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Abstract. We discuss a reaction–diffusion system modeling concrete corrosion
in sewer pipes. The system is coupled, semi-linear, and partially dissipative. It is
defined on a locally-periodic perforated domain with nonlinear Robin-type boundary
conditions at water-air and solid-water interfaces. We apply asymptotic homog-
enization techniques to obtain upscaled reaction–diffusion models together with
explicit formulae for the effective transport and reaction coefficients. We show that
the averaged system contains additional terms appearing due to the deviation of
the assumed geometry from a purely periodic distribution of perforations for two
relevant parameter regimes: (1) all diffusion coefficients are of order of O(1) and (2)
all diffusion coefficients are of order of O(ε2) except the one for H2S(g) which is of
order of O(1). In case (1), we obtain a set of macroscopic equations, while in case (2)
we are led to a two-scale model that captures the interplay between microstructural
reaction effects and the macroscopic transport.
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2 T. Fatima et al.

1. Introduction

Sulfuric acid is the cause of severe attack to concrete in sewerage
systems. Although normally sewage does not affect the concrete ma-
trix, under some conditions (like raised local temperature activating
anaerobic bacteria of the species Desulfovibrio desulfuricans, e.g., and
a suitable pH range) considerable production of hydrogen sulfide H2S
takes place and leads to acid attack [14]. This situation can be briefly
described as follows: H2S present in the air space of a sewer dissolves
in stationary moisture films on the exposed concrete surfaces where it
undergoes oxidation by aerobic bacteria to sulfuric acid. The chemical
attack seem to take place only on the roof and upper part of the sewer
where it finally leads to damage, i.e spalling of the material.

In spite of the fact that concrete has a long satisfactory service
in sewarage systems, no hydraulic cement can withstand the acid-
ity caused by the anaerobic conditions. In this paper, we focus our
attention on forecasting the early stage of the corrosion1.

We consider a semilinear reaction-diffusion system which we refer
to as micro-model, see section 2.3 for the details. This describes the
evolution of gaseous and dissolved H2S, as well as of the sulfuric acid
H2SO4, moisture, and gypsum at the pore level. Having as departure
point a micro-model for this reaction-diffusion (RD) scenario, we want
to derive, by means of asymptotic homogenization techniques, macro-
scopic RD models able to describe accurately the initiation of sulfate
corrosion in sewer pipes. As further step, the “homogenized” models
need to be tested against experimental findings at the macroscopic level
and calibrated in order to forecast the penetration of the acid front.

A few basic questions are relevant at this stage:

(i) What would be “reasonable” assumptions which we may make
concerning the microstructure of the concrete pipe? How much
freedom we have for a deterministic averaging strategy?

(ii) Does the resulting macro-model approximate well the rather com-
plex multi-scale physico-chemical situation?

(iii) How good is/can be this approximation?

1 Whitish surface deposits appear, but the mechanical properties of the mate-
rial stay unaffected. Note that at a later stage, a gradual softening of the cement
paste appears and mechanical destabilization of the microstructure takes place. The
literature reports about rates of corrosion of ca. 6–12 mm penetration depth per
year.
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Homogenization of corrosion in locally periodic domains 3

Since the analysis we report here is only preliminary, we address par-
ticularly question (i) and leave questions (ii) and (iii) for the moment
unanswered.

The paper is organized as follows: In section 2 we give a minimal
modeling at the pore level of the relevant physicochemical processes in-
volved in the early stage of sulfate corrosion of cement-based materials
and explain both the flexibility and limitations of our modeling. We
define in section 2.1 a periodic-cells approximation of the part of the
concrete pipe we are looking at as well as the corresponding locally-
periodic array of perforations. We nondimensionalize in section 3 the
micro-model presented in section 2.3. The homogenization procedure,
the macro and micro-macro mass-balance equations together with a list
of effective transport and reaction coefficients are presented in section
4.

A few comments on related literature

The reader can find details on civil engineering aspects concerning
concrete corrosion issues when acid attack is involved, for instance,
in [4, 3, 27, 25, 19, 29]. We particularly like [4] for the clear exposition
of the phenomenology and for the enumeration of the main mecha-
nisms influencing acid corrosion. A standard reference work concerning
cement chemistry is [28].

From the modeling point of view, we were very much inpired by [7]
[see also the subsequent papers [17, 18]], where the authors adopted a
macroscopic moving-boundary modeling strategy to capture the macro-
scopic corrosion front penetrating the pipe. We adapted some of their
modeling ideas for the micro-model proposed in section 2.3. Another
macroscopic approach for a closely related sulfatation problem has been
reported in [1].

At the technical level, we essentially use formal asymptotics tech-
niques for both the periodic and locally-periodic homogenization. We
refer the reader to [2] for a discussion on uniform descriptions of het-
erogeneous media, while the working technique is detailed for instance
in [6, 26], and [11] (chapter 7); see also [30] for a related application.
Refs. [9, 15, 20, 11] contain more theoretical approaches able to justify
the asymptotics at least for simpler PDE models.

