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Cardiac arrhythmia such as atrial and ventricular fibrillation are character-
ized by rapid and irregular electrical activity, which lead to asynchronous
contraction and a reduced pump function. In addition to experimental and
clinical studies, computer simulations are frequently applied to obtain in-
sight in the onset and perpetuation of cardiac arrhythmia. In existing com-
puter models, the excitable tissue is often modeled as a continuous two-phase
medium, representing the intracellular and interstitial domains, respectively.
A possible drawback of continuous models is the lack of flexibility when
modeling discontinuities in the cardiac tissue.

In this thesis, we introduce a discrete bidomain model in which the car-
diac tissue is subdivided in segments. Each of the segments represents a
small number of cardiac cells. Ionic membrane currents as well as intracellu-
lar coupling and interstitial currents are described by this model. Compared
with the well-known continuous bidomain equations, our Cellular Bidomain
Model is more suitable when modeling the structure of cardiac tissue, in par-
ticular anisotropy, myofibers, fibrosis, and gap junction remodeling. To study
mechanoelectric feedback, i.e., the effect of tissue deformation and mechani-
cal load on the electrophysiology, the model describes stretch-activated ionic
membrane currents and cardiomechanics. In our model, contractile forces
generated by the sarcomeres are coupled to the intracellular concentration of
free calcium and to the sarcomere length.

We apply the Cellular Bidomain Model in five simulation studies to car-
diac electrophysiology and mechanoelectric feedback. In the first study, the
effect of field stimulation on virtual electrode polarization is studied in uni-
form, decoupled, and nonuniform cardiac tissue. In the second study, the
role of the hyperpolarization-activated inward current (If) is investigated in
relation to ectopic foci and impulse propagation in normal and in patholog-
ical tissue. In the third study, the vulnerability to atrial fibrillation under
stretch is investigated in relation to the stretch-activated current (Isac). In the
fourth study, it is investigated whether electrical remodeling, i.e., changes in
ionic membrane currents that occur after ventricular pacing, is triggered by
changes in mechanical load. Finally, in the fifth study, the vulnerability to
atrial fibrillation under stretch is evaluated using a model of the human atria.
Our simulation results are in agreement with experimental observations and
provide insight in electrophysiological and mechanical behavior of the heart.

In conclusion, our model is capable of simulating cardiac electrophysiol-
ogy and mechanoelectric feedback both at the cellular and at the organ level.
Application of our model leads to more insight in the complex interaction
between cardiac electrophysiology and cardiomechanics.
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1
Introduction

The heart consists of two halves each functioning as a pump: the right half
pumps blood through the lungs and the left half pumps blood through the
remaining body parts. Each of the halves is a pulsatile two-chamber pump
composed of an atrium and a ventricle. The atria function as a storage where
blood is collected before it is pumped into the ventricles. Blood circulation is
established by contraction of the ventricles. Malfunctioning of the heart leads
to a decreased blood flow and may hamper oxygen supply, which is of vital
importance for all body functions.

Contraction of the heart muscle is preceded by an electrical impulse, or
action potential (AP), generated in the sino-atrial node (SA node). From the
SA node, the impulse travels through the atria to the atrio-ventricular node
(AV node), where it is delayed for about 0.1 s. In the ventricles, the impulse
is first transported through the Bundle of His and then through the Purkinje
system. The Purkinje fibers function as a fast conduction pathway to bring
the impulse to the ventricular muscle mass (Figure 1.1).

Within the heart muscle, cardiac cells, also called myocytes, are capable
of passing the action potential from one cell to another. Cell membranes of
neighboring cells are fused with one another to form so-called gap junctions
that allow relatively free diffusion of ions. Such a network of coupled cardiac
myocytes is called a syncytium (Figure 1.2). After excitation of a group of
cells, the action potential spreads rapidly through the syncytium so that all
cells will be excited in short time.

Once cardiac muscle cells are excited, they start to contract. Contraction
of the heart muscle cells is triggered by calcium ions (Ca2+) that are released
from the sarcoplasmic reticulum (SR), which functions as a buffer for calcium
ions when the cell is at rest. Calcium release from the SR is triggered by the
action potential. Normal propagation of the AP is thus important for efficient
contraction of the heart muscle. In case impulse propagation hampers, this
may lead to asynchronous contraction and a reduced pump function.

Under abnormal circumstances, impulses may be spontaneously gener-
ated in the heart muscle. In case an impulse re-excites cardiac tissue that
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Figure 1.1: Propagation of the cardiac impulse. Times of excitation are indicated in s
for different parts of the heart (Adapted from Guyton and Hall 1996, Fig. 10-4, p.
125).

was just recovered from the former impulse, a reentrant wave is established.
Reentrant depolarization waves lead to arrhythmic electrical behavior and
uncoordinated contraction. The most serious of all cardiac arrhythmia is ven-
tricular fibrillation (VF), which is fatal if not treated immediately. In contrast,
atrial fibrillation (AF) is not directly lethal. However, the pump function of the
heart is reduced due to the loss of atrial contraction.

1.1 The Cellular Bidomain Model

To investigate normal and abnormal impulse propagation, we develop a math-
ematical model of cardiac electrophysiology and cardiomechanics. Models
of cardiac electrophysiology usually comprise an accurate model of the ionic
membrane currents of a single cell. Accurate simulation results can be ob-
tained if the model also reflects the structure of cardiac tissue and distin-
guishes between the intracellular and interstitial domains. Mathematical mod-
els such as the bidomain equations describe the conductive properties of car-
diac tissue by a continuous two-phase medium [69]. A possible drawback of
continuous models is the lack of flexibility when modeling the discontinuities
that characterize the pathological heart.

In this thesis, we introduce a discrete bidomain model, the Cellular Bido-
main Model, in which the cardiac tissue is subdivided in segments. Each of
the segments represents a small number of cardiac cells and the surrounding
interstitial fluid. Active membrane behavior is simulated by considering a



Figure 1.2: Interconnecting cardiac cells forming a syncytium (Guyton and Hall 1996,
Fig. 9-2, p. 108).

number of ionic currents carrying sodium ions (Na+), potassium ions (K+),
and calcium ions (Ca2+) across the cell membrane. In our model, we apply
the Courtemanche-Ramirez-Nattel model of the human atrial action poten-
tial [37] to describe the ionic membrane currents and intracellular calcium
handling by the SR.

Mechanical behavior of a single segment is modeled by the classical three-
element rheological scheme introduced by Hill in 1938 [71, 80]. Active force
generated by the sarcomeres is represented by a contractile element together
with a series elastic element. A parallel elastic element describes mechanical
behavior when the segment is not electrically stimulated. Contractile force
generated by the sarcomeres is related to the intracellular Ca2+ concentration,
the sarcomere length, and the velocity of sarcomere shortening. To model the
contractile force, we apply model 4 from Rice et al. [158].

An important aspect of our model is the influence of mechanical defor-
mation on electrophysiology, i.e., mechanoelectric feedback. In our model, we
consider the immediate influence of stretch on the action potential by model-
ing a stretch-activated current as proposed by Zabel et al. [230]. In addition,
we consider the adaptation of ionic membrane currents triggered by changes
in mechanical load. The strong coupling between cardiac electrophysiology
and cardiac mechanics is a unique property of our model, which is reflected
by its application to obtain more insight in the cause and consequences of
mechanical deformation on cardiac electrophysiology.



1.2 Applications of the Cellular Bidomain Model

We apply the Cellular Bidomain Model to investigate both physiological (nor-
mal) and pathological (abnormal) cardiac electrophysiology and mechano-
electric feedback. In particular, we investigate the success and failure of de-
fibrillation, the onset of atrial fibrillation in relation to ectopic activity and
stretch, and the remodeling of ionic membrane currents due to changes in
activation with ventricular pacing.

1.2.1 Defibrillation

Both atrial and ventricular fibrillation can be treated by the application of an
electrical shock, which excites the entire muscle mass and stops any propa-
gation of the impulse. If successful, normal sinus rhythm is restored when
the heart muscle cells become excitable again. This procedure is called de-
fibrillation and has been successfully applied for the first time to a human in
1947 [14].

Mathematical models describing the cardiac tissue as a uniform conduc-
tive bidomain do not predict successful defibrillation [136]. We simulate
the fibrillating heart by inducing spiral waves in a sheet of cardiac tissue.
By modeling the cardiac tissue as a nonuniform bidomain, we investigate
whether nonconducting obstacles and nonuniform gap-junctional coupling
may affect the formation of so-called virtual electrodes and explain the clini-
cal success of defibrillation.

1.2.2 Atrial fibrillation

Once an atrial cell is excited, it remains refractory for a period of 0.2 to 0.3 s,
during which the cell cannot be re-excited. If the wavefront continuously en-
ters tissue that is just recovered from the previous excitation, we speak of a
reentrant depolarization wave. The wavelength (WL) of a reentrant wave is
defined as the product of the conduction velocity (CV) and the effective re-
fractory period (ERP). The incidence of atrial arrhythmia is determined by
the wave length and the size of the atria [155]. When stimulated at a higher
frequency, the refractory period tends to shorten, so that the pathway of a
reentrant depolarization wave may change [195], or the depolarization wave
may break up in smaller reentrant circuits [196, 227]. In case a single de-
polarization wave circles around the atria, we speak of atrial flutter. If the
depolarization wave breaks up in many reentrant circuits, we speak of atrial
fibrillation.



Atrial fibrillation (AF) is the most common cardiac arrhythmia [133]. The
prevalence of AF increases with age from 0.5 percent of people under the
age of 60 to almost 10 percent of people over the age of 80 [92]. Procedures
to prevent reoccurrence of AF once diagnosed have been developed for the
treatment of patients [133]. Traditionally, cardiac arrhythmias are treated
with antiarrhythmic drugs that control heart rhythm by changing electrical
properties. These drugs not only influence atrial electrophysiology, but also
ventricular electrophysiology. The effects on ventricular electrophysiology
can lead to lifethreatening ventricular arrhythmia [132]. Nowadays, non-
pharmacological therapies are under investigation. These therapies include
controlled destruction of arrhythmia-generating tissue, the so-called ablation
therapy, and implantable devices that can sense arrhythmias and terminate
them with electrical shocks [131].

Related to the occurrence of AF are changes in the structural and electri-
cal properties of the atrial tissue [5, 134]. Structural remodeling of the tissue
includes the increase of cell size, interstitial fibrosis, and gap junction re-
modeling [11, 88, 183]. Electrical remodeling includes the change in number
and morphology of ion channels, which affects the ionic membrane currents.
In the atria, electrical remodeling is manifested through shorter refractory
periods, greater dispersion of atrial refractoriness, and atrial conduction de-
lay [18]. Since structural remodeling leads to a reduced conduction velocity
and electrical remodeling leads to shorter refractory periods, both types of
remodeling can influence the wavelength and thus the incidence of atrial ar-
rhythmia. Besides structural and electrical remodeling, contractile remodel-
ing [167], stretch [135], atrial dilatation [168], and atrial fibrillation itself (“AF
begets AF”) [221] are involved.

Although AF is facilitated by each of these mechanisms, a trigger is re-
quired to initiate an episode of AF [172]. Episodes of paroxysmal AF are
often triggered by ectopic foci located in the pulmonary veins [39]. Possible
mechanisms for focal activity include micro-reentry within the pulmonary
veins [73] and spontaneous depolarization of cells located in the pulmonary
veins [66]. Experimental data indicate a possible role of the pacemaker cur-
rent If in the initiation of AF [76, 128]. By incorporating If in our model, we
investigate the effect of If on impulse propagation and ectopic activity under
normal and under pathological conditions.

1.2.3 Mechanoelectric feedback

Mechanoelectric feedback is a generic term to describe the influence of me-
chanical deformation of cardiac tissue on the electrophysiology [113, 114].
Mechanisms of mechanoelectric feedback include immediate influence on the



action potential through stretch-activated channels (SACs) [62, 78, 105], force-
feedback on the intracellular Ca2+ concentration [115], and long-term effects
involving cell signaling pathways [168].

Experimental studies show an increased vulnerability to AF in acutely di-
lated atria [54, 153, 166]. By application of a SAC blocker, vulnerability to
AF decreases significantly [16, 17], indicating a role for SACs in the initiation
of AF [152]. In this thesis, we investigate the effect of the stretch-activated
current (Isac) on impulse propagation in a homogeneous and in an inhomoge-
neous cardiac fiber. In addition, we investigate the effect of stretch on possi-
ble arrhythmic behavior in a model of the human atria.

1.2.4 Electrical remodeling in the ventricles

Changes in heart rate or activation sequence by means of pacing induces
changes in AP morphology and duration [121]. Short-term rapid ventricu-
lar pacing results in APD shortening [121], while chronic rapid ventricular
pacing results in APD prolongation [89]. Chronic epicardial pacing of the left
ventricle results in APD prolongation near the pacing site and APD short-
ening in remote regions [36, 120]. These changes affect repolarization and
appear as modulation of the T wave in the electrocardiogram (ECG) [160].
Experimental observations indicate that current density and kinetics of indi-
vidual ionic membrane currents change over time in response to ventricular
pacing [145, 164, 229]. In case these changes are persistent, we speak of elec-
trical remodeling [36, 120]. The physiological mechanisms that trigger electri-
cal remodeling are poorly understood. Based on experimental observations,
Jeyaraj et al. [87] suggest mechanoelectric feedback as a mechanism for elec-
trical remodeling. Recently, Sosunov et al. [178] showed that electrical remod-
eling can be inhibited by reducing mechanical load or by reducing contractil-
ity. These findings indicate that changes in mechanical load are involved in
electrical remodeling with epicardial pacing. In this thesis, we investigate the
relation between electrical remodeling and changes in mechanical load that
occur with epicardial pacing.

1.3 Thesis outline

The thesis is organized as follows. In Chapter 2, the Cellular Bidomain Model
is introduced. Simulation results of normal cardiac impulse propagation and
arrhythmic behavior are presented. In addition, normal depolarization of the
human atria is simulated using a triangular mesh created from MRI data.
Numerical aspects of our model are discussed in Chapter 3. In particular,



our methods to save computation time and memory are introduced and ver-
ified. Next, in Chapter 4, the model is applied to study the origin and effect
of virtual electrode polarization on 2D sheets of uniform and nonuniform
cardiac tissue. We simulate defibrillation by the application of an electrical
shock on a sheet of tissue in which a spiral wave has been initiated. With this
model, we investigate whether nonconducting obstacles and nonuniform cel-
lular coupling may explain the clinical success of defibrillation. In Chapter 5,
we simulate pathology by extending the model with fibrosis and gap junction
remodeling. The model is applied to investigate the effect of an increased
expression of the pacemaker current If on impulse propagation and ectopic
activity under normal and under pathological conditions. In Chapter 6, the
model is extended with mechanical behavior and the stretch-activated cur-
rent Isac to investigate the effect of stretch on impulse propagation in a car-
diac fiber model. In Chapter 7, the model from Chapter 6 is extended with
a simulation of the cardiac cycle. Under the assumption that stroke work
is homogeneously distributed after electrical remodeling, it is investigated
whether remodeling of the L-type Ca2+ current ICa,L is triggered by changes in
mechanical load. In Chapter 8, we apply our model of cardiac electrophys-
iology and mechanoelectric feedback to evaluate the effect of stretch on the
onset and perpetuation of atrial fibrillation. To initiate atrial arrhythmia, an
ectopic focus is simulated by frequent stimulation of the tissue near the pul-
monary veins. Acute atrial dilatation is simulated by applying overall stretch
to the atria. In these simulations, we use the geometry of the human atria
from Chapter 2 and the numerical approach described in Chapter 3. Finally,
in Chapter 9, we discuss the model, its applications, and possible improve-
ments.





2
Modeling and simulation of cardiac
electrophysiology and arrhythmia:

the Cellular Bidomain Model

Abstract

Origin and persistence of cardiac arrhythmia such as atrial fibrillation is studied
by means of computer simulations. The excitable tissue is often modeled as a con-
tinuous two-phase medium, representing the intracellular and interstitial domains,
respectively. A possible drawback of continuous models is the lack of flexibility
when modeling discontinuities in the cardiac tissue. We introduce a discrete bido-
main model in which the cardiac tissue is subdivided in segments, each representing
a small number of cardiac cells. Active membrane behavior as well as intracellular
coupling and interstitial currents are described by this model. Compared with the
well-known continuous bidomain equations, our Cellular Bidomain Model is better
aimed at modeling the structure of cardiac tissue, in particular anisotropy, myofibers,
fibrosis, and gap junction remodeling. The model is applied to simulate propaga-
tion of the depolarization wave along a fiber, arrhythmic behavior on a sheet of tis-
sue, and depolarization of the human atria. In conclusion, the Cellular Bidomain
Model is well-suited to investigate cardiac electrophysiology under normal and un-
der pathological conditions.
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2.1 Introduction

Atrial fibrillation (AF) is characterized by rapid and irregular electrical activ-
ity, which results in irregular contraction of the atria [133]. Besides experi-
mental and clinical studies, computer simulations are frequently applied to
obtain insight in the onset and perpetuation of AF [67, 83, 84, 104, 214, 215]. In
these simulation studies, the cardiac tissue is usually modeled as a continu-
ous conductive medium. To investigate the effects of structural and electrical
remodeling in relation to the onset and perpetuation of cardiac arrhythmia,
we introduce the Cellular Bidomain Model. In this model, the cardiac tis-
sue is subdivided in segments. Each segment represents a small number of
cells with the same electrophysiological state. Active membrane behavior is
modeled by a number of ion currents as well as storage and release of cal-
cium (Ca2+) from the sarcoplasmic reticulum (SR). Intracellular and intersti-
tial currents flow between adjacent segments, and are related to the amount
of cellular coupling. Local intercellular coupling may be varied to simulate
structural remodeling. Electrical remodeling may be simulated by changing
the ionic membrane currents.

We compare the Cellular Bidomain Model with the continuous bidomain
equations and apply the model to study several aspects of cardiac electro-
physiology. In particular, we investigate impulse propagation when the car-
diac tissue is modeled as a square grid, a rectangular grid, or a brickwall.
Furthermore, the dynamic behavior of the tissue over a longer period of
time is studied by initiating a reentrant spiral wave. Finally, a depolariza-
tion wave over the atria is simulated using a 3D geometry representing the
human atria.

2.2 Methods

2.2.1 Cellular Bidomain Model

The Cellular Bidomain Model describes active membrane behavior as well as
intracellular coupling and interstitial currents. To abstract from the geometry
and structure of the cardiac tissue, we introduce a graph, composed of nodes
and edges, where a node represents a single cardiac cell or a group of cells and
an edge the gap junctions between the cells. Such a graph is called a simulation
graph. Within a simulation graph, different cell types may be distinguished,
each having their own membrane behavior. The state of one node is charac-
terized by the intracellular potential Vint, the extracellular potential Vext, and the
state of the cell membrane, which is expressed in gating variables and ion



concentrations. The membrane potential Vmem is defined by

Vmem = Vint − Vext. (2.1)

Edges are characterized by the conduction properties for intracellular and in-
terstitial currents between two adjacent nodes. We call these electrical prop-
erties the intracellular and extracellular conductance, which are denoted by σint

and σext, respectively. It is assumed that for each edge it holds σ int > 0 and
σext > 0.

Consider simulation graph G(N ,E), where N represents the set of nodes
and E the edges between the nodes. It is assumed that G(N ,E) is connected,
i.e., each node can be reached from all other nodes via a path consisting of
one or more edges. The state of each node n ∈ N is described by intracellular
potential Vn

int, extracellular potential Vn
ext, membrane potential Vn

mem = Vn
int − Vn

ext

(unit mV), and the state of the membrane. An edge between nodes n,m ∈ N
exists when (n,m) ∈ E. A simulation graph is not directed, thus (n,m) ∈ E ≡
(m, n) ∈ E. The intracellular conductance of edge (n,m) ∈ E is denoted by
σ(n,m)

int , and the extracellular conductance by σ(n,m)
ext (unit mS). For each edge

(n,m) ∈ E, it holds σ(n,m)
int = σ(m,n)

int and σ(n,m)
ext = σ(m,n)

ext . The intracellular and
extracellular currents flowing from node n to node m are denoted by I n→m

int

and In→m
ext (unit μA), and satisfy Ohm’s law:

In→m
int = (Vn

int − Vm
int)σ

(n,m)
int , (2.2)

In→m
ext = (Vn

ext − Vm
ext)σ

(n,m)
ext . (2.3)

The intracellular current entering node n coming from adjacent nodes is de-
noted by In

int, and the extracellular current entering node n is denoted by I n
ext,

i.e.,

In
int =

∑
(a,n)∈E

Ia→n
int , (2.4)

In
ext =

∑
(a,n)∈E

Ia→n
ext . (2.5)

According to Kirchhoff’s law, current entering a node as intracellular current
must flow to the interstitial space as transmembrane current and leave the
node as extracellular current. By choosing the transmembrane current (I trans)
flowing from the intracellular space to the interstitial space, we obtain for
node n

In
trans = In

int = −In
ext. (2.6)
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Figure 2.1: Graphical representation of a simulation graph. The state of each node is
represented by the intracellular potential Vint, the extracellular potential Vext, and the
membrane potential Vmem. Electrical connections between the nodes are indicated
by the intracellular and interstitial conductances, which are denoted by σint and σext.
The intracellular and interstitial currents flowing between the nodes are represented
by the arrows labeled with Iint and Iext.

The transmembrane current (unit μA) consists of capacitive and ionic cur-
rents, and is defined by

In
trans = Cn

mem

dVn
mem

dt
+ S n

mem Iion(V
n
mem, q

n), (2.7)

where Cn
mem is the membrane capacitance of node n (unit μF), t is time (unit

ms), S n
mem is the membrane surface (unit cm2), and Iion(Vn

mem, q
n) the ionic mem-

brane current of node n expressed in μA per cm2 membrane surface. The
ionic current size depends on the membrane potential V n

mem and the state of
the membrane qn, which is usually expressed by a number of gating vari-
ables and ion concentrations. The Cellular Bidomain Model is defined by
equations (2.6) and (2.7). A graphical representation of a simulation graph
composed of four nodes and five edges is presented in Figure 2.1.

Although different membrane models can be applied for different nodes
to model heterogeneous cell membrane behavior, we apply the Courtemanche-
Ramirez-Nattel model of the human atrial action potential [37] for all nodes.
In this model, the total ionic current is given by

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca, (2.8)

where INa is fast inward Na+ current, IK1 is inward rectifier K+ current, Ito

is transient outward K+ current, IKur is ultrarapid delayed rectifier K+ cur-
rent, IKr is rapid delayed rectifier K+ current, IKs is slow delayed rectifier K+



current, ICa,L is L-type Ca2+ current, Ip,Ca is Ca2+ pump current, INaK is Na+-K+

pump current, INaCa is Na+/Ca2+ exchanger current, and Ib,Na and Ib,Ca are back-
ground Na+ and Ca2+ currents [37]. The model keeps track of the intracellu-
lar concentrations of Na+, K+, and Ca2+. The handling of intracellular Ca2+

by the sarcoplasmic reticulum (SR) is described by considering three intra-
cellular compartments: myoplasm, sarcoplasmic reticulum (SR) release com-
partment (junctional SR), and SR uptake compartment (network SR). Fur-
thermore, Ca2+ buffering within the cytoplasm mediated by troponin and
calmodulin is described as well as Ca2+ buffering mediated by calsequestrin
in the SR. An important characteristic of the Courtemanche-Ramirez-Nattel
model is the rate-dependent adaptation of the action potential duration [37].
The equations defining the ion concentrations, ionic membrane currents, SR
currents, and Ca2+ buffering are given in Appendix A.

2.2.2 Continuous bidomain equations

A generally accepted model which also distinguishes between the intracellu-
lar and interstitial space is described by the bidomain equations [69]. The bido-
main model was first proposed by Tung and Geselowitz [203]. In this model,
the microstructure of connected individual cells forming a syncytium in the
extracellular space is homogenized in a three-dimensional domain. The car-
diac tissue is then viewed as a two-phase medium, as if every point in space
consists of a piece of intracellular space and a piece of interstitial space. At
each point in space the two potentials Vint and Vext are defined. As in the Cellu-
lar Bidomain Model, the total current defined by the sum of the intracellular
and extracellular currents is conserved, which is denoted by

∇ · (g̃int∇Vint + g̃ext∇Vext) = 0, (2.9)

where g̃int and g̃ext are intracellular and extracellular conductivity tensors.
The transmembrane current Itrans is the current flowing from the intracellu-
lar space to the interstitial space. Itrans is expressed per unit of tissue volume
(unit μA/cm3) and is defined by

Itrans = ∇ · (g̃int∇Vint) = −∇ · (g̃ext∇Vext). (2.10)

As for the Cellular Bidomain Model, Itrans consists of capacitive and ionic cur-
rents, i.e.,

Itrans = χ(Cmem
∂Vmem

∂t
+ Iion) = ∇ · (g̃int∇Vint), (2.11)

where Vmem = Vint − Vext is the membrane potential, χ is the ratio of membrane
surface to tissue volume (unit cm−1), Cmem is the membrane capacitance (unit



μF/cm2), and Iion is the ionic membrane current (expressed in μA per cm2

membrane surface).
The bidomain model is defined by equations (2.10) and (2.11). By elimi-

nating Vint, the system of equations can be written as

χ(Cmem

∂Vmem

∂t
+ Iion) = −∇ · (g̃ext∇Vext), (2.12)

∇ · ((g̃int + g̃ext)∇Vext) = −∇ · (g̃int∇Vmem). (2.13)

Boundary conditions usually assume that there is no current across the bound-
ary that directly enters the intracellular space. If a current is injected, it enters
the cardiac tissue through the extracellular space. More explicit derivations
of the bidomain equations are presented in Refs. [74, 97, 191].

2.2.3 Relation between bidomain equations and Cellular Bidomain
Model

Consider a rectangular slab of cardiac tissue with anisotropy uniformly de-
fined throughout the tissue. It is assumed that the intracellular and extracel-
lular conductivities are homogeneous and are represented by tensors g̃ int and
g̃ext defined by

g̃int =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
gx

int 0 0
0 gy

int 0
0 0 gz

int

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (2.14)

g̃ext =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
gx

ext 0 0
0 gy

ext 0
0 0 gz

ext

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.15)

Using the definitions of tensors g̃ int and g̃ext, the continuous bidomain equa-
tions (2.10) and (2.11) become

gx
int

∂2Vint

∂x2
+gy

int

∂2Vint

∂y2
+gz

int

∂2Vint

∂z2
= −

(
gx

ext

∂2Vext

∂x2
+ gy

ext

∂2Vext

∂y2
+ gz

ext

∂2Vext

∂z2

)
, (2.16)

χ(Cmem

∂Vmem

∂t
+ Iion) = gx

int

∂2Vint

∂x2
+ gy

int

∂2Vint

∂y2
+ gz

int

∂2Vint

∂z2
. (2.17)

When solving the system of equations (2.16) and (2.17) by means of the
finite difference method [198], the cardiac tissue must be discretized. Dis-
cretization gives a system of ordinary differential equations (ODEs) and lin-
ear equations. Under the assumption that the cardiac tissue is represented
by a rectangular grid composed of segments of size Δx × Δy × Δz, we show



that the same system of ODEs and linear equations is obtained for a specific
choice of conductances and capacitances in the Cellular Bidomain Model.

The conversion from the continuous bidomain equations to a simulation
graph for the Cellular Bidomain Model is done by assuming that each node
n ∈ N represents a segment of cardiac tissue of size Δx×Δy×Δz. The intracel-
lular and extracellular conductances between two adjacent segments in the
x-direction are defined by

σx
int = gx

int

ΔyΔz
Δx
, (2.18)

σx
ext = gx

ext

ΔyΔz
Δx
, (2.19)

the intracellular and extracellular conductances between two adjacent seg-
ments in the y-direction by

σ
y
int = gy

int

ΔxΔz
Δy
, (2.20)

σ
y
ext = gy

ext

ΔxΔz
Δy
, (2.21)

and the intracellular and extracellular conductances between two adjacent
segments in the z-direction by

σz
int = gz

int

ΔxΔy
Δz
, (2.22)

σz
ext = gz

ext

ΔxΔy
Δz
. (2.23)

Furthermore, the membrane surface S n
mem for node n is defined by

S n
mem = χΔxΔyΔz, (2.24)

and the membrane capacitance Cn
mem (expressed in μF) by

Cn
mem = S n

memCmem, (2.25)

where Cmem represents the membrane capacitance expressed in μF per cm2

membrane surface.
Let Vint(x, y, z) denote the intracellular potential of node n at position (x, y, z).



The intracellular current entering node n is then defined by

In
int =

∑
(a,n)∈E

Ia→n
int

= (Vint(x − Δx, y, z) − Vint(x, y, z))σ
x
int + (Vint(x + Δx, y, z) − Vint(x, y, z))σ

x
int +

(Vint(x, y − Δy, z) − Vint(x, y, z))σ
y
int + (Vint(x, y + Δy, z) − Vint(x, y, z))σ

y
int +

(Vint(x, y, z − Δz) − Vint(x, y, z))σ
z
int + (Vint(x, y, z + Δz) − Vint(x, y, z))σ

z
int

= (Vint(x − Δx, y, z) − 2Vint(x, y, z) + Vint(x + Δx, y, z))σx
int +

(Vint(x, y − Δy, z) − 2Vint(x, y, z) + Vint(x, y + Δy, z))σy
int +

(Vint(x, y, z − Δz) − 2Vint(x, y, z) + Vint(x, y, z + Δz))σz
int.

Using the definitions of σx
int, σ

y
int, and σz

int, we obtain

In
int =

Vint(x − Δx, y, z) − 2Vint(x, y, z) + Vint(x + Δx, y, z)

Δx2
ΔxΔyΔz gx

int +

Vint(x, y − Δy, z) − 2Vint(x, y, z) + Vint(x, y + Δy, z)

Δy2
ΔxΔyΔz gy

int +

Vint(x, y, z − Δz) − 2Vint(x, y, z) + Vint(x, y, z + Δz)
Δz2

ΔxΔyΔz gz
int .

A similar expression can be obtained for In
ext.

Equation (2.6) of the Cellular Bidomain Model states that In
int = −In

ext, which
corresponds to the discretized form of equation (2.16) after division with
ΔxΔyΔz. Using S n

mem = χΔxΔyΔz, and Cn
mem = S n

memCmem, equation (2.7) of the
Cellular Bidomain Model can be written as

In
trans = χΔxΔyΔz(Cmem

dVn
mem

dt
+ Iion(V

n
mem, q

n)), (2.26)

which corresponds to the discretized form of equation (2.17) after division
with ΔxΔyΔz. Thus, by defining the conductivities, membrane surface, and
membrane capacitance as described above, the simulation graph represents a
discrete version of the continuous bidomain with surface-to-volume ratio χ,
membrane capacitance Cmem, and conductivity properties defined by tensors
g̃int and g̃ext.

2.2.4 Brickwall configuration

An alternative way to segmentize the cardiac tissue is assuming that the seg-
ments are connected to one another in a brickwall fashion. Models in which
the myocytes are interconnected in a brickwall fashion have been proposed
by Leon and Roberge [118] and by Spach and Boineau [179]. In these mod-
els, a single myocyte is subdivided in segments. We introduce a brickwall



Δy

Δx
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Figure 2.2: Graphical representation of brickwall configuration. The cardiac tissue
is subdivided in rectangular segments of size Δx × Δy. ηx =

1
2Δx is the length of the

contact area between two segments in transverse direction. The simulation graph is
represented by the dots (nodes) and the thick lines (edges).

configuration in which the segments of a rectangular grid are shifted in the
longitudinal direction, such that each segment is connected to 6 other seg-
ments rather than 4 (Figure 2.2).

Conductivities in the x-direction are defined by equations (2.18) and (2.19).
The intracellular and extracellular conductivities between two adjacent seg-
ments in the y-direction are defined by

σ̂
y
int = gy

int

ηxΔz
Δy
, (2.27)

σ̂
y
ext = gy

ext

ηxΔz
Δy
, (2.28)

where ηx represents the length of the contact area between the two segments
in transverse direction. An irregular brickwall configuration is obtained when
segment lengths are individually varied. Here, we consider a regular brick-
wall in which segments lengths are equal to Δx and ηx =

1
2Δx. Using Taylor

expansions, we derive a relation between the ratio Δx/Δy and the effective
conductivities that are approximated by a regular brickwall.

Consider a 2D brickwall and let Vint(x, y) denote the intracellular potential
of node n at position (x, y). Assuming ηx =

1
2Δx, the intracellular current

entering node n is defined by

In
int =

∑
(a,n)∈E

Ia→n
int

= (Vint(x − Δx, y) − 2Vint(x, y) + Vint(x + Δx, y))σx
int +

(Vint(x − 1
2Δx, y − Δy) − 2Vint(x, y) + Vint(x + 1

2Δx, y + Δy)) σ̂y
int +

(Vint(x − 1
2Δx, y + Δy) − 2Vint(x, y) + Vint(x + 1

2Δx, y − Δy)) σ̂y
int.



Using Taylor expansions, it can be shown that

In
int ≈ Δx2 ∂

2Vint

∂x2
σx

int +

(
1
2Δx2 ∂

2Vint

∂x2
+ 2Δy2 ∂

2Vint

∂y2

)
σ̂

y
int (2.29)

and using the definitions of σx
int and σ̂y

int with ηx =
1
2Δx, we obtain

In
int ≈

(
gx

intΔxΔyΔz + gy
int

Δx3Δz
4Δy

)
∂2Vint

∂x2
+ gy

intΔxΔyΔz
∂2Vint

∂y2
. (2.30)

For a rectangular grid, we obtain

In
int ≈ Δx2 ∂

2Vint

∂x2
σx

int + Δy2 ∂
2Vint

∂y2
σ

y
int, (2.31)

where σx
int and σy

int are defined by equations (2.18) and (2.20). Using the defi-
nitions of σx

int and σy
int, we obtain for the rectangular grid

In
int ≈ gx

intΔxΔyΔz
∂2Vint

∂x2
+ gy

intΔxΔyΔz
∂2Vint

∂y2
. (2.32)

By dividing equations (2.30) and (2.32) with ΔxΔyΔz and inspecting the dif-
ference, we find that, when using a brickwall with ηx =

1
2Δx, conductivity gx

int

changes to gx
int +

1
4gy

int(
Δx
Δy )2, while conductivity gy

int remains the same. In a simi-
lar way, it can be shown that gx

ext changes to gx
ext +

1
4gy

ext(
Δx
Δy )2, while gy

ext remains
the same. Thus, the ratio of anisotropy increases when the cardiac tissue is
modeled by a brickwall.

2.2.5 Ionic membrane currents

When the cell is at rest, the membrane potential Vmem typically has a value
between −80 and −90 mV. Consider ionic membrane current Iion describing
the current flow of ion species ion over the membrane. In case the charge of
ion is positive (e.g., Na+, K+, or Ca2+), Iion < 0 means positive charge is flowing
into the cell and the membrane depolarizes, i.e., the membrane potential Vmem

becomes less negative. In case Iion > 0, positive charge moves out of the cell
and the membrane is repolarizing, i.e., Vmem returns to its resting value.

The current size of Iion flowing into or out of the cell is related to the in-
tracellular and extracellular concentrations of ion and, since ion is charged,
on the membrane potential. The net force acting on the ion thus depends on
the electrical and chemical gradients and is referred to as the electrochemical



gradient or driving force [19]. The driving force is defined as (Vmem−Eion), where
Eion is the equilibrium potential of ion. Eion is given by the Nernst equation

Eion =
RT
zionF

ln

(
[ion]e

[ion]i

)
, (2.33)

where R is the universal gas constant, T is the absolute temperature, z ion is the
valence of ion, F is Faraday’s constant, and [ion]e and [ion]i are the extracellu-
lar and intracellular concentrations of ion.

The direction of Iion across the membrane is determined by the sign of
(Vmem − Eion). The current size depends on the driving force as well as the
conductance gion of the membrane to ion, i.e.,

Iion = gion(Vmem − Eion), (2.34)

which is equivalent to Ohm’s law. gion depends on the number and states of
the ion channels. Let γ denote the conductance of a single channel, N the
number of channels, and p the probability of a channel being in the open
state, then

gion = γNp. (2.35)

The product of γ and N determines the maximum conductance G ion = γN and
equation (2.34) is usually written as

Iion = Gion p (Vmem − Eion). (2.36)

The probability p of a channel being in the open state corresponds to the
fraction of channels in the open state in the cell. It is assumed that the channel
is controlled by a gate that can be either open or closed. Let α p denote the
opening rate constant and βp the closing rate constant. Since p is the fraction
of channels in the open state, the rate of opening is equal to α p(1 − p) and
the rate of closing is equal to βp. The dynamics of p are determined by the
difference between the rates of opening and closing, i.e.,

dp
dt
= αp(1 − p) − βp p. (2.37)

At steady-state, the rates of opening and closing are equal, i.e.,

αp(1 − p) = βp p, (2.38)

from which follows

p = p∞ =
αp

αp + βp
. (2.39)



Let p(t) denote the value of p at time t and p0 the value of p at time t0, then
the solution of differential equation (2.37) is

p(t) = p∞ − (p∞ − p0) exp

(
− t − t0
τp

)
, (2.40)

where time constant τp is defined by

τp =
1

αp + βp
. (2.41)

Opening rate constant αp and closing rate constant βp depend on Vmem

and are usually fitted to experimental data using a Boltzmann-type equa-
tion [19]. All ionic membrane currents of the Courtemanche-Ramirez-Nattel
model and similar membrane models are described in this way using one or
more gating variables (Appendix A).

The current flow of ions through the membrane influences the intracel-
lular and extracellular ion concentrations. In the Courtemanche-Ramirez-
Nattel model, extracellular ion concentrations are assumed to be constant.
Under the assumption that Iion is expressed in pA/pF, the dynamics of the
intracellular ion concentrations are described by

d[ion]i

dt
= − Cm

zionF Vi

Iion, (2.42)

where [ion]i is the intracellular concentration of ion, Cm is the membrane ca-
pacitance of a single atrial cell (100 pF [37]), zion is the valence of ion, F is
Faraday’s constant, and Vi is the intracellular volume (13668 μm3 [37]).

2.2.6 Simulation set-up

Action potential propagation is related to the conductivity of the tissue and
the membrane capacitance. In Table 2.1, the bidomain parameters used for
the present simulation study are listed. These parameters are based on mea-
surements by Clerc [33] and adjusted as described by Henriquez [69]. The
numerical integration scheme is described in Chapter 3. With the exception
of single-cell simulations, a simulation time step of 0.01 ms was used for all
simulations.

2.3 Results

2.3.1 Single cell simulations

Rate-dependent adaptation of the action potential duration (APD) is an im-
portant aspect in the onset and perpetuation of atrial fibrillation. To investi-



Table 2.1: Bidomain parameters for cardiac tissue

Parameter Definition Value

gx
int Longitudinal intracellular conductivity 1.7422 mS/cm

gy
int Transverse intracellular conductivity 0.1934 mS/cm

gz
int Transmural intracellular conductivity 0.1934 mS/cm

gx
ext Longitudinal extracellular conductivity 6.2500 mS/cm

gy
ext Transverse extracellular conductivity 2.3641 mS/cm

gz
ext Transmural extracellular conductivity 2.3641 mS/cm

Cmem Membrane capacitance 1.0 μF/cm2

χ Surface-to-volume ratio 2000 cm−1
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Figure 2.3: Effect of stimulation with different basic cycle length (BCL) on action po-
tential and calcium transient. Membrane potential (Vmem) and intracellular calcium
concentration ([Ca2+]i) for BCL = 1 s and BCL = 0.35 s. A stimulus current was
applied at 100 ms (BCL = 1 s and BCL = 0.35 s) and at 450 ms (BCL = 0.35 s).
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Figure 2.4: Effect of stimulation with different basic cycle length (BCL) on ionic cur-
rents. Fast inward Na+ current (INa), inward rectifier K+ current (IK1), transient out-
ward K+ current (Ito), ultrarapid delayed rectifier K+ current (IKur), rapid delayed
rectifier K+ current (IKr), slow delayed rectifier K+ current (IKs), L-type Ca2+ current
(ICa,L), Ca2+ pump current (Ip,Ca), Na+-K+ pump current (INaK), Na+/Ca2+ exchanger
current (INaCa), background Na+ current (Ib,Na), and background Ca2+ current (Ib,Ca)
for BCL = 1 s and BCL = 0.35 s. A stimulus current was applied at 100 ms (BCL = 1
s and BCL = 0.35 s) and at 450 ms (BCL = 0.35 s). Note the different time scales for
INa and Ito.
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Figure 2.5: Depolarization wave along 5-cm-long fiber for BCL = 1 s and BCL = 0.35
s. Left: membrane potential (Vmem), extracellular potential (Vext), and intracellular
calcium concentration ([Ca2+]i). Right: ion current (Iion), intracellular current (Iint),
and extracellular current (Iext). Data plotted 0.1 s after stimulation of the segment at
0.0 cm. Note the different scales of the x-axis in the right column.

gate the effect of varying stimulation intervals, or basic cycle length (BCL), we
performed a series of single cell simulations in which the cell was stimulated
with a BCL of 1 s and 0.35 s, respectively. A simulation time step Δt = 0.005
ms was used and the cell was stimulated with a stimulus current of 20 pA/pF
during 2 ms as in Ref. [37].

In Figure 2.3, the action potential and calcium transient are shown for
BCL = 1 s and BCL = 0.35 s. The action potential duration (APD) decreases
from 271 ms for BCL = 1 s to 258 ms for BCL = 0.35. In Figure 2.4, the
ionic membrane currents are presented. The shorter APD for BCL = 0.35 s
is mainly attributed to incomplete recovery of ICa,L, IKr, and IKs (see Ref. [37]
for details). Besides the currents involved in the plateau and repolarization
phase, also the depolarizing INa current is affected by changes in BCL. INa

current size decreases from 176 pA/pF (BCL = 1 s) to 110 pA/pF (BCL = 0.35
s).



2.3.2 Wave propagation along a fiber

To investigate the propagation of a depolarization wave, a 5-cm-long fiber
was created that consisted of 0.01-cm-long segments. A depolarization wave
was generated by stimulating the first segment with a stimulus current of
100 pA/pF until the membrane was depolarized. During twelve seconds,
stimulation was repeated each 1 s or each 0.35 s to investigate the effect of
varying BCL on wave propagation.

In Figure 2.5, the spatial distribution of Vmem, Vext, [Ca2+]i and of the cur-
rents Iion, Iint, and Iext are depicted 0.1 s after stimulation with BCL = 1 s and
BCL = 0.35 s. The conduction velocity was 0.4103 m/s with BCL = 1 s and
0.4153 m/s with BCL = 0.35 s, such that approximately 0.1 s after stimulation
of the first segment, the depolarization wave was ±4 cm from the stimula-
tion site. Just before depolarization, Vmem = −80.8 mV for BCL = 1 s and
Vmem = −79.6 mV for BCL = 0.35 s. Although INa is reduced for BCL = 0.35 s
(Figure 2.4), the conduction velocity is not decreased, which is explained by
the fact that Vmem was increased at the moment of depolarization and less
current was needed to reach the excitation threshold.

2.3.3 Grid structure

The effect of using a square grid, a rectangular grid, or a brickwall was inves-
tigated using a 2 × 1 cm sheet of tissue in which a depolarization wave was
generated in the center. The square grid was composed of segments of size
0.004× 0.004 cm. Both the rectangular grid and the brickwall were composed
of 0.01 × 0.004 cm segments. For the brickwall we used ηx =

1
2Δx.

In Figure 2.6, the membrane potential Vmem is presented for the square
grid, the rectangular grid, and the brickwall. It can be observed that a de-
polarization wave is generated in the center and spreads out over time. The
shape of the depolarization front is ellipsoid, which is consistent with the
anisotropy in the conductivity properties (Table 2.1). The shape of the de-
polarization fronts is similar for the square grid and the rectangular grid. In
contrast, the depolarization front for the brickwall has a more elongated el-
lipsoidal shape, which is consistent with the larger effective conductivity in
the x-direction (Section 2.2.4).

In the bidomain model [69], the conduction velocity in longitudinal direc-
tion (θL) is related to the tissue conductivities by

θL ∼
√

gx
int gx

ext

gx
int + gx

ext

, (2.43)
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Figure 2.6: Membrane potential (Vmem) when cardiac tissue is represented by a square
grid (left), a rectangular grid (center), or a brickwall (right). A depolarization front
was generated by stimulating the center of the 2 × 1 cm tissue at 0 ms. Red/yellow
indicates depolarized tissue and blue indicates resting tissue.
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Figure 2.7: Extracellular potential (Vext) when cardiac tissue is represented by a
square grid (left), a rectangular grid (center), or a brickwall (right). A depolariza-
tion front was generated by stimulating the center of the 2 × 1 cm tissue at 0 ms.
Red/yellow indicates positive Vext, green indicates Vext = 0 mV, and blue indicates
negative Vext.
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Figure 2.8: Membrane potential (Vmem) and extracellular potential (Vext) for four seg-
ments of the 2 × 1 cm brickwall tissue. A depolarization wave was generated by
stimulating the center (x = 1.0 cm, y = 0.5 cm) at 0 ms. Left: depolarization wave
travels in longitudinal direction. Right: depolarization wave travels in transverse
direction. Arrows indicate maximum upstroke velocity ((dVmem/dt)max). Note the
different time scale for Vext.



and in transverse direction (θT) by

θT ∼
√

gy
int gy

ext

gy
int + gy

ext

. (2.44)

For a regular brickwall (ηx =
1
2Δx), the longitudinal intracellular conductiv-

ity is gx
int +

1
4gy

int(
Δx
Δy )2 and the longitudinal extracellular conductivity is gx

ext +
1
4gx

ext(
Δx
Δy )2 (Section 2.2.4). With the bidomain parameters defined in Table 2.1,

the ratio of anisotropy θL/θT can be predicted. The predicted value of θL/θT =

2.8 for the square grid and the rectangular grid, and 3.1 for the brickwall.
These values are in good agreement with the actual θL/θT in Figure 2.6.

In Figure 2.7, the extracellular potential Vext is presented for the same three
grids. In Figure 2.8, Vmem and Vext are plotted for two segments of the brick-
wall when the depolarization wave travels in longitudinal direction and two
segments when the wave travels in transverse direction. Vmem is similar for
all segments. However, Vext is more elevated before depolarization when the
depolarization wave travels in longitudinal direction. This elevation in Vext

becomes more apparent when the segment is located further from the center.
These differences in Vext between longitudinal and transverse wave propa-
gation are in agreement with the experimental results of Spach et al. [185]
and the simulation results of Henriquez [69]. In Figure 2.8, the maximum
upstroke velocity ((dVmem/dt)max) is indicated. The larger (dVmem/dt)max for im-
pulse propagation in transverse direction is in agreement with the experi-
mental observations from Spach et al. [179, 184].

2.3.4 Arrhythmic behavior

Arrhythmic behavior was investigated by initiating a spiral wave in an 8 × 3
cm tissue using an S1S2 protocol [201]. First, the top of the tissue (S1) was
stimulated. Next, a block of segments in the center of the left half (S2) was
stimulated with a coupling interval of 325 ms. Since the bottom half of the
tissue was still refractory, a depolarization front developed in one direction
and a reentrant wave was established. The tissue was a brickwall structure
composed of 0.02× 0.008 cm segments with uniform conductivity properties.
Arrhythmic behavior was studied during 6 s of simulation time.

