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Abstract 

A widely used method for automated structural optimization 
consists of the combination of two important numerical methods, 
namely: 

1. the finite element method (FEM) as a flexible and accurate tool 
for modelling and analysis of structure:>. 

2. mathematical programming as a structured method for the search 
of an improved set of design variables. 
Structural optimization problems almost always are essentially 

nonlinear, demanding an iterative solution method: the structure is 
analysed and, subsequently, improved values for the design variables 
are estimated. This process is repeated until, in general, a local 
optimum has been achieved. Here, our main interest is the final 
result; afterwards the intermediate iteration steps are of little 
importance. 

If we accept. that several FEM-analyses should be spent to solve 
the optimization problem, another approach can be used, too. With 
that approach the FEM-analyses to be carried out are a priori 
planned, both concerning their number and the values of the relevant 
design variables. From the outcomes of the computations an 
approximating mathematical model is derived by means of regression 
analysis. The derived models will be linear in the parameters; mostly 
polynomial models are used. 

For the planning of the FEM-computations and for the analysis 
of the outcomes, the experimental design theory will be applied. This 
theory has been developed for the planning and analysis of 
comprehensive physical experiments. FEM-computations can be 
considered numerical experiments and can be used to establish a 
numerical experimental design, with the purpose to derive an 
efficient mathematical model of the structure under consideration. 
Such mathematical models can be used in that capacity, for example, 
in a design office, or they can be applied as a fast analysis module 
in optimization software. 

In this thesis common strategies are discussed concerning 
structural optimization and experimental design. Furthermore, 
modifications of the experimental design theory will be treated, 
which are necessary and useful on behalf of numerical experimental 
designs. The integration of experimental design and structural 
optimization is argued. 

Possible applications of the developed methods will be defined 
and guidelines are given for using them. 

The methods have been tested and used extensively for the shape 
optimization of church and carillon bells, resulting in several new 
and musically very interesting bell types. Furthermore, the methods 
have been applied successfully to several mechanical engineering 
problems and to a biomechanical problem. 
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CHAPTER 1: INTRODUCTION 

1.1 Structural optimization and experimental design 

The research field of structural optimization is concerned with 
the design of structures which can meet requirements better, e.g. 
with respect to the resistance of loads applied to them, or with 
respect to their performance. Designing consists of an iterative 
procedure of analysis and synthesis. By means of analysis the 
behaviour of the structure is evaluated, while synthesis is used to 
modify the structure in a way that it probably meets stated demands 
better. It is assumed that during the optimization process the 
behaviour and the performance can be described uniquely by a set of n 
design variables x1, x2, ... , xn. The criterion by which the 
structure is judged to be better or worse than another one, is 
described by the so-called objective function and of course also 
depends on the design variables. In Chapter 2 we will discuss this in 
detail. 

Modern research on numerical structural optimization was 
started during and after World War II in the aerospace industry due 
to the need for light-weight aircraft. During the last few decades 
optimization research has become important in almost any field of 
structural engineering. As reasons for this development one can see 
the diminishing energy and material resources, environmental problems 
concerning air pollution and noise, and last but not least the rapid 
development of computing facilities which have become a common tool 
of almost any engineer. 

For the analytical task in a structural optimization problem 
mostly the finite element method (FEM) is used for two good reasons. 
The first reason is its nice and flexible modelling facilities, by 
which very different structures can be modelled in essentially the 
same way. Secondly there is the accuracy of a FEM analysis which can 
easily be controlled by means of the used element grid. But FEM 
analyses of actual engineering structures are often very time 
consuming, yielding a serious drawback for application of the method 
during structural optimization because of the iterative character of 
the optimization process. 

In structural optimization problems the structure itself is 
subject of modifications, which is the reason why these problems are 
often essentially non-linear, and a closed-form solution for the 
optimum design seldom can be found. As already stated, optimization 
problems are mostly solved iteratively. In the next section we will 
briefly describe the process. 

Experimental design, in the literature also referred to as 
"Design and analysis of experiments', or "Planning of experiments", 
provides methods for both the formulation of measurement programs and 
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the analysis of the measurement results. We emphasize that by 
'design" here is meant the design of a measurement program. 
In the scientific research cycle the following stages appear: 

- theory and model building 
- prediction 
- experiment 
- confrontation of prediction and experiment. 

The last; stage may be followed by model modification or refinement 
and the cycle is repeated until a satisfactory model is obtained. In 
many cases experimentation is time and cost consuming and the need 
for well organized experiments is clear. The experimental design 
theory provides tools for this organization. 

In conjunction with optimization we are interested in factorial 
experiments which are designed to study some relationship, for 
instance: 

y f ( x 1 , x2, ... , xn) 

showing a response variable y as a function of n independent 
variables x1, x2, ... xn. In the experimental design theory the 
variables xi are called 'factors', hence the name "factorial 
experiments • . 

In the design and analysis of experiments the following 
questions have to be resolved: 

- which factors play a role? 
- should the factors be used in their original form, or should they 

be transformed or coded first? 
- which is the range of interest for these factors? 

which form of the function f may be suitable to describe the 
searched relationship? 

- in order to run the experiments, discrete values have to be 
chosen for the factors; how many discrete values, so-called 
levels, for each factor are needed? 

- making a choice for a certain level of each factor represents a 
discrete design point in the space spanned by the factors; how 
many and which design points, in other words which measurement 
program, should be chosen? 

- how can the relationship be estimated, and 
- how can it be tested? 

A very valuable aspect of the experimental design theory is 
that it guides experimentation in a structured way. When the founder 
of the experimental design theory, R.A. Fisher, in 1919 was appointed 
as a statistician at the Rothamsted Agriculture Research Station, he 
found data of experimentations over a period of 70 years. It proved 
that no confidential conclusions could be drawn from all these data; 
for Fisher it was the motive to develop the experimental design 
theory, the basis for modern experimentation. Answering the above 
questions is not possible all at once and it is certainly unwise 
trying to do so. Those questions constitute a circular problem: for 
instance to define the measurement program, the type of relationship 
has to be known, but the relationship can only be estimated after a 
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measurement program has been defined and the experimentation done. 
The solution to this problem is to start with a preliminary 
measurement program of moderate extent. Analysis of the data emerged 
from this program will provide better answers to the mentioned 
question~ and a more adequate measurement program can be defined. Box 
et al. (1978) give a 25% rule, which states that. at the outset of an 
experimental inve~tigation, not more than 25% of the experimental 
effort (budget) should be invested in a first measurement program. 
The whole procedure is repeated until finally all questions have been 
resolved in a satisfactory way. 

In Chapter 3 we will discuss parts of the experimental design 
theory in more detail. 

1.2 Objective of the present research 

A wealth of literature exists in the field of structural 
optimization based on FEM-analyses and also in the field of 
experimental de~ign. In both research fields computer programs are 
available, aiming to release the engineer from tedious calculations, 
or without which it is at all impossible to obtain solutions. 
However, about the combination of these two research fields in the 
literature but few examples can be found (Schoofs (1984)). A 
literature search with on the one hand the key word "finite element" 
and on the other one of the following key words 

experimental design 
factorial design 
factorial analysis 
statistical analysis 
regression analysis 
parameter estimation 
parameter study 
surface fitting 

yielded as a cross-section 13 articles. Only Pichurnani (1975) and, to 
a less extent, Krishnamurthy et al. (1979) devoted explicit attention 
to the use of experimental design in combination with finite element 
analysis. In the other articles the use of experimental design and/or 
regression analysis is just mentioned, without consideration of 
procedural aspects. 
Vanderplaats (1984) describes in a section "Formal approximations" 
some curve fitting techniques in optimization problems, which are 
similar to the procedures we will propose. We agree with him that the 
approach is competitive for problems with up to ten design variables 
and where computational cost is high. In contradiction with him we 
believe that the approach can also be effective in many structural 
optimization problems, due to application of experimental design 
procedures, which he does not mention. 

Altogether, the use of experimental design in optimization 
appears to be a rather little elaborated research field. 

The first motive for the author to consider structural 
optimization in combination with experimental design emerged from the 
master's degree study of Aerts (1979). This study describes 
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procedures using experimental design to "condense" a number of finite 
element analyses of a pin and hole joint to a handsome analysis model 
formed by a set of regression polynomials. Regarding structural 
optimization based on finite element calculations, the use of such 
regression models may have certain advantages. Due to the iterative 
character of the optimization procedure, a lot of finite element 
calculations are merely intermediate steps in the iteration process 
and are wasted when the optimization run is finished. Our idea is 
that, if a great number of finite element analyses has to be made, 
these analyses can also be used to derive an approximating regression 
model. In this way the results of every finite element calculation 
stay valuable. 

In the present research we will consider experimental designs 
in which the experiments are of numerical nature, by applying finite 
element analyses. We will investigate the derivation of regression 
models and discuss the combination of experimental design and 
structural optimization, because we find these methods have much in 
common: 

- the set of design variables in structural optimization plays the 
same role as the factors in experimental designs. 

- in both methods the elementary process steps, that is in 
experimental design the measurements and in optimization the 
finite element analyses, are cost and time consuming and 
therefore their number has to be minimized. 

- a finite element analyses of a structure can be considered as a 
numerical experiment. 

- computer programs for structural optimization using the design 
variable concept are readily suited to do the "experiments" 
(finite element analyses) as indicated by the experimental 
design. 

- a regression model can serve as a fast analysis module in a 
computer program for optimization. 

- such a fast analysis module, allowes us to perform a large number 
of runs of the optimization program, every time emerging from a 
different starting point in the design space in order to find the 
global optimum for the structure; it is also possible to 
investigate outcomes of the optimization procedure using a number 
of different objective functions without being obliged to repeat 
a lot of finite element calculations. 

- by applying a regression model an approximating optimum design 
can be found; this design can be used as initial design in an 
optimization based on direct FEM-analyses, thus resulting in a 
more accurate global optimum design. 

In this thesis we will give procedural guidelines for the use 
of experimental designs in model building and structural optimization 
problems. We will develop special facilities in computer programs 
concerning both research fields and we will make an integrated use of 
these programs. 

As one of the applications of these programs we designed a 
major-third carillon bell (Maas (1965)), by solving shape 
optimization problems for the bell geometry. Encouraged by this 
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success we decided to develop regression models of the 
eigenfrequencies for a wide class of different bell geometries. 
Achieving such a mathematical model for bells we consider a 
secondary, but nevertheless nice, goal of the present research. 
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CHAPTER 2: STRATEGIES IN STRUCTURAL OPTIMIZATION 

2.1 Problem formulation 

Numerical optimization of a mechanical structure requires the 
availability of a mathematical model of the structure. such a model 
is characterized by a finite number of parameters. These model 
parameters may be of widely divergent types, such as parameters to 
specify physical properties, geometrical parameters and topological 
parameters to specify connections between structural components. The 
describing equations of the mathematical model can be derived in 
different ways, for instance, using a finite element method. For a 
linear, elastic, dynamically loaded structure this results in: 

M~ + B~ + K~ = p ( 2. 1. 1) 

and an appropriate set of initial conditions. HereM is the mass 
matrix, B the damping matrix, K the stiffness matrix, u the column of 
unknown nodal displacements and p the column of external, prescribed 
nodal loads. In the problems con;idered in this thesis often one or 
more of the parameters M, B and ~ will be zero. 

In a straightforward design all model parameters are chosen a 
priori, for instance based on prior investigations or on experience. 
In structural optimization, however, all or part of these parameters 
may depend on a finite number of a priori unknown design variables 
which have to be determined during the optimization process. Examples 
of design variables are the radius of a fillet, the cross-sectional 
area of a beam, the number of stiffeners on a panel and the thickness 
of a plate. In this thesis only scalar design variatles are taken 
into account. They are denoted by x1, x2, ... , xn (nl1) and are 
considered the components of a column x: 

(2. 1. 2) 

The design variables span an n-dimensional space, called the 
"design space• D. It should be emphasized that a design is 
represented by a point ~ in D, even if the design is patently absurd 
(e.g. negative areas) or inadequate. 

A design variable xi may be discrete or continuous. In the 
second case, which occurs for instance if xi is the radius of a 
fillet, xi may be any real number in a given interval. The first case 
occurs, for instance, if xi is the distance between equally spaced 
stiffeners on a given panel. A discrete design variable may be of 
type integer as will be the case if xi is the number of stiffeners on 
a panel. Often discrete variables are treated as continuous ones 
during the optimization process. Then the final calculated value is 
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rounded off to the nearest discrete value a posteriori. In this 
thesis only continuous design variables are taken into account. 

In general, design variables are subject to contraints. Here 
two types of constraints are distinguished: 

Qe~ign_cQn~tLaints 
Design constraints are imposed on design variables for reasons 

of functionality, production, aesthetics etc. Examples are maximum 
track of a motor-car, minimum diameter of a hole, maximum and minimum 
slopes of a roof, etc. A very important characteristic of these con­
straints is that they can readily be evaluated without the need to 
solve the mathematical model of the structure. 

Design constraints are explicit and/or simple, usually linear 
implicit relations in x. They can be represented by a set of md 
(md l 0) inequalities 

dcij(~) i 0 j = 1, 2, ... , md 

and a set of ld (ld l 0) equalities 

dce·(x) =0 
J -

j = 1, 2, ... , ld 

(2. 1. 3) 

(2. 1. 4) 

The equality constraints (2.1.4) can be used to reduce the 
number of design variables, such that (2.1 .4) is satisfied identi­
cally for the reduced set of variables. However, this is not always 
recommendable from the viewpoint of a general problem definition. 

The constraints (2.1.3) and (2.1.4) define a subspace of the 
design space D, which will be called the "d-constrained design space• 
Dd. A design~ e Dd is called a "d-constrained design• and it is 
assumed that such a design can be realized physically. The space Dd 
is of great importance in optimization algorithms because it is a 
proper subset of D: the design constraints reduce the set of points x 
that might be of interest. 

aehayiQUL ~onsir~int~ 
Behaviour constraints are derived from requirements on the 

performance or the behaviour of the structure. Typical examples are 
limitations on maximum stresses and displacements, on eigenfre­
quencies and vibration modes etc. In general these constraints are 
nonlinear even for linear structures. Elaboration of the behaviour 
constraints requires the solution of the mathematical model of the 
structure. This is a characteristic, very important difference be­
tween behaviour and design constraints. Mathematically behaviour 
constraints are represented by a set of mb (mb 1 0) inequalities 

bcij (~) i 0 j = 1 , 2, ... , mb ( 2. 1. 5) 

and a set of lb (lb l 0) equalities 

bcej(~) = 0 j = 1 , 2, ... ' lb ( 2. 1. 6) 
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Analogous tv (2.1.4) the equalities (2.1.6) could be used to reduce 
the number of design variables. However, often the functions in 
(2.1.6) are complicated and implicit, and elimination of design 
variables may be practically impossible. Sometimes the model 
equations (2.1.1) are also incorporated in (2.1.6). Here (2.1.1) and 
(2.1.6) will be considered as separate sets of equations. 

The constraints (2.1.5) and (2.1.6) define a subspace Db of the 
design space D. This subspace will be called the "b-constrained 
design space". The set of all designs~· that satisfy both the design 
constraints and the behaviour constraints represents the "feasible 
design space" Df. A design~ € Df is called a "feasible design". 
Mathematically Df is defined as the intersection of the d- and the b­
constrained design spaces 

(2. 1. 7) 

The statement "some designs are better than others" implies the 
existence of a measure to compare designs. In mathematical 
optimization this measure is the objective function F: Dd~R, which is 
defined on the d-constrained design space Dd. In many optimization 
formulations the objective function F is required to be semi-positive 
definite, i.e. 

F(~) l 0, V x € Dd (2. 1. 8) 

A design ~* € ~f is considered to be a better design than ~ € Df if 
and only ifF(~) < F(~). 

It will be clear that the outcome of the optimization process 
heavily depends on the choice of the objective function. Therefore 
this choice should be made with the utmost care. In some cases an 
obvious objective function exists. For example, in shape optimization 
of a fillet to reduce the stress concentration factor, it is trivial 
to choose F(~) equal to the maximum von Mises stress omax in the 
fillet. For transport systems often F(!l is chosen as the weight of 
the system since many design aspects of those systems are closely 
related to the weight. In other cases the objective function will be 
chosen as a weighted sum of functions which can represent totally 
different aspects, like costs of production and of exploitation, 
safety and environmental aspects. In such situations choosing an 
appropriate objective function is not trivial. A related problem 
occurs in situations where one tries to bring "everything• into 
account by means of terms in the objective function. If there is but 
little consensus about the importance of a certain aspect, that 
aspect should not be incorporated. The only result would be an 
increased •noise level" of the objective function. 

The type of objective function may influence the flow diagram 
of the optimization process. It is assumed that F(!l is a computable 
function for each ! € Dd. In some problems evaluation of F(~) may 
require a complete elaboration of the mathematical model, for 
instance in the earlier mentioned case of stress optimization of a 
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fillet. If, on the other hand, the structural weight is chosen as an 
objective function F(x), evaluation of F(x) can be done using just 
the design variables x describing a proposed new design. If the 
weight proves to be increased with respect to the current weight, 
analysis of the design x makes no sense. In such a situation the 
process should be stopped or another design x should be proposed. 

In general the behaviour constraints and the objective function 
are highly non-linear functions of the design variables and the 
optimization problem must be solved iteratively. Usually, structural 
optimization problems converge to a local optimal design. The proof 
that this design also is the global optimum design can seldom be 
delivered. Hence, it is common practice to restart the optimization 
process with another initial design, and repeat this process until 
confidence is gained that the global optimum solution has been 
approached closely enough. Mathematically the optimization process 
can now be stated as follows: 

( 2. 1. 9) 

After the previous discussions it will be clear that every 
phrase of this statement is essential in the optimization process. In 
other words, each of the steps 

- find a feasible design ! € Df 
- find a (local) minimum for F(x) and 
- get confidence that the solution is the global optimum, 

generally are sub-problems of the same level of complexity. 

2.2 Finite element method and structural optimization 

In computer programs for structural optimization often the 
finite element method is used for modelling and analysis of the 
structure. This offers the possibility to model a great variety of 
structures in a general, accurate and flexible way. The accuracy can 
be controlled easily by an appropriate modification of the finite 
element model. In optimization problems often slight improvements of 
a structure are of interest, so a realistic model and accurate 
analysis results are of great importance. However, these advantages 
must be paid for with some serious drawbacks. First, the computing 
time is large. Second, the implementation of the design variable 
concept in finite element packages is non-standard and difficult. 
Last but not least, the computation of gradients of the objective 
function and of the behaviour constraints with respect to design 
variables is not trivial and difficult to implement. 

For complicated linear structures finite element analyses are 
straightforward but can be very time consuming. If the structural 
problem is nonlinear, the finite element analysis has an iterative 
character and computing times may become tremendous. Furthermore, due 
to the iterative character of the optimization process several finite 
element analyses are required to obtain an optimal solution. In 
general this will be a local optimum and it is therefore recommended 
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to carry out several optimization runs. Hence, in problems where the 
finite element method is used, the number of iteration steps in the 
optimization process should be kept as small as possible. 

A major problem in structural optimization is the link between 
design variables and the finite element model. In several more or 
less dedicated structural optimization programs this link has been 
realized. In some general purpose finite element packages the design 
variable concept has been adopted only with the most simple types of 
variables, such as cross-sectional properties. The rapid development 
of computer graphics and solid modelling programs can become of great 
importance to overcome this shortcoming, because the input needed for 
an advanced solid modelling program is much more user oriented than a 
finite element model and the link between solid models and finite 
element models has already been established. 

Implementation of the design variable concept in finite element 
packages will make computation of gradients much more easier. If such 
an implementation is not realized, gradients can only be computed 
using numerical differentiation, at the cost of an increased number 
of finite element analyses. However, if the design variables can be 
used within the finite element program, then computation of gradients 
can be carried out in a much more efficient way. This can be 
illustrated by some examples. 

First, consider a linear, elastic, static problem described by 

K~ = e (2. 2. 1) 

Differentiation of (2.2.1) with respect to design variable xi yields 

au 
K 

oK 
(2. 2. 2) 

The gradients on the right hand side can easily be calculated by a 
perturbation method. Assuming that the matrix K was decomposed during 
a previous analysis and that ~ is known from that analysis, the 
calculation of o~/oxi is, in fact, straightforward. 

Next a linear, elastic, undamped, dynamically loaded structure 
is considered. Then it can be shown that the gradients of 
eigenfrequencies are given by 

v~ M v. 
~J ~) 

(2.2.3) 

where Yj is the eigenvector coupled with the eigenfrequency wj. Again 
the gradients of K and M can be calculated easily. If the eigenfre­
quencies and eigenvectors are available from a previous analysis, 
then the evaluation of (2.2.3) is straightforward too. 
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2.3 The iterative optimization procedure 

Z.-1-1 ;2_pg_cific_vg_r~u~ gener.al me.t.hQd.§. 
The solution methods commonly used to obtain the optimum design 

may be divided into several categories. An important classification 
is the partition in specific and general methods. 

Specific methods are used exclusively in structural 
optimization. They usually are categorized as optimality criterion 
methods (Morris (1982)). In these methods one tries to satisfy a well 
defined criterion and it is expected that by doing so some measure of 
the structure will become optimal. However, this measure is not used 
explicitly to control the optimization process. A typical example of 
an optimality criterion method is the well-known fully stressed 
design method. In this method one tries to match the stresses in the 
structural members to their allowable stresses (the criterion), with 
the implicit objective to minimize the weight of the structure. In 
the early stages of development of structural optimization specific 
methods enjoyed great popularity because they could solve special 
problems more efficiently than any general method. But the popularity 
of specific methods is decreasing because of their limitations. 

General methods are those which are applicable and commonly are 
applied to optimization problems in several fields. They are based on 
linear and nonlinear mathematical programming methods, and efficient 
computer implementations have been developed. However, despite all 
powerful software it should be emphasized that good engineering 
intuition will remain of great importance in solving structural 
optimization problems. 

In this chapter we will give an introduction to the general 
methods. 

£.}.£ ~ener.al QP.!;.imika.t.iQn_algQrithm 
Let !o e Dd be a given initial set of design variables. This 

will not always be a feasible deslgn. Some algorithms exist of two 
stages: in the first stage a feasible design ! € Dt is determined 
from !o € Dd and in the second the design is optimlled. The al<Jor i thm 
is given by: 
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begin boole~n CONV; 

end; 

{given: initial design ~O € Dd, convergence criteria, and 
max. number of iteration steps qmaxl 
q: = 0 
X : = -q 
CONV: 
while 
begin 

end 

~0; 

= false 
not CONV and q < qmax do 
{analyse design x.; 

l b h 
,-q . 

eva uate e av1our constra1nts; 
evaluate objective function} 

{evaluate convergence criteria} 
if converged then CONV: = true 

{compute uq, s J 
-q 

{compute x.+1J -q 
q: = q+1 

From the various steps 1n this algorithm only the optimization 
step will be considered now. In general the updating step can be 
formulated as: 

(2. 3. 1) 

where q is the iteration number and ~q a search direction column 
while uq is a scalar stepsize factor. So the optimization step 
(2.3.1) consists of two parts: 

- finding an appropriate search direction ~q· For this purpose the 
most effective optimization algorithms require partial 
derivatives of the objective function and of the constraints with 
respect to the design variables to be calculated. 

- computing the scalar a~ such, that, moving in the direction s , 
the objective function is minimized. -q 

A great number of mathematical programming techniques, linear 
and nonlinear, can be used for the optimization step. Some of these 
techniques are discussed in the sections 2.4, 2.5 and 2.6. 

~-1-1 faLtlal ge£iyatiye~ £ng £onj~g£t~ gi£e£tlons 
Numerical optimization algorithms generally operate with ap­

proximations of the constraint functions and of the objective 
function. Such approximations can be formulated, using Taylor series 
expansions. In the sequel it is assumed that the functions are 
continuous and differentiable as often as necessary for all ! € Dd. 
The first and the second derivatives of the objective function F, 
i.e. the gradient and the Hessian matrix, are denoted by Q and H 
respectively: 
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G VF (2.3.2) 

H V(GT) = ~(~F)T = HT ( 2. 3. 3) 

where v is the gradient-operator, defined by: 

v a L a ,r = [ax 1 ax2 ... ai(nJ (2.3.4) 

In general it is not possible to give explicit relations for 
the gradient as a function of the design variables. An approximation 
for G(x) always can be determined by numerical differentiation, using 
the ;eihod of subsequent perturbations. This results in 

(2.3.5) 

where oxi is a small perturbation and ~i is the ith unit column (i.e. 
component j of ~i is equal to the Kronecker-delta a .. ). 

A second-order Taylor approximation F(x) of Ftal in the 
neighbourhood of x now can be written as: 

~q 

(2.3.6) 

where Fq 

If in (2.3.6) ~q * x is a real (local) minimum ofF(~), then 

* 21~ ) = 0 (2.3.7) 

and H(~*) is positive definite, resulting in the quadratic form 

( 2. 3. 8) 

* Since higher order terms may be neglected in the neighbourhood of ~· 

it may be deduced from (2.3.8) that quadratic forms are important for 
convergence considerations. 
Using (2.3.6) optimization algorithms can be divided into: 

- zero-order methods, using only function values 
- first-order methods, using function values and gradients 
- second-order methods, using function values, gradients and 

Hessian matrices. 
An important class of optimization algorithms is based on the 

use of so-called conjugate directions. A set of n search direction 
columns s 1, s 2 , ... , s is said to be conjugate with respect to the 

~ ~ ~n 

n*n positive definite symmetrical matrix H if, for ~i 1 Q and ~j 1 Q 

sT Hs. = 0 <L ~) 
for i 1 j i, j € 11, 2, ... , nl (2.3.9) 

The use of conjugate search directions is based on the following 
lemma (Fox ( 1971)) ~ 
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If a homogeneous quadratic function Q is minimized, u~ing 

subsequent directions from a set of n conjugate directions, then: 
- the exact minimum is reached at or before the nth iteration step. 
- the choice of the initial solution does not matter. 
- the sequence of search directions does not matter. 

Although the functions to be minimized often are non-quadratic and 
iteration steps always show an inherent inaccuracy, conjugate search 
directions appear to be very useful in optimization methods. 

2.4 Minimization of the objective function along a search direction 

Starting from an initial design ~O € Dd the optimal design ~· 
being the solution of (2.1.9), is calculated iteratively. As stated 
bef~re in (2.3.1), in iteration step q+1 (qlO) a new estimate ~q+ 1 € 
Df 1s determined, u~ing 

~q+1 = ~q + aq ~q (2.4.1) 

For the moment it is assumed that the search direction s is known 
and attention is focussed on the stepsize aq. In some ai~orithms aq 
is fixed a priori while in other algorithms aq is determined from the 
requirement that the function fq = fq(a), def1ned by 

(2.4.2) 

is minimized. Elaboration of this requirement yields that aq is the 
solution for a of the (nonlinear) equation 

(2.4.3) 

However, this relation in general does not provide a practical 
starting point for the determination of the optimal stepsize aq. The 
reasons are that many evaluations of the gradient may be neces~ary to 
solve (2.4.3) for uq, that no explicit relations for the gradient as 
a function of the design variables are available and that each 
evaluation of the gradient will require considerable computational 
effort. Therefore, an approximation uq of the optimal stepsize will 
be used. A practical method to determ1ne such an approximation is 
based on the idea to fit the function fq = fq(a) with a polynomial Pq 

Pq(a), for instance a quadratic one to start with: 

(2.4.4) 

The three coefficients a , bq and cq can be determined from the value 
of fq(a) = F(x + u s ) for three values of a, often taken as a 0, 

d ~q2 hq . 1 b" . 1 a = 6q an a = 6q w ere 6q 1s a more or ess ar 1trary tr1a 
steps1ze. As soon as aq, bq and cq are known the stepsize aq can 
readily be found from the requirement that Pq = Pq(a) is minimal for 
a= aq. It is recommended to accept this stepsize only if aq€(0,26q). 
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If aq is outside this interval the value of the trial stepsize 6q 
must be modified a~equately and the.cal~ulation of aq must be 
repeated. The qualrty of the approxrmat1on (2.4.4) can be tested by 
evaluating fq(aql and comparing this value with Pq(a ) .· If the ap­
proximation 1s unacceptable fq(aq), fq(O), fg(hq) an3 fq(2Aql can be 
used to approximate fq = fq (a) by a cubic pr,lynomial. From this 
approximation again a value for the stepsize aq can be determined. 

