

Operating guidelines for services

Citation for published version (APA):
Massuthe, P. (2009). Operating guidelines for services. [Phd Thesis 2 (Research NOT TU/e / Graduation TU/e),
Mathematics and Computer Science, Humboldt-Universität zu Berlin]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR642021

DOI:
10.6100/IR642021

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR642021
https://doi.org/10.6100/IR642021
https://research.tue.nl/en/publications/fda89ca8-6f05-4b43-83ae-d06e993038dd

Peter Massuthe
Operating Guidelines for Services

Dissertation

Copyright c© 2009 by Peter Massuthe. All Rights Reserved.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Massuthe, Peter

Operating Guidelines for Services / by Peter Massuthe.
Eindhoven: Technische Universiteit Eindhoven, 2009. Proefschrift.

ISBN 978-90-386-1702-2
NUR 933

Keywords: services / formal methods / Petri nets / operating guidelines

SIKS Dissertation Series No. 2009-12

The research reported in this thesis has been carried out under the auspices
of SIKS, the Dutch Research School for Information and Knowledge
Systems.

Printed by University Press Facilities, Eindhoven

Operating Guidelines for Services

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op dinsdag 21 april 2009 om 16.00 uur

door

Peter Massuthe

geboren te Bad Freienwalde, Duitsland

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. K.M. van Hee
en
prof.Dr. W. Reisig

Copromotor:
prof.Dr. K. Wolf

Operating Guidelines for Services

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

(doctor rerum naturalium, Dr. rer. nat.)
im Fach Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät II der

Humboldt-Universität zu Berlin
im Rahmen einer Doppelpromotion mit der

Technische Universiteit Eindhoven, Niederlande

von
Herrn Diplom-Informatiker

Peter Massuthe

geboren am 23. Juli 1976

Präsident der Humboldt-Universität zu Berlin
Prof. Dr. Dr. h.c. Christoph Markschies

Dekan der Mathematisch-Naturwissenschaftlichen Fakultät II
Prof. Dr. Peter Frensch

1. Gutachter prof.dr. Kees van Hee

2. Gutachter Prof. Dr. Wolfgang Reisig

3. Gutachter Prof. Dr. Karsten Wolf

eingereicht am 13. März 2009

Tag der mündlichen Prüfung 21. April 2009

Abstract

In a service-oriented world, the interaction of stateful services raises the need
for formal verification of the behavioral compatibility of the services. In this
thesis, we introduce a formal framework basing on Petri nets and automata for
service modeling and formalize behavioral compatibility as deadlock freedom of
the composition of the services.

Many other research questions, like substitutability of services and adapter gener-
ation, build on top of the behavioral compatibility question and formulate require-
ments for the set R(S) of behaviorally compatible services of a given service S. To
efficiently characterize the set R(S) of S, we introduce the notion of the operating
guideline of S. Operating guidelines can be applied to a variety of service-related
analysis questions and may support service discovery, substitutability of service
and the generation of adapters between behaviorally incompatible services.

All results presented in this thesis are implemented in our service analysis tool
Fiona.

Kurzfassung

In der Welt zustandsbehafteter Services ist die formale Verifikation der Verhal-
tenskompatibilität interagierender Services von zentraler Bedeutung. In dieser
Dissertation entwickeln wir einen formalen Rahmen zur Modellierung von Services
mit Petrinetzen und Automaten und formalisieren die Verhaltenskompatibilität
von Services als Verklemmungsfreiheit ihrer Komposition.

Viele weiterführende Analysefragen, darunter Fragen zur Austauschbarkeit von
Services und die Konstruktion von Adapterservices, basieren auf der Verhal-
tenskompatibilität von Services und betrachten die Menge R(S) aller verhal-
tenskompatiblen Services für einen gegebenen Service S. Als effiziente Charakter-
isierung dieser Menge führen wir das Konzept der Bedienungsanleitung eines Ser-
vices S ein. Bedienungsanleitungen können zur Entscheidung einer Vielzahl von
Analysefragen im Zusammenhang mit Services angewendet und in den Bereichen
der Lokalisation von Services, der Austauschbarkeit von Services sowie bei der
Synthese von Adaptern für verhaltensinkompatible Services unterstützend einge-
setzt werden.

Alle Ergebnisse, die in dieser Arbeit präsentiert werden, sind in unserem Analy-
sewerkzeug für Services, Fiona, implementiert.