Homogenization problems in locally-periodic perforated domains
have been dealt with in [21, 5, 8, 9], e.g.; see [10] for a more recent
account of bibliographic information. At the technical level, we rely on
the analysis reported in [8] for the case of a Poisson problem with a
linear Fourier condition imposed at the boundary of the perforation.
We assume a locally-periodic distribution of the perforations (i.e. of
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4 T. Fatima et al.

the micropores). By this we step away from the often used periodic
approximation of porous media, which for the particular case of con-
crete is much too rough. Moreover, we expect that some randomness
is needed for better covering what happens in reality, but we prefer
for the moment to stick with a deterministic approach and understand
[for this easier case] the occurrence of new terms expressing deviations
from periodicity.

Structured transport in porous media, like that arising when gaseous
and dissolved chemical species (here: H2S(g) and H2S(aq)) diffuse
simultaneously, multi-spatial-scale situations naturally occur [12, 22,
23, 24]. Many of these models can be derived rigorously by means of
homogenization techniques [16]. Note that the formal analysis done for
a two-scale setting in section 3.3.2 of [22] remotely ressembles ours for
the case (2).

2. Modeling sulfate corrosion in sewer pipes

In this section, we describe the geometry of the sewer and present our
concept of microstructure. Next we recall the physical and chemical
mechanisms that we take into account, and finally, we list the equations
entering our micro-model.

2.1. Description of the problem and geometry

We consider a cross-section of a sewerage pipe made of partially wet
concrete. It is worth noting that concrete is a mixture of cement, gel
and mobile water as well as of aggregate (sand, gravels, etc). Therefore
we assume that any microstructure (any representative cell) contains
three non-overlapping regions: the solid matrix (aggregate, eventually
inaccessible-to-diffusion gel water, cement paste, etc.), the pore water
clinging on solid fabrics as well as the air-filled part of the pore; see Fig.
1 for a sketch of the cell geometry, say Y , divided into three (distinct
and non-mixed) components: solid, water, and air. We assume that the
solid part is placed in the center of the cell which is enclosed by a
stationary water film. Around the water film, we assume the presence
of bulk air as shown in Fig 1 (bottom). Additionally, we assume that
the domain of interest can be approximated by a finite union of this
kind of cells.

Let us now have a look on our perforations: Each cell contains two
internal interfaces: one separating the solid part from the water film,
and the second separating the water film from the air part. We consider
the following constraints to be fulfilled:
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Homogenization of corrosion in locally periodic domains 5

Figure 1. Top left: Cross section of a sewer showing 3 critical regions where corrosion
initiates; Top right: Periodic grid covering one of the critical regions; Bottom: Typical
pore/reference cell.

(i) Each cell contains all three regions: solid, air, and water. None of
them disappears during the RD process. The shapes of their outer
boundaries do not evolve with the time2, but are allowed to be
x-dependent. This means that they may be different at different
space positions.

(ii) The x-dependency of the internal interfaces mentioned in (i) is
locally periodic.

(iii) All internal interfaces are sufficiently smooth.

Usually, in periodic homogenization approaches (like in [6, 11]) the
shape of these interfaces (i.e. the boundary of the perforations) is x-
independent. If the shape of the internal interfaces in the cell is not
x-dependent, then the outer normals to these interfaces depend on the
fast variable y = x

ε only. Hence, oscillations of the internal boundaries
from cell to cell cannot be captured anymore.

2 Ref. [31] reports about a homogenization procedure which can deal (unfortu-
nately only) formally with evolving microstructures for a precipitation/dissolution
problem.
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6 T. Fatima et al.

We notice in section 4 that the dependence of the normals vectors
to the active internal interfaces on both x and y variables involves
difficulties at the technical level, but the fact that (ii) holds will be
very helpful in controlling (at least formally) the oscillations.

2.2. Notation

Let Ω be an open set in R3 with a smooth boundary Γ having two
disjoint pieces ΓD and ΓN . Here ΓD ∪ΓN = Γ and µ(ΓD) 6= 0, where µ
is the (surface) Lebesque measure in R2. The domain Y is the reference
cell in R3, while S := (0, T ) is the time interval. Y splits up into Y a -
the air-filled part of the cell, Y w - the water-filled part of the cell, and
Y s - solid part of the cell. Furthermore,

Y := Y w ∪ Y s ∪ Y a with Y w ∩ Y s ∩ Y a = ∅.

Also, we denote Γsw := ∂Y s to be the interface between water
and solid part of the cell and Γwa := ∂Y w as the interface between the
water-filled and air-filled part of the cell.

2.2.1. Periodic array of perforations
For a subset X of Y and the integer vectors k = (k1, k2, k3) ∈ Z3, we
denote the shifted subset by

Xk := X +
3∑

i=1

kiei, (1)

where ei is the ith unit vector in R3.
We assume that Ω̂ε is made up of copies of the unit cell scaled by

a sufficiently small scaling factor ε > 0. Here ε is a small parameter
whose precise meaning will become clear in section 3.

Ω̂ε := Ŷ a
ε ∪ Ŷ w

ε ∪ Ŷ s
ε ;

Ŷ a
ε :=

⋃
k∈Z3{εY a

k |εY a
k ⊂ Ω}, the air-filled part of the pores;

Ŷ w
ε :=

⋃
k∈Z3{εY w

k |εY w
k ⊂ Ω}, the water-filled part of the pores;

Ŷ s
ε :=

⋃
k∈Z3{εY s

k |εY s
k ⊂ Ω}, solid matrix;

Γ̂sw
ε :=

⋃
kεZn{εΓsw

k |εΓsw
k ⊂ Ω} water-solid interface;

Γ̂wa
ε :=

⋃
kεZn{εΓwa

k |εΓwa
k ⊂ Ω} water-air interface.

