive a context description
for the view or note from their line of inquiry. Our algorithm then uses these context
descriptions to retrieve the most relevant views, notes and concepts from past analyses.

Using our context-based retrieval algorithm, we have implemented a related notes rec-
ommendation feature in HARVEST, a web based visual analytic system. As users create
new views during their analysis, HARVEST dynamically applies our algorithm to rec-
ommend the most relevant notes from past analyses. An overview of related notes is
presented as a ranked list of notes along with a thumbnail of associated views in the note-
taking interface. An overview of related concepts is also shown using a tag cloud. Both
overviews are updated after each exploration action. We evaluate the related notes recom-
mendation feature of HARVEST through a case study and discuss the implications of our
approach. Specifically, we believe that the related notes recommendation feature helps
users to maintain greater awareness of relevant information and assists in connection dis-
covery during visual analysis.

6.2 Connection Discovery

We encounter a lot of information during daily activities. We process that information to
learn new things, perform tasks or make decisions, and store that processed information
in our memory. However, our memory is limited in its ability to store and recall relevant
information from the past [38]. To overcome these limitations, we have learnt to work
around by taking notes, capturing pictures and videos, or associating with a local environ-
ment [68]. In addition, we also create to-do lists and automatic reminders using personal
information management systems [98]. These external attention pointers help us remem-
ber information that would otherwise be forgotten. Thus, we try to connect the dots using
these attention pointers and make sense of information encountered in our daily activities.

Also, when we read a text, we process information from it to understand the story
conveyed by its authors. For this, we need to connect the dots at various parts of the
text and make sense of it. A good text provides relevant attention pointers in the text
that help a reader to connect the dots. For example, authors of academic text use cross-
referencing as a reminder that helps readers to locate relevant pieces of information from
other locations. Similarly, authors of fiction text use sequences of events or people and
context descriptions as attention pointers that help readers to connect the dots.

During a visual analysis, analysts encounter much information by interactively ex-
ploring large datasets using visualizations. They also formulate some interesting findings
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during this exploration process. Due to the volume of information discovered during a
long analysis task, they often externalize interesting findings or new hypotheses using ei-
ther annotation on top of visualizations or through bookmarks in electronic notes. They
organize these findings into a case and present them to others [67, 117]. They must of-
ten connect insights discovered at various points of time and make sense of them [65].
However, during a long investigation process that can span hours, days or even weeks, it
becomes difficult for users to recall the details of their past discoveries. Therefore, it is
difficult to connect the dots during a visual analysis. Hence, we think it will be helpful
for the users to retrieve notes, views and concepts that are related to a given view or note
based on their line of inquiry. Also, during a visual analysis, the most relevant items from
past analyses related to their current line of inquiry can be recommended for maintaining
awareness of relevant information and to assist in connection discovery.

6.3 Related Work

First, we present a number of sense making models that highlight the critical role of
connection discovery during information analysis. We then discuss work related to con-
nection discovery during visual analysis.

6.3.1 Sense Making Models

Kuhlthau [83] considers a sense making process as an information search process in which
a person is forming a personal point of view [45]. She identifies six stages in an informa-
tion search process from a user’s perspective: initiation, selection, exploration, formula-
tion, collection, and presentation. She modeled the cognitive, affective and action aspects
involved in these six stages by conducting longitudinal user studies involving various pub-
lic library users, students and academic researchers. Finding relevant information to the
current topic is one of the important actions during the exploration and collection stages.
These actions help to avoid premature closure of an information search process.

Similarly, Ellis [48] classifies information seeking activities into eight categories:
starting, chaining, browsing, differentiating, monitoring, extracting, verifying, and end-
ing. She models the process of connection discovery in the information search process
in two categories: chaining and monitoring. Chaining involves following a referential
connection between information sources. Monitoring involves maintaining awareness by
tracking related information sources.

Pirolli and Card [103] identify two major loops in the sense making process during
an intelligence analysis task: the information foraging loop and the sense making loop.
They found that analysts look back into the processed information obtained (evidence file)
during the information foraging loop from the sense making loop to search for evidence
or relations that support a hypothesis. If no supporting information is found, analysts
continue to forage new information.
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6.3.2 Visual Analysis

In general, to support the sensemaking process in visual analytics (discussed in chapter
3) [117], users can be provided with three types of linked views: a data view, a knowl-
edge view and a navigation view. The data view has interactive visualization tools; the
navigation view provides an overview of the exploration process, for instance, a history
tree and action trails; and the knowledge view helps to record and organize notes. Cur-
rently, during an analysis, the connection discovery process is supported by exploiting the
relationships shared between either views and notes, or entities in notes.

Using Links between Views and Notes

Several information visualization tools support links between views and notes. In Aruvi,
users can externalize findings using notes along with links to the views. They can revisit
views via notes and review and revise their analysis. To support the review process, it
also provides an overview of key visualization and data aspects in an exploration process
using a user’s information interest model (discussed in chapter 5). They can also retrieve
visualizations from the past analysis using keyword and similarity search mechanisms
(Chapter 5).

Sense.us [67], a web site supporting asynchronous collaboration across a variety of vi-
sualization types, supports view sharing, discussion, graphical annotation, and social nav-
igation. It has a doubly-linked discussion mechanism that supports situated conversation
about visualizations. For this, both data and view parameters of visualization states are
indexed and associated with the corresponding comments. Thus, during an asynchronous
collaboration, all comments associated with a view are retrieved.

Using Entities

A combination of text analytics and information visualization has been widely used to
analyze massive textual data. Text analytics is used to extract entities from the text and
the relationship between those entities is visualized. The Have Green framework [138]
uses an interactive graph visualization to represent concepts and relationships extracted
through its analytical capabilities. In Jigsaw [119], multiple coordinated views are used to
visualize the connections between entities extracted from a collection of text documents.
A graph view is used to visualize text documents and entities shared among these doc-
uments. In addition to graph visualization, a list view is used to show the connection
between entities. A scatterplot view is used to explore pairwise connections between en-
tities. However, in Have Green and Jigsaw text analysis is used on the input data, but not
applied to a user’s notes.

Analyst’s Notebook [70] visualizes the relationships among entities extracted from a
user’s notes using graph visualization. In Entity Workspace [24], users can record notes
or place text snippets, entities and their relationship from notes and documents are ex-
tracted and a document-entity graph is constructed. Using this graph model, analysts can
re-find facts quickly, notice connections between entities, abstract information structure
and identify documents and entities to explore further. During a collaborative analysis,
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the most valuable notes from other analysts related to the current topic (text) are recom-
mended to an analyst using an entity graph. Thus the entity workspace identifies related
entities and helps analysts to connect the dots while investigating a text document corpus.
Also, in InsightFinder [33], users’ notes are used to build a context model. Using this
context model, the most relevant page units are recommended to them while browsing the
Internet.