Each of these methods to arrive at a value for the stepsize 
involves one or more evaluations of the objective function. It is 
stipulated here once more that, in 5tructural optimization, such an 
evaluation generally will involve a complete finite element analysis 
of the :;tructure. Therefore, the number of evaluations of the 
objective functions per iteration step must be held as small as 
possible. Finally it is mentioned that the calculations of both s 
and aq in constrained problems are complicated by the condition t~at 
the new estimate x +1 = x +a s must be a feasible design, i.e . • q .q q -q 
th;.J t ~ + 1 e of . 

~n the next section some methods, especially for the calcula­
tion of the search direction, in unconstrained problems are dis­
cussed. These methods are important since many optimization problems 
can be formulated without constraints or may be considered to be 
unconstrained in certain stages of the optimization process. 
Furthermore, many methods for con5trained problems are based on 
methods for unconstrained problems. Constrained problems are dis­
cussed in some detail in section 2.6. 

2.5 Methods for unconstrained problems 

As mentioned before, the commonly used methods for uncon­
strained optimization problems can be divided into zero-order, first­
order and second-order methods. Usually these methods are not 
completely unconstrained. For instance, designs in the random search 
method and initial designs in other methods will be chosen using the 
design constraints. 

1.2.1 1e£o~oLd~r_m~thogs 
In this subsection two zero-order methods are considered, being 

the random search method and Powell's method. 
In the random search method a given number m(ml1) of designs ~i 

e Dd, i = 1, 2, ... , m is generated. The objective function F is 
evaluated for each of these designs and the design, associated with 
the lowest value of this function, is considered to be the best 
("optimal") design. This method can easily be implemented and 
requires modest computer storage capacity. Furthermore, if m is large 
enough one may expect to find a reasonable approximation for the 
optimal design. However, the efficiency of thi:; method is low :; ince 
many function evaluations are necessary. Although the efficiency can 
be improved by means of some simple modifications this method is not 
appropriate in structural optimization, based on finite element 
analyses. 
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Powell's method (Powell, 1964) is an iterative method, starting 
from a given initial design ~o· Each iteration step q (q2.1) involves 
first the definition of n search directions o 1, o Z' ... o and 
second the subsequent line minimalization of-~he ~a]ective-~Gnction, 
using these directions. This results in an approximation x for the 
optimal design. The difference X. - X 1 defines the qth c~njugate 
search direction s . In the nex~qite~3~lon step the search directions 
are modified. It I2 common practice to choose o 1. = e., i = 1, 2, ... n 

- 1 -1 
in the first iteration step. In iteration step q+1 the direction o 1 
is rejected, the other search directions are renumbered~( +1). =-q 
~g(i+ 1 ) for i = 1, 2, ... n-1 and the last search directionq~(q~ 110 is 
c6osen equal to the most recent conjugate search direction s . Th1s 
process is illustrated in Fig. 2. 1. -q 

-x1 
Fig. 2.1 Powell's zero-order method 

Using Powell's method difficulties occur in two situations. First, if 
in a certain search direction no improvement can be made the method 
breaks down. Second, after some iterations, some of the search 
directions can become dependent. A simple remedy for these problems 
is to restart the whole process using the most recent solution as the 
initial design. 

Powell's method is one of the most powerful and reliable zero­
order methods, but still requires many function evaluation:.,. To 
generate the conjugate directions n(n+1) searches are needed. If 
quadratic interpolation is used, within each search three function 
evaluations have to be done, giving a total number of 3n2 + 3n 
evaluations. For non-quadratic functions this number may become as 
large as 5n3, which makes the method prohibitive for large numbers of 
design variables combined with a more than minor computational effort 
per evaluation. 
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.£ .. 2-.f Ii£st-Qr!1e£ met.hQd.§.. 
In this subsection two first-order methods are considered, 

namely the steepest descent method and the conjugate gradient method. 
The steepest descent method is based on the idea that the best 

search direction is the direction of the greatest rate of decrease of 
Fl!l, which means: 

~q == (2. 5. 1) 

Although the method may perform well in some problems, in other 
problems convergence may become surprisingly slow, because the mini­
mization process may result in an n-dimensional zig-zag of small 
successive moves (see Fig. 2.2). 

Fig. 2.2 Steepest decent method 

Fletcher and Reeves (1964) developed a modification of the 
steepest descent method by which the convergence difficulties are 
greatly reduced. In th1s so-called conjugate gradient method the 
search direction is given by (see Fig. 2.3): 

s 
-q 

GT G 
G + ~q ~q ~q-1 
~q r·T G · 

..:'q-1 ~q-1 

(2.5.2) 

The first term on the right-hand side represents the search direction 
of the steepest descent method. The second term makes s a linear 

~ri 

combination of s0 , s
1

, ... , s 
1

. Fletcher et al. (196~) :showed that 
~ ~ ~q-

the method generates a set of conjugate search directions. Compared 
to the steepest descent method, the convergence rate of the conjugate 
gradient method has been strongly improved, and yet the method 
remains rather simple. Computer implementation is quitP. simple and 
the algorithm requires only little computer storage. For a quadratic 
function the met~Jd converges in n ~teps or fewer, but for 
nonquadratic functions considerably more steps may be required and 
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Fig. 2.3 Conjugate gradient method 

ill-conditioning of the search directions may occur. It is 
recommended then to restart the process with s = -G. Fox (1971) 
gives the rule to restart if the process is n~t converged after n 
iteration steps. 

~-~-2 ~e£Olld~o~d~r_m~thogsL ya~isble_m~t~i£ methQd~ 
Methods based on the second-order approximation (2.3.6) are 

called second-order or, more specific, Newton methods. In these 
methods the Hessian matrix H is explicitly used. Here the Newton­
Raphson method is considered as an introduction to the quasi-Newton 
DFP-metho<l. . 

According to (2.3.6) the approximation F(~) for f(x) in the 
neighbourhood of ~q is given by: 

F(~) = Fq + g~ (~-~q) + ~ (~-~q)T Hq(~-~q) (2.5.3) 

This quadratic form has a minimum if Hq is positive definite. This 
minimum occurs for~= ~q+ 1 , where ~q+ 1 satisfies: 

(2 .5 .4) 

Hence, in the Newton-Raphson method the new approximation ~q+ 1 for 
the optimal design is determined from: 

X = X - H- 1 G 
~q+1 ~q q ~q 

(2 .5. 5) 

In structural optimization problems, the Newton-Raphson method 
has some serious drawbacks, for instance computation of the Hessian 
matrix is difficult, especially in large problems. In general, 
analytical relations are not available and numerical computation is 
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too time consuming. Furthermore, solution of ~q+ 1 from (2.5.4) may be 
prohibitive in large problems. 

The DFP-method developed by Davidon (1959) and improved by 
Fletcher and Powell (1963), is a variable metric method. This method 
is very attractive, because it has some of the properties of a 
Newton-method without the need to compute the Hessian matrix. The 
method only uses gradients, so it is in fact a first order method. 
Fox (1971) showed that it can also be considered a conjugate 
direction method. To start the iteration process of the DFP-method an 
initial design ~O and a positive definite matrix H, for instance the 
identity matrix, must be given. Then the process can be formulated as 
follows: 

begin boolean CONV; 
9o: = g<~ol; x: ~o 
CONV: = false; 
while not CONV do 
begin s: = - HG0 ; 

lcompute~stepsize cr which minimized F(~ + cr~)} 
~: = ~ + cr ~; 

gn: = g<~l; ~: = ~n- ~0; z: = Hy; 
H: = H + cr ~ ~T(~T¥)-1 _ ~ ~T(~T¥)-1~ 

if converged then CONV: = true; 
end 

Although this method requires more computer storage than the 
conjugate gradient method it can be implemented quite 
straightforward. Due to the fact that the matrix H can represent the 
history of the iteration process much better than a single search 
direction, the method asks much less attention on breakdowns than the 
conjugate gradient method, resulting in a lower number of necessary 
restarts. 

2.6 Methods for constrained problems 

Methods for constrained problems can be based on those for 
unconstrained problems. The penalty-function methods, treated below, 
are typical examples. In this section also the feasible directions 
method and a sequential linear programming method are considered. 

£.~.1 Eenalty-tunctiQn_(EFl methQd2 
In these methods the optimization problem with constraints is 

transformed to a problem without constraints and then solved using a 
method for unconstrained problems. Here only problems with inequality 
constraints are considered. Equality constraints can be handled as 
well, but then these methods are less effective and more complicated. 
The constraints (2.1.3) and (2.1.5) are taken into account by means 
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of a penalty term, which is added to the objective function F. This 
yields the penalty function ~. generally defined as: 

~(x, r) = F(x) + r 
m 
[ G(gJ. (~)) 

j=1 
(2. 6. 1) 

where g·, j = 1, ... , m, represent the inequality constraints (2.1.3) 
and (2.~.5). The function G is chosen such that subsequent 
minimizations of ~ for a sequence of values for r, converge to the 
solution of the constrained problem. The factor r provides a 
weighting between the objective function value and the penalty term. 
There are several possibilities to choose G, each resulting in a 
particular PF-method. Here only the exterior PF-method is considered. 

In this method the penalty function ~ is defined by: 

m 
<g.> y ~(~, r) = F + r [ (2.6.2) 

j=1 ) 

(gj> ~j if gj > 0 
if gj s. 0 

where y and rare positive numbers. Usually 1 = 2 is chosen. From 
(2.6.2) it is clear that, with respect to F, ~ is raised outside the 
feasible region of the problem (Fig. 2.4). The penalty term increases 
rapidly with increasing violation of the constraints. 

'l'r:1 
\ 
I 
I 
I 
\ 
\ 

-x 

Fig. 2.4 Exterior PF-method 

The process is started with a relatively small value for r, say 
r=1, and r is raised in the subsequent steps by a factor c > 1. This 
is done to keep ~ approximately quadratic in the neighbourhood of the 
current solution, thus making minimization of ~ easier. With a 
relatively large final value for r, say r = 1000, the minimum of ~ 
will be a good approximation of the minimum of F. 

The initial design may be an infeasible design. Usually the 
solutions approach the feasible region from outside. However, the 
process cannot be stopped until a sufficiently converged solution is 
obtained. 
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PF-methods have become very popular and are implemented in 
several structural optimization packages as ACCESS (Schmit et al. 
(1975, 1976, 1979)) and more recently in NUW SUMT (Miura et al. 
(1979)). In the last package improved PF-methods using Lagrange 
multiplier~ ({mai (1978)) are implemented . 

. '--.~ .. .2. Ihg_ feg_sibl.e_dj_rg_c!;.iQn§. met.hQd 
Whereas in PF-methods the constraints are taken into account 

indirectly, in the feasible directions method the con~traint~ are 
explicitly used to guide the solution process (Avriel (1976), Gillet 
al. ( 1974), Murray ( 1976)). Again it is a~sumed that all equality 
constraints are eliminated. Each iteration step q(ql1) involves the 
determination of a search direction ~q' which has to fulfil two 
demands ( :;ee Fig. 2. 5): 

-x1 
Fig. 2.5 Feasible and usable s 

1. s must be feasible. If none of the constraints g.<O, j = 1, 2, 
~~- m is active at the current solution ~g then afiy direction is 
allowed. Otherwise s should point into tne feasible region. 
Hence, each active ~~nstraint imposes a condition on ~q and ~q 
i~ called feasible if 

sT Vg.<O for each active constraint gJ. 
~q - J 

(2.6.3) 

2. !g must be usable in the sen~e that the objective function 
snould decrease in the direction ~q· This results in the 
condition 

Gq = G(x ) - ~ -q 
(2.6.4) 

Zoutendijk (1960) formulated the following linear programming problem 
to determine s : 

~q 
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maximize p (p > 0), such that 

~~ ygj + ejp i 0 for each active constraint gj, 

sT G + P i 0 and 
~q ~q 

I l~ql I is limited 

Here, I 1~1 I represents a norm of the column ~· for instance the 
maximum norm. 
The coefficients ej are weighting factors between the individual 
constraints on the one hand and the active constraints and the 
objective function on the other. To solve the stated linear 
programming problem the well-known Simplex algorithm can be used. 
Once s is found, an appropriate value crq for the stepsize must be 
deter;!ned. Here two situations can occur (see Fig. 2.6). In the 
first case, the minimum of F in ~q-direction is found in the interior 
of the feasible region. Then aq is found, using a one-dimensional 
search as described in Section 2.4. In the second case, the minimum 
of F in s -direction is outside the feasible region resulting in 
violatio~qof one or more constraints. Then, starting in x and moving 
in positive direction (i.e. a>O) along the line x x + ~~ it is 

~q ~q 

-'X1 
Fig. 2.6 Unconstrained <~ 2 ) and 

constrained solution (~ 3 ) 

determined for which value of a the first constraint is violated. 
That value of a is taken as the stepsize aq. 

The feasible directions method turns out to be very well 
applicable for structural optimization. It is implemented, for 
instance, in the package CONMIN (Vanderplaats (1973)). The recently 
developed package ADS-1 (Vanderplaats et al. (1983)) offers a menu of 
optimization algorithms, some of them based on new feasible 
directions methods. 

~-2-1 ~egu~nti~l_lin~a~ ErQg~amming iS1Pl methQd 
Another aproach to solve nonlinear constrained optimization 

problems is solving a sequence of linear programming (LP) problems. 
Both the objective function and the constraints are linearized about 
the current solution x . The minimum of the objective function 

~q 
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generally is found in a vertex of the approximated feasible region. 
To formulate the linearized problem, first-order Taylor series 
expansions of the describing relations of the original problem are 
used. The already mentioned Simplex algorithm (Dantzig (1963)) can be 
used to solve the LP-problems. 

In this form the SLP method will not work if the original 
problem is highly nonlinear, because then linearization over the 
whole feasible region will result in a very bad approximation. This 
problem can be tackled by introducing so-called move limits: 

lx-x I· < f1x. 
~ ~q l - l 

i=1,2, ... ,n (2.6.5) 

where 6xi is a maximum stepsize for the individual design variable. 
Now the feasible region for the LP-problem is limited to the region 
described by (2.6.5). This region may be reduced further by one or 
more of the linearized constraints of the original problem, see Fig. 
2.7. 

Fig. 2.7 SLP-method with move limits 

The optimization process is started with relatively large move 
limits. As the solutions approach a (local) minimum they usually tend 
to oscillate between some solutions. At this point the move limits 
are reduced and the solutions usually continue to converge. 

The SLP-method differs from other algorithms in the sense that 
it delivers a search direction and a stepsize at the same time 
(incorporated in the LP-soluti.on). In other methods generally the 
search direction is determined first, followed by the stepsize. The 
SLP-method with use of move limits is applied rather successfully to 
a variety of structural optimization problems. It has been 
implemented in the structural optimization programs OPTIMA 
(Widdershoven (1980)) and DYNOPT (Van Asperen (1984)). The latter 
program has been used for the applications in Chapter 6. 
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2.7 Comparison of methods 

In literature several investigations on the applicability and 
efficiency of optimization algorithms are given. Ragsdell (1984) 
gives an excellent review of several important and comprehensive 
investigations. Carpenter and Smith (1977) investigated the 
computational efficiency of several methods for structural 
optimizati•m. They conclude that if, per iteration step, gradient 
values ask less computing time than function values, the SLP method 
is much more efficient than, for instance, the PF-methods and the 
feasible directions method. Our experience is that if methods are 
used such as described in section 2.3, computations of gradients are 
indeed more efficient than the computation of a function value. 

Sandgren (1977) investigated a great variety of optimization 
algorithms, but did not take into account the implications of time 
consuming FEM-analysis in structural optimization. He collected 30 
optimization problems of different levels of complexity. In addition 
he collected 35 codes of leading nonlinear programming methods. After 
a preliminary screening 23 problems and 24 codes were left. Sandgren 
forced all codes to operate with numerically computed gradients and 
carried out the tests on the same computer in order to get accurate 
measures for comparison. He subsequently used all codes and tried to 
solve as much test problems as possible with each code, recorded the 
required computing time and plotted the number of solved problems 
versus the required computing time, normalized as the fraction of the 
average time required for all codes. Fig. 2.8 shows a small selection 
from Sandgren's results. Table 2.1 indicates the used methods for the 
constrained problems and the algorithms which are used in the 
uncom;trained sub-problems. 
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Fig. 2.8 Algorithm utility 

Method 
No. Constrained Unconstrained 

1 GRG DFP 
2 SLP 
3 GRG BFS 
4 GRG CG 
5 GRG CG 
6 Ext.PF DFP 
7 Ext.PF DFP 

Table 2.1 Algorithm types 
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The abbreviations in Table 2.1 have the following meaning: 
GRG general reduced gradient, a feasible directions method 
sr,p sequential linear programming method 
Ext. PF exterior penalty function method 
DFP variable metric method (Davidon, Fletcher and Powell) 
BFS variable metric method (Broydon, Fletcher and Shanno) 
CG conjugate 9radient method (Fletcher and Reeve:>). 
Interpretation of Fig. 2.8 learns that: 

- the methods 3, 4 and 5 are both efficient (a steep curve) and 
robust (a large number of solved problems) 

- the methods 1 and 2 are efficient but less robust 
- the methods 6 and 7 are less efficient and less robust than the 

methods 3, 4 and 5. 
Another investigation is carried out by Schittkowski (1980). 

Significant differences with Sandgren's study are the very lar9e 
number of test problems (180) and the incorporation of the most 
modern algorithms in the tests. It turned out that the new, so-called 
sequential quadratic programming methods (SQP) are very promising. 
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CHAPTER 3: EXPERIMENTAL DESIGN THEORY 

3.1 Introduction; ~urvey of the theory 

Advanced scientific and technological research requires com­
prehensive and expensive experiments and the need for careful plan­
ning of the experiments is quite clear. On the one hand it is re­
quired to minimize the number of experiments, but on the other it is 
desired to gather as much information as possible about the relevant 
aspects of the system under consideration. 

The experimental design theory (EDT) con~i~_;ts of two main 
parts. The first part, discussed in the sections 3.2, 3.3 and 3.4, 
concerns the planning of experiments and ends up with a list of 
experiments to be carried out. This list is called the experimental 
design, abbreviated to ED. In the second part the experimental 
results are analysed and fitted to some mathematical relationship. 
This is discussed in section 3.5. 

In this thesis we are primarily interested in the use of (a 
special version of) EDT for the planning of numerical, FEM analyses. 
Such analyses can be regarded as numerical experiments: the 
investigator specifies a number of input parameters and as a result a 
number of response quantities emerge from the analysis program. The 
computations can be described as deterministic processes. Repeated 
computations using the same set of input parameters invariably result 
in exactly the same response quantity values. In general physical 
experiments show a stochastic character. Even if it were possible in 
physical experiments to adjust the input parameters to exactly the 
same values, repeated experiments will always show random variations 
of the response quantities. EDT has been developed for such 
stochastic processes. Use of the theory for the planning of 
deterministic numerical experiments is hardly mentioned in 
literature. We conform as much as possible to the common theory for 
stochastic processes, which is discussed first in the next four 
sections. A separate section, section 3.6, is devoted to the 
consequencies of the use of EDT in deterministic processes. It turns 
out that much of the common theory may :;t;i ll be used. 

In this chapter special attention is given to the use of 
gradients in EDT. The use of gradients proves to be very advantageous 
in numerical experiments. The last section of this chapter gives 
information about a program for computer aided design and analysis of 
experiments. In the remainder of this section some definitions are 
given and the problem of experimental design is formulated. 

We presume that there exists a true physical relationship 
between a response quantity u and input quantities ~ via physical 
constants 8: 

U = K(~, ~) ( 3. 1. 1) 
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If the true physical relationship is known, then we only need 
to estimate the physical constants 8. Often relation (3.1.1) is 
unknown or too complex and (3.1.1) is approximated locally by some 
interpolating function g(~, ~): 

u "' g (~, ~) ( 3. 1. 2) 

where x is a set of control variables, obtained by coding or 
standa;dizing the input quantities E and ~ are the unknown 
coefficients in the interpolating f~nctio~. The name "control 
variable" will be used throughout this chapter because it expresses 
very well our objectives: we want to control the behaviour of a 
system by means of manipulating the control variables. The concept of 
control variables is closely related to the concept of design 
variables in Chapter 2. 

The control variables are assumed to be mutually independent. 
They are denoted by x1, x2, ... , xn (n 2. 1) and are considered the 
components of a column x 

( 3. 1. 3) 

In this thesis only control variables will be considered which are 
continuous quantities. In EDT, however, it is common practice that 
each control variable is adjusted to a finite number of discrete 
values, called levels. A column x C!)ntaining one level for each of 
the control variables is called a treatment or experimental run. The 
set of all possible treatments, for which observations can be made, 
is denoted by x and the number of elements of x, i.e. the number of 
possible treatments, is denoted by r. In a so-called complete 
factorial experiment all treatments x € x are considered whereas in a 
fractional factorial experiment only-treatments in a subset of x are 
used. 

If observations are repeated for a treatment x then the 
observed results will vary about~ due to the stoch;stic nature of 
the experiments. We shall assume a normal distribution for the 
observed result, which we will call y. The underscore denotes that y 
is a stochastic variable. The expected value of y equals ~. that is, 
E(y) = P. 

Because of the stochastic nature of t.he experiments and because 
of the approximation of the true relationship by an interpolating 
function, two types of errors will occur: 

1. random error:~= y- E(y), 
2. systematic error, or bias: E(y) - g(~, ~l. 

Thus, the following relation exists: 

y = g(!, ~) + ~ + bias ( 3. 1. 4) 

We shall deal with bias in Section 3.3.6, where an experimental 
design technique is presented with which designs can be constructed 
that account for bias. For the present it is assumed that the 
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interpolating function exactly matches the true physical relationship 
and only random errors exist: 

y g(~. ~) + !:. 

~T(~)~ + ~ 

(3. 1. 5) 

where the components f 1, f 2, ... , fk of the column fare known, 
postulated, mutual independent functions of~ while-the components 
~1, ~2' ... , ~k of the column e are unknown parameters. Often f 1 (~) 
is chosen equal to 1 for all ~· The postulated function:; f 1, t 2 , 
... , fk are called model functions or regressor variables. The 
relation (3.1.5) is the so-called regression equation. For the 
present only linear regression equations (i.e. linear in the 
components of ~) are considered. In Chapter 4 some comments on 
nonlinear regr~ssion are given. 

The unknown parameters ~ have to be determined from the results 
of a series of N observations-characterized by the treatments ! 1, ! 2 
... , !N· All these treatments need not necessarily be di~tinct; 
observations may be repeated, i.e. carried out under the same 
treatment. It is the objective of the design of experiment:; to :;elect 
the mo:;t suitable set. of N treatments from the set x of all candidate 
treatments such that the obtained results for ~ are as accurate and 
reliable as possible for the given number N (N 2. 1) of treatments. 

For the treatments ! 1, ... , !N the :;ample model i:;: 

(3. 1. 6) 

where :g. [y1 y2 yN]T is the column of response quantities, ~ is 
the column of error:; and X is an (N*k)-matrix, the design matrix, 
which is given by: 

( 3. 1. 7) 

Unbia~;ed estimates for ~ can be computed if the following assumptions 
for *are made: 

1. the expected value E(*) is zero: 
E(*) = Q ( 3. 1. 8) 

2. the variance of the res~onses and hence of the errors are 
the same and equal to o for all treatments: 

( 3. 1. 9) 

In general, the number of treatments in the experiment should 
exceed the number of the parameters ~· Then @ can be estimated using 
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a least-:;quares technique. @ is calculated from the requirement that 
the residual sum of squares, KSr, defined by 

( 3. 1. 10) 

is minimal. Here y represents a column with N measured response 
quantity values. ihis results in a set of k so-called normal 
equations: 

(3.1.11) 

For each appropriate experimental design, i.e. each appropriate set 
of treatments ~ 1 , ~ 2 , ... , ~N' the 
hence positive definite. Therefore 
yielding 

~atrix xTx will be regular and 
@can be solved from (3.1.11), 

( 3. 1. 12) 

For each treatment x estimates y of the response variable y can be 
calculated from 

( 3. 1. 13) 

This relation represents an operational regression model of the 
mathematical model (3.1.2). 

A measure for the accuracy of the estimator ~ is the variance­
covariance matrix V(~): 

V(~) ( 3. 1. 14) 

Furthermore, the correlations between the elements of ~ are 
determined by the correlation coefficient matrix g, the elements of 
which are given by 

Q·. 
lj 

. 
V(~) .. 

(V(ft) .. V(;) .. )1/2 
~u *n 

for i, j 1, 2, ... , k ( 3. 1 . 15) 

. 
For the respon:;e estimator y(~) the variance V(y(~)) is used as a 
measure for its accuracy. From (3.1.1.1) and (3.1.14) it follows: 

( 3. 1 . 16) 

Often the variance o2 of the measured responses is unknown. An 
estimate for o2 can be calculated from 

~2 ( 3. 1. 17) 

Us!ng this result estimates V(~), Q and V(y(~)) for V(~), Q and 
V(y(~)) can be calculated. 
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As stated before it is the objective of the design of 
experiments to select an optimal s~t of N treatments from the set x, 
such that the obtained estimation ~ for ~ is as accurate and reliable 
as possible. In order to distingui~h bet;een candidate points and 
points actually present in the experimental design, candidate points 
are denoted by x-, j = 1, 2, ... , r, whereas design points are 
denoted by x., j J = 1, 2, ... , N. In a numerical experiment the 
selected treltments ~ 1 , ~ 2 , ... , ~N will all be different. In 
physical experiments however replicating observations may result in a 
more accurate estimation of ~- Given the number N of treatments and 
given the set x of candidate-treatments the objective of the design 
of experiments is to 

determine for each candidate treatment 
the number Nj (Nj l 0) of observations 
and reliable as possible and such that 
observations is equal toN, i.e. 

r 
N = r N· 

j= 1 J 

X· € x, j :' 1, 2, ... , r, 
·J 
such that ! is as accurate 
the total number of 

(3. 1. 18) 

For this purpose several methods are available. We will treat two of 
these methods. In the next section a more or less classical method, 
resulting in so-called zn-designs, is discussed. The optimal design 
theory is the subject of the Sections 3.3 and 3.4. 

3.2 The 211 factorial design 

J. . .f..1 Ih~ £onc~p.t. Qf_2~ !le;2.i.9.n;2. 
The design of a factorial experiment, where each of the n con­

trol variables is varied on two levels, is called a zn factorial 
design. Such designs are very popular and are quite suitable to 
develop regression models. Furthermore, they are useful .in optimal 
design methods since they can constitute a set of candidate 
treatments. 

There exists a wealth of literature on 2n designs (e.g. Box et 
al. (1978), Doornbos (19841, Montgomery (1984)) and only the main 
topics of the method are discus~>ed here. 