2.2.2. Locally-periodic array of perforations
In the locally-periodic setting, one represents the normal vector nε to
the “oscillating” internal boundaries of the perforations in the form
suggested, for instance, in [9, 5]:

nε(x, y) := ñ(x, y) + εn′(x, y) +O(ε2), (2)
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where

ñ(x, y) = ∇yP (x,y)
|∇yP (x,y)| (3)

and

n′(x, y) = ∇xP (x,y)
|∇yP (x,y)| −∇yP (x, y)∇xP (x,y),∇yP (x,y)

|∇yP (x,y)|3 . (4)

Here the generic surface P (x, y), which describes the interfaces3 Γsw
ε ,

Γwa
ε , and Γε, respectively, is assumed to be 1-periodic function in the

variable y and sufficiently smooth with respect to both variables x, y.
It is worth noting that for uniformly periodic perforations ñ only

depends in y and n′ = 0. To give a meaning to the formal calcula-
tions, which we perform in this paper, is enough to define the locally-
periodicity appearing in the geometry from 2 (left) using the description
(2) of the normal vectors to the non-periodically-placed interfaces.

Figure 2. Left: Locally periodic array of perforations; Right: Uniformly periodic
array of perforations. In the two pictures, we expect the occurrence of differences at
most of order of O(ε) between any two corresponding inner interfaces .

We refer the reader to [5] for an accurate mathematical description
of the geometry described in Figure 2 (left) and to [21] for connec-
tions between locally-periodic perforated domains and quasi-periodic
functions. See [15] for a notation strategy for the periodic case.

2.3. Micro-model

List of data and unknowns

The data is given by
u10 : Ω −→ R+ - the initial concentration of H2SO4(aq)

3 Γsw
ε , Γwa

ε , and Γε point out the same class of objects as those defined in the
periodic setting with the same name under a hat, but now the periodicity assumption
is removed. The same statment holds for Ωε, Y a

ε , Y w
ε , and Y s

ε .

Homogenization_Sulfate_Corrosion.tex; 20/08/2009; 1:03; p.7



8 T. Fatima et al.

u20 : Ω −→ R+ - the initial concentration of H2S(aq)
u30 : Ω −→ R+ - the initial concentration of H2S(g)
u40 : Ω −→ R+ - the initial concentration of dissolved gypsum
u50 : Ω −→ R+ - the initial concentration of moisture
uD

3 : ΓD × S −→ R+ - exterior concentration (Dirichlet data) of
H2S(g)

The unknowns are
uε

1 : Y w
ε × S −→ R - mass concentration of H2SO4(aq) [g/cm3]

uε
2 : Y w

ε × S −→ R - mass concentration of H2S(aq) [g/cm3]
uε

3 : Y a
ε × S −→ R - mass concentration of H2S(g) [g/cm3]

uε
4 : Y w

ε × S −→ R - mass concentration of moisture [g/cm3]
uε

5 : Γsw
ε × S −→ R - mass concentration of gypsum [g/cm2]

The mass-balance equation for H2(SO)4 is

∂tu
ε
1 + div(−dε

1∇uε
1) = −kε

1u
ε
1 + kε

2u
ε
2, x ∈ Y w

ε , t ∈ S
uε

1(x, 0) = uε
10(x), x ∈ Y w

ε

nε · (−dε
1∇uε

1) = 0, x ∈ Γwa
ε , t ∈ S

nε · (−dε
1∇uε

1) = −η(uε
1, u

ε
5), x ∈ Γsw

ε , t ∈ S

(5)

The mass-balance equation for H2S(aq) is given by

∂tu
ε
2 + div(−dε

2∇uε
2) = kε

1u
ε
1 − kε

2u
ε
2, x ∈ Y w

ε , t ∈ S
uε

2(x, 0) = uε
20(x), x ∈ Y w

ε

nε · (−dε
2∇uε

2) = ε(aε(x)uε
3 − bε(x)uε

2), x ∈ Γwa
ε , t ∈ S

nε · (−dε
2∇uε

2) = 0, x ∈ Γsw
ε , t ∈ S

(6)

The mass-balance equation for H2S(g) is given by

∂tu
ε
3 + div(−dε

3∇uε
3) = 0, x ∈ Y a

ε , t ∈ S
uε

3(x, 0) = uε
30(x), x ∈ Y a

ε

nε · (−dε
3∇uε

3) = 0, x ∈ ΓN , t ∈ S
uε

3(x, t) = uD
3 (x, t), x ∈ ΓD, t ∈ S

nε · (−dε
3∇uε

3) = −ε(aε(x)uε
3 − bε(x)uε

2), x ∈ Γwa
ε , t ∈ S

(7)

The mass-balance equation for moisture is given by

∂tu
ε
4 + div(−dε

4∇uε
4) = kε

1u
ε
1, x ∈ Y w

ε , t ∈ S
uε

4(x, 0) = uε
40(x), x ∈ Y w

ε

nε · (−dε
4∇uε

4) = 0, x ∈ Γwa
ε , t ∈ S

nε · (−dε
4∇uε

4) = 0, x ∈ Γsw
ε , t ∈ S

(8)

The mass-balance equation for the gypsum present at the water-solid
interface is

∂tu
ε
5 = η(uε

1, u
ε
5), x ∈ Γsw

ε , t ∈ S
uε

5(x, 0) = uε
50(x), x ∈ Γsw

ε .
(9)
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Homogenization of corrosion in locally periodic domains 9

Note that the lack of diffusion in (9) gives the partly dissipative feature
to the model.

