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Collision local time of transient random walks and

intermediate phases in interacting stochastic systems

Matthias Birkner 1, Andreas Greven 2 , Frank den Hollander 3 4

9th December 2008

Abstract

In a companion paper, a quenched large deviation principle (LDP) has been established
for the empirical process of words obtained by cutting an i.i.d. sequence of letters into words
according to a renewal process. We apply this LDP to prove that the radius of convergence
of the moment generating function of the collision local time of two strongly transient random
walks on Z

d, d ≥ 1, strictly increases when we condition on one of the random walks, both
in discrete time and in continuous time. We conjecture that the same holds for two transient
but not strongly transient random walks. The presence of these gaps implies the existence of
an intermediate phase for the long-time behaviour of a class of coupled branching processes,
interacting diffusions, respectively, directed polymers in random environments.
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interacting stochastic systems, intermediate phase.
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1 Introduction and main results

In this note, we derive variational representations for the radius of convergence of the moment
generating functions of the collision local time of two transient random walks in discrete and
continuous time, respectively. These representations are used to establish the existence of an
intermediate phase for the large time behaviour of a class of interacting stochastic systems.

1.1 Collision local time of random walks

1.1.1 Discrete time

Let S = (Sk)
∞
k=0 and S′ = (S′

k)
∞
k=0 be two independent random walks on Z

d, d ≥ 1, both starting
at the origin, with a symmetric transition kernel p(·, ·). We write pn for the n-th convolution power
of p and abbreviate pn(x) := pn(0, x). Suppose that

lim
n→∞

log p2n(0)

log(2n)
=: −α, α ∈ (1,∞). (1.1)
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Write P to denote the joint law of S, S′. Let

V :=
∞∑

k=0

1{Sk=S′
k}

(1.2)

be the collision local time of S, S′, and define

z1 := sup
{
z ≥ 0: E

[
zV | S

]
< ∞ S-a.s.

}
, z2 := sup

{
z ≥ 0: E

[
zV
]

< ∞
}

. (1.3)

(The lower indices indicate the number of random walks being averaged over.) Note that, by the
tail triviality of S, the range of z’s for which E[ zV | S ] converges is S-a.s. constant. Also note that
(1.1) implies that p(·, ·) is transient, so that P(V < ∞) = 1.

Let E := supp(p) ⊂ Z
d, let Ẽ = ∪n∈NEn be the set of finite words drawn from E, and let

P inv(ẼN) denote the shift-invariant probability measures on ẼN, the set of infinite sentences drawn
from Ẽ. Define f : Ẽ → [0,∞) via

f((x1, . . . , xn)) =
pn(x1 + · · · + xn)

pn(0)
[G(0) − 1], n ∈ N : pn(0) > 0, x1, . . . , xn ∈ E, (1.4)

where G(0) =
∑∞

n=0 pn(0) is the Green function.

Theorem 1.1. Assume (1.1). Then z1 = 1 + exp[−r1], z2 = 1 + exp[−r2] with

r1 = sup
Q∈P inv( eEN)

{∫

eE

π1Q(dy) log f(y) − Ique(Q)

}
, (1.5)

r2 = sup
Q∈P inv( eEN)

{∫

eE

π1Q(dy) log f(y) − Iann(Q)

}
, (1.6)

where the rate functions Ique and Iann are given in Theorems 2.2 and 2.1 below.

Theorem 1.2. Assume (1.1). If p(·, ·) is strongly transient, then 1 < z2 < z1 < ∞.

Theorems 1.1 and 1.2 will be proved in Section 3. Since P(V = k) = (1 − F (2))[F (2)]k−1, k ∈ N,
with F (2) := P

(
∃ k ∈ N : Sk = S′

k

)
, an easy computation gives z2 = 1/F (2). Note that F (2) =

1 − [1/G(2)(0)] with G(2)(0) =
∑∞

n=0 p2n(0) (see Spitzer [17], Section 1).
Unlike for z2, no closed form expression is known for z1. By evaluating the function inside the

supremum in (1.5) at well-chosen Q’s, one can easily obtain an upper bound.

Corollary 1.3. Under the assumptions of Theorem 1.2,

z1 ≤ 1 +

(
∑

n∈N

e−h(pn)

)−1

, (1.7)

where h(pn) = −
∑

x∈Zd pn(x) log pn(x) is the entropy of pn(·).

Proof. Note that for q ∈ P(Ẽ) of the form

q(x1, . . . , xn) = ρq(n)ν(x1) · · · ν(xn), n ∈ N, x1, . . . , xn ∈ E, (1.8)

for some ρq ∈ P(N), we have Ique(q⊗N) = H(q⊗N | qρ,ν) = h(ρq | ρ), since Ψ[q⊗N]tr = ν⊗N for any

tr ∈ N (and Ψq⊗N = ν⊗N when ρq has a finite mean). The claim therefore follows from (1.5) by

choosing Q = q⊗N, ν(x) = p(x), x ∈ Z
d, and

ρq(n) =
exp[−h(pn)]∑

m∈N
exp[−h(pm)]

, n ∈ N. (1.9)
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It is easy to see that the choice (1.9) is optimal in the class of q’s of the form (1.8).

Theorem 1.4. If p(·, ·) satisfies (1.1) with α = 1, then z1 = z2.

Proof. This follows from the representations (1.5–1.6) in Theorem 1.1 and the fact that Ique = Iann

when α = 1.

