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Abstract

This paper deals with the analysis of Hamiltonian Hopf as well as saddle-centre
bifurcations in 4-DOF systems defined by perturbed isotropic oscillators (1:1:1:1
resonance), in the presence of two quadratic symmetries Ξ and L1. When we nor-
malize the system with respect to the quadratic part of the energy and carry out
a reduction with respect to a 3-torus group we end up with a 1-DOF system with
several parameters on the thrice reduced phase space. Then, we focus our analysis
on the evolution of relative equilibria around singular points of this reduced phase
space. In particular, dealing with the Hamiltonian Hopf bifurcation the ‘geometric
approach’ is used, following the steps set up by one of the authors in the context of
3-DOF systems. In order to see the interplay between integrals and physical param-
eters in the analysis of bifurcations, we consider as perturbation a one-parameter
family, which in particular includes one of the classical Stark-Zeeman models (par-
allel case) in 3 dimensions.

Keywords: Hamiltonian system, fourfold 1:1 resonance, bifurcation, normal form, re-
duction, Hamiltonian Hopf bifurcation
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1 Introduction

T The analysis of bifurcations of relative equilibria of perturbed Hamiltonian systems with
symmetries covers a vaste literature. Among them, recently progress has been made, in
particular, in the understanding of bifurcations emanating from singular points of the alge-
braic varieties defining the reduced phase spaces. More precisely we are interested here in
enlarging the studies done in relation to the 1:1:1 resonance [7, 14, 15, 16, 17, 18, 19, 20, 21],
considering now one more resonance with the same frequency; a preliminary report com-
municating part of the full study presented here was presented recently [12](see also [11]).
In [28] it is shown that the reduced phase space of the n-dimensional harmonic oscillator
is CPn−1. Since then, the cases n = 2, 3 have been considered by many authors. To our
knowledge, the case n = 4 has not been treated systematically. Only when perturbed
Keplerian systems have been immersed in 4-D through the KS or Moser regularization
transformation [4, 24, 25, 5, 9, 10], authors have encountered the need of studying the
1:1:1:1 resonance, but with the constraint imposed by the KS transformation, which in
our notation corresponds to one of our integrals (see (3), (4)) being zero: Ξ = 0.

To be more precise, on R8 with the standard symplectic form consider a Hamiltonian
system with Hamiltonian

H = H2 +H3 +H4 + h.o.t. , (1)

with

H2(q,Q) = 1
2

(Q2
1 +Q2

2 +Q2
3 +Q2

4) + 1
2
ω2(q2

1 + q2
2 + q2

3 + q2
4) , (2)

and Hi are polynomials in the variables (qj, Qj). Moreover we will assume that H has
two rotationals integrals

Ξ(q,Q) = q1Q2 −Q1q2 + q3Q4 −Q3q4 , (3)

L1(q,Q) = −q1Q2 +Q1q2 + q3Q4 −Q3q4 . (4)

In this paper, without loss of generality, in what follows we take ω = 1 to simplify our
study.

Two types of situations may be modeled by the Hamiltonian function (1). The first one
corresponds to the Taylor expansion around elliptic equilibria of dynamical systems in
the resonance 1:1:1:1; the second type appears when, making use of the KS transforma-
tion and rescaling of the independent variable, perturbed Keplerian-Coulomb systems are
transformed into perturbed isotropic oscillators. In the first case the equilibrium is taken
as the new origin, thus the value of the Hamiltonian is zero at it (and also H2 = n = 0),
and will take small values when we study the effects of Hi. In the second case, as it is
well known, the value of the Hamiltonian is (see eq (3.2) p. 59 [10]) not zero; then, our
perturbation analysis will be around that value.
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Our interest is to deal with the general scenario corresponding to the 4-D harmonic
oscillator and its toral reductions, to the point where we can identify thrice reduced
phase spaces of different type, with one or two singular points. As we said before the
regular reduction related to the energy normalization H2 = n lead us to CP3. The
second singular reduction defined by the action associated to Ξ = ξ has a reduced space
diffeomorphic to S2

n−ξ × S2
n+ζ . Later, dealing with applications when Ξ = 0, we connect

our problem with perturbed Keplerian systems; it is well known that the reduced space
for normalized perturbed Keplerian systems can be identified with S2

n × S2
n [4]. It is for

this reason that the reductions are performed in this order. Finally, if the integral L1 = `
is also considered, the associated third (singular) reduction gives as reduced phase space
a surface, the nature of which depends on the values of the integrals H2,Ξ and L1. That
surface has has one or two singular points depending on the relative values of ξ and `.

In [19, 20, 21] it was shown that Hamiltonian Hopf bifurcations (HHB) can only arise
at cone-like singular points of the reduced phase spaces. Here, after having identified
the reduced phase spaces, we focus on these points for systems originally defined in 4-D.
Although the methods already developed: ‘algebraic’, ‘geometric’, etc. are, in principle,
directly applicable in this case, we still have to perform a careful analysis of the role played
by and relative influence of the integrals as well as its interrelation with the physical
parameters of the system studied.

In order to illustrate our analysis, in this paper we consider the perturbed harmonic
oscillator in resonance 1:1:1:1 given by

H(q,Q) =
1

2
(Q,Q) +

1

2
(q, q)

+ ε
[
λ (q2

1 + q2
2 + q2

3 + q2
4)(−q2

1 − q2
2 + q2

3 + q2
4) (5)

+ 4 (q2
1 + q2

2 + q2
3 + q2

4){(q1q4 − q2q3)2 + (q1q3 + q2q4)2}] ,
where ( , ) is the standard inner product, λ is an external parameter and ε an small
parameter.

Note that the application has a secondary importance in this paper. Nonetheless, apart
from its intrinsic physical interest, this model is generalizing the perturbed Keplerian
systems, due to its simple definition as a quadratic 1-parameter perturbation in 3-D
Cartesian co-ordinates. As we see it as a particular case of a perturbed 4-D oscillator, we
ask ourselves: Does, in order to have a HHB in this oscillator, the integral Ξ have to be
zero?

In this respect, in order to make the presentation clear, the physical model we consider
(see below), is made of two terms, which only introduce one parameter λ, defined by the
ratio of the quantities defining the electric and magnetic forces, both considered to be
small with respect to the unperturbed part.
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The paper is organized as follows. In Sec. 2 we carry out the T3 normalization and
reduction of problem identifying the invariants defining those spaces. We apply this
process to the parallel Stark-Zeeman problem. The structure of the thrice reduced phase
spaces, regular and singular, is presented in detail. In Sec. 3 the energy-momentum
mapping is introduced and the analysis of is critical values lead to identify the bifurcations
lines associated to Hamiltonian Hopf and saddle-center bifurcations. In Sec. 4 we present
the collection of the different flows. In Sec. 5 we study in detail the Hamiltonian Hopf
bifurcation connected to the singular points of our thrice reduced phase space. Finally in
Sec. 6 we related our work with the parallel Stark-Zeeman case as a perturbed Keplerian
system, whose normalized dynamics is connected with the Ξ = 0 manifold through the
KS transformation.

2 Normalization and Toral Reduction

2.1 Reduction to CP3

There are 16 invariants for the action corresponding to H2 (see [6]):

π1 = Q2
1 + q2

1 , π2 = Q2
2 + q2

2 , π3 = Q2
3 + q2

3 ,

π4 = Q2
4 + q2

4 , π5 = Q1Q2 + q1q2 , π6 = Q1Q3 + q1q3 ,

π7 = Q1Q4 + q1q4 , π8 = Q2Q3 + q2q3 , π9 = Q2Q4 + q2q3 ,

π10 = Q3Q4 + q3q4 , π11 = −Q1q2 + q1Q2 , π12 = −Q1q3 + q1Q3 ,

π13 = −Q1q4 + q1Q4 , π14 = −Q2q3 + q2Q3 , π15 = −Q2q4 + q2Q4 ,

π16 = −Q3q4 + q3Q4 . (6)

These invariants can be easily derived using complex conjugate co-ordinates and are sub-
jected to the relations given in Table (1) , defining the first reduced phase space.

Theorem 2.1 The invariants given in (6) verify the relations given in Table 1. These
relations define CP3 as a submanifold of R16.

Proof : One can verify the relations Table (1) given by the theorem by substituting at
both sides the definitions of πi given in (6). In order to show that they define CP3 we
introduce complex conjugate coordinates (z1, z2, z3, z4), by means of

z1 = Q1 + iq1, z2 = Q2 + iq2, z3 = Q3 + iq3, z4 = Q4 + iq4

and we introduce the invariants of the harmonic oscillator over C4

σ1 = z1z1 = π1, σ2 = z2z2 = π2 ,
σ3 = z3z3 = π3, σ4 = z4z4 = π4 ,
σ5 = z1z2 = π5 + iπ11, σ6 = z1z3 = π6 + iπ12, σ7 = z1z4 = π7 + iπ13 ,
σ8 = z2z3 = π8 + iπ14, σ9 = z2z4 = π9 + iπ15, σ10 = z3z4 = π10 + iπ16 .