The list of coefficients in (5)-(9) is as follows:
kε

j : Ω× S −→ R - reaction constants for all j ∈ {1, 2, 3},
dε

i : Ω × S −→ R3×3 - diffusion coefficients for H2SO4, H2S(aq),
H2S(g) and H2O for all i ∈ {1, 2, 3, 4},

aε : Γwa
ε × S −→ R - the adsorption factor of H2S (air to water),

bε : Γwa
ε × S −→ R - the desorption factor of H2S (air to water),

η : Γsw
ε × S −→ R - reaction rate on water-solid interface.

It is tacitly assumed that all reaction constants, diffusion coef-
ficients, absorption and desorption factors as well as normal vectors
to the water-solid and water-air interfaces are Y-periodic functions
as follows: dε

i (x, t) := di(x
ε , t), i ∈ {1, 2, 3, 4}, kε

j (x, t) := kj(x
ε , t),

j ∈ {1, 2, 3}; aε(x, t) := a(x
ε , t), and bε(x, t) := b(x

ε , t).
To fix ideas, notice that the reaction rate η may take the form

η(α, β) =
{

kε
3(x)αp(c̄− β)q, if α ≥ 0, β ≥ 0

0, otherwise

where c̄ is a known constant. The reader is referred to [7, 29] for more
modeling details.

Note that the micro-model can be easily extended by allowing
for ionic transport and the reaction of sulfate ions with the alumi-
nate phases in concrete. A much more difficult step is to model the
reaction-induced deformation of the microstructure and to account for
the simultaneous space- and time-evolution of the active parts of the
perforations.

3. Nondimensionalization

We introduce the characteristic length L for the space variable such that
x = Lx̃, the time variable is scaled as t = τs, and for the concentrations
we use uε

i = ui
refvε

i , where4 ui
ref = ‖uε

i‖∞ for all i ∈ {1, 2, 3, 4, 5}. kj

are scaled as kε
j = k∗j k̃

ε
j , where k∗j =‖ kε

j ‖∞ for all j ∈ {1, 2, 3} and
di := di

ref d̃i for all i ∈ {1, 2, 3, 4}. We make use of two mass-transfer
Biot numbers5 for the two spatial scales in question: micro and macro.

4 L∞-bounds on concentrations and the existence of positive weak solutions to
the micro-model are shown in [13].

5 Biot numbers are dimensionless quantities mostly used in heat transfer calcu-
lations. They relate the heat transfer (mass transfer) resistance inside and at the
surface of a body.

Homogenization_Sulfate_Corrosion.tex; 20/08/2009; 1:03; p.9
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Our first Biot number is defined by

Bim :=
bm
ref L

D , (10)

where bm
ref is a reference reaction rate acting at the water solid interface

within the microstructure and D is a reference diffusion coefficient. Our
second Biot number is defined by

BiM :=
bM
ref L

D , (11)

where bM
ref is a reference reaction rate at the water-solid interface at

the macro level. The connection between the two Biot numbers is given
by

Bim = εBiM . (12)

In some sense, relation (12) defines our small scaling parameter ε with
respect to which we wish to homogenize. Furthermore, we introduce
two other dimensionless numbers:

βi :=
ui

ref

u1
ref

and γi :=
di

ref

d3
ref

. (13)

βi represents the ratio of the maximum concentration of the ith species
to the maximum H2SO4 concentration, while γi denotes the ratio of
the characteristic time of the ith diffusive aqueous species to the char-
acteristic diffusion time of H2S(g).

In terms of the newly introduced quantities, the mass-balance
equation for H2SO4 takes the form

u1
ref

τ ∂sv
ε
1 +

u1
ref d1

ref

L2 div(−d̃1∇vε
1) = −k∗1u

1
ref k̃ε

1v
ε
1 + k∗2u

2
ref k̃ε

2v
ε
2, (14)

and hence,

β1∂sv
ε
1 +

β1d1
ref τ

L2 div(−d̃1∇vε
1) = −k∗1u1

ref τ

u1
ref

k̃ε
1v

ε
1 +

k∗2u2
ref τ

u1
ref

k̃ε
2v

ε
2. (15)

As reference time, we choose the characteristic time scale of the fastest
species (here: H2S(g)), that is τ := τdiff = L2

d3
ref

. We get

β1∂sv
ε
1 + β1γ1div(−d̃1∇vε

1) = −η1
ref τ

u1
ref

k̃ε
1v

ε
1 +

η2
ref τ

u1
ref

k̃ε
2v

ε
2 (16)

Let us denote by τ j
reac :=

u1
ref

ηj
ref

the characteristic time scale of the jth

reaction, where the quantity ηj
ref is a reference reaction rate for the

Homogenization_Sulfate_Corrosion.tex; 20/08/2009; 1:03; p.10
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corresponding chemical reaction. With this new notation in hand, we
obtain

