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Chapter 1

Introduction

1.1 Motivation

Over the past decades, developments in microelectronics have followed the path pre-
dicted by the american scientist and Intel co-founder, Gordon E. Moore, who, already
back in the early days of the integrated circuit, extrapolated that the number of transis-
tors that can be packed onto a chip of silicon would double approximately every two
years. What became known as Moore’s Law has since dictated the speed with which
the complexity of integrated circuits increases and with that, the rate at which the price
of electronics goes down. From a circuit design perspective however, more transistors
per silicon area means that components are more densely packed together, and that the
behaviors of different parts of the chip are no longer independent. The design of cur-
rent integrated circuits is therefore hampered by parasitic electromagnetic effects that
strongly influence the behavior of the device. During the physical verification of circuit
designs, it is thus vital to take these parasitic effects into account. This requires simu-
lation of large scale electrical networks, with numbers of nodes and electronic circuit
components (resistors, capacitors, inductors) exceeding hundreds of thousands. Stan-
dard circuit simulation tools are often insufficient for this task, as they may be unable to
compute solutions to the differential algebraic systems of very high order underlying these
circuits. To provide a solution to this challenging industrial problem, a new methodol-
ogy is developed in this thesis, which combines techniques from electrical engineering,
numerical linear algebra, and graph theory.

Model order reduction (MOR) aims at constructing a model of lower dimension than an
original system while well approximating its behavior. For instance, if the original sys-
tem is an electrical circuit, a reduced circuit is sought which is to replace the original one
within the desired simulation setup. When this is achieved, more time and memory ef-
ficient simulations can be performed with the available computing resources. Model re-
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duction however involves a mathematical procedure, through which usually the phys-
ical interpretation of the original system is lost. That is, if the original system is, say,
an electrical circuit, the reduction returns a smaller mathematical model, rather than an
actual circuit. The synthesis problem then arises, that of mapping the reduced mathe-
matical model back into an equivalent electrical circuit. Also, as different parts of a cir-
cuit design often need to be analyzed separately, another important question is whether
these can be reduced independently and re-assembled together in a simple way. This
seems to be a natural feature, however is not directly satisfied with traditional reduction
approaches, because the physical meaning of interconnection points between different
parts (also called terminals) is lost. A distinguishing feature of the methods developed in
this thesis is their ability to convert reduced models into circuit representations which
are easily re-coupled to one another and re-used within the original simulation setup.

Yet another critical challenge arises when the the original systems are so large, that even
the process of reduction itself is hampered by limited CPU and memory resources. The
emerging question is then: how does one reduce a system that is too big to “fit” within
the available reduction methodology? This scenario is especially relevant when reduc-
ing circuits with a very large number of terminal nodes, for which preserving sparsity is a
critical requirement. Here, these problems are overcome with the help of graph partition-
ing and fill-reducing node reorderings. Very large, multi-terminal networks are reduced in
a divide-and-conquer manner, while the behavior of the reduced circuit remains close
to that of the original. The reduced circuits thus obtained contain much fewer nodes
and elements than otherwise obtained from conventional reduction techniques and, as
industrial examples show, allow up to 50 times faster simulations at little loss of accu-
racy. In addition, the proposed multi-terminal model reduction methods make circuit
simulations possible for designs which could not be handled in their original dimension
by SPICE-like tools.

While the applications in this thesis come from the electronics industry, many of the
problems addressed here are fundamental, and the solutions proposed could resolve
similar issues arising in other disciplines. Whether they are models of electrical circuits,
mechanical systems, neuronal networks in the brain, or links between web-pages, one
can always benefit from numerical algorithms that can approximate their functionality
efficiently, either by parts or in whole, enabling a simpler and faster understanding of
their behavior.

The following sections review some general facts and established results concerning
linear dynamical systems and their reduction. The material is based mostly on the ref-
erences [72], [4], [78], with some adaptations pertaining to the context of this thesis.
Then, an overview of the remaining chapters is provided.
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1.2 Preliminaries from linear system theory

Dynamical systems arise in various disciplines: chemical processing, biomedical engi-
neering, acoustics or circuit design and can describe different physical processes. They
share however some common features. To quote [72], a system “can be viewed as a
process in which input signals are transformed by the system or cause the system to
respond in a certain way, resulting in other signals as outputs”. For instance, an electri-
cal circuit is a system which produces some voltages or currents, in response to applied
currents or voltages. Fig. 1.1 gives a simple representation of a linear system with driv-
ing inputs u(t) and observed outputs y(t). The word dynamic refers to the fact that

u ySystem
( h ) y(t) = h ∗ u(t) =

∫ t

−∞ h(t− τ)u(τ)dτ , (1.1)

Figure 1.1: System with input u and output y. The output is the convolution of the input with
the impulse response h(t).

the system has memory, i.e., the system’s future behavior depends on its past evolution.
An electrical network with capacitors or inductors is a dynamical system, where the
memory has a physical interpretation related to the storage of energy; for example, the
capacitor stores energy by accumulating electrical charge. The voltage across a capacitor
is thus an integral of the current, namely:

y(t) =
1
C

∫ t

−∞ u(τ)dτ . (1.2)

Whichever the underlying application, the systems which fit in the reduction frame-
work of this thesis are linear, dynamic, continuous, time-invariant1, and share a com-
mon mathematical description, presented next.

1.2.1 External description

The external description characterizes a system by means of the input variables u and
the outputs y, related through the convolution operation (1.1), where h(t) is the sys-
tem’s impulse response (the response of the system to the Dirac delta input, denoted here

informally as the unit impulse function δ(t) =
{

1, t = 0
0, t 6= 0

2).

1Continuous refers to the fact that continuous-time input signals result in continuous-time signals at the
outputs, while time-invariance refers to the system’s behavior being fixed over time (for an electrical circuit,
this holds if the resistances/capacitors/inductors are constant over time).

2See [21, 83] for formal definitions of the Dirac delta distribution.
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1.2.2 Internal description

In addition to the inputs and outputs one can use the internal variables to characterize a
dynamical system. The internal variable is by definition the least amount of information
required at time t = t0 so that, together with the excitation for t > t0, one can compute
the future behavior of the system. This input/internal-variable/output representation
is called the internal description of the system and is governed by a set of differential-
algebraic equations:

Σ

{
Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t) , (1.3)

where u ∈ Rp is the input of the system, x ∈ Rn are the internal variables, y ∈ Rm is
the output (the variables observed), and E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n,
D ∈ Rm×p are the system matrices. The first equation from (1.3) is the state equation
which describes the system’s dynamics, and the second is the output equation which
describes the observation. The number of internal variables n is the dimension of Σ.
If m, p > 1, the system is called multiple-input multiple-output (MIMO), and if m =
p = 1 it is called single-input single-output (SISO). In the most general case which also
covers the scenario of a singular E, system Σ is a descriptor system [68, 76], while for the
particular case of E invertible, it is a state space system, and the internal variables x are
called states [4]. Systems describing electrical circuits often have a special structure (see
Sect. 1.3.3), in particular C = BT and D = 0.

It turns out that the external and internal descriptions are intimately related. In par-
ticular, using the Laplace transform [72], (1.3) is expressed in the frequency domain,
where the inputs, outputs, and internal variables as a function of frequency s are: U(s),
Y(s), and X(s) respectively. More precisely, the Laplace transform of x(t) is X(s) =

(sE − A)−1x(0−) + (sE − A)−1BU(s) and it is assumed that the initial condition is
x(0−) = 0 [4, Chapter 4]. Eliminating now the states X(s) from the first equation of
(1.3) and replacing them in the second, one obtains the system’s transfer function:

Definition 1.2.1 The transfer function of the dynamical system (1.3) is defined as:

H(s) = C(sE−A)−1B + D ∈ Cm×p. (1.4)

H(s) describes the input/output behavior of the system in the frequency domain, and
is precisely the Laplace transform of the impulse response h(t), introduced previously
in the external description. For the transfer function to be well defined, the pencil (A, E)
must be regular3 [a matrix pair (A, E) is regular if there exists at least one λ ∈ C such
that det(A− λE) 6= 0]. Most of the existing model reduction methods rest on this as-
sumption however, the methods developed in chapters 3, 4, 5, and 6 also apply to a

3For electrical networks, the pencil is regular if the network is made consistent by grounding one of the
nodes.



1.2 Preliminaries from linear system theory 5

particular type of singular pencils, mainly those describing un-grounded electrical net-
works.

The poles of a system lie at the heart of its behavior, in particular they determine its
stability (see Sect. 1.2.3). They are defined as follows:

Definition 1.2.2 The poles of the transfer function H(s) are the points λ ∈ C for which
lims→λ ‖H(s)‖s = ∞, i.e., the generalized eigenvalues of the pair (A, E)4.

1.2.3 Stability and passivity

Original systems Σ describing electrical circuits are stable and passive; it is hence desir-
able for the reduced Σ̃ to be also stable and passive. These are among the most impor-
tant system properties that should be preserved ideally by any reduction method.

Stability

In the external description, the system Σ characterized by the convolution (1.1) is bounded
-input, bounded-output stable if any bounded input u(t) results in a bounded output y(t).
This has an equivalent interpretation via the internal description, namely that a sys-
tem is stable if and only if all poles lie in the closed left half of the complex plane (all
poles have non-positive real parts and all pure imaginary eigenvalues have multiplicity
one) [4, Theorem 5.10].

Passivity

Passive systems are those which do not generate energy. According to [17], the system
(1.3) is passive if there exists a non-negative-valued function Θ ∈ Rn → R+, such that:

Θ(x(t1))−Θ(x(t0)) ≤
[∫ t1

t0

uT(τ)y(τ)dτ
]

, (1.5)

for ∀ t0, t1 ∈ R, t1 ≥ t0, and all trajectories (u, x, y) which satisfy the system equations
(1.3). If it exists, Θ is called a storage function. The interpretation of equation (1.5) is that,
the change in internal storage Θ(x(t1))− Θ(x(t0)) can never exceed what is supplied
to the system [4, Chapter 5.9]. Electrical networks with passive components (resistors,
capacitors, inductors and ideal transformers) are passive systems; they absorb supply
(energy) in the form of electrical power, which is the sum of the product of the voltage
and current at the external ports: uT(t)y(t) = ΣkVk Ik.

4For A∈Cn×n , E∈Cn×n, λ is a generalized eigenvalue of (A, E), if ∃x ∈ Cn , x 6= 0 such that Ax=λEx.
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An established result which characterizes passivity in a unifying manner is that a de-
scriptor system Σ with m = p is passivie if and only if its transfer function H(s) is
positive real [3, 76]. By definition [17]:

Definition 1.2.3 A rational function H(s) ∈ Cm×m is positive real if and only if it satisfies
both of the following conditions:

1. H(s) is analytic in C+

2. H(s) + HH(s) ≥ 0, for all s ∈ C+
5.

[4, Theorem 5.22] gives a complete characterization of positive realness in terms of the
external representation of Σ.

By ensuring that the positive realness condition remains satisfied after reduction, sev-
eral passivity preserving model reduction methods have been developed. Among those
which make no assumptions about the structure of the underlying system matrices are
[77] based on balancing and [44] based on moment matching. Other model-reduction
methods [27,71,89] exploit the special structure and matrix properties of descriptor sys-
tems describing electrial circuits to preserve passivity. In short, starting from an original
system in a passive form [57] the reduced models retain the passive form. To this type
of methods belong also the ones developed in this thesis. Passive systems are also sta-
ble [4, Theorem 5.22], [57], hence all reduction methods which preserve passivity are
implicitly stability preserving.

1.3 Model order reduction

At the heart of model reduction lies the desire to approximate the behavior of a large
dynamical system in an efficient manner, so that the resulting approximation error is
small. Other requirements are: the preservation of important system properties, of its
physical interpretation, and an efficient implementation. In short, starting from an n-
dimensional system Σ, a reduced k-dimensional system Σ̃ is sought:

Σ̃

{
Ẽ ˙̃x(t) = Ãx̃(t) + B̃u(t)

ỹ(t) = C̃x̃(t) + Du(t)
, (1.6)

where k � n, so that the output approximation error ‖y(t) − ỹ(t)‖ (in appropriate
norm) is small. Through reduction, the number of inputs and outputs is the same as in
the reduced model, however the internal variables and the system matrices are reduced
in dimension: x̃ ∈ Rk, Ẽ ∈ Rk×k, Ã ∈ Rk×k, B̃ ∈ Rk×p, C̃ ∈ Rm×k. The inputs of the

5For s = σ + jω, and H(s) defined as in (1.4), the Hermitian complex conjugate reads: (H(s))H = BH((σ −
jω)EH −AH)−1CH + DH .
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reduced system are the same as for the original. The transfer function of Σ̃ is:

H̃(s) = C̃(sẼ− Ã)−1B̃ + D ∈ Cm×p. (1.7)

The unifying approach for obtaining a reduced model from an original system is via a
Petrov-Galerkin6 projection [6]:

Σ̃(Ẽ, Ã, B̃, C̃, D̃) ≡ (W∗EV, W∗AV, W∗B, CV, D̃), (1.8)

where V, W ∈ R
n×k are matrices whose k � n columns form bases for the relevant

subspaces pertaining to the reduction method chosen. In this projection framework it is
common to set D̃ = D, but other scenarios are possible, as described in [6].

1.3.1 A classification

The governing principle behind all reduction methods is that, after a suitable decom-
position is found, the non-dominant7 internal variables are eliminated from the system.
Reduction methods differ in the way the decomposition is performed. This in turn dic-
tates how the projection matrices V and W are constructed. Roughly speaking, reduc-
tion methods are classified into (a) spectral-, and (b) Krylov-based. Among the volumes
which give a comprehensive coverage of the various methods are [4, 12, 82]. A compar-
ison of spectral and Krylov-based methods is available in [39]. By no means attempting
to give an exhaustive literature review, a few well-know methods are mentioned here,
with a stronger emphasis on Krylov-based methods. The latter are the foundation for
the multi-terminal reduction methodology in this thesis.

Spectral methods

Among the spectral methods, one distinguishes between those based on the SVD (sin-
gular value decomposition) or the EVD (eigenvalue decomposition) of relevant system
quantities. From the SVD methods, balanced truncation [11] and positive real balanced
truncation [74, 77] use SVD-based projections to reduce a balanced representation of the
system, i.e. one where the observability and controllability Gramians are equal and di-
agonal [4, Chapter 7]. Compared to balancing, which uses both the observability and
controllabilty gramians as the basis for decomposition, Poor man’s TBR [75] decomposes
only one of the system gramians. Proper orthogonal decomposition (POD) [4, Chapter 9.1]
constructs the reducing projection based on the SVD of a matrix of time snapshots (sam-
ples of the state computed at given time instants). Among the EVD methods, modal
approximation [78] constructs a reduced model which interpolates dominant poles of the
original system, based on the generalized eigenvalue decomposition of the pair (A, E).

6When W = V the projection is of Galerkin type.
7Non-dominant here refers to internal variables which contribute the least to the system’s response.
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Krylov-based methods

Krylov-based reduction methods exploit the use of Krylov subspace iterations to achieve
system approximation by moment matching (explained in Sect. 1.3.2). Among these are
PRIMA [71], the structure preserving version SPRIM [27], the second order variants
SOAR [9] and SAPOR [66,89], the spectral zero method (SZM) [5,44,45,86] and optimal
H2 [32]. Next, the concept of reduction by moment matching is explained.

1.3.2 Model reduction by moment matching

The starting point for reduction by moment matching is the desire to approximate a
transfer function H(s) by a rational function of lower degree, H̃(s). The questions are
then: (a) what are the coefficients of a reduced H̃(s) which accurately approximates
H(s) and, once these are identified, (b) how are the projections V, W constructed, so
that the reduced model Σ̃ (2.1) is charcterized precisely by the H̃(s) with the desired
coefficients?

The answer to (a) is found by constructing H̃(s) to match some terms of the Laurent
series expansion of H(s) at various points of the complex plane. In particular, the k’th
moment of H(s) at s0 ∈ C is the k’th derivative of H(s) evaluated at s = s0:

ηk(s0) = (−1)k dk

dsk H(s)
∣∣∣
s=s0

∈ Rm×p, k ≥ 0, (1.9)

so the Laurent expansion of H(s) around s0 ∈ C is:

H(s) = η0(s0) + η1(s0)
(s− s0)

1!
+ η2(s0)

(s− s0)
2

2!
+ . . . + ηk(s0)

(s− s0)
k

k!
+ . . . (1.10)

Model reduction by moment matching thus amounts to finding, given the original Σ, a
reduced model Σ̃ with transfer function H̃(s), such that H̃(s) has the same moments as
H(s) up to a desired number k. More precisely:

H̃(s) = η̃0(s0) + η̃1(s0)
(s− s0)

1!
+ η̃2(s0)

(s− s0)
2

2!
+ . . . + η̃k(s0)

(s− s0)
k

k!
+ . . . ,

and η̃i = ηi , i = 1 . . . k. (1.11)

From (1.9), the moments can be expressed directly in terms of the system matrices, as
derivatives of (1.4) for the original system [and (1.7) for the reduced system]. In partic-
ular, introducing the following notation:

A = −(s0E−A)−1E, R = (s0E−A)−1B, (1.12)

Ã = −(s0Ẽ− Ã)−1Ẽ, R̃ = (s0Ẽ− Ã)−1B̃ (1.13)
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the moments (1.9) for the original and reduced systems respectively are:

η0(s0) = CR+ D, ηi(s0) = [i!(−1)i]CAiR, i ≥ 1, and (1.14)

η̃0(s0) = C̃R̃+ D, η̃i(s0) = [i!(−1)i]C̃ÃiR̃, i ≥ 1. (1.15)

The general case of matching moments around arbitrary points s0 ∈ C is called rational
interpolation. Two special cases are when the expansion is around s = 0 (Padé approxi-
mation) and s = ∞ (partial realization, where the moments are the Markov parameters of
the system). The Laurent expansion and moments at s = 0 are easily derived by set-
ting s0 = 0 in (1.10)-(1.11) and (1.12)-(1.13) respectively, and requiring A and Ã to be
invertible. For matching around s = ∞, the Laurent expansion and moments (Markov
parameters)8 are:

H(s) = η0(∞) + η1(∞)s−1 + η2(∞)s−2 + . . . + ηk(∞)s−k + . . . (1.16)

η0(∞) = D, ηi(∞) = C(E−1A)i−1(E−1B), i ≥ 1, (1.17)

similarly for the reduced transfer function, requiring E, Ẽ to be invertible.

An important result in reduction by moment matching is that reducing projections W
and V can be constructed to ensure that a desired number of moments of Σ are matched
by Σ̃. Following [4, Sect. 11.3] and [55, Theorem 2.1] (to which we refer for proofs) this
result is repeated here, with some adaptations in notation to make the theory in this
section uniform:

Theorem 1.3.1 LetA ∈ Rn×n,R ∈ Rn×p be the matrices from (1.12), V ∈ Rn×k, W ∈ Rn×k,
WTV = I, k < n, m ≤ n, p ≤ n. If:

span
(
AiR

)
⊆ span (V) , i ∈ (0, 1, . . . , q1 − 1) , and (1.18)

span
((
AT
)i

CT
)

⊆ span (W) , i ∈ (0, 1, . . . q2 − 1) , (1.19)

then

CAiR = C̃ÃiR̃, for i ∈ (0, 1, . . . q1 + q2 − 1) , (1.20)

where :

C̃ = CV , Ã = WTAV, R̃ = WTR.

More precisely, Σ̃ obtained from the projection (2.1) matches q1 + q2 moments of the original
system Σ at a chosen expansion point s0.

In practice, W and V are not formed explicitly, due to the fact that computing the mo-
ments is numerically problematic [4]. Rather, exploiting the analogy between the V
which satisfies (1.18) and the Krylov subspace Kq = span

[
R,AR, . . . ,Aq1−1R

]
(known

8The following notation is used: ηk(∞) = lims→∞ ηk(s).



10 Introduction

as the reachability subspace in system theory, while W is associated with the observabil-
ity subspace), V and W are constructed iteratively based on the Lanczos [58] or Arnoldi
[7] algorithms. [4, Chapter 11.2] gives a detailed analogy between Lanczos/Arnoldi
and moment matching, and discusses numerical issues such as the loss of orthogo-
nality or break-down and the means to overcome them. One of the disadvantages of
Lanczos/Arnoldi-based moment matching algorithms is that they do not automatically
preserve the stability or the passivity of the original system (some variants do preserve
passivity based on either assumptions on the structure of the original system, or spe-
cial ways to pick the interpolation points). Devising robust implementations for Krylov
methods and their use in model recution has received the attention of numerous works,
among which [30], [31], [26], [36].

A related problem is that of matching moments at different points s1, . . . sk, rather than
more moments at one point s0. The solution to this problem is generally known as ratio-
nal Krylov [4, Section 11.3], [81], and brings in three important additional questions: (a)
what is the appropriate selection of points s1, . . . sk to ensure passivity preservation (b)
how can the associated projection matrices W, V be computed efficiently and (c) is there
a suitable selection of s1, . . . sk which ensures good approximation and if so, is there
an efficient procedure to compute the corresponding interpolating projection? The an-
swers are provided by the spectral zero interpolation approach, on which a brief overview
follows. Antoulas [5] showed that if the expansion points are chosen among the roots of
H(s) + H∗(−s) = 0 (the so called spectral zeros), then the reduced Σ̃ which matches one
moment at each selected spectral zero is passive. At the same time, Sorensen [86] shows
the analogy between spectral zeros and the eigenvalues of an associated Hamiltonian
pair, demonstrating that the projection matrices W, V which interpolate at the spectral
zeros can be computed from the eigenvectors of the Hamiltonian eigenvalue problem.
Later, Ionuţiu et al. [44] show that interpolating the spectral zeros which are dominant in
an appropriate residue norm ensures approximation quality and they propose to com-
pute the corresponding W, V with a specialized iterative eigenvalue solver.

1.3.3 Exploiting the structure of electrical circuits

While the above literature overview applies to a general type of descriptor systems,
some reduction methods exploit the special properties and structure of systems arising
in circuit simulation. The most encountered representation which describes the dy-
namics of electrical circuits is obtained using modified nodal analysis (MNA) [37]. From
Kirchhoff’s current, voltage laws, and the branch constitutive equations, the MNA rep-
resentation of an RLC circuit leads to the following descriptor system:[

C 0
0 L

]
︸ ︷︷ ︸

E

d
dt

[
v(t)
iL(t)

]
︸ ︷︷ ︸

ẋ

+

[
G E
−ET 0

]
︸ ︷︷ ︸

−A

[
v(t)
iL(t)

]
︸ ︷︷ ︸

x

=

[
B
0

]
︸ ︷︷ ︸

B

u(t), (1.21)
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where without loss of generality it is assumed that the inputs are current sources applied
at the port nodes and that the outputs are voltages measured at the ports. An alternative
representation with input voltages and output currents is treated in Chapter 2, from
which the representation (1.21) can be obtained, as shown therein. The MNA system
(1.21) has a special structure. The internal variables x are are split into node voltages,
v and currents through inductors, iL. G is the conductance matrix, C is the capacitance
matrix, L is the inductance matrix (a diagonal with the inductor values if there are no
mutual inductances, otherwise the mutuals appear as off-diagonal entries). E is the
incidence matrix which determines the topological connections for the inductors. B is
the incidence matrix of current injections (the ith column of B is the ith unit vector for
each input i). For demonstrative purposes, two simple RLC examples in MNA form
are given in Sect. 2.5.1 and Sect. 5.3.1 respectively, and an RC example in Sect. 4.2.2.
The blocks of the MNA matrices have important numerical properties, which are often
exploited by reduction methods especially to preserve passivity: G, C, L are symmetric
nonnegative definite (they have non-negative eigenvalues), and C = BT (the outputs
are measured at the nodes to which the inputs are applied).

One of the most popular reduction methods for electrical circuits is PRIMA [71], which
matches moments of the original system at s0 = 0, and is based on a block-Arnoldi
implementation. The most important advantages offered by PRIMA are: the applicabil-
ity to MIMO systems and passivity preservation. With PRIMA, passivity is preserved
by means of a congruence transformation (i.e. the left and right projection matrices are
equal W = V) applied on the MNA matrices (1.21); the passivity proof is given in [71],
and holds for all reduction methods based on congruence transforms applied to systems
in the MNA form (1.21). One of the limitations of PRIMA is that the MNA structure of
the original Σ is lost during the projection (2.1), and as a consequence finding a netlist
representation for Σ̃ is not straightforward. Later, the structure preserving SPRIM [27]
and the second order SAPOR [66, 89] variants have been introduced which, through
structure preservation, allow a simpler realization of the reduced model as a circuit,
while maintaining the desired moment matching and passivity preserving properties.
In this thesis, Chapter 2 addresses the realization problem from different angles, in-
cluding that of structure preservation via SPRIM. Chapter 6 brings an additional con-
tribution in demonstrating how even models reduced with non-structure preserving
methods such as PRIMA can be easily realized as netlists and re-used in simulations.

1.3.4 Special methods for multi-terminal systems

Despite the recent advances in model reduction, mostly aimed at improving the ac-
curacy and efficiency of state-of-the-art methods, there remains a class of systems to
which the applicability of existing approaches is limited. These are systems with a large
number of inputs and outputs, in short, multi-terminal systems, which receive special at-
tention in this thesis. Examples of large, multi-terminal systems are electrical networks
resulting from parasitic extraction which can have terminal numbers exceeding thou-
sands. The terminals can be either the user defined input-output nodes, or interconnec-
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tion nodes between the linear, parasitic network and other non-linear circuit elements
such as diodes or transistors. When reducing a multi-terminal system via a traditional
approach, be it spectral- or Krylov-based, usually a reduced model results which is
much denser than the original (even though its dimension is smaller). As explained and
demonstrated in this thesis (see especially Chapter 4), re-using a dense reduced model
in simulation requires the same, or even more computational effort than the original
system, so the entire reduction effort becomes useless. Aside from the multi-terminal
challenge, there is yet another limitation for traditional reduction approaches: forming
the reducing projection is often too expensive (computational- and memory-wise) or
even unfeasible for systems with a large number of internal variables (e.g. circuits with
node numbers exceeding tens of thousands). It is thus vital to develop new methods
which can efficiently handle such challenging systems arising in industrial problems.

Recently, the ReduceR [80] method has provided promising results in reducing very
large, multi-terminal resistor networks. At the heart of ReduceR are tools from graph-
theory and fill-reducing node reorderings, which ensure that only those variables are
eliminated from the network, that do no generate a lot of fill-in. Using graph partition-
ing and a special hierarchical ordering of the system matrices new, efficient methods
for reducing large, multi-terminal RC networks are developed in this thesis (Chapters
3 and 4), with extensions to RLC networks in Chapter 5. The foundation for the multi-
terminal framework of these chapters is the congruence-based reduction methodology
PACT [56, 57] which, compared to the PRIMA/SPRIM approach, exploits a different
splitting of the system variables and matrices to construct related Krylov subspaces (the
PACT methods are described in the afore-mentioned chapters).

Modeling multi-port systems from measured data

While all of the above methods construct a reduced model starting from an original de-
scriptor system (1.3), a different problem arises when such a representation is not avail-
able. Rather, for a multi-port device, a reduced order model must be constructed directly
from frequency response measurements. A recent solution to this problem is provided by the
Loewner-based methodology [60–64] (an earlier approach is by Vector Fitting [20, 35]).
Although the Loewner approach may not directly apply to networks with a very large
number of terminals (due to the sparsity considerations above described), [60–64] show
that it provides promising results for those with a moderate number of terminals. For
such systems, Chapter 6 shows that low order macromodels obtained with the Loewner
framework can also be synthesized and re-inserted in a circuit simulation flow.

1.4 Thesis outline

Throughout this thesis, model reduction and synthesis are closely linked. Therefore, the
research is focused both on the approximation quality and efficiency of reduction, and
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on whether/how the resulting reduced model can be cast into a circuit and reconnected
with other sub-circuits, sources, or non-linear devices in the actual simulation phase.
We call this the “use” (or “re-use”) of the reduced model. Hence, almost all experiments
in this thesis involve reduction, synthesis, and the simulation of the reduced circuit.
Except for the self-created demonstrative examples, all circuits are provided by NXP
Semiconductors. Unless otherwise stated, all circuit simulations are performed with
Spectre [16].

This thesis is organized as a collection of articles, hence each chapter can be read individ-
ually. The material nevertheless builds up from chapter to chapter, and the appropriate
connections among the different topics are made throughout the text. An outline of the
thesis follows next.

With Chapter 1, the reader should become familiar with the problem background and
with basic concepts related to system theory and model order reduction. The tie be-
tween reduction and synthesis is given in Chapter 2 which proposes a new framework
for dealing with multi-terminal systems. The framework allows the decoupling of all
sources or non-linear devices from the linear circuit which must be reduced, and their
re-insertion after reduction and synthesis. Although this is intuitive from a physical
perspective, an appropriate set-up for the original system equations is necessary, if this
procedure is to succeed also numerically. The mathematical formulation which ensures
this is proposed in Chapter 2. The reduction framework can be thought of as indepen-
dent from the types of inputs/outputs chosen for the circuit. The synthesis problem is
also analyzed and shows that unstamping (also denoted as RLCSYN [93]) is the most
suitable in the derived multi-terminal framework. The material in this chapter has been
published as [40, 41, 43] and has been reorganized here for presentation clarity. The
proposed framework for multi-terminal reduction and synthesis gives the theoretical
foundation for the approaches taken in later chapters.

The reduction of RC circuits is addressed in Chapters 3 and 4. Chapter 3 shows that
the same projection which underlies the reduction of R-networks [80] extends imme-
diately to RC networks and brings two main additional contributions. First, it proves
that the governing projection for multi-terminal R/RC reduction ensures that resistors
in the reduced network are positive. Then, a partition-based reduction for RC networks
is derived, shown mathematically equivalent to the unpartitioned approach. This result
guarantees that reduction accuracy remains satisfied also when the network is reduced
by parts. The proposed partition-based scheme also gives a simple solution for comput-
ing path resistances between the terminals of a network, a problem which often occurs
in circuit simulation [80]. The properties identified in Chapter 3 also hold for the more
advanced method in Chapter 4.

In Chapter 4, the attention is turned to reducing very large RC networks with many
terminals, for which a new method is developed, SparseRC. As the name suggests,
the main feature of SparseRC is that it preserves sparsity during reduction. Retaining
sparsity is crucial when reducing circuits with terminal numbers exceeding thousands,
as otherwise the fill-in would render the reduced models useless during simulation.
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SparseRC preserves sparsity with the help of graph partitioning and the identification
of nodes responsible for fill-in. Another important feature of SparseRC is that it matches
moments at DC for each subnet resulting from partitioning as well as for the recom-
bined network. In addition, it can reduce efficiently very large networks for which ex-
isting techniques are inappropriate. Extensive experiments demonstrate that SparseRC
achieves significant reduction rates and simulation speed-ups with little computation
effort and at almost no accuracy loss. This chapter is published as [48]. Other publica-
tions related to this work are [42, 46, 49].

Chapter 5 addresses multi-terminal RLC reduction. Two approaches are compared,
based on the first and second order formulation of system equations. A partition-based
implementation is derived based on the second order form. An extensive comparison
between the first and second order form is drawn, through which the advantages and
limitations of each approach are identified. Among the most important contributions of
Chapter 5 is a rank revealing decomposition of the reduced inductive susceptance ma-
trix, which ensures that the synthesized model successfully simulates. Other problems,
such as recovering circuit behavior at DC, are also analyzed.

Chapter 6 takes a new turn and resolves two important problems which usually limit
the applicability of traditional reduction methods to multi-terminal circuits: (1) the re-
duction of ungrounded systems and (2) the synthesis without controlled sources. For
un-grounded systems, the underlying matrix pencil (A, E) is singular. An example
would be a sub-circuit which is extracted from a larger network. While such circuits
can be reduced with the methods in Chapters 3, 4 and 5, other approaches such as
PRIMA [71] would be immediately dismissed, as they generally assume that the pair
(A, E) is regular. Chapter 6 proposes a terminal removal and recovery action, which al-
lows un-grounded multi-terminal models to be reduced with standard methods as well.
The second problem also finds a solution in Chapter 6 using transformations based on
the input/output matrices of the reduced model.

As the key to preserving sparsity in multi-terminal MOR is graph partitioning, Chapter
7 gives a closing analysis on this topic. The standard partitioning objectives of state-of-
the art software are revised and new objectives aimed at explicitly minimizing fill-in are
derived. Although implementing these objectives exceeds the scope of this research, a
new partitioning problem in the context of multi-terminal model reduction is proposed.
Selections from this material appear in [47].



Chapter 2

Reduction and synthesis
framework for multi-terminal
circuits

A framework is presented for the reduction and synthesis of multi-terminal systems
arising in circuit simulation. Two main problems are addressed: (1) setting up the ap-
propriate circuit equations, so that reduction can be used without any constraints on
the types of inputs applied to the circuit. This feature becomes especially useful when
reducing sub-circuits of bigger systems individually, or the linear part of circuits con-
taining non-linear devices, and (2) ensuring that reduced models recover their physical
interpretation and that they can be re-inserted naturally in the original simulation flow
via the relevant interconnection nodes.

2.1 Introduction

Although many model order reduction methods have been developed and have evolved
since the 1990s (see for instance [4] for an overview), it is usually less clear how to use
these methods efficiently in industrial practice, e.g., in a circuit simulator. One reason
can be that the reduced order model does not satisfy certain physical properties, for in-
stance, it may not be stable or passive while the original system is. Failing to preserve
these properties is typically inherent to the reduced order method used (or its imple-
mentation). Passivity (and stability implicitly) can nowadays be preserved via several
methods [5, 27, 44, 71, 74, 77, 86], but none addresses explicitly the practical aspect of
(re)using the reduced order models with circuit simulation software (e.g., SPICE [92]).
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Difficulties can occur at several levels, when inserting a reduced model in place of the
original circuit in a simulation:

1. If the reduced model (2.1) was obtained based on certain restrictive assumptions
about the types of inputs applied u and measured outputs y, the simulation is
usually also constrained to the same input/output types. Hence, if the model
must be re-used in different simulation runs which would require other input and
output types, a new reduced model would have to be generated for each scenario.
A more elegant solution would be to have a single reduced circuit which can be
re-coupled via its terminal nodes to any kind of driving inputs: voltage sources,
current sources, non-linear devices, or other circuit blocks. In this chapter, the
appropriate reduction setup is derived which ensures that reduced models can
indeed accommodate any types of driving sources in simulations.

2. The linear circuit to be reduced is represented by a netlist, which is a description
of the circuit element values (R,L,C) and their connections to the circuit nodes.
Such an example is the simple netlist in Fig. 2.1. However, reduced order models
are usually represented in terms of system matrices or of the input-output transfer
function. Typically, the default input format for circuit simulators are netlists with
nodes and circuit elements, and would require additional software to directly han-
dle mathematical representations. Thus, a reduced model in netlist representation
is more easily coupled to other circuit blocks, simulated, or used by circuit de-
signers for further analysis. This chapter also addresses synthesis methods which
convert reduced models into netlists. Here, two methods are presented: Foster syn-
thesis for single input single output systems (SISO), and synthesis by un-stamping
for multi input multi output (MIMO) systems. The latter especially suits the multi-
terminal reduction setup mentioned at item [1.]. With the proposed multi-terminal
reduction and synthesis framework reduced circuits are obtained which contain
no controlled sources or transformers, and which are easily re-inserted in any
SPICE-like circuit simulation environment.

The material is organized as follows. Sect. 2.2 formulates the two main problems of this
chapter. The first is treated in Sect. 2.3, and provides the setup for multi-terminal model
reduction. The second problem, namely synthesis, is addressed in Sect. 2.4, which de-
scribes two procedures: RLCSYN unstamping, and Foster synthesis. Experiments in
Sect. 2.5 demonstrate the functionality of the proposed reduction and synthesis frame-
work. Sect. 2.6 concludes.

2.2 Problem formulation

Following Sect. 1: given an original system Σ(E, A, B, C, D) of dimension n in the form
(1.3), a reduced model Σ̃(Ẽ, Ã, B̃, C̃, D) of dimension k� n is sought. In particular:

Σ̃(Ẽ, Ã, B̃, C̃, D) ≡ (WTEV, WTAV, WTB, CV, D), (2.1)
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where V, W ∈ R
n×k are matrices whose k � n columns form bases for relevant sub-

spaces of the space in which the original internal variables lie. Rather than addressing
explicitly the construction of V, W here, the aim of this chapter is to derive a reduc-
tion and synthesis framework which overcomes the two global problems identified in
Sect. 2.1. Chapters 3, 4 and 5 are based on this framework and are concerned explicitly
with forming the projection matrices V, W appropriate to the context therein.

For clarity, the two problems identified in Sect. 2.1 are re-stated:

1. What is the appropriate modeling of equations (1.3) governing the original system
Σ(E, A, B, C, D), which ensures that the reduced Σ̃(Ẽ, Ã, B̃, C̃, D) accommodates
any input/output types in later simulation stages?

2. How can Σ̃(Ẽ, Ã, B̃, C̃, D) recover its physical interpretation? For instance, if the
original Σ(E, A, B, C, D) describes a circuit with R, L, C elements, which methods
are suitable to convert Σ̃(Ẽ, Ã, B̃, C̃, D) into a circuit representation with R, L, C
elements only, without introducing new elements such as controlled sources or
transformers?

Sect. 2.3 provides the setup for multi-terminal model reduction which underlies all
reduction methods in this thesis. In this chapter in particular, the reduction itself is
performed with SPRIM/IOPOR [27, 93] but for demonstration purposes only. Then,
Sect. 2.4 discusses two synthesis methods, from which the unstamping method is chosen
as the most suitable for many-terminal systems. The proposed framework offers flexi-
bility in choosing the input/output types of the original or reduced system during the
simulation stage, demonstrates that synthesis is possible with R, L, C elements only, and
that the reduced circuits can be re-inserted easily via its terminals nodes to the desired
simulation environment.

Further on, the following naming conventions are used. Σ(E, A, B, C, D) will denote
a system which “hides” any further information about the structure of the underlying
matrices. It will be clear from the context when the special structure of system matrices
is exploited, such as in (1.21). Also, if the inputs u are currents and the outputs y are
voltages, then H(s) is an impedance function (each i, j entry of H(s), H(i, j)(s) =

Yi(s)
U j(s)

,

represents a voltage deviled by a current). We denote such a current driven circuit to
be in impedance form. If on the other hand the inputs are voltages and the outputs are
currents, then H(s) is an admittance function, and we denote the circuit to be in admit-
tance form. We will also often refer to reduction methods that are input-output structure
preserving. These ensure that the reduced input-output matrices B̃, C̃ retain the spe-
cial structure of the original input-output matrices B, C respectively (simply put, B̃, C̃
are sub-blocks of B, C). Preserving input-output structure during reduction is an im-
portant feature which later enables synthesis without controlled sources or transform-
ers. Among the input-output structure preserving methods are SPRIM/IOPOR [27, 93],
PACT [56] for RC networks, the RLC version [57] and the methods developed in Chap-
ters 3, 4 and 5. Chapter 6 presents another reduction approach which enables synthesis
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Figure 2.1: Circuit with terminal a, internal node 1, port P, and port Q(a,0).

without controlled sources even for methods that are not input-output structure pre-
serving by default. The approach taken in Chapter 6 is nevertheless also based on the
reduction setup presented next.

2.3 Reduction setup for multi-terminal systems

The terms internal nodes, terminals (or external nodes), and ports are often found in elec-
tronic engineering related papers. In short, external nodes are those related to the sys-
tem inputs u and outputs y, while all the rest are internal nodes. Thus, a terminal (exter-
nal node) is a node that is visible on the outside of a circuit, i.e., a node in which currents
can be injected (cf. node a in Fig. 2.1). An internal node is one which is not visible on
the outside of a circuit, i.e., no currents can be injected in an internal node (cf. node 1
in Figure 2.1). A port consists of two terminals that can be connected, for instance, by a
source, a non-linear circuit element, or another (sub)circuit (cf. port P in Fig. 2.1). Some-
times terminals are referred to as ports and vice versa: from the context it should then
be clear which terminal(s) complete the ports; usually it is implicitly assumed that the
ground node completes the ports. In Fig. 2.1, for instance, terminal “a” can be seen as a
port (Q) by including the ground node.

Most of the multi-terminal systems in this thesis arise from full device-parasitic simu-
lations. The linear part i.e. the parasitic network is first decoupled from other non-linear
elements such as transistors or diodes, and then reduced. Through the de-coupling, the
interconnection points between the linear subcircuit and non-linear elements become
terminals of the linear part to be reduced. A similar scenario occurs for instance when
reducing parts of a network individually, for instance, after partitioning a large circuit, as
is the case in Chapters 3, 4 and 5. The reduction setup proposed in this chapter ensures
that the removal of non-linear elements or other circuit blocks before reduction and their
re-insertion after reduction has a theoretical foundation. Without loss of generality, in
the following section this is exemplified through the removal/re-insertion of voltage
sources from a circuit. The result holds for the other afore-mentioned scenarios as well.
By reducing a current driven model, the reduced netlist can be easily coupled to other
circuitry in place of the original netlist, and (re)using the reduced model in simulation
becomes straightforward.
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In the following section, it is shown that the impedance form (defined in Sect. 2.2) is
the one which gives the desired freedom in connecting the circuit in practice to other
types of elements than current sources. First, we motivate reduction in impedance form,
and show how it also applies for systems that are originally in admittance form. The
impedance-based reduction setup is demonstrated via the input-output structure pre-
serving method SPRIM/IOPOR [27,93]. Finally, a note on numerical aspects concerning
the SPRIM/IOPOR projection is given.

2.3.1 A simple admittance to impedance conversion

The strength of input-output structure preserving methods is that the input/output con-
nectivity can be synthesized after reduction without controlled sources, provided that
the system is in impedance form: the inputs are currents injected into the circuit terminals,
and the outputs are voltages measured at the terminals. The emerging question is: how
to ensure synthesis without controlled sources, if the original model is in admittance
form (i.e., it is voltage driven)? We show that reduction and synthesis via the input
impedance transfer function can be performed, also when the original circuit is initially
voltage driven. The same principle of an impedance-based reduction serves as the basis
for reducing the linear part of circuits with non-linear elements, as is done in Chapters
3, 4, 5 and 6 or other methods such as [80, 88]. The admittance to impedance conver-
sion proposed herein (also published as [43]) enables the reduction, synthesis and most
importantly re-use of complex linear system which contain couplings to other circuit
blocks (e.g. non-linear devices, sources, etc. ).