In 2n factorial designs a special notation is adopted. The 
control variables, i.e. the factors, are indicated by capitals: A, B, 
C ... etc., and can be adjusted to two levels: "high • and "low". 
"High" and 'low' are just names; their specific meaning must be 
properly defined. A treatment is indicated by a string of lowercase 
letters. This string only contains those characters that correspond 
to the factors at the "high" level. The observation of the response 
quantity for a given treatment is denoted by a string of the same 
lowercase letters as the string denoting that treatment. For example, 
observation ab is the result of the treatment ab, where the factors A 
and Bare both at the "high" level. Fig. 3.1 illustrates the possible 
treatments in a complete 23 experiment with the factors A, B and c. 
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The treatment (1) in Fig. 3.1, represents the treatment with all 
factors at the "low" level. 

c 

A 

Fig. 1.1 Eight possible treatments in a 23 experiment. 

A complete 23 experiment contains eight different treatments, 
which enables us to estimate up to a maximum of eight parameters in a 
regression equation, for instance: 

(3. 2. 1) 

The parameters are often called effects and are usually indicated by 
the same upper case characters as the factor9: the effect ~ 1 is 
indicated by I, ~A by A etc. Main effects are those effects which 
are indicated by just one letter, i.e. the effects I, A, B and C in 
the con:;idered example. Effects indicated by more than one letter, 
for example AB, AC, etc., are called interactions or interactive 
effects. 

In most cases it is )o~;sible to code the levels of the factors 
to +1 and -1. If for the 2· experiment at every treatment one 
observation is made, the design matrix X is given by 

Effects Observations ¥ 
I A B c AB AC BC ABC 

X +1 -1 -1 -1 +1 +1 +1 -1 ( 1 
+1 +1 -1 -1 -1 -1 +1 +1 a 
+1 -1 +1 -1 -1 +1 -1 +1 b (3.2.2) 
+1 -1 -1 +1 +1 -1 -1 +1 !' 

+1 +1 +1 -1 +1 -1 -1 -1 ab 
+1 +1 -1 +1 -1 +1 -1 -1 il.C 

+1 -1 +1 +1 -1 -1 +1 -1 be 
+1 +1 +1 +1 +1 +1 +1 +1 abc 

and the parameters ~ 1 through ~ABC can be er:;timated using (3.1.12). 
Another algorithm to estimate a certain effect can be explained 

with the help of the above mentioned example. For instance an 
e:;timate AC (= PAcl of the effect AC can be calculated as follows: 
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1. summing all the observations with xA * xc 
h = (1) + b + ac +abc 

+1 ("high"),: 

2. next :;umming all the observations with xA * xc 
l = a + c + ab + be 

-1 ("low"): 

3. dividing the difference h-1 by the total number of observations, 
results in the estimate 

AC = J {(1) + b + ac +abc) - (a+ c + ab +be)} (3.2.3) 

For the other effects similarly simple relations can be derived. The 
right hand side of (3.2.3) is called the contrast associated with the 
effect AC. Yates developed a special algorithm for the analysis of 
2n-experiments (e.g. see Doornbos (1984)) 

}.~.~ ~lrrcks_and_fia£tional ~n_e~p~rim~nis 
In order to estimate all possible effects from a 2n design a 

complete set of 2n treatments should be used and under each treatment 
at least one observation should be made. For increasing n the 
mea:.>urement program will become impractically large and the number of 
measurements must be reduced. This is possible since in many problems 
the great majority of effects are interactions of little importance. 
To estimate the effects of interest usually much fewer observations 
are necessary than in a complete 2n factorial design. To account for 
this a (:.>mall) number of chosen treatments i:.> grouped in a so-called 
block and observations are made only for the treatments in this 
block. The crucial point in this procedure i5 the block definition, 
i.e. the choice of the treatments in the block. Since the number of 
observaticms is reduced, it is not possible to estimate all effects 
separately: some effects will be "confounded". The effects related to 
the block coincide with other effects and only the "sum" of those 
effects can be estimated. If observations are made only for one 
block, then the effects which are confounded with the block effect 
cannot be estimated (e.g. Box et al. (1978)). 

1.~.1 ~tilitie~ 1o£ th~ gefinition Qf_f£a£tional 1a£tQrial ge~ign~ 
In many factorial experiments the control variables are to be 

varied on more than two levels, for instance if the functions fi(!) 
in (.1.1.5) are nonlinear in x. Generalization of the methods for zn 
experiments to methods for m<~re than two levels is somewhat 
cumbersome. However, in situations where the number of levels is a 
power of 2, the designs can be transformed into 2n designs (v. Heck 
(1983)), and the techniques developed for 2n designs can still be 
used. 

For blocking and reduction of zn designs comprehensive tabu-
la ted factorial designs are available (Cochran et al. ( 1950), NBS 
(1957), Cox (1958), Box et al. (1978)). Furthermore, computer algo­
rithms have been developed. The program DSIGN, developed by Patterson 
(1976), produces factorial designs for control variables at any 
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number of levels with a great variety of blocking structures. The 
designs are compared on the basis of their confounding patterns. The 
program CADE ( Nagtegaal ( 1987)) incorporates besides algorithms for 
optimal design, also facilities for the generation of (fractional) 2n 
designs. 

3.3 Optimal design theory 

1.1.1 IntrQd~ctiQn 
The central theme in the design of experiments is the 

formulation of experimental designs for the construction of 
regression models such that a suitable regression model can be 
determined with a minimum of experimental effort. In the optimal 
design theory direct evaluation criteria are used: the accuracy of 
the estimated parameters itself and/or the variance in the estimated 
response and iterative algorithms are used to search for optimal 
designs. Optimal design techniques are useful in those :;ituations 
where classic designs are unsuitdble or unavailable, that is when 

- the experimental region is irregularly shaped due to constraints 
on the control variables, 
it is needed to augment or repair an existing design, 

- the number of levels for the control variables varies 
considerable, 

- designs have to be constructed for special models, i.e. other 
than polynomial models, 

- designs have to be constructed for simultaneous observation of 
several responses. 

The optimal design theory was initiated by Smith (1918). 
Significant progress was stimulated by the development of digital 
computers. Important contributions to the methods were made by Kiefer 
(1959) and Fedorov (1972). Nagtegaal (1987) gave some generalizations 
for the construction of experimental designs in case several 
regression models are being used simultaneously. 

l-l-~ Qptimality_c~ite~i~ 
In the optimal design of experiments a number of N, not 

necessarily distinct treatments ! 1, ... , !N are determined from an a 
priori chosen and fixed set x of r discrete candidate treatments ~ 1 , 

~ 2 , ... , ~r· The control variables x1, x2, ... , x
11 

are not allowed to 
vary continuou:.;ly. It is assumed that somehow an appropriate choice 
for x can be made. The main reason for this restriction is to 
symplify optimization algorithms resulting in less computing time for 
the determination of optimal EDs. It should be emphasized that in the 
sequel optimality of designs is always subject to these re:.;trictions. 
The outcomes of optimization algorithms depend on the choice of the 
set of candidate points. For each of the treatments ! 1, ... , !N' 
often called 'design points" or shortly 'points", an observation will 
be made so these points define an ED and the objective is to optimize 
that ED. The problem .i.s now to choose N treatments from the r 
candidate treatments, resulting in the best N-point design. 
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Experimental designs.can be evaluated, using the variances of 
the parameter estimator V(~) or the variance[; of the response 
estimator V(y(x)) as a measure, see (3.1.14) and (3.1.16) 
respectively. in both cases the quality of the ED is a function of 
the matrix (XTXJ- 1 and the objective is to determine that ED among 
all possible N-point EDs which makes (XTXJ- 1 minimal. However, the 
minimum of a matrix is not a well defined concept and a number of 
operational criteria have been developed. The mo:.;t important of these 
criteria are: 

- D-optimality, which is achieved if det (XTXJ- 1 is minimal, i.e. 
if the product of the eigenvalues of (XTX)- 1 is minimal. 

-A-optimality, which is achieved if tr(XTXJ- 1 is minimal, i.e. if 
the sum of the eigenvalues of ( xT X) - 1 is minimal. 

- E-optimality, which is achieved if the largest eigenvalue of 
(XTXJ- 1 is minimal. 
G-optimality, which is achieved if the max!m~m over all candidate 
points of the estimated response variance V(y(~)) is minimal. 

- V-optimality, which is achieved if the estimated response 
1 r .• 

variance, averaged over all candidate points, -r [ V(y(x.)) is 
j=1 -J 

minimal. 

1.1.1 ~efinitiQn_of th~ ~xEe£imentgl_d~sign 
An N-point ED is completely specified by the choice of the 

candidate treatments and of the number Nj (Nj 1 0) of observations 
under candidate treatment ~j (j = 1, 2, ... , r), such that (3.1.18) 
holds. The numbers N 1, N2, ... , Nr are the elements of a column N: 

(3. 3 .1) 

For each of the numbers N1, ... , Nr upper and lower bounds can 
be specified, apart from the trivial condition 0 i Nj iN for j = 1, 
2, ... , r. Some typical conditions are: 

Nj i 1 if point ~j is allowed only once, 
1 i Nj if point ~j should appear at least once, * 
Nj i Nj if an existing ED has to be augmented and already Nj 
observations have been made in point X·· 

-J 

In practice the number r of candidate treatments and each of 
the numbers N1, ... , Nr are finite and integer. For numerical 
purpose~;, however, it may be advantageous to allow these numbers to 
be real. An ED with integer numbers is called an exact ED. Otherwise 
the ED is called discrete. 
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1.1.1 Ih~ in!o~m~tion matrix_and_nQrmalike1 QPtimality_c~ite~i~ 
The matrix xTx can be normalized, resulting in the information 

matrix M, where: 

M(N) = 1 f N- !(~J.) ~T(~J.) 
~ N j=1 J - - - -

(3.3.2) 

* In order to determine an optimal ED we try to find a column N for 
which a given criterion C(N) is minimal and for which the constraints 
are not violated. This criterion may be any of the earlier given 
criteria. Written in terms of M instead of xTx these criteria take 
the following forms: 

C(~) det(M- 1 (~)) for D-optimality 

C(~) tr(M- 1 (~)) for A-optimality 

C(~) ;.max(~) for E-optimality 

where Amax(~) is the largest eigenvalue of M- 1(N) 

C(N) 

C(~) 

r 
max d(x., N) for G-optimality 
j=1 ~J ~ 

1 f d(x., ~) for V-optimality 
r j=1 ~J 

(3.3.3) 

( 3. 3. 4) 

(3.3.5) 

(3. 3. 6) 

( 3. 3. 7) 

In the last two criteria d(x, N) is the variance of the response 
estimator in the point ~· n~rmalized for o2{N: 

(3.3.8) 

1.1.2 QptimikatiQn_algQrithm& 
Four classes of optimization algorithms can be distinguished. 

The first class contains algorithms which generate and evaluate all 
possible N-point designs. This is very time consuming and only 
feasible for small values of N. As a variant Welch (1982) developed a 
"branch and bound"-algorithm, in which a binary tree of minimization 
problems is generated. Not all designs are generated and evaluated. 
By exploiting bounds on the minimization only branches which might 
contain D-optimal designs are created. The algorithm guarantees 
global D-optimal designs, but computing costs are extremely high. 

The second class of algorithms uses mathematical optimization 
techniques for a direct maximization of det(M(N)), which is 
equivalent to minimization of det(M- 1 (~)). Due~to the complexity of 
det (M(N)) these methods are not successful. 

The third class of algorithms neglects the integer character of 
the components of N and, in consequence, results in a discrete ED. 
Subsequently this ED is rounded off to an exact ED. This may result 
in a good approximation if the number of points, N, is sufficiently 
higher than the number of parameters k. For this reason discrete 
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designs are sometimes called "approximate designs". Such a design can 
be used as an initial design in exchange algorithms. Algorithms for 
the construction of optimal discrete designs depend on the optimality 
criterion to be used (Fedorov (1972)). 

Finally, the fourth class concerns exchange algorithms. 
Mitchell (1974 a, b) developed an efficient algorithm called DETMAX, 
which is the most popular of all exchange algorithms. The algorithm 
starts with an initial m-point ED; the final goal is an optimal N­
point ED. During each iteration step that candidate point, which 
results in the largest increase of det(M), is added to the design, 
and subsequently that point, which results in the smallest decrease 
of det:(M), is removed from the design. The number m of points in the 
initial design may be larger or smaller than N. If necessary the 
algorithm first adds (if m<N) or rejects (if m>N) points until the 
number of points in the ED is equal to N. In order to avoid local 
c>ptima the algorithm is able to perform "excursions", in which 
several points are added at one go and subsequently the number of 
points is reduced to N. If the resulting N-point ED has not been 
improved, another excursion will be made from the same initial 
design. If the excursion is successful the resulting ED will be used 
as starting ED in a further attempt to maximize det(M). The algorithm 
terminates when, after several excursions, no better ED is found. The 
algorithm generates high quality EDs against relatively low computing 
costs. 

}.}.f Ro.l:!u2t_e~p~rim~n.tal ge2i.9.n2 
An ED is called "robust" if parameters and responses can be 

adequately estimated, even when the basic assumptions, for the 
construction of the ED, are violated to some extent. We might, for 
example assume that the considered response quantity is stocha:;ti.c 
with a N(O,o2) distribution. In order to construct EDs we must 
specify a regression model in advance. However, the goodness of fit 
of the model can be checked only after the observations have been 
made. The model may prove to be biased and is said to be not exact. 

Optimal EDs based on the criteria discussed earlier, show a 
dependency on the postulated regression model. They do not result in 
good estimates of the parameters when the exact model differs 
significantly from the assumed model. 

In order to account for bias, the so-called ,T-criterion can be 
used (Box and Draper (1959)). This criterion i.s defined as the 
average mean squared error over all candidate points, normalized for 
o2/N 

N 1 r 
y(~j))2] .T ;;zr r E[ (y(x.) - (3 0 3 0 9) 

j=1 ~] 

J can be expressed as the sum of a variance and a bias term: 

,J = v + B, (1.1.10) 

where v is the normalized average variance: 
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v ( 3. 3. 11) 

and B is the normalized average squared bias given by: 

N 1 r • 2 
B = ~ r j~1 (E(y(~j)) - y(~j)) ( 3. 3. 12) 

A problem is that B depends on o2 and on the unknown exact responses. 
However, Welch (1983) developed a method for the construction of 
robust designs based on the J-criterion. Nagtegaal (1987) generalized 
the method to the case of simultaneous observations of several 
response quantities. 

Whether or not a postulated model is exact is seldom known 
beforehand, and one may be tempted to use robust designs in each 
case. This is not recommended, because in experiments where the model 
is nearly exact a robust design would increase the variance much more 
than it would reduce the bias. In this case a robust design will 
result in worse parameter- and response estimates, compared to 
designs based on one of the earlier mentioned criteria. Robust 
designs should be used only in those cases where the adequacy of the 
postulated model is seriously doubted. 

A first choice of the regression model can be based on 
experience, on preliminary measurements or on theoretical 
considerations about the system under study. rn general it is 
worthwhile to invest relatively much effort in such examinations. 

3.4 Experimental designs in case of :;imultaneous observation:; of 
several quantities 

1.1.1 IntrQd~ctiQn 
Sometimes more than one response quantity is relevant. Each of 

these quantities will have its own functional relationship with the 
control variables. Often they will be correlated, because they emerge 
from the same system. 

A possible approach in the case of several responses would be 
to perform an experimental investigation for each response quantity 
separately. From economical point of view it is much more favourable 
to construct one optimal ED, which takes into account all response 
quantities simultaneously. 

In Chapter 2 it was shown how partial derivatives of response 
quantities such as displacements and eigenfrequencies can be derived 
in FEM-formulations. Generalization to the ca~je of several responses 
allows us to make use of these derivatives in experimental design and 
model building. The models for the partial derivatives of a response 
quantity with respect to the control variables follow by 
differentiation of the postulated model of that response quantity. In 
the following subsections some generalized definitions and 
optimization criteria are presented. Generalizations of optimization 
algorithms can be found in Fedorov (1972) (forD-optimality only) and 
Nagtegaal (1987). 
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} . .4 . .£ J2efini.ti.Qn~ 
Let m be the number of response quantities y1, ... , Ym and let 

u be the column with these variables as elements: 

Since only linear models are used, response quantity Yj (j = 1, 2, 
... , m) is assumed to depend linearly on k, modelparameters, being 
the elements of a column p .. Then the mode~ equations are given by: 

~) 

yJ·(!_{) = f~(x)p. - ~J ~ ~J 
for j=1,2, ... ,m (3- 4. 2) 

where f,(x) is a column whose elements are given functions, the so­
~J ~ 

called model functions or regressor variables. 
The postulated models (3.4.2) can be represented in a compact 

form as follows. The columns containing the model parameters @1• @2• 
em are filed in a column @ given by: 

e = Ee1 e~ ... ~;]T (3.4.3) 

Column @ contains k elements, where k is given by: 

m 
k = [ k. 

j=1 J 
(3.4.4) 

Next, each column ~j{~) is extended with m-1 columns ~t' i 1, 2, 

m, i 'f j, each containing ki zeros, to a column ~j{~) given by: 

* _ ( T T T fT{ ) T T]T 
~j{~) - ~1 ~2 · · · ~j-1 ~j ~ ~j+1 · · · ~m {3.4.5 

Using these definitions the model equations (3.4.2) can be written 
as: 

{3.4.6) 

where F{x) is a {k*m) matrix, such that column j of F{x) is equal to . ~ 

f..(x}: 
~] ~ 

* • • 
F{~) = [~1(~) f21~1 ... fm(~)] (3.4.7) 

In this thesis our attention is focused on the special case in 
which elements of~{~), say yi(~}, 1 iii m-n, are response 
quantjties, while the elements Yi+ 1, Yi+2 , ... Yi+n are partial 
derivatives of Yi{!l with respect to the elements of !· Then only the 
column ~i(~) must be specified, since the columns ~i+ 1 (x) ... ~i+n{x) 
follow by differentiation of ~i(x) with respect to the elements of !· 
In addition all the c7lum~s ~i' !i+1 i'. ~itn are extended in the 
same way to columns ~i, ~i+ 1 ' . . . ~i+n, g1ven by: 



* f. 
~1 

* Ei+1 

* ~i+n 

[zT T 
~i-1 ~ 1 

[zT 
~ 1 

ZT 
~i-1 
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f~ 
~1 

ZT 
~i+n+1 

zT]T 
~m 

fT T ~~]T ~i+1 ~i+n+1 (3.4.8) 

Each of the columns in (3.4.8) contains k elements, where k is given 
by: 

i m 
k = [ kJ· 

j=1 
+ r k· 

j=i+n+1 J 
(3.4.9) 

Since the regression equations of response quantity yi(x) and its 
partial derivatives contain the same unknown parameters f3., t:he 

~1 

parameters in this special case can be filed in a column, given by: 

(3. 4. 10) 

Using the definitions (3.4.7) through (3.4.10) the regression 
equations for this case can also be written in the same compact form 
of (3.4.6). We illustrate this by means of the following example: 

~(~) = [y 1 Yz ... y 5]T where, for instance: 

~ = [x 1 x2]T and 

Y1 f31 + f3zx1 

Yz f33 + f34X2 

Y3 f35 + ~6x1 + f37X2 + f3ax1x2 

y4 
3y3 

f36 + f3sxz Ox1 

Then ~(X) = FT(~)! where FT(x) ~nd! are given by: 

FT(~) 

[~ 
I 

0 : 0 X1 I 0 0 0 

LJ 
0 I 1 x2 : o 0 0 

0 : 0 0 1 1 x, xz 
0 I 0 0 10 1 0 xz 
0 I 0 0 lo 0 x1 I 

[f31 
I 

f33 
I 

lls f36 137 f3s1T 13 2 I f34 I 
I 
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As in the previous section N, not necessarily distinct design 
points ~ 1 , ~ 2 , ... , ~N are to be selected from a set x of r candidate 
points. In these design points measurements will be carried out, 
resulting in values ~(~ 1 1, ... , ~(~N) for the responses !}.(~ 1 ), ... , 
l}.(~n). Denoting the difference between l}.(!il and ~(!il by ¥i it is 
::;een that: 

u(x.) +e. = FT(x.JP + ;
1
. fori= 1, 2, ... , N (3.4.11) 

~ ~l ~1 ~1 - -

It is assumed that the elements of ¥i are uncorrelated random errors 
with expected value zero and known constant variance. Furthermore it 
is assumed that ¥i and ~j are uncorrelated if i j j: 

E(e.) =0; E(e. e~) = o .. s2 fori, :i = 1, 2, ... , N (3.4.12) 
~1 ~ ~1 ~J 1) 

Here, Sis a known m*m diagonal matrix whose diagonal elements o1, 
om are the standard deviations of the response quantities y 1, ... 

Because the error variances are unequal, ~ ~hould be estimated 
using the methode of weighted least squares. By premultiplying 
(3.4.11) with s- 1 the new sample model becomes: 

for i=1,2, ... ,N ( 3. 4. 13) 

The errors ~i still have zero expectation: 

E(n·l = s- 1E(e.J = o 
-1 ~1 -

However, the error variance matrix of lJ.i• V(.g.), now becomes unity: 

There fore model ( 1 . 4. 11) satisfies the standard least: :>qua res 
assumptions and ~ can be estimated by an ordinary least squares fit 
of the new model~ 

Estimates e for the model parameters ~ can now be determined 

from the requirement that the weighted residual sum of squares, 

( 3. 4. 14) 

is minimal. As in section 3.1, this results in a set of k equations 
for @ with the solution 

fJ_ = [ ~ W(x.} WT(x. 1)- 1 ~ [W(x.) w(x, }) 
i=1 -1 -1 i=1 -1 - -1 

( 3. 4. 15} 

According to (3.4.15} a weighted least square~ e5timator 1 can be 
defined a:; 



3. 16 

N N 
[ [ W(x.) wT(x.Jr 1 r [W(x.) H(x.)] 
i=1 ~1 ~1 i=1 ~1 ~ ~1 

(3. 4. 16) 

While 

. N 
wT(x. )]-1 

N 
E(~) [ [ W(x.) i~1W(~i) Ew(x.) 

i=1 ~1 ~1 -;;;- ~ 1 

N 
wT(x.Jr 1 N 

= [ r W(x.) i~1 W(~i) W(~i)~ = ~ i=1 ~1 ~1 
(3. 4.17) 

(3.4.16) is an unbiased estimator for the parameters~. Furthermore 
it can be shown that the variance-covariance matrix ol the parameter 
estimators, i.e. E(j.- ~)(j_- ~)T is given by 

. 
V(~) 

[i~1W(~i) WT(~i)]-1 
N 

where M = ~ r [W(x.) WT(x.)] is the information matrix. 
i=1 ~1 ~1 

(3. 4. 18) 

If the parameters are estimated by an ordinary least squares 
fit of the original model (3.4.11) then 

N N 
~- = [ r F(x.) FT(x. >r 1 [ [F(x. l u(x. l] 
~) i=1 ~1 ~1 i=1 ~1 ~ ~1 

( 3. 4. 19) 

. 
is obtained. ~ is unbiased, that is, E(~) = ~O however, 

• N N 
V(~-l = [

1
.=r

1 
F(x.) FT(x.>r 1 I: [F(x.) s2 FT(x.)]• 

~ ~1 ~1 i=1 ~1 ~1 

(3.4.20) 

If S~ =I then V(io) = V(j_). If s2 t I then V(io) V(~), i.e., V(io) 
> V(~) is a positive definitive matrix and an ordinary least squares 
fit of (3.4.11) results in greater variances than a weighted least 
squares fit. 

In order to estimate 1L the error variance matrix s2 should be 
known beforehand. When s2 i; unknown, s2 and H. can be estimated using 
an iterative reweighted least squares procedu;e: 

step 1. Compute the ordinary least squares estimations for the 
original model (3.4.11) 
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step 2. Compute initial estimations of the error variances 
according to 

·2 1 N • 2 
o· .......- .[ [yJ·(x

1
.)- y. (x.)] for j Jo ~-~ 1=1 ~ Jo ~1 ... ' m 

where Yjo(~il f~ (x.) =~ i = 1 , .. . , N 
~) ~1 

and con~truct so o1o 0 

0 

• -1 
step 3. Premultiply model (3.4.11) with s0 This results in a 

transformed model: 

i = 1, ... , N (3.4.21) 

step 4. Apply the ordinary least squares method to this 
transformed ~odel (3.4.21). This !esults !n new 
estimations ~ 1 for which holds V(~ 1 l .s_ V(~) 

step 5. Compute new estimations of the error variances of the 
original model (3.4.11) according to 

N • 2 
_[ [YJ·(x

1
.)- YJ· (x

1
.)] /(N-k), for j 

1=1 ~ 1 ~ 
1, ... , m 

. 
where YJ· (x.) 

1 ~1 
T . 

f. (x.) {!
1 ~ J ~ 1 . 

i 1, ... , N 

. 
and con~truct 51 

. . 
Step 3 - 5 are repeated with s1 instead of s0 , then with s2 , and so 
on, until 

II ~i - R-i _1 II i eps II ~i II 

where eps is the relative machine precision. 
. 

Using these results, unbiased estimators !,!.(~) for the response 
quantities can be derived from: 

u(x) .,.. ~ 
(3.4.22) 
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The variance-covariance matrix V(.lJ.(~)) is given by: 

(3.4.23) 

. 
From (3.4.18) it is seen that V(~) is determined completely by the 
statistical properties, S, of the measurement errors, the model 
functions F = F(~) and the design points ~ 1 , ... , ~tl· Assuming that 
the error variance matrix s.is known, then, for a given number N of 
design points the matrix V(~) can only be influenced by the choice of 
the design points ~l' ... , ~N from the set x of candidate points ~ 1 , 
... , ~r· As in section 3.3, the objective of optimal design of 
experiments for simultaneous responses is to determine the number 
Ni(NilO) of observations at candidate point ~i(i=1, 2, ... , r), such 
that N1 + N2 + ... + Nr equals the number N of design points. Using. 
(3.4.18) it; is readily shown that the variance-covariance matrix V(~) 

. T • 
can be considered a function of the column ~ = [N1 N2 ... Nr] , 

where M(~) follows from (3.4.18) 

N 
M(N) =1 r [W(x.)WT(x.)] 

N j=1 ·J ·J 

l.f.l Qptimality_c~ite~i~ 

1 r T 
N-- r [N.W(x.)W <x·l] i=1 I -I •I 

In the previous subsection it has.been shown that the 

(3.4.24) 

(3.4.25) 

accuracies of the parameter estimators I and of the response . 
e1;timators y(x) are determined by the v~riance-covariance matrix V(JL 
N) and ther~f~re by the elements of N. These elements may be subjec~ 
~o constraints. As in subsection 3.3~4 this leads to the following 
definition of an optimal experimental design: 

the design of an experiment, characterized by N*, is optimal if 
the elements of N* satisfy all specified const~aints and a 
specified criterion C = C(~) is minimal for N N* 

The D-, A- and E- criteria remain the same: 

C(N) det(V(I, ~)) forD-optimality (3.4.26) 

C(N) tr(V(~, N)) for A-optimality (3.4.27) 

C(~) '-max(~) for E-optimality (3.4.28) 

where '-max(~) is the maximal eigenvalue of V(.@,)(~) (3.4.29) 

Nagtegaal (1987) proposes the following G- and V- criteria 

r 
C(N) max [tr(V(y(x.))] for G-optimaljty 

i=1 - -I 
(3.4.30) 



3. 19 

C(N) 1 f [tr(V(g(x.Jl] for V-optimality 
r i=1 - ·1 

(3.4.31) 

Note: when the error variance matrix s2 is unknown, successive 
estimations of s2 can be obtained by applying the iterative 
model building procedure of Fig. 4.1. 

