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Abstract
Currently, the guaranteed throughput of a stream pro-

cessing application, mapped on a multi-processor system,
can be computed with a conservative dataflowmodel, if only
time division multiplex (TDM) schedulers are applied. A
TDM scheduler is a budget scheduler. Budget schedulers
can be characterized by two parameters: budget and re-
plenishment interval.
This paper introduces a priority-based budget scheduler

(PBS), which is a budget scheduler that additionally asso-
ciates a priority with every task. PBS improves the guaran-
teed minimum throughput of a stream processing applica-
tion compared to TDM, given the same amount of resources.
We construct a conservative dataflow model for a task

scheduled by PBS. This dataflow model generalizes previ-
ous work, because it is valid for a sequence of execution
times instead of one execution time per task which results
in an improved accuracy of the model. Given this dataflow
model, we can compute the guaranteed minimum through-
put of the task graph that implements the stream processing
application.
Experiments confirm that a significantly higher guaran-

teed minimum throughput of the task graph can be obtained
with PBS instead of TDM schedulers and that a conserva-
tive bound on the guaranteed throughput of the task graph
can be computed with a dataflow model. Furthermore, our
bound on the guaranteed throughput of the task graph is ac-
curate, if the buffer capacities in the task graph do not affect
the guaranteed throughput.

1 Introduction
Modern multimedia systems, such as in-car entertain-

ment systems and smart-phones, offer an increasing amount
of functionalities to their end-users by simultaneously ex-
ecuting a number of real-time stream processing applica-
tions. For performance reasons, this processing is done by
embedded multi-processor systems.
The applications are implemented by task graphs that

consist of tasks that communicate over first-in-first-out
(FIFO) buffers. To prevent buffer under-run and overflow,
each task is only allowed to start executing if there is suf-
ficient data and space in the buffers for the task to finish
without having to wait for additional input data or output
space. This required amount of data and space might be
data-dependent, which potentially results in an a-periodic
execution of the task. Resources are typically shared be-

t

t
C

P

Figure 1. Worst-case schedule for TDM

P

C

t

t
Figure 2. Worst-case schedule for PBS

tween multiple tasks to reduce costs. Tasks can share a re-
source with one or more tasks from other applications of
which there might be no knowledge about execution times
or execution rates.
Applications typically have a minimum throughput con-

straint. If budget schedulers are applied, then the minimum
throughput of an application is independent of the execution
times and execution rates of tasks of other applications due
to the guaranteed minimum amount of time for every task
to use the resource. Therefore, the use of budget sched-
ulers simplifies analysis of the minimum throughput and
improves the robustness of a system.
In [15] it has been shown that guarantees about the

minimum throughput of an application can be given with
dataflow analysis techniques, provided that budget sched-
ulers are applied that can be characterized by a minimum
time budget that is available in a maximum replenishment
interval. A task can only be scheduled when it has budget
remaining. An example of such a budget scheduler is a time
division multiplex (TDM) scheduler.
In this paper, we introduce a priority-based budget

scheduler (PBS) that in addition to minimum time budget
and maximum replenishment interval has a third parame-
ter, which is the task priority. Given the same amount of
resources, PBS improves the guaranteed throughput of a
stream processing application compared to budget sched-
ulers that schedule tasks based on two parameters. For PBS,
we derive a conservative dataflow model. This dataflow
model is a generalization of the model presented in [15],
because it is also applicable for budget schedulers that are
characterized by two parameters and it is valid for a (cyclic)
sequence of (worst case) execution times per task. Inclusion
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of a sequence of task execution times instead of a single ex-
ecution time results in an improved accuracy of the analysis
results. Furthermore, this dataflow model is also applicable
for tasks which execute a-periodically.
TDM gives every scheduled task a guaranteed time slice

in which the task can use the resource before the next task
is scheduled. With PBS, we take the same approach. How-
ever, while TDM schedules tasks in a fixed sequence, PBS
dynamically schedules tasks within a replenishment inter-
val based on (1) the availability of sufficient input data and
output space and (2) the task priorities.
The worst-case schedules in terms of throughput shown