Consider the modified nodal analysis (MNA) description of an input admittance1 type
RLC circuit, driven by ns voltage sources: C 0 0

0 0 0
0 0 L


︸ ︷︷ ︸

EY

d
dt

 v(t)
iS(t)
iL(t)


︸ ︷︷ ︸

ẋY

+

 G Ev EL
−Ev

T 0 0
−EL

T 0 0


︸ ︷︷ ︸

−AY

 v(t)
iS(t)
iL(t)


︸ ︷︷ ︸

xY

=

 0
B
0


︸ ︷︷ ︸

BY

u(t), (2.2)

where u(t) ∈ R
ns are input voltages and y(t) = CYx(t) ∈ R

ns are output currents,
CY = BT

Y. The states are xY(t)
T = [v(t), iS(t), iL(t)]

T , with v(t) ∈ Rnv the node
voltages, iS(t) ∈ Rns the currents through the voltage sources, and iL(t) ∈ RnL the
currents through the inductors, nv + ns + nL = n. The nv = n1 + n2 node voltages
are formed by the n1 external nodes/terminals2 and the n2 internal nodes (assuming
that the voltage sources may be ungrounded, n1 satisfies: ns < n1 ≤ 2ns + 1). The
dimensions of the underlying matrices are: C ∈ Rnv×nv , G ∈ Rnv×nv , Ev ∈ Rnv×ns , L ∈

1The subscript Y refers to quantities associated with a system in admittance form.
2The MNA form (2.2) corresponds to the ungrounded circuit (i.e., the reference node is counted within

the n1 external nodes), resulting in a defective matrix pencil (AY , EY). For subsequent computations such as
the construction of a Krylov subspace, the pencil (AY , EY) must be regular. Thus in (2.2), one node must be
chosen as a ground (reference) node by removing the row/column corresponding to that node; this ensures
that the regularity conditions (i) and (ii) from [76, Assumption 4] are satisfied. The positive definiteness of
C ,L, G is also a necessary condition to ensure the circuit’s passivity.
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RnL×nL , EL ∈ Rnv×nL , B ∈ Rn1×ns . Assuming without loss of generality that (2.2) is
permuted such that the first n1 nodes are the external nodes, the input voltages are
determined by a linear combination of v1:n1

(t) only. Thus the following holds:

Ev =

[
Bv

0n2×ns

]
∈ Rnv×ns , Bv ∈ Rn1×ns , B = −Bv. (2.3)

We derive the first order impedance-type system associated with (2.2). Note that by
definition, iS(t) flows out of the circuit terminals into the voltage source (i.e., from the +
to the− terminal of the voltage source, see also the example in Sect. 2.5.1). We can define
new input currents as the currents flowing into the circuit terminals: iin(t) = −iS(t).
Since v1:n1

(t) are the terminal voltages, they describe the new output equations, and it
is straightforward to rewrite (2.2) in the impedance form:

[
C 0
0 L

]
︸ ︷︷ ︸

E

d
dt

[
v(t)
iL(t)

]
︸ ︷︷ ︸

ẋ

+

[
G EL
−EL

T 0

]
︸ ︷︷ ︸

−A

[
v(t)
iL(t)

]
︸ ︷︷ ︸

x

=

[
Ev
0

]
︸ ︷︷ ︸

B

iin(t)

[
ET

v 0
]

︸ ︷︷ ︸
C

[
v(t)
iL(t)

]
︸ ︷︷ ︸

x

= y(t) = Bvv1:n1
(t), ET

v =
[
BT

v 0ns×n2

] (2.4)

where B describes the new input incidence matrix corresponding the input currents, iin.
The new output incidence matrix is C, corresponding to the voltage drops over the circuit
terminals. We emphasize that (2.4) has fewer unknowns than (2.2), since the currents iS
have been eliminated. The transfer function associated to (2.4) is an input impedance:
H(i, j)(s) =

Yi(s)
Iin j

(s) , where Y(s) and Iin(s) are the Laplace transforms of y(t) and iin(t)

respectively. In Sect. 2.3.2 we explain how to obtain an impedance type reduced order
model in the input/output structure preserved form:

[
C̃ 0
0 L̃

]
︸ ︷︷ ︸

Ẽ

d
dt

[
ṽ(t)
ĩL(t)

]
︸ ︷︷ ︸

˙̃x

+

[
G̃ ẼL

−ẼT
L 0

]
︸ ︷︷ ︸

−Ã

[
ṽ(t)
ĩL(t)

]
︸ ︷︷ ︸

x̃

=

[
Ẽv
0

]
︸ ︷︷ ︸

B̃

iin(t)

[
ẼT

v 0
]

︸ ︷︷ ︸
C̃

[
ṽ(t)
ĩL(t)

]
︸ ︷︷ ︸

x̃

= y(t) = Bvv1:n1
(t), ẼT

v =
[
BT

v 0ns×k2

] (2.5)

where C̃, L̃, G̃, Ẽv are the reduced MNA matrices, and the reduced input impedance
transfer function is: H̃(s) = C̃(sẼ− Ã)−1B̃. Due to the input/output preservation, the
circuit terminals are easily preserved in the reduced model (2.5).

It turns out that after reduction and synthesis, the reduced model (2.5) can still be used
as a voltage driven admittance block in simulation. This is shown next. We can rewrite

the second equation in (2.5) as:
[
−ẼT

v 0 0
] [

ṽ(t)T ĩS(t)
T ĩL(t)

T
]T

= Bu(t). This
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result together with iin(t)=−iS(t), reveals that (2.5) can be rewritten as: C̃ 0 0
0 0 0
0 0 L̃


︸ ︷︷ ︸

ẼY

d
dt

 ṽ(t)
iS(t)
ĩL(t)


︸ ︷︷ ︸

˙̃xY

+

 G̃ Ẽv ẼL
−ẼT

v 0 0
−ẼT

L 0 0


︸ ︷︷ ︸

−ÃY

 ṽ(t)
iS(t)
ĩL(t)


︸ ︷︷ ︸

x̃Y

=

 0
B
0


︸ ︷︷ ︸

B̃Y

u(t), (2.6)

which has the same structure as the original admittance model (2.2). Conceptually one
could have reduced system (2.2) directly via the input admittance. In that case, synthesis
would have required controlled sources [36], due to the fact that the structure of the
input/output matrix would not be preserved. As shown above, this is avoided by:
applying the simple admittance-to-impedance conversion (2.2) to (2.4), reducing (2.4) to
(2.5), and finally reinserting voltage sources as in (2.6). In other words, the input-output
structure preserved reduced admittance (2.6) tells that, after synthesizing the reduced
impedance model (2.5) into a reduced netlist with all terminal nodes preserved, the
voltage source elements are safely reconnected at the terminals.

2.3.2 Input-output structure preservation with SPRIM/IOPOR

A reduced model of the impedance form (2.5) can be obtained for instance via the input-
output structure preserving SPRIM/IOPOR projection [27, 93] as follows. Let V be the
projection matrix obtained with PRIMA [71], split according to the block dimensions of
(2.4):

V = [V1, V2, V3] ∈ R((n1+n2+nL)×k),

where n1 + n2 = nv, V1 ∈ R(n1×k), V2 ∈ R(n2×k), V3 ∈ R(nL×k), k ≥ n1, i = 1 . . . 3. After
appropriate orthonormalization (e.g., via Modified Gram-Schmidt [78, Chapter 1]), we
obtain: Ṽi = orth(Vi) ∈ Rni×ki , ki ≤ k. The SPRIM [27] block structure preserving
projection is:

Ṽ =

 Ṽ1 0 0
0 Ṽ2 0
0 0 Ṽ3

 ∈ Rn×(k1+k2+k3)

which preserves the block structure of (2.4) but does not yet preserve the structure of
the input and output matrices.

The input-output structure preserving projection is obtained via SPRIM/IOPOR as pro-
posed in [93]:

V =

 In1×n1
0 0

0 Ṽ2 0
0 0 Ṽ3

 ∈ Rn×(n1+k2+k3),

where the top block is:
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W =

[
In1×n1

0
0 Ṽ2

]
∈ R(n1+n2)×(n1+k2). (2.7)

Recalling (2.3), we obtain the reduced system matrices in (2.5):

C̃ = WTCW, G̃ = WTGW, L̃ = ṼT
3LṼ3, ẼL = WTELṼ3 (2.8)

Ẽv = WTEv =
[
BT

v 0n1×k2

]T
, (2.9)

which compared to (2.3) clearly preserves input-output structure. Therefore a netlist
representation for the reduced impedance-type model can be obtained, that is driven by
injected currents just as the original circuit. To this end, we use the Laplace transform
and convert (2.5) to the second order form:{

[sC̃ + G̃ + 1
s Γ̃ ]ṽ(s) = Ẽviin(s)

ỹ(s) = ẼT
vṽ(s),

(2.10)

where ĩL(s) =
1
s L̃
−1
(
ẼL

T
)

ṽ(s) are the eliminated current variables and Γ̃ = ẼLL̃
−1ẼT

L.

The reduced model (2.10) is synthesized via RLCSYN unstamping according to [93] (this
is revised in Sect. 2.4.1).

On SPRIM/IOPOR and rank loss of Ã

In some cases it was observed (and shown by results in Sect. 2.5.3) that models reduced
with SPRIM or SPRIM/IOPOR exhibit poles and zeros at 0. This section explains when
this happens and supports theoretically the interpretation of the results in Sect. 2.5.3.

Proposition 2.3.1 Let W and Ṽ3 be the SPRIM/IOPOR projection matrices (2.7), with full
column rank. If ẼL = WTELṼ3 in (2.8) has deficient column rank, then the SPRIM/IOPOR
reduced model (2.5) has at least a pole-zero pair at 0.

Proof 2.3.1 Recalling that Ṽ2 has full column rank, it is clear from (2.7) that W also has full
column rank. Nonetheless WT ∈ R(n1+k2)×(n1+n2) has more columns than rows (usually k2 �
n2), thus WT has deficient column rank. Hence ẼL = WTELṼ3 ∈ R(n1+k2)×k3 may also lose
column rank (even if EL and Ṽ3 have full column rank). If ẼL has deficient column rank, then
in (2.5) we have: rank(Ã) < #cols(Ã). Thus Ã has deficient column rank⇒ Ã has at least an
eigenvalue at 0⇒ 0 is also an eigenvalue of the pencil (Ã, Ẽ) and this is a pole at 0. The zeros
of the reduced system (2.5) are determined as eigenvalues of the extended matrix pair (Ãz, Ẽz),

where Ãz is the Rosenbrock matrix [78, Chapter 5]: Ãz =

[
Ã B̃
−C̃ 0

]
=

−G̃ −ẼL Ẽv
ẼT

L 0 0
−ẼT

v 0 0

,
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and Ẽz =

[
Ẽ 0
0 0

]
. From the structure of Ãz it is seen that if ẼL has deficient column rank,

then Ãz also loses rank and will have a 0 eigenvalue. Consequently, (Ãz, Ẽz) will also have an
eigenvalue at 0, which means that the SPRIM/IOPOR reduced system (2.5) has a zero at 0.

Analytically, pole-zero pairs at 0 are harmless since they theoretically cancel. Numeri-
cally this may not be the case, altering the approximation for low frequencies (as seen
for instance in the result in Sect. 2.5.3). As also reported in Chapter 5, the deficiency in
the column rank of ẼL [and implicitly of (Ã)] may prejudice the computation of the DC
solution when the reduced, synthesized RLC model is re-simulated. A rank revealing
procedure for Γ̃ which avoids these numerical limitations is proposed in Chapter 5.

2.4 Synthesis

Synthesis is the realization step needed to map the reduced order model from the math-
ematical representation (in terms of system matrices or transfer function) into a netlist
consisting of electrical circuit components [34]. In [15] it was shown that passive sys-
tems (with positive real transfer functions) can be synthesized with positive R,L,C ele-
ments and transformers (see also [76]). Later developments [14] propose a method to
circumvent the introduction of transformers, however the resulting realization is non-
minimal (i.e., the number of electrical components generated during synthesis is too
large). Allowing for possibly negative R, L, C values, other methods have been pro-
posed via e.g. direct stamping [57, 71] or full realization [36, 73]. These mostly model
the input/output connections of the reduced model with controlled sources. The term
“synthesis” is usually tied to circuit realizations which contain only positive circuit el-
ements, but which may include transformers or controlled sources. The main reason
for requiring that circuit elements in the reduced model are positive, is to guarantee
passivity. This is however not a necessary requirement. A reduced circuit with nega-
tive elements can also be passive as long as its underlying transfer function is positive
real. This holds for all reduced models obtained in this thesis. For this reason, we dis-
pose of the positiveness condition on circuit elements when using the term “synthesis”.
Furthermore, in this work synthesis methods are considered which do not introduce
transformers or controlled sources. Two such synthesis methods are: (1) RLCSYN syn-
thesis by unstamping [93] and (2) Foster synthesis [34], discussed next.

2.4.1 Synthesis by unstamping: RLCSYN

This section focuses on synthesis via the RLCSYN [93] method, which is based on un-
stamping the reduced matrix data directly into the netlist representation. It is suitable for
synthesizing models which were reduced via methods that preserve the MNA structure
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and the input-output connectivity at the circuit terminals. All reduction methods in this
thesis satisfy these properties, hence RLCSYN unstamping is the synthesis method of
choice in the remaining chapters.

The presentation of RLCSYN follows [93, Sect. 4], [40] and is briefly described here. In
circuit simulation, the process of forming the C , G ,L system matrices from the individ-
ual branch element values is called “stamping”. The reverse operation of “unstamping”
involves decomposing entry-wise the values of the reduced system matrices in (2.10)
into the corresponding R, L, and C values. The resulting Rs, Ls and Cs are connected in
the reduced netlist according to the MNA topology. The reduced input/output matrices
of (2.10) directly reveal the input connections in the reduced model via injected currents,
without any controlling elements. The unstamping procedure is best understood via an
example, which is provided in Sect. 2.5.1. The general framework reduction followed
by RLCSYN unstamping is as follows:

1. The system to be reduced is in MNA impedance form (2.4). If the system is of ad-
mittance type (2.2), apply the admittance-to-impedance conversion from Sect. 2.3.1.
If the circuit contains non-linear elements, they are removed in a similar manner
so that the linear part in impedance form (2.4) remains.

2. System (2.4) is reduced with an input-output structure preserving method and
converted to second order form (2.10). The alternative is to obtain the second order
form of the original system first, and reduce it directly in second order form [8,93].

3. According to [93], to obtain a reduced RLC netlist which successfully simulates,
the reduced Γ̃ from (2.10) must be diagonalized and regularized as proposed therein.
Diagonalization ensures that all inductors in the synthesized model are connected
to ground (i.e., there are no inductor loops). Regularization eliminates spurious
over-large inductors. These steps however are not needed for purely RC circuits.

4. Originally [93] impose that in (2.4), no Ls are directly connected to the input ter-
minals so that, after reduction, diagonalization and regularization preserve the in-
put/output structure. In Chapter 5 it is shown that this restrictive assumption is
unnecessary, since the rank revealing decomposition of Γ̃ can be performed, with-
out affecting the input-output structure, irrespective of whether there are Ls con-
nected to terminals or not. In fact, the reduced model can be cast into the form (2.5)
and synthesized as an RC equivalent netlist; this procedure allows multi-terminal
circuits with Ls connected to ports to be reduced, synthesized and re-simulated.

5. Finally, the reduced netlist is inserted via its terminal nodes in the original simu-
lation setup. Voltage sources or non-linear elements that were removed from the
network are simply reconnected at the terminal nodes.

With unstamping, roughly speaking every non-zero entry in the upper triangle of the
reduced matrices maps to a circuit element in the reduced netlist. Hence, the main
drawback of unstamping would be that, when the reduced system matrices are dense



2.4 Synthesis 25

and the number of terminals is large [p is of O(103)], the RLCSYN procedure yields
dense netlists. For a dense reduced network with p terminals and k internal nodes,
the RLCSYN synthesized netlist will have O[(p + k)2] circuit elements. This situation
is remedied however when the reduction itself ensures that the reduced matrices are
sparse also when p is large. Then, the O[(p + k)2] factor becomes only a loose upper
bound on the actual number of elements resulting from unstamping, and in practice
much fewer elements are generated. Hence, RLCSYN becomes especially suitable for
synthesizing multi-terminal reduced models obtained by sparsity preserving reduction
methods. Devising such methods is a very challenging task, a solution for which is
the SparseRC method, developed in Chapter 4. Other sparsity-related contributions are
given in Chapters 5 and 7.

2.4.2 Foster synthesis of rational transfer functions

This section describes the Foster synthesis method, which was developed in the 1930s
by Foster and Cauer [34] and involves realization based on the system’s transfer function
rather than on the systems matrices. Hence, the Foster approach can be used to realize
any reduced order model that is computed by standard projection based model order re-
duction techniques (where “standard” means that no structure preserving requirements
are necessary).

Realization of impedance functions

Realizations in this section are described in terms of SISO impedances (Z-parameters):
the circuit input is a current injection, and the output is a voltage. Given the reduced
system (2.1) and assuming that the matrix pencil (Ã, Ẽ) is non-defective3, consider the
partial fraction expansion [50] of its transfer function:

H̃(s) =
k

∑
i=1

r̃i
s− p̃i

+ D + sr j, (2.11)

The residues are r̃i =
(C̃x̃i)(ỹ

∗
i B̃)

ỹ∗i Ẽx̃i
, the poles are p̃i and, if non-zero, D and r j give ad-

ditional contributions from poles at ∞. An eigentriplet ( p̃i , x̃i , ỹi) is composed of an
eigenvalue p̃i of (Ã, Ẽ) and the corresponding right and left eigenvectors x̃i , ỹi ∈ C

k.
The expansion (2.11) consists of basic summands of the form:

Z(s) = r1 +
r2

s− p2
+

r3
s
+

(
r4

s− p4
+

r̄4
s− p̄4

)
+ sr6 +

(
r7

s− p7
+

r7
s− p̄7

)
, (2.12)

where for completeness we can assume that any kind of poles may appear, i.e., either
purely real, purely imaginary, in complex conjugate pairs, at ∞ or at 0 (see also Table
2.1). The Foster realization converts each term in (2.12) into the corresponding circuit

3For every eigenvalue of the pencil (Ã, Ẽ), its algebraic multiplicity is equal to its geometric multiplicity.
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block with R, L, C components, and connects these blocks in series in the final netlist.
This is shown in Fig. 2.2, where each summand from (2.12) is represented in order as a
circuit block between two nodes. Note that any reordering of the circuit blocks in the
realization of (2.12) in Fig. 2.2 still is a realization of (2.12). The values for the circuit
components in Fig. 2.2 are determined according to Table 2.1 (for a full derivation see
[40]).

Figure 2.2: Realization of a general impedance transfer function as a series RLC circuit.

Table 2.1: Circuit element values for Fig. 2.2 for the Foster impedance realization of (2.12)

pole residue R(Ohm) C(F) L(H) G(Ohm−1)
p1 = ∞ r1 ∈ R r1
p2 ∈ R r2 ∈ R − r2

p2

1
r2

p3 = 0 r3 ∈ R 1
r3

p4 = σ + iω ∈ C r4 = α + iβ ∈ C a0
a1

L 1
a1

a3
1

a2
1b0−a0(a1b1−a0)

a1b1−a0
a2

1p5 ≡ p̄4 r5 ≡ r̄4
a0 = −2(ασ +βω), a1 = 2α, b0 = σ2 +ω2, b1 = −2σ

p6 = ∞ r6 ∈ R r6
p7 ∈ iR r7 ∈ R 1

r7

2r7
p7 p̄7p8 ≡ p̄7 r8 ≡ r̄7

Realization of admittance functions

Realizations in this section will be described according to [65] in terms of SISO admit-
tances (Y-parameters): the inputs are voltage sources and the outputs are currents. Con-
sider the admittance function:

Y(s) = r1 +
r2

s− p2
+

(
r3

s− p3
+

r̄3
s− p̄3

)
+ sr5,

where r1, r2, p1, r6 ∈ R and r3 = ν + iµ, p3 = α + iβ ∈ C. This admittance function can
be realized by the RLCG network in Fig. 2.3, with the elements defined by:
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Figure 2.3: Realization of a general admittance transfer function as a RLCG parallel circuit
[65].

pole residue R C L G
p1 = ∞ r1 ∈ R 1

r1

p2 ∈ R r2 ∈ R − p2
r2

1
r2

p3 ∈ C r3 ∈ C 2L(L(να +µβ)−α) 1
L(α2+β22R(να+µβ))

1
2ν −2LC(να +µβ)p4 ≡ p̄3 r4 ≡ r̄3

p5 = 0 r5 ∈ R r5

Multi-port transfer functions

If the transfer function is an input admittance [H(s) = Y(s)], then a MIMO Foster real-
ization is determined as described in [90]. To the author’s best knowledge, MIMO Foster
realizations for general impedance transfer functions Z(s) are only known to be feasible
for 2-terminal systems. Even in that case, an admittance Foster network is determined
first [90], which is converted to an impedance network using a Π− Y transformation.
Some developments for multiport realizations of RC impedance transfer functions can
be found in [87].

The realization in netlist form can be implemented in any language such as SPICE [92],
so that it can be reused and combined with other circuits as well. The advantages of Fos-
ter synthesis are: (1) its straightforward implementation for single-input-single-output
(SISO) transfer functions, via either the impedance or the admittance transfer function,
(2) after reducing purely RC or RL circuits via modal approximation [78], the reduced
netlists obtained from Foster synthesis are guaranteed to have positive RC or RL values
respectively (see [40] for a proof). Note however that Foster synthesis does not guaran-
tee positive circuit elements in general (e.g., when used to synthesize reduced models
originating from RLC circuits, or reduced models of RC and RL circuits that were ob-
tained with methods different than modal approximation). The main disadvantage is
that for systems with many terminals, the MIMO Foster realization (see for instance [90])
would give dense reduced netlists, since the transfer function between every pair of ex-
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ternal nodes has to be realized. So, for a k-dimensional reduced system with p terminals,
the Foster synthesis will yield a total of p2k circuit elements. In contrast, synthesis by
unstamping is more straightforward to use for MIMO systems and, when applied af-
ter structure and sparsity preserving reductions, can yield reduced netlists with much
fewer circuit elements (as seen in Chapter 4).

To summarize the synthesis section, a comparison between Foster and unstamping is
drawn in Table 2.2.

Table 2.2: Summary and comparison of synthesis methods

To summarize
Unstructured projection and

Foster realization of Ĥ(s)
I/O preserving reduction and

RLCSYN unstamping

Properties
Passivity guaranteed by
positive realness of Ĥ(s)
from appropriate V, W

Passivity ensured via congruence
transformation W̃, W̃TW̃ = I

on Σ in MNA form

Advantages

Σ need not be in MNA form

RC, RL reduced with
modal approximation
⇒ positive elements

Preserved I/O and MNA structure

Unstamping easy for MIMO
via impedance Σ̂

Benefits from sparsity preserving
reduction⇒ sparse MIMO netlists

Main hurdles

MIMO realization for > 2 terminals
only for admittance H(s) and Ĥ(s)

Dense MIMO netlists:
for p ports, k poles

O(p2k) circuit elements

Positive R, L, C not guaranteed

G̃ may loose rank
with SPRIM/IOPOR

When reduced G̃, C̃, Γ̃ are dense,
for p terminals, k internal nodes
⇒ O((p + k)2) circuit elements

Positive R, L, C not guaranteed

2.5 Numerical examples

Three circuits are chosen to demonstrate the applicability of the reduction and synthe-
sis framework presented in this chapter. The first is a simple circuit which illustrates
the complete admittance-to-impedance formulation of Sect. 2.3.1 and the RLCSYN un-
stamping procedure described in Sect. 2.4.1. The second example is a SISO transmis-
sion line model, while the third is a MIMO model of a spiral inductor. For the single-
input-single-output (SISO) examples, one can easily provide synthesized models via
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both Foster and RLCSYN. For the multi-input-multi-output (MIMO) example, a synthe-
sized model can be obtained straightforwardly with RLCSYN, thus RLCSYN synthesis
is preferred over Foster synthesis.

2.5.1 Illustrative example

Figure 2.4: The admittance-type circuit driven by input voltages from [71]. G1,2,3 = 0.1S,
L1 = 10−3H, C1,2 = 10−6, Cc = 10−4, ‖u1,2‖ = 1.

The circuit in Fig. 2.4 is a simple RLC netlist driven by two voltage sources, u1 and u2.
The terminals are v1 and v4, and the current flowing out of the voltage sources into the
terminals are i1 and i2 respectively. The MNA equations in admittance form (2.2) are:



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 C1+Cc −Cc 0 0 0
0 0 −Cc C2+Cc 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 L



˙

v1
v4
v2
v3
iS1

iS2

iL


+



G1 0 −G1 0 1 0 0
0 G3 0 0 0 1 −1
−G1 0 G1+G2 −G2 0 0 0

0 0 −G2 G2 0 0 1
−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 −1 0 0 0





v1
v4
v2
v3
iS1

iS2

iL


=



0 0
0 0
0 0
0 0
−1 0
0 −1
0 0


[

u1
u2

]
(2.13)

Notice that:

iin =

[
i1
i2

]
= −

[
iS1
iS2

]
(2.14)

u =

[
u1
u2

]
=

[
v1
v4

]
, (2.15)

thus the external nodes (input nodes/terminals) are v1 and v4, and the internal nodes
are v2 and v3. As described in Sect. 2.3.1, (2.13) has an equivalent impedance formula-
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tion (2.4), with:

C =


0 0 0 0
0 0 0 0
0 0 C1+Cc −Cc
0 0 −Cc C2+Cc

 , G =


G1 0 −G1 0
0 G3 0 0
−G1 0 G1+G2−G2

0 0 −G2 G2

 (2.16)

L =
[
L
]

, EL =


0
−1
0
1

 , Ev =


1 0
0 1
0 0
0 0

 , B =

[
−1 0
0 −1

]
, Bv = −B (2.17)

Matrices (2.16), (2.17) are reduced in first order form using SPRIM/IOPOR according to
Sect. 2.3.2, then synthesized by unstamping via RLCSYN. Note that there is an L directly
connected to the second input node v4, thus assumption 4, Sect. 2.3.2 from RLCSYN
is not satisfied. For simplicity, we thus reduce and synthesize the single-input-single-
output version of (2.13) only, where the second input i2 is removed. Therefore the new
incidence matrices are:

Ev1
=


1
0
0
0

 ,B1 =
(
−1
)

, Bv1
= −B1. (2.18)

We choose an underlying PRIMA projection matrix V ∈ Cn×k spanning a k = 2-
dimensional Krylov subspace (with expansion point s0 = 0). According to Sect. 2.3.2,
after splitting V and appropriate re-orthonormalization, the dimensions of the input-
output structure preserving partitioning are :

n1 = 1, n2 = 3, nL = 1, k2 = 2, k3 = 1, (2.19)

and the SPRIM/IOPOR projection is:

W̃ =


1 0 0 0
0 4.082 · 10−1 −4.861 · 10−1 0
0 8.164 · 10−1 5.729 · 10−1 0
0 4.082 · 10−1 −6.597 · 10−1 0
0 0 0 1

 ∈ C5×4, with W ∈ C4×3. (2.20)

After diagonalization and regularization, the SPRIM/IOPOR reduced system matrices
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in (2.10) are:

G̃ =

 1 8.165 · 10−2 −5.729 · 10−2

8.165 · 10−2 9.999 · 10−2 −7.726 · 10−2

−5.7295 · 10−2 −7.7265 · 10−2 2.084 · 10−1

 , Ẽv1
=

 1
0
0



C̃ =

 0 0 0
0 1.749 · 10−5 −5.052 · 10−5

0 −5.052 · 10−5 1.527 · 10−4

 , Γ̃ =

 0 0 0
0 0 0
0 0 30.14

 . (2.21)

Reduced matrices (2.21) are now unstamped individually using RLCSYN. The reduced
system dimension in second order form is thus N = 3, indicating that the reduced netlist
will have three nodes and an additional ground node. In the following, we denote by
Mi, j i = 1 . . . N, j = 0 . . . N−1 a circuit element connected between nodes (i, j) in the
resulting netlist. M represents a circuit element of the type: R,L,C or current source J.

By unstamping G̃, we obtain the following R values :

R1,0 =

[
3

∑
k=1
G̃(1,k)

]−1

=8.0417 Ω, R1,2 =−
[
G̃(1,2)

]−1
=−12.247 Ω, R1,3 =−

[
G̃(1,3)

]−1
=17.452 Ω,

R2,0 =

[
3

∑
k=1
G̃(2,k)

]−1

=9.5798 Ω, R2,3 =−
[
G̃(2,3)

]−1
=12.942 Ω, R3,0 =

[
3

∑
k=1
G̃(3,k)

]−1

=13.535 Ω.

By unstamping C̃, we obtain the following C values:

C2,0 =
3

∑
k=1
C̃(2,k)=−3.3026 · 10−5 F, C2,3 =−C̃(2,3)=5.0526 · 10−5 , F,

C3,0 =

[
3

∑
k=1
C̃(3,k)

]−1

=1.0221 · 10−4 F.

By unstamping Γ̃ , we obtain the following L values:

L3,0 =

[
3

∑
k=1

Γ̃(3,k)

]−1

=3.317 · 10−2 H.

By unstamping Ẽv1
, we obtain the current source J1,0 of amplitude 1 A.

The equivalent netlist written in circuit simulation language (SPICE [92]) is shown in
Fig. 2.5

Table 2.3 summarizes the reduction and synthesis results. Even though the number of
internal variables (states) generated by the simulator is smaller for the SPRIM/IOPOR
model than for the original, the number of circuit elements generated by RLCSYN is
larger in the reduced model than in the original (note that this is a demonstrative exam-
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.subckt small_rlc 1 0
r_1_0 1 0 8.0417250765565598e+000
r_1_2 1 2 -1.2247448713915894e+001
r_1_3 1 3 1.7452546181796258e+001
r_2_0 2 0 9.5798755840972589e+000
r_2_3 2 3 1.2942609947762115e+001
r_3_0 3 0 1.3535652691596653e+001
l_3_0 3 0 3.3170000000000033e-002
c_2_0 2 0 -3.3026513336014821e-005
c_2_3 2 3 5.0526513336014765e-005
c_3_0 3 0 1.0221180442099465e-004

* Connect source between terminals 1 and 0

* Resistors 6

* Capacitors 3

* Inductors 1
.ends small_rlc

Figure 2.5: Netlist description obtained from RLCSYN unstamping for the reduced model
(2.21).

ple only hence no real candidate for reduction). Chapters 4, 5 and 6 address explicitly
the problem of minimizing the fill generated inside the reduced matrices. Fig. 2.6 shows
that approximation with SPRIM/IOPOR is more accurate than with PRIMA. The circuit
re-simulation of the RLCSYN synthesized model also matches the MATLAB simulation
of the reduced transfer function.

Table 2.3: Input impedance reduction (SPRIM/IOPOR) and synthesis (RLCSYN)

System Dimension R C L States Inputs/Outputs
Original 5 3 3 1 5 1

SPRIM/IOPOR 4 6 3 1 4 1

2.5.2 SISO RLC network

We reduce the SISO RLC transmission line in Fig. 2.7. Note that the circuit is driven by
the voltage u, thus it is of admittance type (2.2). In [44], reduction via the admittance
transfer function was shown using various methods, in particular with the dominant
spectral zero method (Dominant SZM). Here we also reduce the circuit via its impedance
formulation (2.4) as described in Sect. 2.3.1, by removing the voltage source and driving
the circuit via a current flowing into its terminal. After reduction and synthesis via the
input impedance, we show that the reduced admittance is recovered as well in simu-
lation. This is done easily by driving the reduced synthesized impedance model via a
voltage at the input terminal.
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Figure 2.6: Original, reduced and synthesized systems: PRIMA, SPRIM/IOPOR.
The MATLAB reduced (red) and SPICE synthesized (green) models overlap, as ex-
pected.

Figure 2.7: Transmission line for example of Sect. 2.5.2.

Fig. 2.8 shows the input impedance of the original impedance model (2.4) and reduced
with Dominant SZM. The model is passive and stable [44] and is synthesized using
the impedance Foster realization in Sect. 2.4.2 (the circuit simulation of the synthesized
model is superimposed with the MATLAB simulation). For comparison, the direct
admittance-based Dominant SZM reduction [44], synthesized with the Foster admit-
tance approach (Sect. 2.4.2), is shown in Fig. 2.10. Both the reduced impedance (Fig. 2.8)
and admittance (Fig. 2.10) capture the behavior of the original model well for the entire
frequency range, and can also reproduce oscillations at dominant frequency points.

The SPRIM/IOPOR reduced impedance model is shown in Fig. 2.9, together with the re-
sponse obtained in the re-simulation of the synthesized model obtained with RLCSYN.
Note that if the original circuit had been reduced directly from the admittance form
(2.2), synthesis by unstamping via RLCSYN would have required controlled sources to
model the input of the reduced network [36].

The benefit of the admittance-to-impedance transformation described in Sect. 2.3.1 is
seen in Fig. 2.11. By reducing the system in impedance form with SPRIM/IOPOR and
synthesizing (2.5) [via RLCSYN unstamping of the second order form (2.10)], we are
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Figure 2.8: Input impedance transfer
function: original, reduced with Dom-
inant SZM (red) and synthesized via
Foster impedance (green).

Figure 2.9: Input impedance trans-
fer function: original, reduced with
SPRIM/IOPOR (red) and synthesized
with RLCSYN (green).

Figure 2.10: Input admittance trans-
fer function: original, reduced with
Dominant SZM in admittance form
(red) and synthesized with Foster ad-
mittance (green).

Figure 2.11: Input admittance trans-
fer function: original admittance re-
sponse is compared to the admittance
response of the reduced, RLCSYN syn-
thesized SPRIM/IOPOR model.

able to recover the reduced admittance (2.6) as well. This result is shown in Fig. 2.11:
the original admittance transfer function (2.2) is compared to the circuit re-simulation
of the synthesized model, after reinserting the voltage source as an input according to
(2.6). The approximation is good for the entire frequency range, except close to 0 where
the oscillating behavior is over-estimated in the reduced model. Table 2.4 summarizes
the reduction and synthesis. With both methods, the dimension (number of nodes in
the netlist), the number of internal variables (states), as well as the number of circuit
elements were reduced.
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Table 2.4: Impedance reduction and synthesis for transmission line in Fig. 2.5.2

System Dimension R C L States Simulation time
Original 902 500 300 300 901 1.5 s

Dominant SZM 23 22 11 10 34 0.02 s
SPRIM/IOPOR 23 78 66 6 18 0.02 s

2.5.3 MIMO RLC network

We reduce the MIMO RLC netlist resulting from the parasitic extraction of a coil struc-
ture [33]. The model has 4 pins (external nodes). Pin 4 is connected to other circuit
nodes only via C’s, which causes the original model (2.4) to have a pole at 0. The exam-
ple shows that: (1) the SPRIM/IOPOR model preserves the terminals and is synthesiz-
able with RLCSYN without controlled sources, and (2) structure preserving projections
may perturb the location of poles and zeros 0, affecting the approximation quality at
low frequencies (a technique which remedies this effect is proposed in Chapter 5).

Fig. 2.12 shows the simulation of the transfer function from input 4 to output 4, which
clearly reflects the presence of the pole at 0 due to the large response magnitude for low
frequencies. By inspecting the response from input 3 to output 3 however, we notice in
Fig. 2.13 that the SPRIM/IOPOR model is less accurate around DC than PRIMA. The
SPRIM/IOPOR (2.7) projection approximates the original pole at 0 by a small pole (not
at 0), but still places zeros at 0 due to the dependencies created in the Rosenbrock matrix
Ãz (see Sect. 2.3.2). Such pole-zero pairs can no longer cancel numerically, affecting the
approximation quality for low frequencies.

The alternative is to ground pin 4 prior to reduction. This will remove the pole at 0
from the original model, resolve the corresponding numerical cancellation effects, and
improve approximation around DC. As seen from Fig. 2.15, SPRIM/IOPOR applied on
the remaining 3-terminal system gives a better approximation than PRIMA for the entire
frequency range. The transient simulation in Fig. 2.14 confirms that the SPRIM/IOPOR
model is both accurate and stable. With pin 4 grounded however, we loose the ability to
(re)connect the synthesized model in simulation via all the terminals. This scheme was
adopted here only to demonstrate possible numerical sensitivities of certain reduction
projections to the presence/absence of system poles at 0. In Chapters 4, 5 robust reduc-
tion methods are presented which overcome such numerical limitations when reducing
large, multi-terminal circuits, while preserving the connectivity at all terminal nodes.

2.6 Concluding remarks

A framework was presented for the reduction and synthesis of multi-terminal systems
arising in circuit simulation. An admittance to impedance conversion was proposed as
a pre-model reduction step and shown to enable synthesis without controlled sources.
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Figure 2.12: Input impedance trans-
fer function with “v4” kept: H44 for
PRIMA, SPRIM/IOPOR and RLC-
SYN realization.

Figure 2.13: Input impedance trans-
fer function with “v4” kept: H33 for
PRIMA, SPRIM/IOPOR and RLC-
SYN realization.

Figure 2.14: Transient simulation
with “v4” grounded: voltage measured
at node 2 for SPRIM/IOPOR (from
RLCSYN realization).

Figure 2.15: Input impedance transfer
function with “v4” grounded: H33 for
PRIMA, SPRIM/IOPOR and RLC-
SYN realization.

This simple yet elegant approach gives the theoretical foundation for detaching voltage
sources or non-linear elements before the reduction phase and reinserting them easily
afterwards. Two synthesis approaches were described: RLCSYN [93] synthesis by un-
stamping (for MIMO systems) and Foster realization (for SISO transfer functions). The
reduction and synthesis framework was tested on several examples of moderate size.
The framework forms the basis for the multi-terminal reduction methods of Chapters 4,
3, 5 and 6 which are focused on more challenging industrial problems.



Chapter 3

Reduction of multi-terminal
R/RC networks

A multi-terminal reduction framework for R/RC circuits is presented, based on two re-
lated methodologies, ReduceR [80] and PACT [56]. The underlying reducing projection
is shown here to preserve the positiveness of resistors, the path resistance between cir-
cuit terminals, and also to support a partition-based implementation. This is an impor-
tant result which guarantees that, when circuits are reduced by parts, the same desirable
properties are retained (moment-matching, passivity, terminal connectivity) which are
normally ensured by an unpartitioned approach. Several realistic multi-terminal par-
asitic networks are reduced in this framework, demonstrating approximation quality
and significant computational speed-ups in re-simulations.

3.1 Introduction

With the decrease in feature sizes and the increasing complexity of VLSI circuit designs,
parasitic effects have to be analyzed as to properly understand and control the relative
impact between different components on a chip. The simulation of parasitic R and RC
networks is however often a difficult task, as these networks may contain millions of
nodes among which thousands are connection nodes (terminals) to nonlinear devices
such as diodes or transistors. Reducing such multi-terminal networks to circuits with
fewer nodes and elements can help to perform the desired simulations at much lower
computational cost.

In this chapter, the focus is on a multi-terminal reduction framework based on [80] for
for R and [56] for RC networks, denoted here as ReduceR and PACT, respectively. These
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methods turn out to be governed by the same reducing projection, whose important ad-
vantages are: passivity preservation, moment matching at DC, and an immediate, natu-
ral, preservation of the connectivity at the terminal nodes (what in Chapter 2 is referred
to as input/output structure preservation). ReduceR achieves tremendous reduction
rates for very large resistor networks with thousands of terminals, but the question of
whether the resulting reduced resistor networks have only positive resistors remains
open in [80]. Here, it is shown that the resistors in the reduced network are indeed
positive (a different proof was derived independently in [91]). This result extends im-
mediately for the reduction of multi-terminal RC networks which are governed by the
same underlying projection as ReduceR, for instance that underlying PACT, although
this was not shown in the original reference [56]. Turning the attention to the PACT-
based reduction of multi-terminal RC networks, this chapter proposes a partition-based
implementation of PACT which has the potential to reduce more efficiently very large
RC networks, for which forming a reducing projection directly on the entire network is
too costly or unfeasible. It can also improve the overall sparsity of the reduced network,
by applying fill reducing node reorderings per subnet to identify fill-creating nodes.
More advanced partitioning and reordering strategies, especially aimed at improving
sparsity, are given in Chapter 4. The partition-based RC reduction in addition reveals
a simple and efficient solution to the problem of computing path resistances between
terminals.

This chapter is organized as follows. In Sect. 3.1.1, the general setup for R/RC is de-
scribed. Sect. 3.2 gives the proof on the positiveness of resistors. Sect. 3.3 derives
the partition-based reduction of RC circuits, shows its mathematical equivalence to the
PACT projection, provides the solution for the computation of path resistances, and de-
scribes the actions for further improving sparsity. Numerical results are provided in
Sect. 3.4 and Sect. 3.5 concludes.

3.1.1 Reduction setup for R/RC networks

The model reduction setup for R and RC networks in this chapter follows [80] and [56]
respectively, and is presented here in preparation for the additional derivations of this
chapter.

Consider the modified nodal analysis (MNA) [37] description of an RC circuit:

(G + sC)x(s) = Bu(s), (3.1)

where MNA matrices G, C are symmetric, non-negative definite, corresponding to the
stamps of resistor and capacitor values respectively. x ∈ Rm+p denote the node voltages
(measured at the m internal nodes and the p terminals) and m + p is the dimension of
(3.1). u ∈ Rp are the currents injected into the terminals. The outputs are the voltage
drops at the terminal nodes: y(s) = BTx(s). The underlying matrix dimensions are:
G, C ∈ R(m+p)×(m+p), B ∈ R(m+p)×p. Let the nodes x be split into terminal nodes xP to
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be preserved, and xI internal nodes to be eliminated:([
GI GC
GT

C GP

]
+ s

[
CI CK
CT

K CP

]) [
xI
xP

]
=

[
0

BP

]
u. (3.2)

Let the following projection:

V =

[
−G−1

I GC
I

]
, (3.3)

where I ∈ Rp×p is the identity matrix, be applied to (3.2). From simple linear algebra,
the Galerkin projection: Ĝ = VTGV, Ĉ = VTCV, B̂ = VTB reduces (3.2) to:

(Ĝ + sĈ)xP = B̂u, where : (3.4)

Ĝ = GP −GT
CG−1

I GC , B̂ = BP (3.5)

Ĉ = CP + CT
CW + WTCC + WTCIW , W = −G−1

I GC . (3.6)

The projection matrix (3.3) is the one governing ReduceR [80] for the reduction of resis-
tor networks, and PACT [56] for RC networks. An important property of (3.3) is that it
preserves the path resistance (defined in Sect. 3.3.3) of the original network (3.2). Espe-
cially relevant for RC reduction is that (3.3) preserves the 0’th and 1’st moments at DC
(s = 0) of the original network, where the path resistance is precisely the first moment.
This is formalized as Proposition 4.2.1 in Chapter 4, where a more detailed presentation
of PACT is provided. Furthermore, being a congruence transformation acting on non-
negative definite matrices, (3.3) preserves the passivity of (3.2) (the proof is provided
in [56]). Finally, notice that, since B̂ = BP, the input incidence matrix of the reduced
network is the same as in the original, and so the connectivity via terminal nodes is pre-
served (the importance of this feature, also known as input/output structure preservation
in the context of synthesis is discussed in Chapter 2).

In the following sections, the solution to two problems is presented. In Sect. 3.2, it
is shown that the resistor network characterized by the reduced conductance matrix
(3.5) contains only positive resistor values. This result guarantees that the ReduceR [80]
methodology generates positive-only resistors, and also holds for the multi-terminal RC
reduction methods of Sect. 3.3 and Chapter 4. In Sect. 3.3, a partition-based reduction
of multi-terminal RC networks is derived, shown to be mathematically equivalent to
PACT, thus inheriting its afore-mentioned properties. The partition-based reduction
provides additional advantages such as: the ability to split a network into sub-parts and
reduce them individually while satisfying the same requirements on accuracy, moment
matching, passivity preservation and terminal connectivity.
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3.2 Reduction of R/RC networks with positive-only resis-
tors

The graph-based multi-terminal model reduction methods for R [80] and RC networks
[49] are based on the projection (3.3). Notice from (3.5) that the reduced Ĝ is the Schur
complement of block GI in G. It is demonstrated here that, if the resistors in the original
network are positive, the resistors in the reduced circuit characterized by Ĝ are also
guaranteed to be positive (for a different proof derived independently see [91]). As a
special case, it is also shown that if the original network has no resistors connected to the
ground node, the reduced network will also have no resistors to ground. For simplicity
of presentation, the following derivations are based on the reduction of purely resistive
networks. The generalization to RC follows immediately, as the underlying projection
matrix (3.3) is the same in both cases.