During a visual analysis, users formulate findings after some exploration as identified
in Pirolli and Card’s sensemaking model and Kuhlthau’s information seeking process
model. For connection discovery in visual analysis, approaches based on links between
views and notes or entities in notes are not sufficient. The users’ line of inquiry has
to be considered in combination with view and data parameters of views and entities in
notes. We now present our approach to connect the dots in visual analysis, by considering
the users’ line of inquiry, view and data parameters of views, and entities in notes in an
integrated way.

6.4 Approach

To support the connection discovery process during a visual analysis, we enable users to
retrieve views, notes and concepts from past analyses related to a view or note. Figure 6.1
shows our approach. Whenever they create a view of their data (in the data view) or
record a note (in the knowledge view), we derive a context description for the view or
note from their line of inquiry. Our algorithm then uses these context descriptions to
retrieve the most relevant views and notes from past analyses. The context description
is derived from a model of visual analytic activity called action trails [60]. Action trails
represent users’ analytic activity as graphs of semantic analytic steps, or actions. Actions
can be classified into broad categories: exploration actions, insight actions, and meta-
actions. An exploration action alters the visualization specifications in a visual analytics
system and creates a new view. Insight actions record or organize notes and views, while
meta-actions (e.g., revisit, undo, redo) allow users to review and structure their lines of
inquiry.

Action trails contain valuable information about the concepts that are most relevant to
a user’s analysis and how the user’s interests evolve over time. We therefore extract a set
of concepts from the action trail to form the context description for each view or note. We
extract two types of concepts. Action concepts are derived from the attributes associated
with exploration actions (e.g., data and view parameters). Entities are concepts extracted
from a user’s notes and represent items such as people, places or companies. For each
concept associated with a view or note, we derive concept weights from the user’s action
trail to determine its degree of salience at the time the view or note was created.

For a view or note focused on by the user, we compute the relevance score to existing
views and notes by comparing the context descriptions of existing views and notes with
that of the given view or note. Using the relevance score, the related views and notes are
retrieved. An overview of the related concepts is also provided. Thus, this context-based
retrieval algorithm surfaces the most relevant information from the past analyses of the
users based on their line of inquiry during a visual analysis.
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Figure 6.1: A context-based retrieval system that retrieves related notes, views and con-
cepts for a view or a note based on the users’ line of inquiry. This retrieval system is used
to support the connection discovery process during a visual analysis.

Using this context-based retrieval algorithm, we have implemented a recommenda-
tion feature in HARVEST, a web based visual analytics system which is shown in Fig-
ure 6.2. The recommendation feature shows a list of related notes (Figure 6.2(c)) along
with thumbnails of the view displayed while recording those related notes (Figure 6.2(d))
to the current view (Figure 6.2(a)). Also, it provides an overview of related concepts us-
ing a tag cloud (Figure 6.2(e)). In the following sections, we describe the context-based
retrieval algorithm (Section 6.5) and present the design considerations (Section 6.6) and
implementation details (Section 6.7) of the recommendation feature in HARVEST.

6.5 Context-based Retrieval Algorithm

In this section, we describe the details of our context-based retrieval algorithm. First, we
present a visual analysis use case. Next, we support our argument for a context description
based on action concepts and entities from action trails with the use case. We then use
the context description as the basis for the relevance metric used to identify related views,
notes, and concepts.
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Figure 6.2: A user investigating a finance dataset in HARVEST, a web based visual an-
alytics system. (a) The data view shows a visualization created by the steps shown in
the user’s action trail (f). (b) A note-taking interface. (c) A ranked list of related notes.
(d) Thumbnail of the view displayed while recording those related notes. (e) Related
concepts overview - An overview of related entities from notes (underlined) and related
action concepts from action trails.

6.5.1 Use Case
Figure 6.3 shows a portion of an action trail for an analyst investigating product sales data.
She starts her analysis by focusing on sales that are more than $50,000 (Figure 6.3(1)).
She compares sales of each product using a scatterplot visualization and bookmarks it
(Figure 6.3(2)). Then, she studies quarterly sales of the products by aggregating the
sales represented on the y-axis of the scatterplot based on a quarterly time period (Fig-
ure 6.3(3)). Next, she uses a tree map to visualize the sale figures in various regions
(Figure 6.3(4)). Further, she clusters the products by their category to get an overview of
the sales performance by product category in various regions (Figure 6.3(5)). This view
triggers her to reconsider the products sales comparison that she investigated some time
back. She therefore revisits the comparison view she bookmarked earlier. Then she nar-
rows down to the east and south regions (Figure 6.3(6)). This revisit and reuse of a view
creates a branch in her action trail.

She further slices the products in the x-axis of the scatterplot by their category; and
slices sales in the y-axis of the scatterplot by quarterly period (Figure 6.3(7)). This slic-
ing creates a scatterplot matrix showing sales of various product categories in different
quarters of the year. She finds out that product categories A, C and D have shown profit
consistently in the east and south regions. She records this finding using a note. Then,
she continues her analysis by studying yearly sales (Figure 6.3(8)) and sales distribution
across regions using a map (Figure 6.3(9)).
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Figure 6.3: Part of an action trail for an analyst investigating product sales. Exploration
actions are represented with a blue box; insight actions such as bookmarking and note-
taking are represented using an orange box; meta-actions such as revisit are represented
using a green line with an arrow.

6.5.2 Action Concepts as Context

In the products sales use case, the user started her analysis with general sales data and
moved on to investigate quarterly and yearly sales trends. Region was another aspect
considered in the investigation; she focused on all regions, then narrowed down to the east
and south regions, and finally moved on to see the actual geographical sales distribution.
She also investigated the sales of individual products as well as product categories (groups
of products).

The action concepts associated with this action trail (e.g., the east region and product
category) correspond to the user’s information interests. However, some of the action
concepts were more predominant at certain times than others. For instance, she was in-
terested only in sales of more than $50,000 throughout the investigation. In contrast, she
shifted her focus among other action concepts such as quarterly sales, product categories,
and regions. Her interest in these action concepts varied over time. Therefore, during an
exploration process, users’ evolving information interests can be viewed as a time-varying
set of weighted action concepts taken from their action trails.

A set of weighted action concepts is associated with each view and note to represent its
context description. The weight for each action concept represents its degree of salience
at the time the view or note was created. The metrics used for calculating the weight
from the action trails are motivated by the spreading-activation construct that is used
in many theories for retrieving information from long term memory [16, 37]. In these
theories, knowledge is encoded as a network structure, consisting of nodes representing
concepts and links representing associations among concepts. During a retrieval process,
this network structure is used to identify knowledge relevant to a current focus of attention
and facilitate processing of associated items. The two basic points emphasized in these
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theories are (1) activation is modeled as a spreading function, and (2) activation decays
exponentially with the distance it spreads over a network structure [37].