1.1.2 Continuous time

Next we turn the discrete-time random walks S and S′ into continuous-time random walks S̃ =
(St)t≥0 and S̃′ = (S̃′

t)t≥0 by allowing them to make steps at rate 1, keeping the same p(·, ·). Then
the collision local time becomes

Ṽ :=

∫ ∞

0
1{eSt= eS′

t}
dt. (1.10)

For the analogous quantities z̃1 and z̃2, we have the following.

Theorem 1.5. Assume (1.1). If p(·, ·) is strongly transient, then 0 < z̃2 < z̃1 < ∞.

Theorem 1.5 will be proved in Section 3.3. An easy computation gives log z̃2 = 2/G(0) with
G(0) =

∑∞
n=0 pn(0). There is again no simple expression for z̃1.

1.1.3 Discussion

As the reader will see in Section 3, our proof of Theorem 1.2 is based on the representations
given in Theorem 1.1. Additional technical difficulties arise in the situation where the maximiser
in (1.6) has infinite mean word length, which happens exactly when p(·, ·) is transient but not
strongly transient. This will be pursued in future work, for the moment we close with the following
conjecture.

Conjecture 1.6. The gaps in Theorems 1.2 and 1.5 are present also when p(·, ·) is transient but
not strongly transient.

Random walks with zero mean and finite variance are transient for d ≥ 3 and strongly transient
for d ≥ 5 (Spitzer [17], Section 1). In a paper by Birkner and Sun [4], the gap in Theorem 1.2 is
proved for simple random walk on Z

d, d ≥ 4, and the proof is in principle extendable to a more
general class of random walks (see the discussion in [4] after the proof of Theorem 1.3). The proof
in [4] is an adaptation of the fractional moment technique developed by Derrida, Giacomin, Lacoin
and Toninelli [10] in the context of random pinning models. Note that simple random walk on Z

4

is just on the border of not being strongly transient.

1.2 The gaps settle three conjectures

In this section we use Theorems 1.2–1.5 to prove the existence of an intermediate phase for three
classes of interacting particle systems.

1.2.1 Coupled branching processes

A Theorem 1.5 proves a conjecture put forward in Greven [12], [13]. Consider a spatial population

model, defined as the Markov process (ηt)t≥0 taking values in (N∪ {0})Zd
(counting the number of

individuals at the different sites of Z
d) evolving as follows:

(1) Individuals migrate at rate 1 according to a(·, ·).

(2) A new individual is born at site x at rate bη(x).
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(3) One individual at site x dies at rate (1 − p)bη(x).

(4) All individuals at site x die simultaneously at rate pb.

Here, a(·, ·) is an irreducible random walk transition kernel on Z
d × Z

d, b ∈ (0,∞) is a birth-death
rate, p ∈ [0, 1] is a coupling parameter, while (1)–(4) occur independently at every x ∈ Zd. The
case p = 0 corresponds to a critical branching random walk, for which the average number of
individuals per site is preserved. The case p > 0 is challenging because the individuals descending
from different ancestors are no longer independent.

A critical branching random walk satisfies the following dichotomy (where for simplicity we
restrict to the case where a(·, ·) is symmetric): if the initial configuration η0 is drawn from a shift-
invariant probability distribution with finite mean, then ηt as t → ∞ locally dies out (“extinction”)
when a(·, ·) is recurrent, but converges to a non-trivial equilibrium (“survival”) when a(·, ·) is
transient, both irrespective of the value of b. In the latter case, the equilibrium has the same mean
as the initial distribution and has all moments finite.

For the coupled branching process with p > 0 there is a dichotomy too, but it is controlled by
a subtle interplay of a(·, ·), b and p: extinction holds when a(·, ·) is recurrent, but also when a(·, ·)
is transient and p is sufficiently large. Indeed, it is shown in Greven [12] that if a(·, ·) is transient,
then there is a unique p∗ ∈ (0, 1) such that survival holds for p < p∗ and extinction holds for p > p∗.

Recall the critical values z̃1, z̃2 introduced in Section 1.1.2. Then survival holds if E(exp[bpṼ ] |
S̃) < ∞ S̃-a.s., i.e., if p < p1 with p1 = b−1 log z̃1. This can be shown by a size-biasing of
the population in the spirit of Kallenberg [15]. On the other hand, survival with a finite second
moment holds if and only if E(exp[bpṼ ]) < ∞, i.e., if and only if p < p2 with p2 = b−1 log z̃2.
Clearly, p∗ ≥ p1 ≥ p2. Theorem 1.5 shows that if a(·, ·) satisfies (1.1) and is strongly transient, then
p1 > p2, implying that there is an intermediate phase of survival with an infinite second moment.

B Theorem 1.2 corrects an error in Birkner [1], Theorem 6. Here, a system of individuals living
on Z

d is considered subject to migration and branching. Each individual independently migrates
at rate 1 according to a random walk transition kernel a(·, ·), and branches at a rate that depends
on the number of individuals present at the same location. It is argued that this system has an
intermediate phase in which the numbers of individuals at different sites tend to an equilibrium with
a finite first moment but an infinite second moment. The proof was, however, based on a wrong
rate function. The rate function claimed in Birkner [1], Theorem 6, must be replaced by that in [3],
Corollary 1.5, after which the intermediate phase persists. This also affects [1], Theorem 5, which
uses [1], Theorem 6, to compute z1 in Section 1.1 and finds an incorrect formula. Corollary 1.3
shows that this formula actually is an upper bound for z1.