Consider a resistor network described by the conductance matrix G of (3.1) with n =
m + p nodes [from which m are internal nodes and p are terminals (external nodes)].
Assume that the graph associated with this resistor network is strongly connected,
i.e. there is a path of resistive connections between every pair of nodes in the network.
Otherwise the network is split into its strongly connected components, and the deriva-
tions are applied per component; this is the subject of Sect 3.3. Naturally, assume also
that all resistors in the original network are positive. We show that if the original con-
ductance matrix G is characterized by positive resistors only, the reduced conductance
matrix Ĝ = GP −GT

CG−1
I GC is unstamped into positive resistors as well.

3.2.1 Properties of G and unstamping

Before giving the proof, we describe the structure of the conductance matrix G and
identify its special properties. G has the following form:

G =


g1,1 −g1,2 · · · −g1,n
−g2,1 g2,2 · · · −g2,n

...
... · · ·

...
−gn,1 −gn,2 · · · gn,n

 , (3.7)

where gi, j > 0 for ∀i, j = 1, n1. The resistor values in the network and their topology
are unstamped (“read-off”) from G as follows:

1. the resistor between node i and node j is: ri, j = gi, j
−1, i 6= j.

1i = 1, n stands for i = 1 . . . n
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2. the resistor between node i and the ground node is: ri =

(
gi,i −

n

∑
j=1, j 6=i

gi, j

)−1

;

• if there is no resistor between node i and ground (ri = ∞), then the sum of

the i’th row of G is zero: gi,i −
n

∑
j=1, j 6=i

gi, j = 0;

Throughout the following derivations, we denote as Gi, j the (i, j)’th entry in matrix
G, thus Gi, j = −gi, j for i 6= j and Gi,i = gi,i. The properties of a resistor network
characterized by the conductance matrix (3.7) are summarized in Claim 3.2.1.

Claim 3.2.1 The conductance matrix G of a resistive network with positive resistors satisfies
the following properties:

1. G ≥ 0, G = GT i.e., G is symmetric positive semi-definite

(a) If the network is grounded (i.e. voltages are measured with respect to a reference
node), then G > 0, i.e., G is positive definite

2. Gi,i > 0, i = 1, n, i.e., diagonal entries are positive
3. Gi, j ≤ 0, i, j = 1, n, i 6= j, i.e., off-diagonal entries are negative (or 0) and at least one is

non-zero
4. G is diagonally dominant, i.e :

|Gi,i| ≥
n

∑
j=1, j 6=i

|Gi, j| (3.8)

(a) If the network is ungrounded, then (3.8) is satisfied with equality (the row/column
sum of G is zero).

3.2.2 Unstamping the reduced Ĝ

For the reduced resistive network to be characterized by positive resistors only, Ĝ must
also satisfy the properties of Claim (3.2.1). We prove the following:

Theorem 3.2.1 Given a conductance matrix G which satisfies Claim 3.2.1, the reduced matrix
Ĝ = GP−GT

CG−1
I GC obtained by eliminating the internal nodes from the network also satisfies

Claim 3.2.1. Hence the reduced Ĝ is unstamped into positive resistors only.

Proof 3.2.1 The proof follows by induction. To this end, we introduce the following notation: let
G(1), G(2), . . ., G(m) denote the reduced matrices obtained by eliminating one, two, . . ., m inter-
nal nodes respectively from G. With this notation, G(0) = G is the original conductance matrix
and G(m) = Ĝ is the final reduced conductance matrix, with all m internal nodes eliminated.
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Case m = 1 eliminated internal node

We show that Theorem (3.2.1) holds for the reduced network obtained by eliminating the first
internal node.

G =


G1,1 G1,2 · · · G1,n
G2,1 G2,2 · · · G2,n

...
... · · ·

...
Gn,1 Gn,2 · · · Gn,n

=
[

G1,1 Gc1

GT
c1

GP1

]
, X1 =

[
1 −G−1

1,1Gc1
0 In−1

]
(3.9)

G̃1 = XT
1 GX1 =

[
G1,1 0

0 GP1
−G−1

1,1GT
c1

Gc1

]
. (3.10)

Let G(1) := GP1
−G−1

1,1GT
c1

Gc1
, G(1) ∈ R(n−1)×(n−1), which represents the reduced network

with the first internal node eliminated. We have:

G(1)=GP1
−G−1

1,1GT
c1

Gc1
= (3.11)

=


G2,2− 1

G1,1
G2,1G1,2 G2,3− 1

G1,1
G2,1G1,3 · · · G2,n− 1

G1,1
G2,1G1,n

G3,2− 1
G1,1

G3,1G1,2 G3,3− 1
G1,1

G3,1G1,3 · · · G3,n− 1
G1,1

G3,1G1,n
...

... · · ·
...

Gn,2− 1
G1,1

Gn,1G1,2 Gn,3− 1
G1,1

Gn,1G1,3 · · · Gn,n− 1
G1,1

Gn,1G1,n

 .(3.12)

We show that G(1) as in (3.12) satisfies the properties of Claim 3.2.1:

1. G(1) ≥ 0, i.e., G(1) is positive semi-definite:
X1 from (3.10) is a congruence transformation, hence, because G ≥ 0, G̃1 ≥ 0. This

implies that ∀Y1, YT
1 G̃1Y1 ≥ 0. In particular, let Y1 =

[
0
I

]
⇒

YT
1 G̃1Y1 = GP1

−G−1
1,1GT

c1
Gc1

= G(1) ≥ 0.

2. G(1)
k,k > 0, k = 1, n−1, i.e. G(1) has positive diagonal entries:

This follows easily from the fact that G(1) ≥ 0 is positive definite, thus yTG(1)y ≥ 0
for ∀y ∈ Cn−1. In particular let y = ek, i.e. the k’th unit vector. Then G(1)

k,k =

eT
k G(1)ek > 0.

Note that eT
k G(1)ek 6= 0. To show this assume for a moment that eT

k G(1)ek = 0. Then:

eT
k G(1)ek = G(1)

k,k = Gi,i−
1

G1,1
Gi,1G1,i = 0, i = 2, n ⇔ (3.13)

⇔ Gi,iG1,1 = Gi,1G1,i (3.14)
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Due to the diagonal dominance (3.8), we know Gi,i > |Gi,1| and G1,1 > |Gi,1|. Hence

(3.14) is false, and the assumption that eT
k G(1)ek = G(1)

k,k = 0 is false.
N. B. A final note on the possibility of (3.14) being true: this holds only if Gi,i = G1,1 =

|Gi,1| = |Gi,1| (recall from G = GT that |Gi,1| = |Gi,1|). This would mean that, prior
to the elimination of node 1, nodes i and node 1 form one strongly connected component,
with a resistor of value 1

G1,1
as the edge between them, and no other outgoing edges from

nodes 1 and i to the other circuit nodes. This however violates the assumption that G
forms one strongly connected component.

3. G(1)
k,l ≤ 0 for k, l=1, n−1, k 6= l i.e. G(1) has non-positive off-diagonal entries:

G(1)
k,l

k 6=l
= Gi, j −

1
G1,1

Gi,1G1, j, i, j = 2, n, i 6= j

Clearly, from the properties of G (see Claim 3.2.1) for i, j = 2, n, i 6= j we know that:
Gi, j ≤ 0, Gi,1 ≤ 0, G1, j ≤ 0 and G1,1 > 0, thus:

Gi, j −
1

G1,1
Gi,1G1, j ≤ 0.

4. G(1) is diagonally dominant2, i.e. :

|G(1)
k,k| ≥

n−1

∑
l=1,l 6=k

|G(1)
k,l |. (3.15)

This is equivalent to showing that, for i ≥ 2:

|Gi,i −
1

G1,1
Gi,1G1,i| ≥

n

∑
j=2, j 6=i

|Gi, j −
1

G1,1
Gi,1G1, j|. (3.16)

Using triangle’s inequality:

n

∑
j=2, j 6=i

|Gi, j −
1

G1,1
Gi,1G1, j| ≤

n

∑
j=2, j 6=i

|Gi, j|︸ ︷︷ ︸
:=S1

+
n

∑
j=2, j 6=i

| 1
G1,1

Gi,1G1, j|︸ ︷︷ ︸
:=S2

(3.17)

Recall from Claim 3.2.1 that G is diagonally dominant, thus:

|Gi,i| ≥
n

∑
j=1, j 6=i

|Gi, j| = |Gi,1|+
n

∑
j=2, j 6=i

|Gi, j| ⇒ (3.18)

⇒ S1 ≤ |Gi,i| − |Gi,1| (3.19)

2Part of this proof is inspired from a homework assigned during the course CAAM 453/553 “Numerical
Analysis I”, taken at Rice University in 2005, taught by Prof. Mark Embree.
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Also:

S2 =
n

∑
j=2, j 6=i

| 1
G1,1

Gi,1G1, j| = |
1

G1,1
Gi,1|

n

∑
j=2, j 6=i

|G1, j|. (3.20)

Again, from G diagonally dominant, we know:

|G1,1| ≥
n

∑
j=1, j 6=i

|G1, j| = |G1,i|+
n

∑
j=2, j 6=i

|G1, j| ⇒ (3.21)

⇒
n

∑
j=2, j 6=i

|G1, j| ≤ G1,1 − |G1,i| (3.22)

Inserting (3.22) into (3.20) yields:

S2 ≤ |
1

G1,1
Gi,1|(|G1,1| − |G1,i|) = |Gi,1| −

1
G1,1
|Gi,1G1,i|. (3.23)

Adding (3.19) and (3.23):

S1 + S2 ≤ |Gi,i| −
1

G1,1
|Gi,1G1,i| ≤ |Gi,i −

1
G1,1

Gi,1G1,i| (3.24)

Recalling (3.17), we conclude that for i ≥ 2:

n

∑
j=2, j 6=i

|Gi, j −
1

G1,1
Gi,1G1, j| ≤ S1 + S2 ≤ |Gi,i −

1
G1,1

Gi,1G1,i|,

which is nothing but (3.16). Hence G(1) is diagonally dominant.

(a) We also show that if the original network in ungrounded [item 4(a) of Claim (3.2.1)
holds for G], then the network determined by G(1) is also ungrounded. In other
words, if the row sum of G is zero, then the row sum of G(1) is also zero, .i.e. :

|G(1)
k,k| =

n−1

∑
l=1,l 6=k

|G(1)
k,l | (3.25)

From G(1)
k,k > 0 and G(1)

k,l ≤ 0 for k 6= l (3.25) writes:

G(1)
k,k +

n−1

∑
l=1,l 6=k

G(1)
k,l = 0⇔ (3.26)

Gi,i −
1

G1,1
Gi,1G1,i +

n

∑
j=2, j 6=i

[
Gi, j −

1
G1,1

Gi,1G1, j

]
= 0⇔ (3.27)[

Gi,i +
n

∑
j=2, j 6=i

Gi, j

]
− 1

G1,1
Gi,1

[
G1,i +

n

∑
j=2, j 6=i

G1, j

]
= 0 (3.28)
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From (3.12), note that the above derivations hold for i ≥ 2. Also recall the original
assumption that the row/column sums of G are zero.
From the i’th row sum of G being zero, we have:

Gi,i +
n

∑
j=1, j 6=i

Gi, j = 0 ⇒ Gi,1 = −
[

Gi,i +
n

∑
j=2, j 6=i

Gi, j

]
(3.29)

From the 1’st row sum of G being zero, we have:

G1,i +
n

∑
j=1, j 6=i

G1, j = 0 ⇒ G1,1 = −
[

G1,i +
n

∑
j=2, j 6=i

G1, j

]
(3.30)

Replacing (3.29) and (3.30) in (3.28) we arrive at:

−Gi,1 +
1

G1,1
Gi,1Gi,1 = 0 ⇔ 0 = 0. (3.31)

This shows that (3.25) holds, and that, if the row sum of G is zero, the row sum of
G(1) is also zero. This implies that the reduced G(1) has no resistors to ground.

With all four properties of Claim (3.2.1) being shown for G(1), this concludes the proof of the
first induction step.

Case m− 1 eliminated internal nodes

Assume that the reduced G(m−1) ∈ R(p+1)×(p+1) obtained by eliminating m− 1 internal nodes
satisfies the properties of Claim 3.2.1. Hence G(m−1) is characterized by positive only resistors.

Case m eliminated internal nodes

At the m’th elimination step, the final reduced matrix G(m) is obtained from G(m−1) as follows.

G(m−1) =


G(m−1)

1,1 G(m−1)
1,2 · · · G(m−1)

1,p+1

G(m−1)
2,1 G(m−1)

2,2 · · · G(m−1)
2,p+1

...
... · · ·

...
G(m−1)

p+1,1 G(m−1)
p+1,2 · · · G(m−1)

p+1,p+1

=
 G(m−1)

1,1 G(m−1)
c1

G(m−1)
c1

T
G(m−1)

P1

 ,

Xm =

[
1 − 1

G(m−1)
1,1

Gc1

0 Im

]
,

G̃m = XT
mG(m−1)Xm =

G(m−1)
1,1 0

0 G(m−1)
P1

− 1
G(m−1)

1,1

G(m−1)
c1

T
G(m−1)

c1

 .
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Then G(m) := G(m−1)
P1

− 1
G(m−1)

1,1

G(m−1)
c1

T
G(m−1)

c1
, G(m) ∈ Rp×p, which represents the re-

duced network with all m internal nodes eliminated. Similarly to the case of one eliminated
internal node (3.12), we have:

G(m)=G(m−1)
P1

− 1

G(m−1)
1,1

G(m−1)
c1

T
G(m−1)

c1
= (3.32)

=


G(m−1)

2,2 − 1
G(m−1)

1,1

G(m−1)
2,1 G(m−1)

1,2 · · · G(m−1)
2,p+1 −

1
G(m−1)

1,1

G(m−1)
2,1 G1,p+1

...
. . .

...
G(m−1)

p+1,2 −
1

G(m−1)
1,1

G(m−1)
p+1,1 G(m−1)

1,2 · · · G(m−1)
p+1,p+1−

1
G(m−1)

1,1

G(m−1)
p+1,1 G(m−1)

1,p+1

 . (3.33)

Note that (3.33) has the same structure and properties as (3.12). Hence the proof that G(m)

satisfies Claim (3.2.1) [based on the fact that G(m−1) satisfies these properties] follows in the
same manner as for G(1).

Having completed the final induction step, we conclude that the final reduced conduc-
tance matrix Ĝ = G(m) inherits the properties of the original G and is characterized by
positive-only resistors. Also, if G has no resistors to ground, then Ĝ = G(m) will not
have resistors to ground either.

3.3 Partition-based reduction of RC networks

In this section, a partition-based reduction for multi-terminal RC networks is derived,
and its equivalence to PACT [56] is demonstrated. A change in notation is introduced
from bold to caligraphic letters, as to more easily distinguish between blocks of an un-
partitioned vs. a partitioned matrix respectively. The starting system matrices under-
lying (3.1) are now G , C ,B, to be partitioned and reduced as described next. Let Q be
the permutation of the circuit nodes which reveals the strongly connected components3

(SCCs) of G, QQT = I. The original system permuted with Q is then:

(QTGQ+ sQTCQ)QTx(s) = QTBu(s)⇔ (3.34)([
G1 0
0 G2

]
+ s

[
C1 C12
CT

12 C2

]) [
x1
x2

]
=

[
B1
B2

]
(3.35)

If G has N SCCs, in (3.35) G1 denotes the first SCC of G, and the remaining N−1 SCCs
are grouped into G2 = blockdiag(G2,2, . . . , GN,N) . This splitting separates the original
network into sub-networks that are only connected by capacitors: C12 is the connectivity
block from subnet-1 (specified by G1, C1) to subnet-2 (specified by G2, C2). With (3.35) a

3A graph is called (strongly) connected if there exists a path from any vertex to any other vertex in the
graph [19].
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network topology has been identified, where subnetwork G1 can be reduced separately
from the remaining G2. Even though G2 further contains SCCs of G, it is interpreted as
one block during the reduction of G1. B1 and B2 contain the input incidence of current
injections into the terminals of subnetwork 1 and 2 respectively. Note that the number
of terminals from the original netlist is split in between subnetwork 1 and 2. Thus the
subnetworks have fewer nodes and terminals than the original. For clarity, from here
onwards G and C are assumed to be already permuted according to the SCCs of G, and
have the structure (3.35).

3.3.1 Reduction per subnetwork

Let V = blockdiag(V1, I2) be the projection reducing the original network (3.35), where
V1 reduces subnetwork-1 and I2 is the identity matrix keeping subnetwork-2 unre-
duced. Projecting (3.35) with V one obtains the reduced model (4.13,4.14) in the form:([

Ĝ1 0
0 G2

]
+ s

[
Ĉ1 Ĉ12
ĈT

12 C2

]) [
x̂1
x2

]
=

[
B̂1
B2

]
, (3.36)

where subnetwork-1 is reduced to:

Ĝ1 = VT
1 G1V1, Ĉ1 = VT

1 C1V1 (3.37)

Ĉ12 = VT
1 C12, B̂1 = VT

1 B1, x̂1 = VT
1 x1, (3.38)

The appropriate V1 can be chosen according to the preferred MOR method. Here, if the
ratio #terminals/#nodes in subnetwork-1 is small, V1 is constructed with the method
from Sect. 4.2.2 as follows.

The initial partitioning according to the SCCs of G has split the network in such a way,
that applying PACT successively on all subnetworks (i.e. SCCs of G) would be equiva-
lent to applying PACT directly on the full circuit. This is formalized in Theorem 3.3.1.
The partitioning has computational and structural advantages: (a) PACT reduction ap-
plied on each subnetwork becomes cheaper computationally than on the full problem,
(b) the matrix fill-in introduced by PACT can be monitored on each subnetwork sepa-
rately (see Sect. 3.3.5).

Theorem 3.3.1 Given is an RC circuit as in (3.35), partitioned into subnetworks corresponding
to the strongly components of the conductance matrix G. The reduced model obtained from
applying PACT successively on each subnetwork of (3.35) is the same (up to permutations) as
the reduced model obtained from applying PACT directly on (4.12).

Proof 3.3.1 The proof follows by induction. We show that the claim of Theorem 3.3.1 holds
while reducing the subnetwork corresponding to the first strongly connected component (SCC)
of G. Then, assuming that N−1 subnets corresponding to the first N−1 SCCs of G have been
reduced, we show that Theorem 3.3.1 holds when reducing subnet N corresponding to the N’th
SCC of G.
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Step 1

At the first reduction step, we have subnetwork-1 defined by G1 := G1,1 (the first SCC of G),
and subnetwork-2 defined by G2 :=blockdiag(G2,2, . . . GN,N) [the remaining N− 1 SCCs of G]:

G =


G1,1 0 0 . . . 0

0 G2,2 0 . . . 0
0 0 G3,3 . . . 0
...

...
...

. . .
...

0 0 0 0 GN,N

 :=
[
G1 0
0 G2

]
(3.39)

C =


C1,1 C1,2 C1,3 . . . C1,N
CT

1,2 C2,2 C2,3 . . . C2,N
CT

1,3 CT
2,3 C3,3 . . . C3,N

...
...

...
. . .

...
CT

1,N CT
2,N CT

3,N . . . CN,N

 :=

[
C1 C12
CT

12 C2

]
, (3.40)

The goal is to show that the claim of Theorem 3.3.1 holds when reducing subnetwork-1 while
keeping subnetwork-2 unreduced. This will be done by constructing two reduced models, shown
to be the same: (1) M1: subnetwork-1 is considered individually and reduced with PACT, and
(2) M2: the entire network is considered, from which the internal nodes of subnetwork-1 are
eliminated, while the terminals of subnetwork-1 together with all the nodes of subnetwork-2 are
preserved. For each of these cases, consider (3.35) with the splitting of nodes: x = [xT

1 , xT
2 ]

T ,
where x1 = [xT

1R
, xT

1S
]T .

1. M1: Subnetwork-1 is considered individually and reduced with PACT using the parti-
tioning of x1: into internal nodes to be eliminated xR := x1R

, and selected nodes to be
preserved xS := x1S

. Subnetwork-2 is kept unreduced. To visualize this, consider (3.35)
with the following splitting:

 GR GK 0
GT

K GS 0
0 0 G2

+s

 CR CK C12R

CT
K CS C12S

CT
12R

CT
12S

C2




︸ ︷︷ ︸
G+sC

 x1R
x1S
x2


︸ ︷︷ ︸

x

=

 0
B1S
B2


︸ ︷︷ ︸
B

u. (3.41)

2. M2: The entire original network (3.35) is reduced directly with PACT using the partition-
ing of x into: internal nodes to be eliminated xR := x1R

, and selected nodes to be preserved

xS := [xT
1S

, xT
2 ]

T . Again, to visualize consider (3.35) with the corresponding splitting:
 GR GK 0
GT

K GS 0
0 0 G2

+s

 CR CK C12R

CT
K CS C12S

CT
12R

CT
12S

C2




︸ ︷︷ ︸
G+sC

 x1R
x1S
x2


︸ ︷︷ ︸

x

=

 0
B1S
B2


︸ ︷︷ ︸
B

u. (3.42)
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We show that the PACT transformation V which reduces the network by eliminating xR1
is the

same for both M1 and M2. Therefore the reduced models M1 and M2 will be the same at the end
of Step 1.

1. In view of obtaining M1, we start from (3.41) and let the reducing projection V be parti-
tioned into:

V =

 −G−1
R GK 0
IS 0
0 I2

 :=
[
V1 0
0 I2

]
, (3.43)

where V1 :=
[
−G−1

R GK
IS

]
:=
[
W1
IS

]
reduces subnetwork-1 with PACT, and I2 keeps

subnetwork-2 unreduced. The reduced matrices for subnetwork-1 are formed using (3.37-
3.38):

Ĝ1 = GS − G
T
KG
−1
R GK , W1 := −G−1

R GK (3.44)

Ĉ1 = CS +W
T
1 CRW1 +W

T
1 CK + CT

KW1, (3.45)

Ĉ12 = C12S
+WT

1 C12R
(3.46)

B̂1 = B1S
, x̂1 = x

′

1S
. (3.47)

The reduced model M1 for (3.41) follows from (3.36):

Ĝ = VTGV =

[
Ĝ1 0
0 G2

]
=


Ĝ1,1 0 0 . . . 0

0 G2,2 0 . . . 0
0 0 G3,3 . . . 0
...

...
...

. . .
...

0 0 0 0 GN,N

 , (3.48)

Ĉ = VTCV =

[
Ĉ1 Ĉ12
ĈT

12 C2

]
=


Ĉ1,1 Ĉ1,2 Ĉ1,3 . . . Ĉ1,N
ĈT

1,2 C2,2 C2,3 . . . C2,N
ĈT

1,3 CT
2,3 C3,3 . . . C3,N

...
...

...
. . .

...
ĈT

1,N CT
2,N CT

3,N . . . CN,N

 , (3.49)

x̂ = VTx =

[
x̂1
x2

]
, B̂ = VTB =

[
B̂1
B2

]
(3.50)

2. In view of obtaining M2, consider (3.42) with the following block assignments:

GR:=GR , GK :=
[
GK 0

]
, (3.51)

CR:=CR , CK :=
[
CK C12R

]
(3.52)

GS:=
[
GS 0
0 G2

]
, CS :=

[
CS C12S

CT
12S

C2

]
. (3.53)
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As described in Sect. 4.2.2, the PACT transformation which reduces the network (3.42)
up to the selected nodes xS = [xT

1S
, xT

2 ]
T is given by (4.8 - 4.10). Recalling (3.51) and

denoting IS2 :=blockdiag(IS, I2), this becomes:

V =

[
−G−1

R GK
IS2

]
=

 −G−1
R GK 0
IS 0
0 I2

 = V , (3.54)

the same as (3.43). The reduced M2 model for (3.42) is thus computed from (4.5 - 4.7)
using the assignments (3.51 - 3.53). Performing the computations reveals that the M2
reduced PACT system is:

G
′

S =

[
Ĝ1 0
0 G2

]
= Ĝ , C

′

S =

[
Ĉ1 Ĉ12
ĈT

12 C2

]
= Ĉ (3.55)

BS =

[
B̂1
B2

]
= B̂ , x

′

S =

[
x̂
x2

]
= x̂, (3.56)

where (3.44 - 3.47) hold. This is the same as the reduced model M1 (3.48-3.50).

We have shown the equivalence between reduced models M1 and M2 after the reduction of the
first subnet. We proceed for reducing the next candidate, subnet-2 corresponding to the 2nd SCC
of G. Recall that G2 = blockdiag(G2,2, . . . GN,N) contains the unreduced SCCs of G. The reduced
system (3.48 -3.50) is permuted next, so that the reduced subnetwork-1 moves to the bottom and
G2,2 (and the corresponding blocks) is promoted as the next candidate for reduction:

P̂ =

[
0 Î1
I2 0

]
, P̂TĜP̂T=

[
G2 0
0 Ĝ1

]
:= G , (3.57)

P̂T ĈP̂T =

[
C2 ĈT

12
Ĉ12 Ĉ1

]
:= C , P̂T x̂=

[
x2
x̂1

]
:= x, P̂TB̂ =

[
B2
B̂1

]
:= B. (3.58)

The matrices are redefined for the reduction at step 2 as follows:

G =


G2,2 0 . . . 0 0

0 G3,3 . . . 0 0
...

...
. . .

...
...

0 0 . . . GN,N 0
0 0 0 0 Ĝ1,1

 :=
[
G1 0
0 G2

]
(3.59)

C =


C2,2 C2,3 . . . C2,N Ĉ2,1

CT
2,3 C3,3 . . . C3,N Ĉ3,1
...

...
. . .

...
...

CT
2,N CT

3,N . . . CN,N ĈN,1
ĈT

2,1 ĈT
3,1 . . . ĈT

N,1 Ĉ1,1

 :=

[
C1 C12
CT

12 C2

]
, (3.60)

where G1, C1 describe the new subnetwork-1 to be reduced, G2, C2 describe the new subnetwork-
2, and C12 is the new connectivity block between them.
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Step N
At the end of reduction step N − 1, we have the reduced matrices:

Ĝ =


ĜN−1,N−1 0 0 . . . 0

0 GN,N 0 . . . 0
0 0 Ĝ1,1 . . . 0
...

...
...

. . .
...

0 0 0 . . . ĜN−2,N−2

 (3.61)

Ĉ =


ĈN−1,N−1 ĈN−1,N ĈN−1,1 . . . ĈN−1,N−2

ĈT
N−1,N CN,N ĈN,1 . . . ĈN,N−2
ĈT

N−1,1 ĈT
N,1 Ĉ1,1 . . . Ĉ1,N−2

...
...

...
. . .

...
ĈT

N−1,N−2 ĈT
N,N−2 ĈT

1,N−2 . . . ĈN−2,N−2

 , (3.62)

With appropriate dimensions, the permutation P̂ (3.57-3.58) is applied to move the reduced
subnetwork-1 (now defined by the reduced ĜN−1,N−1 and the corresponding matrix blocks from
Ĉ) to the bottom and promote GN,N as the next (final) subnetwork for reduction. After the
permutation, the active matrices are redefined:

G :=


GN,N 0 . . . 0 0

0 Ĝ1,1 . . . 0 0
...

...
. . .

...
...

0 0 . . . ĜN−2,N−2 0
0 0 . . . 0 ĜN−1,N−1

 :=
[
G1 0
0 G2

]
(3.63)

C :=


CN,N ĈN,1 . . . ĈN,N−2 ĈN,N−1

ĈT
N,1 Ĉ1,1 . . . Ĉ1,N−2 Ĉ1,N−1
...

...
. . .

...
...

ĈT
N,N−2 ĈT

1,N−2 . . . ĈN−2,N−2 ĈN−2,N−1
ĈT

N,N−1 ĈT
1,N−1 . . . ĈT

N−2,N−1 ĈN−1,N−1

 :=

[
C1 C12
CT

12 C2

]
(3.64)

The procedure of Step 3.3.1 for obtaining the reduced models M1 and M2 is repeated on the
new system: (3.63-3.64) with subnetwork-1 defined by G1 := GN,N (the last SCC of G),
and subnetwork-2 defined by G2 :=blockdiag(Ĝ1,1, . . . ĜN−1,N−1), each with the correspond-
ing blocks from C. Thus, after N reduction steps the M1 and M2 models remain identical. In
particular, after the appropriate permutation P̂ (3.57-3.58), the final reduced form is:

Ĝ=


Ĝ1,1 0 0 . . . 0

0 Ĝ2,2 0 . . . 0
0 0 Ĝ3,3 . . . 0
...

...
...

. . .
...

0 0 0 0 ĜN,N

 , Ĉ=


Ĉ1,1 Ĉ1,2 Ĉ1,3 . . . Ĉ1,N
ĈT

1,2 Ĉ2,2 Ĉ2,3 . . . Ĉ2,N
ĈT

1,3 ĈT
2,3 Ĉ3,3 . . . Ĉ3,N

...
...

...
. . .

...
ĈT

1,N ĈT
2,N ĈT

3,N . . . ĈN,N

 . (3.65)
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3.3.2 Moment matching, passivity, terminal connectivity

Theorem 3.3.1 shows that the reduced model obtained based on the SCC(G) partition-
ing is the same as the PACT reduced model derived in Sect. 4.2.2. By Prop. 4.2.1, the
reduced model (3.65) thus matches the two multi-port admittance moments at s = 0 of
the original (3.40). The consequence of Theorem 3.3.1 is that all afore-mentioned prop-
erties of the PACT reduced model, such as passivity preservation and preservation of
terminal connectivity hold for the partitioned-based reduced model as well.

3.3.3 Revealing path resistances

An important analysis step during the design of interconnect structures is the com-
putation of path resistances between terminals [80]. Here we show how to compute
path resistances in a straightforward manner, for RC networks that are reduced with
the SCC(G)-based partitioning method. First we define the path resistance of a general
network. Then, we show that the multi-port RC reduction proposed in this chapter pre-
serves the path resistance. Finally, we show how path resistances are computed from
the reduced network.

For a general multi-port resistor network, Kirchhoff’s current law gives:

Gx = Bu, (3.66)

where the columns of B are the unit vectors B[:,i] = ei describing the incidence of cur-
rent injections into terminals. Within the scope of this section, it is assumed that the
conductance matrix G is invertible, which is the case if: (1) the network is grounded
and one of the following holds: (2) the network is completely connected via resistors, in
other words the graph defined by the non-zero pattern of G has one strongly connected
component or (3) G is block diagonal and each block is itself invertible.

The path resistance between two nodes of a circuit is defined as the ratio of voltage
across the nodes to the current flow injected into them [28]. The path resistance from
terminal i to terminal j is given by:

ri j = (ei − e j)
TG−1(ei − e j), (3.67)

where ei, e j are the i’th and j’th unit vectors respectively. If neither i nor j is the
grounded node, (3.67) becomes:

ri j = G
−1
[i,i] + G

−1
[ j, j] − 2G−1

[i, j], (3.68)

where G[i, j] is the entry in the i’th row and j’th column of G [not to be mistaken for Gi,i
denoting the i’th strongly connected component of G as in (3.39)]. If j is the grounded
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terminal, thus e j = 0, then (3.67) is simply:

rii = G
−1
[i,i]. (3.69)

A more compact form entering the computation of (3.67), (3.68) and (3.69) is the matrix
of resistive paths:

R := BTG−1B. (3.70)

As explained in [80], since G is positive semi-definite, in practice the computation of
(3.70) is based on the Cholesky factorization [29] of G: G = LLT , Q = L−1B, R =

QTQ. For the sake of capturing the contribution of all terminals to the resistive path
computation, further-on we shall denote the matrix quantity (3.70) as the path resistance
rather than (3.67).

Let (3.66) be partitioned according to voltages measured at terminals xP and voltages
measured at the internal nodes xI :[

GI GC
GT

C GP

] [
xI
xP

]
=

[
0
BP

]
, (3.71)

where BP = I, the identity block corresponding to current injections into each of the xP
terminal nodes. Then:

G−1 =

[
I −G−1

I GC
0 I

]T [ G−1
I 0
0 (GP − GCG

−1
I GC)

−1

] [
I −G−1

I GC
0 I

]
. (3.72)

Plugging (3.72), into (3.70) gives:

R = BTG−1B = BT
P(GP − G

T
CG
−1
I GC)

−1BT
P = (GP − G

T
CG
−1
I GC)

−1. (3.73)

Notice that (3.73) is actually the inverse of the first moment at s = 0 of the multi-port
admittance as shown in the proof of Prop. 4.2.1, and also the inverse of the reduced
conductance matrix of the PACT reduced model. This demonstrates that PACT reduction
preserves the original path resistances between terminals. Theorem (3.3.1) showed that the
PACT reduced model for an unpartitioned network is equivalent to the reduced model
obtained via the SCC(G)-based partitioning, and as a consequence this will also preserve
the path resistances.

Recall however that path resistances are only computable if the inverse of G exists,
which does not generally hold for RC circuits, due to the fact that not all nodes are
connected to each other via resistors. If this is the case, then the conductance matrix G
has more strongly connected components. The SCC(G)-based partitioning and reduc-
tion therefore provides an additional structural advantage: the path resistances between
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terminal nodes in the circuit become readily computable per component. The immediate con-
sequence of partitioning the network according to the strongly connected components
of G is that subnets are identified that are not connected to each-other via resistors. In
matrix terms this corresponds to the block diagonal structure of (3.39). In other words
there is no resistive path from nodes in one component to nodes in another component
(there may be capacitive connections, but these do not enter the computation of path
resistances). As reduction progressed per component, the reduced model will retain the
SCC(Ĝ) on the block diagonal, as seen from (3.65).

The path resistances for an RC network (3.39) where G has N strongly connected com-
ponents can thus be computed per component (after appropriate grounding) as follows:

Ri = BT
i G
−1
i,i B

T
i = (3.74)

= Ĝ−1
i,i , i = 1 . . . N. (3.75)

The last equality in (3.74) follows from (3.73) where Gi,i, Bi are split as in (3.71), and
Ĝi,i = GiP

− GT
iC
G−1

iI
GiC

are the diagonal blocks from the reduced model (3.65). The
computation of path resistances is performed for the example of Sect. 3.4.3.

3.3.4 Computational complexity

With the SCC(G)-based reduction being mathematically equivalent to PACT, there re-
mains to quantify the computational advantage of the former compared to the latter.
Consider the original model before the first reduction step (3.41), and the corresponding
reducing projection (3.43), and note that only the submatrices of G1 enter in forming the
projection. This holds during the reduction of each component, whose computational
cost is determined by forming G−1

R GS.

Assuming that each component i = 1 . . . N, has mi internal nodes and pi terminals, the
corresponding sub-block dimensions are GR ∈ R(mi×mi), GS ∈ R(pi×pi). The reduction
cost per component is thus O(mαi

i pi), where typically 1 < αi ≤ 2 for circuit matrices [75].

For a total of N components, the total cost is O(
N

∑
i=1

mαi
i pi). For an unpartitioned circuit

with n internal nodes and p terminals, the cost of PACT is O(mαp), but after the SCC(G)
partitioning one attains mi < m and pi < p. Therefore especially when m and p are
large, the cost for the component-wise reduction will be smaller than the O(mαp) of
PACT. The large examples from Sect. 3.4.4 confirm this in practice.

3.3.5 Improving sparsity per subnetwork

The partitioning according to the SCCs of G provides structural and computational ad-
vantages, as smaller subnets are reduced individually, with the appropriate reduction
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of the capacitive blocks connecting the subnets. This block-wise reduction alone how-
ever does not directly minimize fill-in: circuit partitioning according to the SCCs(G)
only identifies sub-networks to be reduced individually, but has no immediate effect on
the sparsity of the reduced model. As seen from Theorem 3.3.1, the PACT reduction
per subnet is mathematically equivalent to applying PACT (see Sect. 4.2.2) directly on
the unpartitioned network. Therefore reduced models obtained with the SCC(G)-based
partitioning will have the same fill-in as otherwise obtained from applying PACT with-
out partitioning. Nevertheless, overall sparsity can be improved in this framework as
well by applying fill-reducing orderings per subnet, as described next.

Reconsider the partitioning (3.35), where subnet-1 is to be reduced. Applying a con-
strained approximate minimum degree reordering (CAMD) [1,2] on the graph G1 := nzp(G1+
C1) will reorder the nodes x1 so that fill-in is minimized during the PACT reduction of
subnet-1 [where nzp stands for the “non-zero pattern” of a matrix]. In particular, the
special internal nodes of subnet-1 are identified, which if eliminated would introduce
the most fill-in in Ĝ1 and Ĉ1. Consequently, these internal nodes are preserved and pro-
moted along with the terminals to form the selected nodes x1S

of subnet-1. The PACT
reduction per subnet-1 follows as in Sect. 3.3.1. The effect of the CAMD reordering per
subnet is demonstrated in Example 3.4.2.

As the CAMD reordering is applied only to the individual graphs Gi := nzp(Gii + Cii)
of each subnet, the corresponding ordering of the capacitive connection blocks Ci j, i 6= j
between the subnets however is not minimizing their fill-in. Consequently the reduced
Ĉi j blocks would be too dense if the Ci j blocks are large. Especially for circuits with p >
100, sparsity is better improved by considering the graph G associated with the entire
RC topology (i.e. by considering all R and the C connections from the start). While the
permutation according to the strongly connected components of G :=nzp(G) revealed a
partitioning with G in block diagonal form (with no R communication between blocks),
the extension to the general case is the BBD-based partitioning of G := nzp(G + C)
from chapter 4. The methodology therein achieves better sparsity levels and is thus
recommended for reducing very large circuits with terminals exceeding thousands.

3.4 Numerical results

A selection of circuits from the electronics industry was reduced with the SCC-based
partitioning proposed here. The examples shown have relatively few terminals p =

O(102), thus suitable for this framework, as sparsity preservation is not of major con-
cern. Rather, the examples demonstrate the performance of the SCC-based reduction
strategy in terms of approximation quality, preservation of terminal connectivity, syn-
thesis and re-simulation. As in chapter 4, the reduced netlists are obtained by unstamp-
ing the reduced model (3.65) with RLCSYN [93]. In the following tables, several param-
eters are recorded: p-number of terminals, n(k)-number of internal nodes in the original
(reduced) circuit respectively, Pnk =

100(n−k)
n -the percentage reduction in internal nodes
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,#R-number of resistors, PR =
100(#Rorig−#Rred)

#Rorig
-the percentage reduction/increase in the

number of resistors, #C-number of capacitors, PR =
100(#Corig−#Cred)

#Corig
-the percentage re-

duction/increase in the number of capacitors, CPUt- CPU time simulation time for the

original and reduced circuits, Speed-up =
CPUtorig
CPUtred

. It should be noted that the recorded
#C quantities for the reduced circuits also include possibly generated negative capaci-
tance values. For reasons explained in Sect. 4.3.3, these are kept in the reduced netlist.

3.4.1 Low Noise Amplifier (LNA) circuit (CMOS045)

Three RC parasitic extracted models (TL1,2,3) of the LNA circuit are reduced according
to Sect. 3.3.1. Belonging to the same family, the emphasis is placed here on the first, TL1.
The original G and C matrices are shown in Fig. 3.1, while in Fig. 3.2 they are permuted
and partitioned according to the SCCs(G) [24 components]. These subnetworks are vis-
ible in the diagonal blocks of Ĝ. The reduced Ĝ and Ĉ retain this structure (see Fig. 3.3).
The reduced block diagonals of Ĝ (and correspondingly of Ĉ) are entirely associated
with the preserved terminal nodes from each subnet (no internal nodes are preserved).

Table 3.1 collects the reduction and re-simulations results of the 3 circuits. As no fill-in
minimizing node reorderings were used, all nodes were eliminated except the termi-
nals (100% reduction rate in internal nodes). From the element reduction rates PR and
PC, it is clear that the reduced circuits contain much fewer circuit elements than the
original. The benefit of reduction is immediately reflected in the tremendous speed-ups
attained, when the reduced circuits were re-simulated compared to the original simula-
tions. The reduction time itself is very small (below 1s), and the re-simulation time for
the reduced circuits is also more than 100 times smaller than the original simulations.
Even more, simulating the original TL3 circuit was only possible after reduction (the
original simulation failed in finding a DC solution, possibly due to the ill-conditioning
of the underlying matrices).

The simulations consisted of the following analysis: AC, Noise, SP (S-parameter), PSS
(periodic steady state). Figures 3.4-3.5 compare, for several simulation types, the re-
sponses of the original vs. the reduced circuit. These match perfectly up to very high
frequencies.

Figures 3.6-3.7 show the waveforms obtained from simulating circuit TL3 after reduc-
tion. Even though the original simulation failed due to a convergence error in comput-
ing the DC solution, the reduced simulation ran without errors. Without a reference
solution to compare the reduced simulation against, these responses were nevertheless
appreciated by the circuit designers to follow the desired behavior. Furthermore, the
accuracy of the results obtained from reducing TL1 and TL2 (of the same family as TL3)
predicts desirable performance from reducing TL3.
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Figure 3.1: Example 3.4.1-TL1: original, unordered G (left) and C (right) matrices.

Figure 3.2: Example 3.4.1-TL1: G (left) and C (right) reordered according to SCCs(G).

Figure 3.3: Example 3.4.1-TL1: reduced Ĝ (left) and Ĉ (right). Note the preserved block diago-
nal structure of Ĝ, showing each reduced strongly connected component.

3.4.2 Mixer circuit

The mixer circuit (layout in Fig. 3.8) example shows how using fill-in minimizing node
reorderings (CAMD) on each subnetwork can improve the sparsity of the reduced model,
by identifying special internal nodes which are not eliminated. Table 3.2 collects the re-
duction results for the two strategies: method 3.3.5, where CAMD reorders the nodes in
each subnet for minimum fill-in, and method 3.3.1 (without reorderings). The reduced
models were 2 times faster to simulate than the original.
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Table 3.1: Reduction summary for Example 3.4.1

TL1 TL2 TL3
Orig. Red. Orig. Red. Orig. Red.

p 79 75 79
n | k 29806 0 33818 0 27962 0
Pnk 100% 100% 100%
#R 70338 117 81843 99 66068 117
PR 99.8% 99.8% 99.8%
#C 12038 1047 12145 920 9786 1032
PC 91.3% 92.4% 89.5%

Reduction
time 0.44 s 0.39s 0.46 s

Sim. CPUt
AC 65.83 s 0.12 s 60.11 0.17 s NA4 0.12 s

Noise 59.68 s 0.13 s 54.82 0.18 s NA 0.14 s
SP 82.81 s 0.21 s 110.7 0.19 s NA 0.22 s

PSS 793.13 s 2.93 s 424.28 3.33 s NA 3.05 s
Speed-up > 270x > 127x ∞

Table 3.2: Reduction summary for Example 3.4.2

Orig. Red.
3.3.5 Perc. Red.

