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Abstract 

In an earlier papers the authors established a result to select subsets of a matrix that are as 

“non-singular” as possible in a numerical sense. The major result was not constructive. In 

this note we give a constructive proof and moreover a sharper bound. 

 

1. Introduction 

 

In [2] the problem of selecting k  rows from an nm ×  matrix such that the resulting 

matrix was as non-singular as possible was examined.  That is, for nm×∈RRRRX  find a 

permutation matrix mm×∈RRRRP  so that  

 

  ,   ,
nk×∈








= RRRRA

B

A
PX        (1) 

 

where A  is the matrix in question, nkm >,  and ( ) n=Xrank . 

 

To motivate this problem, consider the problem of regression where we have a vector of 

n observations 

 

δAθy += , 

 

where nk×∈RRRRA is a design matrix whose rows are a subset of the rows of nm×∈RRRRX ,  
n

RRRR∈θ is a vector of unknown parameters that is to be determined and k
RRRR∈δ is a vector 

whose components are independent and identically normally distributed. Such problems 

occur when observations are expensive and only a subset of all possible measurements is 

feasible. The least squares estimate of the unknown parameters is yAθ
+=ˆ where +A  is 

the Moore-Penrose inverse. For a given design matrix A and confidence coefficient, the 

confidence ellipsoid for θ is given by ( ) ( )






 ≤−− constantˆˆ θθAAθθθ

T
T

. The content of 

this ellipsoid is proportional to ( ) 2
1

 det
−

AAT and it is natural to make this as small as 

possible. That is, we choose the design matrix A  to maximise AA
T det . Such designs are 

called D-optimal designs (see Silvey [5] for a more detailed discussion). However, 

optimality will depend on the application. For example minimising 



 2 

( ) 1
Trace

−+ = AAA
T

F
ensures that the expected mean squared error of θ is minimised. 

E-optimal designs (see Silvey [5]) maximise the smallest singular value of A (or 

equivalently, maximise ( ) 2

1

2

1

2

−+ = AAA T ). Further applications are described in [2] 

 

Row selection is often implemented using a QR decomposition of T
X  with column 

interchange to maximize the size of the pivots (see [1] and also [3], section 12.2). This 

algorithm usually works well but there are examples [4, p31] where the pivot size does 

not adequately reflect the size of the singular values. As a consequence bounds from the 

analysis of such algorithms would lead to poor bounds for the singular values and related 

quantities such as AA
T det .  

 

 

In [2] the present authors derived upper bound for 
F

+
A and the singular values of A . In 

this note, we extend these results by deriving a constructive derivation for the bounds on 

the singular values and new lower bounds for AA
T det . 

In section 2 we give the main results and in particular a sharper bound for 
F

+
A . In 

section 3 we show that this bound is sharper than the one obtained earlier, at least 

asymptotically.. 

 

2. Results 

 

We can rewrite (1) as 

 

( )2

1

AA
Y

Q

B

A
PX

T









=








=                                                                          (2) 

where 

 

( )

( )

1
2

1
2

:

:

T

T

−

−

=

=

Q A A A

Y B A A
 

 

It follows that, 

 

( ) ( )( )2

1

2

1

AAYYIAAXX TTTT +=             (3) 

 

Thus 

  

( ) ( ) ( )AAYYIXX TTT detdetdet +=                                                            (4) 
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and so maximising AA
Tdet is equivalent to minimizing ( )YYI T+det . From the 

arithmetic-geometric inequality we have 

 

( ) ( )n

Fn

T 211det YYYI +≤+                                                                          (5) 

 

This suggests that when P is chosen so that Y is not too large, then AA
Tdet will not be 

small. By applying the usual variational formulation for singular values to (3), we obtain 

 

( ) ( ) ( ) ( ) n,1,  ,1 22

2

22
L=+≤≤ llll AYXA σσσ                                              (6) 

                                            

where ( )Alσ  and ( )Xlσ are the singular values of A and X respectively. Thus, the 

singular values of X  will not be small if 2|| ||Y is not large. 

 

We now show that a permutation exists so that the matrix  Y  that is not large. This result 

was established in [2] by assuming that P was chosen to maximise AA
Tdet ; the poof, 

however, as not constructive. In the present note, we give a construction based on a 

greedy algorithm where rows of X  are deleted, one at a time, so as to minimise the 

Frobenius norm of Y at each step. 

 

Theorem 1. There is a permutation matrix P so that (2) holds with  

 

( )
.