In Figure 2.9, the onset of the spiral wave is presented. The spiral wave
was unstable and after 6 s, the entire tissue was depolarized such that no re-
entry could occur. The transition from arrhythmic behavior to depolarization
of the entire tissue is shown in Figure 2.10. In Figure 2.11, Vmem is shown
for three segments on the center row. The variation in AP morphology and
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Figure 2.9: Membrane potential (Vmem) on an 8×3 cm tissue. An unstable spiral wave
was generated using an S1S2 protocol with coupling interval 325 ms. Simulation
state is shown between 50 and 1500 ms with intervals of 50 ms.
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Figure 2.10: Membrane potential (Vmem) on an 8 × 3 cm tissue. An unstable spiral
wave was generated using an S1S2 protocol with coupling interval 325 ms. Simula-
tion state is shown between 4650 and 5500 ms with intervals of 50 ms.
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Figure 2.11: Membrane potential (Vmem) of three segments of the 8×3 cm tissue. Top:
segment at x = 2.0 cm and y = 1.5 cm, center: segment at x = 4.0 cm and y = 1.5
cm, bottom: segment at x = 6.0 cm and y = 1.5 cm. An unstable spiral wave was
generated using an S1S2 protocol with coupling interval 325 ms. Arrow indicates S2
stimulus.



Figure 2.12: Triangular mesh representing the human atria. The mesh is created from
MRI measurements and consists of 3800 nodes and 7446 triangles.

APD is a consequence of short diastolic intervals and explains the unstable
behavior of the spiral wave.

2.3.5 Depolarization of the human atria

To simulate propagation of the depolarization wave on the human atria, we
used a triangular mesh created from MRI data [207, 208]. The mesh was
composed of 3800 nodes and 7446 triangles (Figure 2.12). The average dis-
tance between two connected nodes was 0.27 cm (standard deviation 0.07
cm), which was reduced to 0.03 cm by refining the mesh as described in Chap-
ter 3. The tissue was assumed to be isotropic with g int = gext = 6.25 mS/cm and
segmentization was done as described by Virag et al. [215]. To obtain a con-
duction velocity of 0.9 m/s, maximum INa conductance (GNa) was increased
from 7.8 to 16 nS/pF as described by Jacquemet [82]. A depolarization wave
was generated by electrical stimulation of the sino-atrial node.

In Figure 2.13, Vmem and Vext are shown during 400 ms after stimulation of
the sino-atrial node. All tissue was depolarized after 120 ms; after 400 ms,
the atria were almost repolarized. The depolarization times obtained by our
simulations are in agreement with the simulation results reported by Harrild
and Henriquez [67] and by Virag et al. [215].
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Figure 2.13: Membrane potential (Vmem) and extracellular potential (Vext) on human
atrial geometry. A depolarization wave was generated at 0 ms by stimulating the
sino-atrial node.



2.4 Discussion

The Cellular Bidomain Model is aimed at modeling cardiac electrophysiol-
ogy. Although the model is discrete by nature, we have mathematically
proved that our model corresponds to the well-known continuous bidomain
model under the assumption that the bidomain equations are solved with the
finite difference method. By simulating impulse propagation, spiral waves,
and depolarization of the human atria, we demonstrated that the model is
capable of simulating normal as well as arrhythmic behavior.

To model the cardiac tissue, we compared a brickwall configuration with
a square grid and a rectangular grid. We found that the effective conductiv-
ities are increased in longitudinal direction when a brickwall configuration
is used. Since a brickwall better represents the way myocytes are connected,
brickwall configurations are applied to model uniform and nonuniform car-
diac tissue in Chapter 4 and pathological tissue in Chapter 5.

A possible extension of the Cellular Bidomain Model is to incorporate car-
diomechanics and model the influence of mechanics on the ionic membrane
currents, i.e., mechanoelectric feedback. In Chapter 6, we consider influence
of local stretch on the membrane behavior through the stretch-activated cur-
rent Isac. In Chapter 7, the L-type Ca2+ current ICa,L is regulated by the amount
of local mechanical work during a cardiac cycle. Finally, in Chapter 8, the
influence of stretch on the onset of atrial fibrillation is studied using the ge-
ometry of the human atria.

2.5 Conclusion

The Cellular Bidomain Model is well-suited to simulate cardiac impulse prop-
agation, arrhythmia, and depolarization of the human atria. The model pro-
vides a research tool to investigate cardiac electrophysiology and mechano-
electric feedback under normal and under pathological conditions.



3
Numerical aspects of the
Cellular Bidomain Model

Abstract

Action potential propagation in normal and in pathological tissue can be mod-
eled with the Cellular Bidomain Model. The model consists of a coupled system of
nonlinear differential equations and linear equations. We introduce a forward Eu-
ler scheme to solve the differential equations and an iterative method to solve the
system of linear equations. The gating variables of the ionic membrane currents are
updated using the analytical solution of the differential equation, which allows for
larger time steps when the membrane is repolarizing or at rest. Choices for segment
size and simulation time steps are evaluated for both uniform and nonuniform car-
diac tissue. By using different simulation time steps to update the state of the mem-
brane, up to 70% of computational effort may be saved without significant loss of
accuracy. On top of this reduction, computation time and memory usage can be re-
duced with another 85% by using a coarser mesh combined with a heuristic method
to compute the transmembrane current.
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3.1 Introduction

Cardiac electrophysiology can be modeled with the Cellular Bidomain Model,
which is a coupled system of nonlinear differential equations and linear equa-
tions. We introduce an explicit numerical integration scheme to solve the
coupled system of equations. Depending on local electrical activity, compu-
tational effort can be saved by using different simulation time steps to com-
pute the ionic membrane currents. To quantify the effect of varying segment
sizes and simulation time steps, we consider the simulation of wave propa-
gation along a fiber and simulations of wave propagation and spiral waves
on sheets of cardiac tissue. Furthermore, we introduce a multilevel numerical
integration scheme to simulate wave propagation on a triangular mesh of the
human atria. Finally, we investigate the effect of spatially ”smoothing” the
ionic membrane current to obtain accurate results with a coarse mesh of the
human atria.

3.2 Methods

3.2.1 Cellular Bidomain Model in matrix notation

In Section 2.2.1, the Cellular Bidomain Model was introduced. Here, we for-
mulate the model using matrices. Consider simulation graph G(N ,E) con-
sisting of N nodes numbered 1 through N. We define the N × N matrices D int

and Dext by

Dn,m
int =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ(n,m)

int , if (n,m) ∈ E
−∑

(n,a)∈Eσ
(n,a)
int , if n = m

0, otherwise
(3.1)

Dn,m
ext =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ(n,m)

ext , if (n,m) ∈ E
−∑

(n,a)∈Eσ
(n,a)
ext , if n = m

0, otherwise
(3.2)

It can be observed that the number of non-zero elements on each row of D int

and Dext is equal to the number of adjacent nodes for each node plus one.
Since, in general, the number of adjacent nodes is small compared with the
total number of nodes, Dint and Dext are sparse matrices. Furthermore, D int

and Dext are singular, because they are constructed such that the sum of all
elements in each row equals zero. Using definitions (3.1) and (3.2), we find



for each node n

In
int =

∑
m∈N

Dn,m
int Vm

int, (3.3)

In
ext =

∑
m∈N

Dn,m
ext Vm

ext. (3.4)

Using (3.3) and (3.4) to rewrite equations (2.6) and (2.7) defining the Cel-
lular Bidomain Model, we obtain the system of equations

Cmem
dVmem

dt
+ S mem Iion = −DextVext, (3.5)

DintVint + DextVext = 0, (3.6)

Vmem = Vint − Vext, (3.7)

where Vint, Vext, and Vmem are vectors of length N representing the intracellular,
extracellular, and membrane potential of all nodes, and vector Iion of length
N represents the ionic membrane current of all nodes. Furthermore, C mem and
S mem are diagonal matrices with elements Cn

mem and S n
mem, respectively, on the

diagonal.
The system of equations (3.5), (3.6), and (3.7) is a coupled system of non-

linear differential equations and linear equations, which can be simplified by
eliminating Vint as

Cmem
dVmem

dt
+ S mem Iion = −DextVext, (3.8)

(Dint + Dext)Vext = −DintVmem. (3.9)

The system of differential equations (3.8) describes the time evolution of the
membrane potentials Vmem. The extracellular potentials Vext occur in the right
hand side of (3.8) and must be found by solving the linear system of equa-
tions (3.9). Since Dint and Dext are singular, also matrix Dint + Dext is singular.
Hence, it is not a priori clear that the system (3.9) has a unique solution for
Vext. We discuss the consistency of the system of equations (3.8) and (3.9) in
Appendix B.

3.2.2 Numerical integration scheme

Consider the Cellular Bidomain Model in matrix notation defined by equa-
tions (3.8) and (3.9). A forward Euler scheme to solve the system of equations
is defined by

Vk+1
mem = Vk

mem − Δt C−1
mem(DextVk

ext + S mem Ik
ion), (3.10)

(Dint+Dext)Vk+1
ext = −DintVk+1

mem, (3.11)



where Vk
mem denotes the membrane potentials on time kΔt and Ik

ion represents
the ionic membrane currents computed with Vk

mem. According to this scheme,
Vmem is computed using a forward Euler step. Next, Vext is found by solv-
ing the system of linear equations (3.11). Finally, Vint can be obtained from
equation (3.7).

Since Cmem is a diagonal matrix, computation of Vk+1
mem from (3.10) requires

only one matrix-vector multiplication with sparse matrix Dext. Solving Vk+1
ext

from (3.11) is, however, more complicated. Due to the singularity of the ma-
trix Dint + Dext, no unique solution of this system of equations exists. It can
be shown that if the simulation graph is connected, the various solutions
of (3.11) differ only by a constant shift of all extracellular potentials (Ap-
pendix B). To obtain a unique solution for (3.11), we introduce one additional
equation stating that on each time the sum of extracellular potentials equals
zero, i.e.,∑

n∈N
Vn,k

ext = 0, (3.12)

where Vn,k
ext denotes the extracellular potential of node n at time kΔt. Initially,

this extra requirement can be satisfied by choosing V n,0
ext = 0, for all nodes

n ∈ N . Since the number of equations is large, the system of linear equa-
tions (3.11) is solved with an iterative method. An iterative method has the
advantage that the solution found during the former time step can be used to
initialize the iteration process for the current time step. We discuss Jacobi’s
iteration method and the Conjugate Gradient (CG) method.

Jacobi’s iteration method

Let D = Dint + Dext, and let P be the diagonal part of D, with reversed sign.
Hence, the elements of P are given by Pn,n =

∑
(n,a)∈E(σ

(n,a)
int + σ

(n,a)
ext ). Since the

simulation graph is connected, each node n is connected to at least one other
node, which implies that all elements Pn,n are positive. Hence, the matrix P is
not singular. Equation (3.11) can now be reformulated as

P Vk+1
ext = (D + P)Vk+1

ext + DintVk+1
mem. (3.13)

The solution of (3.13) can be approximated by iterating

Vk+1,i+1
ext = P−1(D + P)Vk+1,i

ext + P−1DintVk+1
mem, (3.14)

where Vk+1,i
ext denotes the approximation of Vk+1

ext after i iterations. This is Ja-
cobi’s iteration method for solving systems of linear equations [143, 147]. As



a first approximation of Vext at time (k + 1)Δt, the value of Vext at time kΔt is
chosen, i.e.,

Vk+1,0
ext = Vk

ext. (3.15)

The stop criterion is based on Kirchhoff’s law stating that In
int + In

ext = 0 for all
n ∈ N (equation (2.6)), and is defined by

|In
int + In

ext| < ε, (3.16)

for all nodes n ∈ N . This is the ∞-norm of the residual [143]. We discuss the
convergence of Jacobi’s iteration method in Appendix B.

Conjugate Gradient method

Another method that can be used to solve the system of linear equations (3.11)
is the Conjugate Gradient (CG) method [147]. Let D = Dint + Dext, and let P be
the diagonal part of D. Equation (3.11) can be reformulated as

P−1D Vk+1
ext = −P−1DintVk+1

mem, (3.17)

where matrix P serves as a preconditioner. The solution of (3.17) can be ap-
proximated by the untransformed preconditioned conjugate gradient method
[12] as follows:

r(0) = −DintVk+1
mem − D Vk+1,0

ext (3.18)

d(0) = P−1 r(0) (3.19)

α(i) =
r(i)T

P−1 r(i)

d(i)T D d(i)
(3.20)

Vk+1,i+1
ext = Vk+1,i

ext + α
(i)d(i) (3.21)

r(i+1) = r(i) − α(i) D d(i) (3.22)

β(i+1) =
r(i+1)T

P−1 r(i+1)

r(i)T P−1 r(i)
(3.23)

d(i+1) = P−1 r(i+1) + β(i+1) d(i) (3.24)

Here r(i) and d(i) represent the residual and the direction vectors at the ith iter-
ation, and α(i) and β(i) are scalars. The Conjugate Gradient method terminates
after at most N iterations [147]. As before, we use the∞-norm of the residual
r(i) as a stop criterion, which is equivalent to

|In
int + In

ext| < ε, (3.25)

for all nodes n ∈ N .
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Figure 3.1: Action potential generated by the Courtemanche-Ramirez-Nattel
model [37]. Accuracy levels high, medium, and low are indicated by arrows.

3.2.3 Computation of the membrane state

The membrane state, denoted by qn for node n ∈ N , is described by a large
number of gating variables and intracellular ion concentrations. By refor-
mulating equation (2.37) using definitions (2.39) and (2.41), the dynamics of
gating variable p are described by

dp
dt
=

p∞ − p
τp

, (3.26)

where p∞ represents the steady-state value and τ p the time constant. Let p(k)

denote the solution of p at time kΔt, then p(k+1) can be computed by

p(k+1) = p∞ − (p∞ − p(k)) exp

(
−Δt
τp

)
. (3.27)

Since p∞ and τp are related to Vmem, larger simulation time steps can be used
when Vmem changes little over time, i.e., during the plateau phase, repolariza-
tion, and rest.

The dynamics of the intracellular concentrations are described by equa-
tion (2.42). Let [ion](k)

i denote the intracellular ion concentration at time kΔt.



Using a forward Euler scheme, [ion](k+1)
i is obtained by

[ion](k+1)
i = [ion](k)

i − Δt
Cm

zionF Vi

Ik
ion, (3.28)

where Ik
ion is the ionic membrane current computed with Vk

mem. As before,
larger simulation time steps can be used when the ion concentrations change
little over time. This occurs when the ion currents are relatively small, which
corresponds to small changes in Vmem.

Based on these observations, we introduce a simulation scheme to update
the membrane state in which small time steps are used in areas near the depo-
larization wave front, and larger time steps in areas where the cells are in their
plateau phase, repolarizing, or resting. During a simulation run, each node is
in one of three distinctive levels of accuracy. The accuracy levels are named
high, medium, and low. The simulation time steps to compute the membrane
state are indicated by Δtmem

high , Δtmem
med , and Δtmem

low , respectively. Nodes with depo-
larizing membranes have accuracy level high. A message passing mechanism
is implemented to ensure that depolarizing nodes inform all other nodes in
the simulation graph that can be reached by a path with length at most 10.
These nodes also change their accuracy level to high. This mechanism ensures
that all nodes located within a distance of approximately 1 mm of the depo-
larization front are updated with high accuracy. Nodes having repolarizing
membranes change their accuracy level to medium during the notch (28 ms
after depolarization), and to low during the plateau of the action potential (91
ms after depolarization; Figure 3.1). In this way, small time steps to compute
the membrane state are only performed for a limited number of nodes during
each time step.

3.2.4 Segment size and simulation time step size

Criteria for segment size and simulation step size are related to the model
parameters. The bidomain parameters used for the simulations in Chapter 2
are listed in Table 2.1. To obtain criteria for the size of individual segments,
we apply cable theory and consider subthreshold behavior along a fiber as
described by Henriquez [69]. The application of a stimulus current produces
a spatial change in the membrane potential along the fiber. For subthreshold
behavior, the transmembrane current Itrans can be described by

Itrans = Cmem

dVmem

dt
+

Vmem

Rmem

, (3.29)

where Rmem is the membrane resistance in Ω·cm2 and Cmem the membrane ca-
pacitance in μF/cm2 [69]. The steady-state response of Vmem along the fiber to a



subthreshold current at position x = 0 is exponential and can be described by

Vmem(x) = Vmem(0) exp
(
− x
λ

)
, (3.30)

where Vmem(x) is the membrane potential on distance x from the stimulus site,
Vmem(0) the membrane potential at the stimulus site (x = 0), and λ the length
constant [69]. Using the bidomain parameters from Table 2.1, the length con-
stants in longitudinal, transverse, and transmural direction, denoted by λ x,
λy, and λz, can be expressed as

λx =

√
Rmem gx

int gx
ext

χ (gx
int + gx

ext)
(3.31)

λy =

√
Rmem gy

int gy
ext

χ (gy
int + gy

ext)
(3.32)

λz =

√
Rmem gz

int gz
ext

χ (gz
int + gz

ext)
(3.33)

Membrane resistance Rmem was estimated for the Courtemanche-Ramirez-Nat-
tel model by applying a subthreshold stimulus current of 0.3 pA/pF during
300 ms using

Vmem − Vrest

Rmem

= Iion, (3.34)

with Vrest = −81 mV and Vmem ranging from −80 mV to −70 mV. Rmem varied
between 22 and 38 Ω·cm2. For these values of Rmem, λx is in between 0.12 and
0.16 cm, and λy and λz are in between 0.04 cm and 0.06 cm. To obtain accurate
simulation results, Δx should be at most 0.02 cm, while Δy and Δz should be
at most 0.008 cm.

Explicit numerical methods are limited by a stability condition [147]. For
an anisotropic, homogeneous, three-dimensional monodomain, this condi-
tion is formulated by

Δt <
χCmem

2
(

gx

Δx2 +
gy

Δy2 +
gz

Δz2

) , (3.35)

where gx, gy, and gz represent the conductivities in x-, y-, and z-direction,
respectively [147].



A similar relation can be derived for an anisotropic, homogeneous, three-
dimensional bidomain. Puwal and Roth [151] formulated the following sta-
bility condition for the three-dimensional bidomain:

Δt <
χCmem

(
gx

int+gx
ext

Δx2 +
gy

int+gy
ext

Δy2 +
gz

int+gz
ext

Δz2

)
2
(

gx
int
Δx2 +

gy
int
Δy2 +

gz
int
Δz2

) (
gx

ext
Δx2 +

gy
ext
Δy2 +

gz
ext
Δz2

) . (3.36)

Using definitions (2.18) through (2.25) for conductances σx
int, σ

x
ext, σ

y
int, σ

y
ext, σ

z
int,

σz
ext, membrane surface S n

mem, and membrane capacitance Cn
mem, the stability

condition for the Cellular Bidomain Model on a rectangular grid is formu-
lated by

Δt <
Cn

mem

(
σx

int + σ
x
ext + σ

y
int + σ

y
ext + σ

z
int + σ

z
ext

)
2
(
σx

int + σ
y
int + σ

z
int

) (
σx

ext + σ
y
ext + σ

z
ext

) . (3.37)

Puwal and Roth [151] proved that stability condition (3.36) holds un-
der the assumption that Iion = 0. To our knowledge, a proof has not been
given for the more general assumption that |Iion| < A, for some constant A.
However, Puwal and Roth [151] did some numerical experiments in which
they searched for the largest time step that did not lead to instability. They
found similar results for Iion = 0 and for Iion modeled by the Fenton-Karma
model [58]. In both cases, the maximum time step is close to the theoretical
maximum time step, which indicates that the stability condition also holds
when Iion represents active membrane behavior.

3.2.5 Multilevel simulation graph

In Chapter 2, simulations were performed with a triangular mesh represent-
ing the human atria [207, 208]. The original mesh is composed of 3800 nodes
and 7446 triangles. The average distance between two connected nodes in
the mesh is 0.27 cm (standard deviation 0.07 cm). Under the assumption that
the atria are isotropic with gint = gext = 6.25 mS/cm, the length constant is in
between 0.19 and 0.24 cm (Rmem between 22 and 38 Ω·cm2). To obtain accurate
simulation results, the distance between two connected nodes should be at
most 0.03 cm, which is 9 times smaller than the average distance in the mesh.

An average distance of 0.09 cm can be obtained by refining the mesh such
that each of the triangles is subdivided in 9 smaller triangles. By refining
the mesh once more, the average distance becomes the desired 0.03 cm. The
number of nodes increases from 3800 to 33754 after the first refinement and
to 302320 after the second refinement. In this way, we obtain three levels



of coarseness. Since computation of Vmem and Vext at the finest levels is only
necessary near the depolarization wave front, we use a multilevel scheme to
solve the system of equations as follows. In case the accuracy level is high,
Vmem and Vext are determined on the finest level. In case the accuracy level is
medium, Vmem and Vext are determined on the intermediate level, and in case
the accuracy level is low, Vmem and Vext are determined on the coarsest level.
The state of the membrane is updated at all levels of the simulation graph.
As before, the simulation time step to compute the membrane state depends
on the accuracy level.

Using the multilevel approach to compute Vmem and Vext, a considerable
amount of computational effort can be saved. To further decrease the amount
of computation time and memory usage, we introduce a heuristic method
with which we use only two levels of the simulation graph in stead of all
three. In the Cellular Bidomain Model, the transmembrane current Itrans of
node n is defined by equation (2.7):

In
trans = Cn

mem

dVn
mem

dt
+ S n

mem Iion(V
n
mem, q

n), (3.38)

where Cn
mem is the membrane capacitance of node n, S n

mem the membrane sur-
face, and Iion(Vn

mem, q
n) the ionic membrane current. The heuristic is defined by

replacing Iion(Vn
mem, q

n) in equation (3.38) with

(1 − α)Iion(V
n
mem, q

n) +
α

#(n, a) ∈ E
∑

(n,a)∈E
Iion(V

a
mem, q

a), (3.39)

where 0 ≤ α ≤ 1 indicates the influence of the ionic membrane current of
the surrounding nodes on the transmembrane current. This method can be
viewed as a way to ”smooth” Iion such that the spatial distribution of Iion cor-
responds better to the coarser mesh.

3.2.6 Simulation set-up

The bidomain parameters used for the present study are the same as in Chap-
ter 2 (Table 2.1). To investigate the effect of varying simulation time steps, seg-
ment sizes, and computational methods, the simulations of Chapter 2 were
repeated with different choices for segmentization and numerical methods.
Both computational effort and simulation results were compared with a ref-
erence simulation.

To compare simulation results, deviations in Vmem, Vext, and time of exci-
tation (tdepol) were computed as follows. The deviation in Vmem at simulation



time kΔt is defined by

Ek
Vmem

=

√
1
N

∑
n∈N

(Vn,k
mem − Ṽn,k

mem)2, (3.40)

where Vn,k
mem is the membrane potential of segment n at time kΔt and Ṽn,k

mem the
membrane potential of the same segment at the same time in the reference
simulation. The deviation in Vext is defined in the same way by

Ek
Vext
=

√
1
N

∑
n∈N

(Vn,k
ext − Ṽn,k

ext )2. (3.41)

Furthermore, the deviation in tdepol is defined by

Edepol =

√
1
N

∑
n∈N

(tndepol − t̃ndepol)2, (3.42)

where tndepol represents the time of excitation of segment n and t̃ndepol the time
of excitation of the same segment in the reference simulation. The time of
excitation is defined by the moment Vmem exceeds −60 mV.

3.3 Results

3.3.1 Wave propagation along a fiber

To investigate the effect of varying simulation time steps on the propagation
of a depolarization wave, a 5-cm-long fiber was created that consisted of 0.01-
cm-long segments as in Chapter 2. A depolarization wave was generated
by stimulating the first segment with a stimulus current of 100 pA/pF until
the membrane was depolarized. During twelve seconds, stimulation was
repeated each 1 s or each 0.35 s. To investigate the effect of larger time steps to
update the membrane state on the simulation results and computation time,
the simulations were performed with varying Δtmem

high , Δtmem
med , and Δtmem

low .
In Table 3.1, the conduction velocity (θ), deviations in Vmem, Vext, tdepol, num-

ber of iterations to compute Vext (#iter), and computation time per ms simu-
lation time (tcomp) are presented for BCL = 1 s and BCL = 0.35 s. Compared
with a simulation time step of 0.005 ms, θ increases with 0.1% when using
a simulation time step of 0.010 ms. This increase in conduction velocity ex-
plains the deviations in Vmem, Vext, and tdepol for simulation time step 0.010 ms.
When larger time steps for medium and low accuracy segments are used, the
computation time can be reduced up to 70% for BCL = 1 s (Δtmem

high = 0.010



Table 3.1: Comparison of simulation time steps (depolarization wave)

BCL Δtmem
high Δtmem

med Δtmem
low θ EVmem EVext Edepol #iter tcomp

[s] [ms] [ms] [ms] [m/s] [mV] [mV] [ms] [−] [ms]

1.00 0.005 0.005 0.005 0.4098 0.00 0.00 0.000 8.4 1.61

1.00 0.010 0.010 0.010 0.4103 0.81 0.22 0.083 12.2 0.94

1.00 0.010 0.100 0.100 0.4103 0.80 0.22 0.082 12.2 0.33

1.00 0.010 0.100 0.500 0.4103 0.78 0.22 0.079 12.2 0.29

1.00 0.010 0.100 1.000 0.4103 0.75 0.21 0.075 12.2 0.27

0.35 0.005 0.005 0.005 0.4149 0.00 0.00 0.000 15.6 1.69

0.35 0.010 0.010 0.010 0.4153 0.75 0.21 0.075 24.2 1.11

0.35 0.010 0.100 0.100 0.4153 0.75 0.21 0.075 24.2 0.58

0.35 0.010 0.100 0.500 0.4156 1.21 0.28 0.136 24.9 0.56

0.35 0.010 0.100 1.000 0.4147 57.25 6.65 310.693 24.2 0.54

#itermax = 100, maximum number of iterations per time step; ε = 1.0E−3, iteration
process stops when |In

int + In
ext| < ε; θ, conduction velocity; EVmem, EVext , w.r.t. first

simulation after 100 ms; #iter, average number of iterations per time step; tcomp, com-
putation time per ms simulation time.
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Figure 3.2: Computation data for depolarization wave along 5-cm-long fiber. Top:
number of high and medium accuracy nodes. Center: number of iterations per sim-
ulation time step to compute Vext using Jacobi’s iteration method. Bottom: computa-
tion time per ms simulation time for Δtmem

high = 0.01 ms and varying Δtmem
med and Δtmem

low . A
depolarization wave was generated at 100 ms by stimulating the first segment of the
fiber.
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Figure 3.3: Membrane potential (Vmem) when cardiac tissue is represented by a square
grid (left), rectangular grid (center), or brickwall (right). The coarseness of the grid
is varied from fine (top) to coarse (bottom). A depolarization front was generated by
stimulating the center of the 2 × 1 cm tissue. Vmem is shown 20 ms after stimulation.
Red/yellow indicates depolarized tissue and blue indicates resting tissue.

ms, Δtmem
med = 0.100 ms, and Δtmem

low = 1.000 ms) and up to 47% for BCL = 0.35 s
(Δtmem

high = 0.010 ms and Δtmem
med = Δtmem

low = 0.100 ms), without significant loss of
accuracy. In the simulation with BCL = 0.35 s and Δtmem

low = 1.000 ms, propa-
gation of the depolarization wave occurred every other stimulation, because
the membrane was not fully recovered as a consequence of the larger Δtmem

low

during repolarization and rest. This explains the large EVmem, EVext , and Edepol.
The conduction velocity was 0.15% smaller in case the wave did propagate.

In Figure 3.2, the number of high and medium accuracy nodes, number
of Jacobi iteration steps to compute Vext, and the computation time per ms
simulation time are presented for a period of 0.5 s during the simulation. It
can be observed that the reduction in computation time is largest when the
fiber is repolarizing or resting.

3.3.2 Grid structure

In the Cellular Bidomain Model, the type of grid (i.e. square, rectangular or
brickwall) as well as the coarseness of the grid (size of individual segments)
may affect the simulation results. To quantify these effects on Vmem, Vext, and
tdepol, we performed nine simulations with the 2 × 1 cm tissue with maximum
number of iterations #itermax = 50 and ε = 1.0E−03 μA. Simulation results
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Figure 3.4: Extracellular potential (Vext) when cardiac tissue is represented by a
square grid (left), rectangular grid (center), or brickwall (right). The coarseness of
the grid is varied from fine (top) to coarse (bottom). A depolarization front was
generated by stimulating the center of the 2 × 1 cm tissue. Vext is shown 20 ms after
stimulation. Red/yellow indicates positive Vext, green indicates Vext = 0 mV, and blue
indicates negative Vext.

Table 3.2: Conduction velocity

Δx Δy brickwall θL θT θL/θT† θL/θT‡
[cm] [cm] [Y/N] [m/s] [m/s] [−] [−]

0.004 0.004 N 0.42 0.14 2.9 2.8

0.008 0.008 N 0.41 0.13 3.1 2.8

0.016 0.016 N 0.39 0.10 4.0 2.8

0.01 0.004 N 0.40 0.14 2.8 2.8

0.02 0.008 N 0.37 0.13 2.8 2.8

0.04 0.016 N 0.29 0.10 3.0 2.8

0.01 0.004 Y 0.46 0.14 3.2 3.1

0.02 0.008 Y 0.43 0.13 3.3 3.1

0.04 0.016 Y 0.34 0.10 3.6 3.1

θL, longitudinal conduction velocity; θT, transverse conduction velocity; θT/θL†, actual
ratio of anisotropy; θT/θL‡, predicted ratio of anisotropy.



Table 3.3: Jacobi’s iteration method vs Conjugate Gradient method (rectangular
grid)

Method Δt #itermax ε EVmem EVext Edepol #iter tcomp

[−] [ms] [−] [μA] [mV] [mV] [ms] [−] [ms]

CG 0.01 500 1.0E−05 0.0000 0.0000 0.0000 199 442

CG 0.01 500 1.0E−04 0.0005 0.0017 0.0005 105 252

CG 0.01 500 1.0E−03 0.0064 0.0193 0.0019 40 112

CG 0.01 500 1.0E−02 0.0745 0.1039 0.0066 13 47

CG 0.01 500 1.0E−01 0.7036 0.6344 0.0446 3 23

CG 0.01 50 1.0E−03 0.0077 0.0193 0.0021 40 105

Jacobi 0.01 500 1.0E−05 0.0037 0.0061 0.0014 455 600

Jacobi 0.01 500 1.0E−04 0.0073 0.0120 0.0020 238 362

Jacobi 0.01 500 1.0E−03 0.0378 0.0490 0.0047 58 107

Jacobi 0.01 500 1.0E−02 0.2033 0.1949 0.0131 13 37

Jacobi 0.01 500 1.0E−01 0.8200 0.7783 0.0539 3 20

Jacobi 0.01 50 1.0E−03 0.0630 0.0701 0.0061 42 87

#itermax, maximum number of iterations per time step; ε, iteration process stops when
|In

int+In
ext| < ε; EVmem, EVext (simulation time 20 ms), and Edepol w.r.t. Conjugate Gradient

method, #itermax = 500 and ε = 1.0E−05 μA; #iter, average number of iterations per
time step; tcomp, computation time per ms simulation time.

were compared with accurate simulation results (0.004 × 0.004 cm segments,
#itermax = 500, ε = 1.0E−04 μA).

In Figure 3.3 and Figure 3.4, Vmem and Vext are presented after 20 ms simula-
tion for the square grid, rectangular grid, and brickwall with varying coarse-
ness. It can be observed that, after 20 ms, the depolarization wave is less far
from the center for the coarser grids, indicating that the conduction velocity
decreases when the coarseness of the grid increases. In Table 3.2, longitu-
dinal conduction velocity θL, transverse conduction velocity θT, and ratio of
anisotropy θL/θT are presented for the square grid, rectangular grid, and brick-
wall with varying coarseness. The predicted values of θL/θT from Section 2.3.3
are added for comparison.



Table 3.4: Jacobi’s iteration method vs Conjugate Gradient method (brickwall)

Method Δt #itermax ε EVmem EVext Edepol #iter tcomp

[−] [ms] [−] [μA] [mV] [mV] [ms] [−] [ms]

CG 0.01 500 1.0E−05 0.0000 0.0000 0.0000 177 502

CG 0.01 500 1.0E−04 0.0004 0.0010 0.0005 94 224

CG 0.01 500 1.0E−03 0.0049 0.0182 0.0018 37 113

CG 0.01 500 1.0E−02 0.0604 0.1448 0.0058 12 49

CG 0.01 500 1.0E−01 0.6119 0.7997 0.0378 3 24

CG 0.01 50 1.0E−03 0.0060 0.0174 0.0019 36 116

Jacobi 0.01 500 1.0E−05 0.0025 0.0051 0.0013 446 874

Jacobi 0.01 500 1.0E−04 0.0054 0.0091 0.0018 200 402

Jacobi 0.01 500 1.0E−03 0.0307 0.0641 0.0042 48 107

Jacobi 0.01 500 1.0E−02 0.1698 0.2704 0.0110 10 35

Jacobi 0.01 500 1.0E−01 0.7985 0.9633 0.0492 2 20

Jacobi 0.01 50 1.0E−03 0.0395 0.0709 0.0048 40 58

#itermax, maximum number of iterations per time step; ε, iteration process stops when
|In

int+In
ext| < ε; EVmem, EVext (simulation time 20 ms), and Edepol w.r.t. Conjugate Gradient

method, #itermax = 500 and ε = 1.0E−05 μA; #iter, average number of iterations per
time step; tcomp, computation time per ms simulation time.



3.3.3 Jacobi’s iteration method vs Conjugate Gradient method

To compare Jacobi’s iteration method with the Conjugate Gradient method
to solve the system of linear equations for Vext, we consider the rectangular
grid and brickwall with segments of size 0.02 × 0.008 cm. In Table 3.3, the
deviations in Vmem, Vext and tdepol are presented for the rectangular grid with re-
spect to the most accurate CG simulation. Furthermore, the average number
of iterations per time step (#iter) and the computation time per ms simula-
tion time (tcomp) are given. In Table 3.4, the same information is presented for
the brickwall. As expected, the number of iterations is smaller for CG com-
pared with Jacobi’s method. However, since one CG iteration requires more
computational effort than one Jacobi iteration, Jacobi’s method is faster for
ε ≥ 1.0E−03 μA. For ε = 1.0E−03 μA, the deviation in depolarization time
(Edepol) is still smaller than the size of one simulation step (Δt = 0.01 ms). De-
spite the larger number of connections per segment (6 for the brickwall vs
4 for the rectangular grid), the amount of computation time per ms simula-
tion is similar in all cases. This is related to the lower number of iterations
required for the brickwall. Thus, although the connectivity matrices Dint and
Dext are less sparse for the brickwall, computation time is not increased.

3.3.4 Structural remodeling

To investigate the effect of nonuniform conductivity on the conduction veloc-
ity, we modeled structural remodeling on the 2 × 1 cm brickwall tissue with
0.01 × 0.004 cm segments (fine) and with 0.02 × 0.008 cm segments (coarse).
Nonuniform tissue was modeled by changing the intracellular conductances
in longitudinal direction (σx

int defined by equation (2.18)) and the intracellu-
lar conductances in transverse direction (σ̂y

int defined by equation (2.27)). The
σx

int were multiplied with a factor drawn from a normal distribution (μ, σL),
with average μ = 1.0 and standard deviation σL varying between 0.0 and 1.0.
In a similar way, the σ̂y

int were multiplied with a factor drawn from a normal
distribution (μ, σT).

In Figure 3.5, the membrane potential is shown after 20 ms of simulation.
It can be observed that for both the coarse and the fine brickwall, the conduc-
tion velocity decreases for increasing σL = σT.

In Figure 3.6, the effect of varying σL and σT on the conduction velocity is
presented. It can be observed that for both the coarse and the fine brickwall,
the conduction velocity decreases with the same amount for increasing σL

and σT. Thus, regardless the coarseness of the brickwall, the effect of nonuni-
form structural remodeling on the conduction velocity is similar.
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Figure 3.5: Effect of nonuniform distribution of conductivity for 0.01 × 0.004 cm
segments (fine brickwall) and 0.02 × 0.008 cm segments (coarse brickwall). σL = σT

was varied between 0.0 (top) and 1.0 (bottom). A depolarization front was generated
by stimulating the center of the 2×1 cm tissue. Vmem is shown 20 ms after stimulation.
Red/yellow indicates depolarized tissue and blue indicates resting tissue.
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Figure 3.6: Effect of nonuniform distribution of conductivity for 0.01 × 0.004 cm
segments (fine brickwall) and 0.02× 0.008 cm segments (coarse brickwall). Top: con-
duction velocity in longitudinal direction (θL) for 0 ≤ σL ≤ 1 and σT = 0.0 (left),
σL = 0.0 and 0 ≤ σT ≤ 1 (center), and 0 ≤ σL = σT ≤ 1. Bottom: conduction velocity
in transverse direction (θT).
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Figure 3.7: Membrane potential (Vmem) and extracellular potential (Vext) on 4 × 2 cm
nonuniform tissue. A spiral wave was generated using an S1S2 protocol with cou-
pling interval 330 ms. Simulation state is shown during one rotation of the spiral
wave (200 ms) with intervals of 50 ms.
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Figure 3.8: Membrane potential (Vmem) of three segments of the 4 × 2 cm tissue. Top:
segment at x = 2.0 cm and y = 1.0 cm, center: segment at x = 2.8 cm and y = 1.4 cm,
bottom: segment at x = 3.6 cm and y = 1.8 cm. A spiral wave was generated using
an S1S2 protocol with coupling interval 330 ms. Arrow indicates S2 stimulus.

Table 3.5: Comparison of simulation time steps (spiral wave)

Δtmem
high Δtmem

med Δtmem
low EVmem EVext Edepol #iter tcomp

[ms] [ms] [ms] [mV] [mV] [ms] [−] [ms]

0.01 0.01 0.01 0.0000 0.0000 0.0000 18 211

0.01 0.02 0.20 0.0036 0.0001 0.0010 18 210

0.01 0.05 0.50 0.0072 0.0002 0.0030 18 212

0.01 0.10 1.00 0.0122 0.0003 0.0070 18 213

0.02 0.02 0.02 0.1187 0.0122 0.0472 28 143

0.05 0.05 0.05 0.6330 0.0380 0.2406 51 91

0.10 0.10 0.10 3.0235 0.1144 0.9613 76 64

#itermax = 100, maximum number of iterations per time step; ε = 1.0E−3, iteration
process stops when |In

int + In
ext| < ε; EVmem and EVext computed for simulation time 200

ms w.r.t. first simulation; #iter, average number of iterations per time step; tcomp,
computation time per ms simulation time.



3.3.5 Spiral wave

A spiral wave was initiated in a 4×2 cm sheet of tissue, which was a brickwall
structure composed of 0.02 × 0.008 cm segments. Since the wavelength of a
reentrant wave is too large for a 4 × 2 cm sheet of normal cardiac tissue, both
the conduction velocity and the refractory period were reduced. The conduc-
tion velocity was reduced by simulating structural remodeling as follows: all
intracellular conductivities were multiplied with a factor drawn from a nor-
mal distribution (μ, σ), with average μ = 0.3 and standard deviation σ = 1.0.
These factors were bound by a minimum value 0.1 and a maximum value
0.5. The refractory period was reduced by simulating electrical remodeling
as follows: ICa,L density was reduced with 80% and Ito density with 50%.

A spiral wave was initiated using an S1S2 stimulation protocol [201].
First, the top of the tissue (S1) was stimulated for 2 s with BCL = 0.4 s. After
2 s, a block of segments in the center of the left half (S2) was stimulated with
a coupling interval of 330 ms. Since the bottom half of the tissue was still
refractory, a depolarization front developed in one direction and a reentrant
spiral wave was established. After one second of simulation time, the sim-
ulation state was stored and used as initial state to investigate the effect of
varying simulation time steps. A number of simulations with varying simu-
lation time steps were performed for a period of 200 ms using the same initial
state. After 200 ms, deviations in Vmem, Vext, and tdepol were computed with re-
spect to the most accurate simulation. Furthermore, the number of iterations
and the amount of computation time were measured during the simulation
runs.

In Figure 3.7, one rotation of a spiral wave on the 4 × 2 cm tissue is pre-
sented. In Figure 3.8, Vmem is shown for the segment in the center (top) and for
two segments in the right lower quarter of the tissue. Except for the center
segment, little variation in action potential shape and APD can be observed,
which is consistent with the stable behavior of the spiral wave.

In Table 3.5, deviations in Vmem, Vext, and tdepol are presented for varying
simulation time steps. Also the average number of iterations per time step
(#iter) and the computation time per ms simulation time (tcomp) are given. As
expected, the deviation in simulation results increases for increasing Δt. Fur-
thermore, the number of iterations to compute Vext increases for increasing
Δt, which is explained by the larger change in Vext over a longer time step.
Interestingly, using larger time steps to update the membrane currents for
medium and low accuracy has little influence on the computation time. This
is explained by the fact that, on average, 12000 segments have high accuracy,
38000 have medium accuracy, while only few have low accuracy. Thus, a
possible gain in computation time by differentiation in time steps as in the



Table 3.6: Comparison of conduction velocity

# levels α θ θ/θ0 tcomp

[−] [−] [m/s] [−] [ms]

3 0.0 0.90 1.00 519

2 0.0 0.57 0.64 65

2 0.2 0.76 0.84 55

2 0.3 0.89 0.99 79

2 0.4 1.06 1.18 80

# levels, number of levels in simulation graph; α, value of α in heuristic (Sec-
tion 3.2.5); θ, conduction velocity; θ/θ0, relative conduction velocity; tcomp, compu-
tation time per ms simulation time.

5-cm-long fiber (Section 3.3.1) is lost due to the constant activity of the tissue
and the bookkeeping of low, medium, and high accuracy.

3.3.6 Multilevel simulation graph

To quantify the effect of using the heuristic introduced in Section 3.2.5, we
simulated depolarization of the human atria as in Chapter 2. One simulation
was performed with all three levels of the simulation graph (α = 0.0). Four
simulations were performed with only two levels (α = 0.0, 0.2, 0.3, and 0.4).
In each of the simulations, a depolarization wave was generated by electrical
stimulation of the sino-atrial node.

In Figure 3.9, Vmem is shown during 120 ms after stimulation of the sino-
atrial node for the 2-level simulation graph with α = 0.0 (left), the 2-level
simulation graph with α = 0.3 (center), and the 3-level simulation graph with
α = 0.0. It can be observed that, when α = 0.3, the depolarization wave trav-
els with approximately the same velocity as in the 3-level simulation graph,
while for α = 0.0, the conduction velocity is smaller.

In Table 3.6 the conduction velocity θ for various α on the 2-level simula-
tion graph is compared with the conduction velocity θ0 on the 3-level simu-
lation graph. Best agreement is found for α = 0.3. Compared with the 3-level
simulation graph, the amount of computation time reduced with 85% when
the heuristic is used on the 2-level simulation graph, without significant loss
of accuracy.
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Figure 3.9: Membrane potential (Vmem) on multilevel atrial geometry. Left: two levels
(α = 0.0). Center: two levels (α = 0.3). Right: three levels (α = 0.0). A depolarization
wave was generated at 0 ms by stimulating the sino-atrial node.



3.4 Discussion

3.4.1 Uniform and nonuniform cardiac tissue

To model the cardiac tissue, we compared a brickwall configuration with a
square grid and a rectangular grid. Although segments of size 0.02 × 0.008
cm are larger than human atrial myocytes (0.01 × 0.002 cm), we obtain accu-
rate simulation results when simulating normal impulse propagation. There-
fore, we consider the brickwall composed of 0.02× 0.008 cm segments a good
representation of normal (uniform) cardiac tissue.

When simulating impulse propagation in structurally remodeled tissue,
the conduction velocity is decreased as a consequence of the nonuniform dis-
tribution of intracellular conductivity between adjacent segments. The nomi-
nal decrease in conduction velocity in a brickwall of 0.02×0.008 cm segments
is similar to the nominal decrease in conduction velocity when the brick-
wall is composed of 0.01 × 0.004 cm segments (Figure 3.6). Thus, although
the nonuniformity induced by structural remodeling is simulated at a larger
scale, this has little effect on the decrease in conduction velocity. We con-
clude that both uniform and nonuniform cardiac tissue may be represented
by a brickwall composed of 0.02 × 0.008 cm segments. In Chapter 4 and in
Chapter 5, uniform, nonuniform, and pathological tissue are represented by
such a brickwall.

3.4.2 Numerical integration scheme

In the present study, we consider an explicit forward Euler scheme to solve
the coupled system of nonlinear differential equations and linear equations.
Keener and Bogar [94] state that, since solving a linear system of equations at
each time step cannot be avoided, it is better to use a Crank-Nicolson step
for the spatial discretization, and a multigrid inversion of the linear sys-
tem at each time step. They argue that although this method is twice as
costly per time step as the forward Euler method, it is potentially faster and
more accurate when larger time steps are possible [94]. In our model, the
Courtemanche-Ramirez-Nattel model requires small simulation time steps,
which largely determines the time step that can be used to solve the coupled
systems of equations. Since the advantage of having larger simulation time
steps cannot be exploited, we decided to solve the system of equations using
an explicit forward Euler scheme.

We also studied the differences between using Jacobi’s iteration method
and the Conjugate Gradient method to solve the system of linear equations
for Vext. As expected, CG converges faster than Jacobi’s iteration method.



However, to solve Vext in our model, Jacobi’s iteration method can be faster
than CG (Table 3.3 and Table 3.4). This is explained by the small simulation
time step of 0.01 ms: Vext of the former time step is a good first approxima-
tion to solve Vext for the current time step. Indeed, the number of iterations
increases for increasing simulation time step (Table 3.5). An advantage of Ja-
cobi’s iteration method over CG is that less communication per iteration is
required when performing the simulation on a processor network. We used
a parallel implementation of our simulation software on a cluster of 8 pro-
cessors to perform the large-scale simulations of the 8 × 3 cm tissue (150000
segments) of arrhythmic behavior (Chapter 2), defibrillation (Chapter 4), and
ectopic behavior (Chapter 5).

Furthermore, we studied the use of different simulation time steps to up-
date the membrane state. When a depolarization wave is simulated along
a fiber, up to 70% of computational effort may be saved without significant
loss of accuracy (Table 3.1). However, in case a spiral wave is simulated, this
advantage vanishes due to the large amount of activity present throughout
the tissue at all times (Table 3.5). In Chapter 6 and in Chapter 7, mechano-
electric feedback is studied by a depolarization wave through fibers of differ-
ent lengths. When the fiber needs to be simulated for a long period of time
(up to 150 s with BCL = 1.0 s in Chapter 7), the reduction in computational
effort is considerable.

Finally, we investigated the effect of ”smoothing” the ionic membrane
current over the domain, such that the human atria can be represented with
a coarser mesh. We found that, when applying the heuristic method in-
troduced in Section 3.2.5 with α = 0.3, accurate simulation results can be
obtained with a mesh in which the average distance between two adjacent
nodes is 0.09 cm, while normally this distance should be 0.03 cm. When
simulating depolarization of the human atria, the number of nodes in the
simulation graph may be reduced from over 300000 to approximately 34000.
With this method, 89% less memory is required and about 85% of computa-
tional effort is saved on top of the 70% saved by using different simulation
time steps to update the membrane behavior. We apply this method in Chap-
ter 8 to investigate the role of stretch-activated channels in the onset of atrial
fibrillation under stretch.

3.5 Conclusion

The equations of the Cellular Bidomain Model are solved using a forward Eu-
ler scheme for the nonlinear differential equations and an iterative method for
the system of linear equations. To save computational effort, larger time steps



to update the membrane state can be applied when the membrane is repolar-
izing or resting. Both computation time and memory usage can be further
reduced by using a coarser mesh in combination with a heuristic method to
compute the transmembrane current.
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Abstract

Aim: The aim of the present study is to investigate the origin and effect of virtual
electrode polarization in uniform, decoupled, and nonuniform cardiac tissue during
field stimulation.

Methods: A discrete bidomain model with active membrane behavior was used
to simulate normal cardiac tissue as well as cardiac tissue that is decoupled due to fi-
brosis and gap junction remodeling. Various uniform and nonuniform electric fields
were applied to the extracellular domain of uniform, decoupled, and nonuniform
resting cardiac tissue as well as cardiac tissue in which spiral waves were induced.