Back Trace and Forward trace

Action trails represent a network structure consisting of views and notes. This network
structure holds concepts and their relationships investigated during an analysis. To extract
related action concepts for a view or a note, we use a spread function from the view or
note over the network structure presented in the action trails. A trace spreads through
the network structure of an action trail to reflect that a view or note can be created by a
confluence of different lines of inquiry. Figure 6.4(a) shows a back trace of exploration
actions for a view using the structure of the analyst’s action trail shown in Figure 6.3.

(a) (b)
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Figure 6.4: (a) Back trace of exploration actions for view 9 in Figure 6.3. (b) Back
trace and forward trace of exploration actions for the note N in Figure 6.3. db and df
are the normalized weight for each exploration action in the back trace and forward trace
respectively.

We can trace both forward and backward through the action trail for a note. To de-
termine if a backward or forward trace is appropriate, we determine the type of insight
behavior being performed by the user. Based on our observation of how users record notes
in Aruvi [117], we distinguish six categories of notes taking.

Finding. Findings are usually obtained after a sequence of exploration actions. Hence, a
back trace of exploration actions will give related action concepts for this note. A
note with a link to a view is categorized as a finding.

Hypothesis. Users record some assertions or hypotheses that they want to confirm dur-
ing an investigation. These notes influence subsequent actions. Hence, a forward
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trace of the exploration actions will give related action concepts for this note. A
note without a link to a view is categorized as an hypothesis. Users can also for-
mulate hypotheses after exploring data. In this case, we assume users record such
hypotheses as findings with a link to a view.

Snippet. Users can collect some relevant information from outside a visual analytics
system (e.g., a snippet from the Internet). In this case, either a sequence of explo-
ration actions might have triggered them to look for some external information or
they may be preparing for an investigation by gathering some external information.
Hence, in this case, both back trace and forward trace is required to derive related
action concepts (Figure 6.4(b)). A note created by copying contents from the In-
ternet or other digital documents, and without a link to a view is categorized as a
snippet.

Edit. During the exploration process, users can edit a previously recorded note. In this
case, we combine the related action concepts from the previous line of inquiry
associated with the note and the related action concepts from the current line of
inquiry. Currently, we consider only edits that add a new entity or new sentence to
the notes.

Reassociation. Sometimes, users can remove a link between a note and a visualization
and reassociate the note to a new visualization. In this case, the related action
concepts from the previous line of inquiry are replaced with those from the current
line of inquiry.

Multiple Association. Some users requested multiple visualizations created at different
instance during an analysis to be associated with a note. In this case, the related
action concepts from the line of inquires of each visualization are combined.

In addition to choosing the trace direction, we must also determine how far to trace
along the trail. The boundary of a trace is difficult to determine algorithmically from
an action trail because it depends on the semantics, and is subjective. So far we apply
a simple threshold to determine the boundary: either until n unique action concepts are
extracted, or when the start or end of an action trail is reached. After experimenting with
various values, we use a threshold of n = 10 in our current prototype. Thus, the outcome
of the trace is a list of related action concepts from the local neighborhood of the action
trails.

Related Action Concept Weight

We derive weights for a set of related action concepts extracted by tracing the action trail
based on the following factors:

• Recency
Proximity of an exploration action to a view or a note in an action trail is used to
weigh an action concept. In Figure 6.4, db and df are the normalized weight for
each exploration action in the back trace and forward trace respectively based on
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the length of the trace. This normalization compensates for the variation in length
for each trace.

• Specificity
During an exploration process, analysts may be focused on all values of an attribute
(e.g., sales in all regions) or they may focus on specific values of those attributes
(e.g., sales in the east and south regions). Hence, if an action concept references
specific values within the dataset, then it is given more weight than those which
reference generic characteristics. In our current prototype, a specific concept is
given a specificity weight sc that is twice the weight of a generic concept (e.g., all
regions).

Based on the factors above, the weight Wc for an action concept c is as follows

Wc = sc ×

(
wb ×

b∑
i=1

di + wf ×
f∑

i=1

di

)
,

where sc is the specificity weight of the action concept c; b and f are the length of the
back and forward traces respectively; di is the normalized weight based on recency of an
exploration action for back trace or forward trace; (with di = 0, if c is not specified in an
exploration action); wb and wf are the weights for back and forward traces respectively;
(with wf = 0, for a view or a finding; wb = 0, for a hypothesis). For each note, related
action concepts are extracted and a weight for each action concept is computed based
on the structure of the user’s action trail. As the exploration process evolves, the set of
related action concepts for each note and their weights are updated based on the above
categories.

6.5.3 Related Entities from Notes
In the above use case, the analyst recorded a note (in Figure 6.3) that contains entities
such as product categories (A, C and D) and regions (east and south) and relationships
among them. These entities and relationships also represent her information interest at
the time of recording that note in addition to the action concepts that lead to this note.
Thus, entities extracted from notes also represent a user’s information interest in addition
to the related action concepts.

We use text analysis tools to extract entities (e.g., people, places, and organizations)
from the user’s notes [53]. Often, these entities are of the same types found in the dataset
being visualized. An extracted entity has three properties: a type, the covered text and
its canonical form. For example, a user might type ‘BOFA’ in a note to refer to ‘Bank
of America’. The text analysis tool would detect this phrase as an entity of type ‘Bank’
with covered text ‘BOFA’ and canonical form ‘Bank of America’. For each type, we
also defined a generic canonical form (e.g., ‘Generic Bank’) to capture general references
(e.g., ‘Bank’ or ‘Lender’).

A weight can be associated with each entity extracted from a note based on its prop-
erties and frequency of occurrence (n) within the note . We associate a weight (we) to
the covered text e: we = n, if e is a canonical form; we = 0.5n, if e is a type; and
we = 0.25n, if e is a generic canonical form.
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6.5.4 Retrieving Related Views, Notes and Concepts
A view or a note has a context description based on the related action concepts (c) from
the action trails and entities (e) extracted from notes. For a given view or a note (B), we
can compute a relevance score d(T ) for a target view or a note from past analyses (T ) as
follows

d(T ) =
m∑

i=1

(WB(ci)×WT (ci)) +
p∑

i=1

(wB(ei)× wT (ei)) ,

where m is the number of related action concepts for the base view or note and p is the
number of entities from the base note; with p = 0, if B is a view; WT (ci) = 0, when ci
is not a related action concept for the target view or note (T ); and wT (ei) = 0, when ei

is not an entity of a target note or the note attached to a target view T . Thus, a ranked
list of related views and notes for a given view or note is obtained based on the context
descriptions extracted from the action trails.