vii

Table of Contents

List of Figures xiii

List of Definitions and Notations xvii

1 Introduction 21

1.1 Motivation . 21

1.2 Formal Analysis of Service Behavior 22

1.3 Problem Description and Research Goal 23

1.4 Contributions . 26

1.5 Outline of the Thesis . 28

I Service Behavior Modeling 31

2 Background on Services and Service-Oriented Computing 33

2.1 Services . 33

2.2 Service-Oriented Computing (SOC) 34

2.3 Service-Oriented Architecture (SOA) 35

2.4 Compatibility Criteria for Services 37

2.5 Formal Modeling of Services . 39

3 A Formal Framework for Service Modeling 41

3.1 Preliminaries . 42

3.2 Service Modeling with Service Nets 47

3.3 Service Behavior Modeling with Service Automata 60

ix

Table of Contents

3.4 An Equivalent Translation between Service Nets and Automata . . 73

3.5 Possible Variants of Service Model Definitions 84

3.6 Related Work . 87

3.7 Concluding Remarks . 90

II Analyzing the Interaction Behavior of Services 93

4 Characterizing Sets of Services 95

4.1 Preliminaries . 96

4.2 Boolean Annotated Service Automata 101

4.3 Normal Boolean Annotated Service Automata 107

4.4 A Preorder on Boolean Annotated Service Automata 119

4.5 The Canonical Representative of a BSA 123

4.6 Possible Variants of BSA Definitions 134

4.7 Related Work . 137

4.8 Concluding Remarks . 138

5 Operating Guidelines for Services 139

5.1 A Characterization of Deadlocks 140

5.2 An Asymmetric Characterization of Strategies 148

5.3 Restriction to Finite-State Services 161

5.4 An Operating Guideline Characterization of Strategies 164

5.5 Possible Variants of OG Definitions 178

5.6 Related Work . 180

5.7 Concluding Remarks . 182

III Applications and Implementation 185

6 Applications of Operating Guidelines 187

6.1 Service Discovery . 187

6.2 Substitutability of Services . 190

6.3 Service Synthesis for Adapter Generation 194

6.4 Conclusion . 198

x

Table of Contents

7 Implementation in the Tool Fiona 201

7.1 About Fiona . 201

7.2 Functionality of Fiona . 202

7.3 Implementation of the Results . 206

7.4 Case Study . 219

7.5 Conclusion . 225

8 Conclusions and Future Work 227

8.1 Conclusions . 227

8.2 Future Work . 228

Bibliography 231

Index 243

Summary 247

Acknowledgements 249

Erklärung 251

Curriculum Vitae 253

SIKS Dissertations 255

xi

List of Figures

2.1 Service brokering in the basic SOA. 35

2.2 Extended SOA. 36

3.1 A simple Petri net. 45

3.2 A service net modeling an online shop. 50

3.3 The inner of the online shop service net. 52

3.4 A service net modeling a client of the online shop. 55

3.5 Service net composition of online shop and client. 56

3.6 A service automaton modeling the online shop. 63

3.7 A service automaton modeling the client of the online shop. 68

3.8 Automata composition of online shop and client. 70

3.9 Two service automata and their open composition. 71

3.10 Sequentialization of interface transitions. 76

3.11 Sequentialization changes boundedness of the inner. 78

3.12 Sequentialization with complementary place. 79

3.13 A Service net and its inner with a transient final marking. 86

4.1 Examples for simulation relations. 97

4.2 Two service automata with different simulation relations. 99

4.3 A Boolean annotated service automaton with its constituents. . . . 102

4.4 The assignment of a Boolean annotated service automaton. 103

4.5 Examples for matching. 104

4.6 Final states vs. literal final . 106

4.7 Example for an infinite semantics of a BSA. 107

xiii

List of Figures

4.8 A BSA with more transition labels than literals. 109

4.9 A BSA with totally unrelated transition labels and annotations. . . 110

4.10 A BSA with its assignment and its maximal assignment. 111

4.11 Annotation normalization of a BSA. 113

4.12 State normalization of a BSA. 116

4.13 State normalization of a BSA with empty semantics. 117

4.14 Preorder relation between two BSAs. 120

4.15 Two equivalent BSAs. 125

4.16 Two q-starting versions of a BSA. 127

4.17 Equivalence classes of the states of a BSA. 128

4.18 Minimization of a BSA with drastic reduction. 134

5.1 Schematic overview of deadlock characterization. 140

5.2 Two service automata A and B for knowledge demonstration. . . . 142

5.3 Composition A⊕ B and knowledge of B about A. 143

5.4 Different compositions, but equal knowledge. 145

5.5 Deadlock verification of an open composition. 148

5.6 Schematic overview of strategy characterization. 149

5.7 A service automaton and its overapproximation of strategies. . . . 153

5.8 The overapproximation’s simulation of a service automaton. 158

5.9 Schematic overview of strategy characterization with OGs. 164

5.10 An overapproximation of 1-strategies for a service automaton. . . . 167

5.11 Intuitive correlation between knowledge sets and Boolean formulae. 169

5.12 An overapproximation of 2-strategies with its canonical clauses. . . 171

5.13 A service automaton, its OG , and a non-matching service automaton.176

5.14 Need for a minimization of OGs. 177

5.15 Problems with a strategy notion for open compositions. 179

6.1 Schematic overview of the adapter generation. 196

7.1 The main functionality of Fiona depicted as a service net. 203

7.2 Example service net to illustrate the OG computation. 212

7.3 Example OG computation. 213

xiv

List of Figures

7.4 Example OG computation (continued). 215

7.5 Computed example OG . 216

7.6 Experimental results of computing OGs with Fiona. 221

7.7 Experimental comparison of Model Checking versus Matching. . . 224

xv

List of Definitions and
Notations

3.1.2 Net . 44

3.1.4 Preset, postset . 44

3.1.5 Marking . 45

3.1.6 Petri net . 45

3.1.7 Behavior of a Petri net . 46

3.1.8 Reachability, RN (m) . 46

3.1.9 Bounded Petri net . 46

3.1.10 Transient, dead marking . 47

3.2.1 Service net . 48

3.2.2 Receiving, sending, internal, interface transition 49

3.2.3 Label of a transition . 49

3.2.4 Inner of a service net, inner(N) . 51

3.2.5 Open, closed service net . 52

3.2.6 Interface equivalent service nets . 53

3.2.7 Internally disjoint service nets . 53

3.2.9 Shared, free interface place . 54

3.2.10 Interface compatible service nets . 54

3.2.11 Composition of service nets . 54

3.2.16 Deadlock . 58

3.2.17 Well-behaving service net . 58

3.2.18 Strategy service net, Strat(N) . 59

3.2.20 Controllability . 59

xvii

List of Definitions and Notations

3.3.1 Service automaton . 61

3.3.5 Present transition . 62

3.3.6 Finite service automaton . 62

3.3.7 Receiving, sending, internal, interface transition 62

3.3.8 Deterministic service automaton . 64

3.3.9 δ-reachable state . 64

3.3.10 Internally reachable state, RA(q) . 65

3.3.11 Transient, stable state . 65

3.3.12 Open, closed service automaton . 66

3.3.13 Interface equivalent service automata 66

3.3.14 Internally disjoint service automata 66

3.3.16 Shared, free channel . 67

3.3.17 Interface compatible service automata 67

3.3.18 Composition of service automata . 69

3.3.23 Deadlock . 72

3.3.24 Well-behaving service automaton . 72

3.3.25 Strategy service automaton, Strat(A) 73

3.3.27 Controllability . 73

3.4.1 Elementarily communicating service net 75

3.4.3 Sequentialization of a service net, seq(N) 76

3.4.8 Translation SA(N) . 79

3.4.12 Translation PN (A) . 83

4.1.1 Strong simulation relation . 97

4.1.3 Minimal simulation relation . 98

4.1.6 Boolean formula overMC+, BF . 99

4.1.8 Truth value, Boolean assignment, satisfaction, β, |= 100

4.1.9 Domination of assignments, β ≤ β′ 100

4.2.1 Boolean annotated service automaton, BSA 101

4.2.4 Assignment of a service automaton, βC 103

4.2.5 Matching, Match(Bφ) . 103

4.2.6 Empty BSA . 106

4.3.1 Maximal assignment, β+
B . 110

xviii

List of Definitions and Notations

4.3.3 Normal annotation . 112

4.3.4 Annotation normalization, normalφ(Bφ) 112

4.3.6 Normal state . 114

4.3.8 State normalization, normalQ(Bφ) 116

4.3.10 Normal BSA . 118

4.3.11 Normalization of a BSA, normal(Bφ) 118

4.4.1 Smaller relation, v, on BSAs . 119

4.5.1 Equivalent BSAs, ≡ . 124

4.5.4 Equivalence class of a BSA, [Bφ] . 126

4.5.5 q-starting BSA of Bφ, Bφq . 127

4.5.6 Equivalent states of a BSA, ' . 127

4.5.8 Equivalence class of a BSA state, [q] 128

4.5.11 Minimization of a BSA, minimal(Bφ) 130

4.5.16 Minimal BSA . 132

5.0.1 Operating guideline, OGA . 139

5.1.1 Situation, situations(A) . 141

5.1.3 Knowledge, k(q) . 142

5.1.4 Transient, stable situation . 144

5.2.1 Closure, closure(K) . 150

5.2.3 Event, event(K,x) . 150

5.2.5 Overapproximation of strategies, F 151

5.3.1 b-bounded communication, message bound b 161

5.3.4 b-strategy, Stratb(A) . 162

5.3.5 b-controllability . 163

5.3.6 b-operating guideline, OGb
A . 163

5.3.7 b-situation, situationsb(A) . 164

5.4.2 Overapproximation of b-strategies, Fb 165

5.4.6 Canonical Boolean annotation, ψFb 170

6.2.1 Equivalent services . 191

6.2.4 Accordance relation . 192

6.2.7 Contract, public view . 193

xix

1 Introduction

1.1 Motivation

In recent years, enterprises more and more face the new challenges of ever faster
changing business conditions and a growing number of competitors from all over
the world. Consequently, functionalities are sourced out, and enterprises that may
be competitors in other business areas form virtual enterprises to cooperate for a
specific common business goal. That way, interorganizational business processes,
distributed both logically and geographically, have become increasingly impor-
tant and raised the need for a technological support of integrating heterogeneous
systems within and across organizational boundaries.