(7)

4



π1π2 = π2
5 + π2

11 π1π3 = π2
6 + π2

12

π1π4 = π2
7 + π2

13 π2π3 = π2
8 + π2

14

π2π4 = π2
9 + π2

15 π3π4 = π2
10 + π2

16

π1π8 = π5π6 + π11π12 π1π14 = π5π12 − π6π11

π1π9 = π5π7 + π11π13 π1π15 = π5π13 − π7π11

π1π10 = π6π7 + π12π13 π1π16 = π6π13 − π7π12

π2π6 = π5π8 − π11π14 π2π12 = π5π14 + π8π11

π2π7 = π5π9 − π11π15 π2π13 = π5π15 + π9π11

π2π10 = π8π9 + π14π15 π2π16 = π8π15 − π9π14

π3π5 = π6π8 + π12π14 π3π11 = π8π12 − π6π14

π3π7 = π6π10 − π12π16 π3π13 = π10π12 + π6π16

π3π9 = π8π10 − π14π16 π3π15 = π10π14 + π8π16

π4π5 = π7π9 + π13π15 π4π11 = π9π13 − π7π15

π4π6 = π7π10 + π13π16 π4π12 = π10π13 − π7π16

π4π8 = π9π10 + π15π16 π4π14 = π10π15 − π9π16

π5π10 − π7π8 = π13π14 + π11π16 π10π11 + π5π16 = π8π13 − π7π14

π7π8 − π6π9 = π13π14 − π12π15 π9π12 + π6π15 = π7π14 + π8π13

π5π10 + π11π16 = π6π9 + π12π15 π10π11 − π5π16 = π9π12 − π6π15

π1 + π2 + π3 + π4 = 2n

Table 1: Relations among the invariants given in (6)

Then, relations given by Table (1) read

σ1σ2 = σ5σ5 σ1σ3 = σ6σ6 σ1σ4 = σ7σ7

σ2σ3 = σ8σ8 σ2σ4 = σ9σ9 σ3σ4 = σ10σ10

σ1σ8 = σ5σ6 σ1σ9 = σ5σ7 σ1σ10 = σ6σ7

σ2σ6 = σ5σ8 σ2σ7 = σ5σ9 σ2σ10 = σ8σ9

σ3σ5 = σ8σ6 σ3σ7 = σ6σ10 σ3σ9 = σ8σ10

σ4σ5 = σ9σ7 σ4σ6 = σ10σ7 σ4σ8 = σ10σ9

σ5σ10 = σ8σ7 σ6σ9 = σ7σ8 σ5σ10 = σ6σ9

σ1 + σ2 + σ3 + σ4 = 2n

(8)

Note that from the third element of the first column of (8) to the last in the third column
we have the complex version of the two columns which, given in terms of πi, are appearing
in (1). If we replace now in (8) each σ by its corresponding complex expressions z ∈ C
we obtain the definition of CP3 given in for instance [6]. q.e.d.

This invariants provide an orbit mapping

ρ1 : R8 → R16; (q1, q2, q3, q4, Q1, Q2, Q3, Q4)→ (π1, · · · , π16) .
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We may now obtain the reduced phase space by putting H2 = n in the image of ρ1. This
is a regular reduction, whence the reduced phase space is a smooth symplectic manifold.
As was shown the relations given in Table (1) define a 6 dimensional reduced phase space
isomorphic to CP3. The brackets for the invariants πi defining the Poisson structure on
the reduced phase space are given in Table 2.

The normal form of H with respect to H2 can now be expressed in these invariants. We
get H̄ = H2 + εH̄λ +O(ε2) with

H̄λ(π) =
1

16
λ [6 (π1 + π2 + π3 + π4) (−π1 − π2 + π3 + π4) + 8 (π11 − π16) (π11 + π16)]

+
1

32
(π1 + π2 + π3 + π4)

[−6 (π1 + π2 − π3 − π4)2 + 16 (π7 − π8)2 + 16 (π6 + π9)2

−16 (π13 − π14)2 − 16 (π12 + π15)2 − 8 (π11 − π16)2 − 8 (π11 + π16)2]
+

1

2
(π1 + π2 − π3 − π4) (π11 − π16) (π11 + π16). (9)

The corresponding Poisson system is π̇i = {πi, H̄λ}.

2.2 Reduction to S2
n+ξ × S2

n−ξ

We assume from now on that the families of systems we are interested in have as a first
integral the quadratic function Ξ; this is the case of our model given by Eq. (5) as can
be checked immediately. Then, to further reduce from CP3 to a new space, which turns
out to be diffeomorphic to S2

n+ξ × S2
n−ξ, one would have to fix Ξ = ξ and divide out the

S1-action generated by Ξ. In order to carry out the reduction induced by the rotational
symmetry Ξ on CP3, we will make use of the following proposition, which determines the
algebra of the corresponding invariant functions. Those functions, as well as the relations
among them, give the structure of this reduced space

Proposition 2.2 Let ϕΞ be the S1-action generated by the Poisson flow of Ξ over CP3.
The functions

H2(π) = 1
2

(π1 + π2 + π3 + π4) , Ξ(π) = π11 + π16 ,

L1(π) = −π11 + π16 , L2(π) = π12 + π15 ,

L3(π) = −π13 + π14 , K1(π) = 1
2

(−π1 − π2 + π3 + π4) , (10)

K2(π) = −π7 + π8 , K3(π) = −π6 − π9 ,

6



{,} π1 π2 π3 π4 π5 π6 π7 π8

π1 0 0 0 0 2π11 2π12 2π13 0
π2 0 0 0 0 −2π11 0 0 2π14

π3 0 0 0 0 0 −2π12 0 −2π14

π4 0 0 0 0 0 0 −2π13 0
π5 −2π11 2π11 0 0 0 π14 π15 π12

π6 −2π12 0 2π12 0 −π14 0 π16 π11

π7 −2π13 0 0 2π13 −π15 −π16 0 0
π8 0 −2π14 2π14 0 −π12 −π11 0 0
π9 0 −2π15 0 2π15 −π13 0 −π11 −π16

π10 0 0 −2π16 2π16 0 −π13 −π12 −π15

π11 2π5 −2π5 0 0 π2 − π1 π8 π9 −π6

π12 2π6 0 −2π6 0 π8 π3 − π1 π10 −π5

π13 2π7 0 0 −2π7 π9 π10 π4 − π1 0
π14 0 2π8 −2π8 0 π6 −π5 0 π3 − π2

π15 0 2π9 0 −2π9 π7 0 −π5 π10

π16 0 0 2π10 −2π10 0 π7 −π6 π9

{,} π9 π10 π11 π12 π13 π14 π15 π16

π1 0 0 −2π5 −2π6 −2π7 0 0 0
π2 2π15 0 2π5 0 0 −2π8 −2π9 0
π3 0 2π16 0 2π6 0 2π8 0 −2π10

π4 −2π15 −2π16 0 0 2π7 0 2π9 2π10

π5 π13 0 π1 − π2 −π8 −π9 −π6 −π7 0
π6 0 π13 −π8 π1 − π3 −π10 π5 0 −π7

π7 π11 π12 −π9 −π10 π1 − π4 0 π5 π6

π8 π16 π15 π6 π5 0 π2 − π3 −π10 −π9

π9 0 π14 π7 0 π5 −π10 π2 − π4 π8

π10 −π14 0 0 π7 π6 π9 π8 π3 − π4

π11 −π7 0 0 π14 π15 −π12 −π13 0
π12 0 −π7 −π14 0 π16 π11 0 −π13

π13 −π5 −π6 −π15 −π16 0 0 π11 π12

π14 π10 −π9 π12 −π11 0 0 π16 −π15

π15 π4 − π2 −π8 π13 0 −π11 −π16 0 π14

π16 −π8 π4 − π3 0 π13 −π12 π15 −π14 0

Table 2: The bracket relations {πi, πj}.
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are ϕΞ-invariants functions. Those functions are bounded to the following constraints

K2
1 +K2

2 +K2
3 + L2

1 + L2
2 + L2

3 = H2
2 + Ξ2 , (11)

K1L1 +K2L2 +K3L3 = H2 Ξ .

Moreover, these functions define the orbit mapping

ρ2 : R16 → R8; (π1, · · · , π16)→ (K1, K2, K3, L1, L2, L3, H2,Ξ).

As we are making the reduction to CP3 we have that H2 = n. Moreover, if we fix Ξ = ξ,
then it results that relations (11) define what we call the double reduced space, which is
diffeomorphic to S2

n+ξ × S2
n−ξ.

Proof : The Poisson flow generated by Ξ in CP3 is given by π̇i = {πi,Ξ}, that is,

π̇1 = −2π5, π̇2 = 2π5, π̇3 = −2π10, π̇4 = 2π10,

π̇5 = π1 − π2, π̇6 = −(π7 + π8), π̇7 = π6 − π9, π̇8 = π6 − π9,

π̇9 = π7 + π8, π̇10 = π3 − π4, π̇11 = 0, π̇12 = −(π13 + π14),

π̇13 = π12 − π15, π̇14 = π12 − π15, π̇15 = π13 + π14, π̇16 = 0,

from which we obtain that the invariant functions are the ones given by (10), i.e. we build
up invariants which are zero along the flow. There is an alternative way for obtaining the
invariants, which is considering the Poisson structure given by Table 2.

The relations among the invariants are given by the Casimirs of the Poisson structure
defined by Table 3. The Casimirs of the structure will be H2, Ξ joint with the ones given
in (11). There should be four Casimirs because the Poisson structure on the image of the
orbit map is an 8× 8 matrix of rank four.

{, } K1 K2 K3 L1 L2 L3

K1 0 −2L3 2L2 0 −2K3 2K2

K2 2L3 0 −2L1 2K3 0 −2K1

K3 −2L2 2L1 0 −2K2 2K1 0
L1 0 −2K3 2K2 0 −2L3 2L2

L2 2K3 0 −2K1 2L3 0 −2L1

L3 −2K2 2K1 0 −2L2 2L1 0

Table 3: Poisson structure for (K1, K2, K3, L1, L2, L3).

The Casimirs, as we know, have to commute with all the elements of the algebra, in such a
way that the linear Casimirs will be H2 and Ξ. We move now to build quadratic Casimirs
which generically are given by

τ = a1K
2
1 + a2K

2
2 + a3K

2
3 + b1L

2
1 + b2L

2
2 + b3L

2
3 + aH2

2 + bΞ2,
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and

θ = a1H2K1 + a2H2K2 + a3H2K3 + a4H2Ξ + a5H2L1 + a6H2L2 + a7H2L3

+ a8K1K2 + a9K1K3 + a10K1Ξ + a11K1L1 + a12K1L2 + a13K1L3

+ a14K2K3 + a15K2Ξ + a16K2L1 + a17K2L2 + a18K2L3

+ a19K3Ξ + a20K3L1 + a21K3L2 + a22K3L3

+ a23ΞL1 + a24ΞL2 + a25ΞL3

+ a26L1L2 + a27L1L3

+ a28L2L3.