Next, we derive the related concepts for B. An overview of the related concepts is
provided using a tag cloud as shown in Figure 6.2(e). The weights of the action concepts
from the context description of B are used to determine the font height for displaying
each action concept in the tag cloud. The weight W (ei) for a entity ei is computed as

W (ei) =
n∑

k=1

d(Tk),

where n is the number of relevant notes. d(Tk) = 0, when the note Tk does not contain
the entity ei.

The weights of the action concepts and entities are normalized before they are used
to determine the font height. Entities are underlined while action concepts are not under-
lined. Since concepts can be represented in multiple words, an alternate coloring scheme
is used to distinguish concepts in the tag clouds.

In the above use case, when the analyst explores the geographic distribution of the
sales (Figure 6.3(9)), we can retrieve related views and notes from her past analysis.
Previously, she investigated sales in all regions using a tree map (Figure 6.3(4)). This view
may be one of the most relevant views for her investigation on the geographic distribution
of the sales. Using the above context-based retrieval algorithm, we retrieve such related
views and notes for a given view or note.

6.6 Recommending Relevant Information
Our algorithm can be used to recommend related views, notes and concepts based on a
user’s ongoing exploration process. This recommendation can help the user by showing
them information they may have overlooked. However, it is also critical to avoid over-
whelming the user with too many recommendations. To avoid this, we must automatically
recommend only the most relevant information to balance the cost of distracting their at-
tention.
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Of the three components—views, notes and concepts—we argue that notes play the
most critical role in connection discovery during a visual analysis by acting as a reminder
that helps to recall key aspects such as views and concepts during the foraging process
(Figure 6.5).

Related notes with 
associated views overview

Related 
Concepts 
overview

Current View

Figure 6.5: Relevant information for connection discovery during the information forag-
ing process in a visual analysis.

To validate this argument, we interviewed two business analysts who do some visual
analysis using simple visualization tools such as Microsoft Excel. Both analysts take notes
during the analysis process and refer back to it throughout the analysis, when preparing
a report, while sharing analysis with others or when starting a new related analysis. The
first analyst stated “I take notes to help me remember what I have learnt . . . I would refer
to the notes to figure out what I think and what I do. The notes help me remember how I
performed a task during the analytic process, for instance, how I derive this insight, how
I generate this chart.”

The second analyst explained that she records how she manipulated a dataset along
with findings in her notebook. She documents in detail especially when she has to cre-
ate a report for transferring operations to other analysts. She maintains a big notebook
and organizes notes with titles that summarize them. While recording any new findings,
she tries to locate earlier notes that are most relevant to the particular topic and just add
new findings into the old notes. When she creates the detailed report, it is pretty much
like starting a new task from her, because usually she forgets what and how she did the
analysis. She says “but I have my initial report to help me remember. It is not easy to
remember how I did by just looking at the visualizations in the report. I need to click on
a few (spreadsheet) cells to remember what it is about.”

For the two analysts, the notes acts as a bridge between the analysis executed in the
system and their cognitive process. The notes act as reminders to key aspects of the explo-
ration process, such as views or concepts. Hence, in our current prototype, we recommend
only related notes along with a thumbnail of the visualizations that led to the formulation
of those notes during the exploration process. Figure 6.2 shows recommendations of re-
lated notes for the current view (Figure 6.2(a)) based on the user’s current line of inquiry.
If the users are interested in locating views and concepts with similar context description,
they can explicitly request that information.

6.7 Connection Discovery in HARVEST

We have added our recommendation algorithm to HARVEST [59], a web based visual an-
alytics system that supports exploration of large unstructured datasets. It has an action
tracking mechanism that automatically captures and displays (Figure 6.2(f)) user’s anal-
ysis behavior as an action trail [60]. Using the action trail interface, users can archive



i
i

“thesis” — 2010/5/19 — 9:27 — page 116 — #130 i
i

i
i

i
i

116 CHAPTER 6. CONNECTION DISCOVERY

their trails, as well as revisit and reuse past views. In addition, we extended HARVEST
by adding a new note-taking interface that allows users to record notes and organize them
into groups and slides (Figure 6.2(b)).

Related notes are surfaced through the note-taking interface. When a user records
a note, the system augments it with a context description. Then, as the user creates a
new view in HARVEST, the recommendation algorithm dynamically derives a context
description for the view from the current action trail, and compares it with the context
descriptions attached to the user’s notes. Based on this comparison, the system computes
a relevance score for each note and presents a ranked list of related notes through the
note-taking interface (Figure 6.2(c)). A thumbnail of the visualization that was displayed
while the user originally recorded each note is also shown (Figure 6.2(d)). An overview
of concepts extracted from notes (underlined) and views is shown (Figure 6.2(e)) on-
demand. With the note-taking interface, users can either explicitly request related notes at
anytime or have the system automatically recommend them after each exploration action.

The integration of our algorithm into the HARVEST system allows it to dynamically
surface the most relevant notes from earlier stages in an analysis as users continue the ex-
ploration process. We believe that this related notes recommendation feature in HARVEST
helps users maintain awareness of relevant information and assists in connection discov-
ery during visual analysis. To evaluate this approach, we now present a case study and
discuss its result.

6.8 Case Study

We conducted a case study to explore the implications of recommending related notes
during a visual analysis. We were quite interested in looking at the circumstances in
which users wanted to access related notes during their tasks. For this, we observed the
analysis process of a research analyst working for a major financial services company. He
is familiar with data analysis tools such as Microsoft Excel but had never used HARVEST
before. He investigated a financial dataset in HARVEST, and recorded notes using its
note-taking interface.

The financial dataset consists of around 1000 financial news articles from the New
York Times published between August and September of 2007. These articles were se-
lected from a collection of news and business articles provided by Factiva, a division of
Dow Jones & Company. The content of the articles was processed by a text analysis tool
to identify key entities in the financial domain such as banks, investment firms, markets
(e.g., stock, mortgage, credit, debt), financial instruments (e.g., bonds, securities, funds,
etc.), government agencies, important persons, and countries.

The research analyst investigated the financial dataset by exploring the relationships
among the entities using visualizations in HARVEST. His investigation spanned for two
sessions each lasting for 30 minutes and one week apart. For the first session, we turned
off the recommendation feature, and for the second session we turned it on. The analyst
was told to explore the financial dataset to understand the status of the financial sector
around the time when the articles were published. He was allowed to explore and analyze
data freely without any task restriction. We recommended to make use of the note-taking



i
i

“thesis” — 2010/5/19 — 9:27 — page 117 — #131 i
i

i
i

i
i

6.8. CASE STUDY 117

interface for recording hypotheses and discoveries during the analysis. At the end of
the sessions, his exploration trail was bookmarked and saved. We closely observed the
analyst’s analysis process, and conducted a short interview at the end of each session.