1.2.2 Interacting diffusions

Theorem 1.5 proves a conjecture put forward in Greven and den Hollander [14]. Consider the
system of interacting diffusions on [0,∞) defined by the following collection of coupled stochastic
differential equations:

dXx(t) =
∑

y∈Zd

a(x, y)[Xy(t) − Xx(t)] dt +
√

bXx(t)2 dWx(t), x ∈ Z
d, t ≥ 0. (1.11)

Here, a(·, ·) is an irreducible random walk transition kernel on Z
d × Z

d, b ∈ (0,∞) is a diffusion
parameter, and ({Wx(t)}x∈Zd)t≥0 is a collection of independent standard Brownian motions on R.
The initial condition is chosen such that {Xx(0)}x∈Zd is a shift-invariant and shift-ergodic random
field on [0,∞) with mean Θ ∈ (0,∞) (the evolution preserves the mean).

It was shown in [14], Theorems 1.4–1.6, that if a(·, ·) is symmetric and transient, then there
exist 0 < b2 ≤ b∗ such that the system in (1.11) converges to an equilibrium when 0 < b < b∗, and
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this equilibrium has a finite second moment when 0 < b < b2 and an infinite second moment when
b2 ≤ b < b∗. It was conjectured in [14], Conjecture 1.8, that b∗ > b2. As explained in [14], Section
4.2, the gap in Theorem 1.5 settles this conjecture (at least when a(·, ·) is strongly transient), with
b2 = log z̃2 and b∗ = log z̃1.

1.2.3 Directed polymers in random environments

Theorem 1.2 disproves a conjecture put forward in Monthus and Garel [16]. Let a(·, ·) be a symmet-
ric and irreducible random walk transition kernel on Z

d×Z
d, let S = (Sk)

∞
k=0 be the corresponding

random walk, and let ξ = {ξ(x, n) : x ∈ Z
d, n ∈ N} be i.i.d. R-valued non-degenerate random

variables satisfying
λ(β) := log E

(
exp[βξ(x, n)]

)
∈ R ∀ β ∈ R. (1.12)

Put

en(ξ, S) := exp

[
n∑

k=1

{βξ(Sk, k) − λ(β)}

]
, (1.13)

and set

Zn(ξ) := E[en(ξ, S)] =
∑

s1,...,sn∈Zd

[
n∏

k=1

p(sk−1, sk)

]
en(ξ, s), s = (sk)

∞
k=0, s0 = 0, (1.14)

i.e., Zn(ξ) is the normalising constant in the probability distribution of the random walk S whose
paths are reweighted by en(ξ, S), which is referred to as the “polymer measure”. The ξ(x, n)’s
describe a random space-time medium with which S is interacting, with β playing the role of the
interaction strength or inverse temperature.

It is well known that (Zn)n∈N is a non-negative martingale with respect to the family of sigma-
algebras Fn := σ(ξ(x, k), x ∈ Z

d, 1 ≤ k ≤ n), n ∈ N. Hence

lim
n→∞

Zn = Z∞ ≥ 0 ξ − a.s., (1.15)

with the event {Z∞ = 0} being ξ-trivial. One speaks of weak disorder if Z∞ > 0 ξ-a.s. and of
strong disorder otherwise. As shown in Comets and Yoshida [8], there is a unique critical value
β∗ ∈ [0,∞] such that weak disorder holds for 0 ≤ β < β∗ and strong disorder holds for β > β∗.
Moreover, in the weak disorder region the paths have a Gaussian scaling limit under the polymer
measure, while this is not the case in the strong disorder region.

Recall the critical values z1, z2 defined in Section 1.1. Bolthausen [5] observed that

E
[
Z2

n

]
= E

[
exp

[
{λ(2β) − 2λ(β)}Vn

]]
, with Vn :=

n∑

k=1

1{Sk=S′
k
}, (1.16)

where S and S′ are two independent random walks with transition kernel p(·, ·), and concluded
that (Zn)n∈N is L2-bounded if and only if β < β2 with β2 ∈ (0,∞] the unique solution of

λ(2β2) − 2λ(β2) = z2. (1.17)

Since P(Z∞ > 0) ≥ E[Z∞]2/E[Z2
∞] and E[Z∞] = Z0 = 1 for an L2-bounded martingale, it follows

that β < β2 implies weak disorder, i.e., β∗ ≥ β2. By a stochastic representation of the size-biased
law of Zn, it was shown in Birkner [2], Proposition 1, that in fact weak disorder holds if β < β1

with β1 ∈ (0,∞] the unique solution of

λ(2β1) − 2λ(β1) = z1, (1.18)
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i.e., β∗ ≥ β1. Since β 7→ λ(2β)− 2λ(β) is strictly increasing for any non-trivial law for the disorder
satisfying (1.12), it follows from (1.17–1.18) and Theorem 1.2 that β1 > β2 when a(·, ·) satisfies (1.1)
and is strongly transient and when ξ is such that β2 < ∞. In that case the weak disorder region
contains a subregion for which (Zn)n∈N is not L2-bounded. This disproves a conjecture of Monthus
and Garel [16], who argued that β2 = β∗. Camanes and Carmona [6] consider the same problem for
simple random walk and specific choices of disorder. With the help of fractional moment estimates
of Evans and Derrida [11] and numerical computation they prove β∗ > β2 for Gaussian disorder in
d ≥ 5, for Binomial disorder with small mean in d ≥ 4 and for Poisson disorder with small mean
in d ≥ 3.

Outline

In Section 2 we recall the LDPs in [3] that are needed for Theorem 1.1 and its counterpart for
continuous-time random walk. In Section 3 we use these LDPs to prove Theorems 1.2 and 1.5.