3.3.1 Perc.

p 110 110 110
n | k 757 13 98.2% 0 100%
#R 1393 110 92.8% 111 92.0%
#C 2353 872 62.9% 1117 52.5%

Sim. CPUt Speed Up CPUt Speed Up
QPSS 23.48 s 10.84 s ∼2x 13.2 s ∼2x
QPSP 1735 s 754 s ∼2x 746 s ∼2x

Fig. 3.9 shows how the minimum fill-in is monitored during one subnet reduction (here,
subnet-11): the x-axis shows the number of the node to be eliminated, after the re-
ordering of nodes based on CAMD(G11 + C11) ; the y-axis shows the #R + #C as node
elimination progresses. The red circle shows the minimum value of circuit elements
min(#R+ #C), here attained after eliminating node 8. Further eliminating node 9 would
significantly increase the #R + #C in the reduced subnet-11. Thus node 9 of subnet-11
is not eliminated. Tracking the fill-in per subnet in this manner has identified the total
k = 13 internal nodes preserved in the final reduced model 3.3.5 (see Table 3.2, first col-
umn). The improvement in sparsity is reflected in the fact that reduced model Red. 3.3.5
has fewer circuit elements than model Red. 3.3.1.
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Figure 3.4: TL1: AC analysis - node “in”: magnitude. Comparison: original vs. reduced,
together with the approximation error which is very small (difference between “original” and
“reduced” curves is around 0dB).

Figure 3.5: TL1: PSS analysis, time domain - node “out”. Comparison: original vs. reduced.

3.4.3 Interconnect structure

The RC extracted parasitics of four interconnect structures, each with p = 12 terminals,
were reduced with the proposed strategy, with results recorded in Table 3.3. The reduc-
tion rates for nodes and circuit elements are above 95%, and the reduction time is in the
order of 1s. Two types of analysis are required, an AC simulation and the computation
of path resistances Rpath between terminals. The AC analysis is used to compare the
response of the original netlist to the reduced netlist for a large frequency range. As
seen from Fig. 3.10, these match perfectly.
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Figure 3.6: TL3: PSS: node “Vse2lse 0:2”. Figure 3.7: TL3: Noise: NF.

Figure 3.8: Example 3.4.2: mixer circuit layout.

Table 3.3: Reduction summary for Example 3.4.3

ICL1 ICL2 ICL3 ICL4
Orig. Red. Orig. Red. Orig. Red. Orig. Red.

p 12 12 12 12
n | k 2706 1 547 1 67103 1 62368 1
Pnk 99.9% 99.9% 99.9% 99.9%
#R 3143 6 984 6 97573 6 92838 6
PR 99.8% 99.3% 99.9% 99.9%
#C 1896 31 1229 31 223974 31 113887 31
PC 98.3% 97.5% 99.9% 99.9%

Reduction
time 0.06 s 0.05 s 1.2 s 0.8 s

Numerical solution CPU time
Rpath 0.009 s 0 s 0.009 s 0 s 0.19 s 0 s 0.16 s 0 s
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Figure 3.9: Example 3.4.2. Monitoring the fill-in generated during one subnet reduction. The
minimum value of #R + #C is attained after eliminating node 8, while node 9 is preserved.

Figure 3.10: Example 3.4.3. AC analysis for original and reduced netlists ICL1 showing a
perfect match.

While an AC analysis is an operation performed with the circuit simulator (here, Spec-
tre [16]), the computation of path resistances is sometimes not a direct functionality of
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commercial tools. This however is easily performed numerically via the partitioned con-
ductance matrix, as described in Sect. 3.3.3. For ICL3, the original matrices are shown in
Fig. 3.11. The SCC(G) partitioning reveals six components, each with only two termi-
nals. As seen in Fig. 3.12, the reduced model preserves the six components, each com-
ponent having only two nodes (i.e. the terminal nodes) as expected. The path resistance
between each pair of terminals is computed using formula (3.74) for each component,
after appropriate grounding. For this example actually, these path resistances can be
simply read-off from the upper diagonal of Ĝ.

Note in Table 3.3 that the time for computing the path resistances for the original net
via (3.74) is very small, and close to the time required to compute them for the reduced
net via (3.75). This is due to the fact that the inverses in (3.74), (3.75) are formed via the
backslash operator (mldivide) in Matlab [which itself exploits the sparsity of G and
performs a sparse LLT factorization based on AMD reordering [67]] hence turns out to
be very efficient, especially as the number of columns of B is small (only 12 terminals).
As has been already emphasized in [80], DC problems such as the computation of path
resistances can often be solved efficiently as solutions to sparse linear systems involving
the G matrix directly (and a network reduction is unnecessary). In contrast, simulations
requiring a sweep over a large frequency range (such as an AC analysis), require that
solutions to linear systems involving a denser problem (G + siC)

−1B are computed for
each frequency point si. These repeated operations are inefficient especially when the
number of terminals exceeds thousands, hence the need for reduced networks.

3.4.4 Very large networks

Two very large networks [part of a phase locked loop (PLL) and a receiver design (RX)
respectively] with more than 105 internal nodes and 103 terminals were reduced based
on the SCC(G) partitioning, with results recorded in Table 3.4. Due to their large di-
mension, the direct PACT reduction fails due to insufficient computational resources in
forming (4.5)-(4.7). The block-wise reduction of subnets based on the SCC(G) partition-
ing in contrast was able to reduce these networks within an order of minutes, which
is explained by the analysis in Sect. 3.3.4. Reduction rates of ≈ 90% in internal nodes,
resistors and capacitors were thus achieved.

3.5 Concluding remarks

The reduction of multi-terminal R and RC networks which share a common projection
matrix was addressed in this chapter. Based on the properties of the conductance ma-
trix G underlying these circuits, and the special structure of the projection matrix, it was
shown that the reduced models obtained in this framework have only positive resistors.
A partition-based implementation for multi-terminal RC reduction was also derived,
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Figure 3.11: Example 3.4.3. Original G (left) and C (right) matrices.

Figure 3.12: Example 3.4.3. Reduced Ĝ (left) and Ĉ (right) matrices. The strongly connected
components of Ĝ appear as blocks on the diagonal. These are directly used to compute the path
resistances (3.74).

Table 3.4: Reduction summary for Example 3.4.4

PLL Receiver
Orig. Red. Orig. Red.

p 1134 1794
n | k 380340 205 801458 818
Pnk 99.9% 99.9%
#R 593786 7458 1416454 11727
PR 99.8% 99.1%
#C 555553 59463 1961224 129978
PC 89% 93.3%

Reduction time
SCC(G)-based 42.4 s 760s

Reduction: PACT NA NA
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based on the strongly connected components of the conductance matrix G. A proof on
the mathematical equivalence between the unpartitioned versus partitioned approach
was provided. This ensures that the two approaches share the same moment matching,
passivity preservation and terminal reconnectivity properties. The partition provides
additional structural advantages, such as a simple solution for computing path resis-
tances in a network component-wise. Numerical experiments show that the reduced
circuits thus obtained contain much fewer elements than the original and attain signifi-
cant speed-ups in re-simulation. The methods in this chapter inspired the development
of the sparsity preserving RC reduction methodology of Chapter 4, especially suited for
circuits with terminals exceeding thousands.



Chapter 4

SparseRC: Sparsity preserving
model reduction for
multi-terminal RC networks

A novel model order reduction (MOR) method for multi-terminal RC circuits is pro-
posed: SparseRC. Specifically tailored to systems with many terminals, SparseRC em-
ploys graph-partitioning and fill-in reducing orderings to improve sparsity during model
reduction, while maintaining accuracy via moment matching. The reduced models are
easily converted to their circuit representation. These contain much fewer nodes and
circuit elements than otherwise obtained with conventional MOR techniques, allowing
faster simulations at little accuracy loss.

4.1 Introduction

During the design and verification phase of VLSI circuits, coupling effects between var-
ious components on a chip have to be analyzed. This requires simulation of electrical
circuits consisting of many non-linear devices together with extracted parasitics. Due
to the increasing amount of parasitics, full device-parasitic simulations are too costly
and often impossible. Hence, reduced models are sought for the parasitics, which when
re-coupled to the devices can reproduce the original circuit behavior.

Parasitic circuits are very large network models containing millions of nodes intercon-
nected via basic circuit elements: R, RC or RLC(k). Of the circuit nodes, a special subset
form the terminals, which are the designer specified input/output nodes and the nodes
connecting the parasitics to the non-linear devices. Parasitic networks with millions
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of nodes, RC elements, and thousands of terminals are often encountered in real chip
designs. A reduced order model for the parasitics ideally has fewer nodes and circuit
elements than the original, and preserves the terminal nodes for re-connectivity. The
presence of many terminals introduces additional structural and computational chal-
lenges during model order reduction (MOR). Existing MOR methods may be unsuitable
for circuits with many terminals as they produce dense reduced models. These corre-
spond to circuits with fewer circuit nodes, but more circuit elements (Rs, Cs) than the
original circuit, and may even require longer simulation times than originally. Further-
more, if terminal connectivity is affected, additional elements such as current/voltage
controlled sources must be introduced to appropriately model the re-connection of re-
duced parasitics to other devices.

The emerging problem is to develop efficient model reduction schemes for large multi-
terminal circuits that are accurate, sparsity preserving and also preserve terminal connectiv-
ity. The method proposed here, SparseRC, achieves these goals by efficiently combining
the strengths of existing MOR methodology with graph-partitioning and fill-reducing
node reordering strategies, achieving tremendous reduction rates even for circuits with
terminal numbers exceeding thousands. Reduced RC models thus obtained are sparser
than those computed via conventional techniques, have shorter simulation timings, and
also accurately approximate the input/output behavior of the original RC circuit. In ad-
dition, the reduced RC parasitics can be reconnected directly via the terminal nodes to
remaining circuitry (e.g. non-linear devices), without introducing new circuit elements.

A comprehensive coverage of established MOR methods is available in [4], while [82]
collects more circuit simulation specific contributions. Mainly, MOR methods are clas-
sified into truncation-based (modal approximation [79]/balancing [77]) and Krylov-
based methods, from which we mention PRIMA [71], SPRIM [27], or the dominant spec-
tral zero method [44] as they are passivity preserving1. Generally however, the applica-
bility of traditional MOR techniques to very large circuits with many terminals is lim-
ited due to computational limitations together with the afore-mentioned sparsity and
re-connectivity considerations. While the multi-terminal problem has been addressed
in numerous works such as [24], [13] [95], [59], it is usually less clear whether their
performance scales with the number of ports, especially as this exceeds thousands.

Recent developments in model reduction for very large multi-terminal R-networks were
achieved in [80] (denoted here as ReduceR), which uses graph theoretical tools, fill-in
minimizing node reorderings and node elimination to obtain sparse reduced R-networks.
Towards obtaining sparse reduced models for multi-terminal RC(L) networks, the Sparse
implicit projection (SIP) method [94] also proposes reordering actions prior to eliminat-
ing unimportant internal nodes, and makes several important analogies between related
node elimination-based methods (e.g. TICER [84], and [22]) and moment-matching MOR
by projection (e.g. PRIMA [71]). In fact, the fundamental projection behind SIP can be
traced back in the PACT methods [56, 57] for reducing multi-terminal RC(L) networks.

1Only passive reduced order models guarantee stable results when re-coupled to other circuit blocks in
subsequent simulation stages [71].
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As will be shown, SparseRC combines the advantages of ReduceR and SIP/PACT into
an efficient procedure, while overcoming some of their computational limitations: us-
ing graph partitioning, circuit components are identified which are reduced individu-
ally via a PACT-like projection [denoted here as the extended moment matching projection,
(EMMP)] while appropriately accounting for the interconnection between components.
The reduction process is simplified computationally, as smaller components are reduced
individually. The final SparseRC reduced circuit matches by default two moments at
DC of the original circuit’s multi-port admittance, and can be extended with dominant
poles [79] or additional moments to improve accuracy at higher frequency points if
needed. Through partitioning, the relevant nodes responsible for fill-in are identified
automatically; SparseRC preserves these along with the terminals to ensure the sparsity
of the reduced model. This feature makes SparseRC more efficient than ReduceR or SIP:
it avoids the unnecessary computational cost of monitoring fill-in at each node elimina-
tion step.

A related method is PartMOR [70], which is based on the same partitioning philosophy,
but constructs the reduced models in a different manner. PartMOR realizes selected
moments from each subnet into a netlist equivalent, while SparseRC is implemented
as block moment matching projection operating on the matrix hierarchy which results
from partitioning. This construction enables SparseRC to match admittance moments
per subnet as well as for the recombined network. With global accuracy thus ensured,
the approximation quality of the final SparseRC reduced model is guaranteed irrespec-
tive of the partitioning tool used or the number/sizes of partitions.

This work focuses on RC reduction. For RC, a reducing transformation which matches
multi-port admittance moments is sufficient to ensure accuracy and can be so constructed
as to improve sparsity. For RLC however, additional accuracy considerations have to be
accounted for as to capture oscillatory behavior. Hence, constructing a projection which
simultaneously ensures accuracy and sparsity is more involved. RLC circuits can be
partitioned with the same framework using a second order susceptance based system
formulation which reveals the network topology [93]. On the other hand, the dense
nature of inductive couplings for RLCK circuits may prevent finding a good partition.
These topics are treated in Chapter 5; for an existing RLC partitioned-based approach
we refer to PartMOR [70].

The rest of the chapter is structured as follows. Sect. 4.2 formulates the multi-terminal
model reduction problem. The SparseRC partitioning based strategy is detailed in
Sect. 4.3, the main focus of the chapter. Numerical results and circuits simulations are
presented in Sect. 4.4. Sect. 4.5 concludes. Some conventions on notation and termi-
nology follow next. Matrices: G and G are used interchangeably for the conductance
matrix, depending on whether the context refers to unpartitioned or partitioned matri-
ces respectively (similarly for the capacitance matrix C, C or the incidence matrix B, B).
Graphs: G (non-bold, non-calligraphic) is a graph associated with the non-zero pattern
of the circuit matrices, C (non-bold, non-calligraphic) is a component of G, nzp is the
non-zero-pattern of a matrix, i.e. its graph topology. Dimensions: p-number of circuit
terminals (external nodes), the same for the original and reduced matrices/circuit, n-
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the number of internal nodes of the original circuit, k-the number of internal nodes of
the reduced circuit, N-number of matrix partitions. Nodes: circuit nodes prior to par-
titioning are classified into terminals, and internal nodes; separator nodes are a subset of
the original nodes identified through partitioning as communication nodes among in-
dividual components. Terminology: a partition/subnet/block describes the same concept:
an individual graph/circuit/matrix component identified from partitioning; similarly,
a separator, border is a component containing only separator nodes.

4.2 Problem formulation

This section provides the preliminaries for model reduction of general RC circuits and
identifies the challenges emerging in multi-terminal model reduction. The building
block for SparseRC is described: EMMP, an extended moment matching projection for
reducing multi-terminal RC circuits.

4.2.1 Model reduction

Similarly to [56], consider the modified nodal analysis (MNA) description of an RC
circuit:

(G + sC)x(s) = Bu(s), (4.1)

where MNA matrices G, C are symmetric, non-negative definite, corresponding to the
stamps of resistor and capacitor values respectively. x ∈ Rn+p denote the node volt-
ages (measured at the n internal nodes and the p terminals) and n + p is the dimen-
sion of (6.1). u ∈ Rp are the currents injected into the terminals. The outputs are the
voltage drops at the terminal nodes: y(s) = BTx(s). The underlying matrix dimen-
sions are: G, C ∈ R(n+p)×(n+p), B ∈ R(n+p)×p. In model reduction, an appropriate
V ∈ R(n+p)×(k+p), k ≥ 0 is sought, such that the system matrices and unknowns are
reduced to:

Ĝ = VTGV, Ĉ = VTCV ∈ R(k+p)×(k+p)

B̂ = VTB ∈ R(k+p)×p, x̂ = VTx ∈ Rk+p

and satisfy: (Ĝ + sĈ)x̂(s) = B̂u(s).

The transfer function H(s) = BT(G + sC)−1B characterizes the system’s behavior at the
input/output ports (here, at the terminal nodes) over the frequency sweep s. After
reduction, this becomes: Ĥ(s) = B̂T(Ĝ + sĈ)−1B̂. A “good” reduced model/circuit
generally satisfies the following:
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(a) gives a small approximation error ‖H − Ĥ‖ in a suitably chosen norm, for in-
stance by ensuring that Ĥ matches moments of the original H at selected fre-
quency points,

(b) preserves passivity (and stability implicitly) and,

(c) can be computed efficiently.

For multi-terminal circuits especially, new conditions emerge:

(d) for reconnectivity purposes, the incidence of current injections into terminal nodes
is preserved (i.e. B̂ is a submatrix of B) and

(e) Ĝ and Ĉ are sparse.

SparseRC is a multi-terminal RC reduction method which meets targets (a)-(e), as will
be shown.

4.2.2 Multi-terminal RC reduction with moment matching

The extended moment matching projection (EMMP) is a moment matching reduction method
for multi-terminal RC circuits derived from PACT [56] (and conceptually similar to
SIP [94]). Being suitable for multi-terminal RC circuits with relatively few terminals
only, this projection will be applied, after partitioning, in a block-wise manner inside
SparseRC, as described in Sect. 4.3.2. The description here covers only material from [56]
that is relevant for SparseRC.

Original circuit model (6.1): G, C ∈ R(n+p)×(n+p), B ∈ R(n+p)×p Recalling (6.1), let
the nodes x be split into selected nodes xS (terminals and separator nodes2) to be pre-
served, and internal nodes to be eliminated xR, revealing the following structure:([

GR GK
GT

K GS

]
+ s

[
CR CK
CT

K CS

]) [
xR
xS

]
=

[
0

BS

]
u. (4.2)

Note that [56] uses a simple block separation into “purely” terminal nodes xS and inter-
nal nodes xR. Promoting separator nodes along with terminals inside xS will ultimately
positively influence the sparsity of the reduced model. The congruence transform ap-
plied to (4.2), XTGX, XTCX, XTB, where [56]:

X =

[
I −G−1

R GK
0 I

]
, x

′
= XTx, yields : (4.3)

2See Sect. 4.1 and Sect.4.3.1 for the definition of separator nodes
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[ GR 0

0 G
′

S

]
+ s

 CR C
′

K

C
′T
K C

′

S

[ xR

x
′

S

]
=

[
0

BS

]
u (4.4)

where:

G
′

S = GS −GT
KG−1

R GK , W = −G−1
R GK (4.5)

C
′

S = CS + WTCRW + WTCK + CT
KW, (4.6)

C
′

K = CK + CRW.

Expressing xR in terms of x
′

S from the first block-row of (4.4), and replacing it in the
second gives:

[(G
′

S + sC
′

S)︸ ︷︷ ︸
Y
′
S(s)

−s2 C
′T
K(G

′

R + sC
′

R)
−1C

′

K︸ ︷︷ ︸
Y
′
R(s)

]x
′

S = BSu.

The expression (4.7) represents the circuit’s multi-port admittance, defined with respect

to the selected nodes xS. Y
′
(s) captures the first two multi-port admittance moments at

s = 0 [56]. This is formalized as Proposition 4.2.1.

Proposition 4.2.1 For a multi-terminal RC circuit of the form (4.2), the first two moments at

s = 0 of the multi-port admittance are given by G
′

S and C
′

S from (4.5), (4.6).

Proof 4.2.1 (Proof of Prop. 4.2.1) Expressing xR in terms of xS from the first equation of
(4.2), and replacing it the second gives the circuit’s multi-port admittance:

Y(s)xS=BSu, where (4.7)

Y(s)=(GS+sCS)−(GK+sCK)
T(GR+sCR)

−1(GK+sCK)

The first 2 moments of Y(s) at s = 0 are computed from Y(s)|s=0 and dY
ds (s)|s=0:

Y(s)|s=0 = GS−GT
KG−1

R GK =G
′

S,
dY
ds

(s) = CS−CT
K(GR+sCR)

−1(GK+sCK)−(GK+sCK)
T(GR+sCR)

−1CK+

+ (GK+sCK)
T(GR+sCR)

−1CR(GR+sCR)
−1(GK+sCK)

⇒ dY
ds

(s)|s=0 = CS−CT
KG−1

RGK−GT
KG−1

RCK+GT
KG−1

RCRG−1
RGK =C

′

S,

the same as G
′

S and C
′

S from (4.5), (4.6).

The practical consequence of Prop. 4.2.1 is that, as with ReduceR, the path resistance
of the original circuit is precisely (4.5) and, as shown next, is preserved by the reduced
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model. In addition to the path resistance, the slope of an RC circuit’s response is cap-
tured by the second moment, namely (4.6).

Reduced circuit model: Ĝ, Ĉ ∈ R(k+p)×(k+p), k ≥ 0 By Prop. 4.2.1, the reduced model
which preserves the first two admittance moments of the original (4.2) is revealed: elim-

inate nodes xR (and the contribution Y
′

R) and retain nodes x
′

S. The corresponding mo-
ment matching projection is obtained by removing from X of (4.3) the columns corre-
sponding to xR:

V =

[
−G−1

R GK
I

]
, (4.8)

Ĝ = VTGV = G
′

S, Ĉ = VTCV = C
′

S, (4.9)

B̂ = VTB = BS, x̂ = VTx = x
′

S (4.10)

For simplicity the reducing projection V from (4.8) shall be referred to further-on as
the extended moment matching projection (EMMP). The term “extended” denotes that
moments are matched of the multi-port admittance defined by terminals and the pre-
served internal nodes, rather than, as in PACT, by terminal nodes only. In other words,
EMMP is the extension of the original projection from PACT [56] or SIP [94] to include
the separator nodes.

On the singularity of G

Conductance G and capacitance C matrices describing parasitic RC circuits in MNA
form are often singular, thus one must ensure that the EMMP projection (4.8) inverts
only non-singular GR blocks. This is easily achieved by exploiting the properties of
MNA matrices (e.g., definiteness, diagonal dominance), and a simple grouping of nodes
so that internal nodes (i.e. rows/columns) responsible for the singularity of G are ex-
cluded from GR (and promoted to GS) without any accuracy loss. Lemma 4.2.1 for-
malizes these actions. Similar actions for ensuring the invertibility of GR are detailed
in [56].

Lemma 4.2.1 From the singular conductance matrix G underlying the MNA circuit equations
(4.2), an invertible sub-block GR can always be found.

Proof 4.2.2 Towards showing the invertibility of GR, an analogy is first emphasized between the
circuit’s topology and the properties of the G, C matrices describing the MNA equations (6.1). G
and C correspond to ungrounded3 circuits and consequently the matrix pencil (G, C) is singular

3A ground node is only chosen in the actual circuit simulation phase, depending on the simulation re-
quirements and how the RC parasitics are connected to other circuitry. The ground node is thus interpreted
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(the vector of all 1’s form their column null-space). Therefore traditional MOR approaches which
assume that (G, C) is a regular pencil describing a grounded circuit cannot be directly applied
in this context. SparseRC however can handle singular (G, C) matrix pencils, as long as the GR
block involved in the EMMP projection is invertible, as is shown next.

Matrices G, C underlying an ungrounded circuit have the following properties: Gi,i ≥ 0, Ci,i ≥
0, Gi, j ≤ 0, Ci, j ≤ 0 for i 6= j. Furthermore they are diagonally dominant satisfying Gi,i +
Σi 6= jGi, j = 0, Ci,i + Σi 6= j Ci, j = 0. In other words they are symmetric, positive-semi-definite
Z-matrices, with positive diagonal entries, negative (or 0) off-diagonal entries, and possibly
rows/columns entirely with 0’s4. As an illustrative example, the circuit in Fig. 4.1 with nodes
ordered according to (4.2) has the MNA representation (4.11). In general GR, being a sub-




g1+g2+g3 +g4 +g6 −g4 −g1 −g2 −g3 −g6

−g4 g4 0 0 0 0
−g1 0 g1 0 0 0
−g2 0 0 g2 0 0
−g3 0 0 0 g3+g5 −g5
−g6 0 0 0 −g5 g5+g6


︸ ︷︷ ︸

G

+ · · · (4.11)

s


c1+c2 0 0 −c2 0 −c1

0 c3 0 −c3 0 0
0 0 0 0 0 0
−c2 −c3 0 c3+c2 0 0

0 0 0 0 0 0
−c1 0 0 0 0 c1




︸ ︷︷ ︸

C


V3(s)
V4(s)
V1(s)
V2(s)
V5(s)
V6(s)


︸ ︷︷ ︸

x

=


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B


i1
i2
i5
i6


︸ ︷︷ ︸

u

block of G will also have positive diagonal entries, negative (or 0) off-diagonals and possibly 0
rows/columns. The “structural” singularity of GR due to the 0 rows/columns is easily removed
by promoting the empty rows/columns to the GS block. Assuming this procedure performed, the
following scenarios apply for the remaining structure of GR (as a sub-block of G):

1. GRi,i
>Σi 6= jGRi, j

, i.e., GR is strictly diagonally dominant thus invertible

2. GR may still contain some (not all) rows/columns whose sum is 0. In this case GR satisfies
the following property: the diagonal entries of GR are positive and there exists a diagonal
matrix D such that GR ·D is strictly diagonally dominant [assume w.l.o.g row i is such
that GRi,i

+ Σi 6= jGRi, j
= 0 and GR j, j

≥ Σ j 6=kGR j,k
for all other rows j 6= i; then one

as a terminal and must be preserved after reduction. Grounding the netlist before MOR would fix a particular
node, remove the corresponding row and column from G, C and destroy connectivity via this node, which is
undesirable in practice.

4A 0 row/column in G (C respectively) denotes a node to which no resistor (or capacitor respectively) is
connected, which is common in practice.
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can take D = diag(Ii 6= j, gl) for some arbitrary gl > Gi,i]. This is equivalent to GR
invertible [25].

3. GR contains only row/columns whose sum is 0 (thus still singular). In this case the
corresponding xR nodes are eliminated for free (since the corresponding GK = 0 and the
two moments at s = 0 of the multi-port admittance are preserved automatically). Thus no
inversion of GR is required.

The GR block thus remains invertible. Singularity in C can be treated similarly, however not
needed in this chapter.

Reduction via the EMMP already meets some of the challenges defined at the begin-
ning of Sect. 4.2: (a) two multi-port admittance moments are preserved irrespective of
the separation level of x into xR and xS, provided that xR are internal nodes (thus the
incidence matrix BR = 0); this ensures that accuracy is maintained via moment match-
ing also when EMMP is later applied in the partitioned framework (see Sect. 4.3.2), (b)
passivity is preserved [56], as V is a congruence transformation projecting the origi-
nal positive semi-definite matrices G and C into reduced matrices Ĝ, Ĉ which remain
positive semi-definite, and (d) the input/output incidence matrix BS remains un-altered
after reduction; consequently, the reduced model can be reconnected directly via the ter-
minal nodes to remaining circuitry (e.g. non-linear devices), without introducing new
circuit elements such as controlled sources. The efficiency (c) and sparsity (e) consid-
erations however are not met by EMMP alone when the circuits to be reduced have
nodes, circuit elements, and terminals exceeding thousands. On one hand, constructing
G−1

R GK is either too costly or unfeasible, on the other the Ĝ, Ĉ resulting from (4.9) may
become too dense.

4.2.3 Fill-in and its effect in synthesis

Usually, G and C describing circuits from real chip designs are large and sparse, while
the Ĝ and Ĉ as obtained from (4.9) are small, but dense. Furthermore, they are only
mathematical constructions, thus a synthesis procedure is required to convert the re-
duced matrix representation back into an RC netlist. This is obtained by unstamping
the non-zero entries of Ĝ and Ĉ into the corresponding resistor and capacitor topology
respectively, while B̂ (being a sub-matrix of BS) is mapped directly into the original cur-
rent injection at terminals. Unstamping is done via RLCSYN [93]. The dimension of Ĝ
and Ĉ gives the number of nodes, while the number of their non-zero entries dictates
how many Rs and Cs are present in the reduced netlist. Therefore, while limiting the
size of Ĝ and Ĉ, it is critical to also ensure their sparsity.

The simple example in Fig. 4.1 compares two reduced netlists derived from a small
circuit. The dense reduced model has fewer nodes but more R, C elements than the
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● # R = 6
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Terminals: p = 4

●  # R = 5
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C2

Reduction comparison

Eliminate all internal nodes Preserve special internal nodes

Figure 4.1: Top: RC circuit to be reduced, containing p = 4 terminals and n = 2 internal
nodes. Node 3 is a special internal node with many connections to other nodes. Bottom left:
a dense reduced model, where all internal nodes (3 and 4) were eliminated, but more circuit
elements are generated. Bottom right: a sparse reduced model (with fewer circuit elements)
obtained from keeping node 3 and eliminating only node 4.

original, while the sparse reduced model has both fewer nodes and R, C elements. The
sparse model was obtained by preserving a node which would introduce fill-in if elim-
inated. Naturally, identifying such nodes by inspection is no longer possible for very
large circuits. Next, it is explained how avoiding fill-creating nodes is possible in prac-
tice using reordering techniques.
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Improving sparsity with node reorderings

At the basis of sparsity preserving MOR lies the following observation: the congruence
transform X from (4.3) is analogous to a partial Cholesky factorization [29] of G [94].
Just as fill-reducing matrix reorderings are used for obtaining sparser factorizations, so
can they be applied for sparsity preserving model reduction. These lie at the heart of
ReduceR [80] and SIP [94], where the idea is to pre-order the matrix for instance with
Constrained Approximate Minimum Degree (CAMD) [1, 2], so that nodes responsible for
fill-in are placed towards the end of the elimination sequence, along with the terminals.
By eliminating the nodes one by one and keeping track of the fill-in generated at each
step, the circuit with the fewest number of elements can be determined. For circuits
with challenging topologies however (i.e. with more internal nodes, terminals or circuit
elements), these actions may be either too costly or even unfeasible (see the results in
Sect. 4.4.2). SparseRC avoids such hurdles by exploiting graph partitioning and an ap-
propriate matrix structure which allow for separator (fill-creating) nodes to be identified
and skipped automatically in the reduction process, thus ensuring a desirable level of
sparsity.

The following sections show how SparseRC, building upon the EMMP in combination
with graph-partitioning and sometimes additional fill-reducing orderings, maintains
the (a),(b),(d) and in addition meets the (c) efficiency and (e) sparsity requirements.
These are crucial for successfully reducing very large networks with many terminals
arising in industrial problems.

4.3 SparseRC reduction via graph partitioning

The analogy between circuits and graphs is immediate: the circuit nodes are the graph
vertices, while the connections among them via R, C elements form the edges in the
graph. For very large multi-terminal circuits to be manageable at all with limited com-
putational resources, a global partitioning scheme is proposed, visualized with the help
of Fig. 4.25. Essentially, an original large-multi terminal circuit is split into subnetworks
which have fewer nodes and terminals, are minimally connected among each-other via
separator nodes, and are reduced individually up to the terminals and separator (cut)
nodes. SparseRC reduces each subnet individually, up to terminals and separator nodes.
As all separator nodes are automatically preserved, sparsity is improved.

5The two-way partitioning is presented here for simplicity; a natural extension is partitioning into N > 2
subnets.
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Figure 4.2: Graph partitioning with separation of terminals.

4.3.1 Partitioning and the BBD form

Implemented as a divide and conquer reduction strategy, SparseRC first uses graph de-
compositions [based on the non-zero pattern (nzp) of G + C] to identify individual sub-
nets, as well as the separator nodes through which these communicate. Through parti-
tioning, the original circuit matrices are reordered into the bordered block diagonal (BBD)
[97] form: individual blocks form the subnets to be reduced, while the border blocks
collect the separator nodes which are all preserved. The separator nodes are identified
with the help of a separator tree indicating which of the subnets resulting from parti-
tioning are in fact separators (this is usually a direct functionality of the partitioning
algorithm, see for instance the MATLAB [67] manual pages of nesdis reordering). In
the conquer phase, individual blocks are reduced with the EMMP from Sect. 4.2.2 and
the border blocks are correspondingly updated to maintain the moment matching prop-
erty. A graphical representation of the 7-component BBD partitioning and reduction is
shown in Fig. 4.36. It is emphasized that, as reduction progresses, fill-in is isolated in
the reduced parts of C1, C2, C4, C5, the separator blocks C3, C6, C7, and the correspond-
ing connection borders. As components are minimally connected, fill-in generated on
the border is minimized.

6In implementation both G and C are in BBD form, in Fig. 4.3 G denotes simultaneously the corresponding
blocks from both matrices.
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Figure 4.3: Circuit matrices after partitioning, in BBD form (original-left vs. reduced-right).
For clarity, block dimensions are not drawn to scale: in practice the separators are much smaller
than the independent components, thus the borders are “thin”. The individual blocks are reduced
up to terminals, the borders are retained and updated. The number inside each independent
component denotes the reduction step; this number is also stamped into the corresponding border
blocks to mark fill-in. Example: reducing C1 also updates the separators C3 and C7 and the
corresponding borders. The “root” separator C7 is updated from reducing all individual blocks
C1,2,4,5.

4.3.2 Mathematical formulation

The mathematical derivation of SparseRC follows, showing how reduction progres-
sively traverses the BBD matrix structure, reducing individual components and updat-
ing the connectivity among them. Herein, G and C shall denote the original circuit
matrices, while G, C shall directly refer to matrix blocks associated with the EMMP
reduction from Sect. 4.2.2. Reconsider the original RC circuit in MNA form:

(G + sC)x(s) = Bu(s), (4.12)

of dimension n + p, where n are internal nodes, p are terminals. The appropriate pro-
jection V ∈ R(n+p)×(k+p), k ≥ 0, is sought, which reduces (4.12) to:

Ĝ=VTGV ∈ R(k+p)×(k+p) , Ĉ=VTCV ∈ R(k+p)×(k+p) (4.13)

x̂=VTx ∈ R(k+p) , B̂=VTB ∈ R(k+p)×p (4.14)

As illustrated in Sect. 4.3.1, V is constructed step-wise using the BBD matrix reordering.
Mathematically this is shown via the simplest example of a BBD partitioning: a bisection
into two independent components communicating via one separator (border) block.



78 SparseRC: Sparsity preserving model reduction for multi-terminal RC networks

General reduction for a multi-level BBD partitioned system follows similarly. Consider
the bisection of (4.12): G11 0 G13

0 G22 G23
GT

13 GT
13 G33

+ s

 C11 0 C13
0 C22 C23
CT

13 CT
13 C33

 x1
x2
x3

 =

 B1
B2
B3

 . (4.15)

Reducing (4.15) amounts to applying the EMMP from Sect. 4.2.2 on the individual com-
ponents [here C1 := nzp(G11 + C11) and C2 := nzp(G22 + C22)]. The separator [here
C3 := nzp(G33 + C33)] is kept and updated twice with the projections reducing C1
and C2 respectively. Naturally, the reduction is applied to the communication blocks
G13, C13, G23, C23. Updating the separator and communication blocks at each individual
reduction step ensures admittance moment preservation for the total recombined circuit
(see Theorem 4.3.1 in Sect. 4.3.3).

Step 1

Consider the reduction of subnetwork C1 with EMMP, based on splitting x1 of (4.15)
into x1R

and x1S
, i.e. into the internal nodes (to be eliminated) and selected nodes (to be

preserved) of subnet C1:
G11R

G11K
0 G13R

GT
11K

G11S
0 G13S

0 0 G22 G23
GT

13R
GT

13S
GT

23 G33

+s


C11R

C11K
0 C13R

CT
11K

C11S
0 C13S

0 0 C22 C23
CT

13R
CT

13S
CT

23 C33

 (4.16)

xT = [xT
1R

, xT
1S

, xT
2 , xT

3 ]
T , BT = [0,BT

1S
,BT

2 ,BT
3 ]

Recognizing the analogy with (4.2), the EMMP-based transformation which reduces the
network (4.16) by eliminating nodes the internal nodes x1R

is given by:
−G−1

11R
G11K

0 −G−1
11R
G13R

IS1
0 0

0 I2 0
0 0 I3

=
[
−G−1

R GK
IS123

]
= V1, (4.17)

where IS123 :=blockdiag(IS1
, I2, I3). Let:

W11 = −G−1
11R
G11K

, W13 = −G−1
11R
G13R

. (4.18)
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As with (4.8)-(4.10), the reduced model for (4.16) is computed from G
′

S =VT
1GV1, C

′

S =

VT
1CV1. The reduced system at step 1 has the form:

G
′

S =

 Ĝ11 0 Ĝ13
0 G22 G23
ĜT

13 GT
23 G̃33

 , C
′

S =

 Ĉ11 0 Ĉ13
0 C22 C23
ĈT

13 CT
23 C̃33

 (4.19)

BS =

 B̂1
B2
B3

 , x
′

S =

 x̂1
x2
x3

 , (4.20)

where:

Ĝ11 = G11S
− GT

11K
G−1

11R
G11K

, (4.21)

Ĝ13 = G13S
− GT

11K
G−1

11R
G13R

(4.22)

G̃33 = G33 − G
T
13R
G−1

11R
G13R

(4.23)

Ĉ11 = C11S
+WT

11C11R
W11 +W

T
11C11K

+ CT
11K
W11 (4.24)

Ĉ13 = C13S
+WT

11C13R
+ CT

11K
W13 +W

T
11C11R

W13 (4.25)

C̃33 = C33 +W
T
13C11R

W13 +W
T
13C13R

+ CT
13R
W13 (4.26)

B̂1 =B1S
, x̂1 = x

′

1S
. (4.27)

The BBD form provides an important structural advantage, both in terms of identify-
ing fill-in, as well as in implementation: reducing one subnet only affects the entries
of the corresponding separator and border blocks, leaving the rest of the independent
subnets intact. Notice from (4.19)-(4.20) how reducing subnet C1 has only affected its
corresponding connection blocks to C3, and the separator block C3 itself. The blocks of
subnet C2 are not affected. This is because C1 communicates with C2 only via the sepa-
rator C3. Therefore while reducing C2, the already computed blocks of the reduced C1
will no longer be affected. Only the connection blocks from C2 to C3 and the separator
C3 itself will be updated. Mathematically, this is shown next.

Step 2

Partition now the reduced G
′

S, C
′

S matrices (4.19)-(4.20) by splitting component C2 ac-
cording to x2R

and x2S
:

Ĝ11 0 0 Ĝ13
0 G22R

G22K
G23R

0 GT
22K

G22S
G23S

ĜT
13 GT

23R
GT

23S
G̃33

+s


Ĉ11 0 0 Ĉ13
0 C22R

C22K
C23R

0 CT
22K

C22S
C23S

ĈT
13 CT

23R
CT

23S
C̃33

 (4.28)

x
′

S
T
= [x̂T

1, xT
2R

, xT
2S

, xT
3 ]

T , B
′

S
T
= [B̂T

1, 0,BT
1S

,BT
3] (4.29)
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As before, the EMMP-based transformation which reduces the network (4.28) by elimi-
nating nodes x2R

is given by:
IS1

0 0
0 −G−1

22R
G22K

−G−1
22R
G23R

0 IS2
0

0 0 I3

=
 IS1

0
0 −G−1

R GK
0 IS23

=V2, (4.30)

The reduced model is obtained by projecting (4.28)-(4.29) with V2. Ĝ = VT
2G

′

SV2, Ĉ =
VT

2C
′

SV2, B̂=VT
2BS, x̂=VT

2x
′

S:

Ĝ =

 Ĝ11 0 Ĝ13
0 Ĝ22 Ĝ23
ĜT

13 ĜT
23 G33

 , Ĝ =

 Ĉ11 0 Ĉ13
0 Ĉ22 Ĉ23
ĈT

13 ĈT
23 C33

 (4.31)

B̂ =

 B̂1
B̂2
B3

 , x̂ =

 x̂1
x̂2
x3

 , (4.32)

where (4.21)-(4.27) hold and:

Ĝ22=G22S
− GT

22K
G−1

22R
G22K

, (4.33)

Ĝ23=G23S
− GT

22K
G−1

22R
G23R

(4.34)

G33=G̃33 − G
T
23R
G−1

22R
G23R

(4.35)

Ĉ22=C22S
+WT

22C22R
W22 +W

T
22C22K

+ CT
22K
W22 (4.36)

Ĉ23=C23S
+WT

22C23R
+ CT

22K
W23 +W

T
22C22R

W23 (4.37)

C33=C̃33 +W
T
23C22R

W23 +W
T
23C23R

+ CT
23R
W23 (4.38)

B̂2=B2S
, x̂2 = x

′

2S
, with (4.39)

W22=−G
−1
22R
G22K

, W23 = −G−1
22R
G23R

. (4.40)

As seen from (4.35) and (4.38), separator blocks G33 and C33 are the further updated
blocks G̃33, C̃33 (previously obtained from reducing C1). The reduced model retains the
BBD form, and the separator nodes are retained in the blocks corresponding to G33 and
C33. The p terminals are distributed among C1, C2, C3 as seen from the form of B̂ in
(4.32). Equations (4.27), (4.39) and (4.32) together show that the input/output incidence
matrix is preserved after reduction, thus the reduced netlist obtained from RLCSYN
[93] unstamping preserves connectivity via the terminal nodes. In the general case,
block-wise reduction of finer BBD partitions (into N > 3 components) follows similarly,
with the appropriate projections of separator and border blocks. The moment-matching,
terminal connectivity and passivity requirements remain satisfied.
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Options for further improving sparsity

Partitioning provides an additional structural and computational advantage: if neces-
sary, additional reordering and minimum-fill tracking options such as those employed
by ReduceR/SIP can be applied per subnet. Naturally, such operations come at ad-
ditional computational cost, but are still more efficient than monitoring fill-in directly
from the unpartitioned circuit. So, while separator nodes already improve sparsity glob-
ally and automatically, fill-monitoring actions may further identify additional internal
nodes to be preserved locally in each subnet. For instance, in the reduction scenario of
Step 1 (see Sect. 4.3.2), the G11, C11 blocks of (4.15) would be reordered with CAMD and
fill-tracking would identify which additional internal nodes should be preserved along
with terminals in x1S

. This may improve sparsity inside Ĝ11, Ĉ11 (and correspondingly

in Ĝ13, Ĉ13, G̃33, C̃33) even beyond the level already achieved by preserving the separa-
tors nodes. In Sect. 4.4 examples are provided to illustrate this effect. Nevertheless, such
fill-monitoring operations are not always necessary: the sparsity level achieved directly
from partitioning and preserving separator nodes is often sufficient. This is discussed
in Sect. 4.3.4.

4.3.3 Moment matching, passivity and synthesis

Note that as Ĝ = VT
2G

′

SV2 = VT
2VT

1GV1V2 (similarly for Ĉ, B̂), the reducing projection
from (4.13)-(4.14) is V :=V1V2, with V1, V2 as deduced in (4.17) and (4.30) respectively.
In efficient implementations however V1, V2, and V are never formed directly, rather
they are formed block-wise as just shown. Only W11, W13, W22, W23 from (4.18) and
(4.40) respectively are explicitly formed. Next, it is shown that the V constructed from
successive EMMPs matches the first two admittance moments at the end of the reduc-
tion procedure.

Theorem 4.3.1 Consider the original circuit (4.15) with matrices partitioned and structured
in BBD form, which is reduced by applying successive EMMP projections (see Sect. 4.2.2) on
each subnet. The final reduced model (4.31)-(4.32) preserves the first two multi-port admittance
moments around s=0 of each individual subnet and of the entire recombined circuit (4.15).