in Figure 1 and Figure 2 provide an example in which PBS
improves the guaranteed throughput compared to TDM. As-
sume we want to compute the guaranteed throughput of a
producer-consumer task graph that consists of a producing
(P) and consuming (C) task that are executed on different
processors. For this simple example both the producing and
the consuming task have an execution time of 1 time unit.
Their minimum guaranteed budget is also 1 time unit which
is equal to the length of one time slice. The tasks produce or
consume one container per execution. The FIFO buffer has
a capacity of one container. Both schedulers allocate one
slice per replenishment interval of 4 time units for either
the producing or consuming task. There are three remain-
ing time units which can be used by the other tasks using
the same processor as the producer or consumer. The boxes
indicate the location of the slices in the replenishment inter-
vals, and these boxes are shaded in case a task executes.
In case both processors use a TDM scheduler, the worst-

case schedules for the application are shown in Figure 1.
The consuming task executes one replenishment interval af-
ter the production of a container because the worst-case sit-
uation is that the containers are produced at the end of the
time slice of the consumer. The producing task must wait
until the consuming task has finished its execution because
the FIFO buffer has a capacity of one container. The align-
ment of slices as in Figure 1 cannot be prevented to occur in
a system with non-synchronized clocks per processor [8].
In case both processors use a PBS scheduler, the worst-

case schedules for the application are shown in Figure 2.
Instead of assuming that the consuming task has just used
its complete budget when the producing task finishes as is
needed for TDM, with PBS the consuming task can dynam-
ically be scheduled such that it can use its processor time
after the producing task and the current task running on the
processor are finished. As a consequence, space becomes
available earlier, which enables the producing task to al-
ready execute in the next replenishment interval. If the time
slices for the other tasks sharing the processor are also 1
time unit, the consuming task can execute immediately af-
ter the producing task finishes.
The amount of processing resources allocated to a task is

described by the budget ratio, which is the minimum budget
available in a maximum replenishment interval. In this ex-
ample, the budget ratio is one time unit per 4 time units for

both the producer and consumer. However, even though the
budget ratio and buffer capacity is the same in both cases of
this example, PBS schedulers, in this example, double the
guaranteed throughput compared to TDM schedulers.
The outline of this paper is as follows. We first discuss

related work in Section 2. Then in Section 3, we describe
the PBS scheduler in more detail. In Section 4, we derive
a conservative dataflow model for tasks scheduled by PBS.
Our PBS implementation is discussed in Section 5. In Sec-
tion 6, the accuracy of the dataflow model and the improve-
ment in throughput by using PBS compared to TDM are
evaluated through experiments. We discuss future work in
Section 7 and conclude in Section 8.

2 Related Work
Much research has been done on schedulers and the anal-

ysis of the tasks to be scheduled. The currently available
schedulers differ in the type of information needed for the
scheduler to be useful and to allow analysis of the through-
put of an application. Classical scheduling approaches such
as Earliest Deadline First [5] and Rate Monotonic [9] need
information about execution times and execution rates of
all tasks sharing the same resource to allow analysis. In
the domain of stream processing applications this informa-
tion might not always be available. Some tasks might only
be characterised by an average or estimated execution time,
for which no useful bound on the execution time can be
given. Due to possible data-dependent input and output be-
haviour of a task, we might not be able to predict arrival
times within our application even if external events are pe-
riodic. Therefore, there might be no useful bound on the
execution rate of a task. With guaranteeing a minimum
budget in a maximum replenishment interval, budget sched-
ulers provide resource virtualization which allows to quar-
antee upper-bounds on the temporal behaviour of applica-
tions independent of knowledge about tasks of other appli-
cations. This technique of guaranteeing a minimum budget
in a maximum interval as implemented by a budget sched-
uler is also known as resource reservation [1] or capacity
reservation [11]. Several budget schedulers are known, such
as the Time Division Multiplex (TDM) scheduler or sched-
ulers using Constant Bandwidth Server (CBS) [1] or Pro-
cessor Capacity Reserves (PCR) [11].
A design time analysis of the throughput of an appli-

cation can only be made if the budget ratio of tasks can
be guaranteed at design time. If task switching overhead
cannot be neglected, the maximum task switching over-
head that can occur during a replenishment interval must
be known at design time. For budget schedulers based on
Constant Bandwidth Server [1] or Processor Capacity Re-
serves [11], the maximum number of task switches depends
on the best-case execution times of the tasks. No useful
bound on these best-case execution times might be avail-
able. For TDM, as well as for PBS as introduced in this pa-
per, a tight bound on the maximum number of task switches
in a replenishment interval is known at design time, which
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is independent of the execution times or execution rates of
tasks.
The dataflow model presented in [15] uses a latency and