2 Word sequences and annealed and quenched LDP

We recall the problem setting in [3]. Let E be a finite or countable set of letters. Let Ẽ = ∪n∈NEn

be the set of finite words drawn from E. Both E and Ẽ are Polish spaces under the discrete
topology. Let P(EN) and P(ẼN) denote the set of probability measures on sequences drawn from
E, respectively, Ẽ, equipped with the topology of weak convergence. Write θ and θ̃ for the left-shift
acting on EN, respectively, ẼN. Write P inv(EN),Perg(EN) and P inv(ẼN),Perg(ẼN) for the set of
probability measures that are invariant and ergodic under θ, respectively, θ̃.

For ν ∈ P(E), let X = (Xi)i∈N be i.i.d. with law ν. For ρ ∈ P(N), let τ = (τi)i∈N be i.i.d. with
law ρ having infinite support and satisfying the algebraic tail property

lim
n→∞

ρ(n)>0

log ρ(n)

log n
=: −α, α ∈ (1,∞). (2.1)

(No regularity assumption is imposed on supp(ρ).) Assume that X and τ are independent and
write P to denote their joint law. Cut words out of X according to τ , i.e., put (see Figure 1)

T0 := 0 and Ti := Ti−1 + τi, i ∈ N, (2.2)

and let
Y (i) :=

(
XTi−1+1,XTi−1+2, . . . ,XTi

)
, i ∈ N. (2.3)

Then, under the law P, Y = (Y (i))i∈N is an i.i.d. sequence of words with marginal law qρ,ν on Ẽ
given by

qρ,ν

(
(x1, . . . , xn)

)
:= P

(
Y (1) = (x1, . . . , xn)

)
= ρ(n) ν(x1) · · · ν(xn), n ∈ N, x1, . . . , xn ∈ E.

(2.4)

τ1

τ2
τ3

τ4

τ5

T1 T2 T3 T4 T5

Y (1) Y (2) Y (3) Y (4) Y (5)
X

Figure 1: Cutting words from a letter sequence according to a renewal process.
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For N ∈ N, let (Y (1), . . . , Y (N))per stand for the periodic extension of (Y (1), . . . , Y (N)) to an
element of ẼN, and define

RN :=
1

N

N−1∑

i=0

δeθi(Y (1),...,Y (N))per ∈ P inv(ẼN), (2.5)

the empirical process of N -tuples of words.
The following large deviation principle (LDP) is standard (see e.g. Dembo and Zeitouni [9],

Corollaries 6.5.15 and 6.5.17). Let

H(Q | q⊗N

ρ,ν ) := lim
N→∞

1

N
h
(
Q|FN

| (q⊗N

ρ,ν )|FN

)
∈ [0,∞] (2.6)

be the specific relative entropy of Q w.r.t. q⊗N
ρ,ν , where FN = σ(Y (1), . . . , Y (N)) is the sigma-algebra

generated by the first N words, Q|FN
is the restriction of Q to FN , and h( · | · ) denotes relative

entropy.

Theorem 2.1. [Annealed LDP] The family of probability distributions P(RN ∈ · ), N ∈ N,
satisfies the LDP on P inv(ẼN) with rate N and with rate function Iann : P inv(ẼN) → [0,∞] given
by

Iann(Q) = H(Q | q⊗N

ρ,ν ). (2.7)

This rate function is lower semi-continuous, has compact level sets, has a unique zero at Q = q⊗N
ρ,ν ,

and is affine.

Let κ : ẼN → EN denote the concatenation map that glues a sequence of words into a sequence
of letters. For Q ∈ P inv(ẼN) such that mQ := EQ[τ1] < ∞, define ΨQ ∈ P inv(EN) as

ΨQ(·) :=
1

mQ
EQ

[
τ1−1∑

k=0

δθkκ(Y )(·)

]
. (2.8)

Think of ΨQ as the shift-invariant version of the concatenation of Y under the law Q obtained after
randomising the location of the origin.

For tr ∈ N, let [·]tr : Ẽ → [Ẽ]tr := ∪tr
n=1E

n denote the word length truncation map defined by

y = (x1, . . . , xn) 7→ [y]tr := (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E. (2.9)

Extend this to a map from ẼN to [Ẽ]Ntr via
[
(y(1), y(2), . . . )

]
tr

:=
(
[y(1)]tr, [y

(2)]tr, . . .
)

and to a map

from P inv(ẼN) to P inv([Ẽ]Ntr) via [Q]tr(A) := Q({z ∈ ẼN : [z]tr ∈ A}) for A ⊂ [Ẽ]Ntr measurable.
Note that if Q ∈ P inv(ẼN), then [Q]tr is an element of the set

P inv,fin(ẼN) = {Q ∈ P inv(ẼN) : mQ < ∞}. (2.10)

The following theorem summarises the main results from [3].

Theorem 2.2. [Quenched LDP] Assume (2.1). Then, for ν⊗N–a.s. all X, the family of (regular)
conditional probability distributions P(RN ∈ · | X), N ∈ N, satisfies the LDP on P inv(ẼN) with
rate N and with deterministic rate function Ique : P inv(ẼN) → [0,∞] given by

Ique(Q) :=





Ifin(Q), if Q ∈ P inv,fin(ẼN),

lim
tr→∞

Ifin
(
[Q]tr

)
, otherwise,

(2.11)

7



where
Ifin(Q) := H(Q | q⊗N

ρ,ν ) + (α − 1)mQ H(ΨQ | ν⊗N). (2.12)

The rate function Ique is lower semi-continuous, has compact level sets, has a unique zero at
Q = q⊗N

ρ,ν , and is affine. Moreover, it is equal to the lower semi-continuous extension of Ifin from

P inv,fin(ẼN) to P inv(ẼN).