1

2

+−

−
≤

nk

nkm
F

Y  

 

Proof: Let 

 

















=

















=

















=

−

T

km

T

T

k

T

T

k

T

y

y

Y

q

q

Q

a

a

A MMM

111

   ,   , , 

 

and note that the columns of Q are orthogonal. Indeed, 

 

1

2

 ,

and

1.

k
T T

r r

r

r

=

= =

≤

∑q q Q Q I

q

. 

 

Suppose nk > and that we wish to delete a row of A . We define 
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1

1

1

: ,   : ,

T

TT
jj

j jT

j

T

k

−

+

 
 
 
   

= =   
    

 
 
  

a

aa
A B

Ba

a

M

M

 

 

and can then write for some permutation matrix jP%  

 

 

( ) ( ) n1k-mn1-k   ,   ,
~ ×+× ∈∈








= RRRRRRRR jj

j

j

j BA
B

A
XP . 

From this it follows that 

 

( )

( ) ( )

1
2

1 1
2 2

,

where

 ,   .

j j T

j j j

j j

T T

j j j j j j j j

− −

   
= =   
   

= =

A Q
P X A A

B Y

Q A A A Y B A A

%

 

 

We have 

 

 

 

( ) ( )( )
( )( )

( )( )( )
( )( )( )

( )

1 1
2 22

1

1

1

2 22

2 2 2

2

Trace

Trace

Trace

Trace

1

1

T T T

j j j j j j jF

T T

j j j j

T T T T

j j j j

T T T

j j j j

j jF

j

− −

−

−

−

=

=

= + −

= + −

= + +
−

Y A A B B A A

B B A A

B B a a A A a a

Y Y q q I q q

Y Yq q
q

 

 

Now let 
F

jY be minimized when jp = . Then, 

 

( ) ( ) ( )2 2 2 2 22

2 2 2 2
1 1 .

j p j j jFF
− ≤ − + +q Y q Y Yq q  
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On summing over j and noting that 

 

 

2

2
1

2 2

2
1

,

,

k

j

j

k

j F
j

n
=

=

=

=

∑

∑

q

Yq Y

 

 

we obtain 

 

( ) ( ) n1nknk
2

F

2

F
p ++−≤− YY .                                                        (7) 

 

 

We can use this construction, starting with X  and then deleting a row at the time whilst 

insuring that 
FF

YH = is minimised at each step to construct 

 

 ( )
nk >∈∈








= ××   ,  ,   , nk-mnk

RRRRRRRR BA
B

A
PX . 

 

From (7) it follows by induction that such a construction satisfies 

 

( )
1

2

+−

−
≤

nk

nkm
F

Y .                                                                                                 # 

 

Theorem 1 and  (4), (5) imply: 

 

 

Corollary 1  There is a permutation matrix P so that  

( ) ( )
n

TT

nm

nk









+−

+−
≥

1

1
detdet XXAA .         (8) 

                

In [2, cf Theorem 2], a greedy algorithm was presented where rows of X  are deleted, one 

at a time, so as to minimise the Frobenius norm of +A at each step was, which read 

 

Theorem 2 There is a permutation matrix 
mm×∈RRRRP  such that (1) holds with 

 

.
1

1 22

FF nk

nm ++

+−

+−
≤ XA  

 

This theorem can also be used to give an alternative proof of Corollary 1 (7) 
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Proof (of Corollary 1, alternative): If we apply Theorem 2 to ( ) 2

1−
XXX T , there is a 

permutation matrix P such that 

 

( )   ,   ,
nk2

1
×−

∈







= RRRRW

Z

W
XXPX

T  

with 

 

( ) ( )
1
2

2
1 2 1 1

Trace
1 1

T T

F
F

m n m n
n

k n k n

− −
+ − + − + 

= ≤ =  
− + − + 

W W W X X X . 

Moreover, 

 

( ) 







=








=

B

A
XX

Z

W
PX 2

1
T , 

 

and hence 

 

( ) ( ) ( )XXWWAA TTT detdetdet =  .                                                                      (9). 

 

From the geometric-arithmetic mean inequality, we have 

 

( ) ( )( )
n

n
T

n

T

nk

nm









+−

+−
≤≤

−−

1

1
Tracedet

1
1

1
WWWW , 

 

and the result follows on substitution of this inequality in (9).                       # 

 

 

The bound for AA
Tdet in corollary 1 follows from bounds on 

F
Y , and proof above on 

F

+
A respectively. A somewhat tighter bound can be obtained by analysing a greedy 

algorithm where AA
Tdet is maximized at each step. 