Proof 4.3.1 (Proof of Theorem 4.3.1) By Prop. 4.2.1, the reduced subnet 1 defined by Ĝ11
(4.21) and Ĉ11 (4.24), preserves the first two multi-port admittance moments at s = 0 of the
original subnet 1 defined by G11, C11. The same holds for the reduced subnet 2, defined by Ĝ22
(4.33) and Ĉ22 (4.36). There remains to prove the admittance moment matching between the
original (4.15) and reduced (4.31)-(4.32) recombined circuits. This is shown by reconstructing
from the individual EMMPs, an EMMP projection V associated with entire circuit (4.15), as
follows. Recall G from (4.16), where in addition nodes x2 of the second subnet are split into x2R
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and x2S
as in Sect. 4.3.2:

G=


G11R

G11K
0 0 G13R

GT
11K

G11S
0 0 G13S

0 0 G22R
G22K

G23R

0 0 GT
22K

G22S
G23S

GT
13R

GT
13S

GT
23R

GT
23S

G33



Recall V = V1V2 = with V1 from (4.17) and V2 from (4.30). Inside the V1, let I2 =
blockdiag(IR2

, IS2
) be partitioned according to the splitting of x2 into x2R

and x2S
respec-

tively. Then, by straightforward matrix multiplication:

V = V1V2 =


−G−1

11R
G11K

0 −G−1
11R
G13R

IS1
0 0

0 −G−1
22R
G22K

−G−1
22R
G23R

0 IS2
0

0 0 I3

 (4.41)

Let P be the permutation swapping the second with the third block-rows of (4.41). Then, denot-
ing VP = PV :

VP =


−G−1

11R
G11K

0 −G−1
11R
G13R

0 −G−1
22R
G22K

−G−1
22R
G23R

IS1
0 0

0 IS2
0

0 0 I3

 . (4.42)

Define the permuted matrices GP = PGPT , CP = PCPT , BP = PB, and notice their
structure:

GP=


G11R

0 G11K
0 G13R

0 G22R
0 G22K

G23R

GT
11K

0 G11S
0 G13S

0 GT
22K

0 G22S
G23S

GT
13R

GT
13S

GT
23R

GT
23S

G33

 :=

[
GR GK
GT

K GS

]
, (4.43)

similarly CP :=

[
CR CK
CT

K CS

]
, BP =


0
0
B1S
B2S
B3S

 :=
[

0
BS

]
. (4.44)

From (4.43), (4.44) and the analogy with Sect. 4.2.2, one recognizes immediately in (4.42) the
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EMMP:

VP=
[
−G−1

R GK
IS1 S23

]
, IS1 S23 :=blockdiag(IS1

, IS2
, I3). (4.45)

From Prop. 4.2.1, the reduced model obtained by projecting (4.43), (4.44) with (4.45) matches the
fist two moments around s = 0 of the multi-port admittance (defined with respect to BS, the total
number of terminals and separator nodes of the recombined circuit). Since P is a permutation
satisfying PTP = I, it follows immediately that this reduced model is precisely:

VT
PGPVP = VTGV = Ĝ , VT

PCPVP = VTCV = Ĉ ,

VT
PBP = VTB = B̂.

where (4.31)-(4.39) hold.

Matching behavior at higher frequencies

Although SparseRC is mainly based on matching the first two admittance moments at
s = 0 (which proved sufficient for most experiments of Sect. 4.4), it is possible, when
necessary, to additionally improve approximation at higher frequency points.One pos-

sibility is to include contributions from the otherwise neglected term Y
′

R(s) of the ad-

mittance response (4.7). Let for simplicity Q be a transformation which reduces Y
′

R(s).

One can for instance perform the traditional PRIMA [71] reduction of Y
′

R(s), which

constructs for a chosen expansion point si the Krylov subspace: Km(A
−1CR, A−1C

′

K)=

span
[
(A−1CR)

m−1A−1C
′

K

]
, where A=GR + siCR. If Km ⊆ Q then Q matches 2m multi-

port admittance moments of Y
′

R(s) at si. As a special case, if si = 0, then Q matches 2m
multi-port admittance moments at zero of (4.7), additionally to the 0’th and 1’st which
are matched by default. Another option is to include in Q eigenvectors associated with

the dominant eigenvalues of Y
′

R(s), similarly to [56]. Be it either obtained from moment
or pole matching (or a combination of both), it is easily verified that the projection Q

which reduces Y
′

R(s) enters the transformation (4.3) as follows:

XQ =

[
Q W
0 I

]
, W = −G−1

R GK (4.46)

To form Q within the partitioned framework, reconsider the reduction of subnet 1 from
Sect. 4.3.2. The reducing transformation there is V1 (4.17), which preserved the first
two admittance moments at s = 0 and eliminated entirely the contribution of internal
nodes x1R

. Rather than eliminating x1R
, let Q1 be the transformation which reduces the

internal matrices G11R
and C11R

. Similarly, during the reduction of subnet 2 (Sect. 4.3.2),
letQ2 be the transformation which reduces G22R

and C22R
. Q1 andQ2 enter the reducing

transformation for the recombined network as follows:
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XQ =


Q1 W11 0 0 W13
0 IS1

0 0 0
0 0 Q2 W22 W23
0 0 0 IS2

0
0 0 0 0 I3

 , (4.47)

where (4.18) and (4.40) hold. Note that (4.47) is the extension with Q1 and Q2 of the
default projection (4.41) which matches the first two multi-port admittance moments at
s = 0.

In a similar manner, a projection can be constructed which matches directly moments at
si 6= 0 of the entire multi-port admittance (4.7) (see [57] for details, which pertains more
to RLC reduction). Given that a circuit’s offset and slope at DC are precisely the first two
admittance moments at s = 0 [56], matching these is a natural choice. We emphasize
that, in contrast with SparseRC, direct moment matching at s = 0 cannot be achieved
via PRIMA [71], or SPRIM [27] since the original G matrix is singular. To summarize,
should additional accuracy be necessary when reducing RC circuits with SparseRC, it
is safer to match the first two admittance moments at s = 0 and improve the response

with contributions from the internal Y
′

R(s) term as above described. This approach
was implemented in the partitioned framework for two examples in Sect. 4.4.1: the

RC transmission line example where moments of Y
′

R(s) are matched in addition, and

the low noise amplifier (LNA) where dominant eigenmodes of Y
′

R(s) are additionally
matched.

SparseRC matches two moments at s = 0 by default. Hence, extra poles/moments
can be added, if needed, after the default reduction, by re-arranging the projection XQ
so that the extra Qi columns are formed in a separate reduction run. The decision on
whether to add extra poles or moments is difficult to make a-priori, as is the case for any
moment-based reduction method. One approach would be to compare the response of
the original and default reduced order model for large frequencies. Should significant
deviations be observed, then the addition of extra poles/moments is recommended.
In PACT [56] poles are added based on a specified error and maximum operating fre-
quency.

Passivity and synthesis

As with PACT [56], the reducing projection V is a congruence transformation applied
on original symmetric, non-negative definite matrices, which gives reduced symmetric,
non-negative definite matrices (4.31)-(4.32). Consequently [56], the final reduced model
(4.31)-(4.32) is passive and stable, and the reduced netlist obtained from RLCSYN [93]
unstamping remains passive irrespective of the values of the resulting R, C elements.
If reduction is performed with the default two-moment matching at s = 0 (which was
sufficient in all experiments except the two-port RC line of Sect. 4.4.1) the projection V
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of (4.41) guarantees that the unstamping of Ĝ generates only positive resistors. This is
ensured by the special form of V which performs a Schur-complement operation on the
original matrix G [91] (note that a standard moment matching projection as in PRIMA
[71] does not guarantee positive resistors from unstamping, even though the reduced
Ĝ is symmetric positive definite). While there may be negative capacitances resulting
from unstamping Ĉ, they do not violate the passivity of the netlist, nor its direct usability
inside a simulator such as Spectre [16]. Furthermore, they do not prejudice the quality
of the re-simulation results as confirmed by Sect. 4.4. In fact, as also motivated in SIP
[94], dropping negative capacitors from the reduced netlist is in practice a dangerous
operation, so all capacitors are safely kept in. In the case of reduction with additional
accuracy as in Sect. 4.3.3, the unstamping of Ĝ may generate negative resistors; these
again posed no difficulties in the simulations performed (e.g. AC, transient, periodic
steady state). PartMOR [70] presents an alternative reduction and synthesis strategy
which ensures positive-only elements.

4.3.4 SparseRC algorithm

The SparseRC pseudocode is outlined in Algorithms 1, 2, which describe the most rele-
vant reduction case of matching the first two admittance moments at s = 0. To summa-
rize Alg. 1: from the original circuit matrices G, C and a vector of indices e denoting the
original location of terminals (external nodes), SparseRC outputs the reduced circuit
matrices Ĝ , Ĉ, and the vector ẽ denoting the new terminal locations. As an advanced
option, “do minfill” specifies whether additional fill-reducing orderings should be em-
ployed per partition. The graph G defined by the circuit topology [the non-zero pattern
(nzp) of G + C] is partitioned into N components. A permutation P (which reorders the
circuit matrices in BBD form) is obtained, together with a vector Sep indicating which
of the N components is a separator. For each non-separator component Ck, defined by
nodes ik, the corresponding matrix blocks are reduced with EMMP while accounting for
the communication of Ck to the remaining components via the separator nodes isep. All
separator components are kept, after having been appropriately updated inside EMMP.

The G, C matrices supplied at each step to EMMP (line 8 of Alg. 1) are updated in place,
and the reduction follows according to Alg. 2. The ik index selects from the supplied G,
C the component to be reduced (say, Ck), while isep are the indices of separator nodes
through which ik communicate with the rest of the circuit. If desired, at the entry of
EMMP these nodes are reordered with CAMD, as to identify additional internal nodes
which may further improve sparsity from reducing Ck (this operation however is only
an advanced feature and often unnecessary). Internal and external nodes of compo-
nent Ck are identified. Internal nodes iR will be removed and the selected nodes iS will
be preserved (i.e. terminals of Ck, corresponding separator nodes, and possibly some
additional internal nodes obtained from step 2). The corresponding matrix blocks are
identified and the update matrix W is formed. The blocks corresponding to selected
nodes iS are updated, while those corresponding to the eliminated iR nodes are re-
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moved. At output, Ĝ, Ĉ are the reduced matrices: internal nodes were eliminated only
from the component defined by node indices ik, while nodes corresponding to the other
components are untouched. The terminal locations of the reduced model are indexed
by ẽ.

Algorithm 1 (Ĝ , Ĉ , ẽ) = SparseRC(G , C , e, do minfill)

Given: original G , C, original vector of terminal indices e, do minfill (0/1) option for minimum-
fill reordering per subnet

Output: reduced Ĝ , Ĉ, updated vector of terminal indices ẽ
1: Let graph G := nzp(G + C)
2: (P, Sep) =partition(G, N)
3: G = G(P, P), C = C(P, P), e = e(P) . reorder in BBD
4: for component Ck = 1 . . . N do
5: if Ck 6∈ Sep then . Ck is not a separator
6: ik = index of nodes for component Ck
7: isep = index of separator nodes connecting Ck to components Ck+1 . . . CN
8: (G, C, e) = EMMP(G, C, ik, isep, e, do minfill)

. reduce Ck with EMMP
9: else keep separator component Ck

10: end if
11: end for
12: Ĝ = G, Ĉ = C, ẽ = e

A few computational remarks: to ensure numerical stability while forming the reduced
matrix blocks at step 11 of Alg. 1, we apply rescaling to C (and/or G). Based on Theo-
rem 4.3.1, it is also ensured that the global moment matching projection which underlies
SparseRC inherits the proved [94] full-column-rank properties of the SIP/PACT projec-
tion.

On the partitioning strategy

It was seen how preserving internal nodes along with terminals improves the sparsity
of the reduced model. Good reduced models are sparse and small, i.e. have minimum
fill and few preserved internal nodes. Towards obtaining reduced models with a suitable
trade-off between sparsity and dimension, one may naturally ask: (a) what are the op-
timal partitioning criteria and the number of generated subnets N, and (b) when are
additional fill-reducing node reorderings and fill-monitoring actions needed aside from
partitioning?

The choice of N Through partitioning, the aim is to minimize the communication
among subnets (via a small number of separator nodes) and spread the terminals across
partitions, as to minimize the fill-in generated from reducing each partition (up to its ter-
minals) and inside the separator blocks. Towards achieving this goal, this chapter relies
on the general purpose partitioner nested dissection (NESDIS, part of [18]) the choice



4.3 SparseRC reduction via graph partitioning 87

Algorithm 2 (Ĝ , Ĉ , ẽ) = EMMP(G, C, ik, isep, e, do minfill)

Given: initial G , C, corresponding vector of terminal indices e, do minfill (0/1) option for
minimum-fill node reordering

Output: reduced Ĝ, Ĉ, corresponding vector of terminals ẽ
1: if do minfill then . find additional internal nodes to preserve
2: (ik, isep, e) = reorderCAMD(G, C, ik, isep, e)
3: . find optimal minimum fill ordering per subnet
4: end if
5: (iint , iext) = split(ik, e) . split ik into internal and external nodes
6: iR = iint . internal nodes to eliminate
7: iS = [iext , isep] . selected nodes to keep
8: GR = G(iR , iR), CR = C(iR , iR)

GK = G(iR , iS), CK = C(iR , iS)
GS = G(iS , iS), CS = C(iS , iS)

9: W = −G−1
R GK . construct reducing projection

10: G(iS , iS) = GS −GT
KW . update entries for selected nodes

11: C(iS , iS) = CS + CT
KW + WTCK + WTCRW

12: G(iR , iR) = { }, C(iR , iR) = { } . eliminate iR nodes
G(iR , iS) = { }, C(iR , iS) = { }, e(iR) = { }

13: Ĝ = G, Ĉ = C, ẽ = e

however is by no means exclusive. In [47] and Appendix 4.6.2 for instance the usage of
the hypergraph partitioner Mondriaan [96] is documented. NESDIS partitions a graph
so that communication among subnets is minimized, however cannot control explicitly
the distribution of terminals across parts. With NESDIS, terminals get spread indirectly,
as a consequence of partitioning. While estimating an optimal N is an open problem
which must simultaneously account for multiple factors (number of terminals, internal
nodes, elements, potential fill-in), we provide some guidelines as to quickly determine
a satisfactory value to be used with NESDIS. For our experiments, N was mostly deter-
mined immediately by inspecting the ratio of terminals to internal nodes in the original
graph, p

n . For netlists with small p
n [for instance p

n < 1
10 ], a coarse partitioning is already

sufficient to achieve few terminals per subnet and ensure sparsity (certainly, as long as
the resulting number of nodes per subnet enables the computation of the corresponding
block projection). Such circuits are the ideal candidates for SparseRC reduction based
on NESDIS partitioning alone, without extra fill-reducing ordering actions.

Additional fill-monitoring actions For circuits with large p
n ratios though, finer NES-

DIS partitions are needed to achieve a small enough number of terminals per subnet
(see the Filter net in Sect. 4.4.2). In this case, additional fill-reducing orderings and
minimum-fill tracking actions may further improve the sparsity attained from parti-
tioning, at the cost of preserving more internal nodes. In Sect. 4.4 examples illustrate
the sparsity, dimensionality and computational implications of the partitioning fineness
and, where needed, of additional fill-monitoring actions.
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Clarifying remarks The functionality of SparseRC is not tied strictly to the partitioner
used or the choice of N. It is assumed that the original circuits (graphs) are sparse.
The sparsity of the original circuit will dictate the partitioning performance and conse-
quently the dimension and sparsity level of the reduced circuit. Precise judgements on
the optimal N or the necessity of additional fill-monitoring operations cannot be made
a priori. These could be resolved by the following multi-terminal graph optimization prob-
lem [47]: For a multi-terminal network G = (V, E), of which P ⊂ V are terminals,
|P| = p, find an N-way partitioning with the objective of minimizing the number of
separator nodes subject to the following constraints: (a) the separator nodes and ter-
minals are balanced across the N parts, and (b) eliminating the internal nodes from
each subnet introduces minimum fill in the parts determined by terminals and separa-
tor nodes. Chapter 7 analyzes the multi-terminal partitioning problem in more detail.
As concerns the approximation quality, the SparseRC model will always be at least as
good as a PACT [56] reduced model. Due to Theorem 4.3.1 SparseRC guarantees not
only local but also global moment matching for the recombined network, irrespective of
N or the partitioner used.

Computational complexity

The computational complexity of SparseRC is dominated by the cost of computing W
inside EMMP (line 9 in Alg. 2), for each of the Nmax < N non-separator components.
With nmax denoting the maximum number of internal nodes for a component (i.e. the
maximum size of block GR), and mmax the maximum size of GS, the cost of one EMMP
operation is at most O(nαmaxmmax), with 1 < α ≤ 2 [75]. When n and p are large and the
circuit is partitioned, one aims at nmax � n and mmax � p [note that mmax = pmax +
smax, with pmax denoting the maximum number of terminals per component (i.e. length
of iext) and smax the maximum number of separator nodes connecting a component Ck to
components Ck+1 . . . CN (i.e. length of isep)]. Therefore, especially for netlists with many
internal nodes n and many terminals p, the total cost O(Nmax(n

α
maxmmax)) of SparseRC

is much smaller than the O(nαp) cost of constructing (if at all feasible) a PACT reducing
projection directly from the original, unpartitioned matrices. The results in Sect. 4.4.1,
Table 4.1 confirm this through netlists 6.RX and 7.PLL which contain more than 300000
internal nodes and 4000 terminals. For a graph G = (V, E) with |V| = n + p nodes
and |E| edges, the cost of NESDIS partitioning (being based on METIS [53]) is O(|E|)
hence cheap to perform for sparse graphs (here, |V| is the number of circuit nodes and
|E| the number of resistor and capacitors). Should additional reorderings be employed
per subnet, the cost of CAMD is O(|V||E|) [1, 2, 38], also a fast operation.

The cost for the advanced option of tracking fill-in is more expensive, especially for
networks with nodes and elements exceeding thousands. The operation becomes a par-
tial Gaussian elimination up to terminals, which may reach O(|V|3) in the worst case.
Nonetheless, such fill-monitoring operations are only an optional, advanced feature of
SparseRC which was rarely needed in our experiments.
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With ingredients of SparseRC in hand, we summarize its properties in light of the re-
duction criteria defined in Sect. 4.2.1. SparseRC meets the accuracy (a), passivity (b),
and terminal re-connectivity (d), requirements while reducing multi-terminal RC cir-
cuits via a block-wise EMMP reducing projection. The efficiency (e) of SparseRC is
ensured via a partitioning-based implementation, which reduces much smaller subnets
(also with fewer terminals) individually while maintaining the accuracy, passivity and
re-connectivity requirements of the entire circuit. The sparsity (c) of the SparseRC re-
duced model is enhanced by preserving a subset of internal nodes which are identi-
fied automatically from partitioning and where necessary, from additional fill-reducing
orderings. The performance of SparseRC in practice is shown by the numerical and
simulations results presented next.

4.4 Numerical results and circuit simulations

Several parasitic extracted RC circuits from industrial applications are reduced with
SparseRC. For each circuit, the terminals are nodes to which non-linear devices (such
as diodes or transistors) are connected. During a parsing phase, the multi-terminal
RC circuit is stamped into the MNA form (4.12) and reduced with SparseRC. The re-
duced model (4.31)-(4.32) is synthesized with RLCSYN [93] into its netlist description.
As connectivity via the external nodes is preserved with SparseRC, no voltage/current
controlled sources are generated during synthesis. The non-linear devices are directly
re-coupled via the terminal nodes to the reduced parasitics. The reduced circuit is re-
simulated with Spectre and its performance is compared to the original simulation.

Most of the circuits are reduced with the default options of SparseRC: matching only the
0’th and 1’st order multi-port admittance moments at s = 0 and also without employing
additional fill-tracking options. For some examples, the functionality of advanced op-
tions within SparseRC is demonstrated, such as: additional moment or pole matching,
or additional fill-monitoring actions per subnet. All results presented next are based on
partitioning with nested dissection (for additional experiments with Mondriaan hyper-
graph partitioning see Appendix 4.6.2).

SparseRC was implemented in Matlab (version R2007a); all reduction experiments were
performed on a Linux (Ubuntu) machine with 3.9GRAM main memory and two Intel(R)
Core(TM)2 Duo, 2.4GHz, CPUs. All Spectre simulations were run on a Linux (Redhat)
machine with 16GRAM main memory and six Intel(R) Xeon(R) X5460, 3.1GHz, CPUs.
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4.4.1 General results

Table 4.1 collects the main SparseRC reduction results for various multi-terminal netlists
obtained from real chip designs, and compares the results obtained with PACT7. Each
block row consists of a netlist example with the corresponding number of terminals p
(the same before and after reduction). For each netlist, the sparsity before and after re-
duction are recorded here as the number of circuit elements, i.e. #R, #C. The reduction
rate (Red. rate) shows the percentage reduction for the corresponding column quantity.

For instance the percentage reduction in internal nodes ni is: Pn =
100(niOrig.

−niSpRC
)

niOrig.
,

similarly for #R, #C. The Red. rate in simulation time is computed as a speed-up fac-

tor:
Sim. timeOrig
Sim. timeSpRC

(similarly for PACT). The approximation error is measured as the root-

mean-square (RMS) value of the difference between the signals of the original and the
reduced circuit. Several simulations are performed, including: AC, noise, transient,
(quasi) periodic steady state, (quasi) s-parameter, usually a combination of these for
each circuit depending on the underlying application. Due to space limitations we can
only present some of the simulation figures, however the simulation timings recorded
in the tables represent the sum of all analysis types performed for one circuit. The error
RMS value is recorded for one analysis only, but is representative of all analysis types
performed for that circuit.

For most examples, excellent reduction rates (above 80%) in the number of internal
nodes ni were obtained. The ni internal nodes of the reduced model are precisely
the internal nodes which, if otherwise eliminated, would have introduced too much
fill-in. They are the separator nodes identified automatically from partitioning (plus,
where suitable, some additional internal nodes identified from fill monitoring opera-
tions). With ni thus preserved, very good reduction rates were obtained in the number
of circuit elements: mostly above 60% reduction in resistors and above 50% for capac-
itors. The effect of reducing internal nodes as well as the number of circuit elements is
revealed by significant speed-ups (mostly above 2X) attained when simulating the re-
duced circuits instead of the original. Even more, for the largest examples (netlists RX,
PLL) simulation was only possible after reduction, as the original simulations failed due
to insufficient CPU and memory resources. In addition, the reduction times recorded in
Table 4.1 show that these reduced netlists were obtained efficiently.

Reduction without partitioning

For comparison, results for SparseRC without partitioning (essentially, PACT) are also
recorded in Table 4.1. PACT amounts to running the SparseRC Algorithm 1 of Sect. 4.3.4
with N=1 in line 2. The results reveal the strength of SparseRC especially when reduc-
ing challenging circuits with very large node and terminal numbers (e.g., nets 6, 7, 8).

7For simplicity, “PACT” is used here only as a short term to denote SparseRC reduction without partition-
ing; the full PACT methodology [56] also includes more advanced analysis such as pole matching.
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First, the computational advantages of partitioning for very large netlists are revealed
through examples PLL and RX, for which an unpartitioned PACT projection could not
even be computed. For the smaller examples, the PACT reduction times are smaller
than the SparseRC ones, indicating that partitioning is not necessary. Second, parti-
tioning and the preservation of separator nodes improves the sparsity of the reduced
models. This is confirmed by the Filter and MX7, where the unpartitioned approach
resulted in dense reduced netlists which were slower to simulate than the originals (the
effect would be the same for PLL and RX).

Figure 4.4: MX3. Transient simulation of the original (red) and SparseRC (blue) overlap. The
error signal (black) has an RMS value of 1.6 · 10−7A.

Next, selected simulation results are presented. The MX3 net comes from a mixer circuit.
Here, the SparseRC model was obtained by further re-ordering the partitioned circuit
matrices (obtained via NESDIS) with CAMD and by keeping track of fill-in during the
block-wise reduction process. The transient simulation in Fig. 4.4 shows that the original
and SparseRC curves are indistinguishable.

Improving accuracy at higher frequencies

Two examples in particular demonstrate possibilities for improving the approximation
accuracy beyond matching the 0’th and 1’st moment at s = 0, as described in Sect. 4.3.3:
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The low noise amplifier (LNA) Net LNA from Table 4.1 is part of a low noise am-
plifier circuit (C45 technology), and was reduced in 53.4 seconds to a SparseRC-dp8

model which was 99% faster to simulate. SparseRC-dp denotes a reduced model ob-
tained from a partition into N = 3 components where, for each component, the two
default moments at s = 0 are matched plus ∼ eight dominant poles of the internal

contribution Y
′

R. These dominant poles were computed with the subspace accelerated
dominant pole method [79]. In Fig. 4.5 the simulation results are shown of the noise
analysis for the original, SparseRC-dp and PACT models. The effect of improving the
SparseRC response with the additional dominant poles is visible in Fig. 4.5. This was
also confirmed in transient simulation, which gave an RMS error of 4·10−4 for SparseRC-
dp, smaller than 1·10−3 for PACT (see Table 4.1).

Figure 4.5: LNA. Noise analysis comparison of original (red) vs. two reduced models: in blue,
SparseRC-dp (moment patching at s = 0 with additional dominant poles), and in pink, PACT
with default moment matching at s = 0.

Two port RC transmission line A uniform RC transmission line with two terminals
(one node at the beginning, and one node at the end of the line) is considered, with a
cascade of 10000 R-C sections. The circuit was partitioned into N = 2 subnets (and
one separator block). Two reduced SparseRC models were computed: without and
with additional matching at higher moments. The latter model was computed with the

projection (4.47), which matched a combination of moments of the Y
′

R term per subnet:
two moments at 0, one at s = 1010 and one at s = 1014 was chosen. The bode magnitude
plot of the frequency response for the original and the two reduced models is shown in

8“dp” is short for “dominant pole”
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Fig. 4.6. The behavior at higher frequencies is indeed approximated more accurately for
the reduced model which preserves additional moments.

Figure 4.6: RCtline: Bode plot for original and two reduced SparseRC models: by matching the
first two admittance moments at s = 0 only (red) and by matching in addition higher moments

from the Y
′

R term per subnet (blue).

4.4.2 Advanced comparisons

Nets PLL (phase-locked-loop) and Filter, two of the largest and most challenging netlists
from Table 4.1 are analyzed in detail in Table 4.2. The purpose of the analysis is three-
fold: (1) the advantages of SparseRC over existing methodologies are revealed, (2) the
effects of various partitioning sizes and of additional reorderings are shown, and (3)
possible limitations and improvement directions for SparseRC are identified.

The PLL

Performing an original simulation was unfeasible for this circuit, as it failed due to in-
sufficient CPU and memory resources even on a larger machine, but reduction makes
the simulation possible. The original G and C matrices, reordered and partitioned in
BBD form are shown in Fig. 4.7. The borders are clearly visible, collecting the separator
nodes that will be preserved along with the terminals. The reduced matrices retain the
BBD structure and are sparse, as seen in Fig. 4.8.
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Figure 4.7: PLL: re-ordered G and C in BBD form after NESDIS partitioning (dimension
n + p = 381474 nodes).

Figure 4.8: PLL: reduced Ĝ and Ĉ obtained with SparseRC (dimension n + p = 7946 nodes).
The BBD structure is retained and the matrices remain sparse.

Two SparseRC reduced models were computed: SpRCc and SpRC f , based on a coarse
and fine NESDIS partitioning respectively, with the relevant statistics shown in Ta-
ble 4.2. Both reduced models achieved excellent reduction rates in internal nodes and
circuit elements, and were fast to simulate. After a coarse partitioning, the reduction
time was smaller than after the fine partitioning due to less computational overhead
in forming the reduced matrices per subnet. The SpRC f reduced model however was
faster to simulate than SpRCc, possibly due to the fact that, although larger in numbers
of nodes than SpRCc, SpRC f has fewer circuit elements. Determining the appropriate
balance between preserved internal nodes ni and sparsity, and its influence on simula-
tion time remains to be further studied. A direct PACT reduction is immediately dis-
missed, due to the prohibitive computational and density considerations. An SIP-based
reduced model was attempted, but the fill-in monitoring actions were too expensive
(>24 hours).

Comparison with PartMOR For the PLL, statistics of a reduced PartMOR model are
also included, thanks to the authors of [70]. Compared to PartMOR, SpRCc has fewer
internal nodes and circuit elements. The SparseRC models were faster to simulate, and
also obtained in a shorter partitioning and reduction time. Although there is no original
simulation to compare the reductions against, Fig. 4.9 shows an AC simulation wave-
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form for the two SparseRC models, and PartMOR. SpRCc and SpRC f overlap, confirm-
ing that the accuracy of SparseRC is robust to changes in the partition strategy, due
to guaranteed local and global moment matching. The reduced PartMOR model was
determined by local matching of the 0’th and 1’st moments at DC, however with no
guarantee of matched moments for the recombined network (personal communication
with PartMOR [70] authors, March 14, 2011). Thus, since the accuracy of PartMOR is
dependent on the number of partitions, finer partitioning would likely be needed to
reach what we infer are the correct waveforms produced by SparseRC. While PartMOR
offers advantages in other respects, such as guaranteed positive elements, these results
motivate a more thorough investigation into combining the strengths of both methods
in the future.

Figure 4.9: PLL. AC analysis of reduced models: SpRCc (red) and SpRC f (blue) are overlapping
as expected. PartMOR (magenta) deviates slightly.

The Filter

This netlist is more challenging due to its large ratio p
ni

> 10−1. Two SparseRC reduced

models were computed: SpRC, based on NESDIS partitioning alone, and SpRC-mf9,
where after NESDIS partitioning a CAMD based re-ordering was applied on each sub-
net and additional internal nodes were preserved via fill-in monitoring operations. In
both cases a fine partitioning into N = 2065 components was needed to distribute ter-

9“mf” stands from “minimum fill”
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minals into Avg-p=4 terminals per component. Although the SpRC-mf has much fewer
circuit elements than SpRC, it takes longer to simulate, due to the presence of many
internal nodes ni. The fill-monitoring operations inside SpRC-mf also make the reduc-
tion time significantly longer than for SpRC. The PACT reduced model is the smallest
in dimension (has no preserved internal nodes) but extremely dense and useless in sim-
ulation (the re-simulation was stopped after 24 hours). An SIP reduced model was also
computed: CAMD reordering and fill-monitoring actions were applied on the origi-
nal netlist’s graph to determine the reduced model with minimum fill. The result is
shown in Fig. 4.11, where the minimum fill point is identified after the elimination of
the first 1200 internal nodes. Therefore the optimal SIP reduced circuit achieves a much
smaller reduction in internal nodes and elements than SparseRC, and is slower to sim-
ulate. Also, the SIP reduction time was much larger than SparseRC. The AC analysis
comparison of SparseRC and SIP match with the original, as shown in Figure 4.10. This
further strengthens the advantages of partitioning: aside from enhancing sparsity by
preserving separator nodes, it also makes fill-monitoring actions cheaper to perform. In
summary, SparseRC achieves the best trade-off in terms of accuracy, dimension, spar-
sity, reduction time and re-simulation time.

Finally, the Filter example reveals several directions for improving the SparseRC method-
ology. It indicates that other reduction transformations and/or further sparsification
methods may be appropriate for circuits with many more capacitors than resistors. One
option could be to postprocess the reduced system by dropping negative capacitances
as in TICER [84], at the price of losing the two moment matching property. It was also
seen that circuits with large p

n ratios are the most difficult to partition and reduce with
a satisfactory sparsity level. This could be resolved with the help of partitioners which
could directly control the distribution of terminals, and remains for further research [47].

4.5 Concluding remarks

SparseRC is presented, a robust and efficient reduction strategy for large RC circuits
with many terminals. It efficiently reduces testcases where traditional model reduction
fails, due to either the large dimension of the problem at hand, or the density of the final
reduced circuit. Developed on the divide and conquer principle, SparseRC uses graph-
partitioning and fill-reducing node reorderings to separate a network into minimally
connected components. These are reduced individually with an appropriate update
of the interconnections among them. This guarantees that two multi-port admittance
moments are matched for the entire net irrespective of the partitioning size or strat-
egy. SparseRC reduced circuits contain fewer nodes and circuit elements compared to
conventional MOR results. As challenging industrial testcases show, significant speed-
ups are obtained when re-simulating SparseRC reduced models in place of the original
circuits.
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Figure 4.10: Filter. AC analysis of original (red), reduced SparseRC model (blue), and reduced
SIP model with minimum fill-track (magenta) match perfectly.

Figure 4.11: Filter. Determining the dimension of the SIP reduced model from CAMD re-
ordering and node-wise elimination. The Minimum fill point is reached after eliminating the
first 1200 of the 32140 internal nodes (for clarity only the first 1400 internal nodes are shown).
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4.6 Appendix

4.6.1 Reflection on the partition-based RC reduction alternatives

Two reduction approaches for RC networks were proposed in this thesis: SparseRC of
this chapter and the one based on the strongly connected components of G from Chapter
3 [we refer to it as SCC(G)-based here]. At this point, it is appropriate to reconsider for
which types of circuits the two alternatives are most suitable.

The first indicator is the number of terminals p of the circuit: if p is within a few hun-
dreds (what we call “small”), then the SCC(G)-based reduction is usually sufficient to
achieve good reduction rates in both the number of internal nodes and the number of
circuit elements. Recall from Theorem 3.3.1 that reduction based on SCC(G) partitioning
is mathematically equivalent to that of eliminating all internal nodes up-front. Hence,
when p is small, the fill generated in the p × p reduced matrices is not a major con-
cern. Nevertheless, when the circuit has a very large number of internal nodes (exceed-
ing hundreds of thousands), the SCC(G) partitioning brings computational benefits as
smaller subnets are reduced individually. This partitioning also gives a natural solution
for computing path resistances between network terminals (see Sect. 3.3.3). In short,
the SCC(G)-based reduction is recommended for circuits with a very large number of
internal nodes, and a small number of terminals.

When p exceeds thousands, the fill generated in the p × p block from eliminating all
internal nodes becomes non-negligible. Thus, fill-creating nodes must be identified
and kept in the reduced model so that its sparsity is improved. This is achieved with
SparseRC based on the partitioning of the entire R, C topology (rather than on the R-
topology only as is done with the SCC(G)-based reduction). So, especially when the
number of internal nodes is also large (hundreds of thousands), SparseRC is the method
of choice. One limitation of SparseRC is the reduction of networks with many more ca-
pacitors than resistors. This could be improved with the help of better partitioners (see
Chapter 7) and a reducing projection based on the C matrix rather than the G matrix (this
would place more emphasis on capturing the behavior at higher frequencies rather than
on low frequencies).

The second indicator is the ratio of terminals p to internal nodes ni in the network. In
general, as for most reduction methods, if p

ni
is small (less than 1

10 ), good reduction rates

in internal nodes can be obtained. Hence, if p
ni

is small, the SCC(G)-based reduction is
recommended when p is small, while SparseRC is recommended when p is large. On
the other hand when p

ni
is high, only few internal nodes can be eliminated. This is

a challenge both for the SCC(G)-based reduction and for SparseRC. In this case, more
advanced partitioners would help to find a more appropriate balance between the num-
ber of eliminated internal nodes and sparsity. Further considerations on partitioning are
given in Chapter 7.
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4.6.2 Additional experiments

Additional RC experiments

Additional SparseRC reduction experiments, based on NESDIS graph partitioning, were
performed on the multi-terminal netlists in Table 4.3. The expectations regarding the im-
provements in sparsity and resimulation time, and the excellent approximation quality,
are again confirmed by the SparseRC results. For the SymmRC1 circuit, challenging
due to the presence of symmetries in the original design, the resimulation plots are
shown in Fig. 4.12. The SparseRC reduced circuit captures the symmetry and matches
the response of the original circuit.

Table 4.3: Reduction for various netlists with SparseRC. Sim. time: Spectre [16] netlist simu-
lation time, Total red. time: partitioning plus reduction time

Net Type ni #R #C
Sim.

time (min)
Total red.
time (s)

N
# parts

9. Symmetric
RC (SymmRC1)

p = 1383

Orig. 15965 24636 94840 52 - -
SparseRC 1463 13868 152445 19 6.2 37
Red. rate 90.84% 43.71% −60.74% 2.7 X - -

10. Symmetric
RC (SymmRC2)

p = 732

Orig. 12634 22862 119351 - -
SparseRC 805 5503 82170 - 4 15
Red. rate 93.63% 75.93% 31.15% - -

11. Shift register
(Sband)
p = 5003

Orig. 29748 43550 95521 2h 36min -
SpRC-mf 9837 19685 88998 1h12min 609 157
Red. rate 66.93% 54.80% 6.83% 2.2 X -

Using Mondriaan hypergraph partitioning

To demonstrate that SparseRC can accommodate other partitioning algorithms than
nested dissection, Tables 4.4, 4.5, and 4.6 collect the reduction results based on Mon-
driaan hypergraph partitioning [96]. With Mondriaan the resulting subnets are allowed
to differ in size (by specifying an Imbalance factor), while with nested dissection the de-
composition gives equal-sized partitions. The higher the Imbalance (the maximum value
is 1), the more are the subnets generated by Mondriaan allowed to differ in size. This
feature allows to experiment with different partition sizes and their impact on sparsity.
In the following tables, each block row corresponds to the experiments performed for
one netlist. “SpRCB” corresponds to the reduction statistics obtained after a balanced
decomposition, and “SpRCI” after an imbalanced one. The quantities recorded in each
column are the same as those of Table 4.2, with the difference that column “Max-N size”
denotes the size of the largest subnet resulting from partitioning, and “Max-p size”
the number of terminals falling in the maximum subnet. There are no significant dif-
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Figure 4.12: SymmRC1. Transient analysis of the original (red) and the SparseRC reduced
(blue) circuit shows perfect match. The RMS error is also small, 6 · 10−8V.

ferences in sparsity after reduction based on Mondriaan partitioning compared to the
experiments based on nested dissection (Tables 4.1 and 4.2), however one experiment
revealed an interesting insight. In particular, for the IS netlist, the imbalanced partition
(SpRCI) achieved significantly better reduction rates in the number of elements than the
balanced partition, and also better than with nested dissection (see Table 4.1). This con-
firms that enforcing balanced decompositions may not be optimal for the multi-terminal
reduction problem, and that more advanced partitioning criteria could significantly im-
prove sparsity rates (this topic is addressed separately in Chapter 5). Partitioning time
with Mondriaan was slower than with nested dissection especially for the large netlists
(see the PLL and Filter examples); this is expected as Mondriaan is a hypergraph parti-
tioner, while nested dissection is based on the Metis graph partitioner.
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Chapter 5

Reduction of multi-terminal RLC
networks

The reduction of multi-terminal RLC circuits is analyzed in the context of partitioning.
Comparisons between reduction in first vs. second-order form are provided, and their
potential for implementation in a partitioning setup is discussed. Based on the second-
order form, the BBD-based reduction of RLC networks is derived, and a post-processing
procedure is proposed which allows the reduced model to be synthesized and re-used
successfully with a circuit simulator. Advantages and limitations within this framework
are identified, and directions for future research are provided.

5.1 Introduction

Taking the methodology of Chapter 4 one step further, this chapter investigates the
extension of partition-based reduction to large RLC networks. As for RC networks, the
aim is to reduce large, multi-terminal RLC netlists efficiently, so that their re-use in a
simulation setup is possible and more efficient than an original simulation, this at little
accuracy loss. Achieving these goals simultaneously is more difficult for RLC than for
RC networks, as this chapter reveals. The content here-in thus provides a skeleton for
partition-based RLC reduction which identifies the main partition-reduction steps, the
limitations encountered and the possibilities to overcome them.

Among the popular approaches to multi-terminal RLC reduction are PRIMA [71] and
its structure preserving followers SPRIM [27], and SAPOR [66]. These methods con-
struct the reducing projection as a (block)-Krylov subspace, and preserve the passiv-
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ity of the circuit via congruence transforms. The structure preserving versions allow
for voltage and current variables to be reduced separately, among the main goals be-
ing to (a) preserve terminal connectivity and (b) obtain a reduced model which can
be cast back into an RLC netlist. While these methods may work well for relatively
small-sized networks, their performance is limited when applied to large networks with
many terminals. While on one hand, computing the Krylov subspaces for the original
system is either too expensive or impossible, on the other the resulting matrices are
prohibitively dense. Furthermore, the synthesis envisioned after an SPRIM or SAPOR
projection is not as straightforward as it seems, due to the fact that the reduced models
may contain singularities which in turn cause simulation failures. Here, a framework
for multi-terminal RLC reduction is derived, with emphasis on achieving netlists that
are re-usable in simulations. As a continuation of Chapter 4 which developed sparse
RC reduction based on the PACT method [56], the starting point here is the extension
of PACT to RLC circuits, namely [57]. In particular the potential of [56] in a partition-
based context is studied. In Sect. 5.2 the setup for unpartitioned reduction is described
based on two system formulations: in the first- and second-order form respectively.
For reasons there explained, the second-order form is chosen for partition-based reduc-
tion, which is presented in Sect. 5.3. A demonstrative numerical example is provided in
Sect. 5.4, and Sect. 5.5 concludes.

5.2 Reduction without partitioning

Consider the impedance-based Modified Nodal Analysis (MNA) [37] representation of
an RLC(k) circuit: ([

G ET

−E 0

]
+ s

[
C 0
0 L

]) [
v
iL

]
=

[
B
0

]
u(s), (5.1)

where v ∈ Rnv are the voltage unknowns (voltage drops measured at all nodes in the
circuit), iL ∈ RnL are the currents through inductors, G ∈ R(nv×nv) is the conductance
matrix, C ∈ R(nv×nv) is the capacitance matrix, L ∈ R(nL×nL) is the inductance matrix
(a diagonal with the inductor values if there are no mutual inductances, otherwise the
mutuals appear as off-diagonal entries). E ∈ R(nv×nL) is the incidence matrix which
determines the topological connections for the inductors. The inputs are u ∈ Rp, the
current injections into the p terminals of the circuit, and B ∈ R(nv×p) is the incidence
matrix of current injections (the i’th column of B is the i’th unit vector for each input
i = 1 . . . p). Let also n be the number of internal nodes, so that nv = n + p.

The starting point for multi-terminal RLC reduction is [57], which reduces (5.1) in first-
order form using so called split congruence transforms. The splitting projects separately
the voltage from the current unknowns, essentially preserving the structure of the RLC
circuit, and is necessary to ensure that passivity is preserved [55, 57]. The same concept
of splitting the reducing projection is seen in SPRIM [27], the Krylov framework [8] and
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RLCSYN [93]. In Sect. 5.2.1 we present the main derivations for reduction in the first-
order form based on split congruence transforms, according to [57]. Then, in Sect. 5.2.2,
the new reduction in second-order form is presented which, as will be seen, does no
longer require split transformations.