If (2.1) holds with α = 1, then for ν⊗N–a.s. all X, the family P(RN ∈ · | X) satisfies the LDP with
rate function Iann given by (2.7).

Note that the quenched rate function (2.12) equals the annealed rate function (2.7) plus an addi-
tional term which quantifies the deviation of ΨQ from the reference law ν⊗N on the letter sequence.
The set

Rν :=

{
Q ∈ P inv(ẼN) : w−lim

L→∞

1

L

L−1∑

k=0

δθkκ(Y ) = ν⊗N Q − a.s.

}
. (2.13)

is formed by those Q’s for which the concatenation of words has the same statistical properties as
the letter sequence X. For Q ∈ P inv,fin(ẼN), we have (see [3], Equation (1.22))

ΨQ = ν⊗N ⇐⇒ Ique(Q) = Iann(Q) ⇐⇒ Q ∈ Rν . (2.14)

3 Proof of Theorems 1.2 and 1.5

3.1 Proof of Theorem 1.2

Proof. The idea is to put the problem into the framework of (2.1–2.5) and then apply Theorem 2.2.
To that end, we pick

E := Z
d, Ẽ := ∪n∈N(Zd)n, (3.1)

and choose

ν(u) := p(u), u ∈ E, ρ(n) :=
pn(0)

G(0) − 1
, n ∈ N, (3.2)

where

p(u) = p(0, u), u ∈ Z
d, pn(u − v) = pn(u, v), u, v ∈ Z

d, G(0) =

∞∑

n=0

pn(0), (3.3)

the latter being the Green function at the origin.
Recalling (1.2), and writing

zV =
(
(z − 1) + 1

)V
= 1 +

V∑

N=1

(z − 1)N
V (V − 1) · · · (V − N + 1)

N !
(3.4)

with
V (V − 1) · · · (V − N + 1)

N !
=

∑

0<j1<···<jN<∞

1{Sj1
=S′

j1
,...,SjN

=S′
jN

}, (3.5)

we have

E
[
zV | S

]
= 1 +

∞∑

N=1

(z − 1)NF
(1)
N (X), E

[
zV
]

= 1 +

∞∑

N=1

(z − 1)NF
(2)
N , (3.6)

with

F
(1)
N (X) :=

∑

0<j1<···<jN<∞

P(Sj1 = S′
j1, . . . , SjN

= S′
jN

| X), F
(2)
N := E

[
F

(1)
N (X)

]
, (3.7)
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where X = (Xk)k∈N denotes the sequence of increments of S. (The upper indices 1 and 2 indicate
the number of random walks being averaged over.)

The notation in (3.1–3.2) allows us to rewrite the first line of (3.7) as

F
(1)
N (X) =

∑

0<j1<···<jN<∞

N∏

i=1

pji−ji−1




ji∑

k=ji−1+1

Xk




=
∑

0<j1<···<jN<∞

N∏

i=1

ρ(ji − ji−1) exp

[
N∑

i=1

log

(
pji−ji−1(

∑ji

k=ji−1+1 Xk)

ρ(ji − ji−1)

)] (3.8)

Let Y (i) = (Xji−1+1, · · · ,Xji
). Recall the definition (1.4) of f : Ẽ → [0,∞) as

f((x1, . . . , xn)) =
pn(x1 + · · · + xn)

pn(0)
[G(0) − 1], n ∈ Λ, x1, . . . , xn ∈ E, (3.9)

with
Λ := {n ∈ N : ρ(n) = pn(0) > 0} ⊃ 2Z, (3.10)

let RN ∈ P inv(ẼN) be the empirical process of words defined in (2.5), and π1RN ∈ P(Ẽ) the
projection of RN onto the first coordinate. Then we have

F
(1)
N (X) = E

[
exp

(
N∑

i=1

log f(Y (i))

)∣∣∣∣∣X
]

= E

[
exp

(
N

∫

eE

(π1RN )(dy) log f(y)

)∣∣∣∣X
]

. (3.11)

The second line of (3.7) is obtained by averaging (3.11) over X:

F
(2)
N = E

[
exp

(
N

∫

eE

(π1RN )(dy) log f(y)

)]
. (3.12)

Without conditioning on X, the sequence (Y (i))i∈N is i.i.d. with law (recall (2.4))

q⊗N

ρ,ν with qρ,ν(x1, . . . , xn) =
pn(0)

G(0) − 1

n∏

k=1

p(xk). (3.13)

Next we note that f as in (3.9) is bounded from above. Indeed, the Fourier representation of
pn(x, y) reads

pn(x) =
1

(2π)d

∫

[−π,π)d

dk e−i(k·x) p̂(k)n (3.14)

with p̂(k) =
∑

x∈Zd ei(k·x)p(0, x). Because p(·, ·) is symmetric, it follows that

max
x∈Zd

p2n(x) = p2n(0), max
x∈Zd

p2n+1(x) ≤ p2n(0), ∀n ∈ N. (3.15)

Consequently, f((x1, . . . , xn)) ≤ [pn−1(0)/pn(0)][G(0) − 1], n ∈ Λ, which is bounded from above
because of (1.1). The annealed LDP in Theorem 2.1, together with Varadhan’s lemma applied to
(3.12), therefore gives z2 = 1 + exp[−r2] with

r2 := lim
N→∞

1

N
log F

(2)
N = sup

Q∈P inv( eEN)