 

Theorem 3 There is a permutation matrix mm×∈RRRRP  such that (1) holds with 

 

( ) ( ) ( )
( )

( )XXXXAA
T

m

kj

TT

nkm

nmk

j

nj
det

!!

!!
detdet

1 −

−
=

−
≥ ∏

+=

 .                                    (10) 

 

Proof: As in theorem 1, we have 

 

( )
1
2

,T   
= =   
   

A Q
PX A A

B Y
 

 

where 
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T

km

T

T

k

T

T

k

T

y

y

Y

q

q

Q

a

a

A MMM

111

   ,   , , 

 

and the columns of Q are orthogonal.  

 

Suppose nk > and that we wish to delete a row of A . We define 

 









=



























=
+

−

B

a
B

a

a

a

a

A
T

j

j

T

k

T

j

T

j

T

j   ,
1

1

1

M

M

, 

 

and can then write 

 

 

( ) ( ) n1k-mn1-k   ,   ,
~ ×+× ∈∈








= RRRRRRRR jj

j

j

j BA
B

A
XP .  

 

from which it follows that 

 

( )

( ) ( )

1
2

1 1
2 2

,

 ,   .

j j T

j j j

j j

T T

j j j j j j j j

− −

   
= =   
   

= =

A Q
P X A A

B Y

Q A A A Y B A A

%

 

 

Note that, 

 

( ) ( ) ( ) ( )
2

2
det det 1 det .T T T T

j j j j j
= − = −A A A A a a q A A

 

 

Now let ( )
j

T

j AAdet be maximised when jp = . Then, 

 

( ) ( ) ( )AAqAA
T

jp

T

p det1det
2

2
−≥ , 

 

and, on summing over j we find that 
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( ) ( ) ( )AAAA
T

p

T

p nkk detdet −≥ .                                                   (11) 

 

 

We can use this construction, starting with X  and then deleting a row at the time whilst 

insuring that ( )AATdet is minimised at each step to construct 

 

 ( )
nk >∈∈








= ××   ,  ,   , nk-mnk

RRRRRRRR BA
B

A
PX . 

 

From (11), it follows by induction that this construction satisfies 

 

( ) ( ) ( )
( )

( )XXXXAA
T

m

kj

TT

nkm

nmk

j

nj
det

!!

!!
detdet

1 −

−
=

−
≥ ∏

+=

.                                     #  

 

3 Discussion 

 

We now compare the bounds given in corollary 1 and Theorem 3 which are the same for 

1=n . We have 

 

( )( )
( ) ( )

( )

1

21

1

1

1 1
log log log log

1 1

1 1
log log log

1 1

1 1 1
log log 1 log 1

1 1 1 1

m m

j kj k

m

k

j n k n m n j n

j k m j

k n m n x n
dx

k m x

m k n k n n
n m k

k m n m n m

+

= += +

+

+

   − + − + − −   
= − +      

+ +      

+ − + − −     
≥ − +     

+ +     

+ + − + −   
= + + + − −   

+ + − + − +   

∑∏

∫

( )1 log 1
1

1
log log 1 log 1 .

1 1 1

n

k

k n n n
n m k

m n m k

 
+ − 

+ 

+ −     
= + − − −     

+ − + +     

 

 

Thus, for 2≥n  

 

0

1
1log

1
1log

1

1
loglog

1

≥










+
−−









+
−≥









−+

−+
−







 −
∏

+= k

n
k

m

n
m

nm

nk
n

j

njm

kj
. 

 

This demonstrates that the bound (10) given in Theorem 3 is superior to the bounds given 

by (8) in Corollary 1. This difference can be substantial when k is relatively small. For 

example, if m is large relative to n and nk = , then 
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1

1
/ 1 / 1

1 1 1

1
.

n m km

j k

n

j n k n n n

j m n m k

n

e

= +

 − + −     
≥ − −       

+ − + +      

+ 
≈  
 

∏
 

In order to compare the bounds on the singular values given by (6), it makes sense to 

consider the thn root of AA
Tdet  as this is the square of the geometric mean of the 

singular values of A . Given the construction, we find that the bound (8) given in 

Corollary 1 is similar to that given by (6). However, the bound given by (10) in Theorem 

3, provides a substantially sharper estimate. 
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