We start imposing that all the Poisson brackets of τ with Ki and Li are zero (this trivially
happens with H2 and Ξ)

{τ,K1} = 0 ⇒ a2 = b3 and a3 = b2, {τ,K2} = 0⇒ a1 = b3 and a3 = b1,

{τ,K3} = 0 ⇒ a2 = b1 and 1 = b2, {τ, L1} = 0⇒ b2 = b3 and a3 = a2,

{τ, L2} = 0 ⇒ b1 = b3 and a3 = a1, {τ, L3} = 0⇒ b2 = b1 and a1 = a2,

from which we obtain a1 = a2 = a3 = a4 = b1 = b2 = b3.

We repeat the process with θ, and we obtain a11 = a17 = a22 6= 0 and a4 6= 0, while all
the other coefficients are zero. Thus, the Casimirs we were searching are:

c1(K2
1 +K2

2 +K2
3 + L2

1 + L2
2 + L2

3) = c2H
2
2 + c3Ξ2,

c4(K1L1 +K2L2 +K3L3) = c5H2Ξ,

By substituting (10) one obtains (11).

{, } σ1 σ2 σ3 δ1 δ2 δ3

σ1 0 −2σ3 2σ2 0 0 0
σ2 2σ3 0 −2σ1 0 0 0
σ3 −2σ2 2σ1 0 0 0 0
δ1 0 0 0 0 −2δ3 2δ2

δ2 0 0 0 2δ3 0 −2δ1

δ3 0 0 0 −2δ2 2δ1 0

Table 4: Poisson structure of the twice reduced space in (σ, δ) coordinates.

Now, in order to show that this orbit space is diffeomorphic to S2
n+ξ × S2

n−ξ, keeping in
mind that we are in CP3 we fix values for H2 = n and Ξ = ξ and introduce new coordinates

σ1 = K1 + L1, σ2 = K2 + L2, σ3 = K3 + L3,

δ1 = L1 −K1, δ2 = L2 −K2, δ3 = L3 −K3, (12)
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which applied to (11) leads to

σ2
1 + σ2

2 + σ2
3 = (n+ ξ)2,

δ2
1 + δ2

2 + δ2
3 = (n− ξ)2, (13)

in other words S2
n+ξ × S2

n−ξ. Moreover, if ξ = 0, we have S2
n × S2

n, which together with
its Poisson structure given by Table 4, is precisely the reduced phase space associated to
perturbed Keplerian systems normalized by the energy (see for instance [10]).

In Fig. (1) a representation of the twice reduced phase spaces for different values of the
integral ξ is given.

which applied to (11) leads to

σ2
1 + σ2

2 + σ2
3 = (n+ ξ)2,

δ2
1 + δ2

2 + δ2
3 = (n− ξ)2, (13)

in other words S2
n+ξ × S2

n−ξ. Moreover, if ξ = 0, we have S2
n × S2

n, which together with
its Poisson structure given by Table 4, is precisely the reduced phase space associated to
perturbed Keplerian systems normalized by the energy (see for instance [10]).

In Fig. (1) a representation of the twice reduced phase spaces for different values of the
integral ξ is given.

× pt× S2
2n (ξ = −n)

×

?

S2
n+ξ × S2

n−ξ (−n < ξ < 0)

× S2
n × S2

n (ξ = 0)

×

6

S2
n+ξ × S2

n−ξ (0 < ξ < n)

× S2
2n × pt (ξ = n)

Figure 1: Twice reduced orbit space S2
n+ξ × S2

n−ξ for several values of the integral ξ
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Figure 1: Twice reduced orbit space S2
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n−ξ for several values of the integral ξ
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Note that the values n and ξ satisfy n ≥ 0 and n ≥ |ξ|. The latter being an immediate
consequence of

H2(q,Q)±Ξ(q,Q) = 1
2

(
(q1 −Q2)2 + (q2 +Q1)2 + (q3 −Q4)2 + (q4 +Q3)2

) ≥ 0. (14)

q.e.d.

Applying the previous result to our family, from (9) the twice reduced Hamiltonian,
modulo constants, is given by

¯̄Hλ(K,L) = λ(
3

2
nK1− 1

2
ξ L1)+n(−3

2
K2

1 +K2
2 +K2

3−
1

2
L2

1−L2
2−L2

3)+ξK1L1+O(ε). (15)

Thus, the system has two degrees of freedom because the relations, including Ξ = ξ, define
a four-dimensional reduced phase space. The corresponding Poisson system is

K̇i = {Ki,
¯̄Hλ}, L̇i = {Li, ¯̄Hλ} ,

which follows from the relations given in Table 3.

In addition the system has a remaining integral L1. This allows us to reduce our system
to one degree of freedom.

2.3 Reduction to one degree of freedom

To further reduce from S2
n+ξ × S2

n−ξ to Vn ξ ` one would have to fix L1 = ` and divide
out the S1-action generated by L1. This can be done as a consequence of the following
Proposition, based on the study of the flow generated by L1 = π16 − π11. With the
Poisson structure given by Table 3., we will be able to analyse the thrice reduced flow of
our system.

Proposition 2.3 Let ϕL1 be the S1-action generated by the Poisson flow defined by L1

over S2
n+ξ × S2

n−ξ. Together with the invariants H2, Ξ and L− 1, the functions

M(K,L) = 1
2

(K2
2 +K2

3 + L2
2 + L2

3) , N(K,L) = 1
2

(K2
2 +K2

3 − L2
2 − L2

3) ,

Z(K,L) = K2L2 +K3L3 , S(K,L) = K2L3 −K3L2 , (16)

K(K,L) = K1 .

generate the algebra of the ϕL1-invariant functions on S2
n+ξ × S2

n−ξ, which are constraint
by the relations

K2 + 2M = n2 + ξ2 − `2 ,

`K + Z = n ξ , (17)

M2 −N2 = Z2 + S2 ,

11



this provides an orbit mapping

ρ3 : R8 → R8; (K1, K2, K3, L1, L2, L3, H2,Ξ)→ (M,N,Z, S,K, L1, H2,Ξ).

When we fix a H2 = n, Ξ = ξ and L1 = `, we have that (17) gives the surface

Vn ξ ` = {(S,K,N) | 4(N2 + S2) = [(n+ ξ)2 − (K + `)2] [(n− ξ)2 − (K − `)2]} (18)

defining the thrice reduced orbit space in the (S,K,N)-space.

From now on it will be convenient denote the right hand in (18) as

f(K) = [(n+ ξ)2 − (K + `)2] [(n− ξ)2 − (K − `)2]. (19)

Proof : Over the space (K1, K2, K3, L2, L3) the S1-action of L1 is determined by the
vector field

XL1 :


K̇1

K̇2

K̇3

L̇2

L̇3

 = 2


0 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 0 0 1
0 0 0 −1 0




K1

K2

K3

L2

L3


The S1-action of this vector field is given

ϕL1


K1

K2

K3

L2

L3

 = 2


1 0 0 0 0
0 cos 2t sin 2t 0 0
0 − sin 2t cos 2t 0 0
0 0 0 cos 2t sin 2t
0 0 0 − sin 2t cos 2t




K1

K2

K3

L2

L3


Note that this action is not free, because K1 is an invariant for this action, in other
words the reduced space has singular points, connected with the axis K1. The invariant
associated to this action ϕL1 are

X = 1
2

(K2
2 +K2

3), Y = 1
2

(L2
2 + L2

3), Z = K2L2 +K3L3,

S = K2L3 −K3L2, K = K1

bound by the constraint

4XY = Z2 + S2. (20)

This result may be found in, for instance, [20]. As it is more convenient, we will use

12



{, } X Y Z S K L1

X 0 −2KS −2SL1 −4KX + 2ZL1 2S 0
Y 2KS 0 2SL1 4KY − 2ZL1 −2S 0
Z 2SL1 −2SL1 0 −4(X − Y )L1 0 0
S 4KX − 2ZL1 −4KY + 2ZL1 4(X − Y )L1 0 −4X + 4Y 0
K −2S 2S 0 4(X − Y ) 0 0
L1 0 0 0 0 0 0

Table 5: Poisson structure in (X, Y, Z, S,K, L1) invariants

{, } M N Z S K L1

M 0 4KS 0 −4KN 0 0
N −4KS 0 −4L1S −4(KM − L1Z) 4S 0
Z 0 4L1S 0 −4L1N 0 0
S 4KN 4(KM − L1Z) 4L1N 0 −4N 0
K 0 −4S 0 4N 0 0
L1 0 0 0 0 0 0

Table 6: Poisson structure in (M,N,Z, S,K, L1) invariants

M = X+Y and N = X−Y instead of X and Y . Then, considering the relations defining
the twice reduced orbit space (11), joint with (20) and fixing values for the symmetries,
we obtain the thrice reduced space (18). This space is the surface of revolution obtained
by rotation of

√
f(K) along the K axis.

The relation (20) and L1 are Casimirs of the Poisson structure on the space of C∞ func-
tions in the invariants (X, Y, Z, S,K, L1), given by the Table 5. When using variables M
and N the Poisson structure is given by Table 6, where Casimirs are L1 and the third
relation in (17). q.e.d.

The Hamiltonian (15) on the third reduced phase space (modulo constants) is reduced to:

H(−, K,N) = 2nN +

(
3

2
nλ+ `ξ

)
K − 3

2
nK2 +O(ε) (21)

(We use H instead of
¯̄̄
H for the sake of simplicity). In (K,N, S)-space the energy surfaces

are parabolic cylinders. The intersection with the reduced phase space give the trajectories
of the thrice reduced system. Tangency with the reduced phase spaces gives relative
equilibria that correspond to three dimensional tori on the original phase space.

Note that the reduced phase spaces as well as the Hamiltonian are invariant under the
discrete symmetry S → −S. Furthermore the reduced phase space is invariant under
the discrete symmetry N → −N . We choose not to further reduce our reduced phase
space with respect to these discrete symmetries like in [22] because the three dimensional
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picture makes it easy to access information about the reduced orbits and this way one
does not introduce additional critical points (fixed points) which need special attention.

2.4 Structure of the thrice reduced phase space Vn,ξ,`
Before we begin searching for possible relative equilibria and their bifurcations in our
system, we need to understand the geometric nature of all the possible reduced spaces in
(n, ξ, `) parameter space.