rate parameter, based on the latency-rate model as intro-
duced in [14], to capture the worst-case behaviour of a
task scheduled by a TDM scheduler. Given this dataflow
model, the guaranteed throughput of a stream processing
application can be derived with exact algorithms [4, 6] or
with approximation algorithms [16]. These approximation
algorithms have a polynomial computational complexity.
Dataflow analysis has a number of attractive properties.
First, dataflow analysis can deal with arbitrary cyclic depen-
dencies. This allows the task graph to contain cyclic data
dependencies and allows the capacity of the buffers to affect
the throughput. As a consequence, a tradeoff can be made
between buffer capacity and budget ratio. Second, in [17] it
is shown that dataflow analysis techniques are applicable for
tasks that produce or consume a data-dependent number of
containers. Third, dataflow analysis techniques accurately
compute a guaranteed throughput of the task graph that is
independent of the best-case execution times of the tasks.
Other analysis techniques [3, 7, 10] typically have difficul-
ties with arbitrary cyclic dependencies, data-dependent exe-
cution rates of tasks, and rely on best-case execution times.

3 Priority-based budget scheduler
This section describes PBS in detail without consider-

ing task switching and synchronization overhead as this is
implementation dependent. The overhead of our implemen-
tation is discussed in Section 5.
Similarly to TDM, PBS guarantees every scheduled task

a minimum time slice in which it is allowed to use the re-
source before the next task is scheduled. Every task has a
minimum guaranteed budget in a maximum replenishment
interval, where the budget is the sum of its time slices.
In addition to TDM, priorities can be assigned to tasks

when using PBS. In this paper we consider tasks that are
scheduled by PBS to have either a low or a high priority.
Of the tasks scheduled by one PBS scheduler there can be
maximally one high priority task.
The sequence in which the low priority tasks are sched-

uled is fixed at design time, similarly as is done for all tasks
scheduled by TDM. As the budget can consist out of multi-
ple slices a task can be scheduled multiple times in this se-
quence. For the high priority task, the partitioning of budget
into time slices is done at run-time. Before a low priority
task is scheduled, first the high priority task is scheduled,
if it has remaining budget. The high priority task executes
until there is no sufficient data and space available in the
buffers to finish its execution, i.e. until it is no longer en-
abled, or until it has no remaining budget, after which the
next task is scheduled. The length of the time slices for
the high priority task therefore depends on its enabling and
available budget, while for the low priority tasks this length
is fixed at design-time.
After all low priority tasks have received their budget,

the high priority task is again scheduled, if it has remain-

t
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Figure 3. Comparison of TDM and PBS schedule

ing budget. As soon as the high priority task slice ends, the
budget of each task is replenished and a new replenishment
interval starts. Note that, in contrast to TDM, the replenish-
ment interval of PBS is not necessarily always equal to the
maximum replenishment interval. It might be possible that
it is less then the maximum if the high priority task does not
require (all of its) budget during the replenishment interval.
The procedure of selecting the next task allowed to use

the resource as used by PBS can be described by the pseudo-
code of Listing 1.

Listing 1 Determine next task to schedule with PBS
Pt : previous task using the resource
HP : high priority task
Bhp : remaining budget for HP
Bmax : maximum budget for HP
LP [i], 0 ≤ i < n : list of n low priority task slices
Nlp : pointer the next LP task slice to schedule
———————————————————

1: if Pt �= HP and Bhp > 0 then
2: next = HP
3: else if Nlp < n then
4: next = LP [Nlp]
5: Nlp = Nlp + 1
6: else {end of replenishment interval}
7: next = HP
8: Nlp = 0
9: Bhp = Bmax