β1∂sv
ε
1 + β1γ1div(−d̃1∇vε

1) = −Φ2
1k̃

ε
1v

ε
1 + Φ2

2k̃
ε
2v

ε
2 (17)

where Φ2
j , j ∈ {1, 2, 3} are Thiele-like moduli. The jth Thiele modu-

lus Φ2
j compares the characteristic time of the diffusion of the fastest

species and the characteristic time of the jth chemical reaction. It is
defined as

Φ2
j :=

τdiff

τ j
reac

for all j ∈ {1, 2, 3}. (18)

For the boundary condition involving a surface reaction, we obtain

ñε · (−d̃1∇vε
1)) = − τdiff

γ1Lτ3
reac

η̃(vε
1, v

ε
5), (19)

and therefore,

ñε · (−d̃1∇vε
1)) = −ε

Φ2
3

γ1
η̃(vε

1, v
ε
5). (20)

Note that the quantity εΦ2
3 plays the role of a Thiele modulus for a sur-

face reaction, while Φ2
1 and Φ2

2 are Thiele moduli for volume reactions.
Similarly, the mass-balance equation for the species H2S(aq) becomes

β2∂sv
ε
2 + β2γ2div(−d̃2∇vε

2) = Φ2
1k̃iv

ε
1 − Φ2

2k̃2v
ε
2. (21)

The boundary condition at the air-water interface becomes

ñε · (−d̃2∇vε
2)) = εBiM (aεβ3

bεβ2
vε
3 − vε

2). (22)

The mass balance equation for H2S(g) is

β3∂sv
ε
3 + β3div(−d̃3∇vε

3) = 0, (23)

while the boundary condition at the air-water interface reads

ñε · (−d̃3∇vε
3)) = −εBiM (aε

bε vε
3 −

β2

β3
vε
2) . (24)

Finally, the mass-balance equation for moisture is

β4∂sv
ε
4 + β4γ4div(−d̃4∇vε

4) = Φ2
1k̃1v

ε
1 (25)

and the ODE for gypsum becomes

β5∂sv
ε
5 = Φ2

3η̃(vε
1, v

ε
5). (26)

To simplify the notation, we drop all the tildes and keep the meaning
of the unknowns and operators as mentioned in this section.
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12 T. Fatima et al.

4. Formal homogenization procedure

Homogenization is a generic term which refers to finding effective model
equations and coefficients, i.e. objects independent of ε. For our prob-
lem, the homogenization procedure will provide us an approximate
macroscopic model (that we refer to as macro-model) defined for a
uniform medium, where the original microstructure and phase separa-
tion (water, air, and solid) can not be seen anymore. The hope is that
the solutions to the macro-model are sufficient close6 to the solutions
of the micro-model as ε goes to zero.

In this section, we study the asymptotic behaviour of the solutions
to the micro-model as ε → 0 for two parameter regimes reflecting two
different types of diffusive-like transport of chemical species in concrete:
“uniform” diffusion (see section 4.1) and “structured” diffusion (section
4.2).

4.1. Case 1: dε
i = O(1) for all i ∈ {1, 2, 3, 4}

We consider that the diffusion speed is comparable for all concentra-
tions, i.e. the diffusion coefficients dε

i are of order of O(1) w.r.t. ε for all
i ∈ {1, 2, 3, 4}. We assume that the solutions vε

i (x, t) (i ∈ {1, 2, 3, 4, 5})
of the micro-model admit the following asymptotic expansion

vε
i (x, t) = vi0(x, y, t) + εvi1(x, y, t) + ε2vi2(x, y, t) + . . . , (27)

where y = x
ε and the functions vim(x, y, t),m = 1, 2, 3, ..., are Y-

periodic in y.
If we define (compare [6, 11], e.g.)

Ψε(x, t) := Ψ(x,
x

ε
, t),

then

∂Ψε
∂xi

= ∂Ψ
∂xi

(x, x
ε ) + 1

ε
∂Ψ
∂yi

(x, x
ε ) (28)

We investigate the asymptotic behavior of the solution vε
1(x, t) as ε → 0

of the following problem posed in the domain Y w
ε

β1∂sv
ε
1 + β1γ1div(−d1∇vε

1) = −Φ2
1k

ε
1v

ε
1 + Φ2

2k
ε
2v

ε
2 in Y w

ε ,
vε
1(x, t) = 0 0n Γ,

nε · (−d1∇vε
1)) = −ε

Φ2
3

γ1
η(vε

1, v
ε
5) on Γsw

ε ,

nε · (−d1∇vε
1)) = 0 on Γwa

ε ,

(29)

6 The status of being “close” needs rigorous concepts (and proofs) that will be
discussed in a forthcoming paper.

Homogenization_Sulfate_Corrosion.tex; 20/08/2009; 1:03; p.12



Homogenization of corrosion in locally periodic domains 13

Using now the asymptotic expansion of the solution vε
1(x, t) in (29) and

equating the terms with the same powers of ε, we obtain:{
A0v10 = 0 in Y w

ε ,
v10 Y-periodic in y,

(30)

where the operator A0 is given by

A0 := −
∑3

i,j=1
∂

∂yi
(dij

1
∂

∂yj
).

As next step, we get
A0v11 = −A1v10 in Y w

ε ,
v11 Y − periodic in y,

(d1∇yv11, ñ) = −(d1∇xv10, ñ),
(31)

where

A1 := −
∑3

i,j=1
∂

∂xi
(dij

1
∂

∂yj
)−

∑3
i,j=1

∂
∂yi

(dij
1

∂
∂xj

).