In this context, services play an important role. As a common understanding,
a service encapsulates self-contained functionalities behind a well-defined, stan-
dardized interface [ACKM03]. Services are independent of specific programming
languages and operating systems and therefore help to reduce the complexity of
integrating heterogenous environments.

A service can typically not be executed in isolation—services are designed for be-
ing invoked by other services, or for invoking other services themselves in order to
provide more involved functionalities. The evolving paradigm of service-oriented
computing (SOC) [Pap01, Pap07a] is concerned with the interaction of services,
as well as service management and monitoring, service-oriented engineering, and
many other research themes. SOC suggests technologies and standards to these
concerns and therefore plays an important role in supporting interorganizational
business processes.

However, the organizations involved in such an interorganizational process are
essentially autonomous and have the freedom to create or modify their services
and cooperations at any point in time. So, services must also provide high flex-
ibility, loose coupling, distributed execution, and support the reuse of software
components.

To technologically support the needed flexibility, the service-oriented architecture
(SOA) [Got00, WCL+05, Pap07a] was proposed as an architectural style for dy-

21

Chapter 1. Introduction

namically composing services to complex software systems. It provides concepts
and standards for publishing a service by a service provider, proposes service bro-
kers for the registration of published services, and organizes the search for and
discovery of published services by a client. Hence, SOA supports the dynami-
cal binding and interaction of services. The process of publishing, finding, and
binding of services is usually subsumed under the term service brokering. Service
brokering can be seen as the key enabler for the use of services as flexible building
blocks for designing highly dynamic interorganizational business processes.

In the beginning, SOC was restricted to stateless services performing simple re-
quest/response function calls. However, many real-world business scenarios re-
quire complex interaction patterns between multiple, possibly long-running ser-
vices. Consequently, stateful services that communicate via asynchronous mes-
sage passing are commonly used nowadays [Pap07a].

In this setting, a composition of services may exhibit complex structures and non-
trivial interaction patterns. Therefore, small local changes can easily cause severe
behavioral errors such as deadlocks or livelocks in the whole service composition
(as shown in [LMSW06, LMSW08], for example). Consequently, behavioral com-
patibility of services, i.e. the absence of such behavioral errors, is an important
field of research and a major concern to appropriately achieve common business
goals. To decide whether a whole composition of services will interact properly
is by far non-trivial [AW01, LMSW06, ALM+07, LMSW08, ALM+09]. Hence,
formal support for checking and assuring behavioral compatibility of service in-
teractions is crucial for the success of service brokering, and services have to be
analyzed thoroughly before they are bound together and start to interact.

In this thesis, we study behavioral compatibility of service interactions on a for-
mal basis. We abstract from other compatibility aspects such as semantics or
nonfunctional properties in this thesis. In fact, these issues are orthogonal to our
approach, and the respective results may complement one another. We refer to
Chap. 2 for a detailed comparison.

1.2 Formal Analysis of Service Behavior

In general, a formal analysis of service behavior requires a formal modeling of
services and their interaction, a formalization of the analysis question, i.e. the
desired property, and formal techniques to decide the property for a given concrete
model.

A well-established formal method are Petri nets (see [Rei85], for example). They
have an intuitive graphical representation, are based on a formal operational se-
mantics, and are supported by powerful analysis methods. The most important
strength of Petri nets is their elegant representation of concurrency. For that

22

1.3. Problem Description and Research Goal

reason, Petri nets are used to model and analyze distributed systems in various
applications.

Workflow nets [Aal98] are a special class of Petri nets which have been proven
successful for the modeling and verification of business processes. The most im-
portant correctness property for workflow nets is known as soundness [Aal98].
Basically, soundness states that the workflow may always terminate properly and
that there are no redundant activities.

For modeling distributed business processes, workflow nets have been refined to
workflow modules [Kin97, Mar04], mainly by adding an interface to the work-
flow. A workflow module reflects the open nature of a part of a distributed
business process and can be seen as a formal representation of a service in the
scope of this thesis. To analyze behavioral compatibility of workflow modules,
the soundness notion for workflow nets was adapted to a weak soundness no-
tion of a composition of workflow modules, basically requiring the absence of
deadlocks in the composition. Then, the major correctness notion for a work-
flow module in isolation was introduced as controllability (formerly also known
as usability) [Mar04, Sch05, Wol09]. Controllability of a workflow module con-
siders the existence of another workflow module such that their composition is
deadlock-free. Like the soundness property for a workflow, controllability is a
minimal requirement for the correctness of a service.

1.3 Problem Description and Research Goal

For more involved analysis questions regarding the behavioral correctness of ser-
vice interactions, more expressive notions than controllability are needed. It
turned out that the set of all behaviorally compatible services for a given service
is of particular interest. For a service S, let R(S) denote this set of behaviorally
compatible services for S.

In the following, we identify three important research problems in the context of
behavioral compatibility of services and motivate the need for a characterization
of the set R(S). The characterization of the set R(S) for a given service S is the
main goal of this thesis. As the set R(S) is typically infinite, this is a non-trivial
task.

Service Discovery

The discovery of published services is one of the most fundamental concepts of
SOA and one of the main challenges for the practical applicability of service-
orientation at the same time. From a behavioral perspective, service discovery
addresses the following question. Given a client R searching for a service to

23

Chapter 1. Introduction

cooperate with, is there a fitting published service S such that R and S are
behaviorally compatible? In our terms, service discovery searches for a published
service S for which R ∈ R(S) holds.

If both R and S are formally modeled, R ∈ R(S) can in principle be answered
by composing both services and model checking [CGP00] the composition for the
desired behavioral correctness criterion (e.g. deadlock freedom). This approach,
however, has two main disadvantages.

Firstly, each pair of R and S obviously has to be analyzed separately. As we
assume that services are published only once, but used by a number of clients,
we may expect this number of pairs—and consequently the number of required
model checking tasks— to be high, potentially significantly higher than the num-
ber of published services. However, model checking typically involves state space
exploration of the composition of R and S. Therefore, it is often both time and
memory consuming and has typically to be performed by experts. Hence, it is
not feasible for service discovery at runtime. In contrast, an approach that allows
for efficient discovery of services is needed. Even if this comes at the cost of addi-
tional complexity before or during the publishing of a service, such an approach
is still reasonable as publish will happen less often than discovery.

Secondly, the search for deadlocks in the composition of R and S requires detailed
knowledge of the internal behaviors of both R and S. As these services are
typically owned by different enterprises, neither of them wants to reveal their
internal behavior to the other one in order to hide their trade secrets. Hence,
privacy issues further limit the applicability of model checking.