Session 1 - Without related notes recommendation
In the first session, the analyst typically alternated between analyzing data along different
dimensions using various criteria (by issuing queries and interacting with the visualized
results), and taking notes to record his thoughts and discoveries. He used separate notes
to record (1) what he expected to see from the data (hypotheses), and (2) what he actually
saw and thought was/were the reason(s) to explain such trend or pattern in the visualiza-
tions (findings). He then grouped notes related to the same topic (e.g., about a specific
investment firm). During this session, he created 10 notes and organized them into 4
groups.

During an interview held afterwards, the analyst expressed that the note-taking facility
was quite useful. We asked further about the usefulness of identifying related notes in the
analysis process. He agreed that it would be useful. He stated that he would like the
system to recommend the related notes immediately after the system displays the chart
of the newly requested data. He indicated that such recommendations will inform him of
what has already been explored, and give him some ideas of how to explore the new result.
He also felt it could save time by helping him avoid duplicate work, and by allowing him
to start new tasks by building on previous analyses. He felt that these time savings would
allow him to go deeper into his analysis.

The analyst also expressed that automatic recommendation of related notes can be
useful since he wouldn’t have to spend time reading through all his notes to find the
few that might be relevant. It can also help him to aggregate insights and discoveries
from previous notes more easily. In addition, he mentioned that he would very much
appreciate if the system could recommend related notes from a collection of notes shared
among other analysts.

These statements were encouraging and affirmed our approach to surface the related
notes during an exploration process.

Session 2 - With related notes recommendation
After a week, the analyst continued his analysis of the same Factiva dataset. The archived
exploration trail was restored in HARVEST, including the notes previously created by the
analyst. We enabled the related notes recommendation in HARVEST during this session
and observed his analysis process. The analyst started by revisiting previous views using
the exploration trail for recalling what he did during the last session. Then he continued
to explore the data using criteria that were not used during the first session.

When the system provided a recommendation for the first time, he read the content
of the recommended notes carefully. He also tried to identify the states in the action trail
that were associated with the notes without revisiting it using the thumbnails. Later, he
only glanced over the recommendation list and focused his attention on the recommended
notes that were newly added to the list. During this session, he added new content to four
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existing notes, all of which were recommended by the system. Interestingly, he didn’t
create any new notes.

After the analysis session, we conducted a short interview to understand how the
related notes recommendation in HARVEST impacted his analysis. When we asked about
the relevancy of the recommend notes, the analyst said “They were relevant in the sense
that the concepts mentioned in the recommended notes were related to the data I was
inspecting. For example, when I was looking at the information about one bank, the
system recommended a note I created previously about another bank, which I thought
was useful. I think note recommendation could also help me find some of my previous
notes related to my current analysis, which I might not realize or totally forget about.”

The analyst liked the thumbnail associated with each recommended note because
it helped him quickly remember the context of this note. He felt the option of show-
ing/hiding the recommendation quite useful; and said “. . . so if I didn’t want to be dis-
tracted during my data analysis I could always hide it, and make it appear later when I
needed it.”

Towards the end of the interview, the analyst suggested a few improvements to the
system. He would have liked the related concepts to be highlighted in the recommended
notes so he could quickly determine if a recommended note is either useful or not without
having to read through the whole note. He currently felt it was difficult to revisit views
from the notes and to revisit notes from the action trail; and asked for an efficient way to
revisit visualizations without having to lose sight on the current analysis process. He also
expressed that it would be better if the notes are displayed with a thumbnail of the linked
visualization states in the knowledge view, similar to how thumbnails are displayed next
to notes in the related notes recommendation list.

6.9 Discussion

We performed the case study to understand the circumstances in which related notes rec-
ommendation is found to be useful. Initially, we assumed that the recommendation would
be relevant only for longer analysis processes with a large number of notes, hence our
study design of two sessions spread out over a week. However, the research analyst
who participated in the case study performed the analysis in two short sessions and just
recorded 10 notes with relatively small action trails. Still, the analyst created ZERO new
notes in the second session, always editing old notes recommended by the system. It is
exactly what we want to encourage — ‘connections between insights instead of a bunch
of small individual insights’. We believe that with the related notes recommendation,
users will more often do editing, re-association and multi-association of notes during an
analysis. Thus, the related notes recommendation helps to create awareness of relevant
information from the past with respect to the analyst’s current line of inquiry and encour-
ages connection discovery during visual analysis.

In addition, the identification of related notes and views using the context description
provides a new way of retrieving visualization from past or other collaborator’s analysis.
This approach, in addition to keyword and view similarity based search methods [116],
can help analysts review past analyses.
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Retrieval of related items can also be helpful during the sensemaking process. In
HARVEST, we used the context-based retrieval algorithm to recommend related items
during the information foraging process. Whenever analysts created a new view, the re-
lated notes, views and concepts are retrieved and shown. Similarly, recommendation of
related views, notes and concepts can be made when they select or modify an existing
note, related views, notes and concepts to that note can be looked up and recommended to
them. Thus, analysts can locate related notes within the note-taking interface when rele-
vant information is either scattered spatially or distributed in different discussion threads.
After locating the related notes, users may be interested in combining them into a group
or a note.

6.10 Conclusion and Future Work
In this chapter, we described a context-based retrieval algorithm that retrieves views, notes
and concepts from users past analysis related to a view or a note based on their line of
inquiry. Whenever users create a view of their data or record a note, we derive a context
description for the view or note from their line of inquiry. Our algorithm then uses these
context descriptions to retrieve the most relevant views and notes from past analyses.

Using our proposed approach, we have implemented a related notes recommendation
feature in HARVEST, a web based visual analytic system. As users create new views dur-
ing their analysis, HARVEST dynamically applies our algorithm to recommend the most
relevant notes from past analyses. An overview of related notes is presented as a ranked
list of notes along with a thumbnail of associated views in the note-taking interface. An
overview of related concepts is also shown using a tag cloud. Both overviews are updated
after each exploration action. Finally we presented a case study in which a research ana-
lyst investigated a dataset using the HARVEST system. Our observations of the analyst’s
analysis process and his feedback support our argument that the identification of related
notes, views and concepts is helpful in connection discovery during visual analysis.

Given our findings, there are several areas for future work. From the navigation struc-
ture represented in the action trail, it is possible to identify the relationship among the
action concepts. Also, the relationship among entities can be derived based on the spatial
distribution of notes and text analytics as in some text analysis tools such as Jigsaw [119]
and Entity Workspace [24]. Hence, in the future, the relationship among action concepts
and entities can be derived from the action trails, and studied using interactive graph vi-
sualization. We believe this can clearly bring out the information structure that evolves
during the user’s exploration process, and can provide a better overview of the implicit
connections among concepts during a visual analysis.

In the next chapter, we provide concluding remarks about the work discussed in this
dissertation, and recommend future work.
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Chapter 7

Conclusion

Katrathu kaimann alavu, kallathathu ulaga alavu (What you know is as big
as the size of your palm, what you do not know is as big as the size of the
universe) — Thiruvalluvar, Thirukkural, around 200 BC.