To this end we study f(K) which can be written as

f(K) = (K + n+ ξ + `)(K − n− ξ + `)(K − n+ ξ − `)(K + n− ξ − `),
thus, the four zeroes of f(K) are given by

K1 = −`− n− ξ , K2 = `+ n− ξ , K3 = `− n+ ξ , K4 = −`+ n+ ξ .

So f(K) is positive (or zero) when

max(K1, K3) 6 K 6 min(K2, K4),

i.e. in the subsequent intervals of K:

` < ξ , −` < ξ K1 < K3 < K2 < K4 K ∈ [K3, K2] (22)

` > ξ , −` < ξ K1 < K3 < K4 < K2 K ∈ [K3, K4]

` < ξ , −` > ξ K3 < K1 < K2 < K4 K ∈ [K1, K2]

` > ξ , −` > ξ K3 < K1 < K4 < K2 K ∈ [K1, K4]

To find the double zeroes of f(K) we compute the discriminant of f(K) = 0. It is

(`− n)2(`+ n)2(`− ξ)2(`+ ξ)2(n− ξ)2(n+ ξ)2 .

Thus there are double zeroes at ` = ±n, ` = ±ξ and ξ = ±n. Triple zeroes occur when
|`| = |ξ| = n. And quadruple zeroes only occur when ` = n = ξ = 0.

-1.5 -1 -0.5 0.5 1 1.5
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1.5

Figure 2: Snapshots of f(K). From left to right: ` 6= ξ 6= n, ` = −ξ, ` = ξ, ` = ξ = 0

By (14) we have H2 ± Ξ > 0, similarly H2 ± L1 > 0, and H2 ±K1 > 0. Consequently we
may represent the admissible K-values in the following way. In (ξ, `,K)-space consider
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the cube −n 6 ξ 6 n, −n 6 ` 6 n, −n 6 K 6 n. Consider the tetrahedron circumscribed
by this cube (see Fig. 3), such that the diagonals of the top face of the cube, connecting
(−n,−n, n) and (n, n, n), and of the bottom face of the cube, connecting (n,−n,−n) and
(−n, n,−n), are part of this tetrahedron. Below we will show that the vertices of the
tetrahedron correspond to invariant circles, and the edges to invariant two-tori. The lines
in the top face and bottom face of the cube correspond to the two-tori at the cone-like
singular points of the reduced phase spaces..

-1
1-1

1

-1

1

1

Figure 3: Tetrahedron

One expects three-tori to bifurcate of this tetrahedron. In (ξ, `, n)-space this tetrahedron
corresponds to the square section in Fig. 4.

Next we study the possible roots of f(K) and the related reduced spaces and, for certain
cases, the corresponding configurations in original phase space.

Four different roots. When we have four different roots we have two possible cases:

(i) ` 6= ξ, ξ, ` 6= 0.

(ii) ` 6= ξ, ξ = 0 or ` = 0.

For the first case, suppose that ξ > ` (remember that |ξ| < n, |`| < n; see (14) ), we have
that f(K) is positive if `− n+ ξ < K < `+ n− ξ. Similarly, for the other configurations
of ξ and ` the limits of K are given by two roots of multiplicity one. The reduced phase
spaces are diffeomorphic to S2. In the second case the reduced phase spaces are also
diffeomorphic to S2 but symmetric with repect to reflection in the plane K = 0. When
` goes to ξ the two last roots of the left figure in Fig. (2) form a double root and in the
reduced spaces appears a singularity as we can see below.

One double root ` = ±ξ 6= 0. If ` = ξ and ` = −ξ we have double roots at K = ±n
and the reduced phase space is a turnip, having a cone-like singularity. This case will be
a Hamiltonian Hopf candidate.
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Two double roots ` = ξ = 0. Two double roots appear if ` = ξ = 0 and we have lemon
shaped reduced phase spaces having two cone-like singular points.

One double root ` = ±n. When ` = ±n we have also a double root, but in this case
the reduced space is a point and f(K) = 0 when k = ξ. All possible configurations are
gathered in Fig. (4).

When the reduced phase space is a point, this point lifts to four points {±σ(0)
1 , 0, 0,±δ(0)

1 , 0, 0}
in S2 × S2, because

K2
1 + L2

1 = n2 + ξ2 , K1 L1 = n ξ ,

which implies,

σ2
1 = (n+ ξ)2 , δ2

1 = (n− ξ)2 .

If ` = n we have π1 + π2 + π3 + π4− 2(π16− π11) = 0, and (q2−Q1)2 + (q1 +Q2)2 + (q3−
Q4)2 + (q4 +Q3)2 = 0, which holds if

q2 = Q1, q1 = −Q2, q4 = −Q3, q3 = Q4,

and we have

n = L1 = q2
1 + q2

2 + q2
3 + q2

4,

ξ = K1 = −q2
1 − q2

2 + q2
3 + q2

4,

K2 = K3 = L2 = L3 = 0.

and f(K) = 0.

In original phase space space this lifts to a 2-torus given by

1
2

(n+ ξ) = q2
3 + q2

4 ,
1
2

(n− ξ) = q2
1 + q2

2 , q2 = Q1 , q1 = −Q2 , q4 = −Q3 , q3 = Q4 .

When ` = −n we get the 2-torus given by

1
2

(n+ ξ) = q2
3 + q2

4 ,
1
2

(n− ξ) = q2
1 + q2

2 , q2 = −Q1 , q1 = Q2 , q4 = Q3 , q3 = −Q4 .

When ξ = n we get the 2-torus given by

1
2

(n+ `) = q2
3 + q2

4 ,
1
2

(n− `) = q2
1 + q2

2 , q2 = −Q1 , q1 = Q2 , q4 = −Q3 , q3 = Q4 .

When ξ = −n we get the 2-torus given by

1
2

(n+ `) = q2
3 + q2

4 ,
1
2

(n− `) = q2
1 + q2

2 , q2 = Q1 , q1 = −Q2 , q4 = Q3 , q3 = −Q4 .

Triple roots |`| = |ξ| = n. In this case a triple zero appears when K = |`| = |ξ| =
n. From the above computations we see that in this case the 2-tori become 1-tori, i.e.
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64 Caṕıtulo 3. La reducción geométrica

�
ξ

��

�
n

ξ = � = 0

ξ = �

ξ = −�

n �= ξ �= �

�

�

�

K

N S

Figura 3.3: El doble espacio reducido en el espacio triparamétrico. (K,N,S) representan las
coordenadas de los espacios reducidos.

Por tanto, hay ceros dobles en � = ±n, � = ±ξ y ξ = ±n. Los ceros triples ocurrirán

cuando |�| = |ξ| = n. Por último, los ceros cuadruples se dan en � = n = ξ = 0. Vamos a

considerar, desde el caso más general de cuatro raices simples, hasta el caso degenerado

de una raiz cuadruple, donde el espacio reducido es un punto. Desde el punto de vista

de la geometŕıa del espacio fásico nos interesan los casos en los que f(K) es positivo

en un intervalo de K. En la Figura 3.2 aparecen representada f(K) en esos casos. En

primer lugar observamos cómo en el caso de cuatro raices simples los cortes en f(K) = 0

definen una región en la que f(K) > 0. En el resto de casos tenemos las raices dobles en

K = ±n. El espacio triplemente reducido aparece representado en la Figura 3.3 en los

mismos caso en que hemos representado la Figura 3.2. Por último, en la Figura 3.4 se

recoge una visión de conjunto del espacio reducido en función de los parámetros (ξ, �).

Figure 4: The thrice reduced phase space over the parameter space. K is the symmetry axis of
each surface.

topological circles. On the second reduced phase space S2 × S2 this circle reduces to to
σ2

1 = 2n2, that is (±2n, 0, 0; 0, 0, 0), and the second S2 reduces to a point.

Quadruple roots. Finally, the subcase ` = ξ = n = 0 corresponds with a quadruple
root at the origin of the {n, ξ, `}-space.

Note that the composition of the three orbit maps gives an orbit map from R8 → R8, which
is an orbit map for the three torus action. This action is generated by the rotational flows
of the three integrals H2, Ξ, L1, which are independent and commute. In [?]sjamaar91 it is
shown that reduction in stages gives the same result as applying the overall orbit map and
that the order of the reductions does not matter. Due to the shape of the reduced phase
spaces the intersection of the reduced Hamiltonian and these spaces will generically be a
circle or a disjoint union of two circles. Thus the generic fibre of the energy momentum
map

EM : R8 → R4; (q,Q)→ (H̄λ, H2,Ξ, L2)

will be a T4 or a disjoint union of two T4. A point on the regular part of a reduced
phase space will correspond to a T3. Consequently the generic relative equilibrium, i.e.
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stationary point for the reduced Hamiltonian system on the final reduced phase space,
will correspond to a T3. Singular points on reduced phase spaces will correspond to orbit
types of the T3-action different from T3. Thus singular points will correspond to lower
dimensional tori. There will be fibres that are a point (the origin which is a stationary
point of the original system and a fixed point for all circle symmetries), a circle (two of
the reductions will have a stationary point) or a T2 (one reduction will have a stationary
point). The rank of the energy momentum map R8 → (H,H2,Ξ, L2) will correspond
to the dimension of the fibre. In the following the relative equilibria for the reduced
Hamiltonian system corresponding to the singular points of the reduced phase space will
be studied in more detail.

Note that the above computed relative equilibria that are a point, S1 or T2 correspond to
the lower dimensional strata of the symplectic leaf stratification of the T3-orbit space.

3 Energy Momentum Mapping and Relative Equilib-

ria

In the search for equilibria in a Hamiltonian system we may follow two different paths,
depending on the analytical or geometrical approach taken for that study. We may deal di-
rectly with the Poisson flow over the thrice reduced orbit space (analytical approach), ob-
taining finally an equation in the variable K, whose coefficients are functions of (n, ξ, `, λ),
the distinguished and physical parameters of the reduced system. After we have found the
equilibria we still need to compute the corresponding values of the energy. In other words,
we have to identify the manifolds where those equilibria live (for details see Egea [11]).
In what follows we take the second approach, the geometric one, where the normalized
and truncated energy function H plays a main role because the equilibria are given by the
tangencies of the surface H = h with the reduced orbit space. In fact, as the Hamiltonian
does not depend on S, it is possible to implement our study considering tangencies in the
plane (K,N). More precisely, here we will take (K, 2N) which will allow to work with
f(K) directly.