10: end if
11: return next

In Figure 3 a comparison is made between a TDM and
PBS schedule for one particular replenishment interval of
12 time units in which three task are scheduled. Every task
has a budget of 4 time units. Assume that in the replenish-
ment interval task τ0 is enabled two times, at time 0 and 4,
with a corresponding execution time of 1 and 3 time units.
The shaded parts of the time slices indicate when τ0 is ex-
ecuting. For TDM the budget for task τ0 can only be used
during a time slice which is fixed at design time. Task τ0 can
execute during the first part of this time slice due to the first
enabling. The rest of the time slice is ’wasted’ as the task is
not enabled during the remainder of the time slice. For the
second enabling budget is only available in the next replen-
ishment interval. With using PBS to schedule these three
tasks and setting τ0 to be the high priority task the schedule
will be constructed such that at time 0 the high priority task
τ0 can directly start executing for 1 time unit after which
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Figure 4. Modelling a task by two dataflow actors

the next task is scheduled. As τ0 has remaining budget, τ0

can start as soon as a new task switch is made after the sec-
ond enabling. If we compare the TDM and PBS schedule
we see that with PBS we can start the second execution of
τ0 earlier than when using TDM. This can have a positive
influence on the throughput as seen in the example used in
the introduction.
It is easy to see that PBS is a generalization of a TDM

scheduler because a PBS and TDM scheduler have the same
behaviour if all tasks have a low priority.
With PBS we dynamically schedule tasks in the replen-

ishment interval which influence the worst-case waiting
time of the tasks. The waiting time of a task is defined as the
difference between the enabling time and start time of a task
that has remaining budget at this enabling time. This wait-
ing time of a task can influence the throughput of an applica-
tion. For TDM this worst-case waiting time is the same for
all tasks and is equal to the replenishment interval minus the
tasks budget. For PBS the waiting time of all tasks is also
known at design time as all tasks sharing the same resource
have a limited and known influence on each others waiting
time. The worst-case waiting time of the high priority task
is reduced to the maximum slice length of the low priority
tasks, while the worst-case waiting time of a low priority
task is increased to the maximum length of the replenish-
ment interval plus the budget of the high priority task minus
the budget of the low priority task. As the worst-case wait-
ing time of the high priority task depends on the maximum
length of the low priority slices, reduction of the maximum
slice length of the low priority tasks reduces the worst-case
waiting time of the high priority task, which potentially re-
sults in a further increase of throughput. This can, however,
come at the cost of an increased number of task switches.
This is because the maximum number of task switches in a
replenishment interval is 2N +1, whereN is the number of
low priority slices.

4 Dataflow model for PBS
In this section we present a dataflow model which cap-

tures the worst-case behaviour of an application of which
tasks are scheduled on a processor using PBS.
Figure 4 depicts a task v and its model, which is a

dataflow component consisting of dataflow actors a0 and
a1. The production and consumption of containers by task
v is modelled by the production and consumption of tokens
in the dataflow model. The enabling condition of task v

is equal to the firing rule of actor a0. Actor a0 produces
one token per firing and actor a1 fires, if there is one token
available at both inputs.
For the task, let e(i) be the time at which the i-th execu-

tion of the task is enabled, and let f(i) be the finishing time
of the i-th execution of the task. The execution time of the
i-th execution of the the task is defined as x(i). The execu-
tion time x(i) is the maximum time between the enabling
time e(i) and finish of the i-th execution in case this task is
the only task executed on the processor.
For the dataflow component, let ê(i) be the enabling time

of actor a0 and let f̂(i) be the time at which actor a1 fin-
ishes and produces its output tokens. The variables τ0(i)
and τ1(i) represent the time between enabling and produc-
tion of tokens by respectively actor a0 and actor a1 for the
i-th firing.
A dataflow component is a conservative model of a task

scheduled on a processor if Equation (1) holds.

e(i) ≤ ê(i) ⇒ f(i) ≤ f̂(i) (1)

In [15] it has been shown that if all tasks in an applica-
tion are modelled by conservative dataflow components, i.e.
Equation (1) holds, then the minimum throughput of the ap-
plication can be derived analytically with dataflow analysis
techniques. Another option to determine the throughput is
to observe the worst-case finishing times of tokens with a
dataflow simulator [2], which produces exact results.
During self-timed execution, actors fire as soon as they

are enabled. The finishing times of the dataflow component
during self-timed execution is expressed with Equation (2).

f̂(i) = max(ê(i) + τ0(i), f̂(i − 1)) + τ1(i) (2)

In the next two sub-sections, we derive expressions for
τ0(i) and τ1(i) for the high and low priority tasks such that
Equation (1) holds for each dataflow component. In this
derivation T denotes the maximum replenishment interval
and B the minimum guaranteed budget.