Results: Field stimulation applied to nonuniform tissue results in more virtual
electrodes compared with uniform tissue. The spiral waves were terminated in de-
coupled tissue, but not in uniform, homogeneous tissue. By gradually increasing
local differences in intracellular conductivities, the amount and spread of virtual
electrodes increased and the spiral waves were terminated.

Conclusion: Fast depolarization of the tissue after field stimulation may be ex-
plained by intracellular decoupling and spatial heterogeneity present in normal and
pathological cardiac tissue. We demonstrated that termination of spiral waves by
means of field stimulation can be achieved when the tissue is modeled as a nonuni-
form, anisotropic bidomain with active membrane behavior.
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4.1 Introduction

Defibrillation is a common clinical procedure to terminate atrial and ventric-
ular fibrillation. An externally applied electric field leads to the development
of so-called virtual electrode polarization, or VEP [49]. The VEP can affect the
transmembrane potential: new action potentials can arise or existing action
potentials can be prolonged or shortened [50]. When defibrillation is success-
ful, the entire tissue depolarizes within a short time and after recovery sinus
rhythm is restored [48]. In this study, we investigate the origin of the VEP in
uniform, decoupled, and nonuniform cardiac tissue by means of computer
simulations. Furthermore, we investigate the role of the VEP in relation to
the termination of a spiral wave in normal as well as pathological tissue.

Computer simulations of defibrillation require a model that distinguishes
between the intracellular and extracellular domains. If the rates of anisotropy
for the intracellular and extracellular domains are modeled differently, vir-
tual electrodes appear in the vicinity of both the cathode and the anode [161].
These observations have been verified experimentally [222]. However, in
computer simulations using a continuous bidomain model, virtual electrodes
do not appear in the bulk of the tissue and cannot explain depolarization of
the entire tissue within short time.

Several groups have used discontinuous bidomain models to investigate
the effect of structural nonuniformities in cardiac tissue when external electric
fields are applied [136]. In some of these models, the effects of the gap junc-
tions are incorporated by modeling periodic changes in the intracellular con-
ductivities [96, 199]. In simulations using these models, so-called ”sawtooth”
patterns appear in spatial mappings of the transmembrane potential [108].
Although they have been searched for, these ”sawtooth” patterns have not
been observed experimentally [232]. Also in cultured layers of myocytes,
no virtual electrodes were observed at the cell borders [64]. Later bidomain
models focus on modeling fiber curvature both in 2D and 3D [202]. Using
these models, virtual electrodes appeared further away from the physical
electrodes and spiral waves have been terminated [201].

In a study by Fast et al. [56] using directed cell growth in cell cultures
with intercellular clefts, large changes in the transmembrane potential have
been observed at the boundaries of cell strands and at the intercellular clefts.
Secondary sources of stimulation, i.e., depolarization of tissue not directly
caused by the stimulating electrodes, have also been found near surgical in-
cisions in dog hearts [220]. A bidomain model describing the laminar orga-
nization of myocytes has been used to investigate the effect of an external
electric field applied to the ventricular wall of a rat [75]. In these simulations,
the bulk of the tissue was depolarized in regions located near the interlami-



nar clefts [75].

In a simulation study by Fishler [60, 59], the effect of spatial heterogeneity
during monophasic and biphasic shocks was investigated by varying the in-
tracellular volume fraction randomly throughout the tissue. In another study
by Krassowska [107], the effect of spatial heterogeneity was statistically in-
vestigated by varying cell length, cell diameter, thickness of the extracellular
space and the junctional resistances in ten different random fibers. Both stud-
ies indicate a decrease in the field stimulation threshold as a consequence of
spatial heterogeneity.

Keener and Cytrynbaum [95] investigated defibrillation in a 1D ring and a
2D sheet using dynamical systems theory. In their study, spatial heterogene-
ity was modeled at different scales. They concluded that spatial inhomo-
geneity, especially at smaller scales, leads to an increase in the success rate
of defibrillation [95]. Very recently, Plank et al. [144] investigated the effect
of spatial heterogeneity and the level of organization of fibrillating tissue in
relation to the defibrillation shock strength. They concluded that the required
shock strength for successful defibrillation increases with disorganization of
the fibrillatory state [144]. Similar observations were also made by Hillebren-
ner et al. [72].

The aim of the present study is to obtain more insight in the role of decou-
pling and nonuniform conductivities in the clinical success of defibrillation.
To simulate virtual electrode polarization as a consequence of field stimula-
tion, we use a discrete bidomain model, which is aimed at irregular conduc-
tivity properties of cardiac tissue at the cellular level. To study the effects
of decoupling and nonuniformity, conductivities between adjacent cells are
randomly varied. In order to model the membrane behavior of individual
atrial myocytes, we apply the Courtemanche-Ramirez-Nattel model of the
human atrial action potential [37]. Electroporation is modeled as described
by Aguel et al. [2]. Computer simulations of various rectangular sheets of
atrial tissue have been performed to investigate the effect of nonuniformity
and decoupling when an external electric field is applied. To investigate the
success of defibrillation, spiral waves were induced on a sheet of 8 cm × 3 cm
cardiac tissue using an S1S2 protocol [201]. We hypothesize that fast depolar-
ization of the entire tissue after field stimulation is related to the amount of
decoupling and nonuniformity in the tissue.
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Figure 4.1: Graphical representation of a simulation graph. Each node represents a
rectangular piece of cardiac tissue. The state of each node is represented by the in-
tracellular potential Vint, the extracellular potential Vext, and the membrane potential
Vmem. Electrical connections between the nodes are indicated by the intracellular and
interstitial conductances denoted by σint and σext. The intracellular and interstitial
currents flowing between the nodes are represented by the arrows labeled with Iint

and Iext.

4.2 Methods

4.2.1 Cellular Bidomain Model

The discrete bidomain model we use is called the Cellular Bidomain Model.
Both the electrical behavior of the cell membrane and the propagation of the
depolarization wave are described by this model. The structure of the cardiac
tissue is represented by a graph consisting of nodes and edges, where a node
represents a group of cells and an edge the electrical connections between the
cells. Such a graph is called a simulation graph and is denoted by G(N ,E),
whereN is the set of nodes and E the set of edges connecting the nodes.

Within a simulation graph, a number of different cell types can be dis-
tinguished, e.g., sino-atrial node cells and atrial myocytes, each having their
own membrane behavior. The state of each node n ∈ N is defined by the
intracellular potential (Vn

int), the extracellular potential (Vn
ext), and the state of

the cell membrane. The membrane potential (Vn
mem) is defined as the differ-

ence between Vn
int and Vn

ext. Edges define the conductance for intracellular and
extracellular currents between two adjacent nodes. We distinguish the in-
tracellular and extracellular conductance, which are denoted by σint and σext,
respectively. We assume that the simulation graph is not directed and for



edge (n,m) ∈ E connecting nodes n and m it is assumed that σ(n,m)
int > 0 and

σ(n,m)
ext > 0. The intracellular and extracellular currents flowing from node n to

node m are denoted by In→m
int and In→m

ext , and are given by by Ohm’s law:

In→m
int = (Vn

int − Vm
int)σ

(n,m)
int , (4.1)

In→m
ext = (Vn

ext − Vm
ext)σ

(n,m)
ext . (4.2)

The intracellular current entering node n coming from all adjacent nodes a,
(a, n) ∈ E, is denoted by In

int. The extracellular current entering node n is de-
noted by In

ext, i.e.,

In
int =

∑
(a,n)∈E

Ia→n
int , (4.3)

In
ext =

∑
(a,n)∈E

Ia→n
ext . (4.4)

According to Kirchhoff’s law, current entering a node as intracellular current
must leave as extracellular current, thus

In
int + In

ext = 0. (4.5)

Furthermore, the transmembrane current for node n, denoted by I n
trans, is the

sum of capacitive and ionic currents, i.e.,

In
trans = Cn

mem

dVn
mem

dt
+ S n

memIion(V
n
mem, q

n) = In
int, (4.6)

where Cn
mem represents the membrane capacitance of node n in μF, and S n

mem

the membrane surface in cm2. The ionic membrane current of node n is de-
noted by Iion(Vn

mem, q
n) and is expressed in μA per cm2 membrane surface. The

ionic current depends on the membrane potential and the state of the mem-
brane, which is usually described by a number of gating variables. The set
of variables describing the membrane state is denoted by qn. The membrane
state depends on the membrane potential:

dqn

dt
= Mion(V

n
mem, q

n). (4.7)

The ionic membrane current modeled by functions Iion and Mion can be imple-
mented by any membrane model [15, 37, 125]. Different membrane models
can be applied for different nodes to model heterogeneous cell membrane
behavior of the cardiac tissue.



Table 4.1: Tissue parameters

Parameter Definition Value

gx
int Longitudinal intracellular conductivity 1.0440 mS/cm

gy
int Transverse intracellular conductivity 0.1158 mS/cm

gx
ext Longitudinal extracellular conductivity 3.7500 mS/cm

gy
ext Transverse extracellular conductivity 1.4160 mS/cm

Cmem Membrane capacitance 1.0 μF/cm2

χ Surface-to-volume ratio 2000 cm−1

In this study, we use a brickwall structure to model the cardiac myocytes.
Each node represents a rectangular piece of tissue of length 200 μm and width
80 μm lying in the direction of the fibers (Figure 4.1). Note that the segments
are not subdivided in smaller parts: the same state is assumed throughout the
entire segment. In order to obtain conduction velocities within physiological
range [179], we have rescaled the conductivity parameters as reported by
Clerc [33] with a factor 0.6. The tissue parameters used in the present study
are listed in Table 4.1. These parameters result in a conduction velocity of
0.41 m/s along the fiber direction and 0.13 m/s across the fiber direction.

The membrane behavior for each node is simulated by the model of Courte-
manche et al. [37]. The equations of the Cellular Bidomain Model are solved
using a forward Euler scheme with a simulation time step of 0.01 ms. We de-
scribe how electroporation, nonuniform conductivities, and field stimulation
are modeled.

4.2.2 Electroporation

When applying a large electric field on cardiac tissue, the membrane of cells
near the electrodes start to electroporate [106], i.e., the membrane conduc-
tance is increased by the formation of aqueous pores [3]. Electroporation
prevents membrane potentials from reaching extreme values [106].

We model electroporation as described by Aguel et al. [2]. The mem-
brane behavior of the Cellular Bidomain Model has been extended with an
extra state variable G, denoting the pore generation in the membrane. Equa-
tion (4.6) is adapted as follows [175]:

In
trans = Cn

mem

dVn
mem

dt
+ S n

mem(Iion(V
n
mem, q

n) +GVn
mem) = In

int. (4.8)



G is described by [175]:

dG
dt
= α exp(β(Vn

mem − Vn
rest)

2)(1 − exp(−γ(Vn
mem − Vn

rest)
2)), (4.9)

where α = 2.5 × 10−3 mS/cm2ms, β = 2.5 × 10−5 mV−2, and γ = 1.0 × 10−9

mV−2 [175]. Vrest represents the resting membrane potential, which is near
−81 mV for the Courtemanche-Ramirez-Nattel model [37]. Initially, G is set
to 0 mS/cm2.

4.2.3 Gap junctions

Gap junctions provide the pathways for intracellular current flow. The aniso-
tropic conduction properties of the myocardium are dependent on the geom-
etry of the intercalated disks and the number, size and location of the gap
junctions in between them [88]. Changes in gap junction distribution are
common in elderly people and are involved in the initiation and persistence
of various cardiac arrhythmias [183].

In the Cellular Bidomain Model, a distinction is made between longitu-
dinal edges and transverse edges. The intracellular conductances of the lon-
gitudinal edges represent the gap junctions between cells of the same fiber
and the intracellular conductances of the transverse edges represent the gap
junctions responsible for side-to-side coupling. The effects of gap junction
remodeling are simulated by randomly changing the intracellular conduc-
tances. A normal distribution (μ, σ) is applied to determine the factor with
which the standard values for the intracellular conductances are multiplied
for each edge. In the sequel, the average and standard deviation of the gap
junction remodeling factor in longitudinal direction are denoted by μL and σL,
respectively, and the average and standard deviation in transverse direction
by μT and σT, respectively.

4.2.4 Fibrosis

Fibrosis causes the loss of side-to-side cell coupling, which may result in a
disturbed wavefront propagation and can isolate groups of myocytes [55].
The development of fibrosis is associated with changes in the topology and
number of gap junctions [179]. Since side-to-side coupling is affected, fibrosis
leads to a reduction of the conduction velocity, mainly in transverse direc-
tion [179].

In the Cellular Bidomain Model, diffuse fibrosis [93] is simulated by re-
moving the intracellular conductances of some of the transverse edges. The
so-called fibrosis fraction determines the number of affected transverse edges,



but which transverse edges are affected is randomly determined. In the se-
quel, the fibrosis fraction is denoted by FF.

4.2.5 Simulation protocol

To investigate virtual electrode polarization on uniform, decoupled, and non-
uniform tissue, we modeled a 1 cm × 0.5 cm sheet of atrial tissue. A nonuni-
form electric field was established during 1 ms by placing the anode in the
left upper quarter of the tissue and the cathode in the right lower quarter
of the tissue. The strength of the electric field was varied using an anode
voltage of +1, +5, and +10 V, respectively, and a cathode voltage of −1, −5,
and −10 V, respectively. This protocol was applied to uniform, decoupled,
and nonuniform tissue. Decoupled tissue was modeled as uniform tissue in
which artificial obstacles were placed. These obstacles were either noncon-
ductive in the intracellular domain only, or they were nonconductive in both
domains. Nonuniform tissue was modeled by multiplying the intracellular
conductances with a factor drawn from a normal distribution (μ, σ), with av-
erage μ = 1 and standard deviation σ = 0.5, 1, and 1.5, respectively. These
factors were bound with minimum 0.75, 0.5, and 0, respectively, and maxi-
mum 1.25, 1.5, and 2, respectively.

Two large-scale simulations of an 8 cm × 3 cm sheet of atrial tissue with
and without fibrosis and gap junction remodeling were performed. In this
case, the cardiac tissue was divided into 150, 000 segments of size 200 μm ×
80 μm. Pathological tissue was simulated with fibrosis fraction FF = 0.35 and
average gap junction remodeling factor μL = μT = 0.5 and standard deviation
σL = σT = 1. The conduction velocity in pathological tissue decreased from
0.41 to 0.19 m/s along the fiber direction and from 0.13 to 0.05 m/s across the
fiber direction. To investigate the effect of nonuniform conductivity during
defibrillation in normal tissue, the intracellular conductances were changed
before the electric field was applied. All intracellular conductances were mul-
tiplied with a factor drawn from a normal distribution (μ, σ) with average
μ = 1 and standard deviation σ = 0.5 and 1, respectively. In both cases, the
factors were bound with minimum 0.75 and 0.5, respectively, and maximum
1.25 and 1.5, respectively.

An electric field was established during 10 ms by placing the anode at
the top row of the tissue and the cathode at the bottom. The anode volt-
age was +25 V and the cathode voltage −25 V, generating a uniform electric
field of 16.7 V/cm in the direction across the fibers. A similar protocol was
used by Trayanova and Skouibine [201]. Field stimulation was applied to
uniform and nonuniform normal tissue as well as pathological tissue in the
resting state. For the final series of simulations, a spiral wave was induced



in both normal and pathological tissue using an S1S2 stimulation protocol as
described by Trayanova and Skouibine [201]. Each simulation lasted several
seconds to let a spiral wave develop before field stimulation was applied.

4.3 Results

Anodal and cathodal point stimulation in uniform tissue results in the charac-
teristic dog bones near the physical electrodes. For all three different strengths
of the electric field, depolarization occurred near the cathode. Only in case of
the two stronger electric fields, virtual electrodes near the anode lead to de-
polarization. No secondary sources were observed on larger distances from
the physical electrodes. In Figure 4.2, the results are shown for anode voltage
+10 V and cathode voltage −10 V in uniform and decoupled tissue. The dog
bone is clearly visible in the left column (uniform tissue). Secondary sources
appear near the artificial obstacles (center and right). Note that the location
of the secondary sources is different for internally uncoupled tissue (center)
and fully uncoupled tissue (right).

In Figure 4.3, the results are shown for anodal and cathodal point stim-
ulation in nonuniform tissue. The results are shown for the simulation runs
with anode voltage +10 V and cathode voltage −10 V. The dog bone is clearly
visible in the left column, but less apparent in the center and right column.
Furthermore, a larger number of virtual electrodes is present in the bulk of
the tissue in the center and right column. Virtual electrode polarization facil-
itates faster depolarization of the entire tissue. This can be clearly observed
in the center column of Figure 4.2 and in the center and right column of Fig-
ure 4.3.

In Figure 4.4, the results are shown when a uniform electric field is ap-
plied during 10 ms on normal, resting cardiac tissue. In uniform normal
tissue (left) cells depolarize in the vicinity of the two electrodes, but not in
the bulk of the tissue. In nonuniform normal tissue (center) more virtual
electrodes are present in the bulk of the tissue. The virtual electrodes either
depolarize or hyperpolarize cells in their vicinity. In the right column, more
virtual electrodes originate that are better spread over the tissue. The result
is that the entire tissue is more rapidly depolarized. In remodeled tissue (Fig-
ure 4.5), more virtual electrodes are created compared with normal, nonuni-
form tissue. However, since the velocity of the wavefront is lower compared
with normal tissue, it takes more time to depolarize the entire tissue.
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Figure 4.2: Anodal and cathodal point stimulation in uniform (left), internally un-
coupled (center), and fully uncoupled (right) resting cardiac tissue. The anode is
located in the upper left quarter and the cathode in the lower right quarter of the
tissue. Artificial obstacles are created by (internally) uncoupling the black segments
from the surrounding tissue. An electric field was applied during the first millisec-
ond of the simulation. Shown are the membrane potentials for different simulation
times after field stimulation. Depolarized tissue is red/yellow and hyperpolarized
or resting tissue is blue.
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Figure 4.3: Anodal and cathodal point stimulation in resting cardiac tissue with
nonuniform intracellular conductivity. The anode is located in the upper left quar-
ter and the cathode in the lower right quarter of the tissue. An electric field was
applied during the first millisecond of the simulation. Shown are the membrane po-
tentials for different simulation times after field stimulation. Depolarized tissue is
red/yellow and hyperpolarized or resting tissue is blue.
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Figure 4.4: Virtual electrode polarization in uniform (left) and nonuniform (center
and right) resting cardiac tissue. The anode was a line electrode at the top and the
cathode a line electrode at the bottom of the tissue. A uniform electric field was
applied during 10 ms. Shown are the membrane potentials for different simulation
times during and after field stimulation. Depolarized tissue is red/yellow/green
and hyperpolarized or resting tissue is blue.
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Figure 4.5: Virtual electrode polarization in resting remodeled tissue. The anode was
a line electrode at the top and the cathode a line electrode at the bottom of the tissue.
A uniform electric field was applied during 10 ms. Shown are the membrane poten-
tials for different simulation times during and after field stimulation. Depolarized
tissue is red/yellow/green and hyperpolarized or resting tissue is blue.

In Figure 4.6, the results are shown after application of an electric field
in uniform and in nonuniform normal tissue in which a spiral wave was
induced. The spiral wave is not terminated in uniform atrial tissue (left).
As before, more virtual electrodes originate in the bulk of nonuniform tissue
(center and right). Virtual electrodes can be observed in both the excitable
gap and depolarized tissue. In the center column, the number of virtual elec-
trodes in the excitable gap is too small to terminate the spiral wave. However,
in the right column, more virtual electrodes are present in the excitable gap
and the spiral wave is terminated. The entire tissue recovers and no activity
is left to initiate new depolarization waves.

Also in Figure 4.7, virtual electrode polarization is clearly visible in re-
modeled tissue and the spiral wave is terminated. Compared with normal,
nonuniform tissue more virtual electrodes are present. However, since the
propagation of the action potential is slower in remodeled tissue, the time
it takes to depolarize the entire tissue is longer compared with the time it
takes to depolarize normal, nonuniform tissue. The membrane potentials of
10 different segments are shown in Figure 4.8. These segments are located
in the same row in the center of the tissue, thus the distance to the anode
and cathode is the same for each segment. The dashed lines represent the
time when the cell recovers. All cells recover between approximately 180 and
320 ms after application of the electric field. Note the different shapes of the
APs, as these are either prolonged or shortened due to the virtual electrodes.
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Figure 4.6: Unsuccessful and successful termination of a spiral wave in uniform (left)
and nonuniform (center and right) tissue by means of defibrillation. The anode was a
line electrode at the top and the cathode a line electrode at the bottom of the tissue. A
uniform electric field was applied during 10 ms. Shown are the membrane potentials
for different simulation times during and after field stimulation. Depolarized tissue
is red/yellow/green and repolarized or hyperpolarized tissue is blue.
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Figure 4.7: Termination of a spiral wave in remodeled tissue by means of defibrilla-
tion. The anode was a line electrode at the top and the cathode a line electrode at the
bottom of the tissue. A uniform electric field was applied during 10 ms. Shown are
the membrane potentials for different simulation times during and after field stim-
ulation. Depolarized tissue is red/yellow/green and repolarized or hyperpolarized
tissue is blue.
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Figure 4.8: Prolonging and shortening of action potentials in remodeled tissue.
Shown are the membrane potentials of 10 different segments lying on one line in
the center of the tissue. The membrane potentials are shown starting 10 ms before
application of the electric field. The dashed lines represent the recovery times.



This mechanism leads to total recovery of the tissue within a time window
of approximately 140 ms, regardless of whether the nodes are depolarized or
resting at the time the electric field is applied.

4.4 Discussion

4.4.1 Cellular Bidomain Model

To simulate cardiac electrical behavior the cardiac tissue is traditionally mod-
eled either by a continuous model such as the bidomain equations [69] or a
discontinuous model such as the parallel cable model [118]. The latter allows
for the modeling of tissue at subcellular level. The parallel cables can be con-
nected in a brickwall fashion as described in [118]. In recent studies to field
stimulation, spatial heterogeneity is introduced in bidomain models in which
the cells are subdivided and gap junctions are modeled explicitly [59, 60, 107].
In the Cellular Bidomain Model, the segments are not subdivided. Both the
intracellular and extracellular domains can be viewed as a hexagonal grid of
resistors. Nonuniformity is modeled by varying the intracellular resistances
and decoupling is modeled by disconnecting some of the intracellular resis-
tors randomly. Using a brickwall structure composed of segments of length
200 μm and width 80 μm and experimentally measured conductivities that
are all scaled with the same factor, leads to conduction velocities that are in
physiological range.

In the present study, the effects of a surrounding conductive bath and
fiber curvature are not investigated. We expect that the results would not
change qualitatively if the sheets of cardiac tissue were surrounded by a con-
ductive bath (see e.g. the simulation study by Plank et al. [144]). The influ-
ence of fiber curvature when an electric field is applied has been thoroughly
investigated in 2D and 3D by the group of Trayanova [46, 72, 159, 201, 202].

4.4.2 Virtual electrode polarization

By establishing an external electric field, virtual electrodes are formed which
either depolarize or hyperpolarize regions in the cardiac tissue [222]. From
our simulation results, we conclude that decoupling and nonuniform con-
ductivity affects the virtual electrode polarization (VEP). In decoupled and
nonuniform tissue virtual electrodes appear in the bulk of the tissue and de-
polarize all excitable parts of the tissue within short time. A spiral wave can
be terminated when the excitable gap is depolarized and no excitable tissue
is left.



4.4.3 Pathological tissue

We simulated pathological tissue by modeling diffuse fibrosis and remodel-
ing of the gap junctions. An important difference between normal, nonuni-
form and remodeled tissue is the reduction in conduction velocity. Since the
success of defibrillation depends on the fast depolarization of the entire tis-
sue, a slower conduction velocity might lead to defibrillation failure. Virtual
electrodes can occur near obstacles such as scars caused by infarction or sur-
gical incisions [220]. If the virtual electrodes are not well-spread throughout
the tissue, these obstacles might in fact form a substrate for arrhythmoge-
nesis [220]. This mechanism can also be observed in Figure 4.2. The pres-
ence of virtual electrodes is determined by the location of non-conductive
obstacles. Obstacles that are non-conductive in both domains lead to a differ-
ent pattern of virtual electrode polarization compared with obstacles that are
non-conductive in the intracellular domain only. In case of low conduction
velocities, localized regions of depolarization might be a substrate for new
fibrillating waves.

4.5 Conclusion

We have simulated sheets of normal and pathological atrial tissue to which
an external electric field was applied. To introduce spatial heterogeneity and
to simulate the effects of gap junction remodeling and diffuse fibrosis, lo-
cal conductivities were varied throughout the tissue. Using this model, we
investigated the role of nonuniform conductivities in relation to virtual elec-
trode polarization on resting cardiac tissue as well as tissue in which spiral
waves were induced. From the simulation results, we conclude that success-
ful termination of spiral waves depends on the amount and spread of virtual
electrodes. Compared with normal, nonuniform tissue, more virtual elec-
trodes are present in the bulk of remodeled tissue. However, since the con-
duction velocity in remodeled tissue is lower, it takes more time to depolar-
ize the entire tissue. We conclude that fast depolarization of the tissue after
field stimulation may be explained by intracellular decoupling and spatial
heterogeneity present in normal and pathological cardiac tissue. We demon-
strated that termination of spiral waves by means of field stimulation can be
achieved when the tissue is modeled as a nonuniform, anisotropic bidomain
with active membrane behavior.
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Abstract

Atrial fibrillation is the most common cardiac arrhythmia. Structural cardiac de-
fects such as fibrosis and gap junction remodeling lead to a reduced cellular electrical
coupling and are known to promote atrial fibrillation. It has been observed that the
expression of the hyperpolarization-activated current If is increased under patho-
logical conditions. Recent experimental data indicate a possible contribution of If

to arrhythmogenesis. In this study, the role of If in impulse propagation in normal
and in pathological tissue is investigated by means of computer simulations. The ef-
fect of diffuse fibrosis and gap junction remodeling is simulated by reducing cellular
coupling nonuniformly. As expected, the conduction velocity decreases when cellu-
lar coupling is reduced. In the presence of If, the conduction velocity increases both
in normal and in pathological tissue. In our simulations, ectopic activity is present
in regions with increased expression of If and is facilitated by cellular uncoupling.
We conclude that an increased If may facilitate propagation of the action potential.
Hence, If may prevent conduction slowing and block. Overexpression of If may lead
to ectopic activity, especially when cellular coupling is reduced under pathological
conditions.
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5.1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia [133]. The
prevalence of AF increases with age from 0.5% of people under the age of 60
to almost 10% of people over the age of 80 [92]. Related to the occurrence
of AF is structural remodeling of the tissue, including increase of cell size,
interstitial fibrosis, and gap junction remodeling [5]. These effects lead to the
loss of electrical coupling between cardiac cells and are known to promote
recurrence of AF episodes [6, 11]. Changes in gap junction distribution may
be involved in the initiation and persistence of AF [88, 183, 209, 210].

Besides structural remodeling, electrophysiological remodeling is related
to AF, including shorter atrial effective refractory periods (AERP), greater dis-
persion of atrial refractoriness, and atrial conduction delay [18]. However,
even if AF initiation and AF perpetuation are facilitated by electrophysio-
logical remodeling, the initiation of AF still requires a trigger [172]. Such a
trigger may come from ectopic foci. Especially in the case of paroxysmal AF,
episodes of atrial fibrillation are often triggered by ectopic foci that are lo-
cated in the pulmonary veins [39]. The mechanism of focal activity leading
to AF is, however, still unknown [39]. Two possible mechanisms are micro-
reentry within the pulmonary veins [73] and spontaneous depolarization of
cells located in the pulmonary veins [66].

The ionic current responsible for pacemaker activity of sino-atrial node
cells and Purkinje fibers is the hyperpolarization-activated inward current If

[42]. If channels are believed to be complexes of hyperpolarization-activated
cyclic nucleotide-gated (HCN) channels [1]. If channels in atrial tissue are
most likely heteromeric complexes composed of HCN4 and/or HCN2 [124,
128]. If conducts both K+ and Na+, with about a 3 : 1 preference for K+ [42].
It has some unusual features and is thereby known as the “funny” current [1,
42]. The first unusual feature is that If is activated by hyperpolarization with
a threshold of approximately −40 to −50 mV in the sinus node [1] and about
−65 mV in other myocardial cells [146]. The second unusual feature is that
the fully activated current/voltage relation reverses near −10 to −20 mV in
physiological solutions as a consequence of the channel’s mixed permeabil-
ity to Na+ and K+ [1]. The activation by hyperpolarization and permeability
to Na+ and K+ are important properties with respect to the role of I f in di-
astolic depolarization and spontaneous activity [1]. As opposed to earlier
results [28, 76, 77, 228], it was recently observed by Michels et al. [128] that
half-maximum activation of single-channel If is within the diastolic range of
human atrial myocardium. These observations support a possible contribu-
tion of HCN-gated channels and If to arrhythmogenesis under pathological
conditions [128].



If has been identified in cardiac tissue that is normally not capable of pace-
making, including human left ventricular myocytes [28, 77] and human atrial
myocytes [25, 76, 146]. Interestingly, the expression of I f in left ventricular
myocytes of the rat increases with age [27]. Also, in ventricular myocytes of
hypertrophied and failing hearts of the rat, the expression of I f is increased
and leads to diastolic depolarization in isolated myocytes [26, 27, 29]. Sar-
tiani et al. [165] observed two action potentials of different HL-1 cells derived
from the atria of a transgenic mouse. One of the action potentials showed
spontaneous diastolic depolarization and the other a flat diastolic potential.
A hyperpolarization-activated inward current was observed in the cell with
a spontaneous diastolic depolarization phase, but not in the other cell [165].
Besides, they observed spontaneously beating cells in some regions of HL-
1 cell cultures with a frequency varying between 1.3 and 5 Hz [165]. Since
the beating stopped in the presence of I f-blocker Cs+, it is suggested that the
spontaneous activity is caused by If [165]. However, whether If may favor
spontaneous diastolic depolarization in individual human atrial myocytes re-
mains to be determined [76].

Previous simulation studies to investigate conduction velocity and ar-
rhythmia in structurally remodeled tissue did not include If. Fast and Kléber
showed that conduction slowing and block may occur at an abrupt tissue
expansion [55]. Shaw and Rudy applied a multicellular monodomain fiber
model to investigate conduction slowing and block in relation to reduced
membrane excitability and decreased gap junction coupling [170, 171]. Street
and Plonsey applied a multi-fiber bidomain model to investigate conduction
slowing and block in regions of passive, connective tissue representing in-
farcted regions [189]. Recent large-scale simulation studies to atrial arrhyth-
mia apply detailed models of the ionic membrane currents, electrophysiolog-
ical remodeling, anisotropy, and 3D geometry [67, 83, 84, 104, 213, 214, 215].

The aim of the present simulation study is to investigate the influence
of If on impulse propagation and ectopic activity under normal and patho-
logical conditions. We apply a discrete bidomain model with active mem-
brane behavior to represent the cardiac tissue. Diffuse fibrosis and gap junc-
tion remodeling are modeled by decreasing intracellular coupling at random
throughout the tissue. The amount of I f current and of cellular uncoupling
are varied to investigate their respective influence on the conduction velocity
and ectopic activity.



5.2 Methods

We have developed a new discrete bidomain model, the Cellular Bidomain
Model, which we previously applied to investigate virtual electrode polariza-
tion during external field stimulation under normal and pathological condi-
tions [109]. Active membrane behavior as well as intracellular coupling and
interstitial currents are described by this model. Similar to the volume aver-
aging approach of the continuous bidomain model, each point in the tissue
is assigned both an intracellular and an extracellular potential [69, 189]. In
our model, the bidomain is subdivided in segments and the same state is as-
sumed everywhere within a single segment, which is why we call it a discrete
bidomain model, or Cellular Bidomain Model [109]. Although a segment
may represent a single myocyte, we usually apply somewhat larger segments
such that less computational power is required to simulate sheets of cardiac
tissue. The segment sizes may vary as well as the electrical coupling between
adjacent segments. Pathology such as fibrosis and gap junction remodeling
can be modeled by reducing the intracellular coupling between the segments.
Furthermore, active membrane behavior can be varied throughout the tissue
by assigning different membrane properties to individual segments.

5.2.1 Cellular Bidomain Model

In the Cellular Bidomain Model, the structure of the cardiac tissue is repre-
sented by a graph consisting of nodes and edges, where a node represents a
segment and an edge the electrical coupling between the segments. Let N
represent the set of nodes and E the set of edges connecting the nodes. Each
node has its own membrane model describing the ionic membrane currents.
The state of each node n ∈ N is defined by the intracellular potential V n

int and
the extracellular potential Vn

ext. The membrane potential Vmem for node n is
defined as Vn

mem = Vn
int − Vn

ext. Edges define the conductance for intracellular
and extracellular currents between two adjacent nodes. We distinguish the
intracellular and extracellular conductance, which are denoted by σint and σext,
respectively (Figure 5.1).

It is assumed that for each edge (n,m) ∈ E it holds σ(n,m)
int > 0 and σ(n,m)

ext > 0.
The intracellular and extracellular currents flowing from node n to node m
are denoted by In→m

int and In→m
ext , and are given by Ohm’s law:

In→m
int = (Vn

int − Vm
int)σ

(n,m)
int , (5.1)

In→m
ext = (Vn

ext − Vm
ext)σ

(n,m)
ext . (5.2)

The intracellular current entering node n coming from all adjacent nodes a,
(a, n) ∈ E, is denoted by In

int and the extracellular current by In
ext. These currents
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Figure 5.1: Graphical representation of a simulation graph. Each node represents a
rectangular segment of cardiac tissue. The state of each node is represented by the
intracellular potential Vint, the extracellular potential Vext, and the membrane poten-
tial Vmem. Electrical coupling between the nodes is indicated by the intracellular and
interstitial conductances denoted by σint and σext. The intracellular and interstitial
currents flowing between the nodes are represented by the arrows labeled with Iint

and Iext.

are defined by

In
int =

∑
(a,n)∈E

Ia→n
int , (5.3)

In
ext =

∑
(a,n)∈E

Ia→n
ext . (5.4)

According to Kirchhoff’s law, current entering a node as intracellular current
must flow to the interstitial space as transmembrane current and leave the
node as extracellular current. By choosing the transmembrane current, de-
noted by Itrans, flowing from the intracellular space to the interstitial space, we
obtain for node n

In
trans = In

int = −In
ext. (5.5)

The transmembrane current is the sum of capacitive and ionic currents, i.e.,

In
trans = Cn

mem

dVn
mem

dt
+ S n

mem Iion(V
n
mem, q

n), (5.6)

where Cn
mem represents the membrane capacitance of node n in μF and S n

mem the
membrane surface in cm2. The ionic membrane current of node n, denoted



by Iion(Vn
mem, q

n), is expressed in μA per cm2 membrane surface and depends
on the membrane potential Vmem as well as gating variables and ionic concen-
trations denoted by the vector qn.

To model the ionic currents in the present study, we apply a modified ver-
sion of the Courtemanche-Ramirez-Nattel model of the human atrial action
potential [37]. We extended this model with the hyperpolarization-activated
current If and adapted the INa kinetics as described below. The total ionic
current is given by

Iion = INa+ IK1+ Ito+ IKur+ IKr+ IKs+ ICa,L+ Ip,Ca+ INaK+ INaCa+ Ib,Na+ Ib,Ca+ If. (5.7)

The ionic and pump currents, including the handling of the intracellular Ca2+

concentration ([Ca2+]i) by the sarcoplasmic reticulum (SR), are described in
Ref. [37]. The model keeps track of [Ca2+]i as well as [Na+]i and [K+]i, while
the extracellular concentrations [Ca2+]e, [Na+]e, and [K+]e are constant [37].

To solve the equations of the Cellular Bidomain Model, no-flux boundary
conditions are assumed for both the intracellular and the interstitial domain.
For the numerical integration scheme we refer to Chapter 2. Here, we de-
scribe how the pacemaker current If is modeled and the inward Na+ current
INa is modified. Next, it is described how normal and pathological atrial tis-
sue is modeled. Furthermore, the simulation protocol for the present study is
described.

5.2.2 Hyperpolarization-activated inward current If

The If current is expressed in pA/pF and is defined by

If = Gf po(Vmem − Ef), (5.8)

where Gf is the maximum membrane conductance for If in nS/pF, po the frac-
tion of channels in the open state, and E f the reversal potential. The dynamics
of po is defined by

dpo

dt
= αpo(1 − po) − βpo po, (5.9)

where αpo and βpo are defined as in DiFrancesco [43]:

αpo = 2.83 × 10−7 exp
(
− Vmem

15.08

)
(5.10)

βpo = 8.31 × 10−2 exp
( Vmem

15.08

)
. (5.11)

Moroni et al. [129] describe human If kinetics based on HCN2 only. Lud-
wig et al. [124] concluded that pacemaker activity in the human heart is a



combined effect of HCN2 and HCN4 channels. Michels et al. [128] observed
that single-channel characteristics of If in human atrial myocytes resemble
those of HCN4 or HCN2 + HCN4. Since HCN4 kinetics are slower than
HCN2 kinetics [124, 129], and the kinetics obtained by DiFrancesco [43] for
rabbit sino-atrial nodal If are slower than the HCN2 kinetics obtained by Mo-
roni et al. [129], we decided to model activation parameter po as described by
DiFrancesco [43]. Using these parameters, the half activation potential is −95
mV and only a small fraction of If channels will be open in diastolic range
(above −81 mV) [43].

The reversal potential Ef is defined as in Moroni et al. [129]:

Ef =
RT
F

ln

(
[K+]e + (PNa/PK)[Na+]e

[K+]i + (PNa/PK)[Na+]i

)
, (5.12)

where PNa and PK are permeabilities to Na+ and K+, R is the universal gas
constant, T is the temperature (310 K [37]), and F is Faraday’s constant. The
ratio (PNa/PK) is 0.41 [129]. In the model of Courtemanche et al., the extra-
cellular ion concentrations are constant ([K+]e = 5.4 mM and [Na+]e = 140
mM), while the intracellular ion concentrations are dynamic ([K+]i = 139
mM and [Na+]i = 11.2 mM when Vmem = −81.2 mV) [37]. We have adapted
the model to take the influence of If on [Na+]i and [K+]i into account as de-
scribed by DiFrancesco and Noble [45]. With the parameters defined in the
Courtemanche-Ramirez-Nattel model, the reversal potential E f is approxi-
mately −22 mV.

5.2.3 Fast inward Na+ current INa

INa is modeled in the Courtemanche-Ramirez-Nattel model as in the Luo-
Rudy phase-2 model [125], and is given by

INa = GNam
3h j(Vmem − ENa). (5.13)

Here, GNa is the maximum INa conductance (7.8 nS/pF) and ENa is the equilib-
rium potential for Na+ [37]. Further, m is the fast activation variable, and h
and j are the fast and slow inactivation variables [37, 125]. To obtain diastolic
action potentials, we adapted the INa kinetics by doubling the forward rates
αm and αh of the fast gating variables m and h (Appendix A). With this change,
the INa channels open and diastolic action potentials occur with a basic cycle
length (BCL) of 1.5 s for Gf = 0.27 nS/pF. The action potential morphology
and duration remain unchanged when a stimulus current of 20 pA/pF is ap-
plied during 2 ms as in Ref. [37].



5.2.4 Modeling normal atrial tissue

The modifications of the INa kinetics have effect on the maximum upstroke ve-
locity (dVmem/dt)max and, thus, on the conduction velocity. In our simulations,
(dVmem/dt)max increased from 167 V/s to 288 V/s. To obtain conduction veloc-
ities similar to those reported by Spach and Boineau (0.48 m/s longitudinal
and 0.15 m/s transverse) [179], we have scaled the conductivity parameters
as reported by Clerc [33, 69] with a factor 0.6. The bidomain parameters used
in the present study for normal atrial tissue are listed in Table 5.1.

To obtain criteria for the size of individual segments, we apply cable the-
ory and consider subthreshold behavior along a fiber as described in Ref. [69].
The application of a stimulus current produces a spatial change in the mem-
brane potential along the fiber. For subthreshold behavior, the transmem-
brane current Itrans can be described by

Itrans = Cmem

dVmem

dt
+

Vmem

Rmem

, (5.14)

where Rmem is the membrane resistance in Ω·cm2 and Cmem the membrane ca-
pacitance in μF/cm2 [69]. The steady-state response of Vmem along the fiber to a
subthreshold current at position x = 0 is exponential and can be described by

Vmem(x) = Vmem(0) exp
(
− x
λ

)
, (5.15)

where Vmem(x) is the membrane potential on distance x from the stimulus site,
Vmem(0) the membrane potential at the stimulus site (x = 0), and λ the length
constant [69]. Using the bidomain parameters listed in Table 5.1, the length
constants in longitudinal and transverse direction, denoted by λ x and λy, can
be expressed as

λx =

√
Rmem gx

int gx
ext

χ (gx
int + gx

ext)
(5.16)

and

λy =

√
Rmem gy

int gy
ext

χ (gy
int + gy

ext)
, (5.17)

where, as before, Rmem is the membrane resistance in Ω·cm2 [69, 189]. We
estimated Rmem for the modified Courtemanche-Ramirez-Nattel model by ap-
plying a subthreshold stimulus current of 0.3 pA/pF during 300 ms. Rmem was
estimated using

Vmem − Vrest

Rmem

= Iion (5.18)



Table 5.1: Bidomain parameters for atrial tissue

Parameter Definition Value

gx
int Longitudinal intracellular conductivity 1.0440 mS/cm

gy
int Transverse intracellular conductivity 0.1158 mS/cm

gx
ext Longitudinal extracellular conductivity 3.7500 mS/cm

gy
ext Transverse extracellular conductivity 1.4160 mS/cm

Cmem Membrane capacitance 1.0 μF/cm2

χ Surface-to-volume ratio 2000 cm−1

for Vrest = −81 mV and Vmem ranging from −80 mV to −70 mV. We found values
for Rmem between 22 and 38 Ω·cm2. For these values of Rmem, λx is in between
0.095 and 0.125 cm, and λy is in between 0.034 cm and 0.045 cm. To obtain ac-
curate simulation results, the tissue is modeled as a brickwall with segments
of length 200 μm and width 80 μm. Hence, the segment sizes are approxi-
mately one fifth of the length constant in both directions.

5.2.5 Modeling pathological tissue

In the Cellular Bidomain Model, a distinction is made between longitudinal
coupling (along the fiber direction) and transverse coupling (side-to-side). The
effects of gap junction remodeling are simulated by varying the intracellu-
lar conductances nonuniformly throughout the tissue. A normal distribution
with parameters (μ, σ) is applied to determine a factor by which the initial
values for the intracellular conductances (σint) are multiplied for each edge.
Negative factors and factors larger than one are replaced by zero and one,
respectively. The average and standard deviation of the gap junction remod-
eling factor in longitudinal direction are denoted by μL and σL, respectively,
and the average and standard deviation in transverse direction by μT and σT,
respectively.

Fibrosis causes the loss of side-to-side cell coupling, which can result in a
disturbed wavefront propagation and may isolate groups of myocytes [180].
Since side-to-side coupling is affected, the main effect of fibrosis is a reduction
of the transverse conduction velocity [179]. We model the effect of diffuse
fibrosis [93] by randomly removing some of the intracellular conductances
in transverse direction, i.e., σint becomes zero for a fraction of the edges in
transverse direction. This fraction is called fibrosis fraction and is abbreviated
by FF.



5.2.6 Simulation protocol

Single cell simulations A series of single cell simulations over a period of
4 s was performed with varying expression of If (Gf = 0.08, 0.16, 0.31, and
0.55 nS/pF). Initially, the membrane state was equal to the resting state of a
human atrial cell without If (Vmem = −81 mV) [37]. No stimulus current was
applied in these simulations.

Gap junction remodeling and fibrosis To investigate the effect of gap junc-
tion remodeling and fibrosis on the longitudinal conduction velocity θL and
the transverse conduction velocity θT, three series of simulations were per-
formed on a 1 cm × 0.4 cm sheet of atrial tissue composed of uniform 200 μm
× 80 μm segments. An action potential front was initiated by stimulating the
left-most segments of each row (first series) or the upper row of segments
(second and third series). The segments were stimulated by adding a stimu-
lus current of 100 pA/pF to the ionic membrane currents until the membrane
was depolarized. In the first series, μL ranged from 0.1 through 1, μT = 1,
σL = 0, 0.5, and 1, and σT = 0. In the second series, μL = 1, μT ranged from 0.1
through 1, σL = 0, and σT = 0, 0.5, and 1. In the third series, fibrosis fraction
FF ranged from 0 through 0.9. No gap junction remodeling was applied in the
third series. θL and θT were determined by averaging the velocity of the ac-
tion potential front along nine parallel tracks of length 0.8 cm in longitudinal
direction and 0.32 cm in transverse direction.

Uniform expression of If To investigate the influence of a uniform expres-
sion of If on θL in normal, remodeled, and fibrotic tissue, five series of simula-
tions were performed on a 2 cm × 0.5 cm sheet of atrial tissue with segment
lengths varied randomly between 150 and 250 μm and width 80 μm. Two
types of remodeled tissue were simulated by applying gap junction remod-
eling (μL = μT = 0.75 and σL = σT = 0.25, and μL = μT = 0.5 and σL = σT = 1).
Two types of fibrotic tissue were simulated by applying both gap junction
remodeling and fibrosis (FF = 0.35). The expression of If ranged from 0.0
through 0.6 nS/pF. The left-most segments of the center fibers were stimu-
lated at the start of the simulation. Stimulation was repeated after 800 ms.
Four independent measurements of θL were obtained by measuring over four
consecutive tracks of length 0.4 cm along the central fiber.

Regional expression of If To investigate the critical size of an ectopic pace-
maker in relation to cellular coupling, a series of simulations was performed
on a 1 cm × 0.04 cm strip of tissue. If was present in the right part of the strip



(Gf = 0.3 nS/pF), but not in the left part. The size of the region in which If was
present was varied between 10% and 50% of the tissue. Uniform, reduced
cellular coupling was simulated (μL = μT ranged from 0.1 through 1, and
σL = σT = 0). Each simulation lasted 5 s. No stimulus current was applied. In
case ectopic activity occurred, the BCL was determined for each segment by
averaging the interval times between consecutive depolarizations.

Nonuniform expression of If To compare ectopic activity in normal and in
remodeled atrial tissue when the expression of I f is nonuniform, two series,
A and B, of 12 simulations were performed on a 1 cm × 0.4 cm sheet of tis-
sue composed of uniform 200 μm × 80 μm segments. In series A, G f was
uniformly increased from 0.27 nS/pF (BCL 1.5 s) on the left to 0.58 nS/pF
(BCL 0.75 s) on the right. In series B, G f was randomly distributed through-
out the tissue with average 0.42 nS/pF and standard deviation 0.19 nS/pF. G f

was bound by a minimum of 0.27 nS/pF (BCL 1.5 s) and a maximum of 0.58
nS/pF (BCL 0.75 s). Besides normal tissue, various types of remodeled tissue
were simulated (μL = μT = 0.5 and 0.3, and σL = σT = 0.0, 0.5, 1.0, 1.5, and
2.0) as well as fully uncoupled tissue (μL = μT = 0.0 and σL = σT = 0.0). The
distribution of Gf was exactly the same for all simulations of a series, thus,
the simulations of one series only differ in cellular coupling. Each simulation
lasted 5 s. No stimulus current was applied. The BCL was determined for
each segment by averaging the interval times between consecutive depolar-
izations.

Large-scale simulations To investigate the effect of a nonuniform expres-
sion of If under normal and pathological conditions, three large-scale simu-
lations were performed on an 8 cm × 3 cm sheet of atrial tissue with nonuni-
form expression of If. The width of the segments was 80 μm, while the length
was varied using a normal distribution with average 200 μm and standard
deviation 50 μm. The segment lengths were bound by a minimum of 150
μm and a maximum of 250 μm. Gf was 0.27 nS/pF in the leftmost 6.4 cm of
tissue and Gf was varied in the rightmost 1.6 cm of the tissue with average
0.42 nS/pF and standard deviation 0.19 nS/pF. Gf was bound by a minimum
of 0.27 nS/pF (BCL 1.5 s) and a maximum of 0.58 nS/pF (BCL 0.75 s). The
leftmost segments of the center fibers were stimulated at the start of the sim-
ulation. Stimulation was repeated each 800 ms.