3.5 Model fitting and testing 

1.2.1 IntrQdgctiQn 
The construction of a reliable model for a given system or 

structure is an iterative process. At the start of each iteration 
step the number k of model parameters ~ 1 , ... , ~k and the presumed 
model functions fi(~), i = 1, 2, ... , k must be aviiilable. The 
iteration step then involves the design of an experiment to collect 
data, estimiition of the parameters from the collected data and 
evaluation of the model. Evaluation implies answering questions like: 

- Is the model 1ralid? 
- Are the estimated parameters accurate enough? 
- Is the model accurate enough for all relevant values of x? 
- Which parameters are relevant and which parameters can b~ dropped 

without affecting the predictive ability of the model too much? 
In the next subsection procedures for selecting regressor variables 
will be discussed briefly. Testing procedures will be discussed in 
Subsection 3.5.4. 

1.2.z ~elehtion Qf_r~gLe~sQr_vgriaQl~s 
Experimental design as described in the previous sections, is 

based on a postulated regression model of the type (3.4.2). The 
problem now is to decide which terms or "regressor variables" should 
be contained in a regression model for a particular response 
quantity. For the selection of the regressor variab:i.es several 
algorithms have been developed. 

The backward elimination algorithm starts with the full model 
and subsequently removes non-significant variables in successive 
~;teps. The forward selection algorithm starts with the most 
significant regressor variable and adds significant variables 
successively. 

A popular and effective algorithm is the stepwise regression 
algorithm, developed by Efroymson (1960). Stepwise regression can be 
regarded as a combination of forward selection and backward 
elimination. A concise description is given below. 

In order to decide whether or not a certain parameter ~i and 
its corresponding regressor variable fil!l should be preserved in the 
model or removed from the mQdel a criterion is needed. For this 
purpose iin F-test quantity Fi is used, defined by: 

·2 
~· _1 __ 

V(1!.) .. 
- 11 

for i 1, 2, ... ' k, ( 3. 5. 1) 
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where ~i is an estimate for the parameter ~i• and VIII·. is the 
. d . ' h • -ll. . estimate variance of ~~~t parame~er. T e term lifi~!l Is said to be 

more significant than Rjfjl!l if Fi is larger than F:. Using these 
notio~s the stepwise regression algo~ithm adds the mlst significant 
term 1-J· LJ· ( x) to the model for which F: is larger than a predetermined - J • • 
F-value to enter and subsequently removes term lifil!l for which Fi 
is smaller then a predetermined F-value to remove. Details of the 
algorithm c11n be found in a paper of Efroymson (1960). 

l-2-l £aLameteL ~stimatiQn 
Methods for estimation of the unknown parameters ~ and their 

variances and for estimation of the response quantities-and their 
variancies have already been described in the Sections 3.1 and 3.4. 
Section 3.1 treats a single response quantity, whereas Section 3.<\ 
treats the general case of several response quantities, some of which 
possibly may be response quantities and their partial derivatives 
with respect to the control variables x. 

1.2.1. .IeJ2.t!i ioL mo1el ~d~qy_a~y 
Several tests and criteria for a judgement of the ~>del 

adequacy are available. It is emphasized that the model should be 
tested usinq newly collected data. Tests based on data which were 
used to derive the model can be deceptive and dangerous. From careful 
inspection of the residuals, i.e. the discrepancies between observed 
and predicted values, one can learn much about the validity of the 
model. Assumptions about distributions of errors and the significance 
of the selected regressor variables can be tested. Draper et al. 
(1981) give a comprehensive treatment on the subject. Plots of 
residuals are very illustrative; common plots include normality plots 
and plots of residuals against predicted values or against control 
variables. 

The variance estimator.(3.4.24) gives a measure of the accuracy 
of the parameter estimators Q. If the observations follow a normal 
distribut.ion, then the param~ters j are also normally distributed and 
confidence intervals for the parameters can be calculated using: 

which follows an N(O, 1) distribution if o2 and hence V(~i) 
Based on estimated parameter variances confidence intervals 
parameters can bE: derived from: 

t· -I 

( 3. 5. 2) 

is known. 
for the 

(3.5.3) 

where ti is a random variable following a Student's t-distribution 
with n-k degrees of freedom. 
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If the normal equations are ill conditioned, the parameters 
will become unstable. A slight modification of the observations will 
result in considerable changes in parameter values. Hence, the condi­
tion number of the matrix M provides another criterion for parameter 
judgement. 

For a judgement of the predictive ability of the model the 
residuals of the responses should be examined. The mean of the 
squared residuals providet; an "overall" mea!:iure for the predictive 
quality. It is an estimate of t~e response variance. For example, the 
estimated response variance of y can be computed from: 

V(y) (3.5.4) 

As recommended before, here newly collected data should be used in t 
adequately chosen points. The new set of data points may be generated 
using a block (or fraction) of a zn-design, which has not yet been 
used. Experimental design methods render efficient facilities to 
generate a set of 'optimal" testing points, by augmenting the 
experimental design (Nagtegaal (1987)). When added to the old data, 
they may result in improved parameter estimates. 

If the outcomes of the model testing ask for further model 
improvement, it is necessary to initiate another model building cycle 
consisting of design, data collection, model fitting and again 
testing. The mrniel building process will be considered in Chapter 4. 

3.6 Experimental design of deterministic processes 

The experimental design theory has been developed for the 
planning and evaluation of physical experiments with random errors. 
The consequences of applying this theory for the planning and 
evaluation of numerical experiments on very complicated deterministic 
mathematical models, for example, finite element analyses, are not 
trivial and will be discussed below . 

.t;x.P.e.r.iment~l_d~sign 

In general the poztulated linear model in an experimental 
design for some deterministic process is biased and, by definition, 
doe!:> not !:ihow a random error. In order to find an optimal design for 
this situation the ,J-criterion for robust designs could be used. 
However, the following approach may yield better results. 

In practical situations often a realistic linear model can be 
postulated using experience and/or preliminary investigations. Then 
experimental designs can be obtained in the same way as for 
stochastic proces!:ie!:i. Optimization using the common algorithm!:> and 
criteria may yield designs for which the condition of the set of 
norma 1 equations will be improved. 
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£a£amete£ ~stimatiQn 
In deterministic processes estimation of the parameters ~ can 

be carried out in the same way as in stochastic processes. The~ 
measures of accuracy of the estimated parameters and response 
quantities can be computed as in the stochastic case. However, there 
is a difference because the variance of a deterministic response 
quantity is zero. We loosely keep speaking of "variances", although 
such quantities are.ns!t defined in determiJ;.Jbtic processes. 

The variance V(@l of the parameters @ is defined analogously to 
( 3 . 4. 18) as: 

V(@) = N M- 1 (3. 6. 1) 

The vari(}nce-covariance matrix of the deterministic response 
quantities, V(~(~)), can be computed analogously to (3.4.23) by: 

( 3. 6. 2) 

where V(@l is computed from (3.6.1). 

~ele£tion Qf_r~gre~sQr_v~riaQl~s_in geterministi£ ~rQc~s~es 
For the selection of regressor variables F-tests are used which 

are analogous to (1.5.1): 

F· 1 

~? _1 __ 

V(~) .. 
~ 11 

i 0, 1' ... k (3.6.3) 

In physical experiments a certain parameter ~i is regarded 
significant (~if. 0) or not (fti = 0), depending on whether or not Fi 
exceeds a critical value taken from an F-table. The test is used to 
include the corresponding regressor variable in the model if ~i is 
significant, or to remove that variable if JJ.i is not significant. 

In deterministic processes we can use this selection procedure 
as well; however, it cannot be stated that Pi is significant or not. 
In general the correct variables will be selected in the regression 
model, but this cannot be proved. Tests for model adequacy should be 
used as a final approval of the regression model. 

Mogel te~ting: 
The test for model adequacy can be performed using the same 

procedures as for stochastic processes. However, confidence intervals 
for estimated par<~meters cannot be defined. 
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3.7 CADE. an interactive program for computer aided design and 
analysis of experiments 

Nagtegaal (1987) developed a computer program called CADE, 
which stands for "Computer Aided Design of Experiments". Also 
facilities for the analysis of experiments have been implemented. For 
the experimental design part, the core of the program ACED (Welch 
(1985)) has been used. In CA!JE the optimality criteria and algorithms 
of ACED have been generalized to the case of simultaneous observation 
of several response quantities. Facilities for the selection of 
regressor variables have been implemented. The ~;election procedures 
are capable of handling partial derivatives by means of an iterative 
reweighted least squares procedure. The interactive program is menu­
driven using the command interpreting program COIN (Banens (1981)). 
CADE contains approximately 21000 lines, has been coded in Fortran 
77, and runs on an Apollo 03000 workstation. 

CADE consists of three main modules, being model input, design 
of experiments and model fitting. 

In the model input module all kinds of linear models r::an be 
entered, stored in a file or read from a previously prepared file 
without the need for user supplied subroutines. 

The module for the design of experiments offers the following 
facilities: 

optimal design for a single response and for several responses is 
possible. 

- the D-, V-, G- and J-criteria are implemented. 
- the available optimization algorithms include the "Oetmax-

excursion-algorithm", a "Branch & Bound-algorithm", both for 
exact designs, and an "Approximate-algorithm" for discrete 
designs. 

- determination of the characteristics of user-supplied 
experimental designs. 

- augmentation of experimental designs. 
- generation of (fractional) 2n-designa. 

Finally, the main characteristics of the model fitting module are: 
- regressor variables can be selected by means of Efroymson's step­

wise regression procedure, extended with procedures for backward 
elimination and forward selection. Regressor variables can also 
be selected "by hand". 

- regressor variables can be protected against removing from the 
model. 

- parameters are estimated accurately by means of QR-decomposition, 
followed by an iterative refinement procedure. 
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CHAPTER 4: BUILDING AND APPLICATILITY OF REGRESSION MODELS BASED ON 
NUMERICAL COMPUTATIONS 

4.1 Building regre~sion models 

Draper et al. (19811 give guidelines for building regre~~ion 
models based on physical experimentation. In this section we apply 
these rules to regre~~ion models based on numerical computation~. 
First we will make some remarks about linear and nonlinear regression 
models. Next, aspects are discussed of respon~e quantities, control 
variables and feasibility, followed by aspects of the preliminary 
choice of a regression model and the iterative development of that 
model. Finally, operational aspects of regression models are 
discussed. 

1.1.1 Line~r_and_nQnline~r_r~g£e~sion 
Regression models can be catagorized in so-called functional, 

control and predictive models. We will give a short explanation of 
the differences. 

Functional models, in literature also indicated as mechanistic 
models (Box et al. (1978)), can be u~ed if there is a fairly detailed 
knowledge, often a set of differential equations, of the system under 
consideration. The unknown parameters generally appear in a nonlinear 
way in the model, and a least squares fitting of the model requires 
the solution of a nonlinear set of normal equations. Such a ~olution 
may be obtained by means of mathematical programming methods. In the 
present research we will concentrate on the combination of structural 
optimization and experimental design using less complicated linear 
regression model~. 

In structural optimization we are concerned with control of the 
~tructural behaviour by means of adju~ting the values of the de~ign 
variables. What we need is a so-called control model, in which the 
design or "control' variables are under the control of the 
investigator. With the term "control variables" we mean "design 
variables" or 'factors" as far as ~tructural optimization or 
experimental design is concerned respectively. For certain classes of 
structural analy~is and optimization problem~ useful control models 
can effectively be derived by regression techniques using finite 
element analyse~ and experimental designs for linear model~. 

In many practical situations where experimentation has to be 
performed on running processes, the factors are not completely under 
the control of the experimentalist. In such situations experiments 
cannot be designed, but still one can often obtain a so-called linear 
predictive model, which at least can reproduce the main effects of 
the considered response quantity. Regression techniques are much used 
to construct predictive models. However, since we are concerned with 
designed (numerical) experiments, we will not discuss this type of 
model any further. 
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1.1.l ~ele£tion Qf_r~sEons~ gu~niiii~s_and_cQnirQl_v~riaQl~s 
In constructing a regression model the first important task is 

to define the problem as clearly as possible. This definition should 
include those response quantities and control variables which play a 
role in the problem. The pursued regression models should be able to 
estimate response quantities accurately, with values for the control 
variables as input data. 

Re~pQn~e_qMantitie~ 
With a response quantity of a system we mean some behaviour 

variable of the system which, in our case, can only be evaluated by 
means of an analysis of the system, given a proper set of design 
variables. In general structural analyses produce a lot of response 
quantities. It is important to get clear which of these quantities 
are needed in the model building process. The relevant response 
quantities are closely related to the aimed goals of the 
investigation, so a formulation of these goals has to be available. 
To obtain afterwards data for an overlooked response quantity usually 
requires great extra effort or may even be impossible at all. 
In many cases response quantity values emerge directly from the 
analysis of the system, but sometimes one or more transformations are 
necessary to derive such a value from analysis results. In the latter 
situations two approaches are possible. The first is to perform those 
transformations first and to use the resulting response value in the 
model building process. In the second approach regression models are 
first fitted on the separate analysis results and the transformation 
is performed on estimates computed using these regression models. The 
advantage of the first approach is that finally less data (regression 
parameters) is involved. In the second approach the regression models 
may be fitted more easily in case the individual regression models 
are of relatively low order. 

~onti.ol yai,i~ble~ 
The investigator who tries to define the control variables 

often ends up in conflicting situations. On the one hand he wants to 
take "everything" into account to be sure that nothing important is 
overlooked. On the other hand the regression model should be as 
simple as possible, resulting in less model building effort, and in 
less variance in the model due to not including redundant variables. 
Nevertheless, the investigator should start with much freedom to 
consider a certain variable of possible importance. The selection 
process can be supported by adequate computer programs, but one 
should never solely rely on computer outcomes. It will be wise to 
consult experts both on model building and on the physical system 
under study. 

In many problems the control variables can readily be 
identified as a set of discrete quantities which define the system 
and which, of course may be of different individual importance. 
However, sometimes control variables are defined more complex, for 
instance as certain classes of functions. The geometry in shape 
optimization problems may be regarded as such a control vari.able. 
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It is reco~mended to transform both the response quantities and the 
control variables to a set of dimensionless quantities. This can be 
done by m~ans of a dimensional analysis (Langhaar (1960), Kline 
(1965)). Introduction of dimensionless quantities may have the 
following advantages: 

- The total number of response quantities and control variables can 
be reduced by the number of the elementary dimensions in the 
problem. 

- Insight into the behaviour of the system may be enlarged. 
- Scaling the variables to obtain a well conditioned regr~ssion 

problem, will be mor~ straightforward. 

1.1.1 AsQ~£t~ Qf_cQlle£ting th~ 1ata 
Concerning the data collection in numerical eKperimentation, at 

an early stage the following aspects have to be considered. 
The investigator must build and test an efficient and accurate 

numerical model, often a finite element model, of the system under 
study. Generally the control variables for th~ regression model must 
be transformed in input data for the finite element model (FEM), and 
the output of the finite element analysis usually also has to be 
transformed in order to obtain observations for the required response 
quantities. Sometimes the link between a certain response quantity 
and the FEM-output is simple: for instance the lowest eigenfrequency 
of the structure, or the Von Mises stress in a certain element node. 
User-friendly FEM-packages have features to gather such information 
in a manageable file. In more compleK situations, one may be obliged 
to write an interface program between the FEM-output file and the 
regression analysis program. 
At this stage of the project the investigator should check whether or 
not appropriate hardware and software is available to perform the 
transformations and computations. 

Ii.rst £h~c]S_ g_n_f~a;iihility 
At this stage a rough estimate of the required budget has to be 

made. Till now, rather little human and computational effort have 
been invested, but already a considerable knowledge is gathered about 
the problem. Using this knowledge, a first feasibility study can be 
carried out. The study should result in one of the following three 
outcomes: 

The project is infeasible and has to be stopped. 
- The project should be revised and checked again. 
- The project is allowed to proceed; in this case we proceed 

according to the neKt subsection. 

i .1.1 !1 I?.r~liming,ry I,egr~s§.iQn __ mQd~l 
In deriving a preliminary regression model we have the 

following objectives: 
- Gathering more detailed information about the behaviour of the 

system under study; we use this information to formulate a more 
established experimental design. 
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- Making a realistic time planning of the project, and producing 
fairly accurate estimates of the human and computational efforts 
and of the budget that is required. 

The preliminary computations need not necessarily be formulated 
as an experimental design. If very little is known about the 
behaviour of the system one can start with computations in which the 
control variables are changed one at a time. A disadvantage of this 
approach is that interactions between the variables will not be 
revealed. Even a rather simple regression model, derived from a very 
first formulation of an experimental design, is a more structured way 
to achieve the objectives mentioned above. Whatever the approach may 
be, it is recommended to start tentatively and to spend not more than 
one quarter (25\-rule of Box et al. (1978)) of the budget as 
estimated at the first feasibility check. 

The way in which the preliminary model is derived may be 
essentially the same as one iteration cycle of the further 
development of the regression model (Fig. 4.1) and will be discussed 
in the next subsection. 

1.1.~ QeyeloQm~nt Qf_the_r~gKe~sion ~agel 

The development of the preliminary model into the ultimate 
regression model globally proceeds according to the scheme shown in 
Fig. 4. 1. 

The preliminary regression model can be used to perform a 
second screening of the control variables in two ways. 

First, the xTx-matrix of the underlying experimental design can 
be written in the so-called correlation form (Draper et al. (1981)). 
Marquardt (1970) gives the nqe that the diagonal elements of the 
inverse of this correlation matrix should be larger than 1.0 but 
certainly smaller than 10.0. Violation of the latter limit indicates 
that the current data are not appropriate to produce valuable 
estimates for the regression coefficients. It may be an indication to 
modify the underlying linear model. 

Next, for every response variable the correlation with the 
control variables is checked. Every response should show one or two 
strong correlations. If this is not the case, perhaps an important 
variable was overlooked or the range of variation of one or more of 
the variables is too small, resulting in poor predictive properties 
of the regression model. 

Once the experimental design is more established, more reliable 
estimates can be made for the financial budget, human effort and 
needs for hardware and software. The schedule can be updated and the 
whole project has to be submitted for approval. The possible outcomes 
of this second checkpoint are similar as before: 

- The project is stopped. 
The project is revised and submitted again. 

- We proceed the project with the further development of the 
regression model. 
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ReYi2iQn_of ih~ ~xQe£iment~l_d~sign 
Using the information obtained from the preliminary or the 

current regression model, the experimental design can now be revised 
with respect to the following aspects: 
- The set of relevant control variables and their ranges and the 

regression equations must be adapted. 
- Depending on the outcomes of the previous point, for every control 

variabl~ a suitable number of discrete levels and values for the 
levels must be chosen. These choices depend on whether or not 
partial derivatives of the response quantities will be used to 
estimate the model parameters. 

- If more than one response quantity is involved, one may decide to 
treat these quantities one at a time and formulate experimental 
designs for every individual response quantity. Generally such an 
approach is very inefficient and one of the following two 
approaches is used: 
1. By inspection we formulate a linear model incorporating the 
expected models of the individual response quantities. Thi:; model 
is used to formulate the experimental design. (Of course, after the 
observations having been made, for every response quantity its own 
set of parameters is estimated.) 
This approach is feasible if the linear models for the individual 
response quantities do not differ too much; in this case all 
methods described in Chapter 3 can be used. 
2. If quite different linear models are related to the response 
quantities, and/or if partial derivatives of the quantities will 
brought into account, it is then recommended to use those methods 
described in Chapter 3, through which an experimental design can be 
optimized based on several simultaneous linear models. 

- Next, the set of design points which build a complete experimental 
design can be formulated. Generally a complete design is infeasible 
because it contains far too many design points a~d, in the case of 
zn-designs, a fractional zn-design is developed. In the case of 
optimal experimental design the points of a complete design build a 
possible set of candidate points. So many candidate points, 
however, may be infeasible as well and we should reduce their 
number. A reasonable choice may be defining the set of candidate 
points as a fractional 211 -design. Sometimes there are practical 
reasons to eliminate certain points from the set of candidate 
points. As an example of such a situation the reader is referred to 
the derivation of the general bell model in Section 6.3. 

- Finally we estimate the number of design points needed in the 
ultimate fractional design, and we decide how many points will be 
used in the next experimental design. Choices depend on the method 
used in the experimental design. In fractional zn-designs one may 
use blocks derived from related defining contrasts. In optimal 
experimental design methods one is freer to choose the number of 
design points. Generally the points already used in the preliminary 
design will be maintained and the next experimental design is 
formulated augmenting the current one. 
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We proceed with short explanations of the remaining steps of the 
scheme in Fig. 4.1. 