3.1 Critical values of the energy momentum mapping.

Consider the Hamiltonian (21) at a level of energy H = h, from which we have

N =
3

4
K2 − (

ξ`

2n
+

3λ

4
)K +

h

2n
. (23)

Substituting this in the equation for the reduced phase space given by 4N2 − f(K) = 0,
(S = 0), we obtain the following polynomial of degree four

P λ
h,n,`,ξ(K) = b1K

4 + a2K
3 + b3K

2 + b4K + b5, (24)
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where

b1 = 5n2

b2 = −6n (2 ` ξ + 3nλ)

b3 = 12nh+ 4 `2
(
2n2 + ξ2

)
+ 12 ` n ξ λ+ n2

(
8
(
n2 + ξ2

)
+ 9λ2

)
b4 = − 4

(
2 `
(
h+ 4n3

)
ξ + 3nhλ

)
b5 = 4(h2 − n2 (−`+ n− ξ) (`+ n− ξ) (−`+ n+ ξ) (`+ n+ ξ)).

Double roots of this polynomial, solutions of the system

P λ
h,n,ξ,a(K) = 0,

d

dK
P λ
h,n,ξ,a(K) = 0, (25)

determine the critical values of the energy momentum mapping EM,

EM : R8 → R4 : (q,Q) 7→ (H,H2,Ξ, L1). (26)

For a fixed value of λ, the locus defined by the set of values (h, n, ξ, `), denoted by ∆λ,
for which the polynomial (24) has double roots, is the discriminant of this polynomial.
This discriminant corresponds to the singularity of the the energy momentum mapping.
Critical values (h, n, ξ, `) of EM are in correspondence with values (h, n, ξ, `) for which
the level curve H = h is tangent to the reduced space Vn,ξ,`, or to those values where the
curve passes through the singular point (0, n, 0) of the reduced space (for short we refer
to it just with K = n). As we know, such singular points exist for the critical values
(h, n, ξ,±ξ).
The full analysis of all the relative equilibria of our system will not be tackled here. We
will mainly concentrate on the case ξ = `, when the reduced space has singular points
and also consider the case ξ = 0, λ = 0: The Zeeman model.

3.1.1 Searching Hamiltonian Hopf bifurcations

From this point on let us focus on the case where the two first integrals are equal ` = ξ 6= 0,
i.e. when the thrice reduced space has a singularity at K = n. The quartic polynomial
(24) given by

P λ
h,n,ξ(K) = 5n2K4 − 6n

(
2ξ2 + 3nλ

)
K3

+
(
12nh+ 8n4 + 4ξ4 + 12nξ2λ+ n2

(
16ξ2 + 9λ2

))
K2 (27)

+
(−8

(
h+ 4n3

)
ξ2 − 12nhλ

)
K +

(
2h+ n

(−2ξ2 + 3n (n− λ)
))2

,

has, in general, four roots whose analytical expressions may be obtained using Cardan
formulas. Here, we satisfy ourselves only with the search for double roots with the goal
of building the overall view on how they evolve over the space of parameters.
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We know from the start that K = n is an equilibrium of the system. Thus, it will be a
double root of (27) under the constraint

h =
−3n3 + 2n ξ2 + 3n2 λ

2
. (28)

Indeed, if the energy verifies (28) we have that (K − n)2 factorizes (27), in other words
K = n is a double root. The relation between λ and ξ is readely obtained

λ± = 2n− 2ξ2

3n
± 4

3

√
n2 − ξ2, (29)

which defines the two leaves of a bifurcation surface in (n, ξ, λ). Later on we come back
to these branches of the bifurcation curve.

The other two roots are

K3,4 =
5n3 − 6n ξ2 − 9n2 λ±√Ψ

5n2

where Ψ = n2 (4 ξ4 + 12n ξ2 λ+ n2 (−20 ξ2 + 9λ2)). Then, we will have a second equi-
librium if Ψ = 0, and that occurs when

λ =
2
(±√5n ξ − ξ2

)
3n

, (30)

and the equilibrium takes de value

K = −n± 6√
5
ξ ,

from which we conclude that the condition for an equilibrium of multiplicity three will be
ξ = ±

√
5

3
n. Besides, as |K| < n we have that

K = −n+
6√
5
ξ, ξ ∈ (0,

√
5/3), K = −n− 6√

5
ξ, ξ ∈ (−

√
5/3, 0). (31)

In Fig. (5) we see tangencies and their evolution along the curve which is defined by (30).
Note also how the size of the reduced space changes with ξ. Thus, we have obtained that,
as K = n is an equilibrium of the system, it is possible to identify another equilibrium in
the same manifold of energy, satisfying N < 0, i. e., that is located on the lower branch,
if we keep in mind that for equilibria S = 0. It also occurs that if K = n is of multiplicity
one, any other equilibrium can not be of higher multiplicity. Moreover when K = n is an
equilibrium of multiplicity two there are not more equilibria on the same energy manifold,
because K = n is a root of (27) with multiplicity three, which prevent the presence of
any other double root needed for another equilibrium.
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Figure 5: Equilibria at K = n and K = −n + 6√
5
ξ for n = 1. From left to right we have the

cases ξ = 0, ξ = 0.3 and ξ = 1
2 .
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Figure 6: Levels of energy over the reduced space for several values of ξ, where n = 1 and
λ = λ− in all the cases. the dashed line represents the level of energy for which we have the
double (or triple in the first figure of the second raw) contact between the Hamiltonian and the
reduced space at K = n.

Note that the triple roots of (27) at K = n, corresponding to relative equilibria with
algebraic multiplicity two, are the natural candidates to exibits a Hamiltonian Hopf bi-
furcation. Indeed, if we obtain the roots of the system

P λ
h,n,ξ(K) = 0,

d

dK
P λ
h,n,ξ(K) = 0,

d2

dK2
P λ
h,n,ξ(K) = 0, (32)

if we impose K = n to be a solution, the relation among the integrals to be satisfied is

λ± = 2n− 2ξ2

3n
± 4

3

√
n2 − ξ2, (33)

which is precisely one of the bifurcation lines we are after. If we replace it in (28) we
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obtain the energy manifold on which K = n is solution of the system (32):

h =
3n3 ± 4n2

√
n2 − ξ2

2
. (34)

Now we are going to represent the tangencies of he Hamiltonian with the reduced space
over the bifurcation curve defined by the two branches λ±. In Fig. (6) appears a section
S = 0 of the reduced space on which we have drawn curves for of the energy for several
values of the Hamiltonian in (K, 2N) when we are over λ

(−)
. In the first three figures

we observe the existence of two simple equilibria joint with an equilibrium of multiplicity
two at K = n. The first figure of the second row corresponds to ξ =

√
5n/3, and we

identify a triple equilibrium at K = n and a simple equilibrium. In the next figure K = n
is a double equilibrium, in other words we pass from four to three equilibria. It is worth
noticing how the evolution of ξ modifies the shape of the reduced space reaching a limit
where the reduced space collapses to a point at K = n.
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Figure 7: Levels of energy over the reduced space for several values of ξ, and λ = λ− in all
the cases. The dashed line represents the level of energy for which the double contact (or triple
in the first figure of the second row) occurs between the Hamiltonian and the reduced space at
K = n.

In Fig. (7) we repeat the same scenario but now on the branch λ
(+)

which, corresponds to
tangencies with the upper branch of the reduced space. In the first three cases the topology
is the same: an equilibrium of multiplicity two at K = n and a second equilibrium over
the lower branch of the reduced space.

The particular case of triple roots at K = n of the polynomial (27) has to be studied in
detail. Indeed, for

ξ = ±n, λ =
4

3
n (35)
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we also have triple roots for K = n with energy

h =
3

2
n3, (36)

but the reduced space is a point for those values. Thus an analysis in S2
n+ξ × S2

n−ξ which
reduces to S2

2n × (0, 0, 0), isomorphic to S2, is nedeed. We will see that the transit from
ξ = 0 to ξ 6= 0 presents different types of bifurcations as function of the parameter λ.

3.1.2 Saddle-node bifurcations

Still within the case ` = ξ we look here for double roots such that K 6= n. To do that
we analyze conditions for triple roots of the polynomial P λ

h,n,ξ(K) given by (27), which

requires computing first and second derivatives: d
dK
P λ
h,n,ξ(K) and d2

dK2P
λ
h,n,ξ(K). Then, we

built the resultant R1 of P λ
h,n,ξ(K) and d

dK
P λ
h,n,ξ(K) with respect to K, and the resultant

R2 of P λ
h,n,ξ(K) and d2

dK2P
λ
h,n,ξ(K) with resepct to K, where R1 and R2 are polynomials

in (n, ξ, λ, h). It remains to obtain the resultant R3 of R1 and R2 with respect to h, and
finally we obtain R3 which is a polynomial depending on (n, ξ, λ, h), one of whose factors
R3a, given by

R3a = 64ξ12 + 192(3λ− 50)ξ10 + 144(λ(15λ− 388) + 268)ξ8

+ 32(9λ(3λ(5λ− 138) + 244)− 4168)ξ6 (37)

+ 36
(
λ
(
3λ
(
45λ2 − 984λ− 296

)
+ 13408

)
+ 5360

)
ξ4

+ 12
(
3λ
(
3λ
(
3λ
(
9λ2 − 78λ− 152

)− 656
)− 6320

)− 20000
)
ξ2

+ (3λ+ 2)3(3λ+ 10)3,

allows to obtain the bifurcation curve, by means of an implicit representation, which
determines the double roots represented in Fig. (8).
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Figure 8: Levels of energy over the reduced space for several values of ξ, where n = 1 and
λ = λs in all cases. The dashed line represents the level of energy for which the double contact
occurs between the Hamiltonian and the reduced space at K = n.