A suggested approach to cope with this privacy issue is known as the public view
approach [AW01, LRS02, Mar04, CTD05, ALM+07]. Basically, a public view S′

of a service S is an abstracted version of S itself, hiding “enough” internals of the
service S to publish S′ without revealing (crucial) trade secrets of S. Then, instead
of checking behavioral compatibility between R and S, behavioral compatibility
between R and the public view S′ of S is analyzed (e.g. by model checking). It
is assumed that compatibility between R and the public view S′ is sufficient to
induce compatibility between R and the actual service S. That way, the internals
of the service S do not need to be published. However, there are only a few
concrete approaches to formalize public views [AW01, Mar04, ALM+07], and the
generation of public views is very limited so far. In principle, public views may
help to overcome the privacy issue. Nevertheless, the complexity issue of model
checking for behavioral compatibility still remains.

Concluding, the discovery of behaviorally compatible services must be deemed to
be unsolved. A characterization of the set R(S) that hides trade secrets of S and
which is encompassed by decision procedures to efficiently decide R ∈ R(S) is
needed to support behavioral service discovery.

24

1.3. Problem Description and Research Goal

Service contracts and substitutability of services

A different, currently quite common approach to realize interorganizational busi-
ness processes is known as the contract approach [AW01, ALM+09]. Therein, the
parties involved in a (future) interorganizational business process jointly specify
the desired overall process and the duties of each party in that process. This
overall specification serves as a contract between the parties. If the contract is
successfully specified (and analyzed for its correctness), each party may locally
implement its part of the contract. That way, the actual interorganizational co-
operation is based on the implementation of the contract. Even though a contract
specification itself might behave correctly, behavioral correctness of an implemen-
tation of the contract is non-trivial to decide [AW01, ALM+09].

Conceiving a party’s share of the contract specification as a service S, the set
R(S) contains all behaviorally compatible services of the other parties. If now
the implementation of S is seen as another service S′, then the inclusion relation
R(S) ⊆ R(S′) states that the services of the other parties are still behaviorally
compatible to S′. Hence, this inclusion is a sufficient condition for a correct im-
plementation S′ of S. If each party correctly implements its part, then the overall
implementation is behaviorally compatible by construction [ALM+07, ALM+09].
Furthermore, each inclusion relation can be checked locally for each a party. That
way, the approach also takes into account confidentiality issues.

This question of correct implementation of a service specification can be relaxed to
a question of general substitutability of services. That is, under which conditions
does the substitution of a service S by some other service S′ impact the (possible
and actual) cooperations of S? We focus again on the behavioral aspect of the
substitutability of services. In this context, [SMB09] proposed several different
notions of behavioral substitutability that base on the preservation of exactly
or at least the hitherto existing cooperations of S by S′. Most of the decision
procedures require a characterization of the sets R(S) and R(S′).

Hence, the setR(S) of behaviorally compatible services for a service S is employed
in the research areas of service contracts and substitutability of services as well.
A characterization of this set allowing for any easy to use comparison of two sets
R(S) and R(S′) may help to decide correct implementation of a contract and
many other relevant behavioral substitutability notions.

Synthesis of services

Service synthesis addresses the problem of constructing an abstract behavioral
skeleton of a service R from scratch such that R is behaviorally compatible to a
given service S. The synthesized service R can then be filled with implementation
details [DKLW07, LK08]. Service synthesis can be applied in a number of sce-
narios like the validation of a service S before it is published [LMW07a], for test

25

Chapter 1. Introduction

case generation for a service S [KL09], or for the generation of adapter services
mediating between behaviorally incompatible services [GMW08, Gie08].

Service synthesis is a novel research area which may profit substantially from
a characterization of the set R(S). If this characterization is operational, the
designer may also steer the service synthesis process such that the synthesized R
has different sizes or certain (behavioral) properties.

Research Goal

In this thesis, we will address the research goal of a characterization of the set
R(S) of all behaviorally compatible services R for a given service S. Taking into
account the three research problems introduced above, such a characterization
should

• be finite,
• be supported by an efficient method to decide R ∈ R(S),
• hide the internal behavior of S as much as possible,
• support the comparison of two sets R(S) and R(S′), specifically the deci-

sion of the inclusion relation R(S) ⊆ R(S′), and
• be operational.

This research is novel. As the set R(S) is usually infinite, a characterization of
this set is non-trivial. The many applications of such a characterization show
its importance. This is underlined by the listing of most of these applications in
the “SOC research roadmap” [PTDL08] in which the authors, all of them leading
researchers in the area of services and SOC, identify the grand challenges for
service-related research in the near future.

1.4 Contributions

This thesis makes the following two main contributions.

Formal modeling of service behavior. We present a variant of Petri nets,
service nets, as a formal model for services and their interaction, and we formal-
ize behavioral correctness of a service composition. With service automata, we
introduce a formal basis for the characterization of the set R(S) of all behavioral
compatible services R for a given service S. We show that service automata can
equally be used as a formal model for services and show the equivalence of service
nets and service automata. To this end, we introduce a back and forth translation
between both formalisms.

26

1.4. Contributions

Characterization ofR(S). We introduce Boolean annotated service automata
(BSAs), mainly service automata where each state is annotated by a Boolean
formula. A BSA serves as a general concept for characterizing a set of service
automata. For a given, concrete service S, we develop an algorithm to construct
a special BSA for S, called operating guideline for S, OGS , characterizing the set
R(S) of behaviorally compatible services R for S. OGS is finite, operational, and
only reveals behavior of S that is needed to decide R ∈ R(S). We additionally
provide algorithms to decide whether a service automaton R is characterized by
OGS and to compare the structure of the operating guidelines of two services S
and S′ in order to infer the respective inclusion relation R(S) ⊆ R(S′). Hence,
OGS pays attention to all requirements for the characterization of the set R(S)
as motivated above.

Two further contributions of the work that has been carried out for this thesis
are:

Implementation in the analysis tool Fiona. All results presented in this
thesis have been prototypically implemented in our open source analysis tool
Fiona (available at http://www.service-technology.org/fiona). Fiona can
compute operating guidelines, match a service with an operating guideline (i.e.
decide R ∈ R(S)), and manipulate (i.e. minimize) operating guidelines. Fiona
may furthermore compare the sets R(S) and R(S′) of two services S and S′ for
equivalence or inclusion, synthesize behavioral adapters, and it provides several
other functionalities. A detailed description of the implementation in Fiona is
given in Chap. 7.

Published results. Based on the work presented in this thesis, the following
articles have been published at reviewed workshops, conferences, or journals since
September 2005.

[MS05] and [MRS05] firstly present the basic operating guidelines approach and
introduce service nets (therein called open workflow nets) and service automata.
Most notably, these works were restricted to deterministic and acyclic services at
this time. The article [MW07] drops the first requirement and allows for the char-
acterization and discovery of services with deterministic and non-deterministic
behavior. [LMW07b] finally generalizes the operating guidelines approach to ar-
bitrary finite-state services with only marginal restrictions.