I Start I 

l Preliminary model I 

Experimental design I 

I Revision of ED. I !Collecting the data 
~~~~~ ~ 

J 

I Model fitting I 
~ 

I Model testing J 
~ 

N 
(Passed?) 

YJ 
!Checks on project goals] 

~ 
N (Passed ? 

yl 
I Finished I 

Fig. 4.1 Scheme for model building 

~XEe£iment~l_d~sign 
The major task in this step is to determine the set of design 

points. Possible choices are, for instance, a new block in a 2n­
design, or an augmentation of the current set with a rather arbitrary 
number of new points in the case that the optimal design theory is 
used. 

~oll~c.t.;ing_the_d.9,t.2, 

Usually the revision of the experimental design has no 
consequences for the collection of the data, and the same procedures 
as described in Subsection 4.1.3 will be used. 
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Mogel fitting ~ng te~tlng 
After the data has been collected, for every response quantity 

a linear model must be fitted. These models must subsequently be 
tested on their validity and predictive ability. The tests which are 
relevant for our purpose are mentioned in Section 3.5. Once more we 
emphasize not to rely solely on computer tests; one should also check 
the models with common sense and consult experts on the problem under 
study for their appraisal. 

£h~c)Ss_on .QrQkct go~l~ 
Finally the goals and the resources of the project will be 

checked and we must find out whether the model building process can 
be successfully terminated or a next cycle will have to be initiated. 

We will conclude this subsection with a typical use of the 
scheme in Fig. 4.1 in conjuction with optimal experimental design. If 
the experimental design is augmented with a certain set of design 
points, the optimality criterion (see Subsection 3.3.2) does not 
always have to remain the same. In subsequent model building cycles a 
reasonable alternative may be chosen, for instance 
1. minimization of det((XTXJ- 1), resulting in good parameter 

estimates (D-criterion). 
2. minimization of the maximum response variance, resulting in good 

predictive ability in limited areas (G-criterion). 
3. minimization of the mean response variance, re3ulting in good 

predictive ability in a wide area (V-criterion). 
Neither the number of points added in the subsequent augmentations 
need not always be the same. If the model building process evolves, 
the model becomes of higher quality and the number of points in 
augmentations may be lowered. 

f.1.f Qp~r~ting regr~s~iQn_mQd~l~ 
Regression models based on numerical experiments, can be used 

in several ways; in the next section we sum up the most important 
kinds of application. In this thesis we are most concerned with 
procedures for structured development of regression models. However, 
till now the use of the developed models happened merely according to 
'ad hoc" procedures. Such a use of regression models is not the most 
efficient one, and we will write down some ideas which probably will 
enhance future use. 

After a regression model has been developed, the following data 
should be properly recorded: 

- the coding and physical meaning of the response quantities. 
- a measure for the predictive ability, for instance the variance 

of the response quantity. 
- the coding and physical meaning of the control variables. 
- the ranges of the control variables and perhaps some additional 

constraints. The user of the model should respect these limits as 
a necessary demand to avoid extrapolation using the model, 
probably resulting in poor behaviour of the model. Some 
additional comments on this subject will be made later. 
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- the number and types of the model functions in the regression 
equations. 

- the estimated model parameters. 
Finally it is recommended to record the set of design points on 

which the regression model is based. This information can be used to 
check whether a future design point perhaps may specify a so-called 
hidden extrapolation (Montgomery & Peck (1982)). Although a point 
lies within the ranges of the control variables, it may lie in a 
region of the design space which is not occupied by points used in 
the experimental design. Montgomery and Peck point out some 
procedures to check for hidden extrapolation. Such procedures should 
become tools in future software which supports the use of regression 
models. 

The means by which the data of the experimental design are 
collected should also be recorded; for instance one can think of the 
used finite element package and the file containing the element 
model. This ensures the possibility to check future results of the 
regression model and to update it if this might be necessary. For 
this purpose it will also be useful to establish procedures to gather 
user's experiences. 

4.2 Applicability of regression models 

The main reason for the development of a regression model is 
the need for a fast analysis model of a certain system which can be 
described with not too many variables, whereas nevertheless the 
system is so complex and the wanted analysis accuracy so high, that 
this can only be achieved by elaborate numerical analysis. Formulated 
in this way, regression models may be developed for a very wide class 
of applications. However, we are concerned with structural analysis 
and optimization, and we will restrict the following considerations 
to this case and some related topics. 

AP,glici!bilitv 
In mechanical engineering design offices a wide class of 

machine parts is used to build complex structures. In most cases 
these parts can be described by not too many (say less than 10) 
design variables. Textbooks on machine parts show many examples, 
usually together with rather simple analytical analysis models for 
the parts. Fig. 4.2 gives some typical examples, which are all pretty 
standard in mechanical engineering. A second class of interesting 
parts may be less general, but quite common in certain production 
organizations or branches; see Fig. 4.3 for some examples. A third 
typical class of problems is that of more or less isolated continuum 
mechanics problems, for instance stress concentration problems. The 
book of Peter:;on (1974) shows a lot of problems; Fig. 4.4 shows some 
examples. Most of the results in Peterson's book have been obtained 
in the past from comprehensive experimental investigation:;. 
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Nowadays the real mechanical behaviour of the machine parts 
mentioned before can be approximated much better using the finite 
element method. ¥EM-analysis of problems like stress concentrations 
demands also less effort than experimental investigations. However, 
even for such simple parts and problems FEM-analysis may soon become 
too comprehensive for ordinary use in a design office. Similar 
difficulties arise in a classroom where students attend computer 
assisted exercises to learn about the real behaviour of systems. Due 
to limitations on hardware and time only rather simple problems can 
be treated. 

In situations as described above the execution of direct FEM­
analyses can be troublesome and the development and use of a number 
of well chosen regression models may be useful. The regression models 
can be developed exploiting sophisticated hard- and software apart 
from the user's spot. For the use of regression models a personal 
computer or even a pocket calculator will suffice. Some other reasons 
whether to develop or to use regression models are: 

- One has not available the hardware, software, knowledge or budget 
to perform comprehensive FEM-analyses. 

- One tries to avoid repeated expensive FEM-analyses. 
- Building a catalogue of standard regression models may be a 

vendible product for software houses. Collecting the FEM-data can 
be used to reduce idling of computer capacity . 

.t.eg,sibilitY. 
Concerning the feasibility of regression models the following 

aspects are relevant: 
1. The measure of similarity of specimens of the considered machine 

part or mechanical problem. 
2. The demanded accuracy for the response quantities. 
3. The effort for development of the regression model versus its 

profits. 
Sub 1. 
A necessary condition for the development of a regression model is a 
well defined and stable set of design variables and their ranges, by 
means of which all specimens of the structure can adequately be 
described. If during the development changes occur in the set of 
design variables, one has to decide which part of the already 
collected data remains valuable. 

The demand for similarity cannot always be fulfilled easily, 
and some additional modelling may be necessary. It can also result in 
dependencies between design variables; we will give an example. If 
the elements of a certain class of similar machine parts vary much in 
size, very often some material properties vary together with the 
size. For thi:> reason one may decide to incorporate, besides 
variables concerning the size, those material properties in the set 
of design variables. It will be clear such a set of design variables 
is dependent. 
Sub 2. 
Evaluation of a developed regression model in a certain design point 
will result in estimates of the response quantities, which in turn 
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are estimates of the real behaviour of the structure. Since the 
regression model is fitted on FEM-data, these estimates obviously are 
less accurate than those obtained directly from a FEM-analysis. 
However, depending on the effort that is spent on the development of 
the regression model, approximation of direct FEM-results may be 
sufficiently close. 
Sub 3. 
The effort for the development of a regression model is influenced by 
the following, certainly dependent factors: 

- the number of control variables and their ranges. 
- the number of parameters in the regression model and the types of 

the model functions. 
- the number of levels for each control variable. 
- the number of design points in the experimental design and the 

number of candidate points. 
- the number of response quantities and the desired accuracy of 

response estimates. 
- modelling and computer costs for collecting the FEM-data. 
- computer costs for definition of the experimental design and 

model fitting and testing. 
It is impossible to give general rules to derive the costs for 

the development of a regression model from the above factors. Our 
advice is to investigate a possible application carefully and to 
record the experiences for future learning. Following the procedures 
established in section 4.1 one is guided to estimate the costs of 
development at an early stage and this estimate is subsequently 
updated. 

The possible profits of a developed regression model are 
determined by: 

- the expected number of future FEM-analyses which possibly can be 
replaced by an evaluation of the regression model, and the 
savings in human effort and computer costs per analysis. 

- the smaller schedule to produce relevant results for projects. 
- the possible savings in hardware and software facilities. 

It will also be clear that estimating these profits is not an easy 
task. A problem is that substantial investments for the development 
of a regression model precede possible profits veiled in future. 

For the final decision whether or not to develop a particular 
regression model clearly no general rules can be given; good 
engineering judgment and some experience will be essential. 

i.l.l IoQl_fQr_p~r~m~t~r_stugy_and_mQd~l_bgilding 
Parameter studies and model building are often based on 

physical experimentation and the experimental design theory is often 
used to structure such investigations. Nowadays physical 
experimentation in many cases is combined with numerical analysis 
(Van Heck (1984), Rousseau (1985)), thus resulting in better 
experiments and better analyses. With today's availability of very 
advanced numerical analysis packages, parameter studies in certain 
stage~; of a project may be solely based on numerical analyses. This 
situation is very similar to that in the previous subsection. 
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However, now the problem under study does not concern, for instance, 
a more or less standard machine part, but a unique physical problem. 
In such situations sometimes tremendous numerical investigations are 
performed, the results of which are analysed with comparatively 
simple methods. Planning of such parameter studies using the 
experimental design techniques as described in Chapter 3 will not 
raise the project's budget, but on the contrary, the project will 
only gain by doing so. 

4.2.3 Ms~ in_str~ctu~al QPiimi~aiiQn_and_sim~l~tion 
ll.t the end of Chapter 1 we already summed up some reasons for 

integration of experimental design into structural optimization. We 
repeat those reasons very shortly: 

- The design variable concept appears in both disciplines. 
- The need for minimizing the number of expensive elementary 

operations, whether it may be physical experiments or FEM­
analyses. 

- FEM-analyses can be regarded as numerical experiments. 
- Structural optimization programs are suitable to collect data for 

experimental designs. 
- A regression model can serve as a fast analysis model in a 

structural optimization program. 
- Using such an optimization program an approximated global optimum 

can be found. It is possible to investigate several objective and 
constraint functions at low computing costs. 

- The approximated global optimal design can be used as a starting 
point for a more accurate optimization, using direct FEM­
analysis. 

An additional, not yet mentioned reason is the use of gradients 
in both methods. In Chapter 2 we saw that the most effective 
optimization algorithms use gradients of the objective function and 
the constraints; in finite element formulations such gradients can be 
computed effectively. 

In developing regression models such gradients can also be used 
with advantage, because in a structure with n design variables each 
FEM-analysis provides, per response quantity, 1 + n figures (response 
value + n gradient values) which can be used to estimate the 
parameters in the regression model. In other words: if gradients are 
used the fractional experimental design can be reduced globally by a 
factor of n. 

Having discussed the potential of regression models in 
structural optimization, we must find out in which situations it can 
be used. Globally we may say that the same arguments apply as in the 
two preceding subsections, because use of experimental design in 
structural optimization starts with the development of one or more 
regression models. However concerning optimization some additional 
remarks can be made. 

One remark refers to the extent of the experimental design in 
relation to the number of direct FEM-analyses used in iterative 
optimizations. In a problem with n design variables a lower bound to 
produce a local optimum, using an efficient optimization algorithm, 
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is about n FEM-analyses. If the problem is not too simple at least 5 
to 10 different starting points must be used to allow a guess for the 
global optimum point. These countings apply for one optimization 
problem. If, for instance, several objective functions must be 
investigated, a multiple of the above mentioned 5 n to 10 n !:"EM­
analyses will be necessary. Such figures may give an idea about a 
reasonable number of FEM-analyses planned to develop a regression 
model. 

In the weighting process whether to use direct FEM-analyses or 
a regression model in a certain optimization problem, the following 
comparative evaluation of the features and drawbacks of both 
approaches may be helpful. 

We consider the following two cases: 
1. Iterative optimization based on direct FEM-analyses. 
2. Development and use of regression models as an analysis module in 

iterative optimization processes. 
We evaluate a number of aspects for these cases. 

Humb~r_oi ~e~i~n_v~ria2l~s 
Sub 1. Number may be large (50 up to several hundreds). Nevertheless 

one should try to reduce the number; design variable linking 
can be used for that purpose. 

Sub 2. Number is rather small; maximum is about 10 if the number of 
levels per variable is larger than 1. If the used model is a 
polynomial of first order and if gradients of the response can 
be used, then 1 design variable level will be sufficient, and 
a larger number of design variables can be used (see the 
general bell model in Section 6.3). 

Qain_oi in~i~ht into_the_p£OQl~m 
Sub 1. Rather little insight is gained; this insight is restricted 

to a small area along the trajectory of the iteration steps. 
Sub 2. Insight can rather easily be obtained over the full extent of 

the design variable space. 

Ac£U£a£y_oi JZ.olutiQn~ 
Sub 1. Possible high accuracy which can be controlled by mesh 

refinement. 
Sub 2. Lower accuracy, because regression models approximate a direct 

FEM-analyses; the element meshes are chosen in advance and 
usually are relatively coarse. 

fl~xibility Qf_p£OQl~m_sQlJJ.tion 
Sub 1. With respect to solving the mechanical problem the flexibility 

is high; in the last extremity one can modify the FEM-model 
during every iteration step. Flexibility is low concerning the 
optimization problem, because modification of the objective 
and/or the constraint functions will require large additional 
computations. 

Sub 2. With respect to solving the mechanical problem the flexibility 
is low, because the regression model is based on a certain 
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fixed set of design variables and a fixed design variable 
space. Flexibility is high concerning the optimization 
problem, because several objective and constraint functions 
can be investigated at low computer costs. 

Yalu~ Qf_the_r~s~lts_ot ~ fEM-~n~lysis 

Sub 1. The ~'EM-analyses usually are only intermediate results in the 
iteration process. 

Sub 2. The FEM-analyses have enduring value due to their 
incorporation in the regression model. 

Initial ~f1o£t_in 2r2blem ~olutiQn 
Sub 1. Little initial effort is required, because iterative 

optimization runs can be controlled well and the number of 
~'EM-analyses can be dosed very well. 

Sub 2. Great initial effort is required, because the solution 
procedure starts with the development of the regression model, 
usually requiring a fairly large number of FEM-analyses. 

Again, to make the right choices, one will require good engineering 
judgement and experience. 

ys~ Qf_r~g~e~sion mogels_in ~imulatiQn_p£ogr~m~ 
We have no experience with such applications of a regression 

model and we will confine ourselves to an example to indicate a 
possible type of use. 

Consider the problem of how to steer a ship in a certain 
schematic flow field, see Fig. 4.5 

y 

t 

__.X 

Fig. 4.5 Ship in schematic flow field 

To develop a regression model which can be used in a numerical 
simulation of the steering problem, the following state variables can 
be regarded as 'control variables": 
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the translational and rotational velocities in the 
schematic flow field 
the position of the ship in the flow field 
the velocity components of the ship 
the thrust of the 5hip's propeller 
the rudder angle 
mass and moment of inertia about the z-axis of the 
ship. 

The resulting forces and moments due to the water flow acting 
on the ship can be calculated using the finite element or the finite 
difference method. Such computations will be too time consuming for 
direct use in a real time simulation program which runs on a computer 
of modest capacity. A possible solution may be found in the 
development of a regression model in which the 13 state variables 
mentioned above each are varied on an appropriate number of levels. 
The resulting regression model may be fast enough for real time 
simulation of the steering process. 
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CHAPTER 5: SOME APPLICATIONS ON STRUCTURAL DESIGN ELEMENTS AND A 
PARAMETER STUDY 

The procedures described in the preceding chapters have been 
applied to several practical problems. In this chapter four 
applications are presented. The regression models described here have 
been developed without using partial derivatives of the response 
quantities. Considered aspects of each application include problem 
description, experimental design techniques, data collection and 
results. 

5.1 Two-dimensional pin and hole joint 

The development of procedures as described in this thesis, have 
already been initiated in 1978. During his Master's-Degree study 
Aerts (1979) worked out test-cases concerning two types of pin and 
hole joints for hydraulic cylinders. 

Fig. 5.1 Application of a hydraulic cylinder 

In general, hydraulic cylinders are heavily loaded structures. 
Fig. 5.1 shows a typical application: the cylinder is linked to 
surrounding structures by means of pin and hole joints. Fig. 5.2 
shows the two types of pin and hole joints investigated. The left one 
incorporates a ball bearing and is used in situations where the 
cylinder cannot properly be aligned. Here we will only describe the 
simpler joint shown in Fig. 5.2b. In this figure also geometrical 
parameters are indicated which possibly may serve as control 
variables. The objective of the investigations is to describe the 
deformations and stresses of the eye of the joint under statical 
loads. For this purpose the eye will be modelled as a two-dimensional 
plain stress problem. The cross-sections A-A and B-B in Fig. 5.2b are 
critical with respect to stresses. rn Fig. 5.3 the points are 
indicated in which response quantities will be considered. These 
response quantities include the displacements of these points in x­
and y-directions and furthermore the orthogonal stress components ax, 
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oy and Txy and the Von Mises stress oid· Fig. 5.4 shows the 
mechanical model and a sample of the element meshes. 

Section A-A 

Fig. 5.2 Two types of pin and hole joints (Aerts, 1979) 

Fig. 5.3 Definition points for response quantities 

Fig. 5.4 Mechanical model and element mesh 

The data have been collected using the mesh generating program 
TRIQUAMESH ( Schoofs et al. ( 1978)) and the finite element program 
FEMSYS (Banens et al. (1976)). 

Using FEMSYS, 2-dimensional contact problems with friction can 
be modelled easily by means of user-defined dependencies between 
nodal degrees of freedom (Van de Boom (1979)). 
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After some explorative calculations and using a dimensional 
analysis, the following five dimensionless control variables were 
formulated (see Fig. 5.2b): 

p 
f 
~ 

(5.1.1) 

where P is the load of the joint, f is the coefficient of friction 
between pin and eye, and E1 is Young's modulus of the eye. 

As a first attempt, for all response quantities regression 
equations were assumed including first-order main effects and all 
first-order interaction terms. As experimental design a half fraction 
of a 25-design was used. After having estimated the parameters and 
tested the model, it was shown that the influence of the friction 
between pin and eye could be neglected. Furthermore it was shown that 
the first order models could not adequately describe the response 
quantities. 

A second attempt was made based on the same control variables 
as in (5.1.1), except f. Second order main effects and all two-factor 
first-order interaction terms were added to the regression equations. 
Each of the control variables wa:. varied on three levels and an 
orthogonal, one third fraction of a 34-design was used (Table 5.1). 

-1 0 1 X3 I 
-1 ' 0 1 -1 0 1 -1 0 1 X4 I 

-1 1 * 2 3 4 5 6* 7 8* 9 
-1 0 10 11 * 12 13* 14 15 16 17 18* 

1 19 20 21* _22 23* 24 25* 26 27 
-1 28 29* .30 31* 32 33 34 35 36* 

0 0 37 38 39* 40 41* 42 43* 44 45 
1 46* 47 48 49 50 51* 52 5.3* 54 

-1 55 56 57* 58 59* 60 61* 62 6.3 
1 0 64* 65 66 67 68 69* 70 71* 72 

1 73 74* 75 76* 77 78 79 80 81* 
X1 X2 

Table 5.1 A one third fraction of a 34-design indicated by* 

Using the models, the displacements of the points indicated in 
Fig. 5 . .3 could be predicted within 1\ from results obtained from 
direct finite element analyses. The Von Mises stresses could be 
predicted within 2.5%, whereas individual stress component:. showed 
deviations not exceeding 5%. The resulting regression models thus 
proved to be quite accurate. 
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5.2 Three-dimensional bearing problem 

Dry running journal bearings are important connecting elements 
in mechanical engineering. Many practical bearing structures can be 
modelled according to r'ig. 5. 5. Here, the characteristic difference 
with the joint treated in Section 5.1, is the need for a three­
dimensional model due to the inclination of the shaft. 

Fig. 5.5 Modelling of journal bearing (Wouters, 1986) 

Wouters (1986) developed for this situation regression models 
describing the surface pressure in the contact zone between shaft and 
journal as a function of a number of control variables. Initially 
considered control variables are indicated in Fig. 5.5. After 
explorative calculations it was decided to develop regression models 
approximating the following dimensionless relations: 

~y(i) 
1 

i = 1, 2, ... (5. 2. 1) 

where ov(i) is the contact pressure in a discrete point, i, of the 
contact zone; s = g - d is the clearance between shaft and journal. 

From the explorative calculations it appeared that the 
regression equations should contain third-order main effects. All 
first-order interaction terms and a part of the second-order ones 
were inserted into the models. 

The control variables were all varied on four levels (the 
minimum number for third order models without using partial 
derivatives of the response quantity). It was decided to carry out a 
complete 43-experiment, which was transformed to a complete 26- one. 
The required finite element analyses of 64 different contact problems 
were carried out using the I-DEAS-package of SDRC (1986). Fig. 5.6 
shows a sample of the used three-dimensional element meshes. 
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Fig. 5.6 3-D element mesh 

Each analysis required about 2.5 hours of computing time on a VAX-
11 /750 computer. 

Fig. 5.7 represents qualitative pictures of the contact 
pressure computed from the derived regres~ion models for two 
different inclination angles of the shaft. 

a:: 0.0 deg a: : 0.03 deg 

Fig. 5.7 Qualitative pictures of contact pressure 

From Fig. 5.8 it can be seen that contact pressures computed 
from the regression models agree very well with results from direct 
finite element analyses. 

Furthermore, Wouters (1986) made the following interesting 
comparison between the use of regression models and a direct finite 
element analysis. 

From one finite element analysis using a mesh of 1000 nodal 
points and 1290 6-node elements the following results emerge: 

number of displacements 1000 * 3 3000 
number of nodal point forces: 1000 * 3 3000 
number of stress components : 1290 * 6 * 6 46440 

total number of response quantities 52440 
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The computing time for one finite element analysis of about 2.5 
hours, results in an average computing time of 0.17 sec for one 

t 0.5 

~ 
E -50 

~ regression model 
......... 

• FEM-analysis 

1.0 

Fig. 5.8 Contact pressure from regression models versus direct finite 
element analysis 

response quantity. The computing time required for one evaluation of 
a regression model is approximately 0.01 sec on the same computer. 
So, if regression models were available for all response quantities 
defined in a particular finite element model, evaluation of all those 
models would be a factor of 17 faster compared to a direct finite 
element analysis. This result may be of interest for the derivation 
of regression models for use in real time computer simulations, 
especially if a relatively small number of response quantities is 
relevant. 

5.3 Cross-section design of aluminium beams 

Extruded beams may have cross-sections with very complicated 
shapes; as a consequence, cross-sectional properties related to 
stiffness, strength and stability cannot be calculated analytically, 
nor can they be obtained from handbooks or from the manufacturer. 
Properties such as the cross-sectional area, the centroidal axes and 
the moments of inertia about those axes can be calculated 
straightforwardly using an appropriate mesh defined on the cross­
section. For the calculation of some other cross-sectional 
properties, such as the co-ordinates of the shear centre, the warping 
constant and the torsion constant, the so-called torsion function, $, 
must be known (Menken et al. (1986)). This function is determined by 
the two-dimensional Laplace's equation 61~ = 0. The numerical solution 
of this equation can be obtained using a finite element formulation 
(Davies (1980)). Once the torsion function is known, the cross­
sectional properties can be determined straightforwardly. 

For the solution of the equation 6• = 0 Van de Pasch (1985) 
wrote the finite element program GEOG8, incorporating an 8-node 



5.7 

isoparametric element. Using this program and some experimental 
design and optimization techniques, he developed a procedure for a 
more or less automatic optimization of extruded beams for typical 
applications. We will illustrate that procedure by means of the 
following case-study. 

For the construction of greenhouses often extruded aluminium 
beams are used. The behaviour constraints of such beams comprise the 
maximum allowable deflection and the minimal wanted load carrying 
capacity. Usually, the beams fail due to lateral-torsional buckling. 
Fig. 5.9 shows a typical loading case and the cross-section of a 
particular beam. The cross-section is fixed, except the measures x1 
through x4, which are used as design variables to minimize the weight 
of the beam. The applied element mesh is drawn in the cross-section. 

Fig. 5.9 Cross-section and loading case of aluminium beam (Van de 
Pasch, 1985) 

The procedure starts with the generation of an experimental 
design. For the description of each of the response quantities, i.e. 
the cross-sectional properties and the behaviour constraints, 
standard a third order regression equation is assumed. The user has 
to indicate how many and which interaction terms should be used. For 
each design vari~ble the range of variation and the number r>f 
equidistant levels are given. This information defines a complete 
experimental design, which will be used as a set of candidate points 
in the actual experimental design. The design is generated as 
follows. The user specifies the number of observations, N, (finite 
element analyses) he wants to spend in the investigation. This number 
should be larger th~n 1.5 to 2.0 times the number of parameters in 
the assumed regression equation. The N design points are randomly 
chosen from the candidate points; the only criterion used in this 
selection is preserving the matrix xTx from becoming singular. 