4 Bifurcation Panorama

4.1 Hamiltonian Hopf and saddle-center bifurcation lines

In the previous section, when ξ = `, we have obtained equilibria of multiplicity two, joint
with the corresponding bifurcation lines. For a fixed value of n, double equilibria define
a bifurcation line in the plane (λ, ξ). In Fig. (9) appear bifurcation lines defined by (29)
and (37), joint with a curve (dashed line) which defines the presence of equilibria over the
same level of energy.

In the case when K = n is an equilibrium of multiplicity two the system is defined along
the curves D, E and F. The curve F exists when λ ∈ (4/3, 10/3) and it is symmetric with
respect to the ξ = 0 axis, i.e. it has two branches in ξ one positive and the other negative;
this curve corresponds to the branch λ+ given by (29). The branch λ− in (29) relates to
D and E which, as we will see, define two different types of bifurcation. The curve D
lives in the interval ξ ∈ (−√5n/3,

√
5n/3), meanwhile the curve E has two branches in

the intervals ξ(−1,−√5n/3) ∪ (
√

5n/3, 1).
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Figure 9: Bifurcation lines in the (λ, ξ) plane defined by multiplicity two equilibria.
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The bifurcation line defined in implicit form by (37) corresponds with an equilibrium of
multiplicity two whose evolution with ξ is represented in Fig. (8). Over the Fig. (9)it
appears represented by curve B. The segment A lives over ξ = 0 and λ ∈ (−10/3,−2/3),
meanwhile the curve B, composed by the two symmetric branches with respect to ξ = 0,
exists for ξ ∈ (−√5n/3,

√
5n/3). The extrema of segment A define bifurcation points

and are in correspondence with the values of λ which makes zero (37) when ξ = 0 as we
will see later on.

Finally, the discontinous line which appears in Fig. (9) corresponds the geometric locus
of the parameter plane where, the on the reduced space we have two equilibria over the
same level of energy, whose analytical expression is given by (30). Note that this curve is
not a bifurcation line.

Bifurcation curves divide the parameter plane in several regions characterize d for having
and invariant number of points pof equilibria. These regions are R1, R2, R3 and R4.
Passing from one region to another requires to cross any of those lines, and a change in
the number of equilibria as well as their stability occurs. A particular case in parameter
plane corresponds to two points from where we have access to three different regions. We
refer to the points defined by λ = 20n/27 and ξ = ±√5n/3. From them we may reach
R1, R2 and R3. As we will see later they are degenerate.

Apart from the bifurcation lines, Fig. (9) also contains several representation of the S = 0
section of the reduced phase space; all the relative equilibria are located in that plane.
They have been painted black, grey or white depending if they are stable with index +1,
or unstable with indices 0 or −1 respectively.

In Fig. (10) we see a zoom around (ξ = ±√5n/3, λ = 20n/27), one of the points in
parameter plane from which we may access three different regions; more precisely R1, R2

and R3. Later we show what makes these points to be special: from the Hamiltonian
Hopf bifurcation analysis, we will see that those bifurcations are degenerate.

4.1.1 The segment A.

The segment A is the region in parameter space (λ, ξ) defined by the points (−10/3, 0)
and (−2/3, 0). These are bifurcation points of the system and verify the Eq. (37) for
ξ = 0. Indeed, in that case we have

(3λ+ 2)3(3λ+ 10)3 = 0. (38)

The nature of the flow evolution around this line is different to the bifurcation lines
B,D,E and F. We say that A is a bifurcation line because crossing it there is a change
2-3-2 from in the number of equilibria, when we move from the positive R1 to the negative
crossing A.

We might have also taken as definition of the bifurcation curve the ones over which the
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Figure 10: Detail of the bifurcations given in Fig. (9) around (20
27 ,
√

5
3 ).

system has an equilibrium of multiplicity two which bifurcate when we slightly move the
values in the parameter plane. With this definition A would not be a bifurcation line
except for the extreme points of that segment, where the system has an equilibrium of
multiplicity two at the extremum K = −n of the reduced space. The special character
of this segment A relies on the fact that, when we leave that segment, the reduced space
changes drastically loosing one of their singular points and, thus, an equilibrium. None
of the two equilibria of the system in R1 bifurcates the third equilibrium that we have
over A; this one is related to the singular point associated to the reduced space. But
not always occurs the same pattern, i.e. the appearance-disappearance of singular and
equilibria of the system. For instance in Fig. 9 we may observe that the system has three
equilibria both when ξ = 0 or if ξ 6= 0, situation which is easy to understand from then
geometry of the system, i.e., from the tangencies of the reduced space and energy surfaces.

4.2 Bifurcations lines and stability

Completing Fig. (9), we include the Fig. (11) which shows the evolution of the phase flow
over the parameter plane (ξ = `, λ) for n = 1. The curves on that plane are bifurcation
curves dividing it in four regions in each of which the flow is topologicaly equivalent.
Moreover, along the segment A there are also structural changes in the phase flow. In
order to illustrate de bifurcations when crossing bifurcation lines, we include several flows
for each region. We have chosen to present ‘north’ and ‘south’ views of the reduced space
(for the case ξ = 0 we present ‘north’-‘south’ and lateral views), which allows to show in
a global way the flow over the reduced space. It should be noticed that all the figures are
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scaled; in other words we consider the case ξ = ±n when the reduced space shrinks to a
point at the end of these paragraphs.

Figures are labeled by a number and a letter. The number represents the region of the
parameter plane, meanwhile the letter allows to distinguish between two flows topologicaly
equivalent. Thus, for example 2a and 2b are qualitatively equivalent, although the flow
is different in both cases.

Let us describe the flow and bifurcations reading the figure from right to left. When
passing from 1 to 2a it corresponds to a supercritical Hopf bifurcation where the singular
point K = n changes from stable to unstable, and a stable point bifurcates from it. We
observe that the transit 2a to 2b in the north view (from K > 0) manifests by the motion
of this equilibrium, changing as a function of λ, as this value decreases.

When we cross from 2b to 3a we have a supercritical Hopf bifurcation at the singular
point which becomes unstable as we may see in the south view (negative K axis). If we
observe the transit from 2b to 2c we have the same structure in the flow, although we
see that when ξ decreases the shape of the reduced space changes from turnip to a lemon
shape. From 2c to 4a, taking the south view, we see a subcritical Hopf bifurcation: the
singular point changes stability and a unstable equilibria bifurcates from it. From 4a to
4b we see how the unstable point is moving until a saddle-center bifurcation occurs when
we mobe from 4b to 3b. Again we observe the equivalence between 3b and 3a, and the
same comment we made for 2b and 2c applies here.

The bifurcations for the case ξ = 0 occurs over segment A. Let consider first the transit
from 4(a/b) to 5, where we have that the number of equilibria (4) do not changes, but
only one of the stable points becomes singular; when we pass from 3(a/b) to 7 something
similar occurs for the two stable equlibria. In the transit from 3(a/b) to segment A,
6(a/b), an unstable equilibrium at the singular point K = −n appears.

Referring now to the bifurcations in the ξ = 0 case we have that in the transit from 7 to
6b we identify a supercritical Hopf bifurcation at the point K = −n which changes its
stability and a stable equilibrium bifurcates. This equilibrium evolves reaching the highest
point at the north when λ = 0, the rest of the equilibria being the singular points, both
stable, and a unstable point at the south, just at the minimum. This unstable equilibrium
occurs when the point K = −n changes its stability in the transit from 6a to 5. If we
follows the evolution with λ over ξ = 0 we have again a subcritical bifurcation when we
cross D and a supercritical in F over K = n. Note that the phenomenology at K = −n
in the evolution when λ < 0 goes to 0 that we just have mentioned, it is equivalent to the
one that occurs at K = n when λ > 0 goes to 0.

Finally, we have to add the description of the bifurcation related with the border of the
domain in the parameter plane (λ, ξ): the lines (λ,±n). As we have said above, due to
the scaling of the figures, we do not present the evolution of those spaces growing from
a point. When we pass from the lines ξ = ±n to |ξ| < n a bifurcation is taken place. If
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Figure 11: Evolution of the phase flows in thrice reduced over the parameter plane and
the bifurcations
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λ 6= 4/3 this point bifurcates into a singular and a regular point both stable. Only when
λ = 4/3 the situation is different. We have that three points bifurcate from the singular
reduced space moving transversaly entering region R3. We may also move to regions R1

or R4 leaving from (4/3,±n) tangencially.

5 Hamiltonian Hopf Bifurcations (HHB)

In this section we analyze the presence of Hamiltonian Hopf bifurcations in the thrice
reduced space using the geometric method, because it is more adecuate for systems of one
degree of freedom. For more details on this bifurcation see [23].

The previous results allows to give the following theorem, which we will prove along this
Section. Recall the function (29) on which we base our study

λ± = 2n− 2ξ2

3n
± 4

3

√
n2 − ξ2.

Theorem 5.1 Let us consider the normalized truncated 4D Hamiltonian system with
Hamiltonian H̄ = H2 + εH̄λ as given by (9). This system has integrals Ξ = ξ, L1 = `,
and H2 = n. We have that:

(i) for ξ = ` and λ = λ+(n, ξ) with −n < ξ < n given by (29) the system has a supercritical
HHB. In the particular case ξ = 0 we have that λ = 10n/3.

(ii) For ξ = ` and λ = λ−(n, ξ) with −
√

5n
3

< ξ <
√

5n
3

given by (29) the system has a
subcritical HHB. In the particular case ξ = 0 we have that λ = 2n/3.

(iii) For ξ = ` and λ = λ−(n, ξ) with −n < ξ < −
√

5n
3
∪
√

5n
3

< ξ < n given by (29)

the system has a supercritical HHB. In the limit cases ξ = ±√5n/3 we have a HHB
degenerated.

(iv) For ξ = ` = 0 and λ = −2n
3

the system has a subcritical HHB.

(v) For ξ = ` = 0 and λ = −10n
3

the systems has a supercritical HHB.