4.1 Dataflow model for the high priority task
In this section, we derive τ0(i) and τ1(i) for the dataflow

component corresponding to the high priority task, such that
Equation (1) holds. To achieve this, we start this section by
showing that fw(i) as given by Equation (3) is an upper
bound on the actual finishing time of the i-th execution f(i)
of the high priority task i.e f(i) ≤ fw(i). In this equation,
Wh is the worst-case waiting time of the high priority task,
which is equal to the maximum slice length of the low pri-
ority tasks. Subsequently, we derive the appropriate values
for τ0(i) and τ1(i) such that e(i) ≤ ê(i) ⇒ f(i) ≤ fw(i) ≤

f̂(i) and therefore Equation (1) holds.

fw(i) = max(e(i) + Wh, fw(i − 1)) +
T · x(i)

B
(3)

In Lemma 1, we first determine the guaranteed remain-
ing budget for the i-th execution of the high priority task in
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the replenishment interval in which the worst-case finish of
the high priority task fw(i−1) occurs. Then a case distinc-
tion is made based on the start of the i-th execution relative
to this fw(i − 1). We assume that fw(i − 1) occurs in the
m-th replenishment interval. We define br as the last budget
replenishment moment before fw(i − 1) and be as the first
budget replenishment moment after fw(i − 1).

Lemma 1. If be − fw(i− 1) = T ·Y
B
then the budget avail-

able for the i-th execution of the high priority task during
them-th interval is at least Y .

Proof. Assume fw(i − 1) − br = T ·X
B
and be − fw(i −

1) = T ·Y
B
. Because T ·X

B
+ T ·Y

B
≤ T it holds that X +

Y ≤ B. By making use of induction we can conclude from
the definition of fw(i) that if fw(i − 1) − br = T ·X

B
at

mostX budget is used in them-th replenishment interval by
firings previous to firing i. From this we can conclude that
the remaining budget during the m-th interval is B − X ≥
Y .

Theorem 1. The bound fw(i) as given in Equation (3) is
an upper bound on the finish time of the i-th execution of
the high priority task, i.e. f(i) ≤ fw(i).

Proof. We consider three cases based on the start of the i-th
execution s(i).
(1). If be ≤ s(i) then the budget available for the i-th ex-

ecution of the task is fully replenished and available. There-
fore, f(i) ≤ s(i) + x(i) + �x(i)

B
�(T − B) ≤ s(i) + T ·x(i)

B
.

In this case we know that s(i) ≤ e(i) + Wh, so f(i) ≤

e(i) + Wh + T ·x(i)
B
.

(2). If fw(i − 1) ≤ s(i) ≤ be then we assume that
x1 budget is used before be and x2 budget is used after be,
x(i) = x1 + x2. We define T ·Y

B
= be − fw(i − 1). Now

we can conclude by Lemma 1 that x1 ≥ Y and therefore
x2 ≤ x(i)−Y . As the budget is fully replenished at moment
be we can conclude that f(i) ≤ be + T ·(x(i)−Y )

B
for the

same reason as the previous case. As be − s(i) ≤ T ·Y
B
it

holds that f(i) ≤ s(i)+ T ·Y
B

+ T ·(x(i)−Y )
B

≤ s(i)+ T ·x(i)
B
.

In this case we know that s(i) ≤ e(i) + Wh, so f(i) ≤

e(i) + Wh + T ·x(i)
B
.

(3). If s(i) ≤ fw(i − 1) we assume the worst-case start
s(i) = fw(i − 1) to conclude by the same reasoning as the
previous case that f(i) ≤ fw(i − 1) + T ·x(i)

B
. This lat-

est possible start is the worst-case situation as earlier starts
cannot finish later.
By combining the three cases we can conclude that

f(i) ≤ max(e(i) + Wh, fw(i − 1)) + T ·x(i)
B

= fw(i) and
therefore this theorem holds.

Given Theorem 1 we can use induction to conclude that
τ0(i) and τ1(i) of Equation (2) can be chosenWh and T ·x(i)

B

respectively, such that e(i) ≤ ê(i) ⇒ f(i) ≤ fw(i) ≤ f̂(i)
and therefore Equation (1) holds.
Inclusion of x(i) in Equation (2) enables to model a se-

quence of execution times, which is not possible with [15].