Furthermore, it holds that

β1γ1A0v12 = −β1γ1A1v11 − β1γ1A2v10 − β1∂sv10

− Φ2
1k1(y)v10 + Φ2

2k2(y)v20 in Y w
ε , (32)

v12 Y-periodic in y,

(d1∇yv12, ñ) = −(d1∇xv11, ñ)− (d1∇xv10, n
′)− (d1∇yv11, n

′)

− Φ2
3

γ1
η(v10, v50) on Γsw

ε , (33)

(d1∇yv12, ñ) = −(d1∇xv11, ñ)− (d1∇xv10, n
′)

− (d1∇yv11, n
′) on Γwa

ε , (34)

where

A2 := −
∑3

i,j=1
∂

∂xi
(dij

1
∂

∂xj
).

From (30), we obtain that v10 is independent of y. Since the elliptic
equation for v11 [with right-hand side defined in terms of v10] is linear,
its solution can be represented via

v11(x, y, t) := −
3∑

k=1

χk(x, y, t)
∂v10(x, t)

∂xk
+ v1(x, t),

where the functions χk(x, y, t) solve the cell problem(s) and are periodic
w.r.t. y. In the rest of the paper, we do not point out anymore the
dependence of χk on the parameter t. The exact expression of v1 does
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14 T. Fatima et al.

not matter much at this stage. Using the expression of v11, we obtain
following cell problems in the standard manner:

A0χ
k(x, y) = −

3∑
i=1

∂

∂yi
dik

1 (y), k ∈ {1, 2, 3} in Y w, (35)

3∑
i,j,k=1

∂v10

∂xk
[dij

1

∂χk

∂yj
ñi − djk

1 ñj ] = 0, on Γsw,

3∑
i,j,k=1

∂v10

∂xk
[dij

1

∂χk

∂yj
ñi − djk

1 ñj ] = 0, on Γwa

Since the right-hand side of (35) integrated over Y is zero, this problem
has a unique solution. Note also that

β1γ1A0v12 = β1γ1[−
3∑

i,j,k=1

∂v10

∂xk

∂

∂yi
(dij

1

∂χk

∂xj
)

−
3∑

i,j,k=1

∂2v10

∂xj∂xk

∂

∂yi
(dij

1 χk) +
3∑

i,j=1

∂dij
1

∂yi

∂ṽ1

∂xj

−
3∑

i,j,k=1

dij
1

∂2χk

∂xi∂yj

∂v10

∂xk
−

3∑
i,j,k=1

dij
1

∂χk

∂yi

∂2v10

∂xk∂xi

+
3∑

i,k=1

dik
1

∂2v10

∂xk∂xi
]− β1∂sv10 − Φ2

1k1(y)v10 + Φ2
2k2(y)v20.

Moreover, we have

β1γ1(d1∇yv12, ñ) = β1γ1[
3∑

i,j,k=1

dij
1

∂v10

∂xk

∂χk

∂xi
ñj

+
3∑

i,j,k=1

dij
1

∂2v10

∂xj∂xk
χkñj −

3∑
i,j=1

dij
1

∂v10

∂xi
n′j

−
3∑

i,j=1

dij
1

∂ṽ1

∂xi
ñj +

3∑
i,j,k=1

dij
1

∂χk

∂xi

∂v10

∂xk
n′j

− Φ2
3

γ1
η(v10, v50)]. (36)

Writing down the compatibility condition (see e.g. Lemma 2.1 in [26]),
we get∫

Y w
ε

[β1γ1{
3∑

i,j,k=1

∂v10

∂xk

∂

∂yi
(dij

1

∂χk

∂xj
) +

3∑
i,j,k=1

∂2v10

∂xj∂xk

∂

∂yi
(dij

1 χk)
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Homogenization of corrosion in locally periodic domains 15

−
3∑

i,j=1

∂dij
1 ∂yi

∂ṽ1

∂xj
+

3∑
i,j,k=1

dij
1

∂2χk

∂xi∂yj

∂v10

∂xk

+
3∑

i,j,k=1

dij
1

∂χk

∂yi

∂2v10

∂xk∂xi
−

3∑
i,j,k=1

dij
1

∂2v10

∂xj∂xi
}

+ β1∂sv10 + Φ2
1k1(y)v10 − Φ2

2k2(y)v20]dy

= β1γ1

∫
Γsw

[
3∑

i,j,k=1

dij
1

∂v10

∂xk

∂χk

∂xi
ñj

+
∫
Γsw

 3∑
i,j,k=1

dij
1

∂2v10

∂xj∂xk
χkñj −

3∑
i,j=1

dij
1

∂v10

∂xi
n′j

 dσ

−
∫
Γsw

 3∑
i,j=1

dij
1

∂ṽ1

∂xi
ñj +

3∑
i,j,k=1

dij
1

∂χk

∂xi

∂v10

∂xk
n′j

 dσy

−
∫
Γsw

Φ2
3

γ1
η(v10, v50)]dσy. (37)

We apply Stokes’ theorem to the terms involving ñj and after straight-
forward calculations, we obtain