In [MSSW08], we were able to prove that controllability is even undecidable for
services with infinite state space. As controllability is a necessary prerequisite
to construct operating guidelines, the restrictions made in [LMW07b] are conse-
quently necessary for operating guidelines, too.

27

http://www.service-technology.org/fiona

Chapter 1. Introduction

[LMSW06] and [LMSW08] present a broad overview of the applications of behav-
ioral analysis for processes that stem from industrial service description languages.
Operating guidelines are applied for more involved analysis of such processes. Ad-
ditionally, the implementation in Fiona is firstly presented.

[LMW07a, ALM+07, ALM+09, SMB09] show the application of operating guide-
lines in a number of other research areas. [LMW07a] shows how to incorporate
behavioral constraints to operating guidelines and presents the application for
service validation. [ALM+07, ALM+09] present service contracts and how op-
erating guidelines can be used to decide the correct implementation of a service
specification. The article [SMB09] is concerned with the application of operating
guidelines to decide a number of behavioral substitutability notions for services.

Besides these contributions, one main purpose of this thesis is also to lay a solid
foundation for the concept of operating guidelines and to serve as a comprehen-
sive reference for future work building upon the characterization of the set of
behaviorally compatible services R(S) for S.

1.5 Outline of the Thesis

This thesis consists of three parts. In Part I, we introduce services and the
paradigm of service-oriented computing and present our formal framework for
service modeling. Part II is the main part of this thesis. Therein, we formalize
the characterization of sets of services and present the construction of operating
guidelines. In Part III, we exemplify the application of operating guidelines in
the research areas of service discovery, substitutability of services, and adapter
generation, and present the implementation of the results of Part II in the analysis
tool Fiona.

Chapter 2 presents a survey of services and service-oriented computing as emerg-
ing programming concepts, and is dedicated to distinguish our focus on behavioral
compatibility from other aspects of the compatibility of services.

In Chap. 3, we introduce service nets as our formal modeling technique for services
and their interaction. We will formalize our behavioral correctness criterion of a
service composition as deadlock freedom, and introduce controllability as the most
fundamental correctness notion of a service in isolation. Service automata, a
variant of communicating automata, will provide the basis of operating guidelines
later on. We show that service automata and service nets are equally well suited
as a formal representation for services and present a back and forth translation
between service nets and service automata that preserves all relevant behavioral
properties of the service.

Chapter 4 is considered with the characterization of services in general. It intro-
duces Boolean annotated service automata (BSAs) as a means for characterizing

28

1.5. Outline of the Thesis

a set of service automata. We develop a matching procedure that efficiently de-
cides whether or not a service automaton is characterized by a BSA. We present
algorithms to equivalently transform a BSA, to compare the sets of characterized
service automata of different BSAs, or to minimize BSAs.

In Chap. 5, we start by a formal characterization of deadlocks in the composition
of two service automata from the point of view of one of these service automata.
This characterization will finally enable us to derive a construction of a special
BSA, characterizing exactly the set of behaviorally compatible service automata
for a given service automaton. Hence, this BSA serves as operating guideline for
the service.

Chapter 6 shows how operating guidelines can be applied to decide several research
questions that are based on behavioral compatibility of services. Therein, we
demonstrate the use of operating guidelines for service discovery, substitutability
of service, and the generation of behavioral adapters.

All results presented in Chaps. 4 and 5 have been prototypically implemented.
We present our analysis tool Fiona in Chap. 7. The implemented algorithms,
however, often differ significantly from the theoretical ones introduced before.
This is mostly based on several optimizations made to increase performance. We
motivate our design decisions and describe the differences between theory and
implementation.

Chapter 8 finally concludes this thesis and presents directions for future research.

29

Part I

Service Behavior Modeling

In this part of this thesis, we first review the research area of services and service-
oriented computing in more detail and motivate the need for analyzing the behav-
ioral compatibility of interacting services. Analysis of behavioral compatibility of
services requires a formal model of the behavior of these services. To this end, we
then present service nets as a formal modeling technique. Service nets introduce
special input and output places as their interface and are therefore well suited
to model services and their interaction via asynchronous message passing. Fur-
thermore, a special class of communicating non-deterministic automata, service
automata, are introduced. Service automata will provide the basis for operating
guidelines later on.

2 Background on Services and
Service-Oriented Computing

2.1 Services

The term service is commonly used to describe a piece of software that implements
a certain encapsulated functionality accessible via a well-defined, standardized
interface. The provided functionality may range from a simple computational
function to a sophisticated process distributed between multiple organizations
(see [PTDL08], for instance). This idea of encapsulation is not new, but has
been used in a number of software engineering principles, e.g. modules, objects,
and components. As the main difference to these approaches, a service is self-
contained, self-explanatory, and often realizes a complete business function. Fur-
thermore, services are required to be platform-independent, to be independent
of the state or context of other services, and to support loose coupling. That
way, services form a flexible infrastructure to build interorganizational business
processes [Pap03, Pap07b].

Services are designed to interact with other services. During the last few years,
stateful services that communicate asynchronously via message exchange have
become standard. Additionally, they may employ large and complex interaction
patterns in their communication with other services [BDH05].

Recent literature distinguishes between two shapes of services, simple and com-
posite services [ACKM03, DS05, PH07, PTDL08]. A simple service provides a
basic function while a composite service aggregates existing (simple or compos-
ite) services into a new service providing a more involved, combined functionality.
The process of building a composite service is commonly called service compo-
sition [DS05]. Service composition is one of the four major research themes
launched in [PTDL08]. Therein, assuring the behavioral compatibility of the
composed services is stated as one open research challenge in the near future.

The most common implementation of services are web services (see [ACKM03,
WCL+05, Pap07a], for instance). The interface of a web service is typically de-
fined in the Web Services Description Language (WSDL) [CCMW01], listing the

33

Chapter 2. Background on Services and Service-Oriented Computing

operations that the web service can perform and the messages it accepts or pro-
duces. Web services usually communicate via the Simple Object Access Protocol
(SOAP). The Web Services Business Process Execution Language (WS-BPEL, or
BPEL for short) [Alv07] is an accepted industrial language to describe the internal
control structure of a web service. It provides basic activities to communicate with
other web services, to manipulate data, etc., and structured activities to define a
causal order on the basic activities (like sequential, parallel, or repeated execution,
and branching dependent on data, timeouts, or messages). A special structured
activity can furthermore be used to define a scope for fault, compensation, and
event handling.

2.2 Service-Oriented Computing (SOC)

Service-oriented computing (SOC) [Pap01, Pap07a] is an evolving paradigm in the
context of the “programming-in-the-large” concept [DK76] for developing complex
software systems using (web) services as basic building blocks. Thereby, two
different approaches for constructing composite services are distinguished today.

A service orchestration emphasizes one particular service S and describes the
internal structure of S and the logical order of the interactions between S and
all other services from the perspective and under control of S. An orchestration
abstracts from the internal control structures of the other services and all possible
interactions between them. BPEL is currently the most prominent language to
specify web service orchestrations.