4.2 Dataflow model for the low priority task
In this section we derive expressions for τ0(i) and τ1(i)

for the low priority tasks such that Equation (1) holds for
the corresponding dataflow components.
Let Wl be the worst-case waiting time of a low priority

task. This waiting time is equal to the maximum length
of the replenishment interval plus the budget of the high
priority task minus the budget of the low priority task.
Using the same type of reasoning as for the high priority

tasks we conclude that τ0(i) and τ1(i) of Equation (2)
can be chosen Wl and T ·x(i)

B
respectively, such that

e(i) ≤ ê(i) ⇒ f(i) ≤ fw(i) ≤ f̂(i) and therefore
Equation (1) holds.

As PBS is a generalization of a TDM scheduler the anal-
ysis of this section can also be applied to a task scheduled
by a TDM scheduler. The worst-case waiting time Wt of
a task scheduled by a TDM scheduler is equal to the max-
imum replenishment interval minus the budget of the task,
which is lower then Wl as no extra waiting time is intro-
duced by a high priority task. A task scheduled by TDM
can then conservatively be modeled by taken τ0(i) equal to
thisWt while τ1(i) remains T ·x(i)

B
.

The increase of Wl compared to Wt is the cost of the
reduced Wh. An increase in waiting time does not reduce
the minimum throughput of an application as long as actors
that correspond with the low priority tasks do not belong to
critical cycles in the dataflow graph. These critical cycles
determine the minimum throughput [13]. Therefore, PBS
can give us the opportunity to increase the throughput by
decreasing the length of the critical cycle, at the expense of
longer non-critical cycles, by carefully setting the priorities.

5 PBS implementation
In this section, we describe our PBS scheduler imple-

mentation and discuss how task switching and synchroniza-
tion overhead are taken into account such that the dataflow
model is conservative.
In our implementation, we use the polling based syn-

chronization scheme that is described in [12]. In this
scheme, the task that produces a container updates the ad-
ministration of the FIFO buffer. The task that is waiting for
data or space polls the buffer administration for the avail-
ability of the containers. We do not need to include this
busy-waiting time in the execution times of the tasks [16],
because its effect on the throughput of the task graph is
taken into account when analysing the complete dataflow
graph.
At the end of every time slice a task switch is made. The

beginning of a task switch is indicated by a Fast Interrupt re-
Quest (FIQ) set by the scheduler. The high priority task can
initiate to a task switch as soon as it is not enabled anymore,
i.e., polling the buffer administration for sufficient data and
space has failed, by using a SoftWare Interrupt (SWI) which
gives back control to the scheduler to decide on the next task
to schedule.
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A task switch includes (1) saving the context of the cur-
rent task, (2) saving the remaining budget in case the current
task is the high priority task, (3) determining the next task
to be scheduled, (4) restoring the context of the next task,
(5) starting the budget accounting of the next task, and (6)
starting the next task. An upper bound on the time needed
for this task switch should be taken into account when con-
structing a conservative dataflow model.
We implemented our scheduler in assembly code for

a model of the ARM7-TDMI core that does not have a
cache. Two of these cores are connected to a dual ported
memory in a cycle true simulator such that each core has
a single cycle memory access latency. With this simulator
we observed a maximum time needed for one task switch
of 346 cycles, which is larger than the time needed for a
task switch for a TDM implementation due to the slightly
more complex decision that is made to determine the next
task to schedule. For a TDM scheduler implemented on the
ARM7-TDMI a maximum time of 249 cycles for one task
switch is observed.

To obtain the guaranteed net budget of a task, the maxi-
mum task switching overhead should be subtracted from the
gross budget of the task. This gross budget of a task is equal
to the sum of its time slices in a replenishment interval. The
maximum task switching overhead for a low priority task is
equal toM × 346 cycles, whereM is the number of slices
for the task and a maximum of 346 cycles are needed for
one task switch. The maximum task switching overhead for
a high priority task is equal to (N + 1) × 346 cyles, where
N is the number of low priority slices in a replenishment
interval. Task switching overhead is correctly taken into ac-
count in the dataflow model if the budget B in Equation (3)
is equal to the guaranteed net budget of the task, as this is
the actual guaranteed minimum amount of time that the task
can use the resource.