5.1 Linear Analysis around K = ±n
The standard scenario for a Hamiltonian Hopf bifurcation occurs in smooth 2-DOF Hamil-
tonian systems with an equilibrium point, which depends on a parameter, such that the
linear flow around this point exhibits a Krein collision. In particular, over this bifurcation
point the linear vector field has pure imaginary eigenvalues and can not be diagonalized.
Thus, it has sense to study in S2

n+ξ × S2
n−ξ, such behavior of our system.
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The vector field generated by the twice reduced Hamiltonian system ¯̄Hλ over S2
n+ξ×S2

n−ξ
is given by

ṅ = 0,

K̇1 = 8 (K3 L2 −K2 L3) n,

K̇2 = L3 (−2K1 n+ 2L1 ξ + 3nλ)−K3 (6L1 n+ ξ (−2K1 + λ)) ,

K̇3 = L2 (2K1 n− 2L1 ξ − 3nλ) +K2 (6L1 n+ ξ (−2K1 + λ)) , (39)

Ξ̇ = 0,

L̇1 = 0,

L̇2 = −10K1K3 n+ 2L1 L3 n+ 2K3 L1 ξ + 2K1 L3 ξ + 3K3 nλ− L3 ξ λ,

L̇3 = −2L1 (L2 n+K2 ξ) + 2K1 (5K2 n− L2 ξ)− 3K2 nλ+ L2 ξ λ}.

Remember that ξ = ` is the condition for the presence of a singular point at K =
n, S = N = 0 (we focus on this case because the other case K = −n is similar). In the
twice reduced space with coordinates {K1, K2, K3, L1, L2, L3}, this point corresponds to
{n, 0, 0, ξ, 0, 0}. Then, the linearized vector field is given by

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −ξ (4n+ λ) 0 0 0 −∆1

0 0 ξ (4n+ λ) 0 0 0 ∆1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −∆2 0 0 0 ξ (4n− λ)
0 0 ∆2 0 0 0 ξ (−4n+ λ) 0


,

with ∆1 = 2n2 − 2ξ2 − 3nλ and ∆2 = 10n2 − 2ξ2 − 3nλ. Eigenvalues are given by

±
√
−Θ± 2ξ

√
Θλ− ξ2λ2

with

Θ = 20n4 − 8n2 ξ2 + 4 ξ4 − 36n3 λ+ 12n ξ2 λ+ 9n2 λ2.

Along the bifurcation curve (29) we have that Θ = 0, in which case we have two pure
imaginary eigenvalues

± iλξ
If Θ < 0 we have two pairs of complex eigenvalues

±
√
−(Θ + λ2ξ2)± iλξ

√
|Θ|,
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Figure 12: Eigenvalues of the linearized vector field around K = n for the case ξ = 0, n = 1.
At the center the system is over the curve D of Fig. 9, which corresponds with λ = 2/3. At
the left we have eigenvalues for a value of λ less than λ = 2/3 and to the right we represent the
situation after the bifurcation.
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Figure 13: Eigenvalues of the linearized vector field around K = n for the case ξ = 0, n = 1.
At the center the system is over the curve D of Fig. 9. At the left eigenvalues correspond to
R2 before crossing the curve, and to the right we are in R3 after crossing the bifurcation curve.

and if Θ > 0 we have two pairs of pure imaginary eigenvalues

±
√
−(
√

Θ± λξ)2

Thus, when we cross the bifurcation curve, (see curves D, E and F in Fig. 9), we are in
the scenario of the Hamiltonian Hopf bifurcation. This curve goes to the origin when n
tends to zero.

We may consider several ways of crossing the bifurcation curve, depending on the variation
of λ, ξ or both at the same time. For instance, the passage through (λ, ξ) = (2/3, 0) might
give rise to different scenarios for the behavior of the eigenvalues. In Fig. (12) we cross
the line D along the line ξ = 0, in Fig. (13)we cross the line D away from the point
(λ, ξ) = (2/3, 0), and in Fig. (14) the point (λ, ξ) = (2/3, 0) is approached along the line
ξ = 0 and then the path moves off this line.

From the special cases, apart from the tangencies to the bifurcation curves for which
do not have bifurcations, we may consider the case ξ = 0. Then, the behavior of the
eigenvalues become degenerate. For values λ = 2

3
n and λ = 10

3
n the linearized system is

nilpotent. Eigenvalues go from a pair of double pure imaginary to another pair which is
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Figure 14: Eigenvalues of the linearized vector field around K = n for the case ξ = 0, n = 1. At
the left we have eigenvalues in R2 with ξ 6= 0, and to the right in R3. Thus, we have changed
both λ and ξ, versus what we do in Figs. 12 and 13 where we only change λ.

now double real value through a quadruple zero eigenvalues. Due to the presence of the S1

symmetry associated to L1 this gives rise to a Hamiltonian Hopf bifurcation because the
nilpotent part of the quadratic Hamiltonian can be embedded in a Lie algebra isomorphic
to sl(2,R) which commutes with the semisimple Hamiltonian that generates the symmetry
S1. In this case singularity theory allows also to obtain the standard form for the Hopf
bfurcation. Note that the more reduced standard form which encapsulates a Hamiltonian
Hopf bifurcation obtained in [23] only has a quadratic nilpotent part.

Indeed, when ξ = 0 the linearization around the equilibrium K = ±n translates in
S2
n+ξ × S2

n−ξ to the linearization around (K1, K2, K3, L1, L2, L3) = (±n, 0, 0, 0, 0, 0) which
is given by

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 n(3λ∓ 2n)
0 0 0 0 0 0 −n(3λ∓ 2n) 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 n(3λ∓ 10n) 0 0 0 0
0 0 −n(3λ∓ 10n) 0 0 0 0 0


, (40)

from which we have the following eigenvalues

±
√
n2

(
λ∓ 2

3
n

)(
λ∓ 10

3
n

)
, (41)

which are zero when

λ = ±2

3
n, λ = ±10

3
n,

as we have announced. In he following section we prove the existence of HHB applying
the geometric criterium.
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Figure 15: ‘North’ and ‘south’ views. From R2 to R3. Subcritic Hopf. The point K = n
changes its stability and an unstable equilibrium bifurcates from it, as we can see at the south
region.

5.2 Non degenerate Hopf Bifurcations at K = ±n
Hopf bifurcations ought to appear at cone type singularities in the reduced space (see
[19], [20],[21]). The following Lemma helps in determining such singularities which, on
the other hand, we have already detected in the analysis of the reduced spaces.

Lemma 5.2 If a polynomial p(x) has a zero at x = c with algebraic multiplicity two,
then (

d

dx

√
p

)
(c) 6= 0 .

As a consequence, the cone type singularities appear at the double zeros of f(K), because
f(K) is positive in a neigborhood of this zero.

What limit do we have for the presence of HHB? Due to the nature of the thrice reduced
phase space, if ` = n then the space reduces to a point, thus the scenario for a Hamiltonian
Hopf bifurcation disappears. We have not analyzed what happens when ` is near n, i.e.
the ‘explosion’ of the reduced space from a point. What type of bifurcation is this? The
same situation occurs when ξ = ±n. In what follows we will focus on the analysis of
the cone like singularity present at K = n when ξ = `, and the cone like singularity at
K = ±n when ξ = ` = 0.

5.3 Tangencies

The equilibria of the system are defined by the points of tangency between the Hamiltonian
and the reduced space. In particular, we will apply the geometric criterium given in [21]
in order to determine a HHB. Solving H = h for 2N , we may build the energy manifold
in the plane (K, 2N)

g(K) = 2N =
3

2

(
K2 − λK)− ξ2

n
K +

h

n
.
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We consider also

φ+(K) =
√
f(K) = (n−K)

√
(n+K + 2ξ)(n+K − 2ξ)

and

φ−(K) =
√
f(K) = −(n−K)

√
(n+K + 2ξ)(n+K − 2ξ).

which represent upper and lower arcs of the reduced space, where 2ξ−n ≤ K ≤ n. Thus,
as 4N2 + 4S2 = f(K), they are the section S = 0 of the reduced space. Imposing the
tangency of both curves at K = n (with ` = ξ) we obtain

g′(n) =
dg

dK

∣∣∣∣
K=n

= 3n− ξ2

n
− 3λ

2
,

φ′+ =
dφ+

dK

∣∣∣∣
K=n

= −2
√
n2 − ξ2,

φ′− =
dφ−
dK

∣∣∣∣
K=n

= 2
√
n2 − ξ2,

where the slope of the upper arc is negative and the lower arc positive. Equaling these
expressions we obtain

h = n

(−3n2

2
+ ξ2 +

3nλ

2

)
, λ± =

2

3

(
3n− ξ2

n
± 2
√
n2 − ξ2

)
,

for upper arc (+) and lower arc (−) respectively. Indeed, the tangency of the Hamiltonian
with the upper arc at (n, 0) is obtained making

g′(K)− φ′+(K) = 0

and is given by

h =
3n3

2
− 2n2

√
n2 − ξ2, λ+ =

2

3

(
3n− ξ2

n
+ 2
√
n2 − ξ2

)
where λ defines the upper arc of the bifurcation curve Θ = 0. For the tangency at the
lower arc we have

h =
3n3

2
+ 2n2

√
n2 − ξ2, λ− =

2

3

(
3n− ξ2

n
− 2
√
n2 − ξ2

)
,

where λ defines the lower arc of the bifurcation curve. Note that these branches define
the curves D, E and F obtained in (29).

35



R1 R3
E

Figure 16: ‘North’ and ‘south’ views. Transit from R1 to R3. Supercritical Hopf. The singular
point K = n switch from stable to unstable and a stable point bifurcates from it, as it can be
seen in the south region.

After we have studied tangency conditions we move now to analyze transversality condi-
tions, require for the presence of HHB. The variation of the reduced Hamiltonian with λ
through the cone singularity is given by

d

dλ
g′λ(n) = −3

2
,

and, as this can not be zero, the transversality condition is verified.

The second condition we have to check now is the non degeneracy of the higher order
terms of the Hamiltonian. We have to analyze when the Hamiltonian has a second order
contact at the vertex of the cone and when is tangent to the cone from inside and from
outside. Let be

u+(K) = g(K)− φ+(K) y u−(K) = g(K)− φ−(K).