A service choreography is used to describe the interaction of a collection of services
from a global point of view. Commonly, only the message exchanges between all
services are defined—the internal structures of the services are usually not repre-
sented, or they are represented only in an abstract way. Examples for languages
to describe a choreography are the Web Services Choreography Description Lan-
guage (WS-CDL) [KBR+05] and the academic choreography description language
Let’s Dance [ZBDH06].

The distinction between orchestrations and choreographies results in two possible,
inherently different perspectives on one and the same concrete interaction. Seen
as a choreography, the description of an interaction involving n services S1 to
Sn is focused on the message exchanges between all n services. Thereby, the
global order of the conversation can be seen, and the flow of a message through
the services can be tracked. By choosing one of the participating services, say
S1, the interaction can also be described as an orchestration defining the logical
order of interactions between S1 and the remaining services from the internal
point of view of S1. Only those message exchanges where S1 is involved in can be
expressed in the orchestration. Consequently, an orchestration is more detailed

34

2.3. Service-Oriented Architecture (SOA)

with respect to one concrete service, but a choreography is more collaborative in
nature [MCHP08].

However, this distinction is rather artificial and should converge into one com-
mon concept and a joint language [PTDL08]. One attempt to overcome this gap
is the recently proposed language BPEL4Chor [DKLW07]. Therein, each individ-
ual (web) service is described as a BPEL process (representing the orchestration
aspect), and the global interconnection is defined by a topology (representing the
choreography aspect) in BPEL4Chor.

2.3 Service-Oriented Architecture (SOA)

The service-oriented architecture (SOA) [Got00, WCL+05, Pap07a] is a logical
way to organize an infrastructure for building flexible interorganizational business
processes. The flexibility is achieved by technologies to publish, to dynamically
locate, and to (re-)combine services. To this end, the basic SOA proposes three
different roles for the participants in a service interaction, service provider, service
requestor (also called client), and service broker ; and it defines the three basic
operations publish, find, and bind of an SOA. The process of publishing, finding,
and binding of services is usually subsumed under the term service brokering,
schematically depicted in Fig. 2.1.

Service
Broker

Service
Requestor

Service
Provider

publishfind

bind

Figure 2.1: Service brokering in the basic SOA.

Service brokering in the basic SOA is organized as follows. A service provider
creates (i.e. implements) or simply offers a service, defines a description of the
interface and functionality of that service, and publishes this description to a
trusted and publicly available service registry. The service broker manages the
service descriptions in the registry and maintains information about the service
providers (such as address and contact of the providing organization). A client
may then specify certain search criteria about its sought-after service and searches
the repository for a fitting published service. With the help of the information
about the corresponding service provider, the client may then bind with the service
provider and both can start to collaborate. The three roles defined by the basic

35

Chapter 2. Background on Services and Service-Oriented Computing

SOA are logical constructs and allow that one and the same participant can act
as each of these roles (and even simultaneously) [Pap03, PTDL08]. For instance,
an organization may host and distribute the description of its provided service by
itself and, thereby, unifies the service provider and service broker roles.

In the context of the basic SOA, several standards for service descriptions, reg-
istry organization, and communication protocols have been proposed in order to
provide technological support to automatize the search for and discovery of a pub-
lished service by a client. In the end, organizing a service infrastructure according
to the basic SOA promises to reduce the complexity of dynamically binding and
integrating services within and across organizations.

However, the basic SOA lacks some important aspects that have become increas-
ingly important to realize complex service-oriented applications. Firstly, it does
not address the concept of composite services. By aggregating the functionality of
several services into a composite service (with a new interface and a more involved
functionality), an organization participating in an SOA provides a new, composite
service and simultaneously requests functionality from the old, composed services.
Hence, it unifies the roles of a service provider and a client. To emphasize this ag-
gregation of services, a new SOA role is commonly distinguished, called the service
aggregator [PH07], which has no direct representation in the basic SOA. Secondly,
overarching concerns such as service administration, management, and support
are not considered by the basic SOA. Consequently, the extended SOA (xSOA)
has been proposed [Pap03, PH07] to address these concerns. The extended SOA
is illustrated in Fig. 2.2.

406 M. P. Papazoglou, W.-J. van den Heuvel

Fig. 9 Extended SOA

Composition
Composition

Description & Basic Operations

Description & Basic Operations

Mana-gementgement

•Capability
•Interface
•Behavior
•QoS

•Coordination•Conformance•Monitoring
•Semantics

•Publication•Discovery
•Selection
•Binding

Service provider

Service client

performs

publishes

uses

Role actions

becomes

Operations•Assurance•Support

Market•Certification•Rating•SLAs

Service operator

Market maker

Managed services

Composite services

Basic services

Service aggregator

Composition
Composition

Description & Basic Operations

Description & Basic Operations

Mana-gementgement

•Capability
•Interface
•Behavior
•QoS

•Coordination•Conformance•Monitoring
•Semantics

•Publication•Discovery
•Selection
•Binding

Service provider

Service client

performs

publishes

uses

Role actions

becomes

Operations•Assurance•Support

Market•Certification•Rating•SLAs

Service operator

Market maker

Managed services

Composite services

Basic services

Service aggregator

As complementary technologies in an ESB imple-
mentation, (resource) adapters and Web services can
work together to implement complex integration sce-
narios involving federated ESBs spanning multiple orga-
nizations, see Fig. 8. Data synchronization (in addition
to translation services) is one of the primary objectives
of resource adapters. Adapters can thus take on the
role of data synchronization and translation services,
whereas Web services will enable application functions
to interact with each other. Web services are an ideal
mechanism for implementing a universally accessible
application function (service) that may need to integrate
with other applications to fulfil its service contract. The
drivers of data synchronization and Web services are
also different. Web services will generally be initiated
by a user request/event, whereas data synchronization
is generally initiated by state changes in data objects (for
example, customer, item, order, and so on).

An event to which a Web service reacts could be a user
initiated request such as a purchase order or an online
bill payment, for example. User events can naturally be
generated by applications such as an order management
application requiring a customer status check from an
accounting system. On the other hand, a state change in
a data object can be an activity like the addition of a new
customer record in the customer service application or
an update to the customer’s billing address. These state
changes trigger an adapter to add the new customer
record or update the customer record in all other appli-
cations that keep their own copies of customer data.

Routing of events from service requester to service
providers may basically occur in two ways, using content-

based or topic (subject)-based routing (see Sect. 3.4.1).
Both routing mechanisms run on top of elementary
Internet-technologies for routing, e.g., DNS routing.
Currently, routing of events is standardized in WS-Noti-
fication.

Reverting to the J2EE to .NET application connec-
tivity scenario, a connectivity service in the form of a
resource adapter is required. In this implementation
strategy, Web services can become the interface between
the company and its customers, partners, and suppli-
ers; whereas the resource adapters become integration
components tying up different EISs inside the company.
This is just one potential implementation pattern in
which Web services and resource adapters can coexist.
Another potential integration pattern in which Web ser-
vices and resource adapters are required to collaborate
is in business process integration. Applications that are
part of a specific business process will have to expose
the required processes (functions), and Web services
are ideal for that purpose. When the applications need
to integrate with other EISs to fulfil their part in the
business process, they will use resource adapters.