{∫

eE

π1Q(dy) log f(y) − Iann(Q)

}

= sup
q∈P( eE)

{∫

eE

q(dy) log f(y) − h(q | qρ,ν)

} (3.16)

(recall (1.3) and (3.6)). The last equality stems from the fact that, on the set of Q’s with a given
marginal π1Q = q, the function Q 7→ Iann(Q) = H(Q | q⊗N

ρ,ν ) has a unique minimiser Q = q⊗N.
In order to carry out the second supremum in (3.16), we use the following.
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Lemma 3.1. Let Z :=
∑

y∈E f(y)qρ,ν(y). Then

∫

eE

q(dy) log f(y) − h(q | qρ,ν) = log Z − h(q | q∗) ∀ q ∈ P(Ẽ), (3.17)

where q∗(y) = f(y)qρ,ν(y)/Z, y ∈ E.

Proof. This follows from a straightforward computation.

Inserting (3.17) into (3.16), we see that the suprema are uniquely attained at q = q∗ and Q = (q∗)⊗N,
and that r2 = log Z. From (3.9) and (3.13), we have

Z =
∑

n∈N

∑

x1,...,xn∈Zd

pn(x1 + · · · + xn)

n∏

k=1

p(xk) =
∑

n∈N

p2n(0) = G(2)(0) − 1, (3.18)

where we use that
∑

v∈Zd pm(u + v)p(v) = pm+1(u), u ∈ Z
d, m ∈ N, and G(2)(0) is the Green

function at the origin associated with p2(·, ·). Hence the maximizer in (3.16) is

q∗(x1, . . . , xn) =
pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk). (3.19)

Note that z2 = 1 + exp[− log Z] = G(2)(0)/[G(2)(0) − 1].
The quenched LDP in Theorem 2.2, together with Varadhan’s lemma applied to (3.8), gives

z1 = 1 + exp[−r1] with

r1 := lim
N→∞

1

N
log F

(1)
N (X) = sup

Q∈P inv( eEN)

{∫

eE

π1Q(dy) log f(y) − Ique(Q)

}
X − a.s., (3.20)

where Ique(Q) is given by (2.11–2.12).
To compare (3.20) with (3.16), we need the following lemma, the proof of which is deferred to

Section 3.2.

Lemma 3.2. Assume (1.1). Let Q∗ = (q∗)⊗N with q∗ as in (3.19). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).

With the help of Lemma 3.2 we complete the proof of the existence of the gap as follows. Since
log f is bounded from above, the function

Q 7→

∫
log f(y)π1Q(dy) − Ique(Q) (3.21)

is upper semicontinuous. By compactness of the level sets of Ique(Q), the function in (3.21) therefore
achieves its maximum at some Q̃ that satisfies

r1 =

∫

eE

π1Q̃(dy) log f(y) − Ique(Q̃) ≤

∫

eE

π1Q̃(dy) log f(y) − Iann(Q̃) ≤ r2. (3.22)

If r1 = r2, then Q̃ = Q∗, because the unconditional variational problem (3.16) has Q∗ as its unique
maximiser. But Ique(Q∗) > Iann(Q∗) by Lemma 3.2, so this is a contradiction, and we arrive at
r1 < r2 as required.
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3.2 Proof of Lemma 3.2

Proof. Note that

q∗(En) =
∑

x1,...,xn∈Zd

pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk) =
p2n(0)

G(2)(0) − 1
, n ∈ N, (3.23)

and hence, by assumption (1.2),

lim
n→∞

log q∗(En)

log n
= −α (3.24)

and

mQ∗ =

∞∑

n=1

nq∗(En) =

∞∑

n=1

np2n(0)

G(2)(0) − 1
. (3.25)

We will show that
mQ∗ < ∞ =⇒ Q∗ = (q∗)⊗N 6∈ Rν , (3.26)

the set defined in (2.13). This implies ΨQ∗ 6= ν⊗N (recall (2.14)), and hence H(ΨQ∗ |ν⊗N) > 0,
implying the claim.

In order to verify (3.26), we compute the first two marginals of ΨQ∗. Using the symmetry of
p(·, ·), we have

ΨQ∗(a) =
1

mQ∗

∞∑

n=1

n∑

j=1

∑

x1,...,xn∈Zd

xj=a

pn(x1 + · · · + xn)

G(2)(0) − 1

n∏

k=1

p(xk) = p(a)

∑∞
n=1 np2n−1(a)∑∞

n=1 np2n(0)
. (3.27)

Hence, ΨQ∗(a) = p(a) for all a ∈ Z
d with p(a) > 0 if and only if

a 7→

∞∑

n=1

n p2n−1(a) is constant on the support of p(·). (3.28)

There are many p(·, ·)’s for which (3.28) fails, and for these (3.26) holds. However, for simple
random walk (3.28) does not fail, because a 7→ p2n−1(a) is constant on the 2d neighbours of the
origin, and so we have to look at the two-dimensional marginal.

Observe that q∗(x1, . . . , xn) = q∗(xσ(1), . . . xσ(n)) for any permutation σ of {1, . . . , n}. For

a, b ∈ Z
d, we have

mQ∗ΨQ∗(a, b) = EQ∗

[
τ1∑

k=1

1 (κ(Y )k = a, κ(Y )k+1 = b)

]

=

∞∑

n=1

∞∑

n′=1

∑

x1,...,xn+n′

q∗(x1, . . . , xn) q∗(xn+1, . . . , xn+n′)

n∑

k=1

1(a,b)(xk, xk+1)

= q∗(x1 = a) q∗(x1 = b) +
∞∑

n=2

(n − 1)q∗
(
x1 = a, x2 = b

)
.