To simulate pathological tissue, two simulations were performed on the
same 8 cm × 3 cm sheet of atrial tissue with the same distribution of If. The
fibrosis fraction FF was 0.35. After the first stimulation, the action potential
propagated from left to right such that the entire tissue was depolarized after



approximately 250 ms. Just before the second stimulation at simulation time
800 ms, the intracellular conductances were changed to simulate gap junction
remodeling with average μL = μT equal to 0.5 and 0.3, and standard deviation
σL = σT equal to 1 and 2, respectively. The second simulation of pathological
tissue lasted 15 s of simulation time.

5.3 Results

5.3.1 Single cell simulations

In Figure 5.2, the membrane potential Vmem, the hyperpolarization-activated
inward current If, the time-independent K+ current IK1, and conductance gf =

Gf po are presented. for G f = 0.08, 0.16, 0.31, and 0.55 nS/pF. Spontaneous di-
astolic action potentials occurred for Gf = 0.31 and 0.55 nS/pF with BCL 1260
ms and 760 ms, respectively. Gf = 0.08 and 0.16 nS/pF resulted in a depo-
larized steady-state membrane potential of −74.4 mV and −70.8 mV, respec-
tively. When comparing the ionic currents for Gf = 0.08 nS/pF with Gf = 0.16
nS/pF, the inward current If was increased from −0.24 to −0.29 pA/pF and the
rectifier current IK1 was increased by the same magnitude from 0.45 to 0.50
pA/pF (Figure 5.2). The changes in the remaining currents were marginal
(not shown). The change in IK1 is expected, because IK1 is voltage dependent
with a maximum current size of 0.5 pA/pF for Vmem = −67 mV [37]. Thus, for
increasing If, the membrane potential rises and IK1 increases. For Gf smaller
than 0.27 nS/pF, a steady-state membrane potential is reached at which the
depolarizing If current is compensated by the rectifying IK1 current. The frac-
tion of If channels being in the open state po = gf/Gf is of the order of a few
percent.

5.3.2 Gap junction remodeling and fibrosis

In Figure 5.3, the longitudinal and transverse conduction velocities θL and θT

are presented for varying μL and μT = 1 (top), μL = 1 and varying μT (center)
and varying FF (bottom). For larger values of σL and σT, the conduction
velocities are smaller for large μL and μT, while larger conduction velocities
are obtained for small μL and μT. This is caused by the requirement that the
factors by which σint is multiplied must lie between 0 and 1. The average of
these factors is, thus, smaller than μL or μT for μL, μT > 0.5 and larger than μL

or μT for μL, μT < 0.5.
The solid lines indicate θL and θT predicted by cable theory. For noncurved

action potential fronts, θL and θT are proportional to the length constants λx

and λy (equations (5.16) and (5.17)) [69, 189]. The prediction of θL using cable
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Figure 5.2: Membrane potential Vmem (mV), hyperpolarization-activated inward cur-
rent If (pA/pF), time-independent rectifier K+ current IK1 (pA/pF), and conductance
gf = Gf po (nS/pF) for single cell simulations with different Gf values: dotted Gf = 0.08
nS/pF, short dash Gf = 0.16 nS/pF, long dash Gf = 0.31 nS/pF, solid Gf = 0.55 nS/pF.
No stimulus current was applied. Initially, the membrane state was equal to the
resting state of a human atrial cell without If (Vmem = −81 mV).
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Figure 5.3: Effect of gap junction remodeling and fibrosis on the conduction velocity.
Top: longitudinal conduction velocity θL for varying μL, μT = 1, and σT = 0. Cen-
ter: transverse conduction velocity θT for varying μT, μL = 1, and σL = 0. Bottom:
transverse conduction velocity θT for varying fibrosis fraction FF, μL = μT = 1, and
σL = σT = 0. The solid lines represent θL and θT predicted by cable theory for the
continuous bidomain model. The dashed line in the bottom figure represents θT for
a linear descent.



theory is accurate for σL = 0 and μL ≥ 0.3. Cable theory overestimates θT

for both transverse gap junction remodeling and fibrosis. As indicated by the
dashed line, the effect of fibrosis is better estimated assuming a linear descent
of θT.

A reduction of 30% in θL due to gap junction remodeling in rat ventricular
tissue was reported by Uzzaman et al. [206]. A similar reduction of θL in our
model is obtained for μL = 0.5 and σL = 0.5. Spach and Dolber observed trans-
verse conduction velocities related to uncoupling of side-to-side connections
as low as 0.085 m/s in human cardiac tissue of adults over age 50 [180]. In
Figure 5.3, it can be observed that such low values for θT in our model can be
obtained for fibrosis fraction FF between 0.3 and 0.4.

5.3.3 Uniform expression of If

In Figure 5.4, the longitudinal conduction velocity θL versus Gf after the sec-
ond stimulation is presented for five different types of tissue. The error bars
indicate the standard deviation. A similar increase in θL is obtained for nor-
mal, remodeled, and fibrotic tissue. For G f above 0.3 nS/pF, the increase in
θL is approximately 0.04 m/s for all types of tissue. Compared with the con-
duction velocity in tissue without If, this increase is about 20% for remodeled
tissue (μL = μT = 0.5 and σL = σT = 1, Figure 5.4). Note that, although for
Gf above 0.27 nS/pF spontaneous diastolic action potentials can occur, the
increase in conduction velocity for Gf below 0.5 nS/pF is caused by a more
depolarized diastolic membrane potential. For values of Gf above 0.5 nS/pF
ectopic pacemaking with BCL less than 800 ms occurred and the pacemaker
at the stimulation site was captured (results not shown).

5.3.4 Regional expression of If

In Table 5.2, average BCLs for various μL = μT and size of region with If are
presented. Region size is indicated as a percentage of the total tissue. A dash
means no ectopic activity occurred. In these simulations, the current gener-
ated by the If channels was spread over the entire tissue such that the thresh-
old was not reached in any of the segments. For comparison, G f = 0.3 nS/pF
in single cell simulations leads to an average BCL of 1331.9 ms. In Table 5.2
it can be observed that when If is present in 50% of the tissue, ectopic activ-
ity occurs in normal atrial tissue. In tissue with reduced cellular coupling,
smaller regions with expression of If lead to ectopic activity. Furthermore,
the BCL decreases when cellular coupling decreases.
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Table 5.2: BCL in ms for regional expression of If

μL = μT 10% 20% 30% 40% 50%

0.1 - 1468.2 1365.3 1347.0 1341.2

0.2 - - 1441.9 1372.0 1353.7

0.3 - - 1566.8 1411.7 1367.9

0.4 - - - 1460.8 1390.5

0.5 - - - 1523.1 1416.1

0.6 - - - 1617.1 1444.7

0.7 - - - 2511.2 1476.8

0.8 - - - - 1513.3

0.9 - - - - 1557.2

1.0 - - - - 1616.3

5.3.5 Nonuniform expression of If

In Table 5.3, the tissue properties, average BCLs and standard deviation of
BCLs for the gradual increase of If (series A) and random distribution of If

(series B) are presented. In both series, the average BCL decreases when cou-
pling is reduced. In case coupling is nonuniformly reduced, the BCLs are
even smaller. The standard deviation of the BCLs is smaller for coupled tis-
sue compared with fully uncoupled tissue (μL = μT = 0.0). Due to coupling,
the segments fire with similar frequencies (frequency entrainment [23]). By
inspecting the times of activation we found that when coupling is increased,
the segments not only fire with similar frequencies, but also at similar times
(waveform entrainment [23]). The larger standard deviation of BCL in less
coupled tissue is mainly caused by a few nonsynchronized segments that fire
at their own BCL.

5.3.6 Large-scale simulations

In Figure 5.5 (left), the membrane potentials are presented for normal atrial
tissue after the second stimulation. Note that, although the cardiac tissue is
modeled as an irregular brickwall, the curvature of the wavefront is smooth
and ellipsoidal, confirming that the segments are small enough to represent
normal atrial tissue. The conduction velocities θL = 0.42 m/s and θT = 0.13 m/s
as well as the anisotropy ratio θL/θT = 3.3 are similar to the results reported
by Spach and Boineau (θL = 0.48 m/s, θT = 0.15 m/s, and θL/θT = 3.2) [179].
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Figure 5.5: Simulation of normal (left) and pathological (center and right) atrial tis-
sue with increased, nonuniform If in the right part of the tissue. The membrane
potential is shown after the second stimulation at 800 ms. Just excited tissue is red,
depolarized tissue is yellow or green, and repolarized tissue is blue.



time μL = μT = 0.3 time μL = μT = 0.3
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Figure 5.6: Capturing ectopic rhythm. An 8 cm × 3 cm sheet of atrial tissue is rep-
resented by an irregular brickwall structure. To simulate sinus rhythm, a stimulus
current was applied each 800 ms to the left of the tissue. Ectopic activity occurs on
the right due to an increased expression of If. The membrane potential is shown at
different simulation times. Two black lines indicate how the collision front moves to
the right over time. After 15 s, ectopic activity in the right is captured by the depo-
larization wave coming from the left. Just excited tissue is red, depolarized tissue is
yellow or green, and repolarized tissue is blue.



Table 5.3: BCL in ms related to cellular coupling

μL μT σL σT series A series A series B seriesB

mean std mean std

1.0 1.0 0.0 0.0 807.1 0.1 931.7 0.2

0.5 0.5 0.0 0.0 789.9 0.1 931.6 0.6

0.5 0.5 0.5 0.5 781.6 0.4 930.8 1.1

0.5 0.5 1.0 1.0 776.0 3.4 929.3 4.3

0.5 0.5 1.5 1.5 773.9 20.1 928.2 19.0

0.5 0.5 2.0 2.0 774.1 38.0 924.1 24.2

0.3 0.3 0.0 0.0 780.1 0.1 930.3 1.1

0.3 0.3 0.5 0.5 771.6 3.2 927.0 4.2

0.3 0.3 1.0 1.0 770.3 23.5 919.6 22.9

0.3 0.3 1.5 1.5 770.8 38.3 911.2 31.2

0.3 0.3 2.0 2.0 771.0 40.2 909.7 36.8

0.0 0.0 0.0 0.0 985.0 208.8 1059.4 325.3

In Figure 5.5 (center and right), the membrane potentials are presented
for pathological tissue after the second stimulation. Approximately 1000 ms
after the start of the simulation, ectopic activity occurs on the right side of
the tissue, which is related to the increased expression of I f in that area. At
1000 ms, more ectopic activity is present in the right column than in the cen-
ter column. Since cellular coupling is the only difference between the two
simulations, and gap junction remodeling was applied just before the second
stimulation at 800 ms, the state of the two stimulations was exactly the same
till 800 ms. Thus, the increase in ectopic activity is explained by the decrease
in cellular coupling.

In Figure 5.6, the membrane potentials are shown at several simulation
times for the second simulation of pathological tissue. Each of the figures
represents a moment of collision of the depolarization wavefront generated
by the sinus node on the left-hand side and the wavefront generated by ec-
topic activity on the right-hand side. Note that the collision front moves to the
right during the course of the simulation and eventually reaches the ectopic
area before it can depolarize. After approximately 15 s, the ectopic pace-
maker is captured by the normal pacemaker. The yellow and green spots
indicate spontaneous action potentials from uncoupled segments that are not



activated by the depolarization wave. These segments are not capable of ini-
tiating new depolarization waves and, thus, no reentry will occur.

5.4 Discussion

5.4.1 Mechanisms leading to atrial arrhythmia

Many hypotheses have been proposed that may explain AF initiation and
perpetuation, such as structural remodeling [88, 139, 183, 209, 210], electro-
physiological remodeling [7, 18], stretch [135], atrial dilation [168], and atrial
fibrillation itself (“AF begets AF”) [221]. Recurrence of AF by late phase 3
early afterdepolarizations (EADs) shortly after termination of AF has been
reported by Burashnikov and Antzelevitch [22]. Distinct electrophysiologi-
cal properties between myocytes from the left atrial free wall and the pul-
monary veins may contribute to the role of the pulmonary veins in atrial
fibrillation [51, 85]. In the present study, we investigate the influence of If

on the conduction velocity and ectopic activity triggered by diastolic action
potentials.

5.4.2 Hyperpolarization-activated inward currents

If is not the only identified hyperpolarization-activated inward current. Ehr-
lich et al.[52] identified a hyperpolarization-activated time-dependent K+ cur-
rent IKH in canine myocytes from the pulmonary veins. Chen et al. [31] ob-
served pacemaker currents in canine PV myocytes which they believed to be
If. It is suggested by Ehrlich et al.[52] that these currents may correspond to
IKH.

Hoppe and Beuckelmann found a considerable variability of If expression
from cell to cell [76]. Based on a study by Wu et al. [226] identifying If and
IK1 in atrial cells from the cat, Hoppe and Beuckelmann suggest that dias-
tolic depolarization may not only depend on upregulation of If, but also on
downregulation of IK1 [76]. We observed that for Gf smaller than 0.27 nS/pF, a
steady-state membrane potential is reached at which the depolarizing If cur-
rent is compensated by the rectifying IK1 current. Our findings support the
suggestion by Hoppe and Beuckelmann that it is the combination of upreg-
ulation of If and downregulation of IK1 that may lead to diastolic depolariza-
tions [76].



5.4.3 The role of If in structurally remodeled tissue

On the basis of our simulation results, we conclude that ectopic activity in
regions with an increased expression of If is enhanced by a reduced cellu-
lar coupling. Similar observations have been reported by Wilders et al. [223]
in a study on focal activity related to anisotropy. Cai et al. [23], Winslow et
al. [224], and Cloherty et al. [34] observed in simulation studies that little cel-
lular coupling is required for frequency entrainment of sino-atrial node cells.
Frequency entrainment was also observed in our simulations of regional and
distributed focal activity. However, we also observed that nonuniform un-
coupling due to fibrosis and gap junction remodeling leads to lower BCLs of
ectopic activity. We conclude that the combination of a distributed expres-
sion of If and uncoupling due to fibrosis and gap junction remodeling might
lead to ectopic activity, contributing to arrhythmogenesis in diseases char-
acterized by If overexpression such as heart failure, hypertrophy, and atrial
fibrillation [28, 76, 77, 128].

From our simulation results, we also conclude that an increased expres-
sion of If leads to an increased conduction velocity. In the presence of I f,
the diastolic membrane potential rises, such that less current load is needed
to reach the threshold. Especially in cases where few cells need to load a
larger number of cells (current-to-load mismatch) this mechanism may pre-
vent drastic slowing or even a total block of impulse propagation. We ob-
served that the increase in conduction velocity is similar in normal, remod-
eled and fibrotic tissue. Compared with the conduction velocity in tissue
without If, we observed an increase of up to 20% in remodeled and fibrotic
tissue. Based on these findings, we propose that an increased expression of
If in early stages of cellular uncoupling due to aging or pathology may be
a mechanism to prevent conduction slowing and block. Michels et al. [128]
hypothesize a therapeutic role for If blockers to modify pathological auto-
maticity. On the basis of our simulation results, we conclude that blocking
of If under pathological conditions might lead to slowing or block of impulse
propagation.

5.4.4 Model validity and limitations

In the present study, structural remodeling and active membrane behavior
extended with a hyperpolarization-activated inward current are brought to-
gether into one model. The aim of the model is to study impulse propagation
and ectopic activity in normal and in structurally remodeled tissue. Although
similar results would have been obtained by a monodomain formulation of
the model, we think that, in order to model reduced intracellular coupling



caused by pathology, the interstitial space should explicitly be modeled as a
possible conduction pathway. The validity of the model with respect to the
cardiac tissue is discussed in Methods (see also Ref. [109]). We discuss the
validity of our model of If, the modified INa kinetics, the ion concentrations,
and the distribution of If.

If kinetics We use large, nonphysiological, values for the maximum mem-
brane conductance Gf to obtain significant diastolic depolarization and dias-
tolic action potentials. If conductances of this size have not been observed
experimentally [28, 76, 77, 228]. However, Michels et al. [128] recently ob-
served that half-maximum activation of single-channel If is in fact within di-
astolic range of human atrial myocardium. These recent observations are
most likely because cell dialysis was omitted in the new study [128]. The If

channel availability in human atrial myocytes (po in our model) reported by
Michels et al. [128] in diastolic range is much larger than the measurements
reported by DiFrancesco [43], upon which po in our model is based. For ex-
ample, Gf = 0.16 nS/pF in our model leads to a steady-state membrane poten-
tial Vmem = −70.8 mV, a conductance gf = Gf po = 0.006 nS/pF, and po = 0.0375
(Figure 5.2). However, the channel availability reported by Michels et al. [128]
would lead to po = 0.26 for Vmem = −70.8, giving a maximum conductance
Gf = gf/po = 0.006/0.26 = 0.023 nS/pF. Porciatti et al. [146] reported a current
density of −3.77 pA/pF at Vmem = −120 mV for human atrial myocytes. For re-
versal potential Ef = −13 mV [146], the conductance gf = If/(Vmem − Ef) = 0.035
nS/pF. Since po = 1 for Vmem = −120 mV [146], the maximum conductance
Gf equals gf = 0.035 nS/pF in that case. Although the values we have used
for Gf are somewhat larger than the experimentally obtained values, the If

current size in diastolic range is similar to the recent findings by Michels et
al. [128]. The major findings of our study, namely the facilitation of impulse
propagation and possible ectopic activity in badly coupled tissue, also hold
for physiological Gf when the If kinetics are based on these recent findings.

INa kinetics To obtain diastolic action potentials for large values of Gf, we
adapted the kinetics of INa such that the INa channels open faster when the
membrane depolarizes. In single cell simulations with the Courtemanche
model, action potentials are generated by applying a stimulus current of 20
pA/pF for 2 ms [37]. When slowly depolarizing the membrane by applying
a small stimulus current for a longer period of time, a minimum current of
0.5 pA/pF is required to generate an action potential. When smaller stimulus
currents are applied, the threshold for the opening of the INa channels is never
reached due to the increasing voltage dependent IK1 current. IK1 reaches a



maximum of approximately 0.5 pA/pF for membrane potential −67 mV [37].
By adapting the INa kinetics as described in Methods, action potentials can be
generated when applying a stimulus current above 0.4 pA/pF. The changes
of the INa kinetics have no effect on the action potential morphology and du-
ration when the usual stimulus current is applied.

Ion concentrations The ionic membrane currents of the Courtemanche-Ra-
mirez-Nattel model interact with intracellular Na+, K+, and Ca2+ concentra-
tions [37]. We adapted the model to take the influence of I f on [Na+]i and [K+]i

into account as described by DiFrancesco and Noble [45]. However, the effect
on ion concentrations of the stimulus current and the intracellular currents re-
sponsible for loading of the cells are not taken into account. This may lead to
a drift in ionic balance when simulating a longer period of time [37, 211]. In-
deed, we observed some deviation in the ionic balance after several seconds
of simulation time (not shown). However, the drift was marginal and since
the longest simulation run lasted only 15 s, we do not expect any noticeable
influence on our simulation results.

Distribution of If An important aspect of our model is the nonuniform ex-
pression of If. Porciatti et al. [146] observed expression of If in 82% of human
atrial cells. Hoppe and Beuckelmann found If in 95 to 100% of human atrial
myocytes [76]. They report a considerable variability of If size from cell to
cell [76]. Sartiani et al. [165] detected If in about 30% of cultured HL-1 cells
(adult mouse atrial myocytes). Since little quantitative information is avail-
able on the distribution of If expression, we decided to model variability in
the expression of If using a normal distribution of Gf.

5.5 Conclusion

In our model, an increased expression of If leads to a larger conduction veloc-
ity in normal, remodeled, and fibrotic tissue. The nominal increase in conduc-
tion velocity is similar for all types of tissue. Compared with tissue without
If, the relative increase in conduction velocity is up to 20% in remodeled and
fibrotic tissue. On the basis of these results, we propose that an increased
expression of If in early stages of cellular uncoupling, due to aging or pathol-
ogy, may be a mechanism to facilitate impulse propagation. Hence, If may
prevent conduction slowing and block. We also found that in tissue with a
nonuniform expression of If, the BCL of an ectopic pacemaker decreases due
to cellular uncoupling. Thus, overexpression of If may lead to ectopic activity,
especially in regions with a reduced cellular coupling.
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Abstract

Atrial fibrillation, a common cardiac arrhythmia, is promoted by atrial dilatation.
Acute atrial dilatation may play a role in atrial arrhythmogenesis through mechano-
electric feedback. In experimental studies, conduction slowing and block have been
observed in acutely dilated atria. In the present study, the influence of the stretch-
activated current (Isac) on impulse propagation is investigated by means of computer
simulations. Homogeneous and inhomogeneous atrial tissues are modeled by car-
diac fibers composed of segments that are electrically and mechanically coupled.
Active force is related to free Ca2+ concentration and sarcomere length. Simulations
of homogeneous and inhomogeneous cardiac fibers have been performed to quan-
tify the relation between conduction velocity and Isac under stretch. In our model,
conduction slowing and block are related to the amount of stretch and are enhanced
by contraction of early-activated segments. Conduction block can be unidirectional
in an inhomogeneous fiber and is promoted by a shorter stimulation interval. Slow-
ing of conduction is explained by inactivation of Na+ channels and a lower maxi-
mum upstroke velocity due to a depolarized resting membrane potential. Conduc-
tion block at shorter stimulation intervals is explained by a longer effective refractory
period under stretch. Our observations are in agreement with experimental results
and explain the large differences in intra-atrial conduction, as well as the increased
inducibility of atrial fibrillation in acutely dilated atria.
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6.1 Introduction

Atrial fibrillation (AF) is a common cardiac arrhythmia [133]. An important
risk factor for AF is chronic atrial dilatation [150, 212], whereas experimen-
tal studies indicate a role of acute atrial dilatation in the initiation of atrial
arrhythmia [16, 135, 152, 174, 177]. Conduction slowing and shortening of
the refractory period in acutely dilated atria have been reported [32, 79, 153].
Eijsbouts et al. [53, 54] found, in addition to conduction slowing, an increased
occurrence of intra-atrial block. Hu and Sachs [78] and Kohl and Sachs [105]
hypothesized that stretch-induced changes in electrophysiological behavior
can be explained by stretch-activated channels (SACs). In the present simu-
lation study, we investigate this hypothesis for atrial impulse propagation.

Several models have been proposed to describe SACs based on experi-
mental observations [68, 163, 193, 230, 231]. Similar models have been ap-
plied in large-scale computer simulations to investigate the effect of stretch on
defibrillation and the termination of ventricular tachycardia by means of pre-
cordial thump [119, 200]. Since cardiomechanics are not considered in these
studies, the stretch-activated current (Isac) is not influenced by contraction.
Models of the ventricles in which contraction is triggered by electrical acti-
vation describe stimulation from the Purkinje system [99, 205] and epicardial
stimulation [100, 204]. In these studies, mechanical deformation is triggered
by electrical activation. However, mechanoelectric feedback, i.e., the effect of
mechanical deformation on the electrophysiology, is not considered. To in-
vestigate the influence of mechanical deformation on impulse propagation, a
strong coupling between cardiomechanics and electrophysiology is required,
as proposed elsewhere [130, 137, 141]. In these studies, tissue conductivity is
directly affected by mechanical deformation, and the amount of Isac is related
to local deformation of the cardiac tissue. Physiological details, such as ionic
membrane currents, intracellular Ca2+ handling, and cross-bridge formation,
are not considered in these models.

In the present study, we investigate the role of I sac in conduction slowing
and block as observed in acutely dilated atria. We apply a discrete bidomain
model with strong coupling between cardiomechanics and cardiac electro-
physiology. Our model describes ionic membrane currents, Ca2+ storage and
release from the sarcoplasmic reticulum (SR), and cross-bridge formation. In
contrast to all other multicellular models, contractile forces are directly cou-
pled to free Ca2+ concentration, as well as sarcomere length. In our model,
the amount of Isac is related to local stretch and may change during contrac-
tion. We performed simulations of homogeneous and inhomogeneous car-
diac fibers under stretch to quantify the conduction velocity in the presence
of Isac. We observed conduction slowing, a longer effective refractory period



(ERP), and (unidirectional) conduction block with increasing stretch. Further-
more, we found that contraction of early-activated fiber segments can lead to
conduction block in later-activated segments. The observed phenomena are
in agreement with experimental observations and provide an explanation for
the increased inducibility of atrial fibrillation in acutely dilated atria.

6.2 Methods

In the present study, we apply our discrete bidomain model, the Cellular
Bidomain Model [109, 110], which describes active membrane behavior, as
well as intercellular coupling and interstitial currents, and has been extended
to model cardiac tissue mechanics and Isac. We describe the extensions to our
model of cardiac electrophysiology, in particular the influence of stretch on
fiber conductivity, our model of Isac, the Ca2+-force relation, the mechanical
behavior of a single segment, and the mechanical behavior of a cardiac fiber.
Furthermore, the numerical integration scheme is described and an overview
of the simulations is given.

6.2.1 Modeling cardiac electrophysiology

In the Cellular Bidomain Model, the cardiac tissue is subdivided in segments,
each with its own membrane model describing the ionic membrane currents
[109, 110]. The state of each segment is defined by the intracellular poten-
tial (Vint), the extracellular potential (Vext), and the state of the cell membrane,
which is expressed in gating variables and ion concentrations. The membrane
potential (Vmem) is defined by

Vmem = Vint − Vext. (6.1)

Intracellular and extracellular currents between adjacent segments are related
to intracellular and extracellular conductivities and satisfy Ohm’s law. Ex-
change of current between the intracellular and extracellular space occurs as
transmembrane current (Itrans), which is defined by

Itrans = χ(Cmem
dVmem

dt
+ Iion), (6.2)

where χ is the surface-to-volume ratio needed to convert I trans per unit mem-
brane surface to Itrans per unit tissue volume, Cmem is the membrane capaci-
tance, which is typically 1 μF/cm2 for biological membranes [15], and Iion is
ionic current (expressed in μA per cm2 membrane surface or pA/pF when



Cmem = 1 μF/cm2). Iion depends on Vmem, gating variables, and ion concentra-
tions (see below). Impulse propagation is related to the longitudinal conduc-
tivity parameters gint and gext. The bidomain parameters used for the present
study are from Henriquez [69] and are based on measurements by Clerc [33]
(Table 6.1).

To incorporate Isac, we modified the model of the human atrial action po-
tential (AP) of Courtemanche et al. [37]. The total ionic current is given by

Iion = INa+ IK1+ Ito+ IKur+ IKr+ IKs+ ICa,L+ Ip,Ca+ INaK+ INaCa+ Ib,Na+ Ib,Ca+ Isac, (6.3)

where INa is fast inward Na+ current, IK1 is inward rectifier K+ current, Ito is
transient outward K+ current, IKur is ultrarapid delayed rectifier K+ current,
IKr is rapid delayed rectifier K+ current, IKs is slow delayed rectifier K+ current,
ICa,L is L-type Ca2+ current, Ip,Ca is Ca2+ pump current, INaK is Na+-K+ pump
current, INaCa is Na+/Ca2+ exchanger current, and Ib,Na and Ib,Ca are background
Na+ and Ca2+ currents [37]. The model for the ionic and pump currents,
including handling of intracellular Ca2+ concentration ([Ca2+]i) by the SR, is
adopted from the model of Courtemanche et al. [37].

6.2.2 Influence of stretch on fiber conductivity

The intracellular and extracellular conductivities (gint and gext) may change
during stretch or contraction of the fiber. Under stretch, the length of the
cells increases and the cross-sectional area decreases, leading to a reduced
fiber conductivity. To quantify the changes in gint and gext (mS/cm), we assume
that the resistivity of the intracellular space (Rint = 1/gint, Ω·cm) is determined
partly by the myoplasmic resistivity (Rmyo) and partly by the gap-junctional
resistivity (Rjunc):

gint =
1

Rint

=
1

Rmyo + Rjunc

. (6.4)

For the nonstretched fiber, we define g int = gint0 = 1/Rint0, Rmyo = Rmyo0, and
Rjunc = Rjunc0. When the fiber is stretched with stretch ratio λ, cell length is
increased and cross-sectional area is decreased (assuming that cell volume
is conserved). Since Rmyo is proportional to the length and inversely propor-
tional to the cross-sectional area of the cell, we obtain

Rmyo = Rmyo0 λ
2. (6.5)

On the basis of the assumption that the total number of gap junctions in the
fiber does not change under stretch, the number of gap junctions per length



unit decreases proportionally with λ, which leads to

Rjunc =
Rjunc0

λ
. (6.6)

If equations (6.5) and (6.6) are combined, gint is related to λ by

gint =
1

Rmyo + Rjunc

=
1

Rmyo0λ2 +
Rjunc0

λ

. (6.7)

For the extracellular domain, we assume that gext is related to gext0 and λ by

gext =
gext0

λ2
. (6.8)

Chapman and Fry [30] determined that 52% of the total resistivity was at-
tributed to gap-junctional resistance in frog myocardial cells (Rjunc0/Rint0 =

0.52). Since these cells are longer (131 μm) [30] than human atrial cells (94
μm) [146], we estimate that Rjunc0/Rint0 = 0.6 for human atrial myocardium
(Table 6.1).

6.2.3 Stretch-activated current Isac

On the basis of experimental observations, we assume that Isac in atrial my-
ocytes is a nonselective cation current with a near-linear current-voltage rela-
tion [101]. The reversal potential is −3.2 mV for rat atrial myocytes [101]. In
our model, Isac is permeable to Na+, K+, and Ca2+ and is defined by

Isac = Isac,Na + Isac,K + Isac,Ca, (6.9)

where Isac,Na, Isac,K, and Isac,Ca represent the Na+, K+, and Ca2+ contributions,
respectively, to Isac. These currents are defined by the constant-field Goldman-
Hodgkin-Katz current equation [97]:

Isac,Na = PNa gsac

z2
NaF

2Vmem

RT

[Na+]i − [Na+]e exp(− zNaFVmem
RT )

1 − exp(− zNaFVmem
RT )

, (6.10)

Isac,K = PK gsac

z2
KF2Vmem

RT

[K+]i − [K+]e exp(− zKFVmem
RT )

1 − exp(− zKFVmem
RT )

, (6.11)

Isac,Ca = PCa gsac

z2
CaF

2Vmem

RT

[Ca2+]i − [Ca2+]e exp(− zCaFVmem
RT )

1 − exp(− zCaFVmem
RT )

, (6.12)



where, PNa, PK, and PCa denote the relative permeabilities to Na+, K+, and
Ca2+, zNa, zK, and zCa represent the ion valences, and F is Faraday’s constant,
R is the universal gas constant, and T is temperature (310 K) [37].

The conductance (gsac) depends on λ as follows:

gsac =
Gsac

1 + Ksac exp(−αsac(λ − 1))
, (6.13)

where Gsac is the maximum membrane conductance, Ksac a parameter to define
the amount of current when the cell is not stretched (λ = 1, sarcomere length
(ls) = 1.78 μm), and αsac is a parameter to describe the sensitivity to stretch.
Ksac and αsac are from Zabel et al. [230] (Table 6.1).

The reversal potential (Esac) can be obtained by solving the following equa-
tion for Vmem: Isac,Na + Isac,K + Isac,Ca = 0. In the present study, we consider two
cases: PNa : PK : PCa = 1 : 1 : 1, with Esac = −0.2 mV, and PNa : PK : PCa = 1 :
1 : 0, with Esac = −0.9 mV. In both cases, Isac has a near-linear current-voltage
relation (Figure 6.1).

To describe the influence of Isac,Na, Isac,K, and Isac,Ca on intracellular Na+, K+,
and Ca2+ concentrations ([Na+]i, [K+]i, and [Ca2+]i), respectively, we replace
equations (A.2)-(A.6) of the model of Courtemanche et al. [37] (Appendix A)
by

d[Na+]i

dt
= Cm

−3INaK − 3INaCa − Ib,Na − INa − Isac,Na

F Vi

, (6.14)

d[K+]i

dt
= Cm

2INaK − IK1 − Ito − IKur − IKr − IKs − Isac,K

F Vi

, (6.15)

d[Ca2+]i

dt
=

B1
B2
, (6.16)

B1 = Cm

2INaCa − Ip,Ca − ICa,L − Ib,Ca − Isac,Ca

2F Vi

+
Vup(Iup,leak − Iup) + IrelVrel

Vi

, (6.17)

B2 = 1 +
[Trpn]max Km,Trpn

([Ca2+]i + Km,Trpn)2
+

[Cmdn]max Km,Cmdn

([Ca2+]i + Km,Cmdn)2
, (6.18)

where, Cm is the membrane capacitance of a single atrial myocyte (100 pF) [37],
F is Faraday’s constant, Vi is the intracellular volume (13668 μm3) [37], Vup

and Vrel are the volumes of the SR uptake and release compartments, respec-
tively, Iup,leak, Iup, and Irel represent the SR currents, [Trpn] is troponin concen-
tration, [Cmdn] is calmodulin concentration, and Km is the half-saturation
constant. Equation (6.18) is equation (A.6) in the model of Courtemanche et
al. [37] and represents the influence of Ca2+ buffering in the cytoplasm medi-
ated by troponin ([Ca2+]Trpn) and calmodulin ([Ca2+]Cmdn) on [Ca2+]i.



6.2.4 Modeling the Ca2+-force relation

Rice et al. [157, 158] proposed five models of isometric force generation in
cardiac myofilaments. To model the Ca2+-force relation in the present study,
we apply their model 4, which is based on a functional unit of troponin, tropo-
myosin, and actin. The binding of Ca2+ to troponin is described by two states:
unbound troponin and Ca2+ bound to troponin. Tropomyosin can be in one
of six states: nonpermissive with 0 and 1 cross bridges (N0 and N1) and per-
missive with 0, 1, 2, and 3 cross bridges (P0, P1, P2, and P3). The permissive
states refer to tropomyosin for which the accompanying actin binding sites
are available for cross bridges to bind and generate force. Transitions be-
tween the states are governed by rate functions that depend on [Ca 2+]i and ls.
The entire model is presented in Appendix C.

In the model of Courtemanche et al. [37], Ca2+ buffering by troponin is
modeled by

[Ca2+]Trpn = [Trpn]max

[Ca2+]i

[Ca2+]i + Km,Trpn

, (6.19)

where [Ca2+]Trpn is Ca2+-bound troponin concentration, [Trpn]max is total tro-
ponin concentration (70 μM) [37], and Km,Trpn is half-saturation constant for
troponin (0.5 μM) [37]. In the model of Rice et al. [157, 158], the concentration
of Ca2+ bound to high-affinity troponin sites is [HTRPNCa], and the dynam-
ics are governed by

d[HTRPNCa]
dt

= k+htrpn [Ca2+]i ([HTRPN]tot−[HTRPNCa])−k−htrpn [HTRPNCa],

(6.20)

where [HTRPN]tot represents the total troponin high-affinity site concentra-
tion and k+htrpn and k−htrpn are the Ca2+ on- and off-rates for troponin high-affinity
sites (Table 6.1). The concentration of Ca2+ bound to low-affinity troponin
sites is [LTRPNCa], and the dynamics are governed by

d[LTRPNCa]
dt

= k+ltrpn [Ca2+]i ([LTRPN]tot − [LTRPNCa])− k−ltrpn [LTRPNCa],

(6.21)

where [LTRPN]tot represents the total troponin low-affinity site concentration
and k+ltrpn and k−ltrpn are the Ca2+ on- and off-rates for troponin low-affinity sites
(Table 6.1).



In our model, the Ca2+ transient is computed by the model of Courte-
manche et al. [37] using an immediate formulation of Ca2+ binding by tro-
ponin (equation (6.19)). The resulting Ca2+ transient is used to compute the
Ca2+ binding to troponin by equations (6.20) and (6.21), and [LTRPNCa] is
used to compute the tropomyosin rate from nonpermissive to permissive, as
in the model of Rice et al. [157, 158]. In the present study, we do not consider
a feedback mechanism that influences the Ca2+ transient through a change in
the affinity of troponin for Ca2+ binding as in model 5 [157, 158]. The choice
between model 4 and model 5 is motivated in the Discussion (Section 6.4).

In model 4, the force generated by the sarcomeres depends on the fraction
of tropomyosin in the force-generating states N1, P1, P2, and P3. We use the
normalized force (Fnorm), which is defined by

Fnorm = φ(ls)
P1 +N1 + 2 P2 + 3 P3

P1max + 2 P2max + 3 P3max

, (6.22)

where P1max, P2max, and P3max are defined as in Ref. [158] and φ(ls) describes
the physical overlap structure of thick and thin filaments within a sarcom-
ere [158]. When φ(ls) = 1, all myosin heads are able to interact with actin
in the single overlap zone; when φ(ls) < 1, some of the filaments are in the
double or nonoverlap zones. φ(ls) is defined by

φ(ls) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ls − 0.6 μm)/1.4 μm if 0.6 μm ≤ ls ≤ 2.0 μm
1 if 2.0 μm < ls ≤ 2.2 μm
(3.6 μm − ls)/1.4 μm if 2.2 μm < ls ≤ 3.6 μm

(6.23)

In Figure 6.2, the steady-state Ca2+-force relation is presented for model 4
[158]. Fnorm increases with increasing [Ca2+]i and with increasing ls, with a
maximum at ls = 2.3 μm. To emphasize the dependence on [Ca2+]i and ls, we
will denote Fnorm as a function: Fnorm([Ca2+]i, ls).



Table 6.1: Model parameters

Parameter Definition Value

gint0 Intracellular conductivity (λ = 1.0) 1.7422 mS/cm

gext0 Extracellular conductivity (λ = 1.0) 6.2500 mS/cm

Cmem Membrane capacitance 1.0 μF/cm2

χ Surface-to-volume ratio 2000 cm−1

Rjunc0/Rint0 Relative gap-junctional resistivity 0.6

Ksac Parameter to define Isac when not stretched 100

αsac Parameter to describe sensitivity to stretch 3

[LTRPN]tot Total troponin low-affinity site concentration 70.0 μM

[HTRPN]tot Total troponin high-affinity site concentration 140.0 μM

k+ltrpn Ca2+ on-rate for troponin low-affinity sites 20 M−1·s−1

k−ltrpn Ca2+ off-rate for troponin low-affinity sites 40 s−1

k+htrpn Ca2+ on-rate for troponin high-affinity sites 1.0 × 108 M−1·s−1

k−htrpn Ca2+ off-rate for troponin high-affinity sites 0.33 s−1

ls0 Reference sarcomere length 1.78 μm

fCE Scaling factor for contractile element 100 mN/mm2

lCE0 Reference length of contractile element 1.78 μm

vmax Maximum velocity of sarcomere shortening 0.0055 μm/ms

cv Constant describing shape of Hill relation 2

fSE Scaling factor for series elastic element 2.8 mN/mm2

kSE Material constant for series elastic element 14.6 μm−1

lSE0 Reference length of series elastic element 0 μm

fPE Scaling factor for parallel elastic element 0.006 mN/mm2

kPE Material constant for parallel elastic element 14.6 μm−1

lPE0 Reference length of parallel elastic element 1.78 μm

λ, stretch ratio.
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Figure 6.1: Current-voltage relation for stretch-activated current (Isac) and its Na+,
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6.2.5 Mechanical behavior of a single segment

The mechanical behavior of a single segment in our model is modeled as
described by Solovyova et al. [176] by the classical three-element rheologi-
cal scheme introduced by Hill in 1938 [71]. Active force is generated by the
contractile element (CE), and passive forces are generated in a series elastic
element (SE) and a parallel elastic element (PE; Figure 6.3). PE describes the
force-length relation when the segment is not stimulated. CE and SE together
describe the additional force generated on stimulation of the segment. The el-
ement lengths are lCE, lSE, and lPE. The reference lengths, i.e., the lengths when
the segment is at rest and no force is applied, are lCE0, lSE0, and lPE0.

The force generated by the contractile element (FCE) is defined by

FCE = fCE fv(v) Fnorm([Ca2+]i, ls), (6.24)

where fCE is a scaling factor, v = −dls
dt represents the sarcomere shortening ve-

locity, and Fnorm([Ca2+]i, ls) is Fnorm generated by the sarcomeres. The relation
between the generated force and v is Hill’s force-velocity relation [71, 80] and
appears to be hyperbolic for skeletal and cardiac muscle [21, 40]. We model
the Hill relation by a function fv(v) as proposed by Hunter et al. [80]:

fv(v) =
1 − v

vmax

1 + cv
v

vmax

, (6.25)

where vmax is the maximum sarcomere shortening velocity and cv is a constant
describing the shape of the hyperbolic relationship.

The forces generated in SE and PE are nonlinearly dependent on their
respective lengths lSE and lPE [176] and are defined by

FSE = fSE (exp(kSE (lSE − lSE0)) − 1) (6.26)

and

FPE = fPE (exp(kPE (lPE − lPE0)) − 1), (6.27)

where lSE0 and lPE0 denote the reference element lengths and fSE, kSE, fPE, and
kPE are material constants describing the elasticity of the elements.

From mechanical equilibrium, it follows that FCE must be equal to the
force generated in the SE (FSE). The total force generated by the segment
(Fsegment) is defined as FSE + FPE. Furthermore, lPE must be equal to lCE + lSE

(Figure 6.3). Therefore, during mechanical equilibrium

FCE = FSE, (6.28)

Fsegment = FSE + FPE, (6.29)

lPE = lCE + lSE. (6.30)



FCE FSE

FPE
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PEl

SElCElsl =
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Figure 6.3: Three-element scheme to model the mechanical behavior of a single cell.
Active force (FCE) is generated by the contractile element (CE), and passive forces
(FSE and FPE) are generated in the series elastic element (SE) and in the parallel elastic
element (PE). ls = lCE denotes sarcomere length, and lSE and lPE are SE and PE lengths.
During mechanical equilibrium, FCE = FSE, Fsegment = FSE + FPE, and lPE = lCE + lSE.

lCE, lSE, and lPE are related to physiological sarcomere length (ls) and reference
sarcomere length (ls0) by lCE = ls and lCE0 = ls0 [176]. The reference length of a
segment is 0.01 cm and is related to lPE0 by a scaling factor ξ. For segment n,
we define the reference length ln0 by

ln0 = ξn lnPE0 (6.31)

and the actual length ln by

ln = ξn lnPE, (6.32)

where ln
PE0 and lnPE represent the reference length and actual length of the PE

of segment n. The stretch ratio (λn) for segment n is then defined by

λn =
ln
ln0
=

lnPE

ln
PE0

. (6.33)

The parameters for the three-element mechanical model are obtained from
Solovyova et al. [176] (Table 6.1). In Figure 6.4, active force (FSE), passive
force (FPE), and total force (Fsegment) are presented for ls = 1.7-2.5 μm and
[Ca2+]i = 1.2, 0.9, 0.6, and 0.3 μM. When the sarcomeres generate force, i.e.,
lSE > 0, lPE = lCE + lSE is larger than ls = lCE. This results in a steeper increase of
FPE for increasing ls and is in agreement with the passive force-length relation
for intact cardiac muscle measured by Kentish et al. [98].
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6.2.6 Mechanical behavior of a cardiac fiber

A cardiac fiber is modeled as a string of segments that are coupled in series.
From mechanical equilibrium, it follows that the force Fn

segment generated by a
single segment n, n ∈ N , is equal to the force generated by the fiber (F fiber), i.e.,

Fn
segment = Ffiber. (6.34)

If we take into account that ln0 may be different for each segment n, n ∈ N ,
the stretch ratio of the fiber (λfiber) is defined by

λfiber =
L
L0
=

∑
n∈N ln∑
n∈N ln0

, (6.35)

where L denotes the actual fiber length and L0 is the reference length.
In the present study, inhomogeneous cardiac tissue is represented by a

5-cm-long fiber with varying thickness and stiffness. The fiber is composed
0.01-cm-long segments with 0.01- to 0.1-mm2 cross-sectional area. Tissue con-
ductivity is related to stretch and may vary during the simulation. To enforce
nonuniform stretch during the simulations, the diameter and stiffness of the



left half of the fiber are varied, while the diameter (0.01 mm2) and stiffness
of the right half are normal. Linear interpolation is applied in a 0.5-cm tran-
sitional zone in the center of the fiber. Thick tissue is modeled by increasing
the diameter of the segments, which affects the electrophysiological and me-
chanical properties of the tissue. Conductances, membrane surface, and the
mechanical parameters fCE, fSE, and fPE are scaled with the increase of the
cross-sectional area. To simulate stiff tissue, the mechanical parameter fPE is
scaled. Scaling factors for maximum and minimum thickness are denoted
by tmax and tmin, respectively, and scaling factors for maximum and minimum
stiffness by smax and smin, respectively.

6.2.7 Numerical integration scheme

To obtain criteria for the size of individual segments we apply cable theory
and consider subthreshold behavior along a fiber as previously described
[110]. For the bidomain parameters in Table 6.1, we obtain a length constant
between 0.12 and 0.16 cm for λ = 1.0. When λ is increased to 1.4, the length
constant decreases ∼15% for Rjunc0/Rint0 = 0.6. To obtain accurate simulation
results, the fiber is modeled with segments that are 0.01 cm long, which is
less than one-tenth of the length constant for λ ≤ 1.4. To solve the equations
of the Cellular Bidomain Model, we use a forward Euler scheme with a 0.01-
ms time step to compute Vmem and an iterative method to solve the system of
linear equations as described in Kuijpers et al. [110]. Our method does not
require matrix inversions and, therefore, is well-suited to solve the system of
equations when the conductivities change during the simulations as a result
of stretch or contraction.

The ionic membrane currents are computed using a modified Euler meth-
od as described by Courtemanche et al. [37]. To reduce computation time, the
time step changes during the simulation as follows: a 0.01-ms time step is
used shortly before and during the upstroke of the AP, and a 0.1-ms time step
is used during repolarization and rest. The Ca2+-force relation is computed
using a forward Euler method with a fixed 0.1-ms time step, which is also
the time step used to compute the cardiac mechanics (Appendix D). Local
conductivities are adjusted to the local λ whenever the mechanical state is
updated.

To compare 0.1-ms (see above) with 0.01-ms time steps, we performed
two simulations with the same parameter settings, but with different time
steps. The differences in conduction velocity (θ), membrane currents, ionic
concentrations, and mechanical forces were negligible, but computation time
was reduced by 75%.



6.2.8 Simulation protocol

To illustrate the excitation-contraction coupling in our model, we performed
single-cell simulations with constant ls (isosarcometric contraction) and single-
cell simulations with constant applied force (isotonic contraction). The influ-
ence of Isac on the AP was investigated by application of a constant stretch to
a single cell (isometric simulation). The cell was electrically stimulated with
a frequency of 1 Hz. For investigation of spontaneous activity under stretch,
simulations were performed with increasing stretch, but without electrical
stimulation.

The influence of stretch on θwas investigated by stimulating the first seg-
ment of a 1-cm fiber. The fiber was short, such that contraction of early-
activated segments did not affect impulse propagation in later-activated re-
gions. λfiber was kept constant during the simulation (isometric fiber contrac-
tion). We used longer (5 cm) fibers to investigate the influence of contraction
on impulse propagation. Simulations were performed with contraction en-
abled and with contraction disabled. Disabled contraction was implemented
by assuming that [Ca2+]i was equal to its resting value of 0.102 μM [37] when
Fnorm([Ca2+]i, ls) was computed. Thickness and stiffness were varied to simu-
late inhomogeneous cardiac tissue.

All simulations were performed over a 12-s period. Electrical stimulation
was performed each 1 s (1 Hz) or each 0.5 s (2 Hz) by application of a stimulus
current. In the case of single-cell simulations, a stimulus current of 20 pA/pF
was applied for 2 ms as described by Courtemanche et al. [37]. In the case
of fiber simulations, the leftmost or the rightmost segment was stimulated
by application of a stimulus current of 100 pA/pF until the membrane was
depolarized. For the 1-cm fiber, the overall θwas measured by determination
of the moment of excitation of two segments located 1 mm from each of the
fiber ends. For the 5-cm (inhomogeneous) fiber, local θ was computed for
each segment using the excitation time between two segments located 0.5
mm to the left and to the right in the nonstretched fiber.