4 Extending the SOA

A basic SOA, i.e., the architecture depicted in Fig. 2,
implements concepts such as service registration, dis-
covery, load balancing of service requests. The essential
ESB requirements, however, suggest that this approach
be extended to support capabilities such as service

Figure 2.2: Extended SOA (graphics from [PH07]).

36

2.4. Compatibility Criteria for Services

The extended SOA uses the basic SOA’s service brokering concept as its lowest
and most fundamental layer, called the foundation layer. The next layer of the
xSOA, building upon the foundation layer, is the composition layer. It is devoted
to the aggregation of existing services to composite services, i.e. to the service
composition research theme of [PTDL08], and it enables the service brokering
operations also for composite services. The uppermost layer on top of these two
layers is called the management layer. It considers overarching concerns such
as configuration, administration, and support, subsumed under the term service
management [PH07].

Besides the new layers for service composition and management, the xSOA takes
also into account the important aspects of behavioral and non-functional proper-
ties of a service which are also not explicitly addressed by the basic SOA. To this
end, the xSOA’s foundation layer refines the basic SOA’s requirements concern-
ing the published service descriptions to also include a description of the behavior
of the service and its non-functional properties. That is, the service provider
shall also publish relevant aspects of the behavior of its service as well as non-
functional properties of the corresponding service. This enables a client to specify
also quality requirements on non-functional properties as relevant search criteria,
for instance, and the client may now check behavioral properties of the interaction
of a published service with its own service before their actual binding. Accord-
ingly, the xSOA also emphasizes this problem of service compatibility during the
composition of services to larger units at its composition layer level (comprised
under the term conformance in Fig. 2.2).

In the following section, we will elaborate on the topic of service compatibility—
both for service discovery and service composition— in more detail.

2.4 Compatibility Criteria for Services

In the scope of this thesis, we make no conceptual difference between service in-
teractions of a service provider and a client and service interactions in a composite
service. In either case, the services in interaction have to be compatible to each
other. There are at least four aspects of service compatibility: syntactical com-
patibility, behavioral compatibility, semantical compatibility, and compatibility of
non-functional properties [PH07, Pap07b].

Syntactical compatibility assures the basic capability of services to exchange
messages and can be seen as the most fundamental compatibility notion. It con-
siders the different message types that are accepted or produced by a service, the
service interface, and the corresponding operations that are supported by the in-
terface (see [DHM+04], for instance). In case of a web service, this information is
typically specified by a WSDL document (see Sect. 2.1). Assuring the syntactical
compatibility of services is the current standard approach.

37

Chapter 2. Background on Services and Service-Oriented Computing

Behavioral compatibility is devoted to ensure compatibility of the control flows
and message exchanges of the services. Therefore, the behavioral aspect of a ser-
vice—often referred to as the business protocol of the service [BN08, DBN08]—
has to be considered. Potential behavioral incompatibilities between business
protocols include deadlocks (two services wait for a message of each other), live-
locks (two services keep exchanging messages without progressing), and pending
messages that have been sent but cannot be received anymore (see [DBN08] for
an overview).

Semantical compatibility considers the semantical meaning (i.e. interpreta-
tion) of messages and data which are exchanged between services that possibly use
a different vocabulary. To this end, the Semantic Web community proposes on-
tologies to define the commonly used terms, their meanings, as well as the relation-
ships between different terms. It proposes to gather and publish machine-readable
service descriptions with extensive semantical annotations [MBM+07, VMK+07,
MGB+07] for deciding compatibility of the semantics of the services [BFM02,
TP04, BHL+05, LDL08].

Non-functional compatibility addresses all quality of service (QoS) related
aspects of services. To this end, mechanisms are provided to specify assurances
and constraints on a service related to privacy protection, reliability and security
of data transfer, performance rates, transactional features, etc. Typically, the non-
functional properties of a published service are either specified as assertions by
the service provider or are assessed, evaluated, and constantly monitored during
the interactions with that service [HR00, DSGF06, RPD06]. The requirements
of a client are specified as search criteria. When assertions and requirements
fit together, the agreed-upon properties serve as a contract between provider
and client. Several standards have been proposed to express and compare non-
functional properties of services, such as WS-Policy [Baj06], for instance.

For a comprehensive approach to solve the service compatibility challenge (both
for binding provider and client service as well as building a composite service),
all four compatibility aspects have to be taken into account. Syntactical com-
patibility of the services is fundamentally important, but insufficient alone. Only
services that are also compatible with respect to their behavior, semantics, and
non-functional properties may implement the full potential of the SOC paradigm.

The aspects of behavioral, semantical, and non-functional compatibility are still
subject of active research. Fortunately, these aspects complement each other and
can, to a large extend, be considered separately from each other. This is reflected
by mostly independent research groups considering behavioral aspects, semantical
issues, and QoS related issues of services.

In this thesis, we will focus on behavioral compatibility of services. This com-
patibility aspect is more than all other aspects constrained by the fact that the
services participating in an interaction are essentially autonomous and the corre-
sponding organizations, although collaborating in the current interaction, might

38

2.5. Formal Modeling of Services

still be competitors in other business areas. That is, the internals of the services
are often subject to trade secrets and their owners do not intend to reveal their
structure to the other participant. However, behavioral compatibility consider-
ably depends on the interplay of the control structures of the composed services.

Furthermore, for large stateful services that communicate asynchronously, the
analysis of behavioral compatibility suffers from the state explosion problem,
where concurrency may cause an astronomic number of intermediate states. Ac-
cordingly, it is hard to decide whether services are behaviorally compatible and
tool support is needed to assist clients to discover only behaviorally compatible
services as well as to enable service aggregators to provide behaviorally sound
composite services.

By focussing on behavioral compatibility, we do not consider non-functional as-
pects of services like performance, costs, etc., and we abstract from the seman-
tical meaning of a message as well as message content, i.e. data values. Corre-
spondingly, we model data-dependent choices by non-determinism and identify
the meaning of a message by the name of the message channel in the rest of this
thesis.

2.5 Formal Modeling of Services

To systematically approach behavioral compatibility of services, we investigate
formal models of services instead of services specified in an industrial service
description language. That way, our results are independent from the rapid evo-
lution of industrial languages and thus durable. Furthermore, we can base on the
formal semantics of the modeling technique to rigorously verify the absence of
behavioral errors.

In this thesis, we consider Petri net models of services. Petri nets (see [Rei85], for
example) have been proven useful in the area of business process modeling [Aal98].
By distinguishing special interface places, we derive a new class of Petri nets,
service nets, which are well suited to represent services and their asynchronous
communication. Suitability of service nets for service modeling has been proven
by a service net semantics [Loh08] for the industrial service description language
BPEL, which is the de facto standard to specify web services. A lot of effort
has been spent to back BPEL with a formal semantics. While there are many
partial semantics for BPEL, the semantics of [Loh08] is one of the few feature
complete ones. [Loh08] also presents a formal semantics for BPEL4Chor which
bases on the BPEL semantics. This formal semantics allows us to derive service
models directly from a BPEL orchestration or from a service interaction specified
in BPEL4Chor.