(3.29)

Since

q∗(x1 = a) =
p(a)2

G(2)(0) − 1
+

∞∑

n=2

∑

x2,...,xn∈Zd

pn(a + x2 + · · · + xn)

G(2)(0) − 1
p(a)

n∏

k=2

p(xk)

=
p(a)

G(2)(0) − 1

∞∑

n=1

p2n−1(a)

(3.30)
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and

q∗
(
x1 = a, x2 = b

)
= 1n=2

p(a)p(b)

G(2)(0) − 1
p2(a + b)

+ 1n≥3
p(a)p(b)

G(2)(0) − 1

∑

x3,...,xn∈Zd

pn(a + b + x3 + · · · + xn)

n∏

k=3

p(xk)

=
p(a)p(b)

G(2)(0) − 1
p2n−2(a + b),

(3.31)

we find

ΨQ∗(a, b) =
p(a)p(b)∑∞
n=1 np2n(0)

([ ∞∑

n=1

p2n−1(a)

][ ∞∑

n=1

p2n−1(b)

]
+

∞∑

n=2

(n − 1)p2n−2(a + b)

)
. (3.32)

Pick b = −a with p(a) > 0. Then, shifting n to n − 1 in the last sum, we get

ΨQ∗(a,−a) − p(a)2 =

[∑∞
n=1 p2n−1(a)

]2
∑∞

n=1 np2n(0)
> 0. (3.33)

This shows that consecutive letters are not uncorrelated under ΨQ∗, and implies that (3.26) holds
as claimed.

3.3 Proof of Theorem 1.5

The proof is a relatively minor extension of that of Theorem 1.2 in Sections 3.1–3.2.

Proof. The analogues of (3.4–3.7) are

z
eV =

∞∑

N=0

(log z)N
Ṽ N

N !
, (3.34)

with
Ṽ N

N !
=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN 1
{eSt1= eS′

t1
,..., eStN

= eS′
tN

}
, (3.35)

and

E

[
z

eV | S̃
]

=

∞∑

N=0

(log z)N F
(1)
N (S̃), E

[
z

eV
]

=

∞∑

N=0

(log z)N F
(2)
N , (3.36)

with

F
(1)
N (S̃) :=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN P

(
S̃t1 = S̃′

t1 , . . . , S̃tN = S̃′
tN

| S̃
)

, F
(2)
N := E

[
F

(1)
N (S̃)

]
,

(3.37)
where the conditioning in the first expression in (3.36) is on the full continuous-time path S̃ =
(S̃t)t≥0. Our task is to compute

r̃1 := lim
N→∞

1

N
log F

(1)
N (S̃) (S̃ − a.s.), r̃2 := lim

N→∞

1

N
log F

(2)
N , (3.38)

and show that r̃1 < r̃2.
The idea is to average over the jump times of S̃ while keeping its jumps fixed, thereby reducing

the problem to the one for the discrete-time random walk treated in the proof of Theorem 1.5.
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For the first line in (3.37) this partial annealing gives an upper bound, while for the second line
it is simply part of the averaging over S̃. To that end, put σ0 := 0, for k ∈ N put σk := inf{t >
σk−1 : S̃t 6= S̃σk−1

}, let

X♮ = (X♮
k)k∈N with X♮

k := S̃σk
, (3.39)

and define

F
(1)
N (X♮) :=

∫ ∞

0
dt1 · · ·

∫ ∞

tN−1

dtN P(S̃t1 = S̃′
t1

, . . . , S̃tN = S̃′
tN

| X♮), F
(2)
N := E

[
F

(1)
N (X♮)

]
,

(3.40)
together with the critical values

r̃♮
1 := lim

N→∞

1

N
log F

(1)
N (X♮) (X♮ − a.s.), r̃♮

2 := lim
N→∞

1

N
log F

(2)
N . (3.41)

Clearly,
r̃1 ≤ r̃♮

1 and r̃2 = r̃♮
2, (3.42)

which can be viewed as a result of “partial annealing”, and so it suffices to show that r̃1
♮ < r̃♮

2.
To this end write out

P(S̃t1 = S̃′
t1

, . . . , S̃tN = S̃′
tN

| X♮)

=
∑

0≤j1≤···≤jN<∞

(
N∏

i=1

e−(ti−ti−1) (ti − ti−1)
ji−ji−1

(ji − ji−1)!

)

∑

0≤j′1≤···≤j′N<∞

(
N∏

i=1

e−(ti−ti−1) (ti − ti−1)
j′i−j′i−1

(j′i − j′i−1)!

) 


N∏

i=1

pj′i−j′i−1




ji∑

k=ji−1+1

X♮
k




 .

(3.43)

Integrating over 0 ≤ t1 ≤ · · · ≤ tN < ∞, we obtain

F
(1)
N (X♮) =

∑

0≤j1≤···≤jN<∞

∑

0≤j′1≤···≤j′N<∞

N∏

i=1


2−(ji−ji−1)−(j′i−j′i−1)−1 [(ji − ji−1) + (j′i − j′i−1)]!

(ji − ji−1)!(j
′
i − j′i−1)!

pj′i−j′i−1




ji∑

k=ji−1+1

X♮
k




 .