6.3 Results

6.3.1 Isosarcometric contraction

Figure 6.5 illustrates the relation between the electrophysiology described
by the model of Courtemanche et al. [37] and the force-producing states de-
scribed by the model of Rice et al. [157, 158]. For the Vmem trace in Figure 6.5,
AP duration (APD) at 50% repolarization (APD50) and APD at 90% repolar-
ization (APD90) are 184 and 304 ms, respectively. The AP amplitude and AP
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Figure 6.5: Vmem, [Ca2+]i, concentration of Ca2+ bound to low-affinity troponin sites
[LTRPNCa], and fraction of functional units in force-producing state P1, N1, P2, or
P3 for ls = 2.3 μm. A stimulus current was applied at 100 ms. Traces from 12th action
potential (AP) are shown for stimulation at 1 Hz. Isac was disabled.

overshoot are 107 mV and 28 mV, respectively, and the maximum upstroke
velocity (dVmem/dt)max is 187 V/s. For the Ca2+ transient, resting [Ca2+]i is 0.11
μM, peak [Ca2+]i is 0.87 μM, and time required to return [Ca2+]i to one-half of
maximum [Ca2+]i is 178 ms. Since the dynamics of the concentration of Ca2+

bound to low-affinity troponin sites ([LTRPNCa]) are governed by differen-
tial equation (6.21), the trace of [LTRPNCa] is smooth compared with that of
[Ca2+]i.

From the traces of Fnorm and individually normalized traces of Fnorm for
ls = 1.7-2.3 μm in Figure 6.6, it can be observed that peak force, time to peak
force, and relaxation time increase with increasing ls, which is consistent with
the experimental data measured by Janssen and Hunter [86].

6.3.2 Isotonic contraction

In Figure 6.7, traces of Fnorm, FCE, ls, and lPE are presented for simulations of
isotonic contraction with applied force (Fsegment) of 5-250 mN/mm2. The AP



Table 6.2: AP characteristics when Isac is permeable to Ca2+ (Gsac = 0.015 μm/s)

λ Vrest (dVmem/dt)max APA APD90 APD50 [Ca2+]i,max τCa2+

[−] [mV] [V/s] [mV] [ms] [ms] [μM] [ms]

1.00 −74.9 176 98.6 358 188 1.00 158

1.05 −73.7 170 95.6 370 190 1.02 155

1.10 −72.1 163 91.6 386 193 1.06 150

1.15 −69.9 148 84.9 410 200 1.11 144

1.20 −66.2 124 73.7 442 211 1.18 136

1.25 −56.7 88 57.7 388 205 1.31 123

AP, action potential; Vrest, resting potential; (dVmem/dt)max, maximum upstroke veloc-
ity; APA, AP amplitude; APD90 and APD50, AP duration at 90% and 50% repolariza-
tion; [Ca2+]i, intracellular Ca2+ concentration; τCa2+ , time required to return [Ca2+]i to
one-half of [Ca2+]i,max; Gsac, maximum Isac conductance.

and Ca2+ transient are the same as in Figure 6.5. Less time is required to
return Fnorm to its resting value than in the case of isosarcometric contraction
(Figure 6.6, top). This is explained by shortening of the sarcomeres during
contraction: a shorter sarcomere yields a lower contractile force (Figure 6.2,
bottom). The FCE traces exhibit a plateau phase for Fsegment ≤ 25 mN/mm2. For
Fsegment = 250 mN/mm2, lPE remains constant, indicating no shortening.

6.3.3 Effect of Isac on action potential

Figure 6.8 illustrates the effect of Isac on the AP. Vmem, Isac, ICa,L, and [Ca2+]i

are presented for Isac permeable to Ca2+ and Isac not permeable to Ca2+ for
λ = 1.00, 1.10, and 1.20. The cell was stimulated with a frequency of 1 Hz.
With increasing λ, repolarization is prolonged and the resting Vmem is depo-
larized. Isac is small during the plateau phase and larger during repolarization
and rest, which is consistent with a reversal potential between 0 and −1 mV.
ICa,L is somewhat lowered under stretch, and the Ca2+ transient is increased.
The lowered ICa,L is explained by the Ca2+-dependent inactivation of ICa,L [37].
Interestingly, whether Isac is permeable or not permeable to Ca2+, the Ca2+

transient increases with increasing stretch. The characteristics for the AP and
the Ca2+ transient are presented in Table 6.2 for Isac permeable to Ca2+ and
in Table 6.3 for Isac not permeable to Ca2+. For Isac permeable to Ca2+, peak
[Ca2+]i and the time required for return of [Ca2+]i to one-half of maximum
[Ca2+]i is increased ∼3%.



Table 6.3: AP characteristics when Isac is not permeable to Ca2+ (Gsac = 0.010 μm/s)

λ Vrest (dVmem/dt)max APA APD90 APD50 [Ca2+]i,max τCa2+

[−] [mV] [V/s] [mV] [ms] [ms] [μM] [ms]

1.00 −75.3 176 99.3 353 188 0.98 161

1.05 −74.2 171 96.6 363 190 1.00 158

1.10 −72.7 166 93.3 377 192 1.03 154

1.15 −70.1 152 87.2 398 198 1.07 149

1.20 −67.8 132 77.9 428 207 1.12 142

1.25 −61.5 104 63.7 431 214 1.22 131

6.3.4 Stretch-induced action potentials

Figure 6.9 illustrates the effect of increasing λ in the presence of Isac. Vmem,
Isac, ICa,L, and [Ca2+]i are presented for λ linearly increasing from 1.00 at 0-ms
simulation to 1.25, 1.35, and 1.45 at 200-ms simulation; λ is constant after
200 ms. In both cases, stretch-induced APs were elicited for λ = 1.35 and
1.45. The APs for λ = 1.35 have a low upstroke steepness and are mainly
driven by ICa,L. ICa,L increases faster for λ = 1.35 when Isac is permeable to Ca2+,
which explains why Vmem reaches its maximum 50 ms earlier than when Isac is
not permeable to Ca2+. For Isac permeable to Ca2+ and for Isac not permeable
to Ca2+, the sarcoplasmic Ca2+ flux signal for the Ca2+ release current (Irel)
is too small to trigger Ca2+ release from the SR. This explains why no Ca2+

transients are observed for λ = 1.35.

6.3.5 Effect of Rjunc0/Rint0 on conduction velocity

To investigate the influence of Rjunc0/Rint0 on θ, we simulated impulse propa-
gation along a 1-cm fiber for various Rjunc0/Rint0 and λfiber. Isac was disabled in
these simulations (Gsac = 0.0 μm/s). In Figure 6.10, the overall θ is presented
for Rjunc0/Rint0 = 0.0-1.0, and λfiber = 1.0-1.4. For Rjunc0/Rint0 = 1.0, θ is little
affected by increasing λfiber; for lower values of Rjunc0/Rint0, θ decreases with
increasing λfiber. The decrease in θ is almost linear for Rjunc0/Rint0 = 0.4-0.8.

6.3.6 Isometric fiber contraction

To investigate the influence of Isac on impulse propagation, we simulated a
series of isometric contractions in a 1-cm-long fiber. Gsac and λfiber were varied



(Gsac = 0.0-0.020 μm/s, λfiber = 1.0-1.4). The leftmost segment was electrically
stimulated with a frequency of 1 Hz. In Figure 6.11, θ and (dVmem/dt)max are
presented for various Gsac and λfiber. With increasing Gsac, θ first increases and
then decreases, while (dVmem/dt)max decreases. The increase in θ is explained
by the fact that, due to the increased resting Vmem, less charge is required by
the downstream segments to reach the excitation threshold, whereas the de-
crease in θ is explained by the lower (dVmem/dt)max. When Isac was permeable
to Ca2+, block of impulse propagation occurred for λfiber ≥ 1.35 for Gsac = 0.010
μm/s, λfiber ≥ 1.25 for Gsac = 0.015 μm/s, and λfiber ≥ 1.15 for Gsac = 0.020 μm/s.
When Isac was not permeable to Ca2+, block of impulse propagation occurred
for λfiber ≥ 1.25 for Gsac = 0.010 μm/s, λfiber ≥ 1.10 for Gsac = 0.015 μm/s, and
λfiber ≥ 1.05 for Gsac = 0.020 μm/s.

In Figure 6.12, the APs and traces of Isac, ICa,L, and [Ca2+]i are presented for
the center segment (λfiber = 1.00, 1.10, and 1.20). Traces of Isac,Na, Isac,K, and Isac,Ca

are shown in Figure 6.13. As expected, Isac increases with increasing λ during
repolarization and rest. As in the single-cell simulations (Figure 6.8), ICa,L

decreases and [Ca2+]i increases with increasing stretch. Since depolarization
is mainly driven by INa, we further examine INa to investigate the cause of the
decrease in θ and (dVmem/dt)max. The ionic current INa is defined by

INa = GNam
3h j(Vmem − ENa), (6.36)

where GNa is the maximum INa conductance, ENa is the equilibrium potential
for Na+, m is the fast activation variable, and h and j are the fast and slow
inactivation variables [37] (Appendix A). In Figure 6.14, traces of m, h, j,
and INa are presented for the center segment (λfiber = 1.00, 1.10, and 1.20). As
λfiber increases, h and j are lower during rest and explain the lower INa current
during depolarization; i.e., the membrane is less excitable. Except for Ito and
IKur, all ionic currents were similar during the upstroke and shortly after the
upstroke (not shown). Ito and IKur were smaller and caused the less prominent
notch of the AP (Figure 6.12).

6.3.7 Impulse propagation along a homogeneous fiber

To investigate the effect of contraction of early-activated areas on θ in later-
activated areas, we simulated impulse propagation along a 5-cm-long fiber
with λfiber = 1.00, 1.05, 1.10, 1.15, and 1.20 (Gsac = 0.015 μm/s, PNa : PK : PCa =

1 : 1 : 1). All simulations were performed with contraction enabled as well as
with contraction disabled. Impulse propagation was initiated by application
of a stimulus current to the leftmost segment.

In Figure 6.15, traces of Vmem, Isac, [Ca2+]i, and λ are presented for segments
located 1.0, 2.5, and 4.0 cm from the stimulation site (λfiber = 1.15). With con-



traction enabled, the early-activated segments start contracting, so that λ in-
creases for the later-activated segments, which results in an increased Isac and
a depolarized resting Vmem. In Figure 6.16, θ and (dVmem/dt)max are presented
with contraction disabled (tmax = 1, smax = 1) and contraction enabled (tmax = 1,
smax = 1).

6.3.8 Impulse propagation along an inhomogeneous fiber

To investigate the effect of inhomogeneity in tissue properties on the conduc-
tion velocity, we simulated impulse propagation along an inhomogeneous
5-cm-long fiber with λfiber = 1.00, 1.05, 1.10, 1.15, and 1.20 (Gsac = 0.015 μm/s,
PNa : PK : PCa = 1 : 1 : 1). For the left half of the fiber, tmax = 1-10 and smax = 1-
10. For the right half of the fiber, tmin = 1 and smin = 1. Linear interpolation
was applied in the central 0.5 cm of the fiber. As described above, all simu-
lations were performed with contraction enabled as well as with contraction
disabled. Impulse propagation was initiated by application of a stimulus cur-
rent to the leftmost or the rightmost segment.

In Figure 6.16, θ and (dVmem/dt)max are presented for various simulations
after stimulation of the leftmost segment (λfiber = 1.15) with contraction dis-
abled (top panels) and with contraction enabled (bottom panels). In thick
and/or stiff tissue (left half of the fiber), θ was larger; in the remaining, more
stretched, parts, θ was smaller. In areas where the depolarization wave trav-
eled from thick tissue to thin tissue (tmax ≥ 5), θwas locally increased, which is
explained by the smaller amount of charge required by the downstream seg-
ments to reach the excitation threshold. Decrease of (dVmem/dt)max and block of
impulse propagation occurred in the inhomogeneous fibers when contraction
was enabled.

In Figure 6.17, θ and (dVmem/dt)max are presented for various simulations
after stimulation of the rightmost segment (λfiber = 1.15) with contraction dis-
abled (top panels) and with contraction enabled (bottom panels). In thick
and/or stiff tissue (left half of the fiber), θ was larger; in the remaining, more
stretched, parts, θ was smaller. In areas where the depolarization wave trav-
eled from thin tissue to thick tissue (tmax ≥ 5), θ was locally decreased, which
is explained by the larger amount of charge required by the downstream seg-
ments to reach the excitation threshold. Conduction block was not observed
after stimulation from the right. Thus, for λfiber = 1.15, conduction block was
unidirectional when contraction was enabled.

In Figure 6.18, traces of Vmem, Isac, [Ca2+]i, and λ are presented for three
segments of an inhomogeneous fiber (λfiber = 1.15, tmax = 10 and smax = 1) with
contraction enabled and with contraction disabled. As shown in Figure 6.15,
the early-activated segments start contracting, causing λ to increase for the



later-activated segments, which leads to an increased resting Vmem. The AP of
the segment at 4.0 cm had a low upstroke steepness and, similar to the AP for
λ = 1.35 in Figure 6.9, the Ca2+ transient was absent, such that no contraction
occurred. From the rapid decrease in (dVmem/dt)max at ∼4.0 cm (Figure 6.16,
bottom), it can be concluded that this type of AP cannot generate enough
current to propagate.

6.3.9 Short stimulation intervals and unidirectional block

To investigate the effect of a shorter stimulation interval on impulse propa-
gation, we stimulated the 5-cm fibers with an interval of 500 ms (2 Hz). In
Table 6.4, θ for left stimulation at 1 Hz and at 2 Hz are presented for the left
half (1.0 → 2.5 cm) and for the right half (2.5 → 4.0 cm) of the fiber. Since
stimulation at 2 Hz can lead to alternating impulse propagation and con-
duction block, we distinguish between even (each 1 s) and odd (each 0.5 s)
stimulation. The same data are presented in Table 6.5 for right stimulation.

From Tables 6.4 and 6.5, it can be concluded that stimulation at 2 Hz in
general leads to slower conduction and conduction block at lower λ. This is
explained by a longer ERP under stretch (Figure 6.14). Figure 6.19 illustrates
the subtle transition from conduction block in the leftmost 0.5 cm every other
stimulation to normal impulse propagation every stimulation (λfiber = 1.05,
tmax = 1, smax = 1). In this case, the ERP decreased after each stimulation, such
that after stimulation at 2100 ms, the AP could propagate. The decrease in
ERP is visible in Figure 6.19 as the increasing INa inactivation gating variables
h and j at the moment of stimulation (segment at 0.1 cm). After 2100 ms, the
cells in the fiber are stimulated at a higher frequency, which leads to a shorter
APD and a more decreased ERP. Thus, impulse propagation at a higher fre-
quency becomes a stable situation.

When an inhomogeneous fiber is stimulated from the right, conduction
block may occur at lower λ. This can be explained by prolongation of the
repolarization phase of the AP. Figure 6.20 illustrates this situation for λfiber =

1.10, tmax = 10, and smax = 1. The extended repolarization phase of the segment
at 4.0 cm (which is close to the stimulation site) is caused by contraction of
the later-activated segments in the left half of the fiber.
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Figure 6.6: Fnorm for ls = 1.7-2.3 μm (isosarcometric contraction). Top: Fnorm. Bottom:
Fnorm individually normalized to maximum Fnorm. A stimulus current was applied
at 100 ms. Traces from 12th contraction are shown for stimulation at 1 Hz. Isac was
disabled.
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Figure 6.7: Fnorm, FCE, ls, and segment length (lPE) for isotonic contractions with ap-
plied force (Fsegment) = 5-250 mN/mm2. A stimulus current was applied at 100 ms.
Traces from 12th contraction are shown for stimulation at 1 Hz. Isac was disabled.
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Figure 6.8: Vmem, Isac, L-type inward Ca2+ current (ICa,L), and [Ca2+]i for stretch applied
to single cells at stretch ratio (λ) = 1.00, 1.10, and 1.20. Left: I sac permeable to Ca2+

(Gsac = 0.015 μm/s). Right: Isac not permeable to Ca2+ (Gsac = 0.010 μm/s). A stimulus
current was applied at 100 ms.
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Figure 6.9: Vmem, Isac, ICa,L, and [Ca2+]i for stretch applied to single cells. λ was in-
creased from 1.00 at 0-ms simulation to 1.25, 1.35, and 1.45 at 200 ms; λwas constant
after 200 ms. Left: Isac permeable to Ca2+ (Gsac = 0.015 μm/s). Right: Isac not perme-
able to Ca2+ (Gsac = 0.010 μm/s). No stimulus current was applied.
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Figure 6.10: Overall conduction velocity (θ) for impulse propagation along a 1-cm
fiber for relative gap-junctional resistivity (Rjunc0/Rint0) = 0.0-1.0. Impulse propaga-
tion was initiated by application of a stimulus current to the 1st segment. Isac was
disabled.
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Figure 6.11: θ and maximum upstroke velocity (dVmem/dt)max for impulse propaga-
tion along a 1-cm fiber (Rjunc0/Rint0 = 0.6). Gsac and λfiber were varied. Left: Isac perme-
able to Ca2+. Right: Isac not permeable to Ca2+. Impulse propagation was initiated by
application of a stimulus current to the 1st segment.
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Figure 6.12: Vmem, Isac, ICa,L, and [Ca2+]i for the center segment of a 1-cm fiber (λfiber =

1.00, 1.10, and 1.20). Left: I sac permeable to Ca2+ (Gsac = 0.015 μm/s). Right: Isac not
permeable to Ca2+ (Gsac = 0.010 μm/s). A stimulus current was applied to the 1st
segment at 100 ms.
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Figure 6.13: Isac,Na, Isac,K, and Isac,Ca for the center segment of a 1-cm fiber (λfiber =

1.00, 1.10, and 1.20). Left: I sac permeable to Ca2+ (Gsac = 0.015 μm/s). Right: Isac not
permeable to Ca2+ (Gsac = 0.010 μm/s). A stimulus current was applied to the 1st
segment at 100 ms.
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Figure 6.14: Activation gating variable (m), fast inactivation gating variable (h), and
slow inactivation gating variable ( j) for the fast inward Na+ current INa of the center
segment of a 1-cm fiber (λfiber = 1.00, 1.10, and 1.20). Left: I sac permeable to Ca2+

(Gsac = 0.015 μm/s). Right: Isac not permeable to Ca2+ (Gsac = 0.010 μm/s). A stimulus
current was applied to the 1st segment at 100 ms. Note the different time scale for
INa.
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Figure 6.15: Vmem, Isac, [Ca2+]i, and λ for 1.0-, 2.5-, and 4.0-cm segments of a homo-
geneous fiber with contraction enabled (left) and contraction disabled (right). Fiber
length was 5 cm, Isac was permeable to Ca2+ (Gsac = 0.015 μm/s), and λfiber = 1.15. Im-
pulse propagation was initiated by application of a stimulus current to the leftmost
segment at 0 cm.
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Figure 6.16: Left stimulation: θ and (dVmem/dt)max for impulse propagation along
a homogeneous fiber and various inhomogeneous fibers with contraction disabled
(top panels) and enabled (bottom panels). Isac was permeable to Ca2+ (Gsac = 0.015
μm/s). Fiber length = 5 cm, λfiber = 1.15. Impulse propagation was initiated by
application of a stimulus current to the leftmost segment. tmax and smax, scaling factors
for thickness and stiffness, respectively.
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Figure 6.17: Right stimulation: θ and (dVmem/dt)max for impulse propagation along
a homogeneous fiber and various inhomogeneous fibers with contraction disabled
(top panels) and enabled (bottom panels). Isac was permeable to Ca2+ (Gsac = 0.015
μm/s). Fiber length = 5 cm, λfiber = 1.15. Impulse propagation was initiated by
application of a stimulus current to the rightmost segment.
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Figure 6.18: Vmem, Isac, [Ca2+]i, and λ for 1.0-, 2.5-, and 4.0-cm segments of an inho-
mogeneous fiber (tmax = 10, smax = 1) with contraction enabled (left) and disabled
(right). Fiber length was 5 cm, Isac was permeable to Ca2+ (Gsac = 0.015 μm/s), and
λfiber = 1.15. Impulse propagation was initiated by application of a stimulus current
to the leftmost segment at 0 cm.
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Figure 6.19: Vmem, Isac, h, and j for 0.1-, 0.5-, and 1.0-cm segments of a homogeneous
fiber stimulated with an interval of 500 ms. Fiber length was 5 cm (tmax = 1, smax = 1),
Isac was permeable to Ca2+ (Gsac = 0.015 μm/s), and λfiber = 1.05. Impulse propagation
was initiated by application of a stimulus current to the leftmost segment at 0 cm.
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Figure 6.20: Vmem, Isac, [Ca2+]i, and λ for 1.0-, 2.5-, and 4.0-cm segments of an inhomo-
geneous fiber stimulated with an interval of 500 ms. Fiber length was 5 cm (tmax = 10,
smax = 1), Isac was permeable to Ca2+ (Gsac = 0.015 μm/s), and λfiber = 1.10. Impulse
propagation was initiated by application of a stimulus current to the rightmost seg-
ment at 5.0 cm.



Table 6.4: Conduction velocity for left stimulation

λfiber tmax smax θ (1 Hz) θ (1 Hz) θ (2 Hz) θ (2 Hz) θ (2 Hz) θ (2 Hz)

Even Even Odd Odd

1→ 2.5 2.5→ 4 1→ 2.5 2.5→ 4 1→ 2.5 2.5→ 4

[−] [−] [−] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s]

1.00 1 1 0.42 0.42 0.34 0.35 0.34 0.35

1.00 1 10 0.42 0.42 0.34 0.35 0.34 0.35

1.00 2 5 0.42 0.42 0.35 0.35 0.35 0.35

1.00 5 2 0.42 0.42 0.35 0.35 0.35 0.35

1.00 10 1 0.42 0.42 0.35 0.35 0.35 0.35

1.05 1 1 0.39 0.39 0.29 0.35 0.29 0.36

1.05 1 10 0.41 0.39 0.27 0.31 0.29 0.32

1.05 2 5 0.41 0.39 0.28 0.25 0.31 0.28

1.05 5 2 0.41 0.39 0.33 0.31 0.31 0.24

1.05 10 1 0.42 0.40 0.34 0.34 0.34 bl

1.10 1 1 0.37 0.36 0.37 0.36 bl bl

1.10 1 10 0.39 0.35 bl bl 0.42 0.34

1.10 2 5 0.39 0.35 bl bl 0.42 0.34

1.10 5 2 0.39 0.35 0.33 bl 0.33 bl

1.10 10 1 0.39 0.35 0.34 bl 0.34 bl

1.15 1 1 0.33 0.33 0.33 0.33 bl bl

1.15 1 10 0.37 0.28 0.37 0.28 bl bl

1.15 2 5 0.37 0.28 0.37 nc bl bl

1.15 5 2 0.37 0.27 bl bl 0.34 nc

1.15 10 1 0.37 nc 0.29 bl 0.26 nc

1.20 1 1 0.23 nc 0.23 nc bl bl

1.20 1 10 0.33 nc 0.33 nc bl bl

1.20 2 5 0.33 nc 0.33 nc bl bl

1.20 5 2 0.33 nc 0.32 nc bl bl

1.20 10 1 0.33 nc 0.32 nc bl bl

θ, conduction velocity; Even, stimulation each 1 s; Odd, stimulation each 0.5 s;
1→ 2.5, θ from 1 cm to 2.5 cm; 2.5→ 4, θ from 2.5 cm to 4 cm; nc, no contraction:
AP propagation without contraction; bl, block: no AP propagation.



Table 6.5: Conduction velocity for right stimulation

λfiber tmax smax θ (1 Hz) θ (1 Hz) θ (2 Hz) θ (2 Hz) θ (2 Hz) θ (2 Hz)

Even Even Odd Odd

1← 2.5 2.5← 4 1← 2.5 2.5← 4 1← 2.5 2.5← 4

[−] [−] [−] [m/s] [m/s] [m/s] [m/s] [m/s] [m/s]

1.00 1 1 0.42 0.42 0.35 0.34 0.35 0.34

1.00 1 10 0.42 0.42 0.35 0.34 0.35 0.34

1.00 2 5 0.42 0.42 0.34 0.34 0.34 0.34

1.00 5 2 0.42 0.41 0.34 0.33 0.34 0.33

1.00 10 1 0.42 0.41 0.34 0.33 0.34 0.33

1.05 1 1 0.39 0.39 0.35 0.29 0.36 0.29

1.05 1 10 0.39 0.38 bl bl 0.39 0.38

1.05 2 5 0.39 0.38 0.39 0.38 0.38 0.30

1.05 5 2 0.39 0.37 0.39 0.37 bl bl

1.05 10 1 0.40 0.37 0.39 0.37 bl bl

1.10 1 1 0.36 0.37 0.36 0.37 bl bl

1.10 1 10 0.38 0.34 0.38 0.35 bl bl

1.10 2 5 0.38 0.34 0.38 0.34 bl bl

1.10 5 2 0.38 0.34 0.37 0.34 bl bl

1.10 10 1 0.37 0.33 0.37 0.33 bl bl

1.15 1 1 0.33 0.33 0.33 0.33 bl bl

1.15 1 10 0.36 0.27 0.36 0.27 bl bl

1.15 2 5 0.36 0.26 0.36 0.26 bl bl

1.15 5 2 0.36 0.26 0.36 0.26 bl bl

1.15 10 1 0.36 0.25 0.36 0.25 bl bl

1.20 1 1 nc 0.23 nc 0.23 bl bl

1.20 1 10 bl bl bl bl bl bl

1.20 2 5 bl bl bl bl bl bl

1.20 5 2 bl bl bl bl bl bl

1.20 10 1 bl bl bl bl bl bl

θ, conduction velocity; Even, stimulation each 1 s; Odd, stimulation each 0.5 s;
1← 2.5, θ from 2.5 cm to 1 cm; 2.5← 4, θ from 4 cm to 2.5 cm; nc, no contraction:
AP propagation without contraction; bl, block: no AP propagation.



6.4 Discussion

In our model, contraction of the cardiac fiber is triggered by the Ca2+ tran-
sient, which occurs after depolarization of the membrane. By modeling Isac,
contraction of early-activated parts of the fiber leads to stretch in the later-
activated parts and influences impulse propagation, APD, and ERP. For in-
creasing levels of applied stretch, we observed conduction block, which can
be unidirectional in an inhomogeneous fiber.

6.4.1 Conduction slowing and effective refractory period

Our model provides two mechanisms to explain conduction slowing as ob-
served in acutely dilated atria [32, 53, 54, 79, 153]: 1) the decrease in tissue
conductivity due to stretch and 2) a decreased membrane excitability caused
by Isac (Figure 6.11). In an experimental study, Eijsbouts et al. [54] reported a
decreased θ and local conduction block when the right atrium of a rabbit was
acutely dilated. They increased atrial pressure from 2 to 9 and 14 cmH2O
and measured λ as well as θ. With increasing pressure, θ first increases and
then decreases for normal stimulation (240-ms interval). For fast stimulation
(125-ms interval), θ decreases nonlinearly with increasing pressure [54]. In
our model, θ decreases linearly with increasing λ when no Isac is present (Fig-
ure 6.10). It is therefore likely that the nonlinear decrease in θ observed by
Eijsbouts et al. is explained by a reduced excitability of the membrane, rather
than a reduced tissue conductivity. Eijsbouts et al. [53, 54] also observed an
increase in conduction block when the atrium was stimulated at a higher fre-
quency, which is consistent with our findings (Tables 6.4 and 6.5).

Similar to our results, Shaw and Rudy [170] observed slowing of impulse
propagation related to a reduced membrane excitability in a simulation study
of impulse propagation in ischemic cardiac tissue. The extracellular K+ con-
centration ([K+]e) was increased, which leads to a depolarized Vmem and a
reduced (dVmem/dt)max. Their simulation results [170] correspond to experi-
mental results [90]. Kléber and Rudy [103] explain the decreased θ in these
experiments by a significant Na+ channel inactivation. The result is a de-
pressed membrane excitability (reduced (dVmem/dt)max), reduced θ, and, even-
tually, conduction block [103]. Thus their explanation for conduction slow-
ing and block in ischemic tissue is similar to our explanation for conduction
slowing and block under stretch.

In an experimental study, Sung et al. [192] observed a decrease in θ and an
increase in APD when end-diastolic pressure was increased in the left ventri-
cle of isolated rabbit hearts. Interestingly, the SAC blocker streptomycin had
little effect on θ and APD [192]. Satoh and Zipes [166] measured differences



in ERP in the thin atrial free wall and the crista terminalis. Under stretch, the
ERP of the thin free wall was increased more than that in the thicker crista
terminalis. Satoh and Zipes explain this difference by assuming that the thin
free wall is more stretched compared with the thicker parts. Huang et al. [79]
observed slow conduction related to a shorter stimulation interval in dilated
atria, but they did not measure a significant change in atrial ERP after dilata-
tion. Conduction slowing in our model at a 500-ms stimulation interval is
attributed to a longer ERP under stretch. From these observations, we con-
clude that experimentally observed changes in conduction and atrial ERP can
be explained by Isac.

6.4.2 Clinical relevance

AF is associated with hemodynamic or cardiomechanical disorders such as
hypertension, mitral valve disease, and cardiac failure [92]. Ravelli et al. [154]
found that atrial stretch caused by contraction of the ventricles influences
atrial flutter cycle length in humans. Experimentally, it has been observed
that acute atrial dilatation facilitates the induction and maintenance of AF
in rabbit atria [16, 153] and in canine atria [79, 166]. Bode et al. [16] report
that the SAC blocker Gd3+ reduces the stretch-induced vulnerability to AF,
confirming that Isac plays a significant role in the vulnerability to AF in acutely
dilated atria.

In the present study, we observed conduction slowing, an increased ERP,
and (unidirectional) conduction block with increasing stretch. These phe-
nomena are attributed to Isac and can lead to alternating impulse propagation
and contractions at a stimulation frequency of 2 Hz. Conduction slowing [79],
unidirectional block [103], and dispersion in atrial ERP [166] are related to the
inducibility of AF. In the present study, these effects begin at λ = 1.15 and 1.05
for stimulation at 1 and 2 Hz, respectively. Bode et al. [16] gradually increased
intra-atrial pressure in rabbit hearts up to 30 cmH2O. They could not induce
AF in the undilated atrium at 0 cmH2O, but they observed a 50% probabil-
ity of AF induction at 8.8 cmH2O (baseline) and at 19.0 cmH2O (after Gd3+),
which increased to 100% (baseline) and 90% (after Gd3+) when pressure was
further increased [16]. However, stretch was not measured in that study. Eijs-
bouts et al. [54] measured λ = 1.16 ± 0.14 at 9 cmH2O, confirming our model
predictions that the vulnerability to AF is substantially increased when λ is
∼1.15.



6.4.3 Model validity and limitations

To our best knowledge, our model is the first to integrate cardiac electrophys-
iology and cardiomechanics with physiological details such as ionic mem-
brane currents, intracellular Ca2+ handling, and cross-bridge formation. In
our model, changes in impulse propagation under stretch are related to I sac

and to a reduced conductivity. We do not consider other mechanisms that
could influence impulse propagation, such as stretch-related function of other
membrane channels, autonomic reflexes, and metabolic changes.

The validity of our model largely depends on the validity of the under-
lying models and parameters. Validity and limitations of the models for the
ionic membrane currents, cross-bridge formation, and cardiomechanics are
extensively discussed elsewhere [37, 158, 176, 230]. Here, we discuss the va-
lidity and limitations of the integrated model with respect to the Ca2+-force
relation, excitation-contraction coupling, stretch and fiber conductivity, Isac,
intracellular ion concentrations, Ca2+-troponin binding, and the Ca2+ tran-
sient.

Ca2+-force relation Rice et al. [158] proposed five models of isometric force
generation in cardiac myofilaments. These are constructed assuming differ-
ent subsets of three putative cooperative mechanisms [158]. Model 4 assumes
that the binding of a cross bridge increases the rate of formation of neighbor-
ing cross bridges and that multiple cross bridges can maintain activation of
the thin filament in the absence of Ca2+. The model also simulates end-to-
end interactions between adjacent troponin and tropomyosin. The hypoth-
esis that cross-bridge binding increases the affinity of troponin for Ca2+ is
assumed by model 5, but not by model 4.

To choose between model 4 and model 5 for the present study, we stud-
ied the Ca2+-force relation (see Figure 6.2 for model 4) and the isosarcometric
twitches (see Figure 6.6 for model 4). We found better agreement between the
Ca2+-force relation obtained by model 4 and the experimental results of Ken-
tish et al. [98], in particular for ls > 1.9 μm. When we compared the isosarco-
metric twitches, we found that, for model 5, the peak force was lower and the
latency to peak force was increased for longer sarcomeres. Compared with
the experimental data measured by Janssen and Hunter [86], the latency to
peak force increased too much with sarcomere length. Our findings confirm
the finding by Rice et al. [158] that the hypothesis that cross-bridge binding
increases the affinity of troponin for Ca2+ is not crucial to reproduce the ex-
perimental results. Since the twitches obtained by model 4 better resemble
the experimental results from Janssen and Hunter, we have chosen model 4 to
describe the Ca2+-force relation (see also Appendix C).



Excitation-contraction coupling To compute Fnorm during contraction, Rice
et al. [158] used a Ca2+ transient with a peak [Ca2+]i of 0.97 μM and 130 ms to
return [Ca2+]i to half of maximum [Ca2+]i. Our peak forces are smaller and
the traces are less prolonged than those of Rice et al. [158]. This is explained
by the lower peak value of [Ca2+]i obtained from the model of Courtemanche
et al. [37]. However, the main characteristics, i.e., increasing peak force, in-
creasing time to peak force, and increasing relaxation time with increasing
ls, are observed in our model and are in agreement with experimental mea-
surements [86]. These characteristics are important with respect to the Frank-
Starling mechanism, which states that when the amount of blood flowing into
the heart increases, the wall becomes more stretched and the cardiac muscle
contracts with increased force. Furthermore, isosarcometric twitch duration
(Figure 6.6, top) is longer than isotonic twitch duration (Figure 6.7, top). This
is explained by shortening of the sarcomeres during isotonic contraction and
is in agreement with experimental results [80].

Stretch and fiber conductivity In our model, gint and gext are determined by
λ on the basis of the assumption that 60% of Rint is attributed to Rjunc. The
assumption that Rint is determined by Rmyo only is equivalent to Rjunc0/Rint0 =

0.0 and would lead to a faster decrease in θ for increasing λ (Figure 6.10).
Since intercellular coupling in cardiac tissue is through the gap junctions and
since the number of gap junctions does not change when the tissue is acutely
stretched, we believe that neglecting the distinction between Rmyo and Rjunc

leads to overestimation of the effect of λ on conductivity.

Stretch-activated current Isac We model Isac as a nonselective cation current
with Esac = 0 to −1 mV. Our model of Isac has a near-linear current-voltage
relation, which can be approximated by

Isac = gsac(Vmem − Esac), (6.37)

with gsac = 0.0027 nS/pF for λ = 1.0, gsac = 0.0049 nS/pF for λ = 1.2, and
gsac = 0.0088 nS/pF for λ = 1.4. Wagner et al. [218] used an externally applied
current with gsac = 0.0083 nS/pF and Esac = −10 mV to elicit an AP in atrial
cells from the rat. In our model, stretch-induced APs are elicited for λ = 1.35
(Figure 6.8), which corresponds to gsac = 0.0076 nS/pF and is in a similar
range.

Intracellular ion concentrations The ionic currents of the model of Courte-
manche et al. [37] interact with [Na+]i, [K+]i, and [Ca2+]i [37]. To model the
influence of Isac on the intracellular ion concentrations, we assume that SACs



are permeable to Na+, K+, and Ca2+. Whether SACs in human atrial cells
are permeable to Ca2+ is still a matter of debate. To investigate the effect of
permeability of SACs for Ca2+, we performed simulations in which Isac was
permeable to Ca2+ and not permeable to Ca2+. Our results show an increase
in [Ca2+]i under stretch, whether Isac is permeable to Ca2+ or not permeable
to Ca2+ (Figure 6.8). However, when Isac is permeable to Ca2+, [Ca2+]i is in-
creased ∼3% compared with Isac not permeable to Ca2+ (Tables 6.2 and 6.3).
Our findings are in agreement with experimental observations that [Ca2+]i

increases in response to stretch [24, 193]. Kamkin et al. [91] observed that the
behavior of SACs in isolated human atrial cells did not change when a Ca2+-
free external solution was used, suggesting that the current through the SACs
was preferentially carried by Na+, rather than by Ca2+ [218]. In Figure 6.13
(left), the current density of Isac,Ca is only 5% of the current density of Isac,Na,
which explains the finding by Kamkin et al. [91].

Ca2+-troponin binding Binding of Ca2+ to troponin is modeled in two dif-
ferent ways: in the model of Courtemanche et al. [37], a steady-state formu-
lation (equation (6.19)) to describe Ca2+ binding to troponin is used; in the
model of Rice et al. [158], binding of Ca2+ to troponin is modeled by differ-
ential equations (6.20) and (6.21). The resulting [LTRPNCa] is then used to
compute the force generated by the sarcomeres. Although having two dif-
ferent ways to model binding of Ca2+ to troponin is not elegant, one cannot
simply replace the formulation proposed by Courtemanche et al. with the for-
mulation proposed by Rice et al. This would be a major modification of the
model of Courtemanche et al. requiring adaptation of various parameters re-
lated to the Ca2+ fluxes and ionic currents, which is beyond the scope of the
present study.

Calcium transient As shown in Figures 6.9 and 6.18 (left), although there
is an AP, the Ca2+ transient is absent. The APs for which no Ca2+ tran-
sient occurred are characterized by a low steepness of the AP upstroke (low
(dVmem/dt)max) and were mainly driven by ICa,L. The absence of the Ca2+ tran-
sient is explained by the absence of Ca2+ release from the junctional SR, which
may be caused by the lower (dVmem/dt)max. In our model, the effect of the inter-
cellular currents on the ion concentrations is not taken into account. In case
the AP is mainly driven by ICa,L, [Ca2+]i in the downstream cell may slowly
rise because of the Ca2+ in the current flow between the cells. This increase
in [Ca2+]i may then trigger buffered Ca2+ release. One may expect that a sim-
ilar effect can be obtained when the SACs are permeable to Ca2+. Although
AP rises faster in the presence of Isac,Ca (λ = 1.35 in Figure 6.9), a Ca2+ tran-



sient was not observed. In simulations where Ca2+ transients did occur, the
effect of Isac,Ca was limited to ∼3% increase in [Ca2+]i (Tables 6.2 and 6.3). On
the basis of these observations, we conclude that the permeability of Isac for
Ca2+ contributes little to the changes in electrophysiological behavior under
stretch.

6.5 Conclusion

In our model, conduction slowing and block are related to the amount of
stretch and are enhanced by contraction of early-activated segments. Con-
duction block can be unidirectional in an inhomogeneous fiber and is pro-
moted by a shorter stimulation interval. Our observations are in agreement
with experimental results and provide an explanation for the increased in-
ducibility of AF observed in acutely dilated atria.
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Abstract

Regional variation in ionic membrane currents causes differences in action po-
tential duration (APD) and is proarrhythmic. After several weeks of ventricular pac-
ing, AP morphology and duration are changed due to electrical remodeling of the
transient outward potassium current (Ito) and the L-type calcium current (ICa,L). It
is not clear what mechanism drives electrical remodeling. By modeling the cardiac
muscle as a string of segments that are electrically and mechanically coupled, we
investigate the hypothesis that electrical remodeling is triggered by changes in me-
chanical load. In our model, contractile force generated by the sarcomeres depends
on the calcium transient and on the sarcomere length. Stroke work is determined
for each segment by simulating the cardiac cycle. Electrical remodeling is simulated
by adapting ICa,L kinetics such that a homogeneous distribution of stroke work is
obtained. With electrical remodeling, a more homogeneous shortening of the fiber
is obtained, while heterogeneity in APD increases and the repolarization wave re-
verses. Our results are in agreement with experimentally observed homogeneity in
mechanics and heterogeneity in electrophysiology. In conclusion, electrical remod-
eling is a possible mechanism to reduce heterogeneity in cardiomechanics induced
by ventricular pacing.
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7.1 Introduction

Heterogeneity in action potential morphology and duration is an important
factor in the initiation and persistence of reentrant arrhythmia such as atrial
fibrillation (AF) [5, 18, 172]. An inverse relationship between action potential
duration (APD) and activation time has been found both in the atria [181, 182,
217] and in the ventricles [63]. Differences in atrial action potential morphol-
ogy are related to a regional variation in ionic membrane currents [57]. In
the ventricles, differences in ionic membrane currents between the left ven-
tricle (LV) and the right ventricle (RV) [216] and between the apex and base
of the LV [13] have been observed. Cordeiro et al. [35] observed transmural
heterogeneity in ionic currents, which was related to differences in mechani-
cal function and is believed to help synchronize contraction in the ventricular
wall.

Changing the activation sequence in the ventricles by pacing from a dif-
ferent site results in APD prolongation near the pacing site and APD shorten-
ing in remote regions [36, 120]. After several hours, these changes in electro-
physiology lead to modulation of the T wave in the electrocardiogram (ECG).
When normal activation is restored, the normal T wave reappears after sev-
eral days. This phenomenon is known as ”cardiac memory” and was first
described by Rosenbaum et al. [160]. Herweg et al. [70] observed changes in
the atrial T wave (Ta wave) after changing the activation sequence in canine
atria, indicating that cardiac memory is possible in the atria. In contrast, no
evidence for ”atrial memory” has been found in the goat [217].

Experimental results indicate that both the transient outward potassium
(K+) current (Ito) [164] and the L-type calcium (Ca2+) current (ICa,L) [20, 145]
are involved in electrical remodeling after changing the activation sequence
in the ventricles. Yu et al. [229] observed a reduction in Ito current size, which
explains disappearance of the notch in the AP after remodeling. Plotnikov et
al. [145] reversed the activation sequence in the canine heart from epicardium
to endocardium by pacing the left ventricle. After 21 days, they isolated epi-
cardial myocytes and compared ICa,L current size and kinetics to ICa,L in control
(normally stimulated) epicardial myocytes. They found a similar ICa,L current
size, but observed a shift in activation towards a more positive membrane
potential and slower inactivation after ventricular pacing. These changes in
ICa,L kinetics probably contribute to the increased APD and plateau height
observed after pacing [145]. After 2 h of pacing the canine left ventricle,
Patberg et al. [142] found a significant decrease in nuclear cAMP-responsive
element binding protein (CREB) that did not occur in control dogs or in
dogs treated with the ICa,L blocker nifidipine. These observations indicate that
changes in the ICa,L current are related to modifications in the transcription of



the ICa,L channel [20].
At present, it is unclear what mechanism drives electrical remodeling af-

ter changing the activation sequence. Based on experimental observations,
Jeyaraj et al. [87] suggest mechanoelectric feedback as a mechanism for electri-
cal remodeling. Recently, Sosunov et al. [178] found that electrical remodeling
can be inhibited either by reducing mechanical load or by reducing contrac-
tility. These findings indicate that changes in mechanical load are involved
in electrical remodeling after changing the activation sequence. Lab [113,
114] reviewed several mechanisms for mechanoelectric feedback in the heart.
These mechanisms include direct influence on the action potential through
stretch-activated channels (SACs) [62, 78, 105], force-feedback on the intracel-
lular Ca2+ concentration ([Ca2+]i) [115], and long-term effects involving cell
signaling pathways [168]. Prinzen et al. [148, 149] and Delhaas et al. [41] ob-
served homogeneous strain and mechanical work when the heart was paced
from the right atrium (normal stimulation). However, during ventricular pac-
ing, systolic fiber strain and mechanical work were approximately zero near
the stimulation site, and gradually increased to more than twice the normal
value in remote regions [149]. We hypothesize that the deviation from nor-
mal mechanical work observed after ventricular pacing functions as a trigger
for electrical remodeling.

In the present study, we investigate the effect of changing maximum I to

conductance, maximum ICa,L conductance, and ICa,L kinetics on AP morphol-
ogy, Ca2+ dynamics, and mechanical behavior. To investigate the hypothesis
that electrical remodeling is triggered by deviations from normal mechani-
cal work, we apply our Cellular Bidomain Model [109, 110], which has been
extended with cardiomechanics [111, 112]. The model describes ionic mem-
brane currents, storage and release of Ca2+ from the sarcoplasmic reticulum
(SR), Ca2+ buffering, and cross-bridge formation. Contractile forces are cou-
pled to [Ca2+]i and sarcomere length. With this model, ventricular electrome-
chanics during the cardiac cycle is simulated in a cardiac fiber and stroke
work is computed for each segment. Under the assumption that stroke work
is homogeneously distributed after remodeling, we investigate the hypothe-
sis that remodeling of ICa,L is triggered by changes in mechanical load.

7.2 Methods

To investigate the effect of remodeling of ionic currents on cardiac electro-
physiology and mechanics, we apply our discrete bidomain model, the Cel-
lular Bidomain Model [109, 110]. The model describes active membrane be-
havior as well as intracellular coupling and interstitial currents, and has been



recently extended to describe cardiac mechanics [111, 112]. Here, we summa-
rize our model of cardiac electrophysiology, the Ca2+-force relation, and the
mechanical behavior of a cardiac fiber. Furthermore, we describe the simula-
tion of a cardiac cycle, adaptation of Ito and ICa,L, and the numerical integration
scheme. Finally, an overview is given of the simulations performed.

7.2.1 Modeling cardiac electrophysiology

In the Cellular Bidomain Model, a distinction is made between the intracel-
lular domain and the interstitium. The tissue is subdivided in segments. The
electrophysiological state of each segment is defined by the intracellular po-
tential (Vint), the extracellular potential (Vext), and the state of the cell mem-
brane, which is expressed in gating variables and ion concentrations. The
membrane potential (Vmem) is defined by

Vmem = Vint − Vext. (7.1)

Exchange of current between the intracellular and extracellular domains
occurs as transmembrane current (Itrans), which depends on ionic current (Iion)
and capacitive current according to

Itrans = χ(Cmem

dVmem

dt
+ Iion), (7.2)

where χ is the ratio of membrane area to tissue volume and Cmem represents
membrane capacitance per unit membrane surface. Itrans is expressed per unit
of tissue volume in μA/cm3. Assuming Cmem = 1 μF/cm2, Iion is expressed
in pA/pF and depends on Vmem, gating variables, and ion concentrations. To
model Iion, we apply the Courtemanche-Ramirez-Nattel model [37]. The total
ionic current is given by

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca, (7.3)

where INa is fast inward Na+ current, IK1 is inward rectifier K+ current, Ito

is transient outward K+ current, IKur is ultrarapid delayed rectifier K+ cur-
rent, IKr is rapid delayed rectifier K+ current, IKs is slow delayed rectifier K+

current, ICa,L is L-type Ca2+ current, Ip,Ca is Ca2+ pump current, INaK is Na+-
K+ pump current, INaCa is Na+/Ca2+ exchanger current, and Ib,Na and Ib,Ca are
background Na+ and Ca2+ currents [37]. Ca2+ handling by the sarcoplasmic
reticulum (SR) is described by considering three compartments: myoplasm,
SR release compartment (junctional SR), and SR uptake compartment (net-
work SR). The model also describes Ca2+ buffering within the cytoplasm me-
diated by troponin and by calmodulin as well as Ca2+ buffering within the
release compartment mediated by calsequestrin [37].