5.2.1 First-order form

In (5.1), let the unknown voltages in (5.16) be split into selected nodes vS to be preserved
(p terminals and if desired additional m internal nodes), and internal nodes to be elimi-
nated vR. This dictates the following structure of (5.1):

 GS GT
K ET

S
GK GR ET

R
−ES −ER 0

+ s

 CS CT
K 0

CK CR 0
0 0 L



 vS

vR
iL

 =

BS
0
0

 u(s) (5.2)

We make the analogy between the form (5.2) and the congruence-based framework
of [57]. Notice that the bottom right corner block of G in (5.2) is unsymmetric. The
derivations of [57] are based on congruence transformations applied to symmetric ma-
trices, hence a sign change is required for the last equation of (5.2), which gives:

 GS GT
K ET

S
GK GR ET

R
ES ER 0

+ s

 CS CT
K 0

CK CR 0
0 0 −L



 vS

vR
−iL

 =

BS
0
0

 u(s) ⇔ (5.3)

([
GP GT

C
GC GI

]
+ s

[
CP CT

C
CC CI

]) [
xP
XI

]
=

[
bP
0

]
u(s) (5.4)

The matrix blocks pertaining to (5.3) are redefined as in (5.4), as to directly identify the

analogy with [57, equation (12)]. The internal unknowns then become XI =

[
vi
iL

]
, and

contain both voltage and current variables. This will later require a structure preserv-
ing reduction (also called split), as to guarantee passivity preservation [55]. In [57] the
following congruence transformation:

X =

[
I 0

W I

]
, where W = −C−1

I CC (5.5)

is applied to (5.4) as to zero-out CC:G
′

P G
′

C
T

G
′

C GI

+ s

C
′

P 0

0 CI

[ x
′

P
XI

]
=

[
bP
0

]
u(s) (5.6)

with:
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G
′

P = GP + WTGIW + WTGC + GT
CW, G

′

C = GC + GIW (5.7)

C
′

P = CP + CT
CC−1

I CC . (5.8)

At this point, it is worth pausing to answer the following questions: why is the transfor-
mation to zero-out the capacitance connection matrix CC needed and why not zero-out
GC, as was done for RC circuits in Chapter 4? There are two main reasons: passivity
preservation and moment matching. First [57, Theorems 1, 2] show that, for RLC re-
duction to preserve passivity, the underlying projection must be split, as to preserve the
structure dictated by the voltage and current variables [see vR, iL in (5.3)]. As explained
in [55, Sect. 6.3], a transformation of the form −G−1

I GC which would zero-out GC from
(5.4) is not naturally split, due to the presence of the ER blocks in GI . However, since
CI is block diagonal, the transformation (5.5) to zero-out CC is naturally split, and main-
tains the necessary structure for passivity preserving reduction. Furthermore, based on
the assumption that the model has the form (5.6), namely that the capacitive connection
blocks are zero, [57, Theorem 4] shows that reducing the internal blocks of (5.6) via a
structure-preserving (split) Krylov projection matches moments of the original model
system (5.4). This is outlined next.

The multiport admittance response of (5.6) describes the circuit behavior at the ports,
and is obtained by eliminating the XI variables from the second equation of (5.6) and
replacing them in the first. This is expressed as follows:

Y
′
(s)xP(s) = bpu(s), where : (5.9)

Y
′
(s) =

(
G
′

P + sC
′

P

)
︸ ︷︷ ︸

Y
′
P(s)

−G
′

C
T
(GI + sCI)

−1 G
′

C︸ ︷︷ ︸
Y
′
I(s)

(5.10)

At this point, [57, Theorem 4] enables the construction of a reduced model which matches
multi-port admittance moments of the original system (5.6) via a congruence transform:

[
I 0
0 VT

]G
′

P G
′

C
T

G
′

C GI

+ s

C
′

P 0

0 CI

[ I 0
0 V

]
, (5.11)

which reduces (5.6) to:G
′

P ĜT
C

ĜC ĜI

+ s

C
′

P 0

0 ĈI

[ x
′

P
X̂I

]
=

[
bP
0

]
u(s), (5.12)

In [57, Theorem 4], it is proven that the reduced (5.12) matches 2m moments of (5.6) at
s0 if A = GI + s0CI is non-singular, GI and CI are symmetric and V is a subspace of
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linearly independent columns which satisfies:

span
[(

A−1CI

)i
A−1G

′

C

]
⊆ V, i = 0 . . . m− 1. (5.13)

From (5.12), the block matrices corresponding to port nodes x
′

P are preserved, and the

internal matrices are reduced to: ĜI = VTGIV, ĜC = VTG
′

C, ĈI = VTCIV. The
reduced multi-port admittance response which characterizes (5.12) is then:

Ŷ(s) = (G
′

P + sC
′

P)︸ ︷︷ ︸
Y
′
P(s)

−ĜT
C(ĜI + sĈI)

−1ĜC︸ ︷︷ ︸
ŶI(s)

. (5.14)

Two important conditions must be satisfied as to ensure moment matching and pas-
sivity preservation: (a) GI and CI must be symmetric and (b) V must be split accord-
ing to structure of the internal matrices from (5.3). In this sense, the V which satisfies
(5.13) with equality is nothing but an SPRIM [27] projection of the internal admittance

response Y
′

I(s) from (5.10). The splitting of V allows the reduced model (5.12) to be
expressed as a counterpart of (5.3):


G
′

S ĜT
K ÊT

S

ĜK ĜR ÊT
R

ÊS ÊR 0

+ s

 C
′

S 0 0

0 ĈR 0
0 0 −L̂



 vS

v̂R
−îL

 =

BS

0
0

 u(s) (5.15)

System (5.15) being in a symmetric form can be unstamped into an RC equivalent netlist
(where negative R and C values are also generated).

Difficulties with the first-order form

Several difficulties have been encountered in practice with the first-order reduction
setup.

1. In practice, it was observed that the reduced block

[
ÊT

S
ÊT

R

]
in (5.15) does not al-

ways have linearly independent columns. This in turn caused failures in com-
puting the DC solution during the the re-simulation of the synthesized reduced
model. Hence a post-processing step would be required to ensure linear indepen-
dence, this without affecting the structure of the input/output matrix. We will see
how this is easily achieved from the second-order form.

2. If partitioning is employed, the internal matrix GI =

[
GR ET

R
ER 0

]
resulting per

sub-block may become singular (even when for the unpartitioned system it is not
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singular). This happens for instance when nodes to which inductors are connected
are promoted as separators (these nodes become terminals and, when shorted to-
gether, may cause inductor loops [57]). It can also happen that from partitioning,
the ET

R block per subnet has columns of zero, which is undesirable. All these struc-
tural side-effects from partitioning make it thus difficult to construct a Krylov sub-
space (5.13) per subnet, especially in the context of matching moments at DC. A
more detailed discussion on this issue follows Sect. 5.3.1.

Next, a framework is derived for multi-terminal reduction in the second-order form,
through which item 1. finds a solution, while item 2. can be resolved in certain scenarios.

5.2.2 Second-order form

By eliminating the current variables iL from the second equation of (5.1) and replacing
them in the first, it is possible to express (5.1) in second-order form:(

G + sC + 1
s
Γ

)
v = B, with Γ = ETL−1E . (5.16)

The second-order form (5.16) has the following main advantages: (a) congruence trans-
forms on (5.16) automatically preserve passivity without need of splitting, as all un-
knowns are voltages (b) it defines the circuit graph topology in an intuitive way, giving
a natural avenue for partition-based reduction and (c) some of the numerical limitations
encountered from partitioning in the first-order form can be avoided.

In addition to the resistive and capacitive topology determined by G and C respectively
(as was the case for the RC circuits), Γ dictates the topology of inductors. Hence, the
graph associated with the RLC circuit is given by the non-zero pattern G := nzp(G +
C + Γ). The following derivations are based on the second-order form. As usual, the
unknown voltages in (5.16) are split into selected nodes vS to be preserved (p terminals
and if desired m additional internal nodes1), and internal nodes to be eliminated vR,
revealing the following structure:([

GR GK
GT

K GS

]
+ s

[
CR CK
CT

K CS

]
+

1
s

[
ΓR ΓK
Γ

T
K ΓS

]) [
vR
vS

]
=

[
0
BS

]
u(s). (5.17)

For the same moment matching considerations of Sect. 5.2.1, a congruence transforma-
tion is applied first which zeroes-out the CK connections (this transformation can be

1These are for instance the separator nodes that are revealed from partitioning, as in Chapter 4
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easily shown as analogous to the first-order case of zeroing-out CC). Let:

X =

[
I W
0 I

]
, W = −C−1

R CK . (5.18)

X ∈ Rnv×nv is only a transformation (no reduction) of (5.17) into:

G
′
= X TGX , C

′
= X TCX , Γ

′
= X T

ΓX , B
′

= X TB ⇔ (5.19) GR G
′

K

G
′

K
T
G
′

S

+ s

[
CR 0

0T C
′

S

]
+

1
s

 ΓR Γ
′

K

Γ
′

K
T

Γ
′

S

[ vR

v
′

S

]
=

[
0
BS

]
u(s),(5.20)

where:
G
′

S = GS +W
TGRW +WTGK + GT

KW , G
′

K = GK + GRW (5.21)

Γ
′

S = ΓS +W
T
ΓRW +WT

ΓK + Γ
T
KW , ΓK = ΓK + ΓRW (5.22)

C
′

S = CS − C
T
KC
−1
R CK , C

′

K = CK + CRW = 0. (5.23)

As with the first-order form let Y
′
(s) be the multi-port admittance response of (5.20),

obtained by eliminating the vR unknowns:

Y
′
(s) =

(
G
′

S+sC
′

S+
1
s
Γ
′

S

)
︸ ︷︷ ︸

Y
′
S(s)

−
(
G
′

K+
1
s
Γ
′

K

)T(
GR+sCR+

1
s
ΓR

)−1(
G
′

K+
1
s
Γ
′

K

)
︸ ︷︷ ︸

Y
′
R(s)

(5.24)

Towards understanding how (5.20) can be reduced by moment matching, we make the
following important analogy between the first and second-order formulation:

Lemma 5.2.1 The multiport admittance Y
′
(s) given by (5.24) which characterizes the second-

order system (5.20) is equal to Y
′
(s) given by (5.10) which pertains to the first-order form (5.6).

Proof 5.2.1 Without detailing all the derivations, based on the assignments (5.3)-(5.4), the form
of (5.7)-(5.8), and of (5.21)-(5.23), it can be shown that:

Y
′

P(s) = G
′

S+sC
′

S (5.25)

Y
′

I(s) = −1
s
Γ
′

S+

(
G
′

K+
1
s
Γ
′

K

)T(
GR+sCR+

1
s
ΓR

)−1(
G
′

K+
1
s
Γ
′

K

)
︸ ︷︷ ︸

Y
′
R(s)

(5.26)

⇒ Y
′
(s) = Y

′

P(s)− Y
′

I(s) = Y
′

S(s)−Y
′

R(s) = Y
′
(s)

Lemma 5.2.1 allows reduction to be performed in the second-order form, similarly to
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that in the first-order form. This amounts to reducing the Y
′

R(s) term of (5.24). Let
for the moment Q ∈ Rnv×k be a transformation which reduces the matrix blocks from
(5.17) corresponding to the internal nodes vR. As in the first-order case, the following
congruence transform applied to (5.20):

[
QT 0
0 I

] GR G
′

K

G
′

K
T
G
′

S

+ s

[
CR 0

0T C
′

S

]
+

1
s

 ΓR Γ
′

K

Γ
′

K
T

Γ
′

S

[ Q 0
0 I

]
(5.27)

reduces (5.20) to:([
ĜR ĜK

ĜT
K G

′

S

]
+ s

[
ĈR 0

0T C
′

S

]
+

1
s

[
Γ̂R Γ̂K

Γ̂
T
K Γ

′

S

])[
v̂R

v
′

S

]
=

[
0
BS

]
u(s), (5.28)

where (5.21)-(5.23) hold and:

ĜR = QTGRQ, ĜK = QTG
′

K , Γ̂R = QT
ΓRQ, Γ̂K = QT

Γ
′

K , ĈR = QTCRQ. (5.29)

The multi-port admittance function for the reduce model (5.28) is similarly expressed
by eliminating the v̂R unknowns:

Ŷ(s) =

(
G
′

S+sC
′

S+
1
s
Γ
′

S

)
−
(
ĜK+

1
s
Γ̂K

)T(
ĜR+sĈR+

1
s
Γ̂R

)−1(
ĜK+

1
s
Γ̂K

)
= (5.30)

= Y
′

S(s)− ŶR(s). (5.31)

As regards the appropriate construction of Q from (5.27), one possibility is to obtain it

via a SAPOR [66] reduction of Y
′

R(s) (similarly to how V is constructed as an SPRIM

projection of Y
′

I(s) in the first-order form of Sect. 5.2.1). Via SAPOR, a linearization of

Y
′

R(s) is needed to form an associated Krylov subspace (for a given expansion point
s0), from which the reducing projectionQ is obtained (details on the construction of the
SAPOR projectionQ are given in [66]). One apparent hurdle for SAPOR is the frequency

dependency s inside the input-output term G
′

K + 1
s Γ
′

K. Nevertheless, it is shown next that
the linearization proposed in [66] eliminates the dependency on s when computing the
actual Krylov subspace, so that the usual SAPOR reduction applies.

Linearization and SAPOR

Following [66] we outline the linearization of Y
′

R(s) from (5.24). This then leads to the
formation of the Krylov subspace from which the reducing projection Q is extracted.

Consider Y
′

R(s) separately from (5.24). Y
′

R(s) then represents the transfer function of
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the following internal system:
(
GR+sCR+

1
sΓR

)
vR(s) =

(
G
′

K+
1
sΓ
′

K

)
uR(s)

yR(s) =
(
G
′

K+
1
sΓ
′

K

)T
vR(s)

(5.32)

where uR(s) are the inputs of the internal system and yR(s) are the outputs. Multiplying
(5.32) with s, one obtains:(

s2CR+sGR+ΓR

)
vR(s) =

(
sG
′

K+Γ
′

K

)
uR(s). (5.33)

Shifting (5.33) by setting s = s0 +σ , one obtains the shifted system:

(σ2CR +σDR +KR)vR(σ) = (B0 +σB1)uR(σ), (5.34)

where:

DR = GR + 2s0CR, KR = s2
0CR + s0GR + ΓR, B0 = s0G

′

K + Γ
′

K , B1 = G
′

K , (5.35)

and s0 is such that KR is non-singular.

System (5.34) is linearized as follows. Let the intermediate variable z(σ) be such that:

σCRvR(σ) + z(σ) = B1uR(σ) (5.36)

Replacing (5.36) in (5.34) results in:

−σz(σ) + (σDR +KR)vR(σ) = B0uR(σ) ⇔(
I +σK−1

R DR

)
vR(σ)−σK

−1
R z(σ) = K−1

R B0uR(σ). (5.37)

Combining (5.37) with (5.36) leads to the following linearized system:([
I 0
0 I

]
−σ

[
−K−1

R DR K−1
R

−CR 0

])
︸ ︷︷ ︸

:=I−σT

[
vR(σ)
z(σ)

]
=

[
K−1

R B0
B1

]
uR(σ). (5.38)

Notice that the input matrix of the linearized system (5.38) has no dependency on the
frequency σ [B0 and B1 as in (5.35) are independent from σ]. Based on (5.38), the Block
SAPOR method [66] proposes to compute an orthonormal basis Q which spans a de-
sired number of block moments of vR(σ). This is then used to project the internal system
(5.32): (

QTGRQ+sQTCRQ+
1
s
QT

ΓRQ
)
QTvR(s) =

(
QTG

′

K+
1
s
QT

Γ
′

K

)
uR(s), (5.39)

which are the same matrices underlying our reduced second-order system (5.28)-(5.31).
Note also that if moments at s0 = 0 are to be matched, then from (5.35) we have that
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KR = ΓR. From (5.38) this would require KR = ΓR to be invertible.

As in the first-order case, we revise the question as to why not zero-out GK instead of CK
in (5.17). Indeed, since in the second-order form the current variables iL are eliminated,
the transformation (5.18) preserves the passive form automatically via congruence with-
out any splitting. Hence, contrary to the first-order case, havingW = −G−1

R GK in (5.18) is
justified as far as passivity is concerned. Although the option to zero-out GK is not com-
pletely ruled-out, two words of caution are mentioned for this scenario. (a) The input-

output matrices of Y
′

R(s) would have the form sC
′

K + 1
s Γ
′

K, in which case the linearization
described above would not eliminate the dependency on s therein. A possible direction
to resolve this could rest in [10], which derives moment matching projections for sys-
tems with input-output matrices that may depend on different powers of s. (b) Due to
the analogy between the first and second-order admittance responses from Lemma 5.2.1
(both based on CC and CK zeroed-out) the reduction in the second-order from inherits
the moment matching properties from the first-order form. Whether/which moments
would be matched by zeroing-out GK remains an open question. The same arguments
could be raised in case ΓK is zeroed-out. While the PACT-based approach [55, 57] ana-
lyzed here needs the zeroing-out of CK to match moments, an alternative to avoid this
altogether would be to reduce each subnet with SPRIM [27] in the first-order form, or
with the second-order Arnoldi-based methods [9, 66, 89] in the second-order form.

Synthesis from the second-order form

Writing the reduced system (5.28) in compact form:(
Ĝ + sĈ + 1

s
Γ̂

)
v̂ = B̂u(s), (5.40)

the final step is to synthesize (5.40) as a netlist to be re-used in simulation. While most
publications related to the second-order form consider the reduced model (5.40) to be
readily synthesizable, in practice this is not directly achieved. It seems natural to un-
stamp the matrices from (5.40) into the corresponding resistor, capacitor and inductor
values respectively. While unstamping Ĝ and Ĉ poses no challenges, Γ̂ usually contains
inductor loops. These in turn generate simulation failures: inductor loops cause short
circuits when the circuit operates at DC (at DC, the capacitor acts as an open-circuit
and the inductor as a short). These limitations have been reported in the RLCSYN [93].
There, a post-processing of Γ̂ is proposed, which diagonalizes Γ̂R as to ensure that induc-
tors are connected only to ground, at the same time preserving the structure of the input
matrix in (5.28). Due to this latter requirement, the procedure from [93] only holds when
Γ̂K = 0 (based on the assumption that ΓK = 0) and is thus restricted to netlists where
no inductors are connected to terminals. In practice however parasitic extracted RLC
netlist have been encountered which do have inductors connected to terminals. Next,
we show that a post-processing of Γ̂ which eliminates inductor loops and preserves the
input-incidence structure can be applied in general also to circuits where inductors are
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connected to ports.

Since Γ is real, symmetric, positive-semi-definite and Γ̂ is obtained from congruence
transformations, Γ̂ will also be real, symmetric, positive-semi-definite. Hence a rank
revealing Schur decomposition of Γ = UDUT with U unitary and D diagonal can be
partitioned into:

Γ̂ =
[
U U0

] [ D 0
0 D0

] [
UT

UT
0

]
= U D UT

+ U0D0U
T
0 = Γ + Γ0, (5.41)

where D0 contains the zero eigenvalues of Γ̂ . Similarly to [93], eigenvalues smaller
than a given tolerance may also be collected in the Γ0 term, as these would correspond
to over-large inductors. Hence the Γ0 term is disregarded and Γ is retained. Defining
L = D−1

, we have Γ = U L−1UT
, and notice the analogy with (5.16). It is thus possible

to cast the reduced model (5.40) directly in the first-order form:([
Ĝ U
UT 0

]
+ s

[
Ĉ 0
0 −L

]) [
v̂
−îL

]
=

[
B̂
0

]
u(s), (5.42)

where the last equation contains a sign change as to obtain a symmetric representation.
The symmetric reduced model (5.42) can now be unstamped into an RC equivalent cir-
cuit and re-simulated. As most netlists obtained from unstamping, the reduced netlist
will also contain some negative R and C values, nevertheless it successfully passes the
Spectre [16] simulation. Two important observations are made regarding (5.42). (a) U
has full column rank, in contrast to (5.15) which had rank deficiencies. Hence a DC solu-
tion of the synthesized netlist is found during the re-simulation. (b) The rank revealing
decomposition of Γ̂ allows the conversion from the reduced second-order form (5.40)
into (5.42) without spoiling the structure of the input matrix B̂, and makes no assump-
tions about the structure of the original Γ . In this respect, the rank revealing procedure
proposed here is a step further from that in [93].

Difficulties with the second-order form

The main difficulty with reduction in the second-order form arises when attempting to

match moments of Y
′

R(s) from (5.24) at s = 0. This requires ΓR to be invertible, which
is not always the case in practice. A more detailed discussion on this aspect is given in
Sect. 5.3.1.
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5.2.3 A parallel between 1st and 2nd order form

As a summary of Sect. 5.2.1 and Sect. 5.2.2, table 5.1 collects the main derivations steps
for reduction in the first vs. second order form in the PACT framework and the analo-
gies between the two. The reduction flow for the first or second order form respectively
is shown in the corresponding column. The column “link” makes the connection be-
tween the operations on the first and and second order form at each step.

5.3 Partition-based reduction

As motivated at the beginning of Sect. 5.2.2, the second-order formulation provides an
intuitive approach for reducing an RLC network by parts. To illustrate the partition-
based reduction in the second-order form, let (5.16) be reordered according to the BBD
structure2, as was done for RC circuits in Chapter 4:


G11R

G11K
0 0 G13R

GT
11K

G11S
0 0 G13S

0 0 G22R
G22K

G23R

0 0 GT
22K

G22S
G23S

GT
13R

GT
13S

GT
23R

GT
23S

G33

+s


C11R

C11K
0 0 C13R

CT
11K

C11S
0 0 C13S

0 0 C22R
C22K

C23R

0 0 CT
22K

C22S
C23S

CT
13R

CT
13S

CT
23R

CT
23S

C33

 + . . .

+
1
s


Γ11R

Γ11K
0 0 Γ13R

Γ
T
11K

Γ11S
0 0 Γ13S

0 0 Γ22R
Γ22K

Γ23R

0 0 Γ
T
22K

Γ22S
Γ23S

Γ
T
13R

Γ
T
13S

Γ
T
23R

Γ
T
23S

Γ33






x1R
x1S
x2R
x2S
x3

=


0
B1
0
B2
B3

 u(s),(5.43)

where each subnet is further split into the blocks corresponding to internal nodes to be
eliminated xiR

, and terminals to be preserved xiS
, i = 1, 2 and x3 are the separator nodes.

The projection which, for each subnet i = 1, 2 zeroes out the CiiK
, Ci3R

connection blocks,
and reduces the internal matrices GiiR

, CiiR
, ΓiiR

together with the connection blocks GiiK
,

ΓiiK
is:

XQ =


Q1 W11 0 0 W13
0 IS1

0 0 0
0 0 Q2 W22 W23
0 0 0 IS2

0
0 0 0 0 I3

 , where

W11 = −C11R
C11K

W13 = −C11R
C13R

(5.44)

W22 = −C22R
C22K

W13 = −C22R
C23R

2For clarity, only the 2-way partitioning is shown: two subnets and one separator.
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GT K

ET S

G K
G R

ET R
E S

E R
0

  +
s C S

CT K
0

C K
C R

0
0

0
−
L

   v S v R −
i L

  =
 B S 0 0

  u
⇔

([ G
P

G
T C

G
C

G
I

] +
s[ C

P
C

T C
C

C
C

I

])[
x P X

I

] =

[ b
P 0

] u

Γ R
=
ET R
L
−

1
E R

,
Γ S

=
ET S
L
−

1
E S

,
Γ K

=
ET S
L
−

1
E R

([
G R

G K
GT K

G S

] +
s[ C R

C K
CT K

C S

] +
1 s

[ Γ R
Γ K

Γ
T K

Γ S

])[
v R v S

] =

[ 0 B
S

] u

⇓
⇓

Tr
an

sf
or

-
m

at
io

n
X
=

[ I
0

W
I

] ,
w

he
re

W
=
−

C
−

1
I

C
C

C
−

1
I

C
C
=

[ C−
1

R
C K 0

] X
=

[ I
W

0
I

] ,
w

he
re
W

=
−C
−

1
R
C K

⇓
⇓

Tr
an

sf
or

m
ed

m
od

el

    G
′ P

G
′ C

T

G
′ C

G
I

  +
s C

′ P
0

0
C

I

   [ x′ P x I

] =

[ b
P 0

] u
(s
)

  G
R

G′ K

G′ K

T
G′ S

  +s
[ C R

0

0T
C′ S

] +
1 s Γ

R
Γ
′ K

Γ
′ K

T
Γ
′ S

  [ v R v′ S

] =

[ 0 B
S

] u

⇓
⇓

Tr
an

sf
er

fu
nc

ti
on

Y
′ (s

)
=

( G
′ P
+

sC
′ P

)
︸

︷︷
︸

Y
′ P
(s
)

−
G
′ C

T
(G

I
+

sC
I)
−

1
G
′ C

︸
︷︷

︸
Y
′ I(

s)

Y
′ (s

)
=
Y
′ (s

)
Y
′ (s

)=

( G′ S
+

sC
′ S
+

1 sΓ
′ S

)
︸

︷︷
︸

Y
′ S
(s
)

−
( G′ K

+
1 sΓ
′ K

) T( G
R
+

sC
R
+

1 sΓ
R) −1(

G′ K
+

1 sΓ
′ K)

︸
︷︷

︸
Y
′ R
(s
)

M
at

ch
in

g
m

om
en

ts
R

at
io

na
lK

ry
lo

v
on

Y
′ I(

s)
(f

or
m

at
ch

in
g

at
s 0

=
0,

G
I

m
us

tb
e

in
ve

rt
-

ib
le

,o
th

er
w

is
e

ap
pl

y
tr

an
sf

or
m

at
io

ns
pr

op
os

ed
in

[5
5,

57
])

to
is

ol
at

e
th

e
si

ng
ul

ar
it

ie
s

at
D

C
.

Y
′ I(

s)
=
−

1 sΓ
′ S
+
Y
′ R
(s
)

R
at

io
na

lK
ry

lo
v

on
lin

ea
ri

ze
d

ve
rs

io
n

of
Y
′ R
(s
),

i.e
.S

A
PO

R
[6

6]
(f

or
m

at
ch

-
in

g
at

s 0
=

0,
Γ R

m
us

tb
e

in
ve

rt
ib

le
)

R
ed

uc
ed

tr
an

sf
er

fu
nc

ti
on

Ŷ
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Ĝ

T C
(Ĝ
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sĈ
I)
−

1
Ĝ
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Ĝ K
+

1 sΓ̂
K)

︸
︷︷

︸
Ŷ
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ÊT R
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Ĉ R

0
0

0
−
L̂

        v S v̂ R −
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and Q1, Q2 are the projections (for instance obtained via SAPOR) reducing the internal

contributions Y
′

iR
(s) for each subnet. Projecting (5.43) with XQ gives the reduced model

in BBD form:
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22K

G
′

22S
G
′

23S

ĜT
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B3

u(s). (5.45)

Finally, the rank-revealing decomposition of Γ̂ in (5.45) can be performed to cast the
reduced model (5.45) in first-order form symmetric (5.42), which is then synthesized as
an RC netlist and simulated.

5.3.1 Towards solving the DC moment matching problem

In circuit analysis, often the first type of simulation performed is a DC analysis, which
computes a solution to the circuit equations when all capacitors act as open-circuits and
all inductors as short circuits. It is thus desirable for the reduced circuit to have the
same DC solution as the original circuit. In other words, the reduction should preserve
at least one moment of the original transfer function at DC. For RC circuits, this is
easily achieved (see Chapter 4), while for RLC additional numerical challenges arise
when the underlying conductance matrix is singular. These are discussed next, as well
as possibilities to overcome them. Recalling (1.13), for moment matching at DC (at
s = 0) the system matrix A must be invertible (w.l.o.g. we refer in the next discussion to
A, rather than to G, or G). In typical Krylov-based reduction setups, if A is singular a
non-zero expansion point s0 6= 0 is chosen and moments are matched around this point.
In this manner however, the explicit matching at DC is not directly addressed. Here we
are interested in computing a DC solution even when A is singular.

In the RC case, singularities in A = −G occur only if there are nodes with no connections
to resistors, or nodes which are isolated at DC from the port nodes (what [55, 57] call
type-1 singularities). In Chapter 4, the reducing projection for RC circuits, whether in
the partitioned or unpartitioned case, was able to easily match moments at DC, even
when the relevant A matrix was singular. This was possible because the singularities
could be easily isolated from the network (where easily means without additional fill-
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creating transformations), so that there always remained an invertible sub-block of A
(details are given in Sect. 4.2.2).

In the RLC case, type-1 singularities can be removed in a similar manner, however the
so-called type-2 singularities [55, 57] pose additional challenges (we refer to singulari-
ties of A, which represents the conductance matrix of an RLC circuit in the first-order
form). Type-2 singularities can occur if the network: (a) has inductor loops or (b) has
inductive paths between terminals. If a network is well-defined, such situations do not
occur in practice. However, even when type-2 singularities are not present in the origi-
nal, unpartitioned problem, inductive paths can appear between terminals and separa-
tor nodes, or between separator nodes, in the subnets resulting from partitioning. We
discuss possibilities to resolve these.

One elegant solution to avoid type-2 singularities would be to ensure that partitioning
does not pick as separator nodes those which would create inductive paths between the
subnetwork’s terminals (recall that the terminals of a subnet are a subset of the network
terminals plus the separator nodes pertaining to the subnet). Another solution (assum-
ing that the partitioning is done naively without accounting for the singularities) would
be to isolate that part of a subnet which contains an inductive path between terminals
and not reduce it (similar actions have been proposed in [69]). This alternative is jus-
tified as in practice such subnets do not appear often or are typically small. A third
alternative was proposed in [55,57] and involves a set of split transformations based on
the range and nullspace of A. These split the network into a part with no DC singu-
larities, to be reduced, and one containing all DC singularities which is preserved. The
transformations however introduce fill-in, which is undesirable (an example on how to
achieve the same effect in a sparse manner is given in [55], however the feature is not
documented in detail). Next, we investigate whether the second-order form provides
additional alternatives.

Singularities at DC: first vs. second-order form

One of the motivations for performing reduction in the second vs. the first-order form
was to avoid singularities which may be introduced in the GI internal matrices per sub-
net. This can happen when nodes to which inductors are connected become separator
nodes. An example is provided next, which illustrates how a singularity which appears
in the first-order form, can be by-passed, under certain conditions, in the second-order
form.

Fig. 5.1 shows an RLC subnet that may result from partitioning, where the blue nodes
v1, v2 are separator nodes, connecting this subnet to the rest of the circuit, v3 is an actual
terminal (in red) and v4 is an internal node. Hence, when considered separately from
the rest of the network, nodes v1, v2 become terminals of the subnet, along with v3. The
governing MNA equations for this subnet, in the first-order form partitioned according
to (5.3)-(5.4), are shown on the right of Fig. 5.1. Notice that the internal matrix GI re-
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Figure 5.1: Left: RLC sub-component of a larger circuit illustrating singularities at DC. Right:
MNA circuit matrices partitioned according to (5.3)-(5.4) with a singular GI block.

sulting from the structure of Fig. 5.1 is singular: ER has two linearly dependent columns
and also a zero column. Matching moments at s0 = 0 (DC) via the Krylov subspace
(5.13) is not possible directly for this subnet, hence [57] propose further transformations
to eliminate the singularities from GI , at the price of introducing more fill-in. It would
be possible though to form a Krylov subspace (5.13) for an expansion point s0 6= 0.

When written in the second-order form (5.17), the governing MNA equations for this
RLC subnet are:




g1 0 0 −g1
0 g2 + g3 −g3 −g2
0 −g3 g3 0

−g1 −g2 0 g1 + g2

+ 1
s
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 ,

where the internal matrix blocks are GR = g1 + g2, ΓR = γ1 +γ2. After the linearization

of Y
′

R(s) according to (5.38), it becomes possible to express and match the moment at
DC for this subnet. This avoids the fill-introducing operations that would otherwise
be necessary in the first-order form. In this example, matching at DC is possible in
the second-order form because ΓR is invertible (although in the first-order form GI is
otherwise singular); in practice, networks have been encountered where ΓR is singular,
in which case the DC moment matching problem in the second-order form still remains
open.

An extended version of the previous subnet is presented in Fig. 5.2, which has the same
three terminals v1, . . . , v3 and five internal nodes v4, . . . v8. Note that, as in the previ-
ous example, if the system is expressed in first-order form, the internal matrix GI will
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be singular. This circuit is reduced nonetheless in the second-order form with SAPOR

based on matching one moment of Y
′

R(s) at s = 0. The comparison between the re-
sponse of the original and the reduced circuit is shown in Fig. 5.2, where the accurate
approximation for the low frequencies is visible.

L1

L2

R2

R1

v4

v1

v2

R3

L3

v3

L4

L5

L6

L7R4

R5

C1

C2

v5

v6

v7

v8

Figure 5.2: Left: RLC subnet reduced with moment matching at DC, in the second-order form.
Right: the curves for the maximum and minimum singular values of the frequency response,
for the original (black) and reduced (red) circuits respectively. The reduced circuit matches the
behavior of the original well for low frequencies, expected due to moment matching at DC.

5.3.2 Identifying fill-in

For simplicity, in this discussion we denote by ? an arbitrary block from the reduced

matrices in (5.45). As for multi-terminal RC reduction, the fill generated in the ?
′

S and
?33 blocks is minimized through partitioning and the preservation of separator nodes.
For RC circuits, reduction by matching the two moments at DC usually guarantees suf-

ficient accuracy, these being entirely captured by the ?
′

S blocks (see Chapter 4). In con-
trast, in the RLC reduction scenario contributions from the reduced internal blocks are
present in the form of ?̂R and ?̂K, as seen from (5.45). So, while the ?

′

S and ?33 terms are
sparse, the ?̂R and ?̂K blocks are dense. The density of ?̂R and ?̂K is due to two factors:
(a) the transformation which zeros-out the CiiK

, Ci3R
connection blocks from the original

model (5.43), and (b) the formation of the Krylov subspaces reducing Y
′

iR
(s) per subnet,

which results in dense projections Qi.

It is nevertheless possible to improve sparsity by simultaneously diagonalizing the ĜiiR
,

ĈiiR
blocks via an eigenvalue decomposition [these are symmetric, positive semi-definite

matrices hence the pencil (ĜiiR
, ĈiiR

) has real eigenvalues]. After this operation, the
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reduced Ĉ matrix becomes very sparse as seen from its structure in (5.45). The remaining
dense block appears as U when (5.45) is cast in the first-order form (5.42). U could
be obtained in a sparse manner for instance via a sparse LDLT decomposition of Γ̂ ,
provided that Γ̂ is sparse. In most examples encountered however, the resulting Γ̂ of
(5.45) has dense ?̂R and ?̂K blocks as previously explained.

Hence, the final reduced system (5.42) when unstamped as an RC circuit will typically
have very few capacitors and many resistors, sometimes more resistors than in the orig-
inal circuit. A much sparser representation could be obtained if (a), the transform to
zero-out the CiiK

, Ci3R
blocks would be by-passed, (b) a sparse representation for the

Krylov subspaces Qi would be found and (c) Γ̂ could be factorized as into an LDLT in
a sparse manner. Point (a) could be avoided if for instance a splitting of nodes into xiR
and xiS

per subnet would be found, as to ensure directly that CiiK
= 0, Ci3R

= 0. Point
(b) especially raises a new question in itself: the formation of sparse Krylov subspaces
from sparse matrices. Point (c) would be possible as long as Γ̂ is sparse, which in turn
would be satisfied with the help of (a) and (b). Having identified the causes of fill-in and
the potential directions to reduce it, implementing these aspects remains for further re-
search. For another partition-based approach which relies on macro-model realization
rather than on unstamping, and thus controls sparsity in a different manner, we refer to
PartMOR [70].

5.3.3 Moment matching and the dimensions of the reduced blocks

The internal contributions Y
′

iR
(s) to be reduced per subnet have the form (5.24). For

instance, during the reduction of subnet i (i = 1, 2), the internal blocks corresponding
to (5.24) are as follows:

GR := GiiR
, CR := CiiR

, ΓR := ΓiiR
(5.46)

G
′

K :=
[
G
′

iiK
G
′

i3R

]
, Γ

′

K :=
[
Γ
′

iiK
Γ
′

i3R

]
. (5.47)

As for any Krylov-based reduction, the number of columns of G
′

K + 1
s Γ
′

K dictates the

dimension Mi for one moment of Y
′

iR
(s). This is equal to the number of terminals of

subnet i plus the number of separator nodes through which subnet i communicates

with the rest of the circuit, i.e.: Mi = |xiS
|+ |x33|. Thus, if m moments of Y

′

iR
(s) are to be

matched per subnet, the dimension of the reduced internal matrices ?̂iiR
will be m×Mi

(this will be also the number of rows of ?̂iiK
and ?̂i3R

). Hence, as the accuracy of the
reduced model increases with the number of moments matched, it is desirable to match
as many moments as possible, however without introducing much fill-in. This can be
controlled by ensuring that the partitioning spreads terminals per partition sufficiently,
and by generating as few separator nodes as possible. In this manner, Mi, the dimen-
sion of a block moment per subnet, can be kept small. In addition, a careful selection of
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expansion points at which the moments of Y
′

iR
(s) are generated could help to achieve a

suitable trade-off between small dimensionality and accuracy. For instance, with knowl-
edge from [78], the optimal shifts could be chosen close to the dominant eigenvalues of

a suitable representation of Y
′

iR
(s) [for instance via a linearized version of Y

′

iR
(s)]. Find-

ing an appropriate linearization or even more, an analogy between the eigenmodes of

the Y
′

iR
(s) term and those of the start-point system (5.43) are new research questions

and remain for further investigation.

5.3.4 When partitioning is advantageous

For very large circuits with node numbers exceeding tens of thousands, partitioning
becomes advantageous irrespective of how many terminals the circuit may have. Most
importantly, it provides the computational benefit of performing reduction per subnet,
when for the unpartitioned problem it is too costly or even unfeasible to form a Krylov
projection as with PRIMA [71], SPRIM [27] SAPOR [66], or [8]. These advantages could
be brought to full potential, provided that the sparsity considerations identified above
are resolved.

The partition-based derivations of this section however do not directly apply to RLCk
circuits, that is circuits with mutual inductances. First, for RLCk circuits the inductance
matrix L is typically dense, due to the presence of mutuals. Hence Γ to start with is
dense, and a reasonable partition of the graph G := nzp(G + C + Γ) cannot be found,
due to the fact that there are no “good” separator nodes (the graph G is fully connected).
A good partition could be found by ignoring the mutuals, however the true Γ (with mu-
tuals re-included after the appropriate permutations) is no longer in BBD-form, which
was otherwise a necessary assumption for the derivations above. Hence, a more effi-
cient way to partition RLCk networks is needed.

5.4 Numerical results

An RLC transmission line was reduced according to the partition-based approach in
second-order form, as described in Sect. 5.3. After partitioning, two moments at s1 =

104 and one moment at s2 = 1012 are matched per subnet. Table 5.2 collects the reduc-
tion statistics, where a partitioned-based and an unpartitioned reduction are attempted.
The dimension ni denotes the number of internal variables3 of the original model (5.1)
compared to the reduced model (5.42). The partition-based reduction was faster to per-
form than the unpartitioned version, and also resulted in a more accurate model. This is
also reflected in the Matlab bode plots from Fig. 5.3, and the AC Spectre simulation com-
parisons from Fig. 5.4. As expected from the analysis of Sect. 5.3.2, there are more resis-

3Internal variables are all those except the voltages at the terminal nodes.
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Table 5.2: RLC reduction statistics: partitioned vs. unpartitioned

Net Type ni #R #C #L Sim.
time (s)

Red.
time (s)

1. Tline
p = 22

Original 3629 6020 6142 135 1 -
Red: partitioned (N = 4 subnets) 583 19922 821 0 0.9 11.8

Red: unpartitioned 141 5105 351 0 0.14 26.5

tors in the reduced than in the original circuit; this is also reflected in the re-simulation
time, which is almost the same as for the original circuit. Hence further investigation is
required into improving the sparsity of the netlist, especially in the number of resistors.
This example clearly reveals the importance of re-using the reduced models in simula-
tion. Only when this final step is carried out, is one able to truly asses both the quality
and the efficiency gains obtained from model reduction.

5.5 Concluding remarks

The reduction of multi-terminal RLC circuits is addressed in this chapter. In particu-
lar, the PACT approach [57] is analyzed especially in the context of partitioning. Based
on the second-order formulation, a hierarchical procedure to reduce RLC networks is
derived. Through the border-block-diagonal hierarchy, the blocks which contain fill-
in are identified, based on which directions to further improve sparsity are provided.
The problem of preserving moments at DC was also analyzed and suggestions to over-
come it were provided. An example from circuit simulation was reduced in this frame-
work, through which the computational advantages of partitioning are revealed. The
results motivate a more thorough investigation into achieving a better trade-off between
small dimensionality, sparsity and accuracy. The first recommendation in this respect
is to derive a similar partition-based framework using SPRIM [27] for the first-order
form or SAPOR [66] for the second-order form to reduce each subnet, rather than the
PACT approach [57] analyzed here (the basics of such an approach are included in Ap-
pendix 5.6.1). For future work, the extension to RLCk circuits is also relevant.

As a summarizing comparison between reduction in the first and second order form,
Table 5.3 collects the advantages, limitations and future research questions for each sce-
nario, both for the unpartitioned, as well as the partitioned framework.
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Figure 5.3: RLC tline. Transfer function for the original model compared to two reduced mod-
els: partition-based (left) and unpartitioned (right). The partition based model captures the
oscillations better.

Figure 5.4: RLC tline: AC analysis of the synthesized circuits. Original (red) and Reduced
with partitioning (blue) match very well, while the reduced model obtained without partitioning
(magenta) deviates slightly. The error plots on the right also reflect that the partitioning-based
model is more accurate.

5.6 Appendix

5.6.1 An SPRIM partition-based reduction approach

The structure preserving method SPRIM [27] or the block version BSMOR [95] have re-
cently become popular for reducing RLC circuits. The main benefit of such approaches
is that, from a subspace V which spans a moment-matching Krylov subspace, a block
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version can be constructed which matches more moments (proportional to the number
of blocks [95]). As a consequence, any block structure in the original circuit matrices will
also be preserved in the reduced matrices. This concept has been further exploited in
the RLCSYN paper [93], as to also preserve the structure of the input/output incidence
matrices; this ensures that reduced models can be unstamped into RLC netlists without
controlled sources (the RLCSYN [93] authors denote this special input-output structure
preserving projection as SPRIM/IOPOR).

Here, an SPRIM/IOPOR reduced model is constructed based on the border- block- di-
agonal (BBD) matrix structure resulting from partitioning the RLC netlist. The reduced
model (a) preserves the input/output structure of the original system, and with that,
the terminal connectivity and (b) preserves the BBD structure of the original partitioned
model. The partition-based SPRIM/IOPOR procedure proposed here shows strong po-
tential for reducing very large netlists with many terminals. Furthermore, it exploits the
terminal grounding and recovery action proposed in Chapter 6, and demonstrates its
functionality on industrial RLC examples.