(3.44)

Abbreviating

Θn(u) =
∞∑

m=0

pm(u) 2−n−m−1

(
n + m

m

)
, n ∈ N ∪ {0}, u ∈ Z

d, (3.45)

we may rewrite (3.44) as

F
(1)
N (X♮) =

∑

0≤j1≤···≤jN<∞

N∏

i=1

Θji−ji−1




ji∑

k=ji−1+1

X♮
k


 . (3.46)

This expression is similar in form as the first line of (3.8), except that the order of the ji’s is not
strict. However, defining

F̂
(1)
N (X♮) =

∑

0<j1<···<jN<∞

N∏

i=1

Θji−ji−1




ji∑

k=ji−1+1

X♮
k


 , (3.47)
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we have

F
(1)
N (X♮) =

N∑

M=0

(
N

M

)
θ0(0)

M F̂
(1)
N−M (X♮), (3.48)

with the convention F̂
(1)
0 (X♮) ≡ 1. Letting

r̂♮
1 = lim

N→∞

1

N
log F̂

(1)
N (X♮), X♮ − a.s., (3.49)

and recalling (3.41), we therefore have the relation

r̃♮
1 = log

[
θ0(0) + ebr

♮
1

]
, (3.50)

and so it suffices to compute r̂♮
1.

Write

F
(1)
N (X♮) = E

[
exp

(
N

∫

eE

log f ♮(y) (π1RN )(dy)

)∣∣∣∣X
♮

]
, (3.51)

where f ♮ : Ẽ → [0,∞) is defined by

f ♮((x1, . . . , xn)) =
Θn(x1 + · · · + xn)

pn(0)
[G(0) − 1], n ∈ N, x1, . . . , xn ∈ E. (3.52)

Equations (3.51–3.52) replace (3.8–3.9). We can now repeat the same argument as in (3.16–3.22),
with the sole difference that f in (3.9) is replaced by f ♮ in (3.52), and this, combined with Lemma 3.3

below, yields the gap r̃♮
1 < r̃♮

2.
We first check that f ♮ is bounded from above, which is necessary for the application of Varad-

han’s lemma. To that end, we insert the Fourier representation (3.14) into (3.45) to obtain

θn(u) =
1

(2π)d

∫

[−π,π)d

dk e−i(k·u) [2 − p̂(k)]−n−1, u ∈ Z
d, (3.53)

from which we see that θn(u) ≤ θn(0), u ∈ Z
d. Consequently,

f ♮
n((x1, · · · , xn)) ≤

θn(0)

pn(0)
[G(0) − 1], n ∈ Λ. (3.54)

Next we note that

lim
n→∞

1

n
log

[
2−(a+b)n−1

(
(a + b)n

an

)] {
= 0, if a = b,
< 0, if a 6= b.

(3.55)

From (1.1), (3.45) and (3.55) it follows that θn(0)/pn(0) ≤ C < ∞ for all n ∈ Λ, so that f ♮ indeed
is bounded from above.

Note that X♮ is the discrete-time random walk with transition kernel p(·, ·). The key ingredient

behind r̂♮
1 < r̂♮

2 is the analogue of Lemma 3.2, this time with Q∗ = (q∗)⊗N and q∗ given by

q∗(x1, . . . , xn) =
Θn(x1 + · · · + xn)

G(0) − 1

n∏

k=1

p(xk), (3.56)

replacing (3.19).

Lemma 3.3. Assume (1.1). Let Q∗ = (q∗)⊗N with q∗ as in (3.56). If mQ∗ < ∞, then Ique(Q∗) >
Iann(Q∗).
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The analogue of (3.18) reads

Z♮ =
∑

n∈N

∑

x1,...,xn∈Zd

[Θn(x1 + · · · + xn)]

n∏

k=1

p (xk)

=
∑

n∈N

∞∑

m=0

{
∑

x1,...,xn∈Zd

pm(x1 + · · · + xn)

n∏

k=1

p (xk)

}
2−n−m−1

(
n + m

m

)]

= −θ0(0) +
∞∑

n,m=0

pn+m(0) 2−n−m−1

(
n + m

m

)

= −θ0(0) +
1

2

∞∑

k=0

pk(0) = −θ0 +
G(0)

2
.

(3.57)

Consequently,

log z̃2 = e−er2 = e−er
♮
2 =

1

θ0 + ebr
♮
2

=
1

θ0 + Z♮
=

2

G(0)
, (3.58)

where we use (3.36), (3.38), (3.42), (3.50) and (3.57).

3.4 Proof of Lemma 3.3

Proof. We must adapt the proof in Section 3.2 to the fact that q∗ has a slightly different form,
namely, pn(x1 + · · ·+ xn) is replaced by Θn(x1 + · · · + xn), which averages transition kernels. The
computations are straightforward and are left to the reader. The analogues of (3.23) and (3.25) are

q∗(En) =
1

G(0) − 1

∞∑

m=0

pn+m(0) 2−n−m−1

(
n + m

m

)
,

mQ∗ =
∑

n∈N

nq∗(En) = 1
4

∞∑

k=0

kpk(0),

(3.59)

while the analogues of (3.30–3.31) are

q∗(x1 = a) =
p(a)

G(0) − 1
1
2

∞∑

k=0

pk(a)[1 − 2−k−1],

q∗(x1 = a, x2 = b) =
p(a)p(b)

G(0) − 1

[
1
4

∞∑

k=0

kpk(a + b) +

∞∑

k=0

pk(a + b) 2−k−3

]
.

(3.60)

Recalling (3.29), we find
ΨQ∗(a,−a) − p(a)2 > 0, (3.61)

implying that ΨQ∗ 6= ν⊗N (recall (3.2)), and hence H(ΨQ∗ | ν⊗N) > 0, implying the claim.
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