In the preceding chapters, we presented generic models and tools for supporting the
sensemaking process in visual analytics. In Section 1.2 we presented the requirements for
supporting an effective sensemaking process during interactive data exploration within a
visual analytics application. Our approach to support the sensemaking process in visual
analytics enabled analysts to capture aspects of interest while interactively exploring data;
and to support analytical tasks such as reviewing, reusing and sharing these.

This final chapter contains concluding remarks about the work presented in this dis-
sertation. First, we summarize the main contributions of this dissertation to support the
sensemaking process in visual analytics. Secondly, we present implications of these con-
tributions, and discuss opportunities for future work.

7.1 Contributions
Interactive visual exploration of data can lead to many discoveries in terms of relations,
patterns, outliers and so on. It is difficult for the human working memory to keep track
of all findings during a visual analysis. Also, synthesis of many different findings and
relations between those findings increases the information overload and thereby hinders
the sensemaking process further.

In this dissertation, support for the sensemaking process in visual analytics was inves-
tigated. The key research question, introduced in Chapter 1, was: How to support users
in their sensemaking process during interactive exploration of data?

To answer this question, we mainly focused on how to support users to capture, reuse,
review, share, and present the key aspects of interest concerning the analysis process and
the findings during interactive exploration of data. First, we presented a sensemaking
framework in Chapter 3 that contains three linked views: a data view, a navigation view
and a knowledge view. Using this framework, the analysis process was automatically

121
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captured based on an analyst’s action trails in the data view. Also, it provided an oppor-
tunity for the analyst to manually keep track of his/her analysis process using notes in the
knowledge view. We showed that enabling analysts to capture findings along with prove-
nance proved to be an important support for the sensemaking process. They could build
a case by organizing the findings. Thus, they could effectively ground their analysis; and
defend their judgment using the provenance information.

Secondly, we enabled analysts to capture data selections as semantic zones during an
analysis, and to reuse these zones on different subsets of data. Data selection techniques
such as dynamic queries and brushing help users to progressively converge on interesting
data items. Also, they can edit these selections, and thereby perform a divergent analysis.
A zone contains the specification of a data selection with a label provided by analysts. In
Chapter 4, we presented a Select & Slice table that helped analysts to gain an overview of
the distribution of items across different zones and subsets of data. It provided an oppor-
tunity to compare the distribution of items side-by-side, and to build a case. The Select &
Slice table is a good example of effective capture and reuse of an interesting aspect of the
exploration process. Analysts commented that the capture, reuse and compare tasks sup-
ported by the Select & Slice table was a natural way of doing analysis with data selection.
Otherwise, reasoning with selections was a laborious task.

Finally, exploration overviews and searching techniques based on keywords, content
similarity, and context helped analysts to develop awareness over the key aspects of the
exploration concerning the analysis process and findings. On one hand, they can proac-
tively search analysis processes and findings for reviewing purposes as described in Chap-
ter 5. On the other hand, they can use the system to discover implicit connections between
findings and the current line of inquiry, and recommend these related findings during an
interactive data exploration, as discussed in Chapter 6.

An overview of models and tools to support the sensemaking process described in
this dissertation is shown in Table 7.1. The interesting aspects concerning an analysis
investigated in this dissertation are the analysis process and findings. The four main tasks
for supporting the sensemaking process in visual analytics are capture, review, reuse, and
share and present. The table shows models and techniques developed to support these
tasks while handling analysis processes and findings.

Capture. An analysis process in the data view is captured as an action trail (Chap-
ter 3). The action trail is a hybrid state-action model that captures the visualization and
data specifications, as well as the object interest profile of visualization states. It supports
a branching history model. Findings can be recorded as notes in the knowledge view
(Chapter 3). These notes can be linked to a visualization state in an action trail. These
notes can be organized into groups, and connected using arrows using diagramming tech-
niques. Data selections are captured as semantic zones (Chapter 4).

Reuse. Visualization states archived in action trails can be revisited and reused via
the navigation view and the knowledge view (Chapter 3). Users can select a node in
the history tree (Section 3.4.2), or a note bookmark in the knowledge view to revisit a
visualization state. Zones can be reused to select items from different subsets of data in
the Select & Slice table (Chapter 4).
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Review. We developed a user’s information interest model to extract the key aspects of
the exploration process: visualization and data transforms, and medium interest (viewed)
and high interest (selected) objects. A tag cloud representation was used to provide an
overview of these key aspects of the exploration process. We enabled users to perform
keyword search on all text that plays a role in these key aspects. Also, we enabled users
to retrieve visualization states based on content similarity. Using these tools, analysts can
proactively develop awareness about what has been done and found in an analysis, and
review it. We also provide a simple keyword search to retrieve notes. These techniques are
described in Chapter 5. In Chapter 6, we developed a context based retrieval mechanism
to assist in connection discovery during an analysis by uncovering connections to users’
past work that would normally go unnoticed. In Chapter 4, we developed comparison
and keyword search functionalities to the Select & Slice table for reasoning based on data
selection.

Share and present. Action trails, notes, zones, Object Interest Profile, and Select &
Slice tables can be archived and shared. Except action trails, other items can be exported
as HTML, image, rich text or CSV files, and reviewed in other applications.

We implemented these models and tools described in Chapter 3, Chapter 4 and Chap-
ter 5 in Aruvi; and Chapter 6 in HARVEST. Using Aruvi and HARVEST, we studied the
implications of these models on a user’s sensemaking process. Data analysts from dif-
ferent domains such as software quality, finance, embedded systems, and urban planning
used these tools to carry out some of their data analysis tasks. We adopted the short-term
and long-term case studies approach to study support offered by these tools for the sense-
making process. The observations of the case studies were used to evaluate the models.

In conclusion,

• The four tasks: capture, reuse, review and share (of key aspects of the exploration
process) are vital to support the sensemaking process of the user. They help him to
opportunistically mix the information foraging and the sensemaking loops;

• The sensemaking framework with the three views: data view, knowledge view and
navigation view, enables users to keep track of their analysis and findings by sup-
porting the above four tasks;

• The history tree representation is a good model for automatically capturing the
analysis; however, the key aspects overview gives a better overview of the analysis
to users;

• The note taking mechanism that enables users to record findings with a link to
visualization states is a basic necessity for supporting the sensemaking process;

• During exploratory data analysis, selection techniques such as dynamic queries and
brushing help users to progressively converge on interesting data items, and by edit-
ing they can perform a divergent analysis. The Select & Slice table is a better way to
capture and reuse selections, and to compare the results of selections. Also, it helps
users to rapidly explore multi-dimensional datasets with a similar data structure.
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7.2 Future Work
The sensemaking framework, presented in Chapter 3, focused on supporting the analytical
activities during interactive exploration data in the data view. The knowledge view and
the navigation view supplemented the sensemaking process in the data view. One of the
users commented that “it is absolutely intuitive to have the data view and knowledge
view side-by-side; and an overview of the exploration process to track back.” These
additional views supported the sensemaking process in the data view well. In addition,
these views helped analysts to extend their analytical activities beyond the data view in
terms of note-taking. However, we also observed that our approach so far has limitations.
We discuss these issues in the following subsections. The opportunities for extending the
sensemaking framework to address these issues are shown in Figure 7.1.