Table 7.1: Model parameters

Parameter Definition Value

gint Longitudinal intracellular conductivity (λ = 1.0) 1.7422 mS/cm

gext Longitudinal extracellular conductivity (λ = 1.0) 6.2500 mS/cm

Cmem Membrane capacitance 1.0 μF/cm2

χ Surface-to-volume ratio 2000 cm−1

fCE Scaling factor for contractile element 100 kPa

lCE0 Reference length of contractile element 1.78 μm

vmax Maximum velocity of sarcomere shortening 0.0055 μm/ms

cv Constant describing the shape of the Hill relation 2

fSE Scaling factor for series elastic element 28 kPa

kSE Material constant for series elastic element 14.6 μm−1

fPE Scaling factor for parallel elastic element 0.006 kPa

kPE Material constant for parallel elastic element 14.6 μm−1

lPE0 Reference length of parallel elastic element 1.78 μm

λ, stretch ratio.

Intracellular and extracellular currents between adjacent segments are re-
lated to intracellular and extracellular conductivities (gint and gext) and satisfy
Ohm’s law. Conductivities are adjusted for changing stretch ratio (λ) as de-
scribed previously [112] (Chapter 6). The bidomain parameters used for the
present study are from Henriquez [69] and are based on measurements by
Clerc [33] (Table 7.1).

7.2.2 Mechanical behavior of a cardiac fiber

The mechanical behavior of a single segment is modeled as described previ-
ously [112] by the classical three-element rheological scheme introduced by
Hill in 1938 [71]. The model is formulated in terms of tension (first Piola
Kirchhoff stress), defined as force per unit of fiber cross-sectional area in the
undeformed state. Active tension is generated by the contractile element (CE)
together with the series elastic element (SE) and passive tension is generated
in the parallel elastic element (PE). The PE describes the tension-length rela-
tion when the segment is not stimulated. Contractile tension (T CE) generated
by the CE depends on [Ca2+]i, the length of the CE (lCE), and the velocity of



sarcomere shortening v = − dlCE
dt . TCE is defined by

TCE = fCE fv(v) Fnorm([Ca2+]i, lCE), (7.4)

where fCE is a scaling factor, fv(v) is Hill’s force-velocity relation, and Fnorm

([Ca2+]i, lCE) is the normalized force generated by the sarcomeres. We model
the Hill relation by a hyperbolic function as proposed by Hunter et al. [80].
Function fv(v) is defined by

fv(v) =
1 − v

vmax

1 + cv
v

vmax

, (7.5)

where vmax is the maximum velocity of sarcomere shortening and cv is a con-
stant describing the shape of the hyperbolic relationship [112] (Table 7.1).

Fnorm([Ca2+]i, lCE) is modeled by model 4 from Rice et al. [158], which is
based on a functional unit of troponin, tropomyosin, and actin. In our model,
binding of Ca2+ to troponin is modeled in two different ways: the Ca2+ tran-
sient is computed by the model of Courtemanche et al. [37] using a steady-
state formulation for Ca2+-troponin binding; Fnorm is computed by the model
of Rice et al. [158] using differential equations for the Ca2+-troponin binding
and [Ca2+]i obtained from the model of Courtemanche et al. [37] (see Chap-
ter 6 for more detail). In the model of Rice et al. [158], troponin can be in one of
two states, indicating whether it is unbound or bound to Ca2+. Tropomyosin
can be in one of six states of which two represent the non-permissive states
with 0 and 1 cross bridges, and the other four the permissive states with 0, 1,
2, and 3 cross bridges [158]. Transitions between the states are governed by
rate functions that depend on [Ca2+]i and lCE. The force generated by the sar-
comeres depends on the fraction of tropomyosin in the states that represent
cross-bridge formation. We do not consider a direct feedback mechanism that
influences the Ca2+ transient through a change in the affinity of troponin for
Ca2+ binding as in model 5 of Rice et al. [157, 158]. The reader is referred to
Rice et al. [158] or Kuijpers et al. [112] for a graphical representation of the
steady-state Ca2+-force relation (Figure 6.2).

Tensions generated in the SE and in the PE (T SE and TPE) are exponentially
related to the length of the SE (lSE) and the sarcomere length (lPE), and are
defined by

TSE = fSE (exp(kSE lSE) − 1) (7.6)

and

TPE = fPE (exp(kPE (lPE − lPE0)) − 1), (7.7)



where fSE, kSE, fPE, and kPE are material constants describing the elasticity of the
elements, and lPE0 is the reference sarcomere length at which TPE = 0 kPa. Total
tension generated by the segment (T segment) is the sum of passive tension (TPE)
and active tension (TSE). In summary, it holds for the three-element model:

TCE = TSE, (7.8)

Tsegment = TSE + TPE, (7.9)

lPE = lCE + lSE. (7.10)

Most parameters for the three-element mechanical model are from Solovy-
ova et al. [176] and Kuijpers et al. [112] (Table 7.1). Parameter fSE is changed
from 2.8 kPa in [112] to 28 kPa to mimic the experimentally observed fiber
shortening of 1% in a quick-release experiment [47, 80]. With these parame-
ters, both the active and the passive tension-sarcomere length relation are in
agreement with experimental data measured by Kentish et al. [98]. The reader
is referred to Kuijpers et al. [112] for a graphical representation of active and
passive tension-sarcomere length relations in our model (Figure 6.4).

7.2.3 Cardiac cycle simulation

The myofibers in the heart are represented by a single string of segments that
are coupled in series. In the undeformed state, all segments have the same
length (0.1 mm) and cross-sectional area (0.01 mm2) [112]. The stretch ratio
of a single segment (λsegment) is defined by

λsegment =
lPE

lPE0
, (7.11)

and the stretch ratio of the fiber (λfiber) is defined as the average stretch ratio
of the segments. From mechanical equilibrium, it follows that the tension
generated by each segment, T segment, must be equal to the tension applied to
the fiber, Tfiber.

To simulate the cardiac cycle, we extend the preload-afterload experiment
as described by Brutsaert and Sonnenblick [21]. We distinguish 5 phases as
follows (Figure 7.1):

1. Filling:
linear increase of Tfiber during 300 ms from Tfiber = Trest to Tfiber = Tpreload;

2. Isovolumic contraction:
isometric simulation (constant λfiber) until Tfiber = Tafterload;

3. Ejection:
isotonic simulation (constant Tfiber = Tafterload) until λfiber stops decreasing;
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Figure 7.1: Overview of the preload-afterload experiment simulating the cardiac cy-
cle. The 5 phases of the cardiac cycle are indicated by numbers as follows: 1 filling, 2
isovolumic contraction, 3 ejection, 4 isovolumic relaxation, and 5 isotonic relaxation.
The arrows indicate the direction of time; tfill indicates the time at which filling starts
and tee the time of end ejection. A cardiac cycle was simulated with Trest = 0.5 kPa,
Tpreload = 1 kPa, and Tafterload = 10 kPa. Strain is defined as λ − 1, where λ is the stretch
ratio. External stroke work density (Wext) is the area indicated by Wext and potential
work density (Wpot) is the area indicated by Wpot. Total stroke work density (Wtot) is
the sum of Wext and Wpot.



4. Isovolumic relaxation:
isometric simulation (constant λfiber) until Tfiber = Trest;

5. Isotonic relaxation:
isotonic simulation (constant Tfiber = Trest) until filling starts.

During filling, ejection, and isotonic relaxation, the load applied to the
cardiac fiber (Tfiber) is set as a boundary condition, whereas during isovolumic
contraction and isovolumic relaxation, the stretch ratio of the fiber (λfiber) is a
boundary condition. To initiate contraction, the first segment is electrically
stimulated at the beginning of isovolumic contraction.

In Figure 7.1, a stress-strain loop is presented. The five phases of the car-
diac cycle are indicated by the numbers 1 through 5, and the direction of time
is indicated by arrows. A cardiac cycle was simulated with Trest = 0.5 kPa,
Tpreload = 1 kPa, and Tafterload = 10 kPa. These values are in agreement with the
experiments by Iribe et al. [81].

7.2.4 Adaptation of Ito and ICa,L

To investigate the effect of changes in Ito and ICa,L in relation to the calcium
transient and cardiomechanics, we vary the maximum conductance of Ito and
ICa,L. Furthermore, we model the changes in ICa,L kinetics as observed by Plot-
nikov et al. [145] after ventricular pacing.

In the Courtemanche-Ramirez-Nattel model, Ito is defined by

Ito = Gto o3
a oi (Vmem − EK), (7.12)

where Gto is the maximum Ito conductance, oa and oi are the activation and
inactivation gating variables, and EK is the equilibrium potential for K+ [37].
ICa,L is defined by

ICa,L = GCa,L d f fCa (Vmem − 65), (7.13)

where GCa,L is the maximum ICa,L conductance, d is the activation gating vari-
able, f is the voltage-dependent inactivation gating variable, and fCa is the
Ca2+-dependent inactivation gating variable [37]. Changing the Ito and ICa,L

current size is realized by changing Gto and GCa,L, respectively.
To account for the shift in ICa,L activation and slower inactivation observed

by Plotnikov et al. [145], ICa,L kinetics are changed by adaptation of the dy-
namics of gating variable d. In the Courtemanche-Ramirez-Nattel model, the
dynamics of d are defined by

d
dt

d =
d∞ − d
τd
, (7.14)



where steady-state value d∞ and time constant τd are defined by

d∞ =
1

1 + exp
(
−Vmem+Vshift

8.0

) (7.15)

and

τd =
1 − exp

(
−Vmem+Vshift

6.24

)
0.035(Vmem + Vshift)

(
1 + exp

(
−Vmem+Vshift

6.24

)) , (7.16)

where Vshift = 10 mV.
We simulate remodeling of ICa,L kinetics by replacing Vshift in (7.15) and (7.16)

by

Vshift = Vshift,ref ( ρ + 1), (7.17)

where Vshift,ref = 10 mV and ρ is the remodeling parameter. Plotnikov et al. [145]
observed a shift of 10 mV in ICa,L activation in epicardial myocytes. Assuming
a maximum shift of 10 mV, parameter ρ ranges between −1.0 and 1.0, where
ρ = 0.0 represents the reference situation.

7.2.5 Mechanically induced remodeling of ICa,L

Based on the assumption that electrical remodeling is triggered by changes in
mechanical load, we use stroke work per unit of tissue volume as a feedback
signal to determine the remodeling parameter ρ. We distinguish between
external stroke work density (Wext) and total stroke work density (Wtot). Wext is
defined as the area enclosed by the stress-strain loop during the cardiac cycle
(Figure 7.1):

Wext = −
∫ tcycle

0
T (t)dε(t), (7.18)

where tcycle is the duration of one cardiac cycle (1 s), T (t) represents T segment at
time t, and ε(t) the strain defined by ε = λsegment − 1. Wtot is the sum of Wext

and the so-called potential work density (Wpot), and is also referred to as the
stress-strain area (SSA) [41, 190]. Wtot is computed as

Wtot = −Trest ε(tfill)
2

−
∫ tee

tfill

T (t)dε(t) +
Tafterload ε(tee)

2
, (7.19)

where tfill denotes the time at which filling starts and tee the time at end of
ejection (Figure 7.1).



For each segment n, the remodeling parameter is denoted by ρn. The
parameters ρn are determined such that stroke work is homogeneously dis-
tributed over the fiber. The ρn are found by iteratively computing stroke work
for each segment followed by adapting the ρn until the ρn no longer change.
Stroke work generated by the segment in the center of the fiber is used as
reference. This implicates that, although stroke work may change, the elec-
trophysiology is not changed for the center segment. Initially, ρn = 0.0 for
each segment n. Each time a new cardiac cycle starts, ρn is adapted by

ρn →
⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρn + 0.01 if Wn < 0.99 ·Wref and ρn < 1.0
ρn − 0.01 if Wn > 1.01 ·Wref and ρn > −1.0
ρn otherwise

(7.20)

Here, Wn represents either Wext or Wtot of segment n, and Wref represents either
Wext or Wtot of the reference segment.

7.2.6 Numerical integration scheme

The Cellular Bidomain Model can be written as a coupled system of differ-
ential equations and linear equations [110]. To compute Vmem, the differen-
tial equations are solved using a forward Euler scheme with a 0.01-ms time
step. Each time step, the system of linear equations is solved by an iterative
method to find Vext as described in Kuijpers et al. [110]. The ionic currents
are computed as described in Ref. [37]. Computation time is reduced by in-
creasing the simulation time step for the ionic currents to 0.1 ms during re-
polarization and rest. This leads to a reduction of 70% in computation time,
without significant loss of accuracy (Chapter 3). Both the Ca2+-force relation
and cardiomechanics are computed using a forward Euler method with a
time step of 0.01 ms. Depending on the phase in the cardiac cycle, either Tfiber

or λfiber is set as a boundary condition. The mechanical state of each segment
is computed from the state obtained during the previous time step and the
boundary condition. A numerical scheme that accounts for both boundary
conditions is derived in Ref. [112] (Appendix D). Initially, Tfiber = 0.0 kPa and
λfiber = 1.0. During the first 200 ms, Tfiber is increased until Tfiber = Trest. The first
cardiac cycle starts after 1 s.

7.2.7 Simulation protocol

To investigate the effect of changing maximum Ito conductance, maximum
ICa,L conductance, and ICa,L kinetics on the action potential, calcium transient,
and contractile force, a series of single-segment simulations was performed
in which Gto, GCa,L, and ρ were varied. The segment was stimulated with a



stimulation rate of 1 Hz using a stimulus current of 20 pA/pF during 2 ms
as in Ref. [37]. During the simulations, lCE was kept constant (isosarcometric
contraction). In another series of simulations, the effect of changing preload
and afterload was investigated by single-segment simulations with ρ = 0.0,
ρ = 0.5, and ρ = 1.0. In these simulations, Trest = 0.5 kPa, Tpreload ranged
between 0.75 and 2.5 kPa, and Tafterload ranged between 5 and 20 kPa.

Electrical remodeling was simulated using cardiac fibers with reference
length (L0) of 1, 3, and 6 cm. All fibers have the same conductivity proper-
ties (Table 7.1). Normal activation during sinus rhythm is represented by the
1-cm-long fiber, whereas an increased duration of complete activation with
epicardial pacing is represented by the longer fibers. With stimulation rate
1 Hz, a depolarization wave was generated by stimulating the first segment
using a stimulus current of 100 pA/pF until the membrane was depolarized.
Depolarization of the entire fiber took 32 ms for the 1-cm-long fiber, 98 ms
for the 3-cm-long fiber, and 202 ms for the 6-cm-long fiber. 32 ms is compa-
rable with normal ventricular depolarization and 98 ms is comparable with
ventricular depolarization after epicardial pacing. The 6-cm-long fiber is in-
cluded to compare our simulation results with the experimental results of
Jeyaraj et al. [87], who report a dispersion in depolarization time of 180 ms. In
all cases, the cardiac cycle was simulated with Trest = 0.5 kPa, Tpreload = 1 kPa,
and Tafterload = 10 kPa.

To maintain steady-state, ρn can decrease or increase at most 0.01 each
cardiac cycle. Thus, it takes at least 100 cardiac cycles to reach ρn = 1.0 or ρn =
−1.0 for an individual segment n. In all cases, a final distribution of the ρn was
reached in at most 140 cardiac cycles. By simulating 150 cardiac cycles, it was
ensured that steady-state was reached. Since the effect of the stimulus current
and the intracellular currents on the intracellular concentrations of Na+ and
K+ ([Na+]i and [K+]i) are not taken into account, a drift in the ionic balance
between [Na+]i and [K+]i may occur during longer simulation runs [37, 110].
To avoid such drift, [Na+]i and [K+]i were kept constant during the entire
simulation. By performing single-cell simulations with and without fixed
[Na+]i and [K+]i, we found that the effect of assuming constant [Na+]i and
[K+]i on the AP morphology, Ca2+ transient, and ionic currents is marginal
and can be neglected.



7.3 Results

7.3.1 Isosarcometric contraction

In Figure 7.2, the effect of parameter ρ on electrophysiology and F norm is com-
pared with the effect of scaling Gto and GCa,L with a factor 0.3 - 1.7. Increasing
Gto results in a lower plateau phase, a prolonged APD, a reduced Ca2+ tran-
sient, and a lower Fnorm. Decreasing Gto leads to disappearance of the notch
and a shorter APD, but has no significant influence on the Ca2+ transient and
Fnorm (Figure 7.2, left). Increasing GCa,L does not affect the APD, but results in
an increased Ca2+ transient and Fnorm. Decreasing GCa,L leads to a shorter APD,
a reduced Ca2+ transient, and a lower Fnorm (Figure 7.2, center). Interestingly,
increasing Gto with a factor larger than 2.5 also leads to a shorter APD and a
reduced Ca2+ transient (results not shown). In that case, peak I to exceeds 14
pA/pF, which results in early deactivation of ICa,L. Similar observations have
been reported by Greenstein et al. [65] with models of ventricular membrane
behavior.

Parameter ρ and scaling GCa,L have similar effects on the Ca2+ transient
and Fnorm (Figure 7.2, center and right). In contrast with increasing GCa,L, in-
creasing parameter ρ results in a slower inactivation of ICa,L and an increased
APD, which is in agreement with the measurements by Plotnikov et al. [145].
Peak [Ca2+]i increases for positive ρ and decreases for negative ρ. Larger peak
[Ca2+]i corresponds to larger and more prolonged contractions. The traces
of Fnorm are in agreement with experimental data obtained by Janssen and
Hunter [86] (see also Kuijpers et al. [112]).

In experiments, disappearance of the notch in epicardial cells was ob-
served with epicardial pacing, which was related to a reduction in Ito [121,
122, 229]. Since reducing Gto has no significant influence on the Ca2+ transient
and on Fnorm in our model, scaling Gto is not further considered in the present
study. With increasing GCa,L, the Ca2+ transient and Fnorm increase, but APD is
not affected. Thus, the increase in APD observed in experiments cannot be
reproduced by increasing GCa,L alone. Since no changes in peak ICa,L current
size have been observed in experiments after ventricular pacing [20, 89, 145],
also scaling GCa,L is not considered further.

In Table 7.2, AP characteristics, peak [Ca2+]i, and peak Fnorm (lCE = 2.3
μm) are presented for various values of ρ. With increasing ρ, APD90, APD50,
peak [Ca2+]i, and peak Fnorm all increase. Resting membrane potential (Vrest),
maximum upstroke velocity ((dVmem/dt)max), and AP amplitude (APA) are not
significantly different for different values of ρ.

In Figure 7.3, the twelve ionic membrane currents of the Courtemanche-
Ramirez-Nattel model are plotted for parameter ρ = −1.0, 0.5, 0.0, 0.5, and
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Figure 7.2: Comparison of scaling maximum Ito conductance (Gto, factor 0.3 - 1.7)
and maximum ICa,L conductance (GCa,L, factor 0.3 - 1.7) with parameter ρ. From top
to bottom: membrane potential (Vmem), transient outward K+ current (Ito), L-type
Ca2+ current (ICa,L), intracellular Ca2+ concentration ([Ca2+]i), normalized contractile
force (Fnorm) for lCE = 2.0 μm, and Fnorm for lCE = 2.2 μm. A stimulus current was
applied at 100 ms. Note the different time scale for Ito.
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Figure 7.3: Effect of parameter ρ on ionic membrane currents. Fast inward Na+

current (INa), inward rectifier K+ current (IK1), transient outward K+ current (Ito), ul-
trarapid delayed rectifier K+ current (IKur), rapid delayed rectifier K+ current (IKr),
slow delayed rectifier K+ current (IKs), L-type Ca2+ current (ICa,L), Ca2+ pump current
(Ip,Ca), Na+-K+ pump current (INaK), Na+/Ca2+ exchanger current (INaCa), background
Na+ current (Ib,Na), and background Ca2+ current (Ib,Ca) for ρ = 1.0, 0.5, 0.0, −0.5, and
−1.0. A stimulus current was applied at 100 ms. Corresponding APs are presented
in the top-right panel of Figure 7.2. Note the different time scales for INa and Ito.



Table 7.2: Effect of parameter ρ on electrophysiology and contractile force

ρ Vrest (dVmem/dt)max APA APD90 APD50 [Ca2+]i,max Fnorm,max

[−] [mV] [V/s] [mV] [ms] [ms] [μM] [−]

−1.0 −81.7 161 105.8 197 43 0.44 0.09

−0.5 −81.5 162 105.7 244 91 0.54 0.27

0.0 −80.9 163 105.2 311 190 0.87 0.79

0.5 −80.5 161 104.8 336 217 1.11 0.87

1.0 −80.0 156 104.4 393 264 1.44 0.90

AP, action potential; Vrest, resting potential; (dVmem/dt)max, maximum upstroke veloci-
ty; APA, AP amplitude; APD90 and APD50, AP duration at 90% and 50% repolar-
ization; [Ca2+]i,max, maximum intracellular Ca2+ concentration; Fnorm,max, maximum
normalized contractile force (lCE = 2.3 μm).

1.0. Except for INa and Ito, all currents are changed in response to changes in
parameter ρ. INa and Ito are affected little, because they mainly play a role
during depolarization and early repolarization. All other currents contribute
to the plateau and repolarization phases and are affected by changes in ICa,L

kinetics.

7.3.2 Single cell cardiac cycle simulation

In Figure 7.4, Fnorm, TCE, Tsegment, lCE, strain, and the stress-strain loop are shown
for ρ = 0.0, ρ = 0.5, and ρ = 1.0 (Trest = 0.5 kPa, Tpreload = 1 kPa, and Tafterload =

10 kPa). Fnorm is larger for larger values of ρ, which results in an increased
shortening during ejection and more stroke work.

To investigate the effect of applied load on mechanical behavior, we per-
formed a series of single cell simulations with various combinations of Tpreload

and Tafterload. In Figure 7.5, the effect of varying Tpreload and Tafterload on the stress-
strain loop is shown for ρ = 0.0, ρ = 0.5, and ρ = 1.0. Shortening increases for
larger values of Tpreload, because the segment is more stretched prior to contrac-
tion (Frank-Starling mechanism). On the other hand, shortening decreases
for increasing Tafterload, which is explained by the fact that the sarcomeres need
to generate more force to be able to shorten. These results are in agreement
with the work-loop style contractions in the experiments by Iribe et al. [81].
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Figure 7.4: Effect of parameter ρ on mechanical behavior during cardiac cycle (single
segment). Trest = 0.5 kPa, Tpreload = 1 kPa, and Tafterload = 10 kPa; ρ = 0.0, 0.5, and 1.0.
Left: Fnorm, active tension (TCE), Tsegment, lCE, and strain. Right: stress-strain loop.
The cell was electrically stimulated at the beginning of isovolumic contraction at
simulation time t = 0 ms.
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7.3.3 Remodeling of ICa,L in a cardiac fiber

To investigate the effect of remodeling of ICa,L on electrical and mechanical
behavior, we consider the 1-cm-long, 3-cm-long, and 6-cm-long fibers with
Trest = 0.5 kPa, Tpreload = 1 kPa, and Tafterload = 10 kPa. In Figure 7.6, Wext, Wtot,
parameter ρ, action potential duration (APD100), and time of repolarization
(trepol) are shown for each location along the fibers without remodeling, with
remodeling controlled by Wext, and with remodeling controlled by Wtot. With-
out remodeling, Wext is small for early-activated segments in the short fiber
and negative for early-activated segments in the longer fibers. With remod-
eling, Wext and Wtot are increased for early-activated segments and decreased
for later-activated segments. Although Wext is positive for the early-activated
segments in the longer fibers, the reference value (Wext in the center) is not
reached, since ρ reaches its maximum value of 1.0. Electrical remodeling has
no effect on the conduction velocity; the time of depolarization is the same
with and without remodeling (not shown).

As expected, remodeling affects the APD. APD100 increases for early-activ-
ated segments and decreases for later-activated segments. In the 6-cm-long
fiber, APD100 also increases for later-activated segments in case remodeling is
controlled by Wtot. These changes in APD result in a decreased dispersion of
repolarization in the longer fibers. In Figure 7.6 (bottom) it can be observed
that without remodeling, the repolarization wave starts at the stimulation site
and travels in the same direction as the depolarization wave to the other end.
With remodeling in the 1-cm-long fiber, repolarization starts at the other end,
and hence the repolarization wave travels in the opposite direction from the
depolarization wave. With remodeling in the longer fibers, the repolarization
wave starts near the center and travels in both directions, partly in opposite
direction from the depolarization wave.

Figure 7.7 illustrates the effect of ICa,L remodeling on Vmem, [Ca2+]i, Fnorm,
TCE, TPE, and strain for three segments of the 1-cm-long fiber. Without re-
modeling, the APs of the three segments have similar morphology and du-
ration. However, with remodeling the AP of the segment at 0.2 cm envelops
the APs of the other two segments. This is also the case for the Ca 2+ tran-
sient. With remodeling, Fnorm is increased for early-activated segments such
that these segments are able to shorten more during ejection. On the other
hand, Fnorm is decreased for later-activated segments, which results in a de-
creased TCE. During ejection, TPE is larger to compensate for the decrease in
TCE, and thus the strain is increased for these segments. The overall result
is that later-activated segments exhibit less shortening, while early-activated
segments shorten more. To quantify shortening during ejection, we compare
the stretch at end of ejection (λee) with the stretch at begin of ejection (λbe)



for each segment. Without remodeling λee/λbe = 0.95, 0.92, and 0.89 for the
segments located at 0.2, 0.5, and 0.8 cm, respectively, while with remodel-
ing λee/λbe is between 0.89 and 0.90 for all segments. Thus, a homogeneous
shortening of the 1-cm-long fiber is obtained with remodeling.

In Figures 7.8 and 7.9, Vmem, [Ca2+]i, Fnorm, TCE, TPE, and strain for three
segments of the 3-cm-long and 6-cm-long fibers are presented. Without re-
modeling, the early-activated segments stretch the later-activated segments,
which leads to an inhomogeneous contraction. With remodeling of the 3-
cm-long fiber, the AP and Ca2+ transient of the early-activated segments en-
velops the AP and Ca2+ transient of the later-activated segments and a more
homogeneous shortening is obtained during ejection. For the 6-cm-long fiber,
depolarization of the later-activated segments is delayed so that part of the
shortening occurs after ejection and does not contribute to the shortening of
the fiber. In case electrical remodeling is controlled by Wtot, the ρn are in-
creased for the later-activated segments, which results in more shortening
during ejection. The large differences in strain during ejection between early
and later-activated segments are in agreement with the large differences in
peak systolic strains measured by Jeyaraj et al. [87] after 4 weeks of ventricu-
lar pacing. Prolongation of the APD occurs for both early and later-activated
segments, but not for intermediate segments (Figure 7.6), which is also in
agreement with the experimental observations by Jeyaraj et al. [87].

In Figure 7.10, the stress-strain loops with and without remodeling are
presented for the same segments of the three fibers. Without remodeling,
Wext, which is by definition the area enclosed by the stress-strain loop, is small
or negative for the early-activated segments. However, with remodeling the
area enclosed by the stress-strain loop is enlarged, indicating that these seg-
ments shorten more during ejection. On the other hand, the shortening of the
later-activated segments is decreased with remodeling. An exception is the
later-activated segment of the 6-cm-long fiber, which shortens more during
ejection when remodeling is controlled by Wtot.

Finally, in Figure 7.11, stress, strain, and the stress-strain loop for the en-
tire fiber are presented without and with remodeling. Relative to the fiber
length at begin of ejection, fiber shortening increases from 8% without re-
modeling to 10-12% with remodeling.
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Figure 7.6: Effect of electrical remodeling of ICa,L on cardiac fibers of length 1 cm, 3
cm, and 6 cm (Trest = 0.5 kPa, Tpreload = 1 kPa, Tafterload = 10 kPa). From top to bottom:
external stroke work density (Wext), total stroke work density (Wtot), parameter ρ, ac-
tion potential duration (APD100), and repolarization time (trepol). APD100 is defined as
the time during which Vmem is larger than −60 mV and trepol is the time at which Vmem

becomes lower than −60 mV. Data are plotted without remodeling (solid line), with
remodeling controlled by Wext (dash-dotted line), and with remodeling controlled by
Wtot (dashed line). A stimulus current was applied to the segment at 0 mm at 0 ms.
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Figure 7.7: Effect of electrical remodeling of ICa,L controlled by Wext and by Wtot on
individual segments in 1-cm-long cardiac fiber (Trest = 0.5 kPa, Tpreload = 1 kPa, and
Tafterload = 10 kPa). Vmem, [Ca2+]i, Fnorm, TCE, TPE, and strain are plotted for segments
located at 0.2, 0.5, and 0.8 cm. Left: without remodeling. Center: remodeling con-
trolled by Wext. Right: remodeling controlled by Wtot. The vertical lines in the lower
panels indicate begin of ejection (be) and end of ejection (ee). A stimulus current was
applied to the segment at 0.0 cm at 0 ms.
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Figure 7.8: Effect of electrical remodeling of ICa,L controlled by Wext and by Wtot on
individual segments in 3-cm-long cardiac fiber (Trest = 0.5 kPa, Tpreload = 1 kPa, and
Tafterload = 10 kPa). Vmem, [Ca2+]i, Fnorm, TCE, TPE, and strain are plotted for segments
located at 0.5, 1.5, and 2.5 cm. Left: without remodeling. Center: remodeling con-
trolled by Wext. Right: remodeling controlled by Wtot. The vertical lines in the lower
panels indicate begin of ejection (be) and end of ejection (ee). A stimulus current was
applied to the segment at 0.0 cm at 0 ms.
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Figure 7.9: Effect of electrical remodeling of ICa,L controlled by Wext and by Wtot on
individual segments in 6-cm-long cardiac fiber (Trest = 0.5 kPa, Tpreload = 1 kPa, and
Tafterload = 10 kPa). Vmem, [Ca2+]i, Fnorm, TCE, TPE, and strain are plotted for segments
located at 1.0, 3.0, and 5.9 cm. Left: without remodeling. Center: remodeling con-
trolled by Wext. Right: remodeling controlled by Wtot. The vertical lines in the lower
panels indicate begin of ejection (be) and end of ejection (ee). A stimulus current was
applied to the segment at 0.0 cm at 0 ms.
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Figure 7.10: Effect of electrical remodeling of ICa,L controlled by Wext and by Wtot

on the stress-strain loop for individual segments in cardiac fibers with length 1 cm,
3 cm, and 6 cm (Trest = 0.5 kPa, Tpreload = 1 kPa, and Tafterload = 10 kPa). Stress-
strain loops are plotted for early-activated segments (solid), intermediate-activated
segments (dotted), and later-activated segments (dashed). Left: without remodeling.
Center: remodeling controlled by Wext. Right: remodeling controlled by Wtot. A
stimulus current was applied to the segment at 0.0 cm. The arrows indicate the
direction of time for the early-activated segments (solid lines).
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Figure 7.11: Effect of electrical remodeling of ICa,L controlled by Wext and Wtot on the
stress-strain loop for cardiac fibers with length 1 cm, 3 cm, and 6 cm (Trest = 0.5 kPa,
Tpreload = 1 kPa, and Tafterload = 10 kPa). A stimulus current was applied to the segment
at 0.0 cm at 0 ms.



7.4 Discussion

7.4.1 What triggers electrical remodeling?

Libbus and Rosenbaum [121] showed that electrical remodeling can be trig-
gered by changing the stimulation rate as well as by changing the activa-
tion sequence. The observed changes in APD and AP morphology are, how-
ever, different. Increasing the stimulation rate leads to a shortening of the
APD, while changing the activation sequence leads to prolongation of the
APD. In both cases, the notch of the AP is reduced, indicating a reduction in
Ito [121]. Libbus et al. [122] suggest that remodeling of Ito may be explained by
changes in electrotonic load. Jeyaraj et al. [87] recently proposed mechano-
electric feedback as a mechanism for electrical remodeling. Based on their
observation that APD is prolonged near the site of stimulation and also in
remote regions, it is unlikely that electrical remodeling is explained by elec-
trotonic interactions [87]. Based on their measurements of circumferential
strain, Jeyaraj et al. [87] propose that electrical remodeling is related to the
distribution of strain. Sosunov et al. [178] found that electrical remodeling
can be inhibited either by reducing mechanical load or by reducing contrac-
tility, indicating that changes in mechanical load are involved. Patberg et
al. [142] suggest that angiotensin II is a likely candidate to trigger ICa,L remod-
eling, since its release is altered by changes in stretch and it affects ICa,L. Local
changes in the stress-strain loop may lead to changes in angiotensin II release
and eventually affect ICa,L and calcium homeostasis [20, 142, 168].

In our model, reduction of G to leads to disappearance of the notch in the
action potential as well as a reduced APD (Figure 7.2). After changing the
activation sequence for 20 days, Yu et al. [229] observed disappearance of the
notch and APD prolongation. Jeyaraj et al. [87] observed APD prolongation
without disappearance of the notch, indicating that Ito may not be the only
ionic current that changes when the activation sequence is changed. Kääb et
al. [89] found a reduced notch and prolonged APD after 3 to 4 weeks of ven-
tricular pacing. They also found a reduction in Ito, but did not find any dif-
ferences in ICa,L. Kääb et al. [89] hypothesized that downregulation of Ito is at
least partially responsible for the prolongation of the APD. Shvilkin et al. [173]
observed APD prolongation in both epicardium (which has large Ito) and en-
docardium (which has small Ito), and no change in APD in midmyocardium
(which has prominent Ito). These results suggest that other ionic currents play
an important role in electrical remodeling [173]. Rubart et al. [162] reported
a prolonged APD and a reduced notch after one hour of ventricular pacing
in dogs. They found a reduction in Ito and as well as an increase in peak
ICa,L [162]. After 21 days of ventricular pacing, Plotnikov et al. [145] observed



a more positive ICa,L activation threshold and slower inactivation in epicar-
dial myocytes, but ICa,L current size was not changed. Based on these obser-
vations, we hypothesized that Ito conductance (Gto) and ICa,L kinetics, but not
ICa,L conductance (GCa,L), are affected after changing the activation sequence.
Although Ito remodeling is probably related to changes in ICa,L, the relation
between Ito and ICa,L during electrical remodeling is not clear. Since reducing
Gto has little effect on the calcium transient in our model, we decided to adapt
ICa,L kinetics, but not Ito conductance, when simulating electrical remodeling.

7.4.2 Effect of electrical remodeling on Ca2+ and mechanics

In our model, a more positive ICa,L activation threshold and slower inactiva-
tion is represented by a positive value of remodeling parameter ρ and leads
to an increased intracellular Ca2+ concentration and APD prolongation (Fig-
ure 7.2). Plotnikov et al. [145] observed a shift of 10 mV in ICa,L activation and
an increase in APD90 of 65 ms. In our model, a shift of 10 mV in ICa,L activation
corresponds to an increase of 82 ms in APD90 (Table 7.2). Changing ICa,L kinet-
ics in our model affects the calcium transient and thus the amount of stroke
work. The increase in ICa,L results in an increased [Ca2+]i during the AP and
in an increased steady-state concentration of Ca2+ in the SR uptake compart-
ment, which leads to an increased Ca2+ release and explains the increased
Ca2+ transient.

The effect of electrical remodeling on the 1-cm-long and 3-cm-long fibers
can be characterized as follows. Early-activated segments are less stretched
than later-activated segments before they start to contract. According to the
Frank-Starling law, the tension generated by the early-activated segments
is small. With remodeling, the early-activated segments generate more ac-
tive tension and are able to shorten. On the other hand, the later-activated
segments generate less active tension (Figures 7.7 and 7.8). The overall ef-
fect is that an increased and more homogeneous shortening of the fiber is
obtained with electrical remodeling. Furthermore, the APD is increased in
early-activated areas and decreased in later-activated areas, which results in
an inverse relationship between APD and activation time, and is in agree-
ment with the results of Costard-Jäckle et al. [36].

Jeyaraj et al. [87] observed an increase in APD in areas close to the pacing
site as well as in remote areas, while the APD was either normal or decreased
in intermediate areas. We observed a similar distribution of the APD in the
6-cm-long fiber when remodeling was controlled by Wtot, but not when re-
modeling was controlled by Wext. This difference in behavior is explained by
the fact that Wext in the later-activated areas is larger than in the center of the
fiber, whereas Wtot is smaller than in the center. In both cases, the segments



in the later-activated areas exhibit the same amount of shortening. However,
only in case remodeling is controlled by Wtot, most of the shortening occurs
during ejection. We conclude that electrical remodeling of the 6-cm-long fiber
controlled by Wtot is in agreement with experimentally observed distributions
of APD and may lead to homogeneous shortening during ejection.

7.4.3 Transmural heterogeneity in excitation-contraction coupling

Wang and Cohen [219] investigated transmural heterogeneity in the L-type
Ca2+ channel in the canine left ventricle. Although the kinetic properties of
the L-type Ca2+ current in epicardial and endocardial myocytes were not sig-
nificantly different, they found a larger ICa,L current in endocardial than in
epicardial myocytes [219]. Laurita et al. [117] observed a longer duration of
the Ca2+ transient in endocardial compared with epicardial myocytes from
the canine left ventricle. In our model, normal transmural activation is rep-
resented by the 1-cm-long fiber, in which the early-activated segments rep-
resent the endocardial myocytes and the later-activated segments the epicar-
dial myocytes. With remodeling, a larger ICa,L current and slower inactivation
during the plateau phase is obtained for early-activated segments, which is
in agreement with the experimental observations. However, to date, no ex-
perimental evidence exists for a transmural gradient in L-type Ca2+ kinetics
in the normal heart.

Cordeiro et al. [35] examined unloaded cell shortening of endocardial,
midwall, and epicardial cells that were isolated from the canine left ventri-
cle. Time to peak and latency to onset of contraction were shortest in epicar-
dial and longest in endocardial cells, while an intermediate time to peak was
observed in midwall cells [35]. These differences in excitation-contraction
coupling (ECC) are related to differences in time to peak and decay of the
Ca2+ transient [35]. In our model, time to peak of the Ca2+ transient is not
significantly different when ICa,L kinetics is changed (Figure 7.2), which ex-
plains why the heterogeneity in ECC observed by Cordeiro et al. [35] is not
reproduced by our model.

7.4.4 T wave concordance and cardiac memory

Remodeling of ICa,L kinetics in our model leads to significant changes in repo-
larization. In the 1-cm-long fiber, the repolarization wave travels in the op-
posite direction from the depolarization wave. In the longer fibers, the repo-
larization wave starts near the center and travels in both directions along the
fiber, partly in opposite direction from the depolarization wave. The changes
in repolarization are explained by changes in APD and are in agreement with



experimental observations [36, 87]. In the ventricles, the repolarization path
is different from the depolarization path, which explains T wave concordance
in the normal electrocardiogram (ECG) [63]. During ventricular pacing, the
T wave changes, but T wave concordance reappears after several days when
normal activation is restored (”cardiac memory”) [160]. Our model provides
a possible explanation for this phenomenon by assuming that electrical re-
modeling of cardiomyocytes is triggered by changes in mechanical work.

7.4.5 Ventricular electromechanics

Our simulation results show large differences in shortening of individual seg-
ments with and without remodeling. Without remodeling, early-activated
segments shorten, then stretch and finally shorten again. Later-activated seg-
ments are first stretched, followed by a pronounced shortening (Figures 7.7 -
7.9, left). With remodeling, a more homogeneous shortening of the segments
is obtained (Figures 7.7 - 7.9, center and right). Similar results were obtained
by Nickerson et al. [137] when they compared simulation results of ventric-
ular electromechanics in the case that electrophysiology was modeled differ-
ently for endocardial, midwall, and epicardial myocytes to simulation results
in the case that electrophysiology was modeled homogeneously. When elec-
trophysiology was modeled homogeneously, a significant heterogeneity in
strain was observed at the end of isovolumic contraction. However, when
electrophysiology was modeled inhomogeneously, a reduction in transmural
sarcomere length variation was observed during repolarization.

Prinzen et al. [149] measured systolic fiber strain and external work at dif-
ferent locations in the left ventricle during right atrial pacing (RA pacing)
and during left ventricular pacing (LV pacing). Compared with the normal
values (RA pacing), strain and external work during LV pacing were approx-
imately zero in regions near the pacing site, and gradually increased to more
than twice the normal value in remote regions [149]. These results are similar
to our results for the 3-cm-long fiber without remodeling. With remodel-
ing, we found a more homogeneous distribution of shortening and external
work for the 1-cm-long and 3-cm-long fibers. In the 1-cm-long fiber, exter-
nal work was almost homogeneous with remodeling (Figure 7.6), which is in
agreement with the measurements during RA pacing (normal stimulation) of
Prinzen et al. [149].

Ashikaga et al. [10] investigated transmural dispersion of mechanics in
vivo. They found that the onset of myofiber shortening was earliest in the
endocardial layers, while the onset of myofiber relaxation was latest in the
endocardial layers. In our model, the onset of relaxation in early-activated
segments was delayed with remodeling, such that both onset and relaxation



of segment shortening were in agreement with the experimental results of
Ashikaga et al. [10]. Thus, cardiomechanics in the ventricles during normal
sinus rhythm or RA pacing is better approximated by our model with elec-
trical remodeling of ICa,L. We conclude that adaptation of electrophysiology
as proposed here may lead to better predictions of ventricular mechanics in
coupled models of cardiac electromechanics.

7.4.6 Model validity and limitations

To our knowledge, the model presented here is the first model in which adap-
tation of electrophysiology is triggered by heterogeneity in mechanical work.
Validity and limitations of the models for the ionic currents, cross-bridge for-
mation, and cardiomechanics are extensively discussed elsewhere [37, 112,
158, 176]. Here, we discuss the validity and limitations of our choices for the
cardiac fiber model, the ionic membrane currents, the Ca2+-force relation, the
cardiac cycle, and electrical remodeling.

Cardiac fiber model In the present study, a three-dimensional heart is rep-
resented by a single fiber. Regarding cardiomechanics, a basic assumption
in our fiber model is that the stress applied to each segment is equal at all
times during the cardiac cycle. In the real heart, this is related to the as-
sumption that local stress in the direction of the myofibers is uniformly dis-
tributed. It is thus assumed that myofiber orientation in the normal heart
is adapted such that myofiber stress and strain are about uniform, which is
a valid assumption for the normal heart [8]. Regarding electrophysiology,
our fiber model assumes a uniform distribution of excitation times along the
fiber. In the three-dimensional heart this assumption does not hold. Despite
this deviation, we found relations between excitation and mechanics that are
comparable with the modeling results of Kerckhoffs et al. [99, 100] and the
experimental results of Prinzen et al. [149].

Ionic membrane currents To describe the membrane currents and calcium
handling, we apply the Courtemanche-Ramirez-Nattel model of the human
atrial action potential [37]. In this model, calcium handling is based on the
ventricular model by Luo and Rudy [125, 126]. Since the model is capable
of reproducing the complex interaction between Ito and ICa,L as described by
Greenstein et al. [65] for ventricular models, we conclude that the model is
representative for cardiomyocytes in general. By adjusting ICa,L gating vari-
able d, our model is capable of reproducing a larger ICa,L current and slower in-
activation during the plateau phase, which is in agreement with the increased



APD and plateau height observed by Plotnikov et al. [145]. Although we ob-
tain qualitative agreement, fitting ICa,L kinetics to the data provided by Plot-
nikov et al. [145] may require a recent ventricular model such as the Winslow-
Rice-Jafri model of the canine ventricle [225] (including the new formulation
of Ito1 by Greenstein et al. [65]) or the model by Ten Tusscher et al. [197].

Ca2+-force relation To date, no model describing the Ca2+-force relation
of human atrial myocytes exists. In the present study, we apply model 4 of
Rice et al. [157, 158], which approximates the contractile force measured dur-
ing isosarcometric twitches from RV rat trabeculae [86]. In model 4, the affin-
ity of troponin for Ca2+ does not increase in the presence of strongly bound
cross bridges. Incorporation of the crossbridge-troponin cooperativity mech-
anism [4] as in model 5 would lead to an increasing steepness in the Ca2+-force
relation, especially in the midlevel ranges of force [158]. In our model, the in-
creased intracellular Ca2+ concentration in early-activated segments would
have a more prominent effect on Fnorm, which leads to a more homogeneous
distribution of work.

The choice between model 4 and model 5 is motivated by the fact that we
found better agreement between the Ca2+-force relation obtained by model 4
and the experimental results of Kentish et al. [98], in particular for sarcomere
lengths above 1.9 μm. When we compared the isosarcometric twitches, we
found that, for model 5, the peak force was lower and the latency to peak force
was increased for longer sarcomeres. Compared with the experimental data
measured by Janssen and Hunter [86], the latency to peak force increased too
much with sarcomere length [112]. Since the twitches obtained by model 4
better resemble the experimental results from Janssen and Hunter, we have
chosen model 4 to describe the Ca2+-force relation. Lab et al. [115] observed
in experiments that a decreased mechanical load during shortening leads to
an increased [Ca2+]i and a longer APD. These observations are acute and are
not related to electrical remodeling. Although direct force feedback may re-
sult in a more uniform contraction, we do not consider acute mechanoelectric
feedback in the present simulation study.

Cardiac cycle In our model, the cardiac cycle is simulated by an extended
preload-afterload experiment. Although the work loops obtained with our
values for Tpreload and Tafterload are in agreement with the work loops used in the
experiments by Iribe et al. [81], our value of Tafterload is low compared with the
afterload of 35 kPa computed by Kerckhoffs et al. [100] when simulating ven-
tricular work loops. We decided not to increase T afterload, because that would
lead to too little shortening for ρ = 0.0 (Figure 7.5).



Electrical remodeling Electrical remodeling is simulated by changing ICa,L

kinetics based on the experiments by Plotnikov et al. [145]. With respect to
electrophysiology, our model predicts changes in AP morphology and dura-
tion similar to the changes observed after ventricular pacing [36, 87]. A less
prominent notch of the AP as observed in experiments [121, 229] would occur
if not only ICa,L kinetics was adapted, but also Ito conductance was reduced. In
addition to ICa,L and Ito, transmural heterogeneity was found in IKs [123] and in
INaCa [233]. Obreztchikova et al. [138] observed remodeling of IKr and IKs after
three weeks of epicardial pacing. Although these currents influence AP mor-
phology and excitation-contraction coupling, we do not consider remodeling
of IKr, IKs, and INaCa in our model.

With respect to cardiomechanics, our model predicts homogeneous short-
ening and mechanical work in the normal heart (represented by the 1-cm-
long fiber) when ICa,L is adapted. The homogeneous mechanical behavior is
in agreement with experimental observations [41, 149]. Without ICa,L adap-
tation, the model predicts inhomogeneous shortening and mechanical work
during ventricular pacing (represented by the 3-cm-long fiber), which is in
agreement with experimental observations after 15 minutes of ventricular
pacing [41, 149]. With ICa,L adaptation, our model predicts large differences
in strain during ejection between early and later-activated segments in the 6-
cm-long fiber. These large differences in strain are in agreement with the large
differences in peak systolic strains between early and later-activated regions
observed by Jeyaraj et al. [87] after 4 weeks of ventricular pacing.

7.4.7 Clinical relevance

Models of cardiac electromechanics have been applied to investigate medi-
cal interventions such as cardiac resynchronization therapy (CRT) [100, 204].
Extension of models for cardiac electromechanics with adaptation of ionic
currents in response to changes in mechanical load may lead to more accu-
rate predictions of regional electrical, mechanical, and metabolic properties
of cardiac tissue in the healthy heart, during pathology, and during pacing.
Application of such models in cardiovascular research may improve our un-
derstanding of the interaction between electrophysiology and cardiomechan-
ics.