β1∂sv10 + Φ2
1v10

1
|Y w

ε |

∫
Y w

ε

k1(y)dy − Φ2
2v20

1
|Y w

ε |

∫
Y w

ε

k2(y)dy

− β1γ1

3∑
i,j,k=1

∂2v10

∂xi∂xk
〈dij

1

∂χk

∂yj
− dik

1 〉

− β1γ1

3∑
i,j,k=1

〈dij
1

∂2χk

∂xi∂yj
〉∂v10

∂xk

= −β1γ1

3∑
i,j,k=1

∂v10

∂xk

1
|Y w

ε |

∫
Γsw

ε

(dkj
1 n′j − dij

1

∂χk

∂yin′j
)dσy

− β1γ1

γ1
Φ2

3v10
1

|Y w
ε |

∫
Γsw

ε

v50(x, y, t)k3(y)dσy, (38)

where 〈f〉V := 1
V

∫
V fdx for any V a subset of either Y a

ε or Y w
ε . The

latter PDE can be rewritten as

β1∂sv10 − β1γ1

3∑
i,j,k=1

∂

∂xi
(〈dij

1

∂χk

∂yj
− dik

1 〉
∂v10

∂xk
) + Φ2

1v10K1 − Φ2
2v20K2

= −β1γ1

3∑
k=1

∂v10

∂xk
Uk − β1Φ2

3v10K3 in Ω, (39)
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16 T. Fatima et al.

and v10 = 0 on Γ, where

K` :=
1

|Y w
ε |

∫
Y w

ε

k`(y)dy, ` ∈ {1, 2} (40)

K3 :=
1

|Y w
ε |

∫
Γsw

ε

v50(x, y, t)k3(y)dσy, (41)

and

Uk :=
1

|Y w
ε |

3∑
i,j=1

∫
Γsw

ε

(dkj
1 n′j − dij

1

∂χk

∂yi
n′j)dσy. (42)

The terms Uk are new. They occur due to the assumed deviation from
a uniformly periodic distribution of perforations.

Now we apply the same procedure to the next mass-balance equa-
tion. To do this, we consider the auxiliary cell problem

A0χ
k(x, y) = −

∑3
i=1

∂
∂yi

dik
2 (y), k ∈ {1, 2, 3} in Y w,∑3

i,j,k=1
∂v10
∂xk

[dij
1

∂χk

∂yj
ñi − djk

1 ñj ] = 0, on Γsw,∑3
i,j,k=1

∂v10
∂xk

[dij
1

∂χk

∂yj
ñi − djk

1 ñj ] = 0, on Γwa,

(43)

whose solution is χk(x, y). We obtain the upscaled PDE:

β2∂sv20 − Φ2
1v10k1 + Φ2

2v20k2 − β2γ2

3∑
i,j,k=1

∂

∂xi
(〈dij

2

∂χk

∂yj
− dik

2 〉
∂v20

∂xk
) =

− β2γ2

3∑
k=1

∂v20

∂xk
Uk − β3BiMv30C + β2BiMv20B, (44)

holding in Ω and
v20 = 0 on Γ,

where

C :=
1

|Y w
ε |

∫
Γwa

ε

b(y)H(y)dσy, (45)

H(
x

ε
) :=

aε(x)
bε(x)

(46)

B :=
1

|Y w
ε |

∫
Γwa

ε

b(y)dσy, (47)

Uk :=
1

|Y w
ε |

3∑
i,j=1

∫
Γwa

ε

(dkj
1 n′j − dij

1

∂χk

∂yi
n′j)dσy. (48)
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We treat now the mass-balance equation for H2S(g). The corre-
sponding cell problems are given by

A0χ
k(x, y) = −

∑3
i=1

∂
∂yi

dik
3 (y), k = 1, 2, 3 in Y a,∑3

j,k=1
∂v30
∂xk

[
∑3

i=1 dij
3

∂χk

∂yj
ñi − djk

3 ñj ] = 0 on Γwa,∑3
j,k=1

∂v30
∂xk

[
∑3

i=1 dij
3

∂χk

∂yj
ñi − djk

3 ñj ] = 0 on Γwa,

while the macroscopic PDE is

∂sv30 −
3∑

i,j,k=1

∂

∂xi
(〈dij

3

∂χk

∂yj
− dik

3 〉
∂v30

∂xk
)

= −
3∑

k=1

∂v30

∂xk
Uk + β3BiMv30C − β2BiMv20B (49)

in Ω with v30 = vD
30, on ΓD. Here we have

C :=
1

|Y a
ε |

∫
Γwa

ε

b(y)H(y)dσy, (50)

B :=
1

|Y a
ε |

∫
Γwa

ε

b(y)dσy. (51)

Same procedure leads to

β4∂sv40 − Φ2
1v10k1 − β4γ4

3∑
i,j,k=1

∂

∂xi
(〈dij

4

∂χk

∂yj
− dik

4 〉
∂v40

∂xk
)

= −β4γ4

3∑
k=1

∂v40

∂xk
Uk, (52)

in Ω with v40 = 0, on Γ.
Interestingly, the case of the ODE for gypsum

∂sv
ε
5 = Φ2

3η(vε
1, v

ε
5) on Γsw

ε , s ∈ S, (53)
vε
5(x, 0) = v5

ε
0(x), (54)

seems to be more problematic. Let us firstly use the same homogeniza-
tion ansatz as before and employ

η̃(vε
1, v

ε
5) = ηA

0 (v10(x, t), v50(x, y, t)) +O(ε).