6 Experimental results
In this section, we present results measured with a cycle

true simulator and compare them with results obtained by
dataflow simulation.
In the experiments of this section we use a producer-

consumer application for which both the producer and con-
sumer are running on a different processor and have a high
priority. Several other tasks are sharing a processor with the
producer or consumer and are assigned a low priority. A
measured upper bound on the execution time of the pro-
ducer and consumer is 360790 clock cycles and 360530
clock cycles, respectively. For both the processors it holds
that the gross budget for the high priority task is 4 Mcycles
and the total gross budget for the low priority tasks is 32
Mcycles. The total gross budget for the low priority tasks is
divided in 8 low priority slices with a length of 4 Mcycles.
Both the producer and consumer iterate through an in-

finite loop in which they do some processing as soon as
polling the buffer administrations for sufficient data and
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Figure 5. Finishing times of consumer for buffer
capacity of 5 containers

space in the input and output buffers is successful. The time
needed for this processing is bound by the worst-case exe-
cution time. The time needed for polling is not part of this
execution time but is taken into account when analysing the
complete dataflow graph, as discussed in the previous sec-
tion. Finally, they produce containers with data or space. As
soon as containers are produced by the consumer, a monitor
in the cycle-true simulator will print the current time f(i).
By executing the dataflow model of the producer-consumer
application in a dataflow simulator we obtain the values for
the guaranteed worst-case finishing times f̂(i).
In the first experiment, we verify whether the analytical

results are conservative, evaluate the accuracy of the bounds
and observe whether the use of PBS instead of TDM im-
proves the guaranteed throughput for a producer-consumer
application in which the tasks communicate one container
per execution. In the second experiment, we evaluate the
influence of the waiting time of the high priority task on
the guaranteed throughput. In the third experiment, the pro-
ducer has a sequence of execution times and we evaluate the
increase of accuracy when the dataflow model includes the
sequence of execution times compared to a single execution
time. Finally, in the fourth experiment, we determine the
accuracy of the bound for a producer which communicates
a variable amount of containers per execution.

6.1 Experiment 1
Figure 5 shows the first 25 actual and worst-case fin-

ishing times for both PBS and TDM scheduling, with a
buffer capacity of 5 containers and the same budget ratio
for both tasks. From this figure, we can observe that the
actual throughput using PBS scheduling is almost a factor
4 higher than using TDM given the same budget ratio for
both tasks.
From Figure 5, we can also observe that the computed

worst-case finishing times and the actual finishing time di-
verge for TDM scheduling while this is not the case for
PBS scheduling. The reason is that for this experiment the
throughput for PBS scheduling is completely determined by
the execution times of the tasks while for TDM scheduling
also the buffer capacity influences the throughput. Using
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Figure 6. Finishing times of consumer for buffer
capacity of 3 containers

dataflow analysis to compute a buffer capacity that does not
influence the guaranteed throughput results in a sufficient
buffer capacity of 22 containers, in case of TDM. Our sim-
ulations confirm that, for this capacity, the bound on the
maximum finish times, in case of TDM, no longer diverges
from the actual finishing times. Furthermore, with a buffer
capacity of 22 containers TDM has the same throughput as
when PBS with a buffer capacity of 5 containers.
In this experiment, the task switching overhead for PBS

scheduling is maximal 17 task switches per replenishment
interval, while for TDM scheduling the task switching over-
head is 9 task switches. The task switching overhead in this
experiment is less than 0.02% and 0.01% for PBS and TDM
scheduling, respectively.
For this experiment, the computation of the upper

bounds on finishing times by our dataflow simulator re-
quires a fraction of a second, while one simulation run of
the cycle-true simulator requires more than 10 minutes.

6.2 Experiment 2
In the previous experiment it is assumed that the largest

low priority slice is 4 Mcycles. The worst-case waiting-time
of the high priority task depends on this largest low prior-
ity slice. Therefore, there is an extra trade-off between the
maximum length of the low priority slices and the number
of task switches. In this experiment the influence on the
throughput of the producer-consumer job for different max-
imum low priority slice lengths is determined.
Figure 6 shows the worst-case finishing times of the first

25 executions for maximum slice lengths of the low priority
tasks between 1 and 16 Mcycles. In all cases the buffer
capacity is equal to 3 containers. The results show that a
higher throughput can be obtained if we reduce the slice
lengths of the low priority tasks, at the expense of extra task
switches.