U~ing this N-point experimental design the relevant cross­
sectional properties are calculated by means of the program GEOG8, 
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mentioned before. For that purpose the program first generates an 
element mesh defined by a particular set of design variables. Next, 
another program, the program KIP, is used to calculate the buckling 
load and the maximum deflection of the beam (behaviour constraints). 

Subsequently, for all response quantities the regressor 
variables are selected using a backward elimination procedure, and 
the parameters are estimated by means of the regression analysis 
program XPD, developed by Van Heck (1984). 

Applyin•l the derived regression models, a simple zero-order 
optimization could be carried out, resulting in a minimum weight beam 
satisfying the behaviour constraints. A conventionally, but carefully 
designed beam served as an initial design. Through the optimization 
the weight could be lowered by an amount of 6%, which profit may be 
considered important in view of the large scale on which these beams 
are being used. 

5.4 Parameter study of a leaflet heart valve prosthesis 

Presently used heart valve prostheses can be distinguished in 
mechanical and leaflet prostheses. In mechanical prostheses a ball, a 
disc or a rigid leaflet regulates the blood flow. These valves are 
mechanically strong and durable. However, their flow properties are 
bad and they cause damage to red blood cells. r.eaflet valves resemble 
the human aortic valve. They have good flow properties and do not 
cause blood damages. Their main disadvantage is the relatively short 
life time due to tissue failure. 

Leaflet valve prostheses can be distinguished in biological and 
artificial ones. In the biological valves the leaflets are prepared 
from porcine aortic valves. In the artificial valves the leaflets are 
made of synthetic materials. The artificial valves however are not 
yet clinically available. 

In his Ph-D thesis Rousseau (1985) investigated artificial 
leaflet valves and formulated mechanical specifications for the 
design of such valves. As part of the investigations a numerical 
parameter study was carried out using experimental design techniques. 

Fig. 5.10 gives a schematic view of the entire leaflet valve. 
Since it is assumed that the valve consists of three cyclically 
symmetric parts, the mechanical model can be restricted to one sixth 
of the valve comprising a half leaflet (Fig. 5. 11). The applied 
element mesh is given in Fig. 5.12. 

The valve is considered in the closed situation, where the 
leaflets are loaded by a blood pressure difference of 12 kPa, which 
is realized in 10 msec. The frame of the valve is made of linear, 
elastic material; the membranes and fibre reinforcements show visco­
elastic material properties. 

The analyses of the valve have been carried out using the 
nonlinear finite element package MARC (1984). After having 
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investigated an existing biological leaflet valve and a number of 

Fig. 5.10 Model of leaflet heart valve prosthesis (Rousseau, 1985) 

z 

c 

y 

Fig. 5.11 One sixth of valve Fig. 5.12 Applied element mesh 

explorative analyses of the synthetic valve, the following control 
variables were selected to be varied 

- dFR the thickness of the frame 
- cr the angle describing the free leaflet geometry 
- df the fibre thickness 
- Ef the elastic modulus of the fibre material 

The following response quantities have been considered (see Fig. 
5. 12): 

- the Von Mises stress in the points 1 through 4 
- the stresses in the fibres a and b 
- the minimum principal stress in the points 3 and 5 
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-the shear force per unit length in the points 26 and 41. 
For all response quantities second order regression equations 

including all two-factor interaction terms have been assumed. All 
control variables have been varied on three levels. As experimental 
design a one third fraction of a 34-design has been used, requiring 
27 nonlinear finite element analyses of the valve. The model 
parameters for the different response quantities have been estimated 
by exploiting the regression program XPD. 
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Fig. 5.13 Influence of the angle u on stress components 

Applying the derived regression models the behaviour of the 
valve could be visualized by means of a number of graphs. Fig. 5.13 
represents some results obtained from the regression models. Such 
results have been used to formulate design specifications for a new 
artificial leaflet valve. 
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CHAPTER 6: SHAPE OPTIMIZATION OF CHURCH- AND CARILLON BELLS 

6.1 Introduction 

f.1.1 Hii!.tQry 
During the summer of 1982 the research staff of the Division of 

Mechanical Engineering Fundamentals of the Eindhoven Univer~ity of 
Technology visited the Royal Eijsbouts Bell-Foundry at Asten, The 
Netherlands. The vi~i.t was not the fir~t contact between people of 
that division and the bell-foundry since already ten years earlier 
the master·~-degree thesis of Banens (1972) was devoted to the 
analysis of church bells. During this visit problems concerning the 
design of a so-called major-third bell were discussed. The .five 
lowest eigenfrequencies of a conventional minor-third bell have 
approximate ratios of 1 : 2 : 2.4 : 3 : 4 (or in tones based on c: c 
- c1 - es 1 - g1 - c2), whereas a major-third bell should show 
approximately the ratios 1 : 2 : 2.5 : 3 : 4 (in tones: c - c1 - e1 -
g1 - c2). The problem is to raise the ratio of the third 
eigenfrequency from 2.4 to 2.5. The slight change in ratio must be 
achieved by means of modification of the geometry of the bell. At 
first sight this does not seem to be a difficult problem. However, 
since the beginning of this century several experienced bell-founders 
have tried to find an appropriate bell geometry using a trial and 
error approach. They did not succeed, in spite of considerable 
experimental effort. Apparently the problem was far from ~imple. 

We decided to adopt this challenging design problem, which 
presented to u~ a te~t-case for the structural optimization software, 
that was being developed in our division. On the one hand a bell has 
a ~imple symmetrical geometry in its horizontal cros~-section, but on 
the other the geometry of the vertical cross-section is rather 
complicated and requires the finite element method for analysis of 
the bell. Furthermore, the dynamic problem is rather simple because 
the bell is a linear, elastic and almost undamped structure submitted 
to free vibrations, thus providing us the opportunity to concentrate 
ourselves on the optimization problem. 

Bell-founding in all its aspects has been described extensively 
by Lehr in a large number of papers. Recently Lehr (1987a) presented 
a comprehensive paper especially devoted to bell design in the past 
and nowaday:;. 

The Netherlands and Flanders have the oldest tradition in 
founding West European carillon bells with well defined pitches. 
Already in 1644 the brothers Fran~ois and Pieter Hemony, advised by 
Jacob van Eyck, realized the first well-tuned carillon, being an 
important landmark in the history of music. In the 17th and 18th 
centuries beautiful carillons were founded, but later-on the 
necessary knowledge and principles of founding pure bells got lost. 
They were not rediscovered until the end of the 19th century in 
England, this being the start of the English carillon tradition. 
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Founding purely ringing bells has always remained a speciality. Even 
at this moment bell-founders who completely understand the art can be 
counted on the fingers of one hand. 

In the past the contacts between scientists and bell-founders 
have always been somewhat poor. Bell-founders were not inclined to 
talk about their art and knowledge whereas most scientists did not 
listen to bells and studied the bell mostly from theoretical view­
point. The bell behaviour proved to be so complicated that the 
scientists were not able to describe it adequately. This despite the 
famous names who paid attention to vibrating bells. Leonard Euler 
(1764) presented the first scientific paper on the vibration modes of 
rings. His discoveries are valuable, even to-day, for they led to the 
development of finite ring elements based on partial discretizations 
(Zienkiewicz (1977)). Other famous scientists who offered 
contributions to the bell study were Ernst Chladni (1756-1827) and 
Hermann Helmholtz (1821-1894) in Germany, and Lord Rayleigh (1842-
1919) in England. Further important contribut:ions came from Johannes 
Blessing (± 1890) in Germany, and from Abraham Vas Nunes in the 
Netherlands, who wrote a thesis on the subject in 1909. 

Although these scientists could not provide an analysis method 
which was sufficiently accurate for bell design, their discoveries 
were important for a better understanding of the physical problem. We 
had to wait until the computer age before bells could be analysed 
adequately. Banens (1972) was the first who realized this. He wrote a 
finite element program in which ring elements were implemented using 
the circumferential vibration modes which were already described by 
Euler. Later on Perrin et al. (1983) also used the finite element 
method for frequency analysis of bells. 

The introduction of structural optimization enabled us to reach 
another landmark in the history of bell design. Structural 
optimization offers a completely new and flexible way of bell 
designing. The design problem of the major-third bell could be solved 
(Van Asperen (1984), Maas (1985), Schoofs (1985)) and will be 
described in detail in Section 6.2. In Section 6.3 some other 
recently designed bells will be presented. We are convinced that in 
the near future application of the developed methods will lead to the 
discovery of other bells. 

i.1.l Ihft QV~rtone_strgctu~e_of th~ hell 
Central in the campanology, the science of bells, is the 

investigation of the relationship between the profile of the bell, 
i.e. its half vertical cross-section, and the partials of the bell, 
i.e. its hum note and the overtones. Fig. 6.1 shows a bell profile; 
commonly used geometrical terminology in bell design has been 
included. The partials describe the behaviour of the bell from a 
musical point of view whereas vibration modes describe the mechanical 
behaviour. Every partial is associated with a unique vibration mode. 
The characteristics of the partials, including frequencies, sound 
volume and decay time, together determine the quality of the bell 
sound. The diagram of Fig. 6.2 illustrates the lowest and most 
important partials of a minor-third bell. It should be noted that the 
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bell structure is a continuum having an infinite number of partials. 
However, the lowest partials (lowest in frequency) are most important 
for the bell sound. Only a limited number of partials, say less than 
10, is under the control of the skilled bell-founder. 
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Fig. 6.1 Profile of a minor-third bell 
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Fig. 6.2 Spectrum of partials of a minor-third bell 

In this thesis we will restrict discussions to the frequencies 
and vibration modes of bells. Not because the volumes and decay times 
would be unimportant, but because the first condition for an 
acceptable bell sound is that the bell will ring the wanted chord 
constituted by the hum note and the important overtones. In addition, 
leaving loudness and decay time out of discussion will simplify the 
problem substantially, because acoustic phenomena need not be 
considered. 
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Fig. 6.3 (a) Vertical and (b) horizontal vibration modes 

Fig. 6.3 shows qualitative pictures of the vibration modes of 
the bell in vertical and horizontal cross-sections. Each of the 
bell's vibration modes is a combination of one mode in the vertical 
and one mode in the horizontal cross-section, indicated by the 
partial code. Table 6.1 shows the most important frequencies of the 
minor-third bell. The column under "Frequency code' will be discussed 
later. In bell design the octave is commonly used as reference for 
the frequency ratios because this partial is the most important one 
in the perception of the bell's pitch. 

The cent is a measure for music intervals where, by definition, 
one octave is equal to 1200 cents. The accuracy of the human hearing 
is about 5 cents. Cents values are computed from frequency ratios 
using the relation 

c = 1200 log(4 f/f 0 cl 
log 2 [cents] ( 6. 1. 1) 

where f 0 c is the frequency of the octave and f is the considered 
frequency. If the cents value is given, the frequency ratio 4f/f0 c 
can be calculated using the inverse relation 

4 f:: = 2 tzou 
oc 

( 6. 1. 2) 
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Musical 
name 

Partial 
code 

Frequency~--~~~~~~~~~~--------__, 
code 

H - 2 2 - 1 1.0000 0 1.0000 0 Hum note 
Fundamental 
Minor third 
Fifth 
Octave 

F - 2 2 - 2 2.0000 1200 2.0000 1200 
I - 3 3 - 1 2.4000 1516 2.3784 1500 

II - 3 3 - 2 3.0000 1902 2.9966 1900 
] - 4 4 - 1 4.0000 2400 4.0000 2400 

Twelfth I - 5 5 - 6.0000 3102 5.9932 3100 

ouble octave I - 6 6 -

Table 6.1 The most important frequencies of a minor-third bell. 

As can be seen from Table 6.1 there is a difference in the tuning of 
swinging bells and carillon bells. The tuning according to the left 
column is the most harmonic and globally this tuning was used in the 
Renaissance; it is still in use for the tuning of solely ringing 
swinging bells. In the Western culture music instruments have been 
tuned according to the right column, which is common in music since 
the 18th century. Only in this tuning the musician can play in all 
keys. In the following we will only consider the frequency ratios as 
given for carillon bells. 

After a bell has been founded, the five lowest partials must be 
tuned according to Table 6.1. The tuner uses a bell lathe (Fig. 6.4), 
and he consults tuning curves such as those shown in Fig. 6.5 to 
decide where metal should be removed from the inner surface. 

The vertical and horizontal vibration modes have been used to 
categorize the partials. The partials showing the same vertical 
vibration mode belong to one group. The elements in a group are 
indicated by the number of meridian nodes, which is determined by the 
horizontal vibration mode. Lehr (1986) has measured a large number of 
partials of a tuned minor-third bell. Plotting the frequencies on a 
log-scale against the number of meridians, reveals the coupling 
between elements of a certain group (Fig. 6.6). From this plot it can 
be seen that the hum note (H-2) and the fundamental (F-2) can be 
regarded as degenerated elements of the groups I and II respectively. 

The frequency ratios of partials belonging to the same group 
prove to be very strongly coupled. Ratios of a whole group with 
respect to another group can be changed much easier than mutual 
ratios within a group. tn this respect the hum and the fundamental 
must be regarded as separate groups. Group I contains the important 
partials I-3, I-4, I-5 and I-6. Especially the strong coupling in 
this group makes realization of, for instance, the major-third bell 
so difficult. 
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Fig. 6.4 Tuning a large bell (Courtesy of Royal Bell-Foundry 
Ei jsbc1uts, As ten, The Netherlands) 
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Fig. 6.5 Tuning curves for a minor-third bell 
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Fig. 6.6 Partial groups in bells (Lehr, 1986) 

Perrin et al. (1983) have measured a very large number of 
partial:; of a tuned minor-third bell, too. In addition they have 
analysed the same bell using a finite element program and 
subsequently have matched the experimental and numerical results. 
Furthermore they proposed another classification scheme for partials. 
This scheme is based upon the number of nodal meridians, which is 
closely related to procedures in finite element programs. Here each 
specific number of meridians defines an eigenvalue problem and the 
eigenvalues of such a problem build a group. The interested reader is 
referred to Perrin's paper for more details. 

The absolute value of the frequencies can be scaled easily to 
the desired value by means of proportional scaling of the dimensions 
of the bell, i.e. proportional scaling of the diameter, height, wall­
thickness, etc. This can be illustrated by using the standard 
eigenvalue problem for free vibrations of a linear structure without 
damping. 

Mii + Ku = 0 (6. 1. 3) 

If we use the same scaling factor s for all dimensions, the mass 
matrix M is proportional to s3 and the stiffness matrix K is 
proportional to s2 (bending of the wall of the bell). Solving (6.1.3) 
it follows that the absolute frequencies are proportional to 1/s, 
leaving the frequency ratios unchanged! However, if this scaling is 
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used for all bells in a carillon, the treble bells will become too 
small and they cannot produce an appropriate sound volume. For this 
reason the treble bells are designed using a bell profile with 
increased wall thickness. In order to account for this phenomenum the 
so-called fD-parameter is used, which is the product of the frequency 
(in Hz) of the hum note and the diameter (in m) of the lip of the 
bell. In a large range of bell sizes the fD value should be from 190 
to 220 m/s. The highest bell used in carillons has a pitch of c6, 
giving a frequency of 4186 Hz for the hum note. Such a bell has a 
diameter of 0.18 m, resulting in fD ~ 750 m/s. 

When a large bell is struck by its clapper, first one hears the 
sharp clang of metal on metal. The sharp sound dies out quickly and 
the so-called strike note remains for a while. Most observers 
identify the pitch of the strike note at or near the second partial 
(the fundamental), but to others the pitch seems an octave higher. 
Apparently, the strike note cannot be measured physically, but must 
be determined by means of observers. As finally the sound of the bell 
ebbs, only the slowly decaying hum note, an octave below the 
fundamental, will remain to sound for a while. 

6.2 Design of a major-third bell 

§..2..1 ihy ~ maior.-.thir!! .Q.elll 
Most musical instruments from the We:>tern culture produce 

sounds with harmonic or nearly harmonic overtones, i.e. the frequency 
ratios of the partials build the row 1 : 2 : 3 : 4 : 5, etc., or in 
tones based on c: c- c1 - g1 - c2 - e2, etc. When playing a :>ingle 
note on such an instrument we actually hear an entire chord; however, 
we usually perceive only one sound with a ~ingle pitch and a certain 
timbre. On such an instrument music can be played in a major key as 
well as in a minor key. Of course, difference~ will be heard, but 
they are small because the major and the minor-third lie relatively 
high in the sound spectrum. 

As already pointed out in Section 6.1, conventional bells show 
a different character. They have a strong minor-third in their lower 
partials. Special precautions must be taken when playing music in a 
major key on a carillon. For example, in general carillonneurs do not 
use a final major chord in order to avoid confusion with the 
lingering internal minor chord of the bells. Hence, the historical 
demand for major-third bells will be evident. Actually the first 
demand however emerged from the field of swinging bells. There the 
problem was met with a bell pealing that should give the opening of 
the Maria antiphon Salve Regina, which required the bells c1 - e1 -
g1 - a1. In such a chord the c1 should be a bell with a major-third. 

Major-third bells in a carillon may give problems as well; 
however, one may expect fewer problems due to the increased 
consonance of the bells. The Institute of Perception Research at 
Eindhoven investigated the appreciation for different bell types 
before the major-third bell had been realized. Houtsma et al. (1987) 
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modified the recorded sound of minor-third bells in that of major­
third and "neutral-third" bells, using a computer-synthesizer. The 
neutral-third lies between the minor-third and the major-third. In 
the past those bells have been proposed as a general solution to the 
problem. In addition, neutral-third bells could be realized 
relatively easily. Using again the synthesizer, carillon melodies 
were composed in minor and in major key and listeners were asked 
which c(lmbination of melody and bell type they liked most. The 
results were surprising. It was found that (student) carillonneurs 
unanimously preferred minor-bells, whatever the key was in which they 
were played. In contrast, other musicians selected the right 
combinations, so minor melody on minor-bells and major-melody on 
major-bells. The average listener had an opposite opinion compared to 
the carillonneurs: in all cases he chose major-bells, whatever the 
key was in which they were played. The neutral-third bells were 
disliked by all listeners. 

These results stimulated us in our quest for the major-third 
bell. 

~.~.~ £rQblem 1o~m~l~tion 
The frequency ratios of a major-third bell should be equal to 

those of a minor-third bell (Table 6.1), except the third partial, 
which has to be changed into a major-third. The major-third must have 
the following frequency ratios: 

- for swinging bells: 2.5000 or 1586 cents 
- for carillon bells: 2.5198 or 1600 cents. 

The bell-founder usually tunes only the frequency ratios of the 
five lowest partials. In order to create a tuning tolerance, the bell 
is cast with about 2 mm of extra material on the inner contour. The 
deviations after tuning should be less than 0.2\ (~ 3 cents). In 
practice such an accuracy is only attainable if the mutual deviations 
of the ratios of the founded bell are not larger than 3\ (~ 50 
cents). After a common bell has been tuned, the untuned twelfth 
usually lies within 10 cents from the ideal 3100 cents (Table 6.1). 
The untuned double octave may lie up to 50 cents above 3600 cents. 
The twelfth and double octave of a major-third bell are allowed to 
shift somewhat. However, at least one of these partials should be 
close to the desired frequency ratio. 

The design of a major-third bell is a shape optimization 
problem in which the design variables concern the geometry of the 
bell profile. The sum of squared residuals of frequency ratios of the 
five lowest partials must be minimized. This sum will be used as an 
objective function. The design constraints are trivial limitations on 
the geometry of the bell profile, such as positive wall thickness. In 
order not to exclude possible solutions, no constraints were placed 
on the bell profile. The restrictions with respect to the frequency 
ratios of the twelfth and the double octave, and the restriction with 
respect to the tO-parameter, can be formulated as behaviour 
constraints of the optimization problem. 
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~.~.1 A !i~si ~tiemPi ysin~ it~r~tiv~ QPiimi~aiiQn 
Considering the disappointing results of the bell-founders in 

searching a major-third bell, we were far from sure to find a 
solution. The optimization program should be based on finite element 
analysis of the structural behaviour, because of the very high 
accuracy of the frequency ratios which is needed. 

We decided to develop a structural optimization program 
(DYNOPT, Van Asperen (1984)) suitable for axisymmetric, dynamically 
loaded structures. In this program the sequential linear programming 
method (SLP, Section 2.6.3) is used as optimization algorithm. The 
implemented finite elements include a 6-node and an 8-node iso­
parametric ring element using partial discretization to describe the 
tangential displacements. 

The program DYNOPT is suited to solve ~;hape optimization 
problems, using the partial derivatives of the frequency ratios with 
respect to the design variables. The sum of squared residuals of 
absolute frequencies has been implemented as an objective function. 
The coupling between design variables and the finite element model 
can be defined by means of a user-supplied subroutine. 

With the program DYNOPT the eigenfrequencies of bells can be 
calculated very accurately. The five lowest eigenfrequencies of a 
carefully measured and modelled minor-third bell could be computed 
within deviations of 1\ from the measured frequencies. Fig. 6.7 shows 
the applied element mesh. 

Fig. 6.7 Variable points for shape optimization 

Van Asperen (1984) made a first attempt to find a major-third 
bell mainly by means of wall thickness variations. He defined as 
design variables the radial co-ordinates of the nodal points on the 
inner contour of the minor-third bell profile as indicated in Fig. 
6.7. With the frequency ratios of a major-third bell as target 
values, DYNOPT changed the ratios as shown in Table 6.2. Although 
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most of the frequency ratios had improved a little, the ratio of the 
third partial still remained unacceptable. The range of variation of 
the bell geometry appeared to be too restricted due to the fixed 
outer contour of the bell profile. This confirmed the experiences of 
bell-founders that a major-third bell will not resemble a minor-third 
one. In order to find a solution a flexible geometrical model of the 
bell should be developed, enabling us to vary the bell geometry in a 
wide design space. 

Name FrPauencv ratios 
ideal init"al values after 10 iterations 
4f/f0 c 4f/f0 c deviations 4f/f0 c deviations 
r-1 I r -1 \ ~Pnts r-1 " ~f'nts 

Hum 1.0000 0.9841 -1.6 -27 0.9908 -0.9 -16 
Fundamental 2.0000 2.0066 0.3 6 2.0231 1.2 20 
Major-third 2.5198 2.3685 -6.0 -107 2.3781 -5.6 -100 
Fifth 2.9966 3.0879 3.0 50 3.0300 1 . 1 20 
Octave 4.0000 4.0000 0.0 0 4.0000 0.0 0 

Table 6.2 Iterative optimization to search the major-third bell. 

~-l-i ~oluiiQn_u~ing_e~p~rim~ntal ~e~ign 
In a new effort to find a solution for the major-third bell we 

developed a flexible geometrical model (Maas (1985), Schoofs et al. 
(1987), Schoofs (1985)). This model was used in DYNOPT for 
explorative calculation in order to narrow the design space in which 
a solution had to be searched for. Defined on this design space and 
using experimental design techniques, regression models were 
developed relating frequency ratios to design variables. Finally, 
these regression models were used to find a solution. 

~-l-1-1 Il~xible_g~omeiric~l_mQd~l_of ih~ Qell 
The geometry of the bell profile can be defined in several 

ways. We used the following description. 
First we defined a set of basic points in a cylindrical co­

ordinate system. Through these points a sufficiently smooth spline 
curve was fitted, which served as reference curve of the bell profile 
(Fig. 6.8a). At all basic points values for the wall thickness were 
defined. These wall thicknesses were measured perpendicularly and 
symmetrically with respect to the reference curve, which resulted in 
two additional sets of points. These inner and outer contour points 
of the bell were fitted by spline curves, resulting in a well 
determined bell profile (Fig. 6.8b). 
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Fig. 6.8 (a) Reference curve and (b) bell profile 

The r-eo-ordinates of the basic point5 and the wall thicknesses 
at these points could be chosen either as fixed or as variable. Only 
those r-eo-ordinates and wall thicknesses which were chosen to be 
variable formed part of the set of design variables. Fig. 6.9a shows 
the set of design variables and a sample of the element meshes used 
in the explorative calculations. The set of design variables included 
five radii and the wall thicknesses in the same points. In addition, 
the wall thickness at the important sound bow was also defined as a 
design variable. In this geometrical model the dimensions of the head 
of the bell were taken proportionally to the design variable r 5. 

(a) (b) 

Fig. 6.9 (a) Design variables for explorative computations 
(b) Prototype major-third bell with control variables for 

the experimental design 
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Q.l.i-l ~X£1Qr~tiv~ £alcgl~tions~ ge~ign_o! ~ £rQtQtyp~ hell 
Using this geometrical model we analysed bells, varying in 

~hape from more or less common geometry to a very extreme geometry. 
The results pointed out that the frequency ratio of the third partial 
with re~pect to the octave could be influenced considerably. For the 
analysed bells the value of 4*fthirdlfoctave ranged from about 2.14 
up to 2.64, whereas a value of 2.5 is needed for a major third bell. 
Although in the~e variations some other important partials were 
usually out of range, the possibility to shift the third gave hope 
for finding a solution. 

Next, a bell resembling the minor-third bell was considered. We 
tried to change the frequency ratio of the third from 2.4 to 2.5 by 
means of modifying the design variable which ~howed the (absolutely) 
largest partial derivative of the frequency ratio of the third 
partial. This resulted in a ~ignificant growth of design variable r 4 . 
Here, the typical bulge of the major-third bell found later, was 
introduced. Using similar procedures for other design variables and 
other partials additional modifications were carried out, resulting 
in an intermediate design of which the frequency ratios are shown in 
Table 6.3. Of this design the ratios were pretty good, except for the 
fundamental, which was far too high. The bell founder advised us to 
stretch the height of the bell. From his long experience he knew that 
this would lower the fundamental without affecting the other 
partials. This resulted in the geometry 

Name Freauencv ratios for 
partial ideal major- intermediate prototype bell 

third desian 
4f/f0 c 4f!f0 c 4f/f0 c 

[ - ] cents [ - ] cents [ - ] cents 

Hum 1.0000 0 1.0070 12 1. 0163 28 
Fundamental 2.0000 1200 2. 1572 1331 1.9988 1199 
Major-third 2.5198 1600 2.4909 1580 2.4852 1576 
Fifth 2.9966 1900 2.9932 1898 2.9366 1865 
Octave 4.0000 2400 4.0000 2400 4.0000 2400 

Table 6.3 Intermediate de~ign and prototype bell. 

of a prototype major-third bell shown in Fig. 6.9b. The frequency 
ratios of this bell were very promising. In search of better 
solutions we explored the design space around this prototype using 
regre~~ion models of the frequency ratios. 

Q.l . .1_.J. J2.eyelO£m~n.t_ Qf_r~g_re~sion !!l.Ogels_fQr_f_regu~ng_r~tiOJi 
From the explorative calculations mentioned in the previous 

~ub~ection, the following limitations for the experimental design 
could be derived: 
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All the design variables given by the radii appeared to have a 
rather gtrong influence on the frequency ratios. Of the wall 
thicknesses, only t 2 and t 3 had a strong influence. Therefore the 
radii r 1 through r 5 and the thicknesses t 2 and t 3 were taken as 
control variables in the experimental design. These control 