7.5 Conclusion

Experimentally observed heterogeneity in APD and homogeneity in fiber
shortening are reproduced by adaptation of ICa,L kinetics triggered by changes



in mechanical work. Thus, adaptation of ICa,L is a possible mechanism to re-
duce heterogeneity in mechanics induced by heterogeneity in activation.
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Abstract

Experimental studies show an increased vulnerability to atrial fibrillation (AF)
in acutely dilated atria. By application of a stretch-activated channel (SAC) blocker,
vulnerability to AF decreases significantly, indicating a role for SACs in the initiation
of AF. Using a computer model of cardiac electromechanics, we investigate the hy-
pothesis that increased vulnerability to AF may be attributed to SACs. In our model,
the human atria are represented by a triangular mesh obtained from MRI data. In
this geometry, thickness is varied to model the bundles that are located in the atrial
wall. Electrophysiology is modeled by the Courtemanche-Ramirez-Nattel model of
the human atrial action potential extended with the stretch-activated current Isac. Me-
chanical behavior is modeled by a series elastic, a contractile, and a parallel elastic
element. The contractile force is related to the intracellular concentration of free cal-
cium as well as to the sarcomere length. To simulate acute dilatation, overall stretch
is applied to the atria. Due to contraction of some areas, stretch increases in other
areas, leading to a variation in Isac. In the presence of Isac, the membrane potential de-
polarizes, which causes inactivation of the sodium channels and results in conduc-
tion slowing or block. Inducibility of AF increases under stretch, which is explained
by an increased dispersion in effective refractory period (ERP), conduction slowing,
and local conduction block. Our observations explain the large differences in intra-
atrial conduction measured in experiments and provide insight in the vulnerability
to AF in dilated atria.
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Table 8.1: Model parameters

Parameter Definition Value

gint Intracellular conductivity 6.25 mS/cm

gext Extracellular conductivity 6.25 mS/cm

Cmem Membrane capacitance 1.0 μF/cm2

χ Surface-to-volume ratio 2000 cm−1

Gsac Maximum Isac conductance 0.5 nS/pF

Esac Reversal potential for Isac 0 mV

Ksac Parameter for Isac 100

αsac Parameter for Isac 3

8.1 Introduction

Atrial fibrillation (AF) is characterized by rapid and irregular electrical ac-
tivity, which results in irregular contraction of the atria [133]. Experimental
studies indicate an increased vulnerability to AF in acutely dilated atria [16,
54, 152, 166]. Stretch-induced changes in electrophysiology are explained by
the stretch-activated channel (SAC) hypothesis [78, 105]. In the present simu-
lation study, we investigate the effect of the stretch-activated current (I sac) on
impulse propagation and arrhythmic behavior in the human atria.

8.2 Methods

To investigate the effect of stretch on atrial electrophysiology, we apply our
discrete bidomain model, the Cellular Bidomain Model [109, 110]. The model
describes active membrane behavior as well as intracellular coupling and in-
terstitial currents, and has been extended to describe cardiac mechanics [112].
The human atria are modeled by a triangular mesh composed of 7446 trian-
gles created from MRI data [207, 208].

8.2.1 Atrial electrophysiology

In the Cellular Bidomain Model, a distinction is made between the intracel-
lular domain and the interstitium. The triangular mesh is refined by subdi-
viding each of the triangles in nine smaller triangles (Chapter 3). The electro-
physiological state of each node in the refined mesh is defined by the intracel-



lular potential (Vint), the extracellular potential (Vext), and the state of the cell
membrane, which is expressed in gating variables and ion concentrations.
The membrane potential (Vmem) is defined by

Vmem = Vint − Vext. (8.1)

Intracellular and extracellular currents between adjacent segments are related
to intracellular and extracellular conductivities (gint and gext). In the present
study, we assume equal gint and gext in all directions, i.e., the atrial tissue is
assumed to be isotropic (Table 8.1). Conductivities are locally adjusted for
changing stretch ratio as described in Section 6.2.2.

Exchange of current between the intracellular and extracellular domains
occurs as transmembrane current (Itrans), which depends on ionic current (Iion)
and capacitive current according to

Itrans = χ(Cmem

dVmem

dt
+ Iion), (8.2)

where χ is the ratio of membrane area to tissue volume and Cmem represents
membrane capacitance. Currents are expressed per unit of tissue volume in
μA/cm3. Assuming Cmem = 1 μF/cm2, ionic current is expressed in pA/pF
and depends on Vmem, gating variables, and ion concentrations. To model
Iion, we extend the Courtemanche-Ramirez-Nattel model [37] with the stretch-
activated current Isac. The total ionic current is given by

Iion = INa+ IK1+ Ito+ IKur+ IKr+ IKs+ ICa,L+ Ip,Ca+ INaK+ INaCa+ Ib,Na+ Ib,Ca+ Isac, (8.3)

where INa is fast inward Na+ current, IK1 is inward rectifier K+ current, Ito is
transient outward K+ current, IKur is ultrarapid delayed rectifier K+ current,
IKr is rapid delayed rectifier K+ current, IKs is slow delayed rectifier K+ current,
ICa,L is L-type Ca2+ current, Ip,Ca is Ca2+ pump current, INaK is Na+-K+ pump
current, INaCa is Na+/Ca2+ exchanger current, and Ib,Na and Ib,Ca are background
Na+ and Ca2+ currents [37].

Isac is modeled as a nonselective cation current with a linear current-voltage
relation [112]. The current size depends on the membrane potential Vmem and
stretch ratio λ by

Isac =
Gsac(Vmem − Esac)

1 + Ksac exp(−αsac(λ − 1))
, (8.4)

where Gsac is the maximum membrane conductance, Esac is the reversal po-
tential, Ksac is a parameter to define the amount of current when λ = 1.0, and
αsac is a parameter to describe the sensitivity to stretch. Parameters K sac and
αsac are from Zabel et al. [230] (Table 8.1). The influence of Isac on intracellular
Na+, K+, and Ca2+ concentrations is modeled as described in Chapter 6.



Figure 8.1: Thickness variation in atrial geometry. Red is thick tissue, green is tissue
of medium thickness, and blue is thin tissue. The stimulation site is located near the
right pulmonary veins.

8.2.2 Atrial mechanics

The mechanical behavior of a single segment is modeled by a series elastic, a
contractile, and a parallel elastic element [112]. As in Chapter 6, active force
generated by the contractile element is described by model 4 of Rice et al. [158]
and is related to intracellular Ca2+ concentration and sarcomere length (Ap-
pendix C).

To simulate atrial dilatation, it is assumed that the same amount of force is
applied to each segment. During the simulation, the amount of force applied
to the atria is adjusted, such that the overall stretch ratio remains constant
(isometric simulation). Contraction of early activated regions may lead to
increased stretch in late activated regions. To incorporate bundles, thickness
of the tissue is varied as shown in Figure 8.1. Since thicker tissue is harder
to deform, variation in thickness will lead to differences in local stretch and,
hence, influences Isac.

8.2.3 Simulation set-up

To investigate the effect of stretch on impulse propagation, we performed
simulations using a single fiber as described in Chapter 6. The mesh rep-
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Figure 8.2: Effect of stretch on the action potential (AP) and impulse propagation.
Left: membrane potential (Vmem) and stretch-activated current (Isac). Right: Vmem and
fast Na+ current (INa) during AP upstroke. A stimulus current was applied at 100
ms. Data are plotted for stretch ratio λ = 1.00, 1.10, and 1.20 for a segment located
0.5 cm from the stimulation site.

resenting the human atria was refined as described in Chapter 3. Two levels
of coarseness were distinguished. Mechanics computation was performed on
the coarsest level (3800 nodes), while electrophysiology was simulated on the
finer level (33754 nodes). The average distance between two connected nodes
on the coarsest level was 0.27 cm and on the finest level 0.09 cm. To obtain
accurate simulation results, the heuristic method introduced in Section 3.2.5
was applied with α = 0.3. Under the assumption that the same amount of
force is applied to each segment, computation of the mechanical state was
performed as if all segments were part of one single fiber (isometric simu-
lation; Appendix D). Simulation time steps to compute the ionic membrane
currents were varied between 0.02 and 0.1 ms as described in Section 3.2.3,
while the simulation time step to compute the mechanics was 0.1 ms.



8.3 Results

8.3.1 Influence of Isac on impulse propagation

In Figure 8.2, the effect of stretch on the propagating action potential is illus-
trated. For increasing λ, the action potential duration (APD) increases, while
INa decreases. The reduced INa is explained by inactivation of Na+ channels
as a consequence of the depolarized Vmem during diastole [112]. As can be
observed in Figure 8.2, the smaller INa current size leads to a lower maxi-
mum upstroke velocity. For increasing λ, the segment located 0.5 cm from
the stimulation site is excited at a later point in time, which indicates a re-
duced impulse propagation.

8.3.2 Influence of Isac on the vulnerability to AF

To investigate the effect of Isac on the vulnerability to AF, simulations were
performed using the mesh of the human atria. Ectopic activity was simulated
by applying a stimulus current near the pulmonary veins with a stimulation
interval of 0.6 s. Overall stretch was varied between 0% and 20%.

In Figure 8.3, depolarization of the atria is shown after the fourth stimula-
tion without stretch, with 10% stretch, and with 12% stretch. While conduc-
tion was normal without stretch, conduction slowing and local conduction
block was observed with 10% stretch. With 12% stretch, conduction was nor-
mal after the first, third, and fifth stimulation, while conduction was blocked
after the second and fourth stimulation due to an increased refractory period.
Conduction was completely blocked with 20% stretch (not shown).

Due to conduction slowing and local conduction block with 10% stretch,
a reentrant depolarization wave developed after 3 s. The path of the depo-
larization wave changed over time and the arrhythmia stopped after 14 s. In
Figure 8.4, the atrial arrhythmia is shown after 12 s of simulation time. In Fig-
ure 8.5, Vmem, Isac, intracellular Ca2+ concentration ([Ca2+]i), and stretch ratio
(λ) are shown for a segment near the sino-atrial (SA) node and a segment near
the pulmonary veins (PV) between 8 and 13 s. λ changes due to contraction
of the segment and is influenced by contraction of other parts of the atria.
Changes in λ affect Isac, Vmem, and [Ca2+]i, and add to the irregular electrical
activity of the atria.

8.3.3 Influence of contraction on AF

To investigate the effect of atrial contraction on arrhythmic behavior, we con-
tinued the simulation after 13 s with contraction enabled and with contrac-
tion disabled. Disabled contraction was implemented by assuming that [Ca2+]i
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Figure 8.3: Atrial depolarization after the fourth stimulation near the pulmonary
veins. Left: normal conduction when no stretch is applied. Center: slow conduction
with 10% stretch. Right: conduction block with 12% stretch. Membrane potential
(Vmem) is shown after stimulation at 0 ms with intervals of 50 ms. Red is depolarized
tissue, green is tissue with increased Vmem, and blue is recovered tissue.
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Figure 8.4: Atrial fibrillation with 10% stretch. Membrane potential (Vmem) is shown
after 12 s of simulation with intervals of 50 ms. Red is depolarized tissue, green is
tissue with increased Vmem, and blue is recovered tissue.
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Figure 8.5: Membrane potential (Vmem), stretch-activated current (Isac), intracellular
Ca2+ concentration ([Ca2+]i), and stretch ratio (λ) for a segment near the sino-atrial
node (SA node) and a segment near the pulmonary veins (PV) during an episode of
atrial fibrillation with 10% stretch (simulation time 8-13 s).

was equal to its resting value of 0.0102 μM [37] when the contractile force was
computed. In Figure 8.6, it is shown how the arrhythmia stops after 600 ms
with contraction enabled, while it continues for another second if contraction
is disabled. In the case that contraction is enabled, Vmem is depolarized at 600
ms in the thin region near the pulmonary veins due to an increase in λ. The
depolarized Vmem leads to block of the reentrant depolarization wave. In the
case that contraction is disabled, the depolarization wave is not blocked and
continues to reenter.

8.4 Discussion

Atrial dilatation is simulated by the application of overall stretch to the atria.
Variation in thickness leads to an inhomogeneous distribution of stretch, which
influences impulse propagation, action potential duration (APD), and effec-
tive refractory period (ERP). Dispersion in APD and ERP is further enhanced
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Figure 8.6: Vmem, Isac, [Ca2+]i, and λ for a segment near the sino-atrial node (SA node)
and a segment near the pulmonary veins (PV) during an episode of atrial fibrilla-
tion with 10% stretch (simulation time 13-15 s). Left: contraction enabled. Right:
contraction disabled.

by the contraction of active parts of the atria and can influence both the onset
and the termination of atrial arrhythmia.

Conduction slowing and block in our model is explained by a decreased
membrane excitability caused by the stretch-activated current Isac. In an ex-
perimental study, Eijsbouts et al. [54] reported a decreased conduction veloc-
ity and local conduction block when the right atrium of a rabbit was acutely
dilated. Satoh and Zipes [166] measured an increased ERP both in the thin
atrial free wall and in the crista terminalis under stretch. The ERP of the thin
free wall was increased more than the ERP in the thicker crista terminalis,
which they explain by the assumption that the thin free wall is more stretched
compared with the thicker bundles [166]. These experimental observations
are in agreement with our simulation results and explain the vulnerability to
AF under acute stretch. Bode et al. [16] report that SAC blocker gadolinium
reduces the stretch-induced vulnerability to AF, confirming that Isac plays a
significant role in the vulnerability to AF in acutely dilated atria.



8.4.1 Model validity and limitations

To our best knowledge, our model is the first to integrate cardiac electrophys-
iology and cardiomechanics with physiological details such as ionic mem-
brane currents, intracellular Ca2+ handling, and cross-bridge formation. In
our model, changes in impulse propagation under stretch are related to I sac

and to a reduced conductivity. We do not consider other mechanisms that
could influence impulse propagation, such as the stretch-related function of
other membrane channels, autonomic reflexes, and metabolic changes.

The validity of our model largely depends on the validity of the under-
lying models and parameters. Validity and limitations of the models for the
ionic membrane currents, cross-bridge formation, and cardiomechanics are
extensively discussed elsewhere [37, 112, 158, 176, 230]. Validity and limita-
tions of the integrated cell model and the model of Isac is discussed in Chap-
ter 6.

A limitation of our model with respect to mechanics is the assumption of
a uniaxial state in the atrial wall, i.e., the segments are only stretched in the
direction of the fiber. In reality, the segments will also experience force in the
direction perpendicular to the fiber axis in the plane of the atrial wall. This
force tends to reduce the strain along the fiber direction, which results in an
overestimation of the stretch in our model.

8.5 Conclusion

Conduction slowing and block is related to the amount of stretch and is en-
hanced by contraction of early activated areas and inhomogeneity in the atrial
wall. Variation in thickness increases the dispersion in refractory period and
is proarrhythmic. Our observations are in agreement with experimental re-
sults and provide an explanation for the increased inducibility of atrial fibril-
lation observed in acutely dilated atria.
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9
General discussion

In this thesis, we introduced the Cellular Bidomain Model and discussed
various aspects of the model, including a numerical integration scheme and
methods to save computation time and memory. The model was applied in
five different simulation studies to cardiac electrophysiology and mechano-
electric feedback. Here, we discuss the model, its applications, and possible
further improvements.

9.1 The Cellular Bidomain Model

In Chapters 2 and 3, we introduced a mathematical framework to model car-
diac electrophysiology. This framework is well-suited to simulate electro-
physiological behavior at the cellular level and to combine different cell types
into one simulation. An important aspect of our model is that conductances
between the segments are explicitly modeled. Since our numerical scheme
does not require matrix inversions, our approach can be applied in situa-
tions where conductivity changes during the simulation run. For example,
in Chapter 6, we describe how local conductivity changes due to stretch or
contraction.

Although our model allows for modeling at the level of individual car-
diac myocytes, in our applications a single node represents a small portion
of tissue containing multiple cells. On the other hand, the same mathemati-
cal framework can be applied to model cardiac tissue at the subcellular level
as described in Refs. [118, 169, 179, 186]. In that case, multiple nodes of the
simulation graph represent a single myocyte and the intracellular conduc-
tance of an edge either represents the conductance within the myoplasm or
the conductance through the gap junctions. A model at the subcellular level
in which the intracellular and extracellular spaces are spatially distinct is the
model constructed by Stinstra et al. [187, 188].

An important aspect of our model is the strong coupling between cardiac
electrophysiology and cardiomechanics, which has proved its value when in-
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vestigating the role of stretch-activated currents in the onset and perpetuation
of atrial fibrillation and the role of mechanoelectric feedback in remodeling
of ionic membrane currents.

9.2 Applications of the Cellular Bidomain Model

In this thesis, we applied the Cellular Bidomain Model to investigate both
normal and abnormal cardiac electrophysiology and mechanoelectric feed-
back. In particular, we investigated the success and failure of defibrillation,
the onset of atrial fibrillation in relation to ectopic activity and stretch, and
electrical remodeling that occurs after the implantation of a pacemaker.

9.2.1 Defibrillation

In Chapter 4, we investigated virtual electrode polarization (VEP) in uniform,
decoupled, and nonuniform cardiac tissue. We found that fast depolariza-
tion and more or less synchronous repolarization may lead to successful ter-
mination of spiral waves. We concluded that the success of defibrillation
in clinical practice is explained by nonconducting obstacles and nonuniform
cellular coupling present in normal and in pathological hearts. A possible
future application of our model of defibrillation would be the quantification
of success rates of defibrillation protocols such as monophasic and biphasic
shocks [59, 61, 127].

9.2.2 Ectopic activity

In Chapter 5, we extended our model of cardiac electrophysiology with the
pacemaker current If. To model the kinetics of If, we used the formulation by
DiFrancesco [43] for pacemaker channels in the rabbit SA node. With these
kinetics, the half activation potential is −95 mV and only a small fraction of
the If channels is open in diastolic range. To obtain spontaneous action poten-
tials, we used a relatively large maximum conductance Gf, which corresponds
to a large number of channels in the membrane.

At present, it is unclear whether human atrial myocytes are capable of
pacemaker activity related to If. Spontaneous activity in the human atria un-
der pathological conditions, such as heart failure, may be related to both
an increase in If and a decrease in the rectifying K+ current IK1 [76, 140].
Michels et al. [128] observed that the half activation potential for If in hu-
man atrial myocytes is about −68 mV, which is well within the diastolic volt-
age range of human atrial myocytes. Although the experimental results of



Michels et al. are subject of debate [44], their findings support a possible con-
tribution of If to arrhythmia in working myocardium under pathological con-
ditions [128].

9.2.3 Atrial fibrillation in relation to stretch

In Chapter 6, we extended our model of cardiac electrophysiology with me-
chanics and investigated the effect of the stretch-activated current Isac on im-
pulse propagation. We found that conduction slowing and block are related
to a reduced maximum upstroke velocity (dVmem/dt)max, which is explained
by a reduced number of available INa channels due to an increased resting
membrane potential. Another effect of Isac is the lengthening of the effective
refractory period (ERP), which may be inhomogeneously distributed over
the fiber when thickness is varied. An inhomogeneous distribution of ERP
due to variation in thickness may explain the increased vulnerability to atrial
fibrillation when the atria are acutely dilated [16, 54, 166].

In Chapter 8, we observed that after repetitively stimulating the atria near
the pulmonary veins, a reentrant depolarization wave developed, which lead
to arrhythmic behavior. Both the initiation and the termination of the arrhyth-
mia were related to local conduction block and differences in ERP, confirming
that the vulnerability to AF under stretch may be related to the characteris-
tic inhomogeneity of atrial tissue. By comparing the results of simulations
with and without contraction, we found that contraction of activated tissue
may influence impulse propagation in other parts of the atria, and may either
enhance arrhythmic behavior or terminate it.

9.2.4 Electrical remodeling in the ventricles

In Chapter 7, we investigated the hypothesis that the deviation from normal
mechanical work with ventricular pacing functions as a trigger for electrical
remodeling. By adaptation of the kinetics of the L-type Ca2+ current ICa,L such
that a more homogeneous distribution of stroke work is obtained, we found
more homogeneous shortening and an increased inhomogeneity in APD. In
particular, we found reversal of the repolarization wave, which is a well-
known phenomenon that occurs after several weeks of pacing [36, 120]. Our
results indicate that electrical remodeling is a possible mechanism to reduce
heterogeneity in mechanics after changing the activation sequence.

Since models of cardiac electromechanics are frequently applied to in-
vestigate medical interventions such as cardiac resynchronization therapy
(CRT) [100, 204], incorporation of electrical remodeling into these models
may lead to more accurate predictions of cardiac electromechanics with and



without pacing. These models can then be applied to investigate the effects
of placing the pacemaker lead at different locations in the ventricular wall.

9.3 Model limitations and possible improvements

Our model of cardiac electrophysiology and mechanoelectric feedback is a
large-scale model in which cardiac impulse propagation is influenced by me-
chanical deformation. In addition, the adaptation of ionic membrane currents
is triggered by changes in mechanical load. The validity of our model largely
depends on the validity of underlying models and parameters. Validity and
limitations of the models for the ionic membrane currents, cross-bridge for-
mation, and cardiomechanics are extensively discussed elsewhere [37, 158,
176]. Here, we discuss the limitations and possible improvements of our
model with respect to intracellular ion concentrations, Ca2+-force relation,
calcium handling, ventricular membrane behavior, cardiac cycle simulation,
and geometry.

Intracellular ion concentrations A possible limitation of our model is that
the effect of the stimulus current and intracellular currents on the intracellu-
lar concentrations of Na+, K+, and Ca2+ is not taken into account. Indeed,
a drift in the ionic balance between [Na+]i and [K+]i was observed during
longer simulation runs. Since long runs were needed to simulate electrical re-
modeling, we solved this problem in Chapter 7 by assuming constant [Na+]i

and [K+]i during the entire simulation. A more elegant way to overcome this
problem is to stimulate the cardiac tissue through the extracellular space and
explicitly model the flow of ions between the cells.

Ca2+-force relation To describe contractile forces generated by the sarcom-
eres, we apply model 4 of Rice et al. [158]. In contrast with model 5, model 4 does
not describe a feedback mechanism of force on the intracellular Ca2+ concen-
tration. The choice between model 4 and model 5 is motivated by the fact
that we found better agreement between the Ca2+-force relation obtained by
model 4 and experimental observations [86, 98] (Appendix C). In experiments,
Lab et al. [115] observed that a decreased mechanical load during shorten-
ing leads to an increased [Ca2+]i and a longer APD. Since force-feedback is
not part of model 4, these observations cannot be reproduced by the current
version of our model. For future applications, it is recommended to incorpo-
rate force-feedback on intracellular calcium handling as described by Rice et
al. [156, 157].



Calcium handling Throughout this thesis, we used the Courtemanche-Ra-
mirez-Nattel model of the human atrial action potential [37] to describe the
ionic membrane currents and calcium handling for atrial myocytes. Cal-
cium handling in this model is based on the ventricular model by Luo and
Rudy [125, 126]. Since an accurate representation of the atrial Ca2+ transient is
important when considering atrial excitation-contraction coupling, a possible
improvement of our model would be to model atrial Ca2+ handling based on
recent experiments with atrial myocytes. To incorporate force-feedback on
[Ca2+]i, we recommend integration of the model describing the ionic mem-
brane currents and Ca2+ handling with the model describing the Ca2+-force
relation.

Ventricular membrane behavior In Chapter 7, we used the Courtemanche-
Ramirez-Nattel model [37] to investigate electrical remodeling in the ventri-
cles. Simulation results of ventricular electrical remodeling would be more
accurate if a model of ionic membrane currents would be applied that is tar-
geted at the ventricles. A recent model of human ventricular membrane be-
havior is the model by Ten Tusscher et al. [194, 197]. Application of this model
would significantly improve accuracy when considering human ventricular
electromechanics.

Cardiac cycle simulation In Chapter 7, we simulated the cardiac cycle by
an extended preload-afterload experiment [21, 81]. A more accurate simu-
lation of the cardiac cycle may be achieved by considering hemodynamics
part of the model. A possible improvement of our model would be to replace
the preload-afterload work loop by a model of hemodynamics such as the
CircAdapt model developed by Arts et al. [9].

Geometry To model the geometry of the human atria, we used a triangu-
lar mesh obtained from MRI data [207, 208]. In Chapter 8, we introduced
thickness variation in the geometry by introducing bundles. Accuracy of the
model would be improved if thickness variations were directly obtained from
measurements. Also when modeling ventricular electromechanics, the use of
a human ventricular geometry should be considered.

9.4 Conclusion

Our model is well-suited to describe cardiac electrophysiology and mechano-
electric feedback. For future applications, the model may be improved by



taking into account new insights from cellular physiology, a more accurate
geometry, and hemodynamics.



A
Ionic membrane currents

In this thesis, we apply the Courtemanche-Ramirez-Nattel model of the hu-
man atrial action potential [37] to describe the ionic membrane currents and
the handling of intracellular Ca2+ by the sarcoplasmic reticulum (SR). Here,
we present the entire model.

A.1 Model formulation

In the model of Courtemanche et al. [37], ionic and pump currents are con-
sidered as well as intracellular Ca2+ handling by the sarcoplasmic reticulum
(SR). The total ionic current is given by

Iion = INa + IK1 + Ito + IKur + IKr + IKs + ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca, (A.1)

where INa is fast inward Na+ current, IK1 is inward rectifier K+ current, Ito is
transient outward K+ current, IKur is ultrarapid delayed rectifier K+ current,
IKr is rapid delayed rectifier K+ current, IKs is slow delayed rectifier K+ current,
ICa,L is L-type Ca2+ current, Ip,Ca is Ca2+ pump current, INaK is Na+-K+ pump
current, INaCa is Na+/Ca2+ exchanger current, and Ib,Na and Ib,Ca are background
Na+ and Ca2+ currents [37].

The model keeps track of the intracellular concentrations of Na+, K+, and
Ca2+, which are denoted by [Na+]i, [K+]i, and [Ca2+]i, respectively. The extra-
cellular concentrations of Na+, K+, and Ca2+ are denoted by [Na+]e, [K+]e, and
[Ca2+]e, and are kept constant (Table A.1). Intracellular Ca2+ handling by the
SR is described by considering three compartments: myoplasm, SR release
compartment (junctional SR or JSR), and SR uptake compartment (network
SR or NSR). The model also describes Ca2+ buffering within the cytoplasm
mediated by troponin and by calmodulin as well as Ca2+ buffering within
the release compartment mediated by calsequestrin. It is assumed that a sin-
gle cell has length and diameter 100 and 16 μm, respectively, and that the
membrane capacitance Cm is equal to 100 pF.
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Table A.1: Constants of Courtemanche-Ramirez-Nattel model

Parameter Definition Value

R Gas constant 8.3143 J·K−1·mol−1

T Temperature 310 K

F Faraday’s constant 96.4867 C/mmol

Cm Membrane capacitance 100 pF

Vcell Cell volume 20100 μm3

Vup SR uptake compartment volume 1109.52 μm3

Vrel SR release compartment volume 96.48 μm3

[Na+]e Extracellular Na+ concentration 140 mM

[K+]e Extracellular K+ concentration 5.4 mM

[Ca2+]e Extracellular Ca2+ concentration 1.8 mM

Ion concentrations

The influence of the ionic membrane currents on [Na+]i, [K+]i, and [Ca2+]i is
described by

d[Na+]i

dt
= Cm

−3INaK − 3INaCa − Ib,Na − INa

F Vi

, (A.2)

d[K+]i

dt
= Cm

2INaK − IK1 − Ito − IKur − IKr − IKs

F Vi

, (A.3)

d[Ca2+]i

dt
=

B1
B2
, (A.4)

B1 = Cm

2INaCa − Ip,Ca − ICa,L − Ib,Ca

2F Vi

+
Vup(Iup,leak − Iup) + IrelVrel

Vi

, (A.5)

B2 = 1 +
[Trpn]max Km,Trpn

([Ca2+]i + Km,Trpn)2
+

[Cmdn]max Km,Cmdn

([Ca2+]i + Km,Cmdn)2
, (A.6)

where, Cm is the membrane capacitance of a single atrial myocyte, F is Fara-
day’s constant, Vi is the intracellular volume, and Vup and Vrel are the vol-
umes of the SR uptake and release compartments, respectively (Table A.1);
Iup,leak, Iup, and Irel represent the SR currents, [Trpn] is troponin concentration,
[Cmdn] is calmodulin concentration, and Km is the half-saturation constant.
Equation (A.6) represents the influence of Ca2+ buffering in the cytoplasm
mediated by troponin ([Ca2+]Trpn) and calmodulin ([Ca2+]Cmdn) on [Ca2+]i.



Equilibrium potential

The equilibrium potential for ion species ion (Na+, K+ or Ca2+) is given by the
Nernst equation

Eion =
RT
zionF

ln

(
[ion]e

[ion]i

)
, (A.7)

where R is the universal gas constant, T is the absolute temperature, z ion is the
valence of ion, F is Faraday’s constant, and [ion]e and [ion]i are the extracellu-
lar and intracellular concentrations of ion.

A.2 Ionic membrane currents

Fast inward Na+ current

Fast inward Na+ current (INa) is defined by

INa = GNa m3 h j (Vmem − ENa), (A.8)

where GNa is the maximum INa conductance (7.8 nS/pF), ENa is the equilibrium
potential for Na+, m is the fast activation variable, and h and j are the fast
and slow inactivation variables. Opening rate constant αm and closing rate
constant βm are defined by

αm =

⎧⎪⎪⎨⎪⎪⎩
3.2 if Vmem = −47.13 mV

0.32 Vmem + 47.13
1 − exp(−0.1(Vmem + 47.13)) otherwise (A.9)

βm = 0.08 exp
(
−Vmem

11

)
(A.10)

For Vmem < −40 mV, αh, βh, α j, and β j are defined by

αh = 0.135 exp

(
−Vmem + 80

6.8

)
(A.11)

βh = 3.56 exp(0.079Vmem) + 3.1 × 105 exp(0.35Vmem) (A.12)

α j = (−127140 exp(0.2444Vmem) − 3.474 × 10−5 exp(−0.04391Vmem)) ·
Vmem + 37.78

1 + exp(0.311(Vmem + 79.23))
(A.13)

β j = 0.1212
exp(−0.01052Vmem)

1 + exp(−0.1378(Vmem + 40.14))
(A.14)



For Vmem ≥ −40 mV, αh, βh, α j, and β j are defined by

αh = 0 (A.15)

βh =

(
0.13

(
1 + exp

(
−Vmem + 10.66

11.1

)))−1

(A.16)

α j = 0 (A.17)

β j = 0.3
exp(−2.535 × 10−7Vmem)
1 + exp(−0.1(Vmem + 32))

(A.18)

τφ = (αφ + βφ)−1 and φ∞ = αφτφ, for φ = m, h, j.

Time-independent K+ current

Time-independent K+ current (IK1) is defined by

IK1 =
GK1(Vmem − EK)

1 + exp(0.07(Vmem + 80))
, (A.19)

where GK1 is the maximum IK1 conductance (0.09 nS/pF) and EK is the equi-
librium potential for K+.

Transient outward K+ current

Transient outward K+ current (Ito) is defined by

Ito = Gto o3
a oi (Vmem − EK), (A.20)

where Gto is the maximum Ito conductance (0.1652 nS/pF), oa and oi are the ac-
tivation and inactivation gating variables, and EK is the equilibrium potential
for K+. The dynamics of oa and oi are defined by

αoa = 0.65

(
exp

(
−Vmem + 10

8.5

)
+ exp

(
−Vmem − 30

59.0

))−1

(A.21)

βoa = 0.65

(
2.5 + exp

(
−Vmem + 82

17.0

))−1

(A.22)

τoa =
(
(αoa + βoa)KQ10

)−1 (A.23)

oa(∞) =

(
1 + exp

(
−Vmem + 20.47

17.54

))−1

(A.24)

αoi =

(
18.53 + exp

(
Vmem + 113.7

10.95

))−1

(A.25)



βoi =

(
35.56 + exp

(
−Vmem + 1.26

7.44

))−1

(A.26)

τoi =
(
(αoi + βoi )KQ10

)−1 (A.27)

oi(∞) =

(
1 + exp

(
Vmem + 43.1

5.3

))−1

(A.28)

KQ10 = 3 is a temperature scaling factor for Ito and IKur kinetics.

Ultrarapid delayed rectifier K+ current

Ultrarapid delayed rectifier K+ current (IKur) is defined by

IKur = GKur u3
a ui (Vmem − EK), (A.29)

where GKur is the maximum IKur conductance, ua and ui are the activation and
inactivation gating variables, and EK is the equilibrium potential for K+. GKur

is voltage-dependent and is defined by

GKur = 0.005 +
0.05

1 + exp
(
−Vmem−15

13

) . (A.30)

The dynamics of ua and ui are defined by

αua = 0.65

(
exp

(
−Vmem + 10

8.5

)
+ exp

(
−Vmem − 30

59.0

))−1

(A.31)

βua = 0.65

(
2.5 + exp

(
−Vmem + 82

17.0

))−1

(A.32)

τua =
(
(αua + βua)KQ10

)−1 (A.33)

ua(∞) =

(
1 + exp

(
−Vmem + 30.3

9.6

))−1

(A.34)

αui =

(
21 + exp

(
−Vmem − 185

28

))−1

(A.35)

βui = exp

(
Vmem − 158

16

)
(A.36)

τui =
(
(αui + βui )KQ10

)−1 (A.37)

ui(∞) =

(
1 + exp

(
Vmem − 99.45

27.48

))−1

(A.38)

As before, KQ10 = 3 is a temperature scaling factor for Ito and IKur kinetics.



Rapid delayed outward rectifier K+ current

Rapid delayed outward rectifier K+ current (IKr) is defined by

IKr =
GKr xr (Vmem − EK)

1 + exp
(
Vmem + 15

22.4

) , (A.39)

where GKr is the maximum IKr conductance (0.0294 nS/pF), xr is the activation
gating variable, and EK is the equilibrium potential for K+. The dynamics of
xr are defined by

αxr = 0.0003
Vmem + 14.1

1 − exp
(
−Vmem + 14.1

5

) (A.40)

βxr = 7.3898 × 10−5 Vmem − 3.3328

exp
(
Vmem − 3.3328

5.1237

)
− 1

(A.41)

τxr =
(
αxr + βxr

)−1 (A.42)

xr(∞) =

(
1 + exp

(
−Vmem + 14.1

6.5

))−1

(A.43)

Slow delayed outward rectifier K+ current

Slow delayed outward rectifier K+ current (IKs) is defined by

IKs = GKs x2
s (Vmem − EK), (A.44)

where GKs is the maximum IKs conductance (0.129 nS/pF), xs is the activation
gating variable, and EK is the equilibrium potential for K+. The dynamics of
xs are defined by

αxs = 4 × 10−5 Vmem − 19.9

1 − exp
(
−Vmem − 19.9

17

) (A.45)

βxs = 3.5 × 10−5 Vmem − 19.9

exp
(
Vmem − 19.9

9

)
− 1

(A.46)

τxs =
1
2

(
αxs + βxs

)−1 (A.47)

xs(∞) =

(
1 + exp

(
−Vmem − 19.9

12.7

))−1
2

(A.48)



L-type Ca2+ current

L-type Ca2+ current (ICa,L) is defined by

ICa,L = GCa,L d f fCa (Vmem − 65), (A.49)

where GCa,L is the maximum ICa,L conductance (0.1238 nS/pF), d is the activa-
tion gating variable, f is the voltage-dependent inactivation gating variable,
and fCa is the Ca2+-dependent inactivation gating variable. The dynamics of
d, f , and fCa are defined by

τd =

1 − exp
(
−Vmem + 10

6.24

)
0.035 (Vmem + 10)

(
1 + exp

(
−Vmem + 10

6.24

)) (A.50)

d∞ =

(
1 + exp

(
−Vmem + 10

8

))−1

(A.51)

τ f =
9

0.0197 exp
(−0.03372(Vmem + 10)2

)
+ 0.02

(A.52)

f∞ =

(
1 + exp

(
Vmem + 28

6.9

))−1

(A.53)

τ fCa = 2 (A.54)

fCa(∞) =

(
1 +

[Ca2+]i

0.00035

)−1

(A.55)

Na+-K+ pump current

Na+-K+ pump current (INaK) is defined by

INaK = INaK(max) fNaK
1

1 +
(
Km,Na(i)/[Na+]i

)1.5 [K+]e

[K+]e + Km,K(o)

, (A.56)

where INaK(max) is maximum INaK (0.60 pA/pF), fNaK is a voltage-dependent pa-
rameter, Km,Na(i) is the [Na+]i half-saturation constant (10 mM), and Km,K(o) is
the [K+]e half-saturation constant (1.5 mM). fNaK is defined by

fNaK =

(
1 + 0.1245 exp

(
−0.1

FVmem

RT

)
+ 0.0365 σ exp

(
−FVmem

RT

))−1

, (A.57)

where F is Faraday’s constant, R is the universal gas constant, T is the abso-
lute temperature, and σ is the [Na+]e-dependence parameter defined by

σ =
1
7

(
exp

(
[Na+]e

67.3

)
− 1

)
. (A.58)



Na+/Ca2+ exchanger current

Na+/Ca2+ exchanger current (INaCa) is defined by

INaCa = INaCa(max) · (A.59)

exp(γFVmem/(RT ))[Na+]3
i [Ca2+]e − exp((γ − 1)FVmem/(RT ))[Na+]3

e [Ca2+]i

(K3
m,Na + [Na+]3

e )(Km,Ca + [Ca2+]e)(1 + ksat exp((γ − 1)FVmem/(RT )))
,

where INaCa(max) is maximum INaCa (1600 pA/pF), γ is the voltage-dependent
parameter (0.35), Km,Na is the [Na+]e half-saturation constant (87.5 mM), Km,Ca

is the [Ca2+]e half-saturation constant (1.38), and ksat is a saturation factor (0.1).

Na+ background current

Na+ background current (Ib,Na) is defined by

Ib,Na = Gb,Na(Vmem − ENa), (A.60)

where Gb,Na is the maximum Ib,Na conductance (0.000674 nS/pF) and ENa is the
equilibrium potential for Na+.

Ca2+ background current

Ca2+ background current (Ib,Ca) is defined by

Ib,Ca = Gb,Ca(Vmem − ECa), (A.61)

where Gb,Ca is the maximum Ib,Ca conductance (0.00113 nS/pF) and ECa is the
equilibrium potential for Ca2+.

Ca2+ pump current

Ca2+ pump current (Ip,Ca) is defined by

Ip,Ca = Ip,Ca(max)

[Ca2+]i

0.0005 + [Ca2+]i

, (A.62)

where Ip,Ca(max) is maximum Ip,Ca (0.275 pA/pF).



A.3 Calcium storage and release

Ca2+ release current from JSR

Ca2+ release current from JSR (Irel) is defined by

Irel = krel u
2 v w ([Ca2+]rel − [Ca2+]i), (A.63)

where krel is the maximum release rate (30 ms−1), u is the activation gating
variable, v is the Ca2+ flux-dependent inactivation gating variable, w is the
voltage-dependent inactivation gating variable, and [Ca2+]rel is the Ca2+ con-
centration in the release compartment. The dynamics of u, v, and w are de-
fined by

τu = 8.0 (A.64)

u∞ =

(
1 + exp

(
−Fn − 3.4175 × 10−13

13.67 × 10−16

))−1

(A.65)

τv = 1.91 + 2.09

(
1 + exp

(
−Fn − 3.4175 × 10−13

13.67 × 10−16

))−1

(A.66)

v∞ = 1 −
(
1 + exp

(
−Fn − 6.835 × 10−14

13.67 × 10−16

))−1

(A.67)

τw = 6.0
1 − exp

(
−Vmem − 7.9

5

)
(
1 + 0.3 exp

(
−Vmem − 7.9

5

))
(Vmem − 7.9)

(A.68)

w∞ = 1 −
(
1 + exp

(
−Vmem − 40

17

))−1

(A.69)

Fn = 10−12 Vrel Irel − 5 × 10−13

F

(
1
2 ICa,L − 1

5 INaCa

)
, (A.70)

where Fn is the sarcoplasmic Ca2+ flux signal, Vrel is the volume of the SR
release compartment (96.48 μm3), and F is Faraday’s constant.

Transfer current from NSR to JSR

Transfer current from NSR to JSR (Itr) is defined by

Itr =
[Ca2+]up − [Ca2+]rel

τtr

, (A.71)

where τtr is the Ca2+ transfer time constant (180 ms).



Ca2+ uptake current by the NSR

Ca2+ uptake current by the NSR (Iup) is defined by

Iup =
Iup(max)

1 + (Kup/[Ca2+]i)
, (A.72)

where Iup(max) is maximum Iup (0.005 mM/ms) and Kup is the [Ca2+]i half-satura-
tion constant (0.00092 mM).

Ca2+ leak current by the NSR

Ca2+ leak current by the NSR (Iup,leak) is defined by

Iup,leak =
[Ca2+]up

[Ca2+]up(max)

Iup(max), (A.73)

where [Ca2+]up is Ca2+ concentration in the uptake compartment, [Ca2+]up(max)

is maximum [Ca2+]up (15 mM), and Iup(max) is maximum Iup (0.005 mM/ms).

A.4 Ca2+ buffering

Ca2+ buffering within the cytoplasm is mediated by troponin and calmodulin
and Ca2+ buffering in the release compartment is mediated by calsequestrin.
It is assumed that the buffers are at equilibrium at all times. Ca2+ buffering
by troponin is modeled by

[Ca2+]Trpn = [Trpn]max

[Ca2+]i

[Ca2+]i + Km,Trpn

, (A.74)

where [Ca2+]Trpn is Ca2+-bound troponin concentration, [Trpn]max is total tro-
ponin concentration in the myoplasm (0.07 mM), and Km,Trpn is the [Ca2+]i half-
saturation constant for troponin (0.0005 mM).

Ca2+ buffering by calmodulin is modeled by

[Ca2+]Cmdn = [Cmdn]max

[Ca2+]i

[Ca2+]i + Km,Cmdn

, (A.75)

where [Ca2+]Cmdn is Ca2+-bound calmodulin concentration, [Cmdn]max is to-
tal calmodulin concentration in the myoplasm (0.05 mM), and Km,Cmdn is the
[Ca2+]i half-saturation constant for calmodulin (0.00238 mM).



Ca2+ buffering by calsequestrin is modeled by

[Ca2+]Csqn = [Csqn]max

[Ca2+]rel

[Ca2+]rel + Km,Csqn

, (A.76)

where [Ca2+]Csqn is Ca2+-bound calsequestrin concentration, [Csqn]max is to-
tal calsequestrin concentration in the SR release compartment (10 mM), and
Km,Csqn is the [Ca2+]rel half-saturation constant for calsequestrin (0.8 mM).

A.5 Model initialization

In our simulations, the state variables of the Courtemanche-Ramirez-Nattel
model are initialized with the steady-state values listed in Table A.2 [37].



Table A.2: State variables of Courtemanche-Ramirez-Nattel model at rest

Variable Definition Initial value

Vmem Membrane potential −81.2 mV

[Na+]i Intracellular Na+ concentration 11.2 mM

[K+]i Intracellular K+ concentration 139 mM

[Ca2+]i Intracellular Ca2+ concentration 1.02 × 10−4 mM

m Activation gating variable for INa 2.91 × 10−3

h Fast inactivation gating variable for INa 9.65 × 10−1

j Slow inactivation gating variable for INa 9.78 × 10−1

oa Activation gating variable for Ito 3.04 × 10−2

oi Inactivation gating variable for Ito 9.99 × 10−1

ua Activation gating variable for IKur 4.96 × 10−3

ui Inactivation gating variable for IKur 9.99 × 10−1

xr Activation gating variable for IKr 3.29 × 10−5

xs Activation gating variable for IKs 1.87 × 10−2

d Activation gating variable for ICa,L 1.37 × 10−4

f Voltage-dependent inactivation gating var. for ICa,L 9.99 × 10−1

fCa Ca2+-dependent inactivation gating var. for ICa,L 7.75 × 10−1

[Ca2+]up Ca2+ concentration in uptake compartment 1.49 mM

[Ca2+]rel Ca2+ concentration in release compartment 1.49 mM

u Activation gating variable for Irel 0.00

v Ca2+ flux-dependent inactivation gating var. for Irel 1.00

w Voltage-dependent inactivation gating var. for Irel 9.99 × 10−1

[Ca2+]Trpn Ca2+-bound troponin concentration 1.18 × 10−2 mM

[Ca2+]Cmdn Ca2+-bound calmodulin concentration 2.05 × 10−3 mM

[Ca2+]Csqn Ca2+-bound calsequestrin concentration 6.51 mM



B
Mathematical aspects of the

computational scheme

B.1 Consistency of the equations

In Chapter 2, we introduced the Cellular Bidomain Model. In matrix nota-
tion, the model is represented by equations (3.8) and (3.9), which are repeated
below:

Cmem
dVmem

dt
+ S mem Iion = −DextVext, (B.1)

(Dint + Dext)Vext = −DintVmem. (B.2)

The system of differential equations (B.1) describes the time evolution of the
membrane potentials Vmem. The extracellular potentials Vext occur in the right
hand side of (B.1) and must be found by solving the linear system of equa-
tions (B.2). Since the Kirchhoff matrices Dint and Dext have vanishing row
sums, they are both singular, which also holds for the matrix D int+Dext. Hence,
it is not a priori clear that the system (B.2) has a unique solution for Vext. We
study systems of the form (B.2) in more detail.

Consider the system of equations

D V = I, (B.3)

where D is the matrix Dint + Dext. Each row sum of matrix D vanishes, hence
the product D n = 0, where n = (1, . . . , 1)T. In Ref. [38], it is shown that,
for a connected simulation graph, the null space of D is the one-dimensional
space spanned by n. For a symmetric matrix, the range is perpendicular to
the null space. Hence, the range of D consists of all vectors y with (y, n) = 0
or, equivalently, all vectors y with

∑N
j=1 y j = 0. The same considerations hold

for the matrices Dint and Dext. Hence, all three matrices Dint, Dext, and Dint +Dext

have the same range and the same null space.
For the system of equations (B.3), we conclude that there can only be a

solution if the right hand side I is in the range of D, i.e.,
∑N

j=1 I j = 0. Moreover,
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if that condition holds, the solution V is only determined up to a multiple of
the vector n. In electrical terms, these conditions mean that there can only
be a solution if the total current that enters the system vanishes and that the
potentials in a solution can be shifted by a constant.

In the original system (B.2), the right hand side is the vector −D int Vmem.
This vector is by construction an element of the range of D int, and thus an
element of the range of D. Hence, the system (B.2) always has a solution. This
solution Vext is only determined up to a vector μn, where μ is a real number.
Solution Vext is used again in (B.1) to describe the dynamics of the membrane
potential. However, since Dint n = 0, the value of μ does not influence the
dynamics of Vmem.

In Chapter 3, we introduced the forward Euler scheme defined by equa-
tions (3.10) and (3.11) to solve the equations of the Cellular Bidomain Model.
This scheme is repeated below:

Vk+1
mem = Vk

mem − Δt C−1
mem(DextVk

ext + S mem Ik
ion), (B.4)

(Dint+Dext)Vk+1
ext = −DintVk+1

mem. (B.5)

Using the same considerations as above, it can be shown that the numerical
scheme (B.4) and (B.5) is correctly defined. The solution Vk+1

ext of system (B.5)
exists and is, as before, determined up to a vector μn. In the next time step,
Vk+1

ext occurs in (B.4) in the matrix-vector product DextVk+1
ext , which means that

the value of μ is not relevant. In Chapter 3, the solution of (B.5) is fixed by
equation (3.12), which states that for all k it holds

N∑
j=1

V j,k
ext = 0. (B.6)

B.2 Numerical solution of the linear system

We discuss matrix inversion and Jacobi’s iteration method to solve the system
of linear equations (B.5) at each time step.

B.2.1 Matrix inversion

Since the matrix D = Dint + Dext is singular, we cannot compute the inverse
of D to solve the system. By replacing the last row of D by a row with only
elements 1, and replacing the last element of the right hand side by 0, we
impose the additional condition (B.6). The modified version of matrix D is
not singular and the system can be solved by computing the inverse of D.



Since, in general, the system is large and the conductivities may change dur-
ing the simulation, this method may require recomputing the inverse of a
large matrix each time step. Since this is computationally expensive, we use
an iterative method to solve the system (B.5).