For checking the non degeneracy condition we have

u′′+ =
d2u+

dK2

∣∣∣∣
k=n

= 3 +
2n√
n2 − ξ2

, u′′− =
d2u−
dK2

∣∣∣∣
k=n

= 3− 2n√
n2 − ξ2

,

from which we conclude that, with respect to the upper arc, we always have tangency
from the outside of the cone and, thus, a supercritical HHB, which also exists when ξ = 0.
Then we have proven part (i) of Theorem 5.1.

With respect to the lower arc of the reduced space we have tangency from inside when
−
√

5
3
n < ξ <

√
5

3
n, in which case we have a subcritical HHB. For the range −n < ξ −

√
5

3
n

and
√

5
3
n < ξ < n the tangency occurs from outside the cone and, thus, we have a

supercritical HHB, which also occurs when ξ = 0. For the cases ξ = ±
√

5
3
n the HHB is

degenerate. Thus, we have proven statements (ii) and (iii) of Theorem 5.1 respectively.
In relation to the degenerate HHB, it is important to note that at this point a transition

occurs between a supercritical and a subcritical bifurcation. Moreover we have there an
equilibrium of multiplicity three. More on degenerate Hamiltonian Hopf bifurcations can
be found in [26].
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Figure 17: From left to right we have the tangency with the upper branch of the reduced space
for ξ = 0.3 (supercritical). Moreover we see three tangencies with the lower branch for ξ = 0.8,√

5/3 and ξ = 0.4 representing supercritical, degenerate and subcritical respectively. In all cases
n = 1.

We conclude this section considering the HHB at K = −n when ξ = 0, and whose
geometric analysis follows the same path we have followed around K = n. Verifying
transversality conditions we find that for λ = −10n/3 we have a supercritical HHB and
for λ = −2n/3 a subcritical HHB. Indeed, the transversality condition is satisfied because

d

dλ
g′λ(−n) = −3

2
,

is not zero. The non degeneracy comes from

u′′+ =
d2u+

dK2

∣∣∣∣
k=−n

= 5, u′′− =
d2u−
dK2

∣∣∣∣
k=−n

= 1,

from which we obtain that in the positive branch there is a tangency from outside which
gives rise to a supercritical HHB, meanwhile for the lower branch there is a tangency from
inside to outside which determines a subcritical HHB. As we know both are present for
λ = −10n/3 and λ = −2n/3 respectively. This proves statements (iv) and (v) of Theorem
5.1.

6 The Stark-Zeeman Hamiltonian System ξ = 0. The

Zeeman Case ξ = λ = 0.

As we have mentioned in the Introduction, the study of the particular case ξ = 0 is
connected with applications to perturbed Keplerian (Coulomb) Systems in three degrees
of freedom through the KS transformation. In that respect, perhaps one of the more
studied problem under this approach is the Stark-Zeeman Hamiltonian system, i.e. the
hydrogen atom under the perturbation of electric and magnetic fields. There is a vast list
of papers on these systems; we refer the reader simply to two of them [13], [27] and all
the references therein.
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Briefly, let us mention there are two models under the name Stark-Zeeman Hamiltonian
system according to the relative position of both fields: (a) parallel, or (b) crossed electric
magnetic fields (some authors consider the generic case with any relative angle). Their
corresponding Hamiltonian are

(a) H = 1
2
X2 − 1

x
+ c3 x3 + c4 (x2

1 + x2
2), (42)

where c3 and c4 represent the strength of the electric and the magnetic field, and the
second case is

(b) H = 1
2
X2 − 1

x
+ Fx2 + 1

2
G(x2X3 − x3X2) +

1

8
G2(x2

2 + x2
3), (43)

with F and G again the strength of the fields. The difference between both models
manifests itself in the fact that the parallel case has an axial symmetry which reads as a
second integral: the third component of the angular momentum. Thus, (a) is a 2-DOF
system, meanwhile (b) is a 3-DOF system. For recent work on the system defined by (b)
see Efstathiou et al. [9].

When we consider the regularized and normalized Hamiltonian system for the parallel
case then this corresponds to the sytem considered in this paper when ξ = 0. Coefficients
of the quartic (24) are now

b1 = 5n2,

b2 = −18n2λ,

b3 = 8n2`2 +
(
8n2 + 9λ2

)
n2 + 12nh,

b4 = −12nhλ,

b5 = −4n6 + 8n4`2 − 4n2`4 + 4h2.

Moreover, if we limit ourselves to the Zeeman case λ = 0, the quartic takes the form

5n2K4 +
(
12nh+ 8n2 `2 + 8n4

)
K2 + 4

(
h2 − (−n `2 + n3)

2
)

= 0 (44)

whose roots are

K = ±
√

2(−3h− 2n(n2 + `2))

5n
± 2χ

5n
) (45)

with

χ =
√

4h2 + 9n2 `4 − 2n4 `2 + 9n6 + 12nh (n2 + `2).

Proceeding as explained in (25), we obtain the equilibria which are given by

K = 0, K = ±
√

2(−3h− 2n(n2 + `2))

5n
. (46)
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Indeed, in order to obtain the first solution of (46) the equality h = ±n (`2 − n2) has
to be verified, meanwhile we obtain the second when χ = 0 or, in other words, we have
h = 1

2
(−3 `2 n± 2

√
5 ` n2 − 3n3), from which finally the possible roots are

K = 0, K = ±
√
`2 ± 6 ` n√

5
+ n2,

Looking for double equilibria we find that they only appear in K = 0 as triple roots, as it
can be seen imposing that (44) defines a double solution K = 0, which ends being triple.
This occurs when h = −2

3
n(`2 + n2). This can be directly computed using he Poisson

flow. In conclusion we have a triple root at K = 0 for ` = ± n√
5

which evolves into two

double roots when |`| < n√
5
. These two moving points become the singular points of the

reduced space when ` = 0.

In Fig. 18 we may see the geometry of the problem and the tangencies between the
reduced space and the Hamiltonian surfaces which corresponds to the Zeeman case. For
more information see Cushman [5], van der Meer [25], etc

-1 -0.5 0.5 1

-0.75

-0.5

-0.25

0.25

0.5

0.75

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-0.5

0.5

1

1.5

2

Figure 18: From left to right we have an equilibrium of multiplicity three at K = 0 for ` = − 1√
5
,

two equilibria for ` = 0.2 and one equilirium for ` = 0.5. In all the cases we have taken n = 1
and ξ = λ = 0. As ξ 6= ` the reduced space is not singular.

It is easy to see that we obtain Hamiltonian function (5) when we use the KS type
transformation with case (a). Besides, as we have assumed both parameters small and of
the same order, we only need to take c3 = ε λ and c4 = ε. One might ask what is the
interest of the study done in this paper in relation to the system defined by Hamiltonian
(42)? A complete answer requires to take the integral Ξ = 0 and discuss L1 (the axial
symmetry) both in the generic case L1 6= 0 and in the particular case L1 = 0. In other
words, this paper only covers Ξ = L1 = 0. Special as it might appear, this is precisely
the scenario which still needed understanding, at least in mathematical terms, because
the system has bifurcations of rectilinear orbits which correspond to the singular points
of the thrice reduced space. Making use of invariant theory approach only the particular
case λ = 0, the pure Zeeman effect, had been already studied by Cushman [5].

As we said before the system defined by (42) has been subject of research since the 80’s.
In particular Cacciani et al. [1, 2, 3] published that they were able to isolate at laboratory
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level three different states when dealing with lithium. Again, dealing with Hamiltonian
(42) and assuming the azimuthal quantum number to be zero (Ξ = L1 = 0 in our present
notation) and using normalization techniques which brought the reduced system to a
2-sphere, Salas et al. [29] (see also [30]), found the way of explaining this situation.
They reported two pitchfork bifurcations in their reduced phase space, both related to
rectilinear orbits in the Oz axis. Just to complete the description of what was behind
those bifurcations of the reduced system, the analysis using the Poincaré surfaces of section
was made by those authors confirming bifurcation scenarios. The numerical evidence of
bifurcations in the original system gave grounds for the publications of those results. We
hope the present paper will serve to fix definitively these previous misconceptions: we
report now that the ’two pitchfork bifurcations in the reduced phase space’ are actually
the two Hamiltonian Hopf bifurcations that we see along the line Ξ = L1 = 0 in Fig. (9).

Conclusions

Completing a preliminary report [12], the Hamiltonian fourfold 1:1 resonance in the pres-
ence of a toroidal symmetry and is full reduction (regular and singular) is studied in detail.
The tori foliation of these perturbed superintegrable systems creates several scenarios de-
pending on the relative values of the integrals. In particular the invariants defining the
thrice reduced orbit space are given, as well as the relations among integrals labeling
those spaces with one or two singular points. The second aspect on which we focus is the
bifurcations of uniparametric Hamiltonian families within is toroidal symmetry context.

Enlarging previous results on the 1:1 and 1:1:1 resonances, attention is put in the interplay
between integrals and physical parameters, considering as a benchmark the generalized
Stark-Zeeman model in 4 dimensions. We identify a continuos evolution of Hamiltonian
Hopf bifurcations (HHB) as well as saddle-center bifurcations, but only in well defined
intervals of the physical parameter. In particular, for the physical 3 dimension case Ξ = 0,
we set up a misleading explanation ([29]) on the bifurcation analysis corresponding to the
polar case L1 = 0. What is portrayed there as pitchfork bifurcations is, in fact, a HHB
scenario.

Although the setting for the analysis of other similar systems is set up, to refer to generic
patterns about these systems, say reconstruction for instance, is still open; our work has
to be considered only as a step to that goal. More precisely, we tackle how the well
established geometric approach to the HHB extends to 4 dimensions. In that respect
we have been working also with the generalized van der Waals problem in 4 dimensions,
another uniparametric family which, versus the Stark-Zeeman, presents several integrable
cases. This fact introduces another ingredient in the analysis which we are exploring [8].

As in the model considered here the normalization process was truncated at first or-
der, a number of situations appear whose analysis leads to a degenerecy condition, thus
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demanding more analysis including higher order terms. This work is now in progress.
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