Data View Knowledge view

Navigation view

External toolsData Processing

Other AnalysesReuse of actions

Figure 7.1: Opportunities for extending the sensemaking framework for visual analytics
highlighted using dash lines.

More Tools
More visualization tools such as treemaps, graphs and parallel coordinate plots can be
developed as a part of the data view. Currently, Aruvi supports SQL based databases.
Support for handling hierarchical data structures and XML-based databases can be added
to enhance opportunities provided by Aruvi for data exploration.

External Tools
When analysts used Aruvi to explore data, they sometimes used other tools such as Mi-
crosoft Excel, ESRI ArcGIS, and the Internet for extracting data and verifying the results.
We assumed in the sensemaking framework that all tools used are a part of the data view.
In Aruvi, we implemented a simple data view consisting of interactive scatterplots and
barcharts attached to a dynamic query interface. But, during a data analysis, analysts
make use of multiple tools to solve or understand a problem at hand.
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When analysts carry out an analysis using multiple tools, they may need to combine
and make sense of results from these tools. For instance, tools used by a software quality
analyst for dynamic program analysis are different from tools used for the static code
analysis. The analyst has to combine the results from these analyses to build a case about
a software system.

The action trails captured by the history tracking mechanism of Aruvi do not include
activities from external tools; the key aspects of the exploration process, (visualization and
data transformations, view objects and selected objects) are captured only from the data
view of Aruvi. Therefore, the exploration overviews, the search and retrieve mechanism,
and the connection discovery are limited to the analytical activities within the data view,
and do not cover the entire analysis process of an analyst.

One of our users complained that “you cannot capture input and output from products
such as Matlab and Microsoft Excel, and archive them as a part of the action trails shown
in the navigation view.” There is much analytics software that is specialized in either vi-
sualization or automated data analysis. Re-implementing these software tools as a part of
the data view, for instance in Aruvi is impossible; a better route is to provide functionality
such that external tools can be coupled. One option is to adopt a socket programming
approach such that an external tool state is captured as a part of the action trails or notes,
and later restore it in the external tool. If that is not possible, a weaker coupling can be
implemented, such as capturing screenshots from external tools with comments in the
notes view.

Data Provenance

Often data is large and complex, and data preprocessing is an important part of the anal-
ysis process. Analysts have to spend much time on data pre-processing, including data
cleaning, removing redundant data, and adapting to an input format supported by the ap-
plication. In a production environment, data preprocessing is also a part of the analytical
activity.

Adding data manipulation tools in the data view in addition to visualization tools
is practical for analysts. During data analysis, most of them prefer a spreadsheet-like
manipulation of columns, so that they can define an attribute based on mathematical com-
binations of attributes of a dataset. In Aruvi, users can create a derived column at anytime
and use it during an analysis. However, Aruvi does not keep track of changes to a dataset.
It only records the data and visualization specifications given by the users, and the result-
ing object interest profile. Thereby, the size of an analysis file is kept minimal, but data
changes cannot be recreated.

Of the three views in Aruvi, the data view has minimal tools, such as interactive
scatterplots and barcharts attached to dynamic query interfaces to support the analy-
sis process. Though these visualizations are useful to study the distribution of items
in a dataset, they do not help in analyzing large datasets with tens of attributes. Ana-
lysts mostly cleaned their datasets using Microsoft Excel and derived subsets of a large
database before working in Aruvi. They manually kept track of the processes involved in
data manipulation using notes in the knowledge view.
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Reuse of Actions

We found a common behavior which reoccurred during the case studies conducted to
evaluate the sensemaking framework (Chapter 3) and the Select & Slice table (Chap-
ter 4). Analysts often captured visualization states and selections not only for recording
findings and building a case, but also for reusing these during an analysis process. Each
visualization state is used as a kind of a macro to recreate a visualization state. Similarly,
data selections were declaratively captured as semantic zones. Analysts could reuse the
zones on different subsets of a dataset or on a dataset that has a data structure similar to
the original dataset. However, the reuse of visualization states was restricted to revisit-
ing. Often, our analysts expressed interest to have a mechanism for capturing an analysis
template from the action trails, such that they can reuse the analysis template on different
subsets of the data or on a similar dataset; and compare results of the analyses. In gen-
eral, capturing an action trail of the exploration process is a minimal exploitation of the
actions. Flexible reuse of actions, and comparison of the results of these actions have to
be facilitated.

Awareness of Note-taking Activity

We found that analysts spent considerable time on note taking activities during an analy-
sis. Recording and grouping notes, creating flow diagrams, and organizing these diagrams
by topic is a large part of the analytical activity. The creation of flow diagrams by con-
necting notes and multi-level grouping of notes are the most popular features of the notes
view. These features did not exist in popular note-taking applications such as Microsoft
OneNote1 and EVERNOTE2.

Inclusion of note-taking in the system has direct implications on the user’s informa-
tion interest model presented in Chapter 5. We argued there that the key aspects of the
exploration process include visualization and data transformations, and viewed and se-
lected objects. However, the concepts (entities) in the notes and the relationship among
these concepts, based on the structure of the knowledge diagrams, are also key aspects of
the exploration process. We considered entities from notes in the context based visualiza-
tion and notes retrieval mechanism for supporting connection discovery (Chapter 6). The
concept overview (see Figure 6.2e) combines entities from notes and the key exploration
aspects from a data view; and presents an overview of the current line of inquiry.

Several analysts expressed interest to capture the analytical activities while taking
notes during an analysis. Currently, when analysts revisit a past visualization state, the
notes view is not restored. They would like to have an option to revisit the notes view as
it looked when the visualization state was captured. With this, they can review their past
notes, and revise their current line of inquiry. The key analytical activities in the notes
view include creating, editing, grouping, and connecting notes. Aruvi does not capture
these activities as a part of the action trails; it just supports an undo-redo mechanism to re-
cover from mistakes. HARVEST captures the creation of notes along with the visualization
specifications as a part of the action trails. However, it cannot restore the past notes view

1http://office.microsoft.com/en-us/onenote/default.aspx
2http://www.evernote.com/
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when a past visualization state is revisited. The analytical activities in the notes view can
be either captured as a part of action trails from the data view or in an independent action
trail. For independently capturing an action trail from the notes view, we can adopt the
same approach used for capturing action trails from the data view; and link these action
trails using the user name and time attributes.