We obtain

∂sv50(x, y, t) = Φ2
3η

A
0 (v10(x, t), v50(x, y, t)) (55)

v50(x, y, 0) = v50(x, y), (56)
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18 T. Fatima et al.

where v50(x, y, t) is periodic w.r.t y. Notice that we can not obtain an
expression for v50(x, y, t) that is independent of y!

On the other hand, if we make another ansatz for vε
5, say

vε
5(x, t) = v50(x, t) + εv51(x, y, t) + ε2v52(x, y, t) + . . . , (57)

then
η̃(vε

1, v
ε
5) = ηB

0 (v10(x, t), v50(x, t)) +O(ε)

and we obtain an averaged ODE independent of y as given via

∂sv50(x, t) = Φ2
3η

B
0 (v10(x, t), v50(x, t)). (58)

The advantage of the second choice is that it leads to the averaged reac-
tion constant k̄3 = 1

|Γsw
ε |

∫
Γsw

ε
k3(y)dy, which is, in practice, much nicer

than (58). Summarizing: We have to choose between (55) and (58), but
which of the two averaged ODEs is the right one? Does the correctness
of the answer to this question depend on the choice of the initial datum
for v50? We will address these issues7 in a forthcoming analyis paper
where we justify rigorously the asymptotic behavior indicated here.

4.2. Case 2: dε
3 = O(1) and dε

i = O(ε2) for all i ∈ {1, 2, 4}

In this section, we take into account the fact that the diffusion of H2S
is much faster within the air-part of the pores than within the pore
water. Particularly, we assume that dε

3 is of order of O(1), while dε
i =

O(ε2) for all i ∈ {1, 2, 4}. We expect from the literature that the latter
assumption will lead to a two-scale model for which the micro- and
macro-structure need to be resolved simultaneously; see e.g. [16, 12, 23].

Assume the initial data to be given by vε
i (x, 0) = v0

i (x, x
ε ), i ∈

{1, 2, 3, 4, 5} with functions v0
i : Ω× Y × S → R being Y -periodic with

respect to the second variable y ∈ Y. Assume also that dε
i = ε2d0

i , for
i ∈ {1, 2, 4} and dε

3 = d0
3. We employ the same homogenization ansatz

vε
i (x, t) = wi0(x, y, t) + εwi1(x, y, t) + ε2wi2(x, y, t) + . . . (59)

for all i ∈ {1, 2, 3, 4, 5}. Using the same strategy as in section 4.1, we
obtain

β1∂sw10(x, y, t) − β1γ1∇y · (d0
1∇yw10(x, y, t))

= −k1(y)w10(x, y, t) + k2(y)w20(x, y, t) (60)

7 We anticipate here a bit the answer to the latter question: Trusting [20], relation
(55) can be proven rigorously via a two-scale convergence approach. However, we
will see that under some additional conditions (55) reduces to (58).
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on Ω× Y w × S. The boundary conditions become

ñ(x, y) · (−d0
1∇yw10(x, y, t)) = 0 on Ω× Γwa × S, (61)

ñ(x, y) · (−d0
1∇yw10(x, y, t)) = −Φ2

3

γ3
k3(y)w10(x, y, t)w50(x, y, t) (62)

on Ω× Γsw × S.
Similarly,

β2∂sw20(x, y, t) − β2γ2∇y · (d0
2∇yw20(x, y, t))

= k1(y)w10(x, y, t)− k2(y)w20(x, y, t), (63)

in Ω× Y w × S while the boundary conditions take the form

ñ(x, y) · (−d0
2∇yw20(x, y, t)) = 0 on Ω× Γsw × S, (64)

ñ(x, y) · (−d0
2∇yw20(x, y, t)) = BiMb(y)×

×[
β3

β2
H(y)w30(x, y, t)− w20(x, y, t)] on Ω× Γwa × S. (65)

Since we consider dε
3 = d0

3, we obtain the same macroscopic PDE as in
Case 1:

∂sw30(x, t) −
3∑

i,j,k=1

∂

∂xi
(〈dij

3

∂χk

∂yj
− dik

3 〉
∂w30(x, t)

∂xk
)

= −
3∑

k=1

∂w30(x, t)
∂xk

Uk + β3BiMw30(x, t)C − β2BiMw20(x, t)B

(66)

in Ω and
w30(x, t) = wD

30(x, t) on ΓD,

where

C :=
1

|Y w
ε |

∫
Γwa

ε

b(y)H(y)dσy, (67)

B :=
1

|Y w
ε |

∫
Γwa

ε

b(y)dσy, (68)

Uk :=
1

|Y w
ε |

3∑
i,j=1

∫
Γwa

ε

(dkj
1 n′j − dij

1

∂χk

∂yi
n′j)dσy. (69)

Next, we have

β4∂sw40(x, y, t)− β4γ4∇y.(d0
4∇yw40(x, y, t)) = k1(y)w10(x, y, t), (70)
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on Ω× Y w × S, while the boundary conditions are now given by

ñ(x, y) · (−d0
4∇yw40(x, y, t)) = 0 on Ω× Γwa × S,

ñ(x, y) · (−d0
4∇yw40(x, y, t)) = 0 on Ω× Γsw × S.

(71)

The ODE modeling gypsum growth takes the form

β5∂sw50(x, y, t) = −Φ2
3η(w10(x, y, t)w50(x, y, t)) (72)

on Ω× Γsw × S.
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