The main concept of the partition-based SPRIM/IOPOR reduction and synthesis pro-
cedure is outlined next, using a partitioning into two subnets and one separator (finer
partitions are treated similarly):

1. Start with the multi-terminal RLC system in first order form (5.1)
2. Partition the RLC network using for instance nested dissection [e.g. based on the

second order form (5.16) the partitioning induces the BBD reordered system (5.43)]
3. Rearrange the partitioned RLC system in first order form4:



G11R
G11K

0 0 G13R

GT
11K

G11S
0 0 G13S

0 0 G22R
G22K

G23R
Ẽ

0 0 GT
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GT
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23R
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23S

G33
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+
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13R
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23R
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23S
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0 L







x1R
x1S
x2R
x2S
x3

iL


=



0
B1
0
B2
B3

0


u(s), (5.48)

where Ẽ is the reordered incidence matrix of inductor connections (the partition-

4The procedure could continue directly in the second order form, using for instance the second order
approach SAPOR/IOPOR [66, 93], however this in turn would require a linearization to a first order form.
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ing induces a special structure in Ẽ as well, but is ignored here for simplicity). In
(5.48), the nodes of each non-separator subnet i = 1, 2 are split into internal nodes
xiR

and terminals xiS
.

4. System (5.48) is usually ungrounded, hence the underlying matrix pencil is singu-
lar. To make the system numerically consistent, ground the network by removing
one terminal (together with its corresponding row and column) from (5.48). To
avoid notation overloading, we simply denote (5.48) as being already grounded,
and denote the underlying system matrices as Gg, Cg, Bg.

5. Pick a set of expansion points sk, and construct a full-rank matrix V which spans
the Krylov subspace associated with the desired number of moments for each
expansion point.

6. Split V according to the block structure of (5.48):

VT =
[

VT
1R

VT
1S

VT
2R

VT
2S

VT
3 VT

L

]
, (5.49)

compress the blocks corresponding to internal nodes and inductor currents to full
column rank: Ṽ1R

, Ṽ2R
, ṼL, and replace the blocks corresponding to terminals

and separator nodes with the appropriately sized identity matrices I1S
, I2S

, I3.
7. Construct the block-diagonal projection:

Ṽ =



Ṽ1R
I1S

Ṽ2R
I2S

I3
ṼL


, (5.50)

8. Construct the reduced model Ĝg = ṼTGgṼ, Ĉg = ṼTCgṼ, B̂g = ṼTB, which will
reveal the following structure:



Ĝ11R
Ĝ11K

0 0 Ĝ13R

ĜT
11K

G11S
0 0 G13S

0 0 Ĝ22R
Ĝ22K
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ĜT
13R

GT
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ĜT
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+
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ĈT
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13R
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23R
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x̂1R
x1S
x̂2R
x2S
x3

îL


=



0
B1
0
B2
B3

0


u(s), (5.51)
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9. Remove possible dependencies in Ê using the Schur decomposition of Γ̂ = Ê L̂−1ÊT

[see equation (5.41)], and cast the reduced system in the symmetric first order form
(5.42).

10. Synthesize the reduced model (5.42) via RLCSYN [93] unstamping into the equiv-
alent RC netlist. During the unstamping process, all R, C elements which would
usually be connected to ground, are instead connected to the terminal which was
removed by grounding in step 4 (see Chapter 6 for the theoretical interpretation of
the terminal grounding and recovery step). Because the projection (5.50) preserves
input/output structure, the resulting netlist contains no controlled sources.

Notice that in the reduced system (5.51), the matrix blocks corresponding to terminals
and separator nodes are unchanged, hence remain sparse. The reduced blocks corre-
sponding to internal nodes, GiiR

, CiiR
, i = 1, 2 are usually dense, however they can be

easily simultaneously diagonalized using the eigendecomposition of the matrix pencils
(GiiR

, CiiR
), or tridiagonalized according to [85]. Hence, ultimately the only dense parts

will be ĜiiK
, Ĝi3R

, ĈiiK
, Ĉi3R

, and Ê [or U of (5.42) after the rank revealing decomposition

of Γ̂ ]. Future research could address means to directly construct a sparse basis for the
internal projection blocks ṼiR

, ṼL, and for U , by exploiting for instance Householder
transformations on these matrices.

Rather than constructing the projection V as in (5.49) from the whole matrices, and then
split it into (5.50), an alternative would be to construct directly small SPRIM/IOPOR
projections per subnet. This would require more careful book-keeping, as the structure
of Ẽ induced by the partitioning would have to be additionally accounted for. A conse-
quence of exploiting structure in Ẽ is that the number of columns of Ê in (5.51) would
be larger, and therefore the reduced model will have more current unknowns îL. This
could further improve the quality of the reduced model. Computational advantages
may also be gained as smaller Krylov subspaces would be computed for each subnet.
Implementing the more advanced version remains for future work.

The partition-based SPRIM reduction was applied on the RLC circuits in the table be-
low: two RLC transmission line models with 22 terminals (Tline1 and Tline2), and one
RLC inductor model with 3 terminals (Inductor). The reduction statistics, as well as the
number of partitions N used and the number of moments matched are listed in the ta-
ble. The best reduction rates, both in internal nodes and circuit elements, was achieved
for the Inductor model. For the other two circuits, further sparsification methods may
be appropriate as above described, as to also drive down the number of circuit elements
and improve the resimulation time.

The Spectre [16] simulation of the Inductor circuit in Fig. 5.5 shows perfect match be-
tween the response of the original and the reduced circuits. The same holds for the
simulation of Tline2 in Figure 5.6.



Table with RLC reduction results for the partition-based SPRIM approach

Net Type ni #R #C #L Sim.
time (s)

N
# parts

Moments
matched

1. Tline1
p = 22

Original 3629 6020 6142 135 1 9 one at
107 and 1011partSPRIM 262 12995 2949 0 0.9

2. Inductor
p = 3

Original 19557 31468 20375 129 11.2 15 two at 105,
107, 1011 and 1013partSPRIM 227 4876 599 0 0.4

3. Tline2
p = 22

Original 11659 6382 7300 3988 6.9 23 one at
107 and 1011partSPRIM 646 36386 8024 0 5.5

Figure 5.5: Inductor: S-parameter of the orig-
inal (red) and reduced (blue) circuit overlap.

Figure 5.6: Tline2. AC simulations of the
original (red) and reduced (blue) circuits.
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Chapter 6

Using general reduced order
models in simulations

A unifying framework is presented for the reduction of multi-terminal systems, which
enables the use of reduced models in simulations irrespective of the reduction method
chosen. In particular it is shown how, even when the reduction does not preserve the
structure of the input/output incidence matrix, the reduced model can still be synthe-
sized, using the unstamping approach, without controlled sources. The framework also
allows ungrounded systems to be reduced via the numerically sound grounded repre-
sentation, with the guarantee that an ungrounded reduced netlist is finally recovered.
This is then re-inserted via all terminal connections in a simulation flow.

6.1 Introduction

To speed up the simulation of RLC electrical circuits such as interconnect models or par-
asitics networks, various model order reduction (MOR) methods [4] can nowadays be
employed. Along with the reduction, a synthesis step is often necessary to convert the
reduced model back into an electrical network. This must then be inserted in the desired
simulation environment in place of the original circuit. A simple synthesis approach
which reads the reduced MNA matrix entries into a circuit topology is the unstamping
method [93], which is also used in this chapter.

Two major constraints1 are known to limit the applicability of traditional reduction

1A third possible limitation of unstamping is that it does not guarantee positive circuit elements, which
may be unacceptable for some circuit simulators. This problem lies outside the scope of this chapter; all
simulations herein are performed with Spectre [16], which accepts negative elements.
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methods and of the unstamping synthesis approach to multi-terminal systems (e.g. circuits
with many input/output nodes): (a) the matrix pencils underlying multi-terminal systems
are often singular and (b) the underlying reducing projection may destroy the struc-
ture of the input/output matrices and with that, the physical interpretation of terminal
nodes. An undesirable consequence of (b) is that controlled sources would be intro-
duced during synthesis to model the connectivity of the reduced circuit at the terminal
nodes.

The multi-terminal reduction methods presented in Chapters 4, 3, 5 automatically by-
pass both of these limitations due to the special way in which the reducing projection
is formed. More specifically, the underlying projections preserve the structure of the in-
put/output incidence matrices, allowing for synthesis without controlled sources. This
holds both for systems which are grounded or ungrounded. Another class of methods
which are still limited by (a) but overcome (b) are input-output structure preserving
methods such as SPRIM/IOPOR from [93]. Many other more general MOR methods
such as the established PRIMA [71] or the Loewner method [60] share none of these
properties. Hence, although such methods may be qualitatively or computationally ef-
ficient, their reuse in practice (for instance inside a simulation setup) is cumbersome or
at least inelegant.

This chapter brings a new contribution by showing how, despite the known limitations,
even more general reduction methods are able to handle multi-terminals systems. The
reduction-synthesis framework proposed here eliminates the pencil singularity using a
simple pre-processing of the original circuit, and recovers the connectivity at all terminal
nodes using a post-processing of the reduced model. With the proposed procedure, the
re-use of reduced models obtained from various reduction techniques becomes straight-
forward. It is shown for instance how reduced-order macromodels obtained with the
Loewner interpolation-based method [60] can be easily re-inserted in a circuit simula-
tion flow, with all terminal connections preserved. The proposed framework enables
measurements to be taken for systems which have an original ungrounded representa-
tion (hence an underlying singular pencil). This is especially important when reducing
multi-terminal circuits which do not have a direct connection to ground (such a circuit
could be for instance a sub-net of a larger netlist, with the ground node belonging to
another part of this larger netlist).

6.1.1 Problem definition

Consider the modified nodal analysis (MNA) description of an RC2 circuit:{
(G + sC)v(s) = Bu(s)

y(s) = BTv
, (6.1)

2For simplicity, the derivations are based on RC reduction, but are generalized immediately to the RLC
case especially when the system is expressed in the second order, e.g., as in [93].
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where MNA matrices G, C are symmetric, non-negative definite, corresponding to the
stamps of resistor and capacitor values respectively. x ∈ Rn+p denote the node voltages,
measured at the p terminals and n internal nodes. u ∈ Rp are the currents injected into the
terminals. Assuming that the first p nodes are the terminals, the input incidence matrix
has the special structure:

B =

[
Ip
0

]
∈ R(n+p)×p, (6.2)

where Ip ∈ Rp×p is the identity matrix of size p. The outputs are the voltage drops

at the terminal nodes: y(s) = BTv = vp. In model reduction, an appropriate V ∈
R(n+p)×(k+p), k ≥ 0 is sought, such that the system matrices and unknowns are reduced
to:

Ĝ = VTGV, Ĉ = VTCV ∈ R(k+p)×(k+p) (6.3)

B̂ = VTB ∈ R(k+p)×p, x̂ = VTx ∈ Rk+p (6.4)

and satisfy: (Ĝ + sĈ)x̂(s) = B̂u(s).

It is emphasized that the representation (6.1) corresponds to an ungrounded circuit. Un-
grounded means that a reference node in (6.1) has not yet been chosen, this being fixed
only in the simulation phase. From a mathematical viewpoint, we do not yet know
which terminal will be set to ground in simulation - this is decided by the designer.
Consequently, the matrix pair (G, C) underlying the ungrounded system (6.1) is singu-
lar. Furthermore, the projection V resulting from many model reduction methods such
as PRIMA [71], or the Loewner method [60] does not retain the original structure of
current injections (6.2), so the reduced B̂ from (6.4) is dense. Hence, when a SPICE-
equivalent circuit is derived from the reduced model using an unstamping method
(e.g. RLCSYN [93]), controlled sources would be have to be used to unstamp the dense
B̂ [36, 73]. Two problems emerge from this setup, which are resolved in this chapter:

(a) How can one use general projection based methods [which assume a regular (G,
C) pencil] to reduce ungrounded circuits in such a way that all terminals re-appear
in the reduced model?

(b) Assuming that such a reduction is possible, how can one unstamp a general re-
duced order model (6.3)-(6.4) without controlled sources?

Towards answering (a), the notion of a generalized frequency response or generalized trans-
fer function is introduced. This expresses the input/output response of an ungrounded
multi-port circuit in terms of the transfer function of the grounded circuit. In this man-
ner, it becomes possible to reduce a grounded circuit while ensuring that the response
of the ungrounded circuit at all terminals is recovered. The solution to (b) is given by

an equivalence transformation which converts the reduced B̂ into TTB̂ =

[
I
0

]
.
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6.2 Ungrounded vs. grounded systems

In preparation for solving the above problems, the structure of matrices underlying
ungrounded vs. grounded circuits is derived, together with the relationship between
the solutions of the corresponding linear systems. Consider the simple resistor circuit
example in Fig. 6.1: on the left, the ungrounded circuit is shown, while the grounded
version is on the right. From Fig. 6.1, consider the ungrounded version on the left.

1

2

3

1

2

3

Ungrounded Grounded

Terminals: p = 2 Terminals: p = 1

Figure 6.1: Simple resistive circuit with two terminals. The left version is ungrounded, with
currents flowing into nodes 2 and 3 (terminals). The right circuit is the grounded version, where
node 3 is set to ground.

Nodes 2 and 3 are terminals through which input currents i2, i3 are injected. The outputs
are the voltages v2, v3 measured at the terminals. Node 1 is internal. From Kirchhoff’s
Current Law (KCL) and the branch constitutive equations the following MNA system
results:  g1 + g2 −g1 −g2

−g1 g1 0
−g2 0 g2


︸ ︷︷ ︸

G

 v1
v2
v3


︸ ︷︷ ︸

v

=

 0 0
1 0
0 1


︸ ︷︷ ︸

B

[
i2
i3

]
︸ ︷︷ ︸

u

(6.5)

y = BTv (6.6)

Note that G is singular, which is always the case for ungrounded circuit matrices. It is
easy to see that the vector of all 1’s ∈ Null(G) [each row (and column) in G sum to 0].

Thus the solution to (6.5) cannot be determined by inverting G. Denoting 1 =

 1
1
1

,
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the solution v can however be expressed as:

v = α1+ v0,

where v0 is the particular solution to (6.5) and α is a free parameter. Let us find v0 and
the interpretation ofα.

Expressing v1 from the first row of (6.5) and replacing it in the second and third rows
gives:

v1 =
g1

g1 + g2
v2 +

g2
g1 + g2

v3 (6.7)(
g1 −

g2
1

g1 + g2

)
v2 −

g1g2
g1 + g2

v3 = i2 (6.8)

− g1g2
g1 + g2

v2 +

(
g2 −

g2
2

g1 + g2

)
v3 = i3 (6.9)

Note that g1 −
g2

1
g1+g2

= g2 −
g2

2
g1+g2

=
g1g2

g1+g2
:= A. Therefore the last two equations read:

Av2 − Av3 = i2 (6.10)

−Av2 + Av3 = i3 ⇒ i2 + i3 = 0. (6.11)

As expected, one of the equations from (6.5) is redundant, and the unknown voltages
are dependent. Let v3 = α. From (6.10) one obtains: v2 = α + A−1i2 = α + ( 1

g1
+ 1

g2
)i2.

Replacing v2 and v3 in the first row of (6.5), one obtains v1 = α + 1
g2

i2. Finally the
general solution to the ungrounded system (6.5) is:

v=

 α + 1
g2

i2
α + ( 1

g1
+ 1

g2
)i2

α

 = α

 1
1
1


︸ ︷︷ ︸
1

+


1
g2

i2
( 1

g1
+ 1

g2
)i2

0


︸ ︷︷ ︸

v0

. (6.12)

Next, it is shown that v0 is nothing but the solution of the grounded representation,
where terminal node 3 is chosen as the reference node (i.e. whenα = v3 = 0). Consider
now the circuit version on the right of Fig. 6.1: the current injection into terminal 3 is
removed and node 3 is grounded (v3 = 0). The input is the current i2 flowing into
terminal 2, and the output is measured as the voltage of this node, namely v2. The
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corresponding MNA equations are:[
g1 + g2 −g1
−g1 g1

]
︸ ︷︷ ︸

Gg

[
v1
v2

]
︸ ︷︷ ︸

vg

=

[
0
1

]
︸ ︷︷ ︸

Bg

[
i2
]︸ ︷︷ ︸

ug

(6.13)

yg = BT
g vg (6.14)

Gg is now invertible. The solution to (6.13) is completely determined, namely:

vg = G−1
g Bgug =

[
1
g2

i2
( 1

g1
+ 1

g2
)i2

]
(6.15)

Finally, note that the general solution (6.12) of the ungrounded system is expressed in
terms of the solution (6.15) of the grounded system as follows:

v = α1+

[
vg
0

]
, α = v3, (6.16)

whereα = v3 is taken as the reference voltage.

6.3 Generalized frequency response/transfer function

With the result (6.16) at hand, we proceed towards expressing the input/output transfer
function of an ungrounded system in terms of that of the grounded system. From (6.14),
the output of the grounded system is:

yg = BT
g vg = BT

g G−1
g Bg︸ ︷︷ ︸

:=Hg

ug, (6.17)

from which the “transfer function” of the grounded circuit is identified as Hg.

Next we form the generalized transfer function H for the ungrounded system (6.5) in terms

of Hg. Note that B is expressed in terms of Bg as follows: B=

[
Bg 0c
0r 1

]
∈ R(n+p)×p,

where Bg ∈ R(n+p−1)×(p−1), and 0c and 0r are the row and column vector respectively of
all 0s, corresponding to the dimensions of Bg. For an ungrounded system of dimension

n + p, we have 1 ∈ Rn+p, and for the grounded system 1g ∈ Rn+p−1. Recall also that

B =

[
Ip
0

]
, so that BT

1 = 1p ∈ Rp is the vector of all 1’s of length p. Similarly,

BT
g1g = 1p−1 ∈ Rp−1. Using (6.16), the general output for the ungrounded system (6.5)
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is expressed as:

y=BTv = αBT
1+ BTv0=α

[
BT

g 0
T
r

0
T
c 1

] [
1g
1

]
+

[
BT

g 0
T
r

0
T
c 1

] [
vg
0

]
=

= α

[
BT

g1g
1

]
+

[
BT

g vg
0

]
=α

[
1p−1

1

]
+

[
Hgug

0

]
=

[
α1p−1 + Hgug

α

]
=

[
Hg 1p−1
0 1

]
︸ ︷︷ ︸

H

[
ug
α

]
︸ ︷︷ ︸

uα

. (6.18)

From (6.18) the generalized transfer function H of an ungrounded system is identified.
It is expressed in terms of Hg, the transfer function of the grounded circuit. The gen-
eralized input uα is the input ug of the grounded circuit, and the free parameter α, the
voltage of the reference node [e.g., the node v3 from (6.5) which was set to ground in
(6.13)].

The result (6.18) also holds for expressing the generalized transfer function H(s) ∈ Cp×p

of an ungrounded multi-terminal RC circuit in terms of a grounded version, where
Hg(s) = BT

g (Gg + sCg)
−1Bg ∈ C(p−1)×(p−1). It is emphasized that for the ungrounded

system, expressing “H(s) = BT(G + sC)−1B” directly is not allowed since the pencil
(G, C) is singular.

6.3.1 Recovering the reference node from the grounded system

From the generalized frequency response (6.18), system matrices associated with the
ungrounded representation can be recovered from the grounded representation as fol-
lows:

H(s)=

[
BT

g 1p−1

0
T
c 1

]([
Gg 0c
0r 1

]
+s
[

Cg 0c
0r 0

])−1[Bg 0c
0r 1

]
(6.19)

With system matrices so redefined, we are interested in rewriting the equations so that
the node which was set to ground is re-introduced. Let vp be the voltage drop at this
node. The dynamical equations associated with (6.19) now read:([

Gg 0c
0r 1

]
+s
[

Cg 0c
0r 0

])[
vg
vp

]
=

[
Bg 0c
0r 1

][
ug
α

]
⇔

⇔
{

(Gg + sCg)vg = Bgug
vp = α

(6.20)
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Let the voltage drops of the grounded net be split into voltages measured at internal

and terminal nodes respectively: vg =

[
vgi
vgt

]
. Note that if the ungrounded net has p

terminals, there are vgt
∈ Rp−1 terminals in the grounded net. It follows that BT

g vg =
vgt

. The output equation of (6.19) then reads:

y=

[
BT

g 1p−1
0r 1

][
vg
vp

]
=

[
BT

g vg + vp1p−1
vp

]
=

[
vgt

+α1p−1
α

]
. (6.21)

In other words, the outputs of the ungrounded net are the voltage drops at the p − 1
terminals of the grounded net, measured as vgt

∈ Rp−1 plus the value of the reference
voltage vp = α. The last output is the p’th terminal, the voltage vp = α itself of the
node which was removed from the network by grounding. This allows one to recover
the ungrounded netlist by unstamping the grounded net specified by Gg, Cg, Bg as
usually. However the branches that would usually be connected to a so called “ground”
are now connected to the reference terminal node vp. In this manner, the recovered
netlist contains all terminals and can be reconnected directly to other circuit blocks and
simulated.

6.3.2 Implications

Several implications emerge from the above derivations. These extend the applica-
bility of state-of-the-art reduction methods to systems with dependencies such as un-
grounded multi-terminal circuits.

1. The parameter α is independent of the frequency s, and represents the voltage of
the chosen reference node.

2. After a reference node is chosen from one of the terminals, the grounded circuit
(now with p− 1 terminals) can be reduced with any reduction method which as-
sume a regular pencil [what before we called (Gg, Cg)]. For instance, constructing
reduced models from measurements of the original frequency response via the
Loewner method [60], or PRIMA [71] becomes possible for ungrounded multi-
terminal circuits. Although measurements of H(s) cannot be taken explicitly [due
to the fact the the inverse (G + siC) does not exist as the pencil (G,C) is singular],
they can be taken implicitly by measuring Hg(s) for different frequencies si [the
pencil (Gg,Cg) is regular].

3. Connectivity via all terminals is recovered after reduction: the chosen reference
node is simply re-inserted in the physical netlist as the p’th terminal (with the
appropriate connections to the other circuit nodes) during the synthesis of the
reduced model.
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In the following section, the reduction and terminal recovery (without controlled sources)
are described.

6.4 Model reduction

Let as before vp be the terminal set to ground, and the grounded system be reduced

via a projection V ∈ R(n+p)×(k+p), k + p being the dimension of the reduced model:
Ĝg = VTGgV, Ĉg = VTCgV, B̂g = VTBg. The transfer function of the grounded

reduced model is Ĥg(s) = B̂T
g (Ĝg + sĈg)

−1B̂g ∈ C(p−1)×(p−1). Then the generalized
transfer function of the ungrounded reduced model follows similarly to (6.18):

Ĥ(s)=

[
Ĥg(s) 1p−1
0r 1

]
=

[
B̂T

g 1p−1
0r 1

]([
Ĝg 0c
0r 1

]
+ s

[
Ĉg 0c
0r 0

])−1[
B̂g 0c
0r 1

]
.(6.22)

Let the unknowns in the reduced, ungrounded system be split as follows: v̂ =

[
v̂T

g
vp

]
∈

Rk+p, where v̂T
g ∈ Rk+p−1 are the voltage drops at the nodes of the grounded circuit.

Similarly to the original network, B̂T
g v̂g = v̂gt

. The dynamical system describing the
reduced, ungrounded network associated with (6.22) reads:

(Ĝg + sĈg)v̂g = B̂gug
vp = α

y =

[
v̂gt

+α1

α

]
.

(6.23)

The reduced netlist containing the p− 1 terminals is unstamped from the reduced grounded
net specified by Ĝg, Ĉg, B̂g. The output equation from (6.23) introduces the grounded
terminal back in the physical netlist as a node with voltage vp = α. In other words the
“ground” node is no longer fixed to voltage vp = α = 0 but is kept free as the p’th
terminal, as in the original ungrounded model.

As a final step, the reduced input/output matrix B̂g (which is usually dense) must be
transformed to a form which enables straightforward synthesis of terminal re-connectivity,
without introducing controlled sources. This is shown next.

6.4.1 Transforming a reduced model into synthesis-ready form

Towards transforming the reduced grounded model Ĝg, Ĉg, B̂g into a form appropriate
for unstamping without controlled sources, the terminal locations have to be retrieved
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from B̂g. This is achieved as follows.

Assume that the dimension of the reduced model is K, where K ≥ p − 1, as is usu-
ally the case for projection based MOR methods. Thus B̂g ∈ RK×(p−1) is tall and thin

(having linearly independent columns). A transformation T ∈ RK×K is sought so that

TTB̂=

[
Ip−1

0

]
∈ RK×(p−1). This allows one to inject currents into the p − 1 terminals

of the reduced network just as in the original network. The transformation is based
on the singular value decomposition (SVD) of B̂g: B̂g = UΣVT , where U ∈ RK×K,

Σ ∈ RK×(p−1), V ∈ R(p−1)×(p−1). More precisely, T is obtained from:

B̂g =U
[
Σp−1

0

]
VT ⇒ T=U

[
Σ
−1
p−1VT 0

0 IK−p+1

]
, (6.24)

which transforms the reduced system into:

⇒

 B̂g = TTB̂g =

[
Ip−1

0

]
∈ RK×(p−1)

Ĝg = TTĜgT, Ĉg = TTĈgT
(6.25)

In (6.25), the new incidence matrix B̂g has the required form for direct synthesis via

unstamping. The identity block Ip−1 ∈ R(p−1)×(p−1) represents the incidence of current
injections into the p− 1 terminals. The p’th terminal is re-inserted instead of the ground
node as previously described [see equations (6.23) and comment thereafter]. Sect. 6.5.1
illustrates the procedure via a small example.

6.5 Numerical results and simulations

To demonstrate the functionality of the proposed multi-terminal reduction with ter-
minal recovery, two examples are provided. The first is a simple RC network which
clearly shows how the grounded terminal is re-introduced after reduction and the in-
put/output transformation. The second is a larger industrial example of an RC trans-
mission line with 22 terminals.
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Figure 6.2: Left: RC ungrounded circuit, where nodes 1, 2, 5, 6 are terminals, nodes 3, 4 are
internal. Currents are injected into terminals. Right: KCL for the ungrounded network, where
all nodes are viewed as one (the circle above). The sum of all currents entering this node is zero.

6.5.1 Simple RC circuit

For the ungrounded simple RC network in Fig. 6.2, consider the MNA equations:



g1+g2+g3 +g4 +g6 −g4 −g1 −g2 −g3 −g6
−g4 g4 0 0 0 0
−g1 0 g1 0 0 0
−g2 0 0 g2 0 0
−g3 0 0 0 g3+g5 −g5
−g6 0 0 0 −g5 g5+g6


︸ ︷︷ ︸

G

+ · · · (6.26)

s



c1+c2 0 0 −c2 0 −c1
0 c3 0 −c3 0 0
0 0 0 0 0 0
−c2 −c3 0 c3+c2 0 0

0 0 0 0 0 0
−c1 0 0 0 0 c1




︸ ︷︷ ︸

C



V3(s)
V4(s)
V1(s)
V2(s)
V5(s)
V6(s)


︸ ︷︷ ︸

v

=



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B


i1
i2
i5
i6


︸ ︷︷ ︸

u

Observe that the row/column sums of G, C are zero, since the network is ungrounded.
Before reduction, we ground the circuit by choosing a reference node, for example node
6. Hence the corresponding row, column, and input incidence are removed from (6.26)
[shown in red in (6.26)]. The grounded system is thus obtained:

{
(Gg + sCg)vg = Bgug

yg = BT
g vg

(6.27)
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We reduce (6.27) with the well-known method, PRIMA [71], and apply the terminal
transformation and ground recovery proposed in Sect. 6.4. Note the original, grounded
system dimensions: Gg, Cg ∈ R5×5, Bg ∈ R5×3.

Let V be the projection which matches one moment of (6.27) at s0 = 102, V = (Gg +

s0Cg)
−1Bg, V ∈ R5×3. The reduced matrices are Ĝg = VTGgV ∈ R3×3, Ĉg = VTCgV ∈

R3×3, B̂g = VTBg ∈ R3×3. Note that B̂g is dense. Next, the transformed reduced model

(6.25) is computed so that the new B̂g = I3. The new reduced model as in (6.25) has the
form: ĝ1,1 ĝ1,2 ĝ1,3

ĝ1,2 ĝ2,2 ĝ2,3
ĝ1,3 ĝ2,3 ĝ3,3


︸ ︷︷ ︸

Ĝg

+s

 ĉ1,1 ĉ1,2 ĉ1,3
ĉ1,2 ĉ2,2 ĉ2,3
ĉ1,3 ĉ2,3 ĉ3,3


︸ ︷︷ ︸

Ĉg

 V1(s)−V6(s)
V2(s)−V6(s)
V5(s)−V6(s)


︸ ︷︷ ︸

v̂g

=

 1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

B̂g

 i1
i2
i5


︸ ︷︷ ︸

ug

(6.28)

In (6.28), v̂g is expressed as a voltage drop measured between each node and the ref-
erence node V6 which was set to ground. Since the transformations V and T preserve
symmetry, the off-diagonal entries satisfy ĝ j,i = ĝ j,i, ĉ j,i = ĉ j,i, for j 6= i, 1 ≤ i, j ≤ 3.

Rewriting (6.28) so that V6 becomes a separate unknown gives:



ĝ1,1 ĝ1,2 ĝ1,3 −
3

∑
i=1

ĝ1,i

ĝ2,1 ĝ2,2 ĝ2,3 −
3

∑
i=1

ĝ2,i

ĝ3,1 ĝ3,2 ĝ3,3 −
3

∑
i=1

ĝ3,i


+ s



ĉ1,1 ĉ1,2 ĉ1,3 −
3

∑
i=1

ĉ1,i

ĉ1,2 ĉ2,2 ĉ2,3 −
3

∑
i=1

ĉ2,i

ĉ1,3 ĉ2,3 ĉ3,3 −
3

∑
i=1

ĉ3,i






V1(s)
V2(s)
V5(s)
V6(s)

=
 1 0 0

0 1 0
0 0 1

 i1
i2
i5

 (6.29)

Notice how in (6.29) the matrix row sums are zero. Let:

ĝ j,4 = −
3

∑
i=1

ĝ j,i , ĉ j,4 = −
3

∑
i=1

ĉ j,i , for j ∈ {1, 2, 3} (6.30)

From the symmetry property and (6.30), summing the rows of (6.29) gives the additional
equation:

3

∑
i=1

ĝ1,iV1 +
3

∑
i=1

ĝ2,iV2 +
3

∑
i=1

ĝ3,iV5 + (ĝ1,4 + ĝ2,4 + ĝ3,4)V6 + . . .

+s

[
3

∑
i=1

ĉ1,iV1 +
3

∑
i=1

ĉ2,iV2 +
3

∑
i=1

ĉ3,iV5 + (ĉ1,4 + ĉ2,4 + ĉ3,4)V6

]
= i1 + i2 + i5 ⇔ (6.31)

⇔ ĝ1,4V1 + ĝ2,4V2 + ĝ3,4V5 − (
3

∑
i=1

ĝi,4)V6 + . . .

+sĉ1,4V1 + sĉ2,4V2 + sĉ3,4V5 − s(
3

∑
i=1

ĉi,4)V6 = −(i1 + i2 + i5) (6.32)
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Denote:

ĝ4,4 = −(
3

∑
i=1

ĝi,4) , ĉ4,4 = −(
3

∑
i=1

ĉi,4) , i6 = −(i1 + i2 + i5) (6.33)

Appending (6.32) to (6.29) and using (6.33) gives a new system of equations:




ĝ1,1 ĝ1,2 ĝ1,3 ĝ1,4
ĝ1,2 ĝ2,2 ĝ2,3 ĝ2,4
ĝ1,3 ĝ2,3 ĝ3,3 ĝ3,4
ĝ1,4 ĝ2,4 ĝ3,4 ĝ4,4


︸ ︷︷ ︸

Ĝ

+s


ĉ1,1 ĉ1,2 ĉ1,3 ĉ1,4
ĉ1,2 ĉ2,2 ĉ2,3 ĉ2,4
ĉ1,3 ĉ2,3 ĉ3,3 ĉ3,4
ĉ1,4 ĉ2,4 ĉ3,4 ĉ4,4




︸ ︷︷ ︸
Ĉ


V1(s)
V2(s)
V5(s)
V6(s)


︸ ︷︷ ︸

v̂

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

B̂


i1
i2
i5
i6


︸ ︷︷ ︸

u

(6.34)

System (6.34) represents the ungrounded reduced model with node 6 re-inserted. It can be
readily verified that the rows/columns of Ĝ, Ĉ respectively add up to zero. Hence the
reduced netlist with all terminals recovered is obtained as usually by unstamping (6.34)
with RLCSYN (see chapter 2). In particular the resistor and capacitor values between
nodes Vi and Vj, i, j ∈ {1, 2, 5, 6} are:

r(V1, V2) = −
1

ĝ1,2
, r(V1, V5) = −

1
ĝ1,3

, r(V1, V6) = −
1

ĝ1,4
(6.35)

c(V1, V2) = −ĉ1,2, c(V1, V5) = −ĉ1,3, c(V1, V6) = −ĉ1,4 (6.36)

As the row/column sums of (6.34) are zero, there are no connections from any of the
nodes to ground. The “ground” was the reference node V6 which is mapped back as a
terminal.

A final intuitive note regarding the current equation from (6.33); this is the Kirchhoff’s
current law for the reduced net, which says that the sum of all currents entering the
network is zero. This holds for the original network as well [just sum the rows of the
original ungrounded MNA system from Fig. 6.26 to get i6+i2+i3+i5=0]. This can be
visualized on the right of Fig. 6.2.

Finally, a comparison between the AC simulation of the original and reduced netlist for
this simple circuit is shown in Fig. 6.3. As this is a very small example, the quality of
the approximation is not of major interest (although one can observe that the reduced
response follows the original well especially for higher frequencies). More important
is the synthesis result: the mathematical reduced model was converted to a simple RC
representation without controlled sources and with all terminals recovered. Actually,
during the AC simulation itself, node V1 was set to ground, and the response at node
V6 was measured (shown in Fig. 6.3). This confirms that choosing a reference node
prior to the reduction step can be done arbitrarily. Provided that this reference node
is re-inserted as a terminal during synthesis, the response at all terminal nodes will be
recovered.
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Figure 6.3: AC analysis of the simple RC circuit. Original (red, dimension 6) vs. reduced with
terminal recovery (blue, dimension 4). The voltage at node n6 (V6) is measured.

Figure 6.4: Example 6.5.2. AC simulation of original (red, 3253 nodes), PACT reduced (ma-
genta, 22 nodes), PRIMA reduced (blue, 22 nodes), PRIMA reduced (black, 43) nodes.

6.5.2 RC transmission line

An RC transmission line with n + p = 3253 nodes of which 22 are terminals is re-
duced and synthesized in this generalized framework using three methods: PACT (see
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Sect. 4.2.2), PRIMA [71] and the Loewner method [60]. Note that, while PACT applies
by default to ungrounded systems and also preserves automatically the structure of the
input/output matrices, the more general methods PRIMA and the Loewner method
satisfy none of these properties. Nevertheless, using the framework proposed in this
chapter, they also can be applied to multi-terminal systems. This is shown next.

The original network is ungrounded, and the procedure follows in the same manner as
for the small example in Sect. 6.5.1. As before, from the 22 terminals, one node is arbi-
trarily chosen as a reference node and the grounded system (6.27) (now with 21 termi-
nals) is obtained. The three reduction methods PACT (see Sect. 4.2.2), PRIMA [71] and
the Loewner method [60] are applied on the grounded system. The reducing projections
are constructed to match moments of the original response around s = 0. Because the
reduced models obtained by PRIMA and the Loewner method do not preserve the in-
put/output structure, they are transformed via the input/output transformation (6.24)
to (6.25) [the PACT reduced model does not need the input/output transformation,
since it naturally preserves the input/output structure]. Note that all reduced mod-
els are of the form (6.28), where the states are the voltages measured with respect to
the grounded node. As in Sect. 6.5.1, for each reduced system the ungrounded reduced
representation is obtained, with the reference node re-inserted as the 22’nd terminal.
Finally, the synthesized netlist without controlled sources is obtained by RLCSYN un-
stamping (see Chapter 2). Figure 6.4 shows the comparison between the AC simulations
(with Spectre [16]) of the synthesized netlists for the PACT model and two PRIMA-
reduced models. The PACT model and the small PRIMA model have dimension 21 (22
nodes after terminal recovery) and are superimposed. These models deviate very little
from the original and only beyond 1GHz. The larger PACT model of dimension 42 (43
nodes in the synthesized netlist) follows the original perfectly.

Two reduced models of dimension 21 and 42 [(LM1) and (LM2) respectively] were also
obtained3 with the Loewner method [60] by taking measurements of the original fre-
quency response (of the grounded system). The maximum and minimum singular val-
ues σmax(Ĥg(s)) and σmin(Ĥg(s)) of the reduced models are compared to those of the
original, σmax(Hg(s)) and σmin(Hg(s)). For LM1, Fig. 6.5 shows that the approximation
for low frequencies may not be sufficiently accurate. The singular value plots for LM2
show, in Fig. 6.6, that this larger model provides a good approximation for the whole
frequency range. Again, this is confirmed by the re-simulation result in Fig. 6.7. The
AC simulations of the reduced synthesized models compared to the original simulation
are shown in Fig. 6.7. The smaller model (LM1 with 22 nodes after synthesis) shows a
slight mismatch in DC, which is expected given the result obtained in Fig. 6.5. However
the larger model (LM2 with 43 nodes after synthesis) matches the original.

3The Loewner reduction itself was performed by the first author of [60].
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Figure 6.5: Example 6.5.2. Maximum and minimum singular value plots for original (black,
3252 nodes), and reduced LM1 (red, 21 nodes).

Figure 6.6: Example 6.5.2. Maximum and minimum singular value plots for original (black,
3252 nodes), and reduced LM2 (red, 42 nodes)
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Figure 6.7: Example 6.5.2. AC simulation of original (red, 3253 nodes), and two reduced netlist
obtained from measurements [60]: LM1 (blue, 22 nodes) and LM2 (magenta, 43 nodes). The
original and LM2 are indistinguishable.

6.6 Concluding remarks

Two problems are resolved, which usually limit the applicability of traditional reduc-
tion methods to multi-terminal circuits: (a) the reduction of ungrounded systems and
(b) the synthesis of general reduced models without controlled sources. A terminal
removal and recovery action is proposed, which allows the reduction of ungrounded
multi-terminal models. The synthesis problem is resolved using a transformation based
on the input/output matrices of the reduced model. The framework enables the reduc-
tion of multi-terminal circuits with conventional MOR methods, and the usability of
such reduced order models in simulations.





Chapter 7

Graph partitioning with
separation of terminals

A graph partitioning problem is described, specifically targeted towards improving
sparsity during the reduction of multi-terminal circuits. The traditional partitioning
objectives are revised and new conditions are derived, aimed at directly minimizing
fill-in. Upper bounds on fill-in are provided, which could serve as initial criteria for dis-
tributing nodes and terminals across partitions. Examples are provided to also illustrate
that the upper bounds may be too loose to achieve the best sparsity results. The analy-
sis motivates the need for a fill-estimating measure to be used directly as a partitioning
objective. If incorporated in the new partitioning setup, the fill-minimizing objectives
may improve sparsity in multi-terminal MOR beyond the level achieved via existing
partitioning software.

7.1 Introduction

Graph partitioning has become the key ingredient in developing efficient solutions for
large scale problems in many disciplines, with application areas ranging from techno-
logical sciences to natural and social sciences [23]. Put in simple terms, the objective
of graph partitioning in general is to distribute a large data set into different parts that
communicate with each-other as little as possible, usually so that the resulting parts are
equal in size. For applications where these represent the governing criteria (e.g. paral-
lel computing or sparse matrix factorizations [18]), state-of-the-art partitioning software
(to name a few: METIS [52], hMETIS [51], Mondriaan [96]) successfully apply.

In the context of multi-terminal model reduction where the ultimate goal is to preserve
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sparsity in the reduced model, a new partitioning problem emerges: find the partitioning
which distributes terminals across components so that the fill generated from eliminating the
internal nodes of each component is minimized. As in the usual partitioning setup, com-
ponents should be minimally connected to one-another, so as to preserve as few internal
nodes (i.e. separator nodes) as possible (the fewer the preserved internal nodes, the smaller
the dimension of the reduced model).

Chapter 4 showed how, using graph partitioning, very large multi-terminal networks
were split into components which were treated individually in subsequent reduction
steps. The partitioning helped to efficiently obtain, from an original large circuit, a re-
duced circuit which is “small and sparse” [i.e., its graph representation ideally has fewer
vertices (circuit nodes) and fewer edges (basic circuit elements) than the original]. It was
also seen how the sizes of the different parts do not influence the approximation quality
of the reduced model. However, as demonstrated next, the number of terminals falling
in each part and the number of separator nodes influence the sparsity level achieved
during reduction.

The purpose of this chapter is to provide an avenue for improving sparsity in multi-
terminal MOR, even beyond the level achieved via existing partitioning software. A
new partitioning criterion is proposed which eliminates some of the standard constraints
(such as enforcing equal-sized partitions) and rather directly minimizes a fill-in objec-
tive, in addition to the usual partitioning objectives of minimizing (a) the edge cut or
(b) the total communication volume1. See [52] for a definition of these objectives. We
give an abstract formulation of the objective function which distributes terminals across
partitions, so that fill-in generated from reducing each partition up to terminals is min-
imized. If incorporated inside partitioning tools, the terminal constraint could further
enhance the reduction of challenging multi-terminal electrical circuits.

7.2 Formulation of multi-terminal partitioning criterion

In the following section, we formulate the multi-terminal partitioning criterion for a
bisection. Afterwards a generalized formula for a partitioning into N components is
derived.

7.2.1 2-way partitioning of multi-terminal networks

Fig. 4.2 provides a rough problem visualization and formulates the partitioning task.
More precisely, let the undirected graph G be partitioned into two subnets G1 = (V1, E1),
G2 = (V2, E2), which communicate via a separator net G3 = (K, EK). In other words, the
nodes V are partitioned into three disjoint sets V1 ∪ V2 ∪ K = V, such that there is no

1Minimizing the total communication volume becomes relevant especially for partitions of size > 2.
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direct edge between any node from V1 to a node from V2, and the only path from a node
of V1 to a node from V2 is through the separator nodes K. Denoting |V1| = N1, |V2| =
N2, and |K| = k, the edges induced by V1 are E1 = {(vi , v j) ∈ E| vi , v j ∈ V1; i 6= j},
by V2 are E2 = {(vi , v j) ∈ E| vi , v j ∈ V2; i 6= j}, and by K are EK = {(vi , v j) ∈ E|
vi , v j ∈ K; i 6= j}. Let the remaining edges connecting K to V1 be E1K = {(vi , v j) ∈
E|vi ∈ V1; 1 ≤ i ≤ N1, v j ∈ K; 1 ≤ j ≤ k}, and the edges connecting K to V2 be
E2K = {(vi , v j) ∈ E|vi ∈ V2; 1 ≤ i ≤ N2, v j ∈ K; 1 ≤ j ≤ k}. The complete set of edges
is thus E = E1 ∪ E2 ∪ EK ∪ E1K ∪ E2K, and the individual sets are disjoint. Through this
partitioning, the terminals are split into the following disjoint sets: P1 ⊂ V1 terminals
fall under V1, P2 ⊂ V2 terminals fall under V2, and PK ⊂ K terminals2 fall inside the
separator K, |P1| = p1, |P2| = p2, |PK| = pk, P1 ∪ P2 ∪ PK = P.