6.3 Experiment 3
In this paper a model is introduced that can include tasks

with a (cyclic) sequence of execution times. It is expected
that this has a positive influence on the accuracy of the
model compared to a model that can only include one worst-
case execution time per task.
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Figure 7. Finishing times of consumer for alternat-
ing execution times
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Figure 8. Finishing times of consumer for variable
production quanta

In this experiment, we evaluate the accuracy of the model
using a cyclic sequence of (worst-case) execution times and
compare it to using just one (worst-case) execution time.
For the producing task we now have a cyclic sequence of
execution times. In an alternating fashion, subsequent ex-
ecutions have an upper bound on their execution time of
2860780 and 368790 cycles. The capacity of the buffer is 6
containers.
Figure 7 shows the finishing times of the first 25 execu-

tions as observed in the cycle-true simulator. Furthermore,
it shows the worst-case finishing times for the dataflow
model with only one worst-case execution time and the
worst-case finishing times for the dataflow model with a se-
quence of worst-case execution times taken into account.
The results show that the model with a sequence of

worst-case execution times is conservative and produces a
more accurate result than a model in which just one execu-
tion time is taken into account.

6.4 Experiment 4
While the previous experiments assumed a static en-

abling condition for the producer and consumer, the model
introduced in this paper is valid for every enabling condi-
tion. In this experiment dataflow analysis is applied to a
producer-consumer application in which the producer has
a more complex enabling condition. Instead of producing
one container in every execution as was done in the previ-
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ous experiments, the data producing task produces between
zero and four containers in every execution. We increased
the execution time of the data producing task to have one
upper bound of 2861750 cycles. The capacity of the buffer
is 5 containers.
Figure 8 shows the first 25 actual and worst-case fin-

ishing times for PBS. The results show that the model for
a task with variable production quanta is conservative and
produces an accurate result.

7 Future work
Currently, the PBS scheduler we consider in this paper

has two priority levels of which there is one high priority
task which is allowed to initiate a task switch. While this
already gives a potential improvement compared to TDM,
it might be possible to allow a broader trade-off between
worst-case waiting times by introducing more priority lev-
els. When determining a conservative dataflow component
for the tasks scheduled by these variants it is expected that
the same proof can be used as is currently used for the vari-
ant with one high priority task, only the waiting times for
the tasks change depending on the number of other tasks
that can potentially influence their waiting time. More re-
search and experiments with different variants of PBSmight
be part of future research.
In this paper we use a dataflow model which models a

task by two dataflow actors as is currently done in litera-
ture. Further improvements in the accuracy of the dataflow
model might be possible by increasing the number of ac-
tors in the dataflow component. Proofs of the corresponding
values for the actors are needed and experiments should be
done to determine the possible benefits of such an extended
dataflow model.
Furthermore, as PBS can be applied for any kind of

shared resource, determining the impact of using PBS in-
stead of TDM for different types of shared resources, such
as interconnect or memories, might be an interesting direc-
tion for future work.

8 Conclusion
In this paper, we introduce the priority-based budget

scheduler (PBS), which improves the guaranteed through-
put of stream processing applications compared to a time di-
vision multiplex (TDM) scheduler, given the same amount
of resources.
Furthermore, we derive a conservative dataflowmodel of

a task scheduled by PBS.With this dataflowmodel the guar-
anteed throughput can be computed even if the application
contains cyclic dependencies. The same dataflowmodel can
also conservatively model a task that is scheduled by TDM
and is, furthermore, suitable for a sequence of execution
times per task, which improves the accuracy of the analysis
results compared to a single worst-case execution time per
task.
For PBS a tight bound on the number of task switches

can be computed at design time, which is independent of the

execution times of the tasks. For our PBS implementation,
we found the worst-case cost of a task switch. Together, this
allows us to derive a conservative dataflow model that takes
task switching overhead into account.
Experiments confirm that PBS scheduling can result in

a significantly higher throughput than TDM scheduling. A
comparison between measured and analytical results con-
firms that the dataflow model is conservative, which indi-
cates that the task switch costs are correctly taken into ac-
count. Our experiments show that the analytical bounds are
accurate, if the guaranteed throughput is completely deter-
mined by the execution times of the tasks and not influenced
by the buffer capacities. The dataflow model is shown to be
able to include a (cyclic) sequence of execution times and
can leverage this additional information to obtain more ac-
curate analysis results compared to only a single execution
time. Furthermore, the presented dataflow model still com-
putes accurate and conservative estimates of the guaranteed
throughput in case tasks execute a-periodically.
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