When there are many notes in the knowledge view, an overview of the notes structure
is required to develop awareness of the note-taking activity. A structural overview of the
note-taking activity can be provided by automatically extracting a concept map based on
the structure of the knowledge diagrams.

Awareness of other analyses

In Aruvi, we adopted a file based approach to archive the analysis process and findings.
Initially, all information related to one analysis of one dataset was stored in one file.
However, we found that the file-based approach fell short to support the sensemaking
process on a larger scale, concerning multiple analysis tasks of multiple datasets.

Initially, findings were archived along with the analysis process. Analysts could re-
view the findings by opening the entire analysis file. However, they wanted to quickly
review the notes first, and then open the entire analysis to investigate further. Also, they
wanted to share the notes view across different analyses. To support this, we enabled
analysts to work with multiple datasets at the same time in Aruvi. We enabled analysts to
export the notes view and the Select & Slice table as images, HTML, SVG and rich text
documents. Thus, analysts can review the findings outside Aruvi; but, they cannot revisit
the visualizations from the exported documents.

We found that the notes view became the central working area during a sensemaking
process. We learned that archiving the findings and analysis processes of the analysts
in a centralized archive with links between them can be useful. Figure 7.2 shows the
support offered by a centralized archive for the sensemaking process in visual analytics.
Using a centralized archive, an overview of analysis processes using notes can be shown
to analysts, and they can drill down to an analysis process, or switch between analyses
seamlessly. The exploration awareness techniques (Chapter 5) and the connection dis-
covery (Chapter 6) can effectively exploit a centralized archive to support collaborative
sensemaking processes without having to shift focus on explicitly loading analyses of
different users.

Presentation

Currently, we only enable analysts to record notes using diagramming techniques in the
knowledge view. Though the knowledge diagrams are useful, they currently use only
keyboard and mouse inputs. Oral notes can help users to more quickly record findings
than typing in the knowledge view. Also, there are other advanced input mechanisms
such as stylus and ink recognition technologies that can be used to construct knowledge
diagrams. The knowledge view can also be designed as a tangible user interface similar
to the designer’s outpost [81] that is used for supporting collaborative design processes.
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Figure 7.2: A centralized archive to support the sensemaking process in visual analytics.

With the recent advances in multimedia techniques, there are better opportunities to
present the analysis results than just sharing a knowledge diagram. For instance, Wohl-
fart and Hauser [137] have used story telling techniques to present results of volume
visualization, which improve both the comprehensibility and credibility of the intended
visualization message. Using the visualization stories, users may just watch the presen-
tation passively; in addition, they can reinvestigate the visualization independently from
story guidance, offering the ability to verify, confirm, or even disapprove the presented
visualization message.

Evaluation
We adopted the short-term and long-term case studies approach to study support offered
by these tools for the sensemaking process. In these case studies, we observed analysis
processes of the participants, and conducted informal interviews to understand the impli-
cations of the models and tools in their analysis process. Based on our observation and
participants’ feedback, we separately evaluated the sensemaking framework (Chapter 3),
the Select & Slice table (Chapter 4), the exploration awareness tools (Chapter 5) and the
connection discovery tools (Chapter 6) in this dissertation.

Except the context based retrieval system, all models and tools were implemented in
Aruvi. We conducted a longitudinal case study for understanding the sensemaking behav-
ior of the users over time. Three software quality analysts from LaQuSo, the Laboratory
for Quality Software in the Netherlands, participated in the case study. We encouraged
the analysts to use Aruvi during daily analytical activities. The notes view and the Select
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& Slice table were the most popular sensemaking tool among them. However, analysts
dropped out of the case study due to issues such as lack of visualization tools in the data
view, and lack of support for capturing analytical activities from external tools. We have
discussed these issues earlier in this section. These issues have to be addressed for evalu-
ating the support for the sensemaking process based on user experience over time.

Finally, we want to conduct some focused user studies to evaluate and improve the
design of the user interfaces such as the metadata view, the key aspects overview, the
history tree representation, the notes view and the Select & Slice table presented in this
dissertation. An important requirement here is that the subjects are again data analysts
focusing on real analytical tasks.
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Summary

Supporting the Sensemaking Process in Visual Analytics
Visual analytics is the science of analytical reasoning facilitated by interactive visual in-
terfaces. It involves interactive exploration of data using visualizations and automated
data analysis to gain insight, and to ultimately make better decisions. It aims to sup-
port the sensemaking process in which information is collected, organized and analyzed
to form new knowledge and inform further action. Interactive visual exploration of the
data can lead to many discoveries in terms of relations, patterns, outliers and so on. It
is difficult for the human working memory to keep track of all findings during a visual
analysis. Also, synthesis of many different findings and relations between those findings
increase the information overload and thereby hinders the sensemaking process further.
The central theme of this dissertation is

How to support users in their sensemaking process during interactive
exploration of data?

To support the sensemaking process in visual analytics, we mainly focus on how to sup-
port users to capture, reuse, review, share, and present the key aspects of interest con-
cerning the analysis process and the findings during interactive exploration of data. For
this, we have developed generic models and tools that enable users to capture findings
with provenance, and construct arguments; and to review, revise and share their visual
analysis.

First, we present a sensemaking framework for visual analytics that contains three
linked views: a data view, a navigation view and a knowledge view for supporting the
sense-making process. The data view offers interactive data visualization tools. The navi-
gation view automatically captures the interaction history using a semantically rich action
model and provides an overview of the analysis structure. The knowledge view is a basic
graphics editor that helps users to record findings with provenance and to organize find-
ings into claims using diagramming techniques. Users can exploit automatically captured
interaction history and manually recorded findings to review and revise their visual anal-
ysis. Thus, the analysis process can be archived and shared with others for collaborative
visual analysis.

Secondly, we enable analysts to capture data selections as semantic zones during an
analysis, and to reuse these zones on different subsets of data. We present a Select & Slice
table that helps analysts to capture, manipulate, and reuse these zones more explicitly
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during exploratory data analysis. Users can reuse zones, combine zones, and compare
and trace items of interest across different semantic zones and data slices.

Finally, exploration overviews and searching techniques based on keywords, content
similarity, and context helped analysts to develop awareness over the key aspects of the
exploration concerning the analysis process and findings. On one hand, they can proac-
tively search analysis processes and findings for reviewing purposes. On the other hand,
they can use the system to discover implicit connections between findings and the current
line of inquiry, and recommend these related findings during an interactive data explo-
ration.

We implemented the models and tools described in this dissertation in Aruvi and
HARVEST. Using Aruvi and HARVEST, we studied the implications of these models
on a user’s sensemaking process. We adopted the short-term and long-term case stud-
ies approach to study support offered by these tools for the sensemaking process. The
observations of the case studies were used to evaluate the models.
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