Let there be n1 internal nodes in G1, and n2 in G2, so that |V1| = p1 + n1, |V2| = p2 + n2.
Figure 7.1 (left) gives the representation of a matrix G partitioned in this manner, which
is to be reduced by eliminating internal nodes n1 and n2. As the reduction progresses
through the BBD hierarchy, fill is introduced in the blocks corresponding to the pre-
served nodes p1, p2 and k (as was also described in Chapter 4). For instance the reduced
Ĝ of (4.31) numerically represents the Schur complement with respect to the blocks of
eliminated internal nodes, and clearly will have different dimensions and fill rates de-
pending on the p1, n1, p2, n2, and k nodes resulting from each partition. The form of the
reduced matrix is shown on the right of Fig. 7.1. In the worst case, all matrix blocks (G1,
G2, G3, G13, G23) in the reduced matrix are completely filled. In this setup, the 2-way
multi-terminal partitioning problem is formulated:

Problem 1: multi-terminal 2-way partitioning
Find the smallest number of separator nodes k which partitions G into two parts such
that the elimination of internal nodes n1 and n2, introduces the smallest amount of fill
in the terminal blocks p1, p2, the separator block k, and the communication block from
p1 and p2 to k respectively.

Towards formalizing the above partitioning criterion, let:

e f ill1
(n1, [p1, k]), (7.1)

be an abstract function which estimates the fill created during the reduction of the first
subnet. More precisely, the notation in (7.1) specifies the fill generated from the elim-
ination of internal nodes n1 inside the blocks corresponding to terminal nodes p1 and
separator nodes k. Similarly, a fill-estimating function for the reduction of the second
subnet is e f ill2

(n2, [p2, k]). The partitioning objective of Problem 1 can be written com-
pactly as:

min
min(k), k=|K|⊂V

e f ill1
(n1, [p1, k]) + e f ill2

(n2, [p2, k]), (7.2)

where the additional constraint min(k) specifies that a small number k of separator

2For multi-terminal MOR the pk terminals are not relevant, as all the k separator nodes become terminals.
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Figure 7.1: Original and reduced circuit matrices for a two-way partitioning in BBD form. In
the reduction step, internal nodes are eliminated, and blocks corresponding to terminal nodes
and separator nodes are preserved but filled-in. The dimensions of the reduced model give the
maximum fill value from (7.3). [A note on scale: in practice the number of internal nodes is larger
than the number of terminals per block, but is kept small in the figure due to space limitations.]

nodes is desired (as all separator nodes are preserved in the reduced model, the smaller
the k the smaller is also the dimension of the reduced model). An upper bound for the
fill-estimating function (7.2) is obtained immediately by inspection from Fig. 7.1 (right):

min
min(k), k=|K|⊂V

p1(p1−1)
2

+
p2(p2−1)

2
+

k(k−1)
2

+(p1+p2)k︸ ︷︷ ︸
Max f ill

, (7.3)

which represents the maximum fill-in possibly generated from reducing each subnet in-
dividually up to its terminals pi and to the k separator nodes. More precisely, the upper
bound on e f ill1

is p1(p1−1)
2 + p1k + k(k−1)

2 , the upper bound on e f ill2
is p2(p2−1)

2 + p2k +
k(k−1)

2 , so that the upper bound on (7.2)3 becomes (7.3). Note that (7.3) is independent
of the internal nodes n1 and n2. Hence in practice it may be a loose upper bound (this
effect is shown in Fig. 7.8 for the more general case of an N-way partition).

It should be emphasized that in the multi-terminal partitioning setup above defined,
the resulting subnet sizes N1 and N2 need not be the same. In other words, the parti-
tioning must not be balanced in the dimension of the generated components (decomposi-
tions into equal parts pertain more to parallel computing related applications, where the
main goal is to balance computation among processors). In the context of multi-terminal

3The upper bound on the sum of the two k(k−1)
2 factors is still k(k−1)

2 , as the fill inside the upper triangle of

a k× k matrix can never be greater than k(k−1)
2 .
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MOR, partitions should be balanced in a different measure, that which minimizes fill-
in. For that, terminals must be appropriately distributed across the subnets, together
with the usual condition of minimizing connectivity between subnets. Therefore signif-
icant improvements in sparsity could be achieved with the help of a partitioner which
does not impose an equal-sized decomposition, but rather uses condition (7.2) to di-
rectly control the distribution of terminals. This remains a motivating problem of future
research, as is the formulation of an explicit measure (7.2) [tighter than (7.3)] for estimat-
ing fill-in. Closely related is the approximate minimum degree criterion which underlies
the AMD [1, 2] reordering algorithm for sparse matrix factorizations. AMD uses upper
bounds on the degrees of the nodes in the graph, rather than exact degrees, to determine
the order in which nodes should be eliminated from a graph (matrix) so that the least
amount of fill-in is produced. The pivot selection at each step is done by choosing the
node with the smallest upper bound on the degree [1, 2]. Hence, an estimator for (7.1)
could use the approximate minimum degree criterion to determine which n1 internal
nodes should be eliminated and what the predicted fill-in would be.

Example for 2-way partitioning

To understand the influence of different partitions on the sparsity of the reduced model,
the biconnected component network from [80] is chosen. In Fig. 7.2 (left) the graph rep-
resentation of the original network is shown: it has n + p = 244 nodes of which p = 54
are terminals (shown in red). The nodes of the graph are actual circuit nodes, while the
edges between nodes correspond to the resistive connections. The network has visible
biconnected components (if the articulation nodes in the middle are removed, the two
parts become disconnected).

Three partitioning choices are made (denoted as P 1, P 2, and P 3 respectively), each with
different separator nodes. For each partitioning scenario, the statistics are recorded in
Table 7.1: N1 = n1 + p1 and N2 = n2 + p2 are the sizes of each subnet, p1 and p2 are the
number of terminals falling in each partition, k is the number of separator nodes, Maxfill
is the corresponding upper bound on fill-in (7.3). Reduced networks are obtained from
each partition and the true fill-in, i.e. the number of resistors in the reduced circuit is
recorded and compared to the Maxfill.

Table 7.1: Comparison of different partitions and reductions for the bi-component circuit

P 1 P 2 P 3
Fig. 7.2 Fig. 7.3 Fig. 7.4

#nodes #terminals #nodes #terminals #nodes #terminals
Subnet 1 N1 = 60 p1 = 1 N1 = 120 p1 = 37 N1 = 79 p1 = 27
Subnet 2 N2 = 183 p2 = 53 N2 = 119 p2 = 17 N2 = 153 p2 = 27
Separator k = 1 pk = 0 k = 5 pk = 0 k = 12 pk = 0
Maxfill 1432 1082 1416
True fill 1432 1031 828
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The graph representations for the original and reduced network in each partitioning
scenario are shown in Figures 7.2, 7.3 and 7.4 respectively. The corresponding reduced
Ĝ matrices appear in Fig. 7.5.

For P 1 one articulation node is chosen as the separator K, shown in blue in Fig. 7.2
(left). The reduced model (right) is dense: there is an edge (resistor element) in between
almost all pairs of nodes. The reduced matrix (left of Fig. 7.5) clearly shows the fill-in.
The Maxfill (1432) and True fill (1432) values in Table 7.1 are the same.
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Figure 7.2: P 1. Original circuit (left) with a biconnected component (terminals shown in red).
The connection node (blue) is picked as separator. Circuit after reduction with all terminals and
separator node preserved (right) is dense (55 nodes, 1432 resistors).

The partitioning P 2 is obtained with Nested dissection (NESDIS) [18], [52, 54], and picks
the five separator nodes shown in blue in Fig. 7.3, left. The corresponding reduced
network (Fig. 7.3, right) is sparser than the one from P 1. This is also reflected by the
reduced matrix (middle of Fig. 7.5), which is more sparse. As there are 1031 resistors in
this reduced net, P 2 is a better partition than P 1.

For the P 3 partitioning, separator nodes were chosen as shown in Fig. 7.4 (left). The
resulting reduced model on the right is sparser than from P 2 and P 1, also reflected by
the reduced matrix in Fig. 7.5, right. There are 66 nodes and 828 resistors in this reduced
network.

Comparing the number of resistors (True fill) in the reduced networks, it is clear that
P 3 is the partitioning which yields the reduced model with the least fill-in. It should
be noted that this partition (and selection of separator nodes) was done by inspection,
rather than by a partitioning algorithm (as was the case for P 2 which was obtained from
NESDIS). This supports the initial conjecture that in contrast to the usual partitioning
objectives, partitioning for multi-terminal circuits requires a specialized criterion which
directly minimizes fill-in.

Another important observation confirmed by this example is that the Maxfill value (7.3)
is indeed only an upper bound which may be too loose to consider as a partitioning
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Figure 7.3: P 2. Original circuit (left) with a biconnected component (terminals shown in red).
Separator nodes (blue) are the ones given by NESDIS. Circuit after reduction (59 nodes, 1031
resistors) with all terminals and separator nodes preserved (right) is sparser than the one from
Fig. 7.2, but still rather dense.
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Figure 7.4: P 3. Original circuit (left) with a biconnected component (terminals shown in red).
More nodes are picked as separators (blue). Circuit after reduction (66 nodes, 828 resistors)
with all terminals and separator nodes preserved (right) is sparser than the ones from Fig. 7.2
and Fig. 7.3.

objective in practice. Notice in Table 7.1 that although from P 3 a sparser reduced model
was obtained than from P 2 (828 vs. 1031 resistors respectively), partitioning P 3 has a
higher Maxfill value than P 2 (1416 vs. 1082 respectively). If the Maxfill criterion (7.3)
were used as a partitioning criterion, P 2 would be considered a better partition than P
3, which was clearly not the case. Hence for better results, a partitioning criterion based
on a tighter fill-estimating function [denoted abstractly as (7.2)] is necessary, which ac-
counts for the degrees of the internal nodes to be eliminated as well, rather than for the
number of terminals and separator nodes alone.
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P 1 P 2 P 3

Figure 7.5: Reduced matrices resulting from each partition (P 1, P 2, P 3, from left to right).
These correspond to the reduced circuits on the right of Figures 7.2 (55 nodes, 1432 resistors),
7.3 (59 nodes, 1031 resistors) and 7.4 (66 nodes, 828 resistors) respectively.

A final reduced model is computed based on partition P 1, where the nodes in each sub-
net are additionally re-ordered with CAMD [1, 2]. From each subnet, internal nodes are
eliminated one by one in the order determined by CAMD, and the fill generated in the
entire matrix is monitored at each step. These actions were described in Chapter 4 (see
Sect. 4.2.3, Sect. 4.3.2 and for instance Fig. 4.11. In this manner, the points of minimum
fill in each subnet are recorded and the internal nodes beyond the minimum fill point
are preserved along with the terminals to improve sparsity. The final reduced circuit
is shown in Fig. 7.6 and is much sparser than the previous models (224 resistors), due
to the additional internal nodes preserved (aside from terminals and separator nodes).
There are 182 nodes in this circuit, only 24% less than the original 244, demonstrating
the trade-off between small dimensionality and sparsity.

The last results indicate that reduced models with the least fill-in could be determined
with the combined framework: partitioning + CAMD reordering per subnet + fill-
tracking. For an original network (graph) G = (V, E) with |V| nodes and |E| edges
(circuit elements), the partitioning cost is O(|E|) [53] and the CAMD reordering cost is
O(|V||E|) [1, 2, 38], hence very cheap to perform. The extra cost for tracking fill-in can
however become too expensive, especially for networks with nodes and elements ex-
ceeding 104, and terminals exceeding 103. To monitor the actual fill-in from node-wise
elimination, reduced matrices must be formed at each node elimination step, and the
corresponding number of non-zero entries recorded. For example, for a subnet with
n1 + p1 nodes, which communicates via k separator nodes to other subnets, n1 inter-
nal nodes must be eliminated one by one. Hence n1 reduced matrices must be formed,
which also become denser and denser as fill is generated in the blocks corresponding
to the non-eliminated nodes. The extra cost of repeatedly storing and retrieving from
memory these reduced matrices may dominate the otherwise cheap partitioning and re-
ordering operations. This effect was already shown for the Filter example of Chapter 4,
see in particular the result in Table 4.2. There, the SpRC-mf reduced model formed with
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Figure 7.6: P 1 + CAMD. Sparse reduced circuit (left) with the single connection node as sep-
arator (blue), but with additional internal nodes preserved [identified from CAMD re-ordering
and fill-in tracking]. The corresponding sparse reduced matrix is on the right (182 nodes, 224
resistors).

the combined framework: partitioning + CAMD reordering per subnet + fill-tracking,
was indeed sparser than SpRC obtained from partitioning alone, but was almost 10
times slower to compute than SpRC.

A partitioning criterion for multi-terminal MOR is thus envisioned which uses a fill-
estimating function (7.2) (similar to the approximate minimum degree criterion of [1,2])
as a direct objective to determine the best partition. In this manner reduced models
with minimum-fill could be ensured already from the partitioning itself, and the extra
fill-monitoring costs would be avoided.

7.2.2 N-way multi-terminal partitioning

The N-way partitioning of a graph G = (V, E) is defined here as follows: find a parti-
tioning of V into 2N − 1 disjoint subsets V = V1 ∪ V2 ∪ . . . ∪ VN ∪ K1 ∪ K2 . . . ∪ KN−1
where the Vi, 1 ≤ i ≤ N are the nodes of the individual subnets, such that there is no
edge from any node in Vi to any node from Vj for all i 6= j. The K j, 1 ≤ j ≤ N − 1 are
the sets of separator nodes comprising the communication among the subnets induced
by the Vis. This is best visualized using the example of a 4-way partitioning, shown in
Fig. 7.7 in the form of a border-block-diagonal (BBD) matrix ordering together with the
corresponding separator tree. In particular, assuming N = 2m, m ≥ 1, the N-way parti-
tioning produces a binary tree of height m, with N = 2m leaf blocks4 and N− 1 = 2m− 1
non-leaf blocks. The leaves of the tree are the individual subnets to be reduced, the non-
leaves are the sets of separator nodes to be preserved. As for the 2-way partitioning, in
each Vi, 1 ≤ i ≤ N there are ni internal nodes and pi terminals. The number of separator

4The traditional node of a tree is denoted here as a block, as not to mistake it for a node in the graph G itself.
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(n4 + p4)
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(n2+p2)

K1
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(n1+p1)

BBD structure Separator tree

Figure 7.7: Border block diagonal (BBD) matrix structure and separator tree for a 4-way par-
titioning. As N = 4 = 22, the separator tree has height m = 2, N = 4 leaves (subnets to be
reduced) and N − 1 = 3 sets of separator nodes.

nodes in each K j set, 1 ≤ j ≤ N, is k j. The reduction eliminates the ni internal nodes
from the Vi subnets (the leaves of the separator tree). The multi-terminal partitioning
criterion is formulated similarly as in Sect. 7.2.1:

Problem 2: multi-terminal N-way partitioning
Given a number of partitions N, find the smallest number of separator nodes k j, 1 ≤
j ≤ N− 1 which partitions G into N subnets such that the elimination of internal nodes
ni , 1 ≤ i ≤ N from each subnet introduces the smallest amount of fill in the terminal
blocks pi, the separator blocks k j, and the communication blocks from pi to the k j nodes.

Another natural question is determining the optimal number of partitions N itself,
hence a generalized problem is formulated:

Problem 3: generalized multi-terminal partitioning
For a multi-terminal network G, find the number N of partitions which distributes the
p terminals across partitions so that:

1. the number of separator nodes k j, 1 ≤ j ≤ N − 1 is minimized, and

2. the elimination of internal nodes ni , 1 ≤ i ≤ N from each subnet introduces the
smallest amount of fill in the terminal blocks pi, the separator blocks k j, and the
communication blocks from pi and to the k j nodes.

As for the 2-way partitioning, in the N-way multi-terminal partitioning the sizes of the
different parts need not be equal. Rather, an objective function similar to (7.2) for es-
timating the fill described by Problem 3 in the N-way case could be used directly as a
partitioning criterion. For a partition into N = 2m subnets (and N− 1 separator blocks),
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this is formulated based on the structure of the separator tree, using the following nota-
tion:

• let L be the set of leaf blocks, |L| = N

• let S be the set of non-leaf (i.e. separator) blocks, |S| = N − 1

• for a leaf block i ∈ L, let ALi be the set of all its ancestors5 on the path from i to
the root, including the root itself, |ALi| = m

• similarly, for a non-leaf (i.e. separator) block i ∈ S, let ASi be the set of all its
ancestors on the path from i to the root.

Let the following be an abstract notation for the fill generated by reducing subnet i:

e f ill(ni , [pi , k j| j ∈ ALi]), (7.4)

more precisely (7.4) estimates the fill generated by eliminating the ni internal nodes
inside the matrix blocks determined by the terminal nodes pi and all separator nodes
k j, with j ∈ ALi being the index of all ancestors of block i. As an example, consider
the reduction of subnet 1 from the 4-way partition shown in Fig. 7.7. The maximum fill
[upper bound on (7.4)] from eliminating the internal nodes n1 is:

max{e f ill(n1, [p1, k j| j ∈ AL1])} = . . .

. . . =
p1(p1−1)

2
+ p1(k1+k3)+k1k3+

k1(k1−1)
2

+
k3(k3−1)

2
(7.5)

Summing over all subnets N, one can write compactly the partitioning objective of Prob-
lems 2,3:

min
min(k), k=|K|⊂V

∑
i∈L

e f ill(ni , [pi , k j| j ∈ ALi]) (7.6)

By similar bookkeeping with (7.5), the maximum fill generated in the reduced model
determined by the terminal nodes pi, 1 ≤ i ≤ N and separator nodes ki, 1 ≤ i ≤ N − 1
from eliminating all internal nodes ni, 1 ≤ i ≤ N is:

∑
i∈L

[
pi(pi − 1)

2
+ pi ∑

j∈ALi

k j

]
+ ∑

i∈S

[
ki(ki − 1)

2
+ ki ∑

j∈ASi

k j

]
, (7.7)

which is an upper bound on (7.6). For N = 2, the upper bound (7.7) is precisely (7.3).
Similarly to the 2-way case, (7.7) serves only as an upper bound on the true fill-in if
used directly as a partitioning objective in practice. This is reflected in Fig. 7.8, where
the PLL network from Chapter 4 was reduced based on different numbers of subnets N,
with the upper-bound (7.7) and the true fill-in (number of elements in the reduced net-
work) being recorded for each N. The reduced model with minimum fill was obtained

5A node j is the ancestor of a node i if j is on the path from i to the root of the separator tree.
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based on the partition with N = 500 subnets. As the plot shows, the Maxfill bound
is loose (7.7) and would have predicted a much smaller, non-optimal N. Nevertheless
the upper-bound serves as an indicator for keeping track of where fill-in is generated
during the reduction process.

Figure 7.8: Determining the reduced model with the fewest number of elements from an iteration
of different numbers of subnets N (partitioning is done via nested dissection).

7.3 Concluding remarks
In concluding the discussion on multi-terminal partitioning, the goals of partitioning in
the context of model order reduction are reiterated:

1. efficiency: to reduce very large networks by breaking them into parts which can
be handled separately, especially if reducing the full problem is either too costly
or unfeasible, and

2. sparsity: to partition the network in such a way that the reduced matrices have
minimum fill-in.

While the efficiency gains are easily understood, the sparsity considerations are more
subtle, especially as regards the partitioning fineness, the distribution of nodes, termi-
nals, and the preservation of separator nodes. With certainty, for the multi-terminal
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MOR application (contrary to others), the distribution of nodes must not necessarily
be done equally among partitions. As regards the optimal values for the number of
subnets N, the number of terminals per partition, and the number of separator nodes,
these could be determined by a partitioning which uses a fill estimating measure as an
objective function.

It is worth pausing here and think of an ideal partitioning scenario where the graph
is partitioned into N disconnected parts with no separator nodes (clearly this is not
possible as the graph consists of one strongly connected component). Even so, in this
fictitious scenario, the distribution of terminals p across partitions would easily have a
solution in distributing p equally over N: each part should receive p

N terminals. In that
case, the fill-in would be:

N

∑
i=1

p
N ( p

N − 1)
2

=
p2

N − p
2

<
p(p− 1)

2
, (7.8)

which becomes smaller with a larger N. Hence the larger the N the smaller the fill.

In the real scenario however, finding an optimal terminal distribution is less clear, due
to the presence of separator nodes. A partition which supposedly balances the p termi-
nals across the N parts may not necessarily yield as separator nodes those which best
encompass the communication among subnetworks. For instance, imposing that each
part gets p

N terminals may result in a high number of separator nodes, and consequently
a large reduced model. Hence it cannot be stated with certainty that terminals should
be distributed equally.

Finer partitions (large N) do indeed decrease the number of terminals pi per partition,
and improve sparsity through smaller fill contributions in the sum (7.7). Also, the finer
the partition, the higher will the number of separator nodes be, and by preserving them
sparsity is improved (recall that separator nodes are typically the nodes of highest de-
grees, which if otherwise eliminated cause fill-in). This however must again pay the
dimensionality price: the dimension of the reduced model increases with the number
of separator nodes (which are all preserved). For this reason, one cannot argue that
partitions should be as fine as possible.

These considerations have led to the formulation of Problem 3 which, possibly with the
help of a fill-estimating function similar to the CAMD approximation of node degrees,
gives a partitioning criterion for explicitly minimizing the fill in the multi-terminal re-
duced order models. Incorporating these objectives inside available partitioning soft-
ware remains for future work, most suitable with contributions from scientists in the
field of combinatorial and scientific computing.





Chapter 8

Conclusions and future research

In this thesis, methods were developed for reducing multi-terminal systems arising in
circuit simulation. The main purpose of this research was to provide a framework for
model reduction which, aside from aiming at accuracy and small dimensionality, ad-
dresses other challenging aspects which appear when the reduced model is to replace
the original in the desired simulation environment. Each chapter provided its individ-
ual conclusions and identified the relevant directions for future work. Here, a summary
is provided for the main challenges addressed, the solutions provided, and the recom-
mendations for further research which result from this work.

Chapter 1 described the application background, gave an overview of model order re-
duction, and motivated the need for new reduction methods for multi-terminal systems.

In Chapter 2 the multi-terminal problem was treated from a perspective which jointly
addressed reduction and synthesis. The appropriate setup of system equations was
derived, which ensures that reduced order models are later easily synthesized and re-
inserted in the simulation flow. The proposed setup is shown to especially suit reduc-
tion methods based on input/output structure preservation, a feature which ensures
that synthesis does not generate unwanted circuit elements. Synthesis was separately
addressed by comparing two approaches: Foster and unstamping. It was concluded
that unstamping is the most suitable for multi-terminal models. The multi-terminal re-
duction and synthesis framework in this chapter gives the theoretical foundation for the
approaches taken in the later chapters.

In Chapter 3, the attention was turned to the reduction of multi-terminal R/RC net-
works. The reduction of both R and RC networks is based on the same projection ma-
trix, which has several important properties. A proof was given that the reduced R/RC
models obtained from this projection have only positive resistors. It was also demon-
strated that reduction can be implemented in a partitioned manner. A partitioned re-
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duction of RC networks was proposed based on the strongly connected components
of the conductance matrix. This partitioning gave a simple solution for computing the
path resistances between network terminals. The most suitable circuits for reduction in
this framework were those with a large number of internal nodes compared to termi-
nals, and with terminal numbers within a few hundreds. For such circuits, numerical
experiments showed reduction rates of usually 100% in the number of internal nodes,
mostly above 80% in both the number of circuit elements, and up to 270 times faster
simulations. As for future work, it is worth investigating whether/how the projection
underlying R/RC reduction could be so constructed as to also guarantee positive ca-
pacitors.

Chapter 4 was dedicated to the reduction of more challenging RC networks with ter-
minal numbers exceeding thousands. As preserving sparsity during reduction becomes
critical for such circuits, more advanced reduction strategies than those of Chapter 3
were required. This led to the development of SparseRC, which employs graph par-
titioning and fill-reducing node reorderings to ensure that the reduced matrices retain
sparsity. It was shown that, by splitting the network into minimally connected com-
ponents and by reducing these individually, DC moments of the transfer function are
matched per subnet and also globally, for the recombined network. This is an important
result which ensures the accuracy of the approach irrespective of the chosen partition-
ing criterion or the number of subnets. SparseRC was tested on several industrial ex-
amples and demonstrated superior computational performance, higher reduction rates
and improved sparsity compared to traditional approaches. It also successfully reduced
circuits which could not be simulated in their original dimension, or those which could
not even be approached with a traditional reduction method. Among the circuits which
may still be challenging for SparseRC are those which contain significantly more capac-
itors than resistors. For such circuits, the reduced capacitance matrix can be still too
dense. One remedy would be to further sparsify this matrix by deleting some capaci-
tors from the reduced netlist, however with a robust error control which accounts for
frequency dependency. An approach which is frequency independent can be found in
the work of [91, Chapter 5] for sparsifying resistor networks. Another topic of further
research would be the reduction of netlists with a small number of internal nodes rela-
tive to terminals. In that case, more advanced partitioners would help, a topic which is
investigated in Chapter 7.

In Chapter 5 the reduction of multi-terminal RLC networks was addressed, with a fo-
cus on partitioning. Two reduction scenarios were considered in parallel, based on
first-order and second-order dynamical systems respectively. Using the second-order
form, a rank-revealing decomposition of the reduced susceptance matrix was proposed
which ensures that the reduced network has no undesirable dependencies and that it
successfully simulates. The second-order formulation was also the most natural to use
in a partitioned manner, and the mathematical framework to achieve this was derived.
Compared to RC reduction, in which the size of the reduced model was entirely de-
termined by the number of terminals and separator nodes, for RLC systems additional
blocks need to be preserved for the sake of accuracy. Thus, although the blocks corre-
sponding to terminals and separator nodes can be made sparse as a result of partition-
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ing, the additional internal blocks remain dense. Further research should address ways
to achieve a better trade-off between small dimensionality, sparsity and accuracy, and
the extension to RLCk reduction.

The methods in Chapters 3, 4, and 5 have two governing properties due to the special
way in which the reducing projection is constructed: (1) they are able to reduce un-
grounded systems, and (2) they preserve the structure of the input/output incidence
matrices, thus ensuring that synthesis by unstamping is free of controlled sources or
transformers. Many standard reduction methods however cannot handle ungrounded
systems due to the fact that the underlying matrix pair (A, E) is singular, and also do no
preserve input/output structure. Chapter 6 brought an additional contribution in this
sense. It showed that, with an appropriate setup of system equations before reduction,
followed by a post-processing step after reduction, even more basic reduction meth-
ods can reduce ungrounded systems and be synthesized without controlled sources or
transformers. The contributions of Chapter 6 thus provide a new avenue for handling
multi-terminal systems with other methods than those of Chapters 3, 4, and 5. Through
experiments, it was shown how methods which are not input-output structure preserv-
ing, such as the standard PRIMA [71] or the new Loewner method [60], successfully
apply in this new framework. What the framework does not yet ensure is sparsity.
Hence, networks with terminal numbers within a few hundreds are the most suitable
candidates for the approach, the extension to systems with a larger number of ports
remaining for further research.

As this thesis shows, retaining sparsity is key to the success of model reduction for
systems with many terminals. Chapter 4 in particular showed that through graph parti-
tioning and component-wise reduction, sparsity is improved as: (1) terminals are spread
across components and (2) fill-creating nodes are identified and not eliminated during
the reduction process. Motivated by this achievement, Chapter 7 addressed separately
the partitioning problem in the context of multi-terminal model reduction. Despite the
significant sparsity gains achieved already with standard partitioning algorithms such
as nested dissection, the analysis of Chapter 7 showed that sparsity could be further
improved with the help of more specialized partitioners. Hence, the fill minimizing ob-
jectives relevant for the multi-terminal model reduction problem were derived. Their
implementation into existing partitioning software is a motivating task for future work,
especially with expert knowledge in graph theory.
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Summary

Ever since its beginnings in the 1950’s, the integrated circuit (IC) has profoundly changed
our lives. The way we work, travel, communicate, or address medical problems today
has been facilitated by advances in microelectronics, which permit more functionality
to be built on the same silicon area, at decreasing cost. As the feature size of devices
on a chip shrink and circuits operate at increasing frequencies, the electromagnetic cou-
pling effects between different IC components can no longer be ignored. To understand
their impact on chip performance, these so called parasitic effects must be simulated.
Parasitic networks are often so large, that state of the art simulation tools are insuffi-
cient to handle them: the simulations are either too lengthy, or cannot be carried out at
all. The mathematical reason behind this is that the underlying systems are too large
to be solved with the numerical algorithms implemented in simulation software. Model
order reduction (MOR) provides one avenue for enabling faster simulations at little accu-
racy loss. However, when the systems have many input/output nodes, i.e., they have
many terminals, performing the reduction itself becomes even more challenging. In this
thesis model reduction methods are developed for multi-terminal systems arising in in-
dustrial problems. To solve these effeciently, the methods rely jointly on concepts from
numerical linear algebra, electrical engineering, and computer science.

This thesis begins with an overview of MOR in Chapter 1 and places the reduction of
multi-terminal systems in the context of existing approaches. Aside from being efficient
and accurate, multi-terminal MOR methods should also ensure that the reduced model
is easily inserted in the simulation environment in place of the original, and that it is
indeed cheaper to simulate. Although all reduction methods are expected to satisfy
these properties, this thesis shows that such expectations are rarely met when traditional
approaches are applied to very large electrical networks with many terminals which
arise in industrial problems. Hence, an improved framework for multi-terminal model
reduction and synthesis is proposed. The methods developed in this thesis address
three global problems: (1) the efficient and accurate reduction of multi-terminal circuits,
(2) the appropriate synthesis of the reduced model into a netlist equivalent with the
same terminal nodes, and (3) the re-simulation of the reduced circuit (instead of the
original) with emphasis on accuracy and simulation time.

In Chapter 2, a basic framework is developed for the reduction of multi-terminal net-
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works and the synthesis of reduced multi-terminal models. Chapter 2 shows that, if
the circuit equations are prepared appropriately, a multi-terminal RLC network can be
reduced so that the synthesis step is also greatly simplified. In particular, from the re-
duced mathematical construction, an equivalent circuit containing only RLC elements
can be obtained, without introducing unintended circuit elements such as controlled
sources. In addition, the reduced circuit has the same terminal nodes as the original
and is coupled easily to other circuit blocks in the simulation setup. The framework es-
tablishes the mathematical principle which allows voltage sources, non-linear devices
or other parts of a larger network to be de-coupled from to specific linear part to be
reduced. It also ensures that these elements can be re-coupled in the simulation phase
to the reduced circuit via its terminals.

In Chapters 3 and 4, new methods for reducing large, multi-terminal R, and RC net-
works are derived, with emphasis on accuracy, efficiency and sparsity. It is shown that,
if the projection which reduces an R/RC network performs a Schur-complement oper-
ation on the original conductance matrix, the resulting reduced network will have only
positive resistors, which may be important for certain circuit simulators. This projec-
tion is also shown to exactly preserve the path resistance between terminals, and for RC
circuits, the slope of the response in addition (in system theoretic terms, two multi-port
admittance moments at DC are matched). The efficiency and sparsity considerations
are dealt with especially in Chapter 4. These become critical for circuits with terminal
numbers exceeding thousands, and node numbers exceeding hundreds of thousands.
Reducing them by traditional means is either inefficient, or results in dense reduced
models which are more expensive to simulate than the originals. Chapter 4 however
develops a new method which is able to reduce efficiently such challenging RC netlists,
while ensuring that the reduced models are sparse and fast to simulate. The key prin-
ciples of the approach are graph partitioning, fill-reducing node re-orderings, and a
reducing projection which is constructed accordingly. This preserves sparsity and also
maintains accuracy by moment matching irrespective of how the circuit is partitioned.
Based on the result of Chapter 2, the reduced models thus obtained are synthesized
without controlled sources, have the same terminal nodes as the original ones, and are
therefore inserted easily in the desired simulation flow.

With the decrease of transistor feature sizes and increase of operating frequencies, it
becomes important to also investigate the effects of parasitic inductances (e.g., skin or
proximity effects) on chip performance. This requires time-consuming simulations of
very large multi-terminal RLC(K) networks, and thus motivates the need for appropri-
ate reduction methods. Chapter 5 identifies the main challenges of multi-terminal RLC
reduction, and presents a skeleton for approaching them based on partitioning princi-
ples similar to those of Chapter 4. Important problems pertaining to RLC reduction are
also identified in Chapter 5, which are otherwise rarely explicitly addressed in the lit-
erature. These include matching the response at DC when the underlying conductance
matrix is singular, or the presence of singularities in the reduced conductance matrix
which in turn negatively affect the simulation of the reduced model. For the latter prob-
lem especially, a solution is proposed in Chapter 5 .
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Two constraints which are known to limit the applicability of traditional reduction
methods to multi-terminal systems are as follows: (a) the underlying matrix pencils
are often singular and (b) the reducing projections may destroy the structure of the in-
put/output matrices and with that, the physical interpretation of terminal nodes. The
advanced methods of Chapters 3, 4 and 5 automatically by-pass these limitations due
to the special way in which the reducing projection is formed. Chapter 6 brings an
additional contribution by showing how, despite the known limitations, more general
reduction methods (e.g., the Loewner approach) are also able to handle multi-terminal
systems. The new reduction-synthesis framework of Chapter 6 eliminates the pencil
singularity using a simple pre-processing of the original circuit, and recovers the con-
nectivity at all terminal nodes using a post-processing of the reduced model.

Among the main results of this thesis is the improvement in reduced model sparsity
and reduction efficiency, achieved with the help of graph partitioning. State-of-the-
art partitioning algorithms such as nested dissection or Mondriaan already served this
purpose, nevertheless Chapter 7 shows that the results could be further strengthened
with the help of partitioning criteria designed especially for multi-terminal MOR. A
high level description of the desired objectives is also derived there.





Samenvatting

Model Orde Reductie voor Multiterminal Systemen met Toepassingen binnen Cir-
cuit Simulatie

Vanaf het begin der 50’er jaren van de vorige eeuw hebben gı̈ntegreerde schakelingen
onze levens behoorlijk veranderd. Onze manier van werken, reizen en communiceren
en de wijze waarop medische problemen worden aangepakt zijn allemaal beı̈nvloed
door vorderingen binnen de micro-elektronica, welke voortdurend tot meer functiona-
liteit leiden op eenzelfde stukje silicium tegen een dalende kostprijs. Vanwege de voort-
durende miniaturisering en oplopende frequenties kan de elektromagnetische koppe-
ling tussen verschillende componenten in een schakeling niet langer worden genegeerd.
Teneinde hun effect op het gedrag van een schakeling te kunnen begrijpen, dienen deze
zogenaamde parasitaire effecten te worden gesimuleerd. Parasitaire netwerken zijn ech-
ter vaak zodanig groot dat zij onhandelbaar zijn voor de beschikbare simulatietechnie-
ken: simulaties duren veel te lang of kunnen helemaal niet uitgevoerd worden. De
wiskundige reden hierachter is dat de onderliggende stelsels te groot zijn om opgelost
te kunnen worden met de numerieke algoritmen welke beschikbaar zijn in de simulatie-
software. Model orde reductie (MOR) is een van de mogelijkheden om (snellere) simu-
laties uit te voeren bij slechts een gering verlies aan nauwkeurigheid. Echter, wanneer
de systemen teveel invoer/uitvoer punten bevatten, zogenaamde multiterminal syste-
men, dan wordt ook de reductie een grote uitdaging. In dit proefschrift ontwikkelen we
methoden voor model orde reductie voor multiterminal systemen welke voorkomen
bij industriële problemen. Teneinde deze efficiënt aan te kunnen pakken zijn deze me-
thoden gebaseerd op een combinatie van concepten uit de numerieke lineaire algebra,
elektronica en informatica.

Dit proefschrift begint in hoofdstuk 1 met een overzicht van MOR, en plaatst de reductie
van multiterminal systemen in de context van bestaande aanpakken. Naast efficiëntie
en nauwkeurigheid dienen MOR methoden voor multiterminal systemen ook de eigen-
schap te bezitten dat de originele modellen eenvoudig te vervangen zijn door geredu-
ceerde modellen binnen de gebruikte simulatieomgevingen, en dat deze ook daadwer-
kelijk goedkoper zijn om mee te simuleren. Hoewel men zou verwachten dat alle re-
ductiemethoden deze eigenschappen hebben, laten we in dit proefschrift zien dat deze
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verwachtingen zelden worden bewaarheid als gangbare aanpakken worden toegepast
op zeer grote elektrische netwerken met vele terminals zoals voorkomend bij industriële
problemen. Dientengevolge stellen we een verbeterd raamwerk voor wanneer het gaat
om model orde reductie voor multiterminal systemen en het hieraan gerelateerde pro-
bleem van de synthese. De in dit proefschrift ontwikkelde methoden zijn gericht op
globaal de volgende drie problemen: (1) het efficiënt en nauwkeurig reduceren van
schakelingen met vele terminals; (2) een adequate synthese van gereduceerde modellen
in een netlijst welke dezelfde terminals bevat; en (3) de hernieuwde simulatie van de ge-
reduceerde schakeling (in plaats van de originele) met de nadruk op nauwkeurigheid
en simulatietijd.

In hoofdstuk 2 wordt een basisraamwerk ontwikkeld voor de reductie van multiter-
minal netwerken en de synthese van gereduceerde modellen met vele terminals. Dit
hoofdstuk laat zien dat, wanneer de netwerkvergelijkingen op passende wijze worden
voorbereid, een RLC netwerk met vele terminals zodanig kan worden gereduceerd dat
de er op volgende synthesestap drastisch wordt vereenvoudigd. In het bijzonder kan
middels de mathematische constructie een equivalent netwerk afgeleid worden dat en-
kel RLC elementen bevat, zonder dat er ongewenste elementen zoals gecontroleerde
bronnen worden geı̈ntroduceerd. Daarnaast heeft het gereduceerde netwerk dezelfde
invoer- en uitvoerpunten als het originele netwerk, zodat het eenvoudig verbonden
kan worden met andere blokken in het betreffende ontwerp. Het raamwerk huldigt
het wiskundige principe dat het mogelijk maakt om spanningsbronnen, niet-lineaire
componenten en andere onderdelen van een grotere schakeling los te koppelen van het
specifieke lineaire deel welk gereduceerd dient te worden. Tevens zorgt het ervoor dat
deze elementen in de simulatiefase weer gekoppeld kunnen worden aan het geredu-
ceerde netwerk via de terminals.

In hoofdstukken 3 en 4 worden nieuwe methoden afgeleid voor het reduceren van grote
R en RC netwerken met vele terminals, waarbij de nadruk ligt op nauwkeurigheid, ef-
ficiëntie en ijlheid. Er wordt aangetoond dat, als de projectie voor de reductie van een R
of RC netwerk een Schur-decompositie uitvoert op de originele geleidbaarheidsmatrix,
het resulterende netwerk enkel positieve weerstanden zal bevatten; dit kan belangrijk
zijn voor bepaalde netwerksimulatoren. Daarnaast tonen we aan dat deze projectie ook
een exacte weergave geeft van de padweerstanden tussen terminals, terwijl deze voor
RC systemen leidt tot het matchen van de helling van de respons (in termen van sys-
teemtheorie betekent dit dat twee momenten van de admittantie worden gematched in
de DC conditie). Hoofdstuk 4 houdt zich vooral bezig met de aspecten van efficiëntie
en ijlheid. Deze aspecten zijn cruciaal voor netwerken met vele duizenden terminals
en honderdduizenden knopen. Reductie van zulke netwerken met traditionele metho-
den is ofwel zeer inefficiënt, of resulteert in zeer dichtbezette gereduceerde modellen
welke duurder zijn qua simulatie dan de oorspronkelijke modellen. De in hoofdstuk 4
ontwikkelde nieuwe methode is in staat om zulke grote multiterminal RC netwerken
efficiënt te reduceren en er tevens voor zorg te dragen dat de gereduceerde modellen ijl
zijn alsmede zeer snel simuleerbaar. Kern van de aanpak zijn partitionering van de bij
het netwerk behorende graaf, alsmede vullingreducerende ordeningen en bijbehorende
projecties voor de reductie. Combinatie van deze aspecten zorgt, middels matching
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van momenten, voor behoud van de ijlheid en de nauwkeurigheid, onafhankelijk van
hoe het netwerk is gepartitioneerd. Gebruikmakend van de resultaten van hoofdstuk 2
kunnen de op deze wijze verkregen gereduceerde netwerken gesynthetiseerd worden
zonder gecontroleerde bronnen, en met dezelfde hoeveelheid terminals als het originele
netwerk. Daardoor zijn deze ook eenvoudig op te nemen in de gewenste simulatieom-
geving.

Met het afnemen van de afmetingen van transistoren en het toenemen van de gebruikte
frequenties wordt het ook belangrijk om parasitaire inductieve effecten (zoals het rand-
effect of het nabijheidseffect) op het gedrag van schakelingen te onderzoeken. Dit vergt
tijdrovende simulaties van zeer grote multiterminal RLC(K) netwerken, en is daarmee
een motivatie voor adequate reductiemethoden voor dit soort systemen. Hoofdstuk 5
identificeert de belangrijkste uitdagingen in verband met de reductie van multiterminal
RLC systemen, en presenteert een raamwerk voor het aanpakken van dit type proble-
men gebaseerd op partitioneringsprincipes verwant aan de methoden gepresenteerd in
hoofdstuk 4. Er worden belangrijke vraagstellingen geı̈dentificeerd met betrekking tot
RLC netwerkreductie welke vaak niet worden vermeld in de literatuur. Onder deze is
het matchen van de respons bij DC condities, wanneer de achterliggende matrix singu-
lier is; ook worden genoemd singulariteiten in de gereduceerde geleidingsmatrix welke
een negatieve invloed hebben op het simuleren van de gereduceerde modellen. Voor
dat laatste probleem wordt in hoofdstuk 5 een oplossing voorgesteld.

Twee aspecten welke de toepasbaarheid van gangbare reductiemethoden op multiter-
minal netwerken beperken zijn de volgende: (a) de achterliggende matrices zijn vaak
singulier, en (b) de projecties voor de reductie kunnen de structuur van de invoer- en
uitvoermatrices in negatieve zin beı̈nvloeden. Dit laatste leidt dan tot problemen met de
fysische interpretatie van de knooppunten geassocieerd met de terminals. De geavan-
ceerde methoden in hoofdstukken 3, 4 en 5 vermijden automatisch deze beperkingen
vanwege de speciale wijze waarop de projecties voor de reductie worden geconstrueerd.
Hoofdstuk 6 levert hier een additionele bijdrage aan door aan te tonen dat, ondanks de
bekende beperkingen, algemenere reductiemethoden (zoals de Loewner aanpak) ook in
staat zijn om te gaan met multiterminal systemen. Het nieuwe raamwerk voor reduc-
tie en synthese gepresenteerd in hoofdstuk 6 elimineert de singulariteit van de matrix
pencil door gebruik te maken van een simpele preprocessing van het originele netwerk,
terwijl de connectiviteit tussen de terminals wordt hersteld middels een postprocessing
van het gereduceerde model.

Onder de belangrijkste resultaten in dit proefschrift is de substantiële verbetering in de
ijlheid van het gereduceerde model en de efficiëntie van dit model, welks bereikt wordt
door gebruik te maken van partitionering van de onderliggende graaf. Geavanceerde
algoritmen voor partitionering, zoals de zogenaamde nested dissection of het Mondri-
aan algoritme, voldeden hier reeds aan. Hoofdstuk 7 laat zien dat de resultaten verder
verbeterd kunnen worden met criteria voor partitionering geformuleerd speciaal voor
model orde reductie van multiterminal netwerken. Ook leiden we hier een hoog niveau
beschrijving van de gewenste doelen af.
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