variables are indicated in Fig. 6.9b. 

- The frequency ratios are nonlinear functions of these design 
variables. However, the nonlinearities with respect to radii 
appeared to be considerably stronger than those with respect to 
the wall thicknesses. It was therefore assumed that frequency 
ratios could be described sufficiently accurate by third-order 
models and a limited number of first-order interactions. 

- The design space was limited to control variables varying ± 5% 
around their corresponding value in the prototype. 

- Since partial derivatives of the frequency ratios were available 
too, the third-order models could be described by only two levels 
of the control variables. As experimental design a complete 27-
design was used. (At that time no adequate software for an analysis 
of fractional designs using partial derivatives was available.) 

Besides developing regression models for the four lowest 
frequency ratios, we decided to develop models for the ratio:.; of the 
twelfth and the double octave too. Since the octave is the reference, 
it was not necessary to develop a regression model for this partial. 
The explorative calculations showed that these ratios are also 
considerably affected by the geometrical variations. 

For all frequency ratios the same model functions were chosen 
in the regression equations. The complete 27-design existed of 128 
finite element analyses, while one analysis required about 1100 sec. 
CPU on a PRIME 750 computer. The resulting regression models proved 
to be of such a high accuracy that they could replace direct finite 
element analyses. 

Q.2.1.1 2Ptimi~atiQn_and_r~sylts 
In order to find the geometry of a major-third bell, the 

following zero-order optimization was carried out using the derived 
regression models. 

For each frequency ratio a sufficiently narrow band around the 
desired value was defined by 

f. f. f· 
<rl .s. <C:l .s. <r:l 

oclower oc ideal oc upper 
i 1' 

• i I 5 
... ' 7 ( 6. 2. 1) 

The variation range of each of the seven design variables was divided 
into a sufficiently large number (about 10) of equal intervals. Thus 
a narrow spaced ?-dimensional grid was defined on the de::;ign ::;pace. 
Subsequently we applied the following search procedure. 

Consider a grid point and evaluate the first frequency ratio 
(i=1) according to (6.2.1). If the lower and upper limits are not 
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violated, then proceed with the next frequency ratio; otherwise pass 

Fig. 6.10 Two solutions for major-third bells 

to the next grid point. If all frequency ratios for a particular grid 
point satisfy (6.2.1), then retain this point as a possible solution 
for the geometry of a major-third bell. 

Executing this procedure, eight different designs of major­
third bells were found (Maas (1'l85)). Examined by means of direct 
finite element analyses, they were found to be very close to the 
ideal. Fig. 6.10 shows two of the resulting designs. From these 
designs, the most promising bell was selected and founded without 
adding extra material as tuning tolerance. Table 6.4 shows the 
frequency ratios of this bell. 

Name Freauencv ratio 
ideal regr. DYNOPT founded 

models untuned bell 
cents cents cents cents 

Hum 0 5 14 19 
Fundamental 1200 1208 1210 1215 
Major-third 1600 1589 1607 1616 
Fifth 1900 1916 1907 1895 
Octave 2400 2400 2400 2400 
Twelfth 3100 3059 3057 ? 
Double octave 3600 3602 3596 ? 

Table 6.4 Results for the ultimate design of a major-third bell 
(? indicates that these frequency ratios were not 
measured). 

Afterwards a second bell was founded and tuned exactly 
according f:o the frequency raf:ios of a major-third bell. The fD-value 
(see Section 6.1) of this new bell type was about 220 m/s, which is 
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acceptable, although this results in a lower sonority of the bell, 
compared to the conventional minor-bell. For carillon bells this 
lower sonority c~n be considered an advantage: the listener will be 
less confused by the lingering of the larger bells in the carillon 
(Lehr (1967b)). This bell, moulded by the Royal Bell-Foundry 
Eijsbouts, can be regarded as the first real major-third bell. Fig. 
6.11 shows the fin~l geometry of this bell, together with the typical 
shape of the conventional minor-third bell. A remarkable difference 
is it's pronounced bulge in the centre of the waist of the bell; 
furthermore, it is considerably taller than the minor-third bell. 

I 
I 

b__j 
I 
I 

' I 
I 
I 

Fig. 6.11 Shape of (a) major-third bell 
versus (b) minor-third bell 

Applying major-bells, a complete carillon of four oct~ves w~s 
built (Fig. 6.12, Lehr (1987b)). The lowest bell had a diameter of 
945 mm and a mass of 585 kg. For the smallest bell these values were 
151 mm and 6 kg respectively. This first major-carillon was made 
mobile, so presentations at different locations could be realized 
easily. Although there was no systematic investigation of opinions of 
listeners during the various presentations of the major-third 
carillon, the conclusions of the perceptual investigation by Houtsma 
et al. (1987) mentioned before, were confirmed. The average 
carillonneur prefered the old trusted minor-carillon, the musician 
had a preference related to the key in which the music was played, 
while the layman had a strong preference for the major-carillon. It 
should be emphasized that these are averages. The spread in opinion 
was much greater for carillonneurs than for laymen; some 
carillonneurs rejected the major-carillon totally, whereas others 
reacted very enthousiastically. The extremes for layman were much 
more together and were completely within the range of acceptation. 
Using the new insights Lehr (1987a) designed an alternative major­
bell for which the fD-value could be lowered to the conventional 200 
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/ 

m/s. The sonority of this bell lies between the sonority of the first 
major-bell and the sonority of the minor-bell. 

Fig. 6.12 First carillon with major-third bells 
(Courtesy of Royal Bell-Foundry Eijsbouts) 
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6.3 General bell design 

.§..1.1 Qbie!;.t.i.v~ 
In the conventional design of church and carillon bells the 

bell-founder reasons from his experience using a number of empirical 
design rules. These rules are linearized relationships between the 
bell geometry and characteristics of the sound of the bell, 
in particular the frequency spectrum. The geometrical modifications 
remain relatively small and there is little chance of finding 
new bells. Bell-founders also carried out many experiments, 
exploiting large variations of the bell profile, but compared to the 
effort and costs the profits remained small. 

In the previous section a combined use was made of optimization 
procedures and experimental design techniques, resulting in the 
successful design of a major-third bell. The new bell profile differs 
considerably from that of conventional minor-third bells. The derived 
regression models for the frequency ratios can be used as design 
tools for bell profiles in the design space around the prototype bell 
shown in Fig. 6.9b. 

In this section the shape optimization problem of bells will be 
extended to much larger geometrical variations. The de:;ign space will 
be defined as a broad area around the profile of the minor-third 
bell. For the eigenfrequencies of the seven roost important partials 
(Table 6.1) we will derive regression models using optimal 
experimental design techniques as described in Chapter 3. Such 
regression models can be used for shape optimization problems. After 
having obtained an optimum the resulting geometry can be u:;ed a:; a 
starting point in a final optimization run based on direct finite 
element analyses . 

.§..1.2. Ile;ri~atiQn_o1 I.egr~s~iQn_mQd~l~ 1oi. }2ell_fi.e.9.U~n£i~s 
In the following subsections the different aspects of deriving 

regression models for bell frequencies will be elucidated and 
discussed . 

.§..l.Z-1 Re~Qn~e-~ant.i.t.i.e~ 
Table 6.5 shows a set of partials, ordered in groups of 

increasing number of meridians. Here a striking difference between 
groups of partials appears. 

In conventional bell design partials with the same vertical 
vibration mode (Fig. 6.3a) constitute musically one group. For 
example, the group containing the partials I-4, I-5 and I-6 is very 
important for the strike note of the bell. 

Mathematically the horizontal vibration mode (Fig. 6.3b), 
characterized by the number of meridian nodes, defines a unique 
eigenvalue problem. The lower eigenfrequencies of a particular 
eigenvalue problem constitute mathematically one group. Members in 
such a group will be ordered according to increasing eigenfrequency. 
We will indicate these members by the number of meridian node:>, 
followed by their eigenfrequency number. We will call this the 
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frequency code. Although for common bells the partial code and the 
frequency code coincide, it is emphasized that for relatively large 
profile variations discrepancies will occur. 

Operating with large profile variations the musical names as 
given in Table 6.5 in general are no longer valid. For this reason in 
the sequel the frequency code will be used. Only if the frequency 
ratios satisfy musical intervals, we will apply their musical names. 

We will restrict ourselves to the seven most important partials 
as mentioned in Table 6.1. The regression models for the limited set 
of seven partials may be used to search for musically interesting 
frequenr.y spectra of bells. 

Because the eigenfrequencies proved to be almost linear 
functions of wall thickness variables, we will develop regression 
models for absolute frequencies and not for frequency ratios. 

Musical name Partial code Frequency Frequency Ratio 
code 4 f/f 0 c cents 

Hum note H - 2 2 - 1 0.9988 -2 
Fundamental F - 2 2 - 2 2.0000 1200 
1st eleventh III - 2 2 - 3 5.2174 2860 

- IV - 2 2 - 4 8.03542 3675 
- v - 2 2 - 5 11.8900 4286 

Minor-third I - 3 3 -· 1 2.3977 1514 
Fifth rr - 03 3 - 2 03.0053 1905 
2nd eleventh III - 3 3 - 3 5.3240 2895 

- IV - 3 3 - 4 8.5051 3706 
- v - 3 3 - 5 12.4883 4371 

Octave I - 4 4 - 1 4.0000 2400 
Major tenth II - 4 4 - 2 5. 1396 28034 
Thirteenth III - 4 4 - 3 6.6384 3277 

IV - 4 4 - 4 'l. 5192 1901 
Twelfth I - 5 5 - 1 6.0175 3107 
Fourteenth II - 5 5 - 2 7.5597 3502 

- III - 5 5 - 3 8.9590 3796 
- IV - 5 5 - 4 11.43116 4219 

Double octave I - 6 6 - 1 8.3445 3673 
- rr - 6 6 - 2 10.3627 4048 

Table 6.5 Measured frequency ratios of a tuned minor-third bell 
(I.ehr (1986)). 

The parameters in the assumed linear relationships of the thickness 
variables can be computed using two levels for each wall thickness 
variable. However, when using FEM-analysis these parameters can be 
computed in a much more efficient way by adjusting the wall thickness 
variable to one level and computing at this level the eigenfrequency 
and it's partial derivative with respect to the wall thickness. This 
is a great advantage in designing the FEM-experiments, because design 



6.20 

variables adjusted to one level do not enlarge the number of required 
FEM-analyses. 

The vertical vibration modes of common bells are given in Fig. 
6.3a. If the geometry of the bell profile is varied considerably, 
then in general the vertical modes will change too. Even switching of 
the modes is possible. Fig. 6.13 shows a typical example. rn Fig. 
6.13a reference curves of nine bell profiles are given, beginning 

0 2 3 4 5 6 7 8 

(a) Profile reference curves 

UUUUUllllUU 
bo b, bs ba 

(b) Vibration modes of frequency 2-1 

lilililililiUUU 
c, 

(c) Vibration modes of frequency 2-2 

Fig. 6.13 Variation of a bell in eight gradual geometrical steps 

with the profile of a minor-third bell, in eight gradual steps 
changing to a considerably modified profile. In Figs. 6.13b and c 
these reference curves have been stretched to straight lines. On the 
straight lines the corresponding computed vertical vibration modes 
have been plotted for the frequencies 2-1 and 2-2 respectively. Two 
very remarkable things occur. First, the vibration mode of frequency 
2-1 changes continuously to the mode of frequency 2-2 of a minor­
third bell. For frequency 2-2 the opposite is the case. Secondly, 
concerning the frequencies it is seen that initially their values 
approach each other and then move away from each other again (Fig. 
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6.14a). Regarding Fig. 6.14a one may ask whether or not the graphs of 
the frequencies 2-1 and 2-2 have actually crossed each other. Three 
additional computations in the circled area pointed out that this was 
not the case. In Fig. 6.14b the result is plotted together with 
similar results for other bell profiles. The numbers along the graphs 
indicate the vibration modes given in Figs. 6.13b and c. 
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Fig. 6.14 (a) Frequency variations due to gradual changes in the bell 
profile 

(b) Similar situations for different ultimate bell profiles 

From these results we deduce that the graphs of the frequencies 
2-1 and 2-2 do not cross if the bell profile is varied. Further 
computations pointed out that for higher frequencies shifts of 
vibration modes also occur. These shifts have not yet been 
investigated thoroughly. 

In finite element analyses of bells different numbers of 
meridian node:> lead to different eigenvalue problems. In each 
eigenvalue problem a certain number of frequencies will be 
calculated. Graphs of frequencies belonging to different groups of 
meridian nodes may cross each other due to geometrical variations. 
Fig. 6.15 gives an example of a bell where this occurs. 
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F:t:eguf<ncy code freguen!:;y ratio (!:;ents) 
2 - 1 -394 
2 - 2 2307 
3 - 1 1345 
3 - 2 2407 
4 - 2400 
5 - 3149 
6 - 3725 

Fig. 6.15 Bell with an extravagant frequency spectrum 

.§..J..l.l {ieQm,!l.t!:i~al mogel,_d,!l_s.ign }la!:iS!ble§.,_rg_nge§.,_l.!l_V,!l.l.§. g_ng 
~and.idi!t.!l. 2o.ints 

For the definition of a geometrical model of the bell profile 
several methods can be used (Maas (1985)). Here we will use a model 
~.;imilar to the model u~.;ed for the design of the major-third bell, 
described in section 6.2. However, the following modifications will 
be made. 

We start with a nominal reference curve defined by a spline 
curve fitted through a number of np basic points between the lip and 
the shoulder of the bell (Fig. 6.16). The ba~ic points can be treated 
as fixed or as variable; let nr be the number of basic points that 
are chosen to be variable. These variable points are related to 
the design variables in the following way. They are allowed to shift 
along a line perpendicular to the nominal reference curve. The 
magnitude of the shift, Jl.ni, i = 1, 2, ... , nr, is proportional to 
it's corresponding design variable, xi, i = 1, 2, ... , nr, and to the 
nominal radius, rj, j € (1, 2, ... , np) of the basic point (Fig. 
6.16); wri is a weighting factor: 

i 1, 2, ... , nr (6. 3. 1) 
j € ( 1, 2, np) 

For all weighting factors wri the value 0.05 will be used, resulting 
in a Jl.ni equal to 5\ of rj if the variable xi is shifted to 1.0. 
Through the fixed and the shifted basic point another spline curve, 
the actual reference curve, is fitted. 

In the basic points nominal values, tn:i, j € ( 1, 2, . . . np), 
for the wall thicknesses are defined, which too may be chosen fixed 
or related to nt design variables ti, i = 1, 2, ... , nt. The latter 
nominal wall thicknesses result in the actual ones, tai, defined by 
(see Fig. 6.16): 

i 1, 2, ... , nt 
(6. 3. 2) 

€ ( 1 1 2 I • • • I np) 
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Fig. 6.16 Nominal and actual reference curve and definition of ani, 
tnj and taj 

For all weighting factors wt.i the value 0.1 will be used, resulting 
in 10% change of the wall thickness if the variable ti is shifted to 
1.0. Through the fixed and variable discrete values of the wall 
thickness another spline curve is fitted. This results in a 
continuous function for the thickness. Thickness values emerging from 
this function are taken perpendicular to the actual reference curve, 
resulting in the actual bell profile from the lip to the shoulder. 

The profile of the head of the bell is taken proportional to 
the radius of the bell at the shoulder. In the resulting profile an 
appropriate finite element mesh is generated; Fig. 6.15 shows an 
example of such a mesh. 

For deriving generally applicable regression models of bell 
frequencies we start with the profile of the minor-third bell as a 
nominal profile. Geometrical variations are allowed in a limited area 
around this old and thoroughly developed bell profile. 

The design variables will be related to seven curvilinearly 
equidistant; basic points from lip to shoulder. We believe seven 
points are a good compromise resulting in sufficient geometrical 
flexibility of the model and in reasonable computing cost. The design 
variables will be related to the wall thicknesses in the basic points 
and in intermediate points (Fig. 6.17). The number of design 
variables related to wall thickness parameters is not critical from 
the viewpoint of experiment design, because these design variables 
will not be varied. 

In order to choose the model functions a number of explorative 
computations were carried out. Fig. 6.18 shows five types of 
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Fig. 6.17 Design variables in the experimental design 

variation of the design variables xi, i = 1, 2, ... , 7. The types of 
variation are defined by the following functions of the parameter u 
depicted in the figures: 

a. X· 
~ 

= (l i 11 21 7 
b. xi = (l (4-i)/3 i 11 2, ... ' 7 
c. xi = (l ( 1 - 14-il/3) i 11 2, 7 
d. x2 = (l vri - 0 for i 11 31 4, 51 6, 7 
e x3 = (l vri 0 for i 11 2, 41 51 6, 7 

Fig. 6.18 gives also the computed eigenfrequencies of the five lowest 
frequencies, grouped according to frequency. They show strong 
nonlinearities. From the results of the variation types a, band c it 
can be seen that the nonlinearities become larger for increasing 
values of a, so the range of the geometrical variations should be 
limited, allowing us to use relatively simple (low order) regression 
equations. For this reason the design space will be constrained to: 

i 11 2 I 7 ( 6. 3. 3) 

The local geometrical variations given by the cases d and e in Fig. 
6.18 result in considerably stronger nonlinearities than the more 
global variation types a, b and c. In order to limit these 
nonlinearities, extra constraints will be applied: 

i=2, 3, ... , 7 (6. 3. 4) 
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Fig. 6.18 Frequency variations due to geometrical variations 
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Computations, in which the wall thicknesses were varied in 
ranges from 0.7 to 1.4 times the nominal thicknesses (i.e. concerning 
design variables ranging from -3.0 to +4.0), pointed out that the 
resulting frequencies in good approximation (within 2\) can be 
described by linear functions. As discussed before, those linear 
functions can adequately be estimated by exploiting partial 
derivatives of the frequencies with respect to the wall thicknesses. 
Hence, these design variables do not have to be varied in the 
experimental design. They will be held zero, that is the nominal wall 
thicknesses will be used (see (6.3.2)). 

The ranges (6.3.3) and the constraints (6.3.4) can be realized 
by means of the following four equidistant levels for each of the 
design variables xi, i = 1, 2, ... , 7: 

xi € (-3.0, -1.0, +1.0, +3.0) (6.3.5) 

From the explorative results given in Fig. 6.18 we conclude 
that regression equations should be at least of order three or four. 
Such regression equations can adequately be described using four 
levels, since partial derivatives of the frequencies will be used. 

The set of candidate points for the experimental design can now 
be generated. First, a complete 47-design is chosen, i.e. consisting 
of all possible combinations of the design variables xi, i = 1, 2, 
... , 7, on four levels. From this design all those points are skipped 
that show a difference of more than one level for contiguous 
variables (constraints (6.3.4)). This results in a set of 1220 
candidate points . 

.§..J,.2_.1 ftuil!!ing the_r~g.relision mo!!els 
The design variables will be stored in two columns r and t 

defined by: 

r [x1 x2 •• 0 ••••••• 
X )T 
nr (6.1.6) 

and t [t1 t2 ••••••••• 0 tnt]T (6.3.7) 

We will start the dP.velopment of the experimental design basP.d on a 
regression equation which is chosen to be of third order in the 
variables r and linear in the variables t. It is convenient to write 
the regres;ion equation for a frequency fi = fi (E, !l as: 

( 6. 3. 8) 

For fri(f) a relatively simple polynomial will be chosen of the form: 
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(6.3.9) 

~19x7 + 
. 2 
~20x7 + 

. 3 
~21x7 + 

ll22x1x2 + p23x2x3 + ll24X3X4 + ll2sx4xs + 

ll26XSX6 + IJ27X6X7 + 

ll28x1x3 + ll29X2X4 + ll 30x3x5 + ll31x4x6+ ll32x5x7+ 

For fti(E, ~) we chose a polynomial which is linear in the variables 
tj, j = 1, 2, nt of the form: 

where g j ( ~) , j = 1, 2, ... , nt are common polynomials in the 
components of E· 

(6.3.10) 

The components of t will not be varied, but fixed on the level 
"zero"; the linear relationship can be estimated using partial 
derivatives of the frequencies with respect to the components of t. 
This is a rather unusual situation, which is not supported by 
standard experimental design and regression software. But 
this problem can still be tackled using standard software if the two 
terms on the right-hand side of (6.3.8) are treated separately. The 
parameters of the model (6.3.9) can then be estimated without 
worrying about the variables t. 

In order to estimate the parameters of the model (6.3.10) we 
differentiate this model with respect to the components of t: 

j = 1, 2, ... , nt (6.3.11) 

Explorative computations pointed out that in the area 
- 3.0 i tj i 4.0, j = 1, 2, ... , nt, a particular frequency fi in 
good approximation can be estimated by: 

nt oft· 
fi = fri + r (~) tJ· 

j=1 J 
( 6. 3. 12) 

We will begin the model building with frequency 3-1, because in 
bell design this frequency is very crucial. Maas (1985) could develop 
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adequate regression models in seven variables using a complete 27-
desiyn, requiring 128 design points. 
Now we consider a wider design space and we expect that at lea:>t 100 
to 400 design points will be required in the final experimental 
design. Remembering the 25\-rule (Box et al (1978)), we chose 100 
design points in the first experimental design. Using the program 
CADE (Nagtegaal (1987)) the design is optimized applying the 
excursion algorithm and the D-optimality criterion. 

INPUT SUMMARY 

~LGORITHM 
CRITERION 

EX 
DO 

CANDIDATES 1220 
OBSERVATIONS 100 
PROTECTED 0 
REPLICATIONS NO 
UPPER LIMIT 150 
LOWER LIMIT 100 

MODELTYPE P 
PARAMETERS 37 
VARIABLES 7 
DEPENDENT 1 
DERIVATIVES 7 

DESIGN PROPERTIES 

DET**(1/37) MAX.TRACE AVE.TRACE MAX E-VAL 
DESIGN ITERA COVARIANCE VARIANCE VARIANCE COVAR. 

REF TIONS MATRIX MATRIX MATRIX MATRIX 

TRACE /CORRELATION/ 
COVAR. AVER %NON 
MATRIX MAX AGE ZERO 

1 135 0.549E-01 0.413E+02 0.308E+02 0.777E+01 0.168E+02 0.83 0.25 20 

ALL PROPERTIES NORMALIZED FOR NUMBER OF OBSERVATIONS AND ERROR VARIANCE 

DESIGN POINTS 

DESIGN 
REF 

-------------------------------------------------------------------------------
3 10 18 27 33 45 47 69 76 87 89 90 92 97 

100 102 108 109 122 123 130 179 181 183 219 221 223 227 
228 229 235 259 260 269 273 280 282 283 304 320 322 336 
468 477 571 574 577 579 595 596 611 623 626 628 644 651 
704 742 752 866 883 903 912 919 941 946 952 956 961 974 
977 989 990 991 993 1000 1023 1036 1038 1040 1063 1093 1099 1105 

1106 1114 1119 1125 1126 1133 1134 1145 1174 1181 1186 1187 1201 1205 
1218 1220 

CPU-TIME FOR THIS JOB IN SECONDS : 0.693E+05 

Table 6.6 Optimal design for 100 observations 

The optimization takes into account that function values and 
partial derivatives of the frequency will be used in estimating the 
model parameters. Table 6.6 gives the CADE-run on an Apollo D-3000 
workstation. The properties of the design are good. The maximum 
variance is 41.3 which is not much bigger than the theoretical 
minimum of 17 being the number of parameter:>. However, it i:; 
emphasized that the value 41.3 might be somewhat too optimistic, due 
to the fact that we are operating with a fixed :set of candidate 
points. Quite remarkable is the huge amount of required computing 
time (19.2 hrs) due to the large dimensions of the problem: we have 
1220 candidate points, eight response quantities (1 function+ 7 
partial derivatives), and 17 model parameters. 

Using collected data in the generated design points the model 
parameters have been estimated by means of the iterative reweighted 
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least squares procedure. Table 6.7 gives a report of the CADE-run. In 
order to test the predictive ability of the regression models we 
generated a set of 100 testing points uniformly distributed over the 
de~ign area and distinct from the candidate points. Tested against 
this dat;a t;he estimated regression model shows a standard deviation 

WEIGHTED ANALYSIS OF VARIANCE 

SOURCE OF 
VARIATION 

SUM OF DEGR OF MULTIPL STAND ERROB 
SQUARES FREEDOM MEAN SQUARE F-LEVEL CORRELA OF ESTIMA 

REGRESSION 
RESIDUAL 

TOTAL 

0.38054E+04 
0.54486E+03 
0.43502E+04 

PARAMETERS 

INTERCEPT 
MAIN EFFECTS: 
VARIABLE POWER REGRESSOR 

1 1 1 
1 2 2 
2 1 4 
2 2 5 
3 1 7 
3 2 8 
4 1 10 
4 2 11 
4 3 12 
5 2 14 
5 3 15 
7 1 19 
7 2 20 

INTERACTION REGRESSOR 
1 22 
2 23 
3 24 
4 25 
6 27 
7 28 
8 29 
9 30 

12 33 
13 34 
14 35 

MODEL WEIGHTS 

1 0.0892831 
2 0. 0880495 
3 0.0555363 
4 0.0455186 
5 0.1192538 
6 0.1506882 
7 0.2865387 
8 0.6046083 

24 
775 
799 

0.15856E+03 
0.70305E+OO 

225.529 0.93528 0.83848E+OO 

ESTIMATIONS OF PARAMETERS 

REGRESSION 
COEFFICIENT 

0.42610E+03 

0.13405E+02 
0.12722E+01 

-0.33263E+02 
0.53678E+01 

-0.12975E+02 
0.23369E+01 
0.84588E+01 
0.17747E+01 
0.14194E+OO 
0.68085E+OO 
0.10345E+OO 

-0.13896E+01 
0.19579E+OO 

-0.53464E+01 
-0.22676E+01 
-0.62830E+01 
-0.67649E+OO 
-0.49801E+OO 

0.10805E+01 
0.85366E+OO 
0.55921E+OO 
0.24105E+01 
0.61330E+OO 
0.56560E+OO 

STANDARD 
DEVIATION F-LEVEL 

0.40562E-01109223.694 
0.19690E-01 4174.374 
0.49348E-01454349.901 
0.26288E-01 41695.180 
0.48852E-01 70543.014 
0.25199E-01 8600.466 
0.76701E-01 12162.436 
0.24871E-01 5091.774 
0.61256E-02 536.915 
0.20836E-01 1067.746 
0.37351E-02 767.141 
0.33642E-01 1706.062 
0.15863E-01 152.341 

0. 34119E-01 24554.218 
0.37338E-01 3688.306 
0.36597E-01 29474.710 
0.34497E-01 384.565 
0.21958E-01 514.400 
0 .24720E-01 1910.534 
0.29515E-01 836.536 
0.28497E-01 385.081 
0. 21133E-01 13009.939 
0.22819E-Ol 722.373 
0.18766E-01 908.415 

CPU-TIME FOR THIS JOB IN SECONDS 169.314 

Table 6.7 Model fitting using 100 observaticms and partial 
derivatives of frequency 3-1 
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for frequency 3-1 of 13.2 Hz with a mean of 436 Hz. This results in a 
95\ confidence interval of ± 6\, or ± 102 if expressed in cents. Such 
a small predictive ability is insufficient for bell design and the 
experimental design should be augmented. Augmentation of the design 
with 100 design points lowered the standard deviation for frequency 
3-1 to 11.2 Hz, which is still insufficient. 

Using the 200-points design to fit regres:;ion models of type 
(6.3.9) for the other frequencies showed somewhat better results for 
the frequencies 4-1, 5-1 and 6-1. However, the results for the 
frequencies 2-1, 2-2 and 3-2 were so disappointing, that satisfying 
regression models of type (6.3.9) could hardly be expected by 
raising the number of design points to 400. 

ln order to find upper bounds on the predictive ability, we 
permitted ourselves to collect data in all 1220 candidate points. At 
the :;ame time we augmented the main effects in the regression 
equation to fourth order and we changed the set of interaction terms, 
re:;ulting in the following regression equation: 

( 6. 3. 13) 

+ 

+ 

J:I43X4X6 + J:114x5x7 + 

2 J:l45x1x2 + 
2 

f346x1x2 
2 

+ P47x2x3 2 + P4ax2x3 + 

2 J:l49x3x4 + 2 13sox3x4 
2 + IJ51X4X5 + 2 P52x4x5 + 

2 J3s3xsx6 + 2 J:I54X5X6 
2 

+ 13ssx6x7 2 + IJ56X6X7 

The reweighted least squares parameter estimation required 1.5 to 2 
hours of computing time per regression model. Table 6.8 shows the 
results of testing the models against the set of 100 testing points. 

Note that the deviations in the model for frequency 4-1, which 
is the reference, reduce to zero when frequency ratios are 
considered. These deviations are added to the deviations of the other 
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models, thereby decreasing the predictive ability of the other 
models. 

Frequencv code 2-1 2-2 3-1 3-2 4-1 5-1 
Mean frequenc:y (Hz) 192 360 436 605 735 1095 
Standard deviation(Hz) 8.4 15.4 8.3 12.3 8.9 9.5 
Standard deviation(cents) 78 67 19 43 0 8 

6-1 
1499 
9.0 

11 

Table 6.8 Test of regression models with 57 parameters and based on 
all candidate points, against 100 testing points. 

The predictive ability of the models for the frequencies 3-1, 4-1, 
5-1 and 6-1 is satisfactory. We pose that the 95\ confidence interval 
(2 x standard deviation) should be less than 50 cents, which is the 
case for the four frequencies mentioned above. However, the 
frequencie5 2-1, 2-2 and 3-2 have 95\ confidence intervals of± 156, 
± 134 and ± 86 cents respectively, which are much too large. 

Table 6.9 (page 6.32) ohows the CADE-report of fitting the 
model for frequency 2-2. It can be seen that 26 of the 28 interaction 
terms have been selected in the model, and we may ask ourselves 
whether the augmentation of the number of regression terms would 
help. The F-levels in Table 6.9 point in that direction. The F-levels 
of the main effects gives no arguments to augment the order of the 
main effects. We strongly augmented the number of interaction terms 
in the regres~ion equation, namely from 28 to 80 and we fitted the 
models again. Table 6.10 shows the results. 

Frequency code 2-1 2-2 3-1 3-2 4-1 5-1 6-1 
Mean frequency (Hz) 192 360 436 605 735 1095 1499 
Standard deviation(Hz) 6. 1 12.3 7.4 7.5 8.0 8.5 8.0 
Standard deviation(cents) 55 58 17 34 0 7 11 

Table 6.10 Test of regression models with 109 parameters and based on 
all candidate points, against 100 testing points. 

A significant improvement of the models for the frequencies 2-1, 2-2 
and 3-2 can be seen, but these models are still not satisfactory. 
Nevertheless we believe that the difficulties in fitting models for 
these three frequencies can be solved by means of a "lucky strike" in 
choosing suitable potential interaction terms in the model. This idea 
is based on the common vibration modes of the frequencies. The modes 
for the frequencies 3-1, 4-1, 5-1 and 6-1 are often the same as for 