B.2.2 Jacobi’s iteration method

Let matrix P be the diagonal part of D, with reversed sign. Hence, the ele-
ments of P are defined by

Pn,n =
∑

(n,a)∈E

(
σ(n,a)

int + σ
(n,a)
ext

)
. (B.7)

Since the simulation graph is connected, each node n is connected to at least
one other node, which implies that all elements Pn,n are positive. Hence, the
matrix P is not singular. Using the definition of matrix P, equation (B.5) can
be reformulated as

P Vk+1
ext = (D + P)Vk+1

ext + DintVk+1
mem. (B.8)

Jacobi’s iteration method to solve this system is formulated by

Vk+1,i+1
ext = RVk+1,i

ext + b, (B.9)

where the R is the matrix P−1(D + P), b is the vector P−1DintVk+1
mem, and Vk+1,i

ext

denotes the approximation of Vk+1
ext after i iterations. As a first approximation

of Vk+1
ext , the value of Vext at time kΔt is chosen, i.e.,

Vk+1,0
ext = Vk

ext. (B.10)

The iteration process defined by (B.9) converges if the absolute values of all
eigenvalues of the matrix R are smaller than 1.

Eigenvalues of R

The eigenvalues and eigenvectors of R are the same as those of the general-
ized eigenvalueproblem

(D + P) y = λP y. (B.11)

Both matrices (D + P) and P are symmetric and, since all elements on the di-
agonal are positive, P is a positive matrix. Since P is positive, there are N



real eigenvalues λ1, . . . , λN , with corresponding linearly independent eigen-
vectors w1, . . . ,wN. Moreover, these eigenvectors are “P orthogonal”, i.e.

w j
TPwk =

{
0 if j � k
c j if j = k

, (B.12)

where the c j are positive normalization constants.

Using Gershgorin’s theorem, it can be shown that all eigenvalues λi of R
satisfy |λi| ≤ 1. This leaves the possibility of eigenvalues 1 and −1, which will
prevent convergence of Jacobi’s iteration method.

First, we assume that R has no eigenvalue −1. Since R y = y is equivalent
with D y = 0, matrix R indeed has an eigenvalue λ1 = 1 with eigenvector
w1 = n. To analyze the convergence of (B.9), we expand the vector Vk+1,i

ext and
the right hand side b in the eigenbasis of R:

Vk+1,i
ext =

N∑
j=1

αi
jw j

b =

N∑
j=1

β jw j. (B.13)

We obtain from (B.9)

αi+1
j = λ jα

i
j + β j. (B.14)

For all j with |λ j| < 1, this process converges. However, since λ1 = 1, this
iteration process converges only for j = 1 if β1 = 0. To compute β1, we mul-
tiply (B.13) on the left with row vector w1

TP. The “P orthogonality” of the
eigenvectors yields

w1
TP b = β1c1. (B.15)

To compute the left hand side, we use the definition of b, the symmetry of
matrix Dint, and the fact that Dintn = 0.

w1
TPb = w1

TPP−1DintVk+1
mem

= w1
TDintVk+1

mem

= Vk+1
mem

T
Dintw1

= Vk+1
mem

T
Dintn

= 0.



Consequently, β1 = 0 and iteration process (B.14) converges for all j. This
means that Jacobi’s iteration method defined by (B.9) converges to a solution
of the original system of equations (B.5). To obtain a unique solution, the Vext

must be shifted such that extra requirement (B.6) is satisfied.
So far, we have assumed that R does not have an eigenvalue −1. In gen-

eral, R may have an eigenvalue −1. However, any eigenvalue −1 can be re-
moved by replacing (B.9) with the iteration process

Vk+1,i+1
ext = R′Vk+1,i

ext + b, (B.16)

where R′ is defined by

R′ = (1 − γ) R + γE. (B.17)

Here E is the N ×N identity matrix and γ is a real number with 0 < γ < 1. It is
easily verified that a fixed point of this iteration process also yields a solution
of (B.5). Moreover, R′ has the same eigenvectors as R, and R′ has eigenvalues
μ j = (1 − γ)λ j + γ. Consequently, if −1 ≤ λ j ≤ 1, then −1 < μ j ≤ 1. Hence,
a possible eigenvalue −1 in R is not present in R′. Similar to R, the modified
matrix R′ also has an eigenvalue 1. However, it is easily verified that the
previous considerations on the convergence of Jacobi’s iteration process also
hold for the modified process defined by (B.16).

To avoid a possible eigenvalue −1 in R, we use R′ as defined by equa-
tion (B.17) with γ = 0.2 in our computations.





C
Ca2+-force relation

To model the Ca2+-force relation, we apply model 4 from Rice et al. [158]. The
model is based on a functional unit of troponin, tropomyosin, and actin. Tro-
ponin can be in one of two states, indicating whether it is unbound or bound
to Ca2+. Tropomyosin can be in one of six states of which two represent the
non-permissive states with 0 and 1 cross bridges, and the other four the per-
missive states with 0, 1, 2, and 3 cross bridges [158]. Transitions between the
states are governed by rate functions that depend on the intracellular Ca2+

concentration ([Ca2+]i) and the sarcomere length (ls). The force generated by
the sarcomeres depends on the fraction of tropomyosin in the states that rep-
resent cross-bridge formation. In this thesis, we do not consider a direct feed-
back mechanism that influences the Ca2+ transient through a change in the
affinity of troponin for Ca2+ binding as in model 5 from Rice et al. [157, 158].

Here, we present model 4 and discuss the differences between model 4 and
model 5. The notation is adopted from Rice et al. [157]. Model parameters and
initial values of the state variables are given in Table C.1 and in Table C.2.

C.1 Troponin

Ca2+ binding to troponin is represented by the states T and TCa. T represents
troponin with no Ca2+ bound to the regulatory (low affinity) site; TCa repre-
sents troponin with Ca2+ bound to the regulatory site. All functional units
are in one of these two states, yielding T + TCa = 1. The concentration of
Ca2+ bound to low-affinity troponin sites is denoted by [LTRPNCa] and the
dynamics are given by

d[LTRPNCa]
dt

= k+ltrpn [Ca2+]i

(
[LTRPN]tot − [LTRPNCa]

)− k−ltrpn [LTRPNCa],

(C.1)

where [LTRPN]tot represents the total troponin low-affinity site concentration,
and k+ltrpn and k−ltrpn are the Ca2+ on and off-rate for troponin low-affinity sites.
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Table C.1: Model parameters for Ca2+-force relation

Parameter Definition Value

[LTRPN]tot Total troponin low-affinity site concentration 70.0 μM

[HTRPN]tot Total troponin high-affinity site concentration 140.0 μM

k+ltrpn Ca2+ on-rate for troponin low-affinity sites 20 M−1·s−1

k−ltrpn Ca2+ off-rate for troponin low-affinity sites 40 s−1

k+htrpn Ca2+ on-rate for troponin high-affinity sites 1.0 × 108 M−1·s−1

k−htrpn Ca2+ off-rate for troponin high-affinity sites 0.33 s−1

ktrop
pn Tropomyosin rate from permissive to non-perm. 40 s−1

ζ Factor to convert Fnorm to physiological force 0.1 N mm−2

fXB Basic transition rate from weak to strong binding 10 s−1

g∗XB Min. transition rate from strong to weak binding 30 s−1

The concentration of Ca2+ bound to high-affinity troponin sites is denoted
by [HTRPNCa] and the dynamics are given by

d[HTRPNCa]
dt

= k+htrpn [Ca2+]i

(
[HTRPN]tot − [HTRPNCa]

)−k−htrpn [HTRPNCa],

(C.2)

where [HTRPN]tot represents the total troponin high-affinity site concentra-
tion, and k+htrpn and k−htrpn are the Ca2+ on and off-rate for troponin high-affinity
sites.

C.2 Tropomyosin/cross bridges

To incorporate the cooperative mechanism that the rates of cross-bridge for-
mation increase progressively as more cross bridges are formed, the forma-
tion rates f0,1, f1,2, and f2,3 are defined by

f0,1 = 3 fXB, (C.3)

f1,2 = 10 fXB, (C.4)

f2,3 = 7 fXB, (C.5)



Table C.2: Initial conditions for Ca2+-force relation

Variable Definition Initial value

[LTRPNCa] Conc. of Ca2+ bound to low affinity troponin sites 6.46 μM

[HTRPNCa] Conc. of Ca2+ bound to high affinity troponin sites 135.5 μM

N0 Non-perm. tropomyosin with 0 cross bridges 0.99999027

N1 Non-perm. tropomyosin with 1 cross bridge 3.88506× 10−06

P0 Permissive tropomyosin with 0 cross bridges 1.46758× 10−06

P1 Permissive tropomyosin with 1 cross bridge 1.47026× 10−06

P2 Permissive tropomyosin with 2 cross bridges 1.83527× 10−06

P3 Permissive tropomyosin with 3 cross bridges 1.06786× 10−06

where fXB denotes the basic transition rate from weak to strong cross bridge.
The reverse rates g1,0, g2,1, and g3,2 are not cooperative and are given by

g1,0 = 1 gXB(ls), (C.6)

g2,1 = 2 gXB(ls), (C.7)
g3,2 = 3 gXB(ls), (C.8)

where gXB(ls) represents the variable off rate which is dependent on the sar-
comere length ls. gXB(ls) is defined by

gXB(ls) = g∗XB (1 + (1 − ls,norm)1.6), (C.9)

where g∗XB is the minimum transition rate from strong to weak cross bridge
and ls,norm is the normalized sarcomere length defined by

ls,norm = (ls − 1.7 μm)/0.6 μm. (C.10)

Here, it is assumed that for sarcomere length l s it holds 1.7 μm ≤ ls ≤ 2.3 μm.
The tropomyosin rate from non-permissive to permissive is denoted by

ktrop
np and is influenced by the concentration of Ca2+ bound to low-affinity tro-

ponin sites [LTRPNCa]. ktrop
np is defined by

ktrop
np = ktrop

pn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ [LTRPNCa]/[LTRPN]tot

K trop
1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Ntrop

, (C.11)



where ktrop
pn is a model parameter representing the tropomyosin rate from per-

missive to non-permissive. N trop is defined by

N trop = 5 + 3 ls,norm, (C.12)

and K trop
1
2

by

K trop
1
2

=

(
1 +

K trop
Ca

1.5 − ls,norm

)−1

. (C.13)

Here, K trop
Ca is defined by

K trop
Ca = k−ltrpn/k

+
ltrpn. (C.14)

The dynamics of the two non-permissive states N0 and N1 and the per-
missive states P0, P1, P2, and P3 are defined by differential equations as fol-
lows:

dN0
dt

= −ktrop
np N0 + ktrop

pn P0 + g1,0 N1, (C.15)

dN1
dt

= −(ktrop
np + g1,0) N1 + ktrop

pn P1, (C.16)

dP0
dt

= −(ktrop
pn + f0,1) P0 + ktrop

np N0 + g1,0 P1, (C.17)

dP1
dt

= −(ktrop
pn + f1,2 + g1,0) P1 + ktrop

np N1 + f0,1 P0 + g2,1 P2, (C.18)

dP2
dt

= −( f2,3 + g2,1) P2 + f1,2 P1 + g3,2 P3, (C.19)

dP3
dt

= −g3,2 P3 + f2,3 P2. (C.20)

C.3 Force computation

The physiological force Fphys generated by the sarcomeres is defined by

Fphys = ζ Fnorm, (C.21)

where ζ is the conversion factor and Fnorm the normalized force defined by

Fnorm = φ(ls)
P1 +N1 + 2 P2 + 3 P3

Fmax

, (C.22)

where Fmax is the maximum force defined below. φ(ls) is included to describe
the physical structure of thick and thin filaments within a sarcomere (see



Ref. [116]). When φ(ls) = 1, all myosin heads are able to interact with actin in
the single overlap zone, whereas for φ(ls) < 1, some of the filaments are in the
double or non-overlap zones. φ(ls) is defined by

φ(ls) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ls − 0.6 μm)/1.4 μm if 1.7 μm ≤ ls ≤ 2.0 μm
1 if 2.0 μm < ls ≤ 2.2 μm
(3.6 μm − ls)/1.4 μm if 2.2 μm < ls ≤ 2.3 μm

(C.23)

The maximum force Fmax is defined by

Fmax = P1max + 2 P2max + 3 P3max, (C.24)

where P1max, P2max, and P3max are found using the King-Altman rule [102] as
follows

P1max =
f0,1 2g∗XB 3g∗XB

Σpaths
, (C.25)

P2max =
f0,1 f1,2 3g∗XB

Σpaths
, (C.26)

P3max =
f0,1 f1,2 f2,3
Σpaths

, (C.27)

where

Σpaths = g∗XB 2g∗XB 3g∗XB + f0,1 2g∗XB 3g∗XB + f0,1 f1,2 3g∗XB + f0,1 f1,2 f2,3. (C.28)

C.4 Differences between model 4 and model 5

In model 5, the off rate of Ca2+ from troponin is a function of the total force
developed. In Ref. [158], two versions of model 5 are presented, one with a
modest degree of feedback ( 1

2 · Fnorm) and one with a stronger feedback ( 3
4 ·

Fnorm). Here, we present the version of model 5 with an intermediate feedback
of 2

3 · Fnorm introduced in Ref. [157].
The Ca2+ off-rate for troponin low-affinity site k−ltrpn in equation (C.1) is

replaced with

k−ltrpn

(
1
3 +

2
3 (1 − Fnorm)

)
, (C.29)

where k−ltrpn is unchanged and Fnorm is calculated as in model 4. Since coop-
erativity increases with this modification, the tropomyosin shifting has been
made less sensitive to Ca2+. Decreased sensitivity is incorporated by chang-
ing equation (C.12) to

N trop = 3.5 + 2.5 · ls,norm, (C.30)
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Figure C.1: Comparison between model 4 (left) and model 5 (right) from Rice et
al. [157, 158]. Top: Fnorm versus [Ca2+]i for sarcomere length between 1.7 μm and
2.3 μm. Bottom: Fnorm versus sarcomere length for [Ca2+]i = 0.3, 0.6, 0.9, and 1.2 μM.

and equation (C.13) to

K trop
1
2

=

(
1 +

K trop
Ca

1.7 − 0.9 · ls,norm

)−1

. (C.31)

Here, K trop
Ca is defined as in equation (C.14) and ls,norm is defined as in equa-

tion (C.10).
In Figure C.1, Fnorm is presented for various intracellular Ca2+ concentra-

tions and sarcomere lengths. These plots were obtained by computing the
steady-state values of Fnorm. The force-Ca2+ relations obtained by model 4 cor-
respond better to the experimental results of Kentish et al. [98], especially
for sarcomere lengths above 1.9 μm. The steady-state Ca2+-force relation for
model 4 is also presented in Figure 6.2.

In Figure C.2, traces of Fnorm for model 4 and model 5 are presented for
various sarcomere lengths after application of a stimulus current. Compared
with model 4, the peak force is lower and the latency to peak force increases for
larger sarcomere lengths for model 5. Compared with the experimental data



measured by Janssen and Hunter [86], the latency to peak force increases too
much with sarcomere length for model 5.

Our findings confirm the finding by Rice et al. [158] that the hypothesis
that cross-bridge binding increases the affinity of troponin for Ca2+ is not
crucial to reproduce the experimental results. Since the traces obtained by
model 4 better resemble the experimental results from Janssen and Hunter [86],
we have chosen model 4 to compute Fnorm in our model.
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Figure C.2: Comparison between model 4 (left) and model 5 (right) from Rice et
al. [157, 158]. Top: trace of Fnorm. Center: trace of Fnorm individually normalized.
Bottom: Peak Fnorm versus sarcomere length. A stimulus current was applied at 100
ms.



D
Mechanics computation

In Chapters 6 and 7, we introduced the model equations to describe the me-
chanics of a single segment and the mechanics of a cardiac fiber. Here, we
repeat the model and describe the numerical integration scheme to solve the
model equations.

D.1 Single-segment mechanics

The mechanical behavior of a single segment is modeled by the classical
three-element rheological scheme. Active force is generated by the contractile
element (CE) together with the series elastic element (SE) and passive force
is generated in the parallel elastic element (PE). The PE describes the force-
length relation when the segment is not stimulated (Figure 6.3).

Contractile force (FCE) generated by the CE depends on intracellular Ca2+

concentration ([Ca2+]i), sarcomere length (lCE), and the velocity of sarcomere
shortening v = −dlCE

dt . FCE is defined by

FCE = fCE fv(v) Fnorm([Ca2+]i, lCE), (D.1)

where fCE is a scaling factor, fv(v) is Hill’s force-velocity relation, and Fnorm

([Ca2+]i, lCE) is the normalized force generated by the sarcomeres. Function
fv(v) is defined by

fv(v) =
1 − v

vmax

1 + cv
v

vmax

, (D.2)

where vmax is the maximum velocity of sarcomere shortening and cv is a con-
stant describing the shape of the hyperbolic relationship.

Forces generated in the SE and in the PE are exponentially related to their
respective lengths lSE and lPE, and are defined by

FSE = fSE (exp(kSE (lSE − lSE0)) − 1) (D.3)
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and

FPE = fPE (exp(kPE (lPE − lPE0)) − 1), (D.4)

where lSE0 and lPE0 denote the reference element lengths and fSE, kSE, fPE, and
kPE are material constants describing the elasticity of the elements.

Total force generated by the segment (F segment) is the sum of passive force
(FPE) and active force (FSE). In summary, it holds for the three-element model
(Figure 6.3):

FCE = FSE, (D.5)

Fsegment = FSE + FPE, (D.6)

lPE = lCE + lSE. (D.7)

For segment n, the reference length ln0 is defined by

ln0 = ξn lnPE0 (D.8)

and the actual length ln by

ln = ξn lnPE, (D.9)

where ξn is a scaling factor. The stretch ratio (λn) for segment n is then defined
by

λn =
ln
ln0
=

lnPE

ln
PE0

. (D.10)

The numerical scheme to solve the equations for the three-element model
is based on the scheme described by Solovyova et al. [176]. The forces and
lengths of CE, SE, and PE are computed by introducing l1 = lCE − lCE0 and
l2 = lPE − lPE0. Furthermore, it is assumed that lPE0 = lCE0, from which it follows
that lSE0 = lPE0 − lCE0 = 0 μm. Equations (D.3) and (D.4) can be rewritten as

FSE = fSE (exp(kSE (l2 − l1)) − 1) (D.11)

and

FPE = fPE (exp(kPE l2) − 1). (D.12)

The mechanical state of each segment is now defined by l1, l2, dl1
dt , dl2

dt , and
Fnorm([Ca2+]i, lCE). Each simulation time step, Fnorm is computed using [Ca2+]i

obtained from the model of Courtemanche et al. [37] and lCE of the former
time step. Next, l1 and l2 are updated using a forward Euler step and dl1

dt and



dl2
dt of the former time step. New values of dl1

dt and dl2
dt are then computed as

follows. Using equations (D.1) and (D.2), we obtain

1 − v
vmax

1 + cv
v

vmax

=
FCE

fCE Fnorm([Ca2+]i, lCE)
, (D.13)

from which sarcomere shortening velocity v can be obtained by

v =
fCE Fnorm([Ca2+]i, lCE) − FCE

FCE cv + fCE Fnorm([Ca2+]i, lCE)
vmax. (D.14)

FCE can be obtained from equations (D.5) and (D.11) by

FCE = FSE = fSE (exp(kSE (l2 − l1)) − 1). (D.15)

Since l1 = lCE − lCE0, we obtain for sarcomere shortening velocity v

v = −dlCE

dt
= −dl1

dt
, (D.16)

from which dl1
dt follows immediately.

For isometric single-segment simulations, dl2
dt = 0 and the generated force

can be directly computed from equations (D.11) and (D.12). For isotonic sim-
ulations, dl2

dt can be obtained from dFsegment

dt as follows. Using Fsegment = FSE+FPE

and equations (D.11) and (D.12), we obtain

Fsegment = fSE (exp(kSE (l2 − l1)) − 1) + fPE (exp(kPE l2) − 1) (D.17)

and, by taking the derivative,

dFsegment

dt
= fSE kSE exp(kSE (l2 − l1))

(
dl2
dt
− dl1

dt

)
+ fPE kPE exp(kPE l2)

dl2
dt
, (D.18)

from which dl2
dt can be computed by

dl2
dt
=

dFsegment

dt + fSE kSE exp(kSE (l2 − l1)) dl1
dt

fSE kSE exp(kSE (l2 − l1)) + fPE kPE exp(kPE l2)
. (D.19)

Note that during isotonic contraction
dFsegment

dt = 0.



D.2 Cardiac fiber mechanics

In Section 6.2.6, a cardiac fiber is modeled as a string of segments that are cou-
pled in series. From mechanical equilibrium, it follows that the force Fn

segment

generated by a single segment n, n ∈ N , is equal to the force generated by the
fiber (Ffiber), i.e.,

Fn
segment = Ffiber. (D.20)

If we take into account that ln0 may be different for each segment n, n ∈ N ,
the stretch ratio of the fiber (λfiber) is defined by

λfiber =
L
L0
=

∑
n∈N ln∑
n∈N ln0

, (D.21)

where L denotes the actual fiber length and L0 is the reference length.
To obtain a solution for a multiple-segment simulation, we define α and β

by

α =
1

fSE kSE exp(kSE (l2 − l1)) + fPE kPE exp(kPE l2)
(D.22)

and

β =
fSE kSE exp(kSE (l2 − l1)) dl1

dt

fSE kSE exp(kSE (l2 − l1)) + fPE kPE exp(kPE l2)
. (D.23)

Equation (D.19) can be formulated for each segment n by

dln2
dt
= αn

dFn
segment

dt
+ βn, (D.24)

where αn and βn denote α and β for segment n. Using ln
2 = lnPE − ln

PE0 and
ln = ξn lnPE, we obtain for fiber length L

dL
dt
=

∑
n∈N

dln
dt
=

∑
n∈N
ξn

dln2
dt
=

∑
n∈N
ξnαn

dFn
segment

dt
+

∑
n∈N
ξnβn. (D.25)

Using Fn
segment = Ffiber for each segment n, n ∈ N , and introducing a and b, we

obtain

dL
dt
=

∑
n∈N
ξnαn

dFfiber

dt
+

∑
n∈N
ξnβn = a

dFfiber

dt
+ b, (D.26)



where a and b are defined by

a =
∑
n∈N
ξnαn (D.27)

and

b =
∑
n∈N
ξnβn. (D.28)

Finally, using the definition of fiber stretch λfiber =
L
L0

and equation (D.26), we
obtain

dλfiber

dt
=

a dFfiber
dt + b

L0
, (D.29)

from which follows

dFfiber

dt
=

dλfiber
dt L0 − b

a
. (D.30)

For isotonic simulations, Ffiber is constant and dFfiber
dt = 0. Using Fn

segment =

Ffiber,
dln2
dt can be obtained from equation (D.19) for each segment n, n ∈ N . For

isometric simulations, λfiber is constant and dλfiber
dt = 0. In the isometric case,

Ffiber and its derivative dFfiber
dt can be obtained from equation (D.30).

In summary, the mechanical state of segment n is described by ln1, ln2, dln1
dt ,

dln2
dt , and Fn

norm. Fn
norm is dependent on [Ca2+]i and lCE = lCE0 + ln1. For each

time step, ln1 and ln2 are computed using a forward Euler step and dln1
dt and

dln2
dt , respectively. However, initial values for ln1 and ln2 remain to be defined.
Initially, it is assumed that the electrophysiological state of all segments is
resting, i.e., the membrane potential is −81 mV and [Ca2+]i is 0.102 μM [37].
For such low [Ca2+]i, Fnorm is small and we assume Fn

norm = 0 for each segment
n. Thus, Fn

CE = 0 and, since Fn
SE = Fn

CE, the force generated by the segment
must come from the parallel elastic element, i.e., Fn

PE = Fn
segment. Since Fn

SE =

Fn
CE = 0, it follows from equation (D.11) that ln1 = ln2. For homogeneous tissue,

the material properties kPE and fPE are equal for all segments. For isotonic
simulations, ln2 can be obtained from equation (D.12) by

ln2 =
1

kPE

ln

(Fn
segment + fPE

fPE

)
. (D.31)



For isometric simulations, ln2 can be directly obtained from the initial stretch
ratio λfiber by

ln2 = lnPE − lnPE0 = lnPE0 (λfiber − 1). (D.32)

For inhomogeneous tissue, it is assumed that, initially, λfiber = 1 and Ffiber = 0.
In that case, ln1 = ln2 = 0 for all segments n. During the simulation, stretch
(isometric simulation) or force (isotonic simulation) are slowly increased un-
til the desired values are reached. This process typically requires 200 ms of
simulation. Finally, it is assumed that, initially

dln1
dt
=

dln2
dt
= 0 (D.33)

for homogeneous and inhomogeneous tissue.
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Hyperpolarization-activated inward current in ventricular myocytes from nor-
mal and failing human hearts, Circulation 97: 55–65 (1998)



[78] H. Hu and F. Sachs, Stretch-activated ion channels in the heart, J Mol Cell Cardiol
29: 1511–1523 (1997)

[79] J. L. Huang, C. T. Tai, J. T. Chen, C. T. Ting, Y. T. Chen, M. S. Chang, and S. A.
Chen, Effect of atrial dilatation on electrophysiologic properties and inducibility of
atrial fibrillation, Basic Res Cardiol 98: 16–24 (2003)

[80] P. J. Hunter, A. D. McCulloch, and H. E. D. J. ter Keurs, Modelling the mechanical
properties of cardiac muscle, Progr Biophys Mol Biol 69: 289–331 (1998)

[81] G. Iribe, M. Helmes, and P. Kohl, Force-length relations in isolated intact cardiomy-
ocytes subjected to dynamic changes in mechanical load, Am J Physiol Heart Circ
Physiol 292: H1487–H1497 (2007)

[82] V. Jacquemet, A biophysical model of atrial fibrillation and electrograms: formu-
lation, validation and applications, Ph.D. thesis, EPFL, Lausanne, Switzerland
(2005)

[83] V. Jacquemet, N. Virag, Z. Ihara, L. Dang, O. Blanc, S. Zozor, J. M. Vesin,
L. Kappenberger, and C. Henriquez, Study of unipolar electrogram morphology
in a computer model of atrial fibrillation, J Cardiovasc Electrophysiol 14: S172–
S179 (2003)

[84] V. Jacquemet, N. Virag, and L. Kappenberger, Wavelength and vulnerability to
atrial fibrillation: insights from a computer model of human atria, Europace 7: S83–
S92 (2005)

[85] P. Jaı̈s, M. Hocini, L. Macle, K. J. Choi, I. Deisenhofer, R. Weerasooriya, D. C.
Shah, S. Garrigue, F. Raybaud, C. Scavee, P. Le Metayer, J. Clémenty, and
M. Haı̈ssaguerre, Distinctive electrophysiological properties of pulmonary veins in
patients with atrial fibrillation, Circulation 106: 2479–2485 (2002)

[86] P. M. L. Janssen and W. C. Hunter, Force, not sarcomere length, correlates with
prolongation of isosarcometric contraction, Am J Physiol Heart Circ Physiol 269:
H676–H685 (1995)

[87] D. Jeyaraj, L. D. Wilson, J. Zhong, C. Flask, J. E. Saffitz, I. Deschênes, X. Yu, and
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[128] G. Michels, F. Er, I. Khan, M. Südkamp, S. Herzig, and U. C. Hoppe, Single-
channel properties support a potential contribution of hyperpolarization-activated
cyclic nucleotide-gated channels and If to cardiac arrhythmias, Circulation 111: 399–
404 (2005)

[129] A. Moroni, A. Barbuti, C. Altomare, C. Viscomi, J. Morgan, M. Baruscotti, and
D. DiFrancesco, Kinetic and ionic properties of the human HCN2 pacemaker channel,
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Cardiac Electrophysiology

and
Mechanoelectric Feedback

Modeling and Simulation

Cardiac arrhythmia such as atrial and ventricular fibrillation are charac-
terized by rapid and irregular electrical activity, which may lead to asyn-
chronous contraction and a reduced pump function. Besides experimental
and clinical studies, computer simulations are frequently applied to obtain in-
sight in the onset and perpetuation of cardiac arrhythmia. In existing models,
the excitable tissue is often modeled as a continuous two-phase medium, rep-
resenting the intracellular and interstitial domains, respectively. A possible
drawback of continuous models is the lack of flexibility when modeling dis-
continuities in the cardiac tissue. We introduce a discrete bidomain model in
which the cardiac tissue is subdivided in segments, each representing a small
number of cardiac cells. Active membrane behavior as well as intracellular
coupling and interstitial currents are described by this model. Compared
with the well-known continuous bidomain equations, our Cellular Bidomain
Model is better aimed at modeling the structure of cardiac tissue, in particular
anisotropy, myofibers, fibrosis, and gap junction remodeling.

An important aspect of our model is the strong coupling between car-
diac electrophysiology and cardiomechanics. Mechanical behavior of a sin-
gle segment is modeled by a contractile element, a series elastic element, and
a parallel elastic element. Active force generated by the sarcomeres is rep-
resented by the contractile element together with the series elastic element.
The parallel elastic element describes mechanical behavior when the segment
is not electrically stimulated. Contractile force is related to the intracellular
calcium concentration, the sarcomere length, and the velocity of sarcomere
shortening. By incorporating the influence of mechanical deformation on
electrophysiology, mechanoelectric feedback can be studied. In our model,
we consider the immediate influence of stretch on the action potential by
modeling a stretch-activated current. Furthermore, we consider the adap-
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tation of ionic membrane currents triggered by changes in mechanical load.
The strong coupling between cardiac electrophysiology and cardiac mechan-
ics is a unique property of our model, which is reflected by its application to
obtain more insight in the cause and consequences of mechanical feedback
on cardiac electrophysiology.

In this thesis, we apply the Cellular Bidomain Model in five different sim-
ulation studies to cardiac electrophysiology and mechanoelectric feedback.
In the first study, the effect of field stimulation on virtual electrode polariza-
tion is studied in uniform, decoupled, and nonuniform cardiac tissue. Field
stimulation applied on nonuniform tissue results in more virtual electrodes
compared with uniform tissue. Spiral waves can be terminated in decoupled
tissue, but not in uniform, homogeneous tissue. By gradually increasing local
differences in intracellular conductivities, the amount and spread of virtual
electrodes increases and spiral waves can be terminated. We conclude that
the clinical success of defibrillation may be explained by intracellular decou-
pling and spatial heterogeneity present in normal and in pathological cardiac
tissue.

In the second study, the role of the hyperpolarization-activated inward
current If is investigated on impulse propagation in normal and in patho-
logical tissue. The effect of diffuse fibrosis and gap junction remodeling is
simulated by reducing cellular coupling nonuniformly. As expected, the con-
duction velocity decreases when cellular coupling is reduced. In the presence
of If, the conduction velocity increases both in normal and in pathological tis-
sue. In our simulations, ectopic activity is present in regions with high ex-
pression of If and is facilitated by cellular uncoupling. We also found that
an increased If may facilitate propagation of the action potential. Hence, If

may prevent conduction slowing and block. Overexpression of If may lead
to ectopic activity, especially when cellular coupling is reduced under patho-
logical conditions.

In the third study, the influence of the stretch-activated current I sac is in-
vestigated on impulse propagation in cardiac fibers composed of segments
that are electrically and mechanically coupled. Simulations of homogeneous
and inhomogeneous cardiac fibers have been performed to quantify the rela-
tion between conduction velocity and Isac under stretch. Conduction slowing
and block are related to the amount of stretch and are enhanced by contrac-
tion of early-activated segments. Our observations are in agreement with
experimental results and explain the large differences in intra-atrial conduc-
tion, as well as the increased inducibility of atrial fibrillation in acutely dilated
atria.

In the fourth study, we investigate the hypothesis that electrical remodel-



ing is triggered by changes in mechanical work. Stroke work is determined
for each segment by simulating the cardiac cycle. Electrical remodeling is
simulated by adapting the L-type Ca2+ current ICa,L such that a homogeneous
distribution of stroke work is obtained. With electrical remodeling, a more
homogeneous shortening of the fiber is obtained, while heterogeneity in APD
increases and the repolarization wave reverses. These results are in agree-
ment with experimentally observed distributions of strain and APD and in-
dicate that electrical remodeling leads to more homogeneous shortening dur-
ing ejection.

In the fifth study, we investigate the effect of stretch on the vulnerability
to AF. The human atria are represented by a triangular mesh obtained from
MRI data. To model acute dilatation, overall stretch is applied to the atria. In
the presence of Isac, the membrane potential depolarizes, which causes inac-
tivation of the sodium channels and results in conduction slowing or block.
Inducibility of AF increases under stretch, which is explained by an increased
dispersion in refractory period, conduction slowing, and local conduction
block. Our observations explain the large differences in intra-atrial conduc-
tion measured in experiments and provide insight in the vulnerability to AF
in dilated atria.

In conclusion, our model is well-suited to describe cardiac electrophysi-
ology and mechanoelectric feedback. For future applications, the model may
be improved by taking into account new insights from cellular physiology, a
more accurate geometry, and hemodynamics.





Het hart is een holle spier die de bloedsomloop in stand houdt. Het hart be-
staat uit twee helften. De rechterhelft pompt het bloed naar de longen (kleine
bloedsomloop) en de linkerhelft pompt het bloed naar de overige delen van
het lichaam (grote bloedsomloop). De twee helften zijn ieder opgebouwd uit
twee holtes: de boezem en de kamer. Het bloed uit de aders wordt opgevan-
gen in de boezems. Tijdens een hartcyclus trekken eerst de boezems samen
om het bloed in de kamers te pompen. Vervolgens trekken de kamers samen
en wordt het bloed in de slagaders gepompt. Deze cyclus wordt ongeer 70
keer per minuut herhaald. De gemiddelde “hartslag” is dus ongeveer 70 keer
per minuut.

Het samentrekken van de hartspier wordt vooraf gegaan door een elek-
trische prikkel. Normaal gesproken begint de prikkel in de sinusknoop en
gaat dan via de boezems naar de kamers. Verstoring van de prikkelvoortge-
leiding kan leiden tot een onregelmatige hartslag en een verslechtering van
de pompfunctie. Hartritmestoornissen kunnen zowel in de boezems als in de
kamers voorkomen. De meest bekende geleidingsstoornis in de boezems is
boezemfibrilleren, waarbij de hartslag in de boezems kan oplopen tot wel 600
“slagen” per minuut. Boezemfibrilleren komt vaak voor bij oudere mensen
en bij mensen die een hartoperatie hebben ondergaan. Deze mensen hebben
doorgaans last van kortademigheid en raken sneller vermoeid, maar onder-
vinden verder weinig hinder. Hoewel boezemfibrilleren soms ook met me-
dicijnen wordt behandeld, wordt tegenwoordig vaak een operatieve ingreep
toegepast waarbij een gedeelte van het weefsel wordt geı̈soleerd van de rest
van de boezems.

Stoornissen kunnen ook voorkomen in het geleidingssysteem van de ka-
mers. Omdat dergelijke stoornissen veel invloed hebben op de pompfunctie
van het hart, wordt vaak een pacemaker geı̈mplanteerd. Het inbrengen van
een pacemaker leidt tot een onmiddelijke verbetering van de pompfunctie.
Een neveneffect van pacen is dat het hart zich aanpast aan de nieuwe omstan-
digheden. Zowel de dikte van de hartwand als de geleidingseigenschappen
van het hartweefsel kunnen dan veranderen. In extreme gevallen kunnen de-
ze veranderingen leiden tot fibrilleren van de kamers. Kamerfibrilleren is de
meest bekende hartritmestoornis en kan voorkomen bij mensen met bijvoor-
beeld een hartinfarct. Er zijn echter ook gevallen van kamerfibrilleren bekend
bij mensen zonder hartproblemen, bijvoorbeeld bij jonge sporters. Als er niet
snel wordt ingegegrepen met een zogenaamde defibrillator, kan kamerfibril-
leren de dood tot gevolg hebben. Om deze reden zien we steeds vaker een
semi-automatische defibrillator (AED) in openbare gebouwen en op andere
plaatsen waar veel mensen samenkomen.

Om inzicht te verkrijgen in het onstaan van hartritmestoornissen en de
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mogelijke gevolgen voor de patiënt op langere termijn, wordt veel onder-
zoek gedaan. Naast (dier)experimenteel en klinisch onderzoek wordt meer
en meer gebruik gemaakt van computermodellen. Doordat computers steeds
krachtiger worden is het mogelijk om de werking van het hart te simuleren
met steeds nauwkeuriger modellen. In dit proefschrift wordt een wiskun-
dig model geı̈ntroduceerd waarbij zowel de elektrische als de mechanische
eigenschappen tot op het detail van een enkele cel worden beschreven. Hoe-
wel een echt hart uit miljoenen cellen is opgebouwd, laten we zien dat door
een slimme elektrische en mechanische koppeling van slechts enkele tiendui-
zenden van onze gesimuleerde cellen het toch mogelijk is om hartritmestoor-
nissen zoals boezemfibrilleren in detail te bestuderen.

Om een efficiënte prikkelvoortgeleiding mogelijk te maken zijn de hart-
cellen elektrisch met elkaar verbonden. In het hartweefsel vindt elektrische
geleiding langs twee wegen plaats: via de zogenaamde gap junctions die het
binnenste van de cellen met elkaar verbinden en via het zogenaamde intersti-
tium, de omgeving waarin de cellen zich bevinden. In ons Cellular Bidomain
Model maken wij onderscheid tussen deze twee vormen van elektrische ge-
leiding. Dat is met name van belang om defibrilleren te kunnen simuleren.
In dit proefschrift worden alle facetten van het Cellular Bidomain Model in
detail beschreven. Daarnaast wordt het model toegepast in een vijftal simu-
latiestudies. Hieronder volgt een korte beschrijving van deze studies.

In de eerste studie wordt het effect onderzocht van het toedienen van
een elektroshock op het hartweefsel zoals dat bij defibrilleren gebeurt. Door
toepassing van ons model laten we zien dat defibrilleren mogelijk is door het
feit dat de geleidingseigenschappen in het hart niet overal gelijk zijn. Als we
namelijk regelmatige geleidingseigenschappen veronderstellen in ons model
lukt het niet om een spiraalgolf te defibrilleren, terwijl dit wel mogelijk is als
we de geleidingseigenschappen variëren. Hiermee kunnen we meer inzicht
verkrijgen in de levensreddende functie van bijvoorbeeld een automatische
defibrillator.

In de tweede studie wordt de rol van het zogenaamde pacemakerstroom-
pje in de boezems onderzocht. Deze stroom door het celmembraan komt
normaal gesproken alleen voor in de sinusknoop en draagt ertoe bij dat de
sinusknoop zo’n 70 keer per minuut een elektrische prikkel afgeeft. Wan-
neer dit stroompje ook in andere delen van de boezem voorkomt, kan dit de
normale prikkelvoortgeleiding beı̈nvloeden of er kan, naast de sinusknoop,
een tweede pacemaker ontstaan. Dat laatste kan uiteindelijk leiden tot boe-
zemfibrilleren. Met behulp van ons model onderzoeken we de invloed van
het pacemakerstroompje op de prikkelvoortgeleiding en de omstandigheden
waaronder een tweede pacemaker kan ontstaan. Zoals wellicht te verwach-



ten kan het pacemakerstroompje in een ziek hart inderdaad tot een tweede
pacemaker leiden. Echter, we hebben ook ontdekt dat het pacemakerstroom-
pje een rol kan spelen om normale prikkelvoortgeleiding in stand te houden
als de geleidingseigenschappen in het hartweefsel verminderd zijn door ziek-
te of ouderdom.

In de derde studie wordt de invloed van rek van het hartweefsel op de
prikkelvoortgeleiding onderzocht. Uit (dier)experimentele studies is geble-
ken dat door rek geactiveerde membraanstromen de prikkelvoortgeleiding
vertraagd wordt of zelfs geblokkeerd kan worden. Door het modelleren van
een door rek geactiveerde membraanstroom laten we zien dat de prikkel-
voortgeleiding geblokkeerd kan worden door het samentrekken van eerder
geactiveerde gebieden in het hart. Onze simulaties komen overeen met de re-
sultaten van experimentele studies en geven een verklaring voor het feit dat
boezemfibrilleren makkelijker kan ontstaan wanneer de druk in de boezems
tijdelijk is toegenomen.

In de vierde studie wordt de hypothese onderzocht dat veranderingen
in elektrische eigenschappen na het implanteren van een pacemaker worden
veroorzaakt door veranderingen in mechanisch gedrag. In deze studie ne-
men we aan dat de elektrische en mechanische eigenschappen van het hart
zich voortdurend aanpassen zodat de hartspier optimaal blijft functioneren.
Op basis van deze aanname blijkt uit ons model dat een meer gelijkmatige
samentrekking van de hartspier samengaat met grotere verschillen in elektri-
sche eigenschappen. Onze simulatieresultaten komen overeen met metingen
aan elektrische en mechanische eigenschappen in harten waarin een pacema-
ker is geplaatst en bevestigen onze oorspronkelijke hypothese.

In de vijfde studie wordt het effect van rek op het ontstaan van boezemfi-
brilleren onderzocht. In deze studie wordt gebruik gemaakt van een natuur-
getrouwe vorm van de menselijke boezems. Door de druk in de boezems te
laten variëren, onderzoeken we onder welke omstandigheden boezemfibril-
leren kan ontstaan. Uit onze simulatieresultaten blijkt dat, door lokale ver-
schillen in de wanddikte van de boezems, slechts een geringe toename van
de druk voldoende is om normale prikkelvoortgeleiding te verstoren. In één
van de simulaties heeft dit geleid tot een steeds terugkerende geleidingsgolf
met boezemfibrilleren tot gevolg.

Samengevat kunnen we concluderen dat het Cellular Bidomain Model
toepasbaar is als methode om inzicht te verkrijgen in het ontstaan van hart-
ritmestoornissen en de effecten van medisch ingrijpen.





Langs deze weg wil ik iedereen bedanken die op de een of andere manier
betrokken is geweest bij de totstandkoming van dit proefschrift. In de eerste
plaats zijn dat de voormalige decaan en opleidingsdirecteur van de facul-
teit Biomedische Technologie, Jan Janssen en Fons Sauren. Samen met mijn
promotor Peter Hilbers hebben jullie ervoor gezorgd dat ik het onderzoek
beschreven in dit proefschrift aan de TU/e heb mogen uitvoeren. Peter, jij
bent degene die mij naar de TU/e heeft gehaald en ervoor gezorgd heeft dat
ik voldoende tijd heb gekregen om het onderzoek naar behoren uit te voeren.
Verder gaat mijn dank uit naar mijn beide copromotoren, Huub ten Eikelder
en Theo Arts. Huub, jij hebt mij bijgestaan bij het wiskundige ontwerp van
het model en de numerieke oplossingsmethoden. Door jouw bijdrage is de
betrouwbaarheid van het model aanzienlijk verbeterd en is toepassing moge-
lijk geworden. Jij was steeds de eerste die mijn hoofdstukken gelezen heeft.
Ik ben je zeer dankbaar voor jouw commentaar en suggesties voor verbete-
ring, maar bovenal ben je heel fijne collega om mee samen te werken. Theo,
jij hebt mij geı̈ntroduceerd in de wereld van het hartmodelleren. Niet alleen
heb je me kennis laten maken met relevante literatuur, maar ook heb je me
kennis laten maken met de onderzoekers die in het hartonderzoek werkzaam
zijn. Steeds heb je me gewezen op nieuwe mogelijke toepassingen van mijn
model.

Naast mijn promotor en copromoteren hebben diverse mede-auteurs hun
bijdrage geleverd aan mijn proefschrift. Dit zijn Rikkert Keldermann, Peter
Bovendeerd, Sander Verheule en Roel Rijken. Rikkert, jij was mijn eerste af-
studeerder van BMT op het gebied van hartmodelleren. Samen met jou heb
ik de fysiologie bestudeerd die onontbeerlijk is gebleken voor dit onderzoek.
Met veel plezier kijk ik terug op de jaren 2003 en 2004 waarin we veel hebben
samengewerkt. Een groot deel van jouw afstudeerwerk is terug te vinden in
de hoofdstukken 2, 4 en 5 van dit proefschrift. Peter, jij hebt een belangrij-
ke bijdrage geleverd aan de totstandkoming van het hartmechanica gedeelte
van mijn model. De afgelopen jaren hebben wij vele interessante discussies
gevoerd waar wij beide veel van geleerd hebben: jij van elektrofysiologie en
ik van hartmechanica. Sander, jouw bijdrage zit vooral in de fysiologische as-
pecten van mechanoelectric feedback. De afgelopen jaren hebben we de basis
gelegd voor een nog veel intensievere samenwerking in de nabije toekomst.
Ik kijk hier heel erg naar uit. Roel, jij hebt tijdens je afstuderen gewerkt aan
het simuleren van boezemfibrilleren. Met veel plezier kijk ik terug op het
afgelopen jaar waarin wij veel hebben samengewerkt. Naast de vele interes-
sante gesprekken tijdens de koffie zijn wij er samen in geslaagd een mooie
simulatie van boezemfibrilleren te maken. Het resultaat van onze samenwer-
king is niet alleen terug te vinden in de binnenkant van dit proefschrift, maar
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Naast Rikkert en Roel zijn er nog vele andere studenten die met hun pro-
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noemen. Graag wil ik jullie bedanken voor de prettige samenwerking. Hoe-
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neuronale netwerken. Dit zijn Saskia van Engeland, Marije Mulder, Sandra
Sherwood en Floor Klijn. Met veel plezier kijk ik terug op de periode van
afstuderen waarin we intensief hebben samengewerkt. Na jullie afstuderen
is het kontakt gebleven en daar hecht ik heel veel waarde aan.

Tot slot wil ik nog mijn collega’s, vrienden, familie en gezin bedanken
voor de belangstelling en morele ondersteuning die zij mij de afgelopen ja-
ren hebben gegeven. In het bijzonder wil ik mijn ouders en schoonouders
bedanken voor de warme belangstelling en het opvangen van de kinderen.
Veel steun heb ik mogen ontvangen van mijn vrouw en kinderen. Lieve He-
leen, jij hebt al die jaren voor me klaar gestaan en begrip getoond wanneer
het tegenzat. In diezelfde tijd heb je het leven mogen schenken aan onze twee
jongens. Joris en Guus, jullie zijn het mooiste wat er is!

Bedankt!
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27. M. Brassé and N.H.L. Kuijpers, Standardising Distributed Simulations: The High
Level Architecture, Xootic Magazine 7: 16-24 (1999)

Posters presented at conferences

28. N.H.L. Kuijpers, R.H. Keldermann, T. Arts, and P.A.J. Hilbers, How the ’funny’
current can lead to ectopic foci, 4th International Workshop on Computer Simu-
lation and Experimental Assessment of Electrical Cardiac Function; Cap d’Ail,
France (2004)

29. R.H. Keldermann, N.H.L. Kuijpers, and P.A.J. Hilbers, Computer simulations of
the initiation of atrial fibrillation, 14th World Congress in Electrophysiology and
Cardiac Techniques (CARDIOSTIM); Nice, France (2004)

Other

30. N.H.L. Kuijpers, Parallel Implementation of Stereo Vision on a Distributed Mem-
ory System, Thesis Postmaster’s Programme Software Technology; Eindhoven
University of Technology and Joanneum Research, Supervisors: J.J. Lukkien
and G. Paar, ISBN 90-5282-503-3 (1995)

31. N.H.L. Kuijpers, Feature Matching Algorithms for Stereo Vision on a Distributed
Memory System, Master’s Thesis Computer Science; Eindhoven University of
Technology and ESTEC, Supervisor: M. Rem, Advisors: P.A.J. Hilbers, J.J.
Lukkien, and P.S.E. Plancke (1993)


	Content
	1. Introduction
	2. Modeling and simulation of cardiac electrophysiology and arrhythmia : the cellular bidomain model
	3. Numerical aspects of the cellular bidomain model
	4. Computer simulations of successful defibrillation in decoupled and nonuniform cardiac tissue
	5. The role of the hyperpolarization-activated inward current If in arrhythmogenesis
	6. Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria
	7. Mechanoelectric feedback as a trigger mechanism for cardiac electrical remodeling
	8. Vulnerability to atrial fibrillation under strech can be explained by strech-activated channels
	Appendices
	Bibliography
	Summary
	Samenvatting
	Dankwoord
	Curriculum Vitae
	Refereed journal publications