the third, the octave, the twelfth and the double octave of common 



SOURCE OF 
VARIATION 

REGRESSION 
RESIDUAL 

TOTAL 

PARAMETERS 

INTERCEPT 
MAIN EFFECTS: 
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WEIGHTED ANALYSIS OF VARIANCE 

SUM OF DEGR OF MULTIPL STAND ERROR 
SQUARES FREEDOM MEAN SQUARE F-LEVEL CORRELA OF ESTIMA 

0.20686E+05 
0.93481E+04 
0.30034E+05 

45 
9714 
9759 

0.45969E+03 
0.96233E+OO 

477.680 0.82991 0.98099E+OO 

ESTIMATIONS OF PARAMETERS 

REGRESSION 
COEFFICIENT 

0.35016E+03 

STANDARD 
DEVIATION ~-LEVEL 

VARIABLE POWER REGRESSOR 
1 2 2 -0 .19318E+.l)l 0.70119E-02 75901.150 
2 1 5 -0.16065E+02 0.24367E-01434636.759 
2 2 6 -O.l9365E+01 0.93291E-02 43086.410 
3 1 9 -O.l0966E+02 0.33805E-01105226.003 
3 2 10 -0.25493E+01 0.91399E-02 77797.832 
3 3 11 0.75007E+00 0.50936E-02 21684.768 
4 1 13 0.22552E+02 0.34970E-01415866.103 
4 2 14 -0.15130E+Ol 0.17109E-01 7820.031 
4 3 15 -0.24868E+01 0.51075E-02237067.924 
4 4 16 0 .24177E-01 0.10817E-02 499.503 
5 1 17 0.28956E+02 0.35236E-01675310.964 
5 2 18 -0.28932E+Ol 0.17192E-01 28322.811 
5 3 19 -0.22888E+Ol 0.52939E-02186925.704 
5 4 20 0.26719E-Ol 0.10816E-02 610.279 
6 1 21 -0.94593E+Ol 0.32181E-Ol 86401.250 
6 2 22 -0.29636E+Ol 0.17089E-01 30075.515 
6 3 23 0.55174E+OO 0.40315E-02 18729.717 
6 4 24 0.16096E-01 0.10763E-02 223.653 
7 1 25 -0.89897E+Ol 0.18418E-01238225.620 

INTERACTION REGRESSOR 
1 29 0. 40129E+Ol 0.12396E-01104798.300 
2 30 0.45950E+Ol 0.13283E-01119663.785 
3 31 0.23066E+Ol 0.13259E-Ol 30263.855 
4 32 0.10087E+02 0.13333E-01572390.933 
5 33 0.30034E+Ol 0.13431E-01 50003.553 
6 34 0.21514E+Ol 0.97949E-02 48243.891 
7 35 -0.30953E+00 0.57146E-02 2933.833 
8 36 0.16298E+Ol 0.62049E-02 68989.517 

10 38 0.18399E+OO 0.62065E-02 878.854 
11 39 0.46832E+00 0.56360E-02 6904.630 
12 40 -0.78145E+OO 0.87327E-02 8007.643 
13 41 -0.62094E+01 0.90987E-02465724.994 
14 42 -O.ll253E+Ol 0.91556E-02 15106.908 
15 43 -0.92034E+00 0.91011E-02 10226.059 
16 44 -0.26374E+Ol 0.86557E-02 92840.471 
17 45 0.48814E+OO 0.59727E-02 6679.385 
18 46 -0.13797E+OO 0.46633E-02 875.283 
19 47 0.64452E+00 0.87851E-02 5382.498 
20 48 -0.10134E+01 0.74052E-02 18727.841 
21 49 0.38232E+Ol 0.97233E-02154607.lll 
22 50 -0.40682E+Ol 0.10063E-01163436.917 
23 51 0.90478E+OO 0.10069E-01 8073.831 
24 52 0.70311E+OO 0.97290E-02 5222.791 
25 53 -0.26615E+Ol 0.10082E-01 69689.661 
26 54 0.31968E+Ol 0.10074E-01100695.615 
27 55 -0.13033E+00 0.35319E-02 1361.637 

CPU-TIME FOR THIS JOB IN SECONDS : 6235.118 

Table 6.9 Model fitting for frequency 2-2 using data in all candidate 
points 
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bells. These vibration modes show very small movements in the upper 
half of the bell. Hence, the interactions between the design 
variables are mainly restricted to the lower half of the bell. For 
the frequencies 2-1, 2-2 and 3-2, whose vibration modes often 
resemble those of the hum, the fundamental and the fifth in common 
bells, the interactions between the design variables are distributed 
over the full height of the bell. 

Possibly better solutions might be found when a suitable 
linear model i:; used in which terms are chosen guided by, for 
example, the analytical theories for a circular and/or a conical 
shell. We will leave this for future research. 

The comprehensive set of collected data in all candidate points 
can be studied directly in order to find starting points for 
optimization runs using direct FE-computations. Although the 
candidate points constitute a very widely spaced grid over the entire 
design area, we were able to design three new bells in this way. We 
will describe these bells in the next subsection. 

&.l.l ~hgp~ QPtimikatiQn 
Besides the frequency spectra of minor-third and the major­

third bells there exist several other musically interesting frequency 
spectra; see Table 6.11, taken from Lehr (1987a). The bell types have 
been ordered according to decreasing consonance. This can be seen 
from the row of the most simple integer ratios. The lower and the 
more regular the figures in this row are, the more consonant the bell 
is. To build carillons the bell types no. 1 through 4 are suited and, 
to a less extent, also the types 5 and 6; in accordance with the 
tuning of carillon bells, the cents values of these bells are given 
in hundreds (see also Table 6.1). The other bell types in the list 
can only be used as swinging bells. 

In the next subsection we will report on our attempt to find 
the most consonant bell: a bell with harmonic partials. 

Q.1.1.1 AttemPt to_fin~ ~ Qell_with ha£mQnic_f£egu~n~-r~tio~ 
In an attempt to find a bell with harmonic frequency ratios we 

applied a systematic search on the data collected in the 1220 
candidate point:;. Besides the five ratios mentioned in Table 6.11, 
the frequencies 5-1 and 6-1 were also considered. Their ideal ratios 
should be 3100 and 3600 cents respectively. Hence, the ideal 
frequency ratios of a harmonic bell are: 

frequency code 
ratio in cents 

2-1 
-400 

2-2 
800 

3-1 
1500 

3-2 
2000 

4-1 
2400 

5-1 
3100 

6-1 
3600 
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Bell type Musical tones and Ratio 4f/foctave and 

No. 

1 . 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

cents values most simple integer ratios 
and name 2-1 2-2 3-1 3-2 4-1 2-1 2-2 3-1 3-2 4-1 

bell with c1 c2 g2 c3 e3 4/5 8/5 12/5 16/5 4 
harmonic partials -400 800 1500 2000 2400 1 2 3 4 5 

fifth-bell c1 g1 c2 g2 c3 1 3/2 2 3 4 
0 700 1200 1900 2400 2 3 4 6 8 

major-third c1 c2 e2 g2 c3 1 2 5/2 3 4 
bell 0 1200 1600 1900 2400 2 4 5 6 8 

minor-third c1 c2 es2 g2 c3 1 2 12/5 3 4 
bell 0 1200 1500 1900 2400 5 10 12 15 20 

minor-sixth e1 c2 e2 g2 c3 5/4 2 5/2 3 4 
bell 400 1200 1600 1900 2400 5 8 10 12 16 

major-sixth es1 c2 es2 g2 c3 6/5 2 12/5 3 4 
bell 300 1200 1500 1900 2400 6 10 12 15 20 

major-sixth bell es1 bes1 es2 g2 c3 6/5 9/5 12/5 3 4 
with diminished 
fundamental 316 1018 1516 1902 2400 6 9 12 15 20 

minor-sixth bell e1 a1 e2 a2 c3 5/4 5/3 5/2 10/3 4 
with diminished 
fundamental 386 884 1586 2084 2400 15 20 30 40 48 

twelfth bell gO c2 e2 g2 c3 2/3 2 5/2 3 4 
-702 1200 1586 1902 2400 4 12 15 18 24 

octave bell with c1 bes1 d2 f2 c3 1 9/5 9/4 27/10 4 
diminished 
fundamental 0 1018 1404 1720 2400 20 36 45 54 80 

Table 6.11 Lowest frequencies of musically interesting bells. 

Furthermore we assumed an ideal fD-value of 200 m/s. The quality of 
the design points x. with respect to the harmonic bell could then be 
judged by the standlrd deviation S(~j), defined by: 
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7 8 
[ r w?tc. (x.) - c~1 2 + w2

8tfD(!
3
.) - 2001 2]/ [ w? 

i=1 l l ·J l i=1 l 

j 1 1 21 r ( 6. 3. 14) 

where wi, i = 1, 2, ... , 8 are weighting factors, ci(x.) are 
frequency ratios in cents, computed in the design poi~is, ci are the 
corresponding desired frequency ratios and fD(x.) is the fD-value 
computed in point x .. Table 6.12 contains the b~st 25 points, if in 
(6.3.14) all weightfng factors are chosen equal to one. It appears 
that for these 1220 design points: 

1. The frequency ratio for 2-1 is at least 100 cents too high. 
2. The ratio for 3-1 is at least 100 cents too low. 
3. The ratios for 2-2, 3-2, 5-1 and 6-1 vary around their desired 

values. 
4. Lower values for ratio 2-1 usually coincide with the lower 

values for ratio 3-1 and the higher values for 5-1 and 6-1. 
5. Most of the fD-values lie above the ideal of 200 m/s. 

The ratios for 2-1 and 3-1 clearly will make it difficult for us to 
find a solution. If we concentrate our search on these ratios by 
choosing their weighting factors equal to one, and all the other 
weighting factors equal to zero, then the set of 25 points in Table 
6.13 is obtaind. Although the range in which the ratios for 2-1 now 
lie has moved towards the desired value of -400, no ratio is lower 
than -385 cents, whereas the range in which the ratios for 3-2 lie 
remained approximately the same. We have plotted in Fig. 6.19 four 
bells, selected from the top of Table 6.12. 

48 722 437 705 

Fig. 6.19 Ideas for the geometry of a harmonic bell 

Our conclusion is that a harmonic bell will not be found in 
this design area. To our opinion designing a harmonic bell will be 
extremely difficult. 
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CAND. FREQUENCY RATIOS IN CENTS DESIGN VARIABLES 
POINT 
NO. s 2-1 2-2 3-1 3-2 4-1 5-1 6-1 FD X1 X2 X3 X4 X5 X6 X7 

70 63 -286 860 1400 1939 2400 3096 3625 239 -3 -3 -1 1 -1 -3 -1 
48 69 -313 783 1373 1914 2400 3127 3677 232 -3 -3 -1 -1 -3 -3 -3 

722 78 -235 794 1413 1899 2400 3081 3582 259 1 -1 1 1 -1 -3 -1 
437 78 -266 842 1372 2013 2400 3139 3705 217 -1 -1 1 1 -1 -1 1 
705 86 -213 878 1413 1912 2400 3094 3610 255 1 -1 1 -1 -1 -3 -3 
438 86 -234 796 1380 2085 2400 3134 3695 219 -1 -1 1 1 -1 1 -1 

49 87 -274 654 1374 1977 2400 3127 3677 232 -3 -3 -1 -1 -3 -3 -1 
706 89 -178 759 1412 1948 2400 3094 3610 255 1 -1 1 -1 -1 -3 -1 

1098 91 -211 929 1397 2011 2400 3110 3641 240 3 1 3 1 -1 -3 -3 
40 93 -203 775 1390 2101 2400 3124 3675 238 -3 -3 -1 -3 -1 -3 -3 

187 94 -244 846 1377 2119 2400 3143 3719 201 -3 ..:1 1 -1 -1 -1 -1 
1121 95 -235 963 1410 1905 2400 3092 3610 245 3 1 3 3 1 -1 1 

204 97 -307 911 1353 2093 2400 3160 3748 192 -3 -1 1 1 -1 -1 1 
1125 98 -170 744 1427 1885 2400 3082 3589 249 3 1 3 3 1 3 1 

461 98 -278 891 1403 1795 2400 3103 3640 227 -1 -1 1 3 1 3 3 
707 99 -152 730 1420 1939 2400 3093 3608 255 1 -1 1 -1 -1 -1 -3 
448 99 -263 910 1400 1835 2400 3132 3696 218 -1 -1 1 1 1 3 3 
420 99 -192 834 1385 2092 2400 3138 3705 220 -1 -1 1 -1 -1 -1 -1 
215 99 -312 966 1375 1923 2400 3154 3740 193 -3 -1 1 1 1 3 3 
186 99 -272 918 1375 2133 2400 3143 3718 201 -3 -1 1 -1 -1 -1 -3 

58 99 -286 733 1390 1794 2400 3123 3673 233 -3 -3 -1 -1 -1 1 -1 
436 100 -321 1004 1369 1942 2400 3139 3705 217 -1 -1 1 1 -1 -1 -1 
419 100 -222 907 1383 2107 2400 3138 3704 220 -1 -1 1 -1 -1 -1 -3 

50 100 -239 621 1381 2053 2400 3121 3667 234 -3 -3 -1 -1 -3 -1 -3 
35 100 -216 657 1380 2055 2400 3129 3682 235 -3 -3 -1 -3 -3 -3 -3 

Table 6.12 Selection of design points with respect to a harmonic 
bell; all weighting factors are equal to one 

CAND. FREQUENCY RATIOS IN CENTS DESIGN VARIABLES 
POINT 
NO. s 2-1 2-2 3-1 3-2 4-1 5-1 6-1 FD X1 X2 X3 X4 X5 X6 X7 

452 69 -333 1325 1401 1855 2400 3126 3687 220 -1 -1 1 1 3 3 1 
453 71 -321 1273 1405 1819 2400 3125 3686 220 -1 -1 1 1 3 3 3 
449 72 -356 1498 1382 1965 2400 3130 3692 220 -1 -1 1 1 3 1 -1 
450 73 -346 1424 1385 1927 2400 3130 3693 220 -1 -1 1 1 3 1 1 
462 74 -327 1932 1393 2117 2400 3091 3624 220 -1 -1 1 3 3 1 -1 

85 74 -307 1564 1411 1891 2400 3060 3566 235 -3 -3 -1 1 3 1 -1 
61 74 -342 1206 1384 1856 2400 3123 3673 234 -3 -3 -1 -1 1 -1 -3 

898 75 -353 1540 1378 1890 2400 3141 3717 204 1 1 3 3 3 3 3 
86 75 -299 1487 1416 1841 2400 3061 3575 234 -3 -3 -1 1 3 1 1 
64 75 -323 1040 1395 1767 2400 3121 3672 234 -3 -3 -1 -1 1 1 -1 

463 76 -322 1747 1392 1975 2400 3098 3635 220 -1 -1 1 3 3 1 1 
220 76 -372 1312 1371 1910 2400 3150 3733 195 -3 -1 1 1 3 3 3 

62 76 -334 1133 1385 1829 2400 3123 3675 234 -3 -3 -1 -1 1 -1 -1 
897 77 -373 1643 1368 1946 2400 3143 3719 204 1 1 3 3 3 3 1 
457 77 -331 1403 1384 1797 2400 3112 3655 224 -1 -1 1 3 1 1 -1 
454 77 -338 1622 1381 1948 2400 3113 3658 224 -1 -1 1 3 1 -1 -3 
451 77 -322 1305 1390 1902 2400 3129 3691 220 -1 -1 1 1 3 1 3 
219 77 -385 1365 1367 1944 2400 3150 3733 195 -3 -1 1 1 3 3 1 

87 77 -297 1331 1413 1771 2400 3075 3590 235 -3 -3 -1 1 3 1 3 
77 77 -304 1651 1406 1952 2400 3082 3616 233 -3 -3 -1 1 1 -1 -3 
65 77 -314 987 1397 1736 2400 3121 3673 234 -3 -3 -1 -1 1 1 1 

458 78 -322 1223 1388 1758 2400 3110 3653 225 -1 -1 1 3 1 1 1 
455 78 -331 1365 1383 1890 2400 3112 3655 224 -1 -1 1 3 1 -1 -1 
445 78 -355 1280 1371 1801 2400 3139 3709 216 -1 -1 1 1 1 1 1 

78 78 -304 1464 1404 1844 2400 3089 3623 233 -3 -3 -1 1 1 -1 -1 

Table 6.13 Selection of design points with respect to a harmonic 
bell; the weighting factors are equal to one for the 
frequencies 2-1, 3-1 and 4-1 and are equal to zero for the 
other frequencies 
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.2. . .1 . .1.2. Q.e.§.ig_n_of .t.h.re~ ne!!. hell§. 
Frequency 1-1 is crucial in bell design. The range of variation 

of its frequency ratio for the whole set of candidate points 
appeared to be: 

1322 cents i ratio 3-1 i 1753 cents (6.3.15) 

Thi~ means that in this design area a fifth-bell (see Table 6.11) is 
not likely to be found. Furthermore, only a few musically interesting 
frequency ratios lie within this range: 1500 cents, 1600 cents, and a 
musically less interesting, 1700 cents. 

We therefore ordered the candidate po.ints according to 
increasing values of ratio 3-1 and selected three typical design 
points; Table 6.14 gives the frequency ratios for these points; the 
profiles have been plotted in Fig. 6.20. 

Cand. Frequency ratio in cents 
point 
No. 2-1 2-2 3-1 3-2 4-1 5-1 6-1 

754 12 1652 1609 1892 2400 3050 3598 
(0) (1600) (1600) (1900) (2400) (3100) (3600) 

943 406 1171 1606 2389 2400 3055 3599 
(400) ( 1200) ( 1600) (2400) (2400) (3100) (3600) 

1165 674 1241 1628 2376 2400 3049 3582 
(700) ( 1200) (1600) (2400) (2400) (3100) (3600) 

Table 6.14 Frequency ratios and target values of three peculiar bell 
profiles. 

The bells are peculiar because in each of them two of the lowest five 
frequencies coincide. ln common bell de:;ign this is very unusual. 
Futhermore, for two of the three bells the frequency 2-1 is raised 
considerably compared to the conventional hum note. 

754 943 1165 

Fig. 6.20 Three new bell types 
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For the optimization the program DYNOPT, based on the SLP 
algorithm (see Section 2.5.3), was applied. For each bell about 15 
iteration steps were needed. Table 6.15 gives the results after 
optimization and after the bells were founded by the Royal Bell­
Foundry Eijsbouts. The largest diameter of the bell "1165" is 460 mm 
and the bell has been tuned by means of a set of special tuning 
curves, which were also computed using the program DYNOPT. Table 6.15 
gives the results of the tuned bell. The largest diameters of the 
bells "754" and "943" are respectively 387 mm and 437 mm. These bells 
have been founded without applying a tuning tolerance and hence they 
have not been tuned. 

Bell Frequency ratios in cents 
type 
No. 2-1 2-2 3-1 3-2 4-1 5-1 6-1 

"754" DYNOPT 4 1612 1600 1880 2400 3057 3608 
Founded -31 1635 1582 1883 2400 3057 3605 

"943" DYNOPT 405 1197 1598 2399 2400 3064 3611 
Founded 407 1221 1595 2405 2400 3047 3620 

"1165" DYNOPT 700 1199 1613 2401 2400 3056 3593 
Founded + tuned 713 1199 1600 2406 2400 ? ? 

Table 6.15 Results of optimized and founded bells (? indicate:; that 
the frequency ratio has not been measured) 

We will call bell 1165 a major chord bell, because the lowe:;t; three 
partials give the notes g - c - e, which gives the experience of a 
major chord since the pitch of the bell lies on c. In the bell­
foundry this bell is called the "Mexican hat". 

At this moment only a preliminary musical opinion can be 
expressed about these bells. The bells are of increasing interest in 
the sequence 1165-943-754. 

In the major chord bell (1165) the strike note is not very 
distinct. The listener hesitates between the strike note at; 1200 
cents and another one coinciding the strong major-third 3-1. This is 
caused by the hum which is raised with a fifth interval. Furthermore, 
the hum is much weaker then usually is the cilse. Due to these two 
phenomena the strike note is but little supported by the hum and 
hence becomes less distinct. 

Bell 943 is a variant of the major-third bell. Although most 
people will think it ugly, the sound is quite reasonable and 
certainly better then that of the "Mexican hat•. Here, due to the 
raised hum the strike note is also less distinct, compared to common 
bells, but it is better than with bell 1165. 

Bell 754 is also a variant of a major-third bell. One might 
call this bell a TTNP-bell, i.e. "Two Thirds and No Prime", where 
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"prime" is a synonym l)f "fundamental". Althl)ugh in this bell the 
fundamental has gone, the strike note is very distinct at the common 
ll)cation. Furtherml)re, it is a clear, transparently SI)Unding bell and 
it is judged as being very interesting by the experts. 

2-1 2-2 3-1 3-2 4-1 5-1 6-1 

Fig. 6.21 Vibration modes l)f a minl)r-third bell and of three new 
bells 

Fig. 6.21 shows the corresponding vibration modes of a minor­
third bell and of the three new bells. In general the modes of the 
bells 943 and 1165 resemble those of the minor-third bell. The same 
thing can be said of the modes 2-1 and 2-2 of bell 754. However, the 
modes 3-1 through 6-1 are quite different; the modes 4-1, 5-1 and 6-1 
have a node at the sound bow, whereas common bells there show a 
ventral segment. Considering these vibration modes, bell 754 should 
be preferably struck in the waist instead of at the sound bow. The 
future will learn the value of this bell. In any case, the shape of 
the bell is less open to question than that of the bells 943 or 1165. 
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6.4 Conclusions and suggestions 

We may conclude that structural optimization using direct FEM­
analyses and experimental design techniques offers efficient tools in 
bell design. They enabled us to design the challenging major-third 
bell, which was chased by the bell-founders for more than half a 
century. The major-third bell and carillons built of these bells, 
earn much success. 

The development of a polynomial model of the bell by means of 
planning FEM-analyses using experimental design techniques and 
regression analysis, was not wholly successful. The developed 
geometrical model proved applicable in a wide design area. For four 
of the seven most important frequencies (3-1, 4-1, 5-1 and 6-1) 
satisfying regression models could be derived, although with the use 
of data collected in all candidate points. However, we expect that 
for these frequencies adequate models can be obtained with much fewer 
data. The regression models for the frequencies 2-1, 2-2 and 3-2 do 
not reach the predictive ability which is needed in bell design. We 
suspect that the regression models can be improved by choosing more 
adequate regress•H variables (polynomial or otherwise) in the model. 

Although the predictive ability of the models for the 
frequencies 2-1, 2-~ and 3-2 is too low for bell design, these 
apparently difficult relationships have been estimated with an 
accuracy which certainly is satisfactory in many branches of 
mechanical engineering. The regression models are extremely fast. 
Computing the seven frequencies of a bell using regression models 
with 109 parameters requires 7 * 0.02 = 0.14 sec. of computing time. 
A FEM-computation of these frequencies requires 1200 sec. CPU on the 
same computer, that is 8500 times 0.14 sec. 

And what about all those finite element computations in the 
candidate points? In any case these results can be used to derive 
regression models in interesting subareas of the design area. For 
example, selection of design points with variables in ranges from 
-1.0 to +1.0 results in a 27 experimental design in a relatively 
small area. The results of Maas (1985) showed that regression model:> 
derived in such an area, are sufficiently accurate for bell design. 
However, such procedures have little to do with (optimal) 
experimental design, but more with mere regression analysis. 

The collected data is used to search for new bell type:>. A bell 
with harmonic partials and a fifth bell (Table 6.11) could not be 
found in the design region occupied by the candidate points. The 
design of a harmonic bell is a challenge; whether a solution might be 
possible is hardly to say at this moment. 

Three new bell types were found. Each of these bells is 
peculiar in the sense that two of the five lowest frequencies 
coincide. Such frequency spectra are new in bell design. Musical 
evaluation of these bells has yet to be carried out. At this moment 
the bells "1165", "943" and "754" may be characterized as musically 
of little interest, of moderate interest and of great intere:ot, 
respectively. 
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Applying large profile variations, the frequency ratios and 
vibration modes can change very much, far beyond the changes that 
appear in common bell design. Therefore new classifications of 
partials :;hould be developed, and new insights must be obtained as to 
how bells with completely new sound spectra will be experienced 
by the listeners. This requires investigation of all aspects of the 
sound spectrum of bells (frequencies, vibration modes and strength, 
internal and external damping and sound radiation). 

We may conclude this chapter posing that, due to the 
application of shape optimization, a new landmark has been reached 
in bell design. 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

In this thesis the integration of experimental design 
techniques in structural optimization and related topics has been 
discussed. The arguments for such an integration are: 

- The need for fairly accurate and fast mathematical models of 
structures. Such models can be derived by the planning and 
analysis of a set of comprehensive numerical experiments (for 
example, carried out by means of a finite element package). 

- The concepts of design variables in structural optimization and 
control variables in experimental design are closely related. 

- Structural optimization programs are suitable to collect data for 
numerical experimental designs. 

- Regression models can be used as fast analysis modules in 
optimization programs. A solution of the optimization can serve 
as an initial starting point in a final optimization run using 
direct FEM-computations. 

Experimental designs can be formulated in several ways. In the more 
classical approach Latin squares and pn-designs are used. Here, the 
objective is to minimize the confounding in the design, in order to 
obtain uncorrelated parameter estimates and a sufficient predictive 
ability of the regression models. 

rn optimal experimental design the variance of the parameter 
estimators and/or the response estimators is minimized. Methods and 
criteria are described in Chapter 3, and have been generalized to the 
case of simultaneous observations of several responses. This feature 
is applicable in the derivation of regression models in case 
observations of function values and partial derivatives of the 
response quantity with respect to the control variables are 
available. Computation of the required partial derivatives can 
be carried out efficiently in FEM-formulations. 

The guidelines for model building based on physical 
experiments can also be used in building models based on numerical 
experiments. 

Regression models based on numerical computations can be 
applied in different ways. They can serve as efficient stand-alone 
mathematical models of a structure or system. Such models can be 
evaluated on a microcomputer or even on a pocket calculator. One can 
think of a library of regression models for use in design offices or 
in education. Besides derivation of models for more or less 
standardized structures or machine parts, models can also be derived 
for unique physical problems, in order to carry out parameter 
st:udies. 

The derived methods have been applied successfully on several 
mechanical engineering problems. We recall a pin and hole joint, a 
journal bearing, cross-section design of aluminium beams and a 
leaflet heart valve prosthesis. 
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The methods described in this thesis have been tested 
extensively and were used in shape optimization of church and 
carillon bells. The major-third bell, which was searched for by bell­
founders for more than half a century, has been found and appeared to 
be a great; success. 

As a final application, especially of optimal experimental 
design, we tried to build regression models for bell design which had 
to be applicable in a relatively wide design area. Only for four of 
the seven relevant frequencies satisfying regression models could be 
derived. Additional research will be necessary to improve the three 
remaining models. The outcome of such investigations might be that 
our objectives for the general bell model were too ambitious. 
Nevertheless model building procedures could be tested thoroughly. 
The program CADE proved to be a very valuable tool in experimental 
design. Our first use of the program was in numerical 
experimentation, but application to physical experimentation is 
standard. 

Although a satisfying general bell model was not achieved, the 
collected FEM-data could be used to find new bells. It follows that 
in the design area exploited by us, a bell with harmonic partials and 
a fifth bell probably will not be found. Solving these problems seems 
to be very difficult. 

Initial designs were found for three typical bells. In the 
frequency spectra of each of these bells, two of the lowest five 
frequencies coincide. The three bells were optimized to target 
frequency spectra by means of the program DYNOPT, applying direct 
FEM-computation in the analysis step. 

Application of numerical shape optimization of bell profiles 
has opened new ways in designing musically interesting bells. 
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Samenvattinq 

Bij het numeriek optimaliseren van het mechanisch gedrag van 
konstrukties wordt meestal gebruik gemaakt van twee belangrijke me­
thoden nl.: 

1. de eindige elementenmethode (EEM) als flexibel en nauwkeurig 
modelerings- en analysegereedschap en 

2. mathematische programmering als gestruktureerde werkwijze voor 
het zoeken van een gunstiger set van ontwerpvariabelen. 

De hoven aangeduide optimaliseringsproblemen zijn vrijwel 
steeds sterk niet-linear, hetgeen een iteratieve oplossingsmethode 
vereist: men analyseert de konstruktie en bepaalt vervolgens een 
schatting voor betere waarden van de ontwerpvariabelen. Dit proces 
wordt voortgezet totdat een, i.h.a. lokaal optimum is bereikt. Het 
eindresultaat van deze werkwijze is wat ons interesseert; de 
tussenliggende iteratiestappen zijn achteraf van weinig belang. 

Indien men ervan uitgaat dat voor het oplossen van het optima­
liseringsprobleem meerdere EEM-analyses nodig zijn, is ook een andere 
aanpak mogelijk. Bij die aanpak worden de uit te voeren EEM-analyses 
vooraf gepland, zowel wat betreft hun aantal als de waarden van de 
ontwerpvariabelen welke een rol spelen. De resultaten van de uitge­
voerde analyses worden m.b.v. regressie-analyse "gecondenseerd" tot 
een rekenmodel in de vorm van een of meer lineaire modellen, bijvoor­
beeld polynomen. 

Voor het plannen en verwerken van de EEM-analyses kan met 
vrucht gebruik worden gemaakt van de statistische theorie van proef­
opzetten, welke is ontwikkeld ten behoeve van het plannen van omvang­
rijke fysische experimenten. EEM-analyses zijn te beschouwen als nu­
merieke experimenten, welke kunnen dienen voor het formuleren van een 
numerieke proefopzet. Het resultaat van zo'n numerieke proefopzet is 
een efficient rekenmodel van de onderzochte konstruktie. Dergelijke 
rekenmodellen kunnen als zodanig gebruikt worden, bijvoorbeeld op een 
ontwerpafdeling. Voor ons is vooral de toepassing als analysemoduul 
in optimaliseringsprogrammatuur van belang. 

In dit proefschrift worden werkwijzen behandeld zoals die ge­
bruikelijk zijn bij de numerieke optimalisering en in de statistische 
theorie van proefopzetten. Verder worden modificaties van deze theo­
rie behandeld welke nodig en nuttig zijn ten behoeve van numerieke 
proefopzetten en worden argumenten gegeven voor de integratie van 
deze theorie in optimalisering. 

De mogelijkheden voor het gebruik van de ontwikkelde methoden 
worden afgebakend en er worden richtlijnen gegeven voor de toepas­
sing. 

De ontwikkelde werkwijzen zijn uitgebreid getest en gebruikt 
bij het optimaliseren van de geometrie van luid- en carillonklokken, 
met als resultaat enkele nieuwe, muzikaal zeer interessante 
kloktypen. Verder zijn de methoden met succes toegepast bij diverse 
werktuigkundige problemen en bij een biomechanica-probleem. 
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STELLINGEN 

Behorende bij het proefschrift 

EXPERIMENTAL DESIGN AND STRUCTURAL OPTIMIZATION 

1. Omvanqrijke numerieke berekeningen waarin parametervariat:ies 
een rol spelen, kunnen zinvol en efficient gepland worden door 
gebruik te maken van werkwijzen uit de stati:Jtische t:heorie van 
proefopzetten. 
- D.i.t proefschrift. 

2. Door middel van wijziging van een klokprofiel is het niet moge­
lijk om de laagst:e twee eigenfrekwenties van de t:rillinq9modes 
met twee meridiaan-knooplijnen te doen samenvallen. 
- Dit: proefschrift, hoofd:-;t:uk 6 

3. De bewering van G.E.P. Box, W.G. Hunter en J.S. Hunter dat de 
theorie van optimale proefopzetten leidt tot 'oversimplifica­
tion' van de experimentele situatie, is in zijn algemeenheid 
niet juist. 
- G.E.P. Box, W.G. Hunter, J.S. Hunter, 'Statistics for Experi­

menters", blz. 304, John Wiley, New York (1978). 

4. Technische opleidingen vragen om twee categorieen van applica­
tieprogrammatuur: 
- in de basis: onderwijs gerichte programma's welke zeer snel 

en "student-proof" zijn en waarin "gestoeid' kan worden met 
principes, methoden en relatief eenvoudige problemen. 

- in de afsluitende fase: geavanceerde praktijkgerichte pro­
gramma's voor het modelleren en oplossen van realistische 
problemen. 

5. De in computerspelletjes gebruikte principes voor het stimule­
ren van de speler dienen ook toegepa:;t te worden bij de ontwik­
keling van educatieve programmatuur. 

6. Bij handbellen bestaat het probleem dat de grotere bellen rela­
tief te weinig geluid afstralen*l. De geluid:;afstraling kan 
verbeterd worden door het klokprofiel zodanig te ontwerpen dat 
de frekwentieverhoudingen van de niet gestemde partialen zoveel 
mogelijk elementen vormen uit de in muzikaal opzicht harmoni­
sche reek:;: 1: 2: 3: enz. 
•JT.D. Rossing and R. Perrin, 'Vibration of Bells'. Applied 

Acoustic:;. Vol. 20. No 1, pp. 41-70 (1987). 
- Dit proefschrift. 



7. De publiciteit rond tamelijk specialistische onderzoekprojecten 
kan :>terk bevorderd worden door de keuze van een tot de ver­
beelding sprekend probleem bij het testen van onderzoekmetho­
den. 

8. Muziekinstrumenten van allerlei soort vormen een uitgebreide 
klasse van interessante konstrukties met betrekking tot het 
optimaliseren van hun dynamisch gedrag. 

9. In de regelgeving met betrekking tot het verlenen van vergun­
ningen voor het organiseren van lawaai-intensieve evenementen, 
wordt de modelvliegsport achtergesteld. Dit is des te opmerke­
lijker daar juist in de modelvliegerij relatief veel moeite 
gedaan wordt om geluidoverlast te beperken. 
- KB 13 november 1986, nr. 26 
- KB 9 oktober 1986, nr. 109 
- L.F. Doorduijn, "Jurisprudentie", Geluid en Omgeving, maart 

1987, blz. 33-35. 

10. Uit didactisch oogpunt verdient het aanbeveling op basisscholen 
en in het voortgezet onderwijs slechts die zakrekenmachines toe 
te staan, waarbij op het display de decimale punt niet zicht­
baar. is. 