As we consider formal models of services in this thesis, we may abstract from
whether the considered service is simple or composite as well as whether the

39

Chapter 2. Background on Services and Service-Oriented Computing

interacting services are specified as an orchestration or a choreography. In the
upcoming chapter, we will introduce service nets in detail.

40

3 A Formal Framework for Service
Modeling

In the setting of service-oriented computing (SOC), services serve as implemen-
tations of certain functionalities such that they can be invoked via asynchronous
message passing. Services can be combined to gain more advanced functionalities,
and they can be recombined to react on ever faster changing business conditions
and regulations. Thereby, a service may not only be used as a function via a re-
mote procedure call, where one request is sent to the service at the beginning and
one answer is delivered by the service at the end of its execution. The interaction
may cause nontrivial interaction behavior between them.

Hence, behavioral compatibility of interacting services is an important research
challenge and behavioral incompatibilities between some of the participants have
to be revealed before the services start to interact. This raises the need for a
formal analysis of correct interaction of services. Therefore, a formal model of
services and a formalization of correct interaction, as well as efficient algorithms
to decide correct interaction of services are required.

In this chapter, we introduce our formal framework for service modeling. We
will introduce two different formal models for services, service nets and service
automata, as well as corresponding notions of correct interaction between services
on the formal level. Service nets are a special class of Petri nets (see [Rei85],
for instance), devoted to model the interaction of services via asynchronous mes-
sage passing. Service automata are basically a simplification of classical I/O
automata [Lyn96] with respect to the handling of asynchronous communication
via message channels.

Service nets allow for an intuitive and easy to learn way of service modeling. Fur-
thermore, they base on Petri nets and therefore are supported by several analysis
methods for deciding a variety of properties on the structure of the net itself.
Service net models of services can be automatically derived from industrial ser-
vice description languages— like BPEL [Alv07] and BPEL4Chor [DKLW07]—by
the help of implemented formal service net semantics of these languages [Loh08,
Loh07].

41

Chapter 3. A Formal Framework for Service Modeling

Service automata are specifically well suited as the behavioral model of services
and enable us to present efficient techniques and algorithms for analyzing the
interaction behavior of services in the forthcoming two chapters. Service automata
will provide the basis for all analysis techniques introduced later on.

This rest of this chapter is organized as follows. Section 3.1 presents some basic
definitions and notations that are used in the following. In Sect. 3.2, we introduce
service nets, and Sect. 3.3 is devoted to the introduction of service automata.
Then, the relationship between service nets and service automata is studied in
Sect. 3.4. We will show that both formalisms can equally be used as a formal model
for services, as there exists a back and forth translation between service nets and
service automata that preserves all information needed to analyze the interaction
behavior of the considered services. So the service modeler may choose for his or
her favorite formalism without losing available analysis methods. Furthermore,
this two-fold approach eases the translation of other industrial languages into our
formal framework—only one semantics is needed for a new industrial language:
either a service net semantics or a service automata semantics, whatever suits
best. Section 3.5 is devoted to motivate some design decisions of the definitions in
Sects. 3.2 and 3.3 and explores other possible variants of the respective definitions
and their implications. Then, Sect. 3.6 describes related work in detail and finally,
Sect. 3.7 concludes this chapter.

3.1 Preliminaries

3.1.1 Basic Mathematical Notions

In this section we recall some basic notions of mathematics and computer science
and introduce notations that will be used in the remainder of this thesis. The
familiar reader may skip this section.

Let, throughout the thesis, N denote the set of natural numbers including 0. As
usual, the cardinality of a set X, written |X|, denotes the number of elements
x ∈ X that occur in X.

Mappings and Relations

Let X and Y be some sets. A mapping f that assigns to each element x ∈ X
an element y ∈ Y is denoted by f : X → Y . Furthermore, the restriction
f|X′ : X ′ → N of a mapping f to a subset X ′ ⊆ X is defined by f|X′(x) = f(x)
for all x ∈ X ′.
As usual, given a relation rel ⊆ X × Y , the inverse of rel is the relation rel−1 ⊆
Y ×X, defined as rel−1 = {(x2, x1) | (x1, x2) ∈ rel}.

42

3.1. Preliminaries

Multisets

Let X be some set. Then, a mapping f : X → N is a multiset over X. Hereby,
f(x) is called the multiplicity of x ∈ X in f and stands for the number of x
elements in the multiset. We say the element x occurs in f , written x ∈ f ,
if f(x) ≥ 1 and may denote a concrete finite multiset f by enumerating each
element x that occurs in f . For example, we write f = [x1, x1, x2] for a multiset
f with f(x1) = 2, f(x2) = 1, and f(x) = 0, for all x ∈ X \{x1, x2}. The mapping
f where f(x) = 0, for each x ∈ X, is called the empty multiset , denoted by [].

Please notice the difference between the empty multiset and the special case of
a multiset over an empty set X = ∅. In the latter case, the only multiset over
X = ∅ is the empty function, denoted by ∅. For the rest of this paragraph, we
assume X 6= ∅.
As multisets are special mappings, the restriction of a multiset f : X → N to
a subset X∗ ⊆ X is well-defined. Furthermore, we define the extension f↑X∗ :
X∗ → Y of a multiset f to a superset X∗ ⊇ X as f↑X∗(x) = f(x), if x ∈ X and
f↑X∗(x) = 0, otherwise.

Notation 3.1.1.
In the rest of this thesis, we do not distinguish between a multiset f and a re-
striction or an extension of f . To avoid confusion, we repeat the definition of the
currently used f if necessary. y

We will mostly apply the restriction or extension of a multiset to special multisets
called markings when we transform a Petri net by adding or removing places
(cp. Sects. 3.2 and 3.4). Thereby, a marking of the “smaller” net is a restriction
of the intuitively corresponding marking(s) of the “bigger” net and a marking of
the “bigger” net is an extension of a marking of the “smaller” net.

Already using this notation, we may define the composition (f+g) : (Xf ∪Xg)→
N of two multisets f : Xf → N and g : Xg → N as (f + g)(x) = f(x) + g(x).
Therefore, we can simply write [x1, x2, x2] + [x2, x3] = [x1, x2, x2, x2, x3] without
bothering whether x3, for instance, was in the domain of the first multiset or not.
The difference (f − g) of multisets f and g is defined as

(f − g)(x) =

{
f(x)− g(x), if f(x) ≥ g(x)
0, otherwise.

The composition of mappings is used for the composition of markings, for instance.

As a shorthand notation, if x ∈ X, f + x is an abbreviation for f + [x] and
stands for incrementing the multiplicity of x in f by 1 (adding an element to
f). Analogously, f − x stands for decrementing the multiplicity of x in f by 1
(removing an element from f). If x /∈ f , then (f − x)(x) = (f − [x])(x) is defined
to be 0.

43

Chapter 3. A Formal Framework for Service Modeling

Powersets and bags

Let X be a set. Then, ℘(X) denotes the powerset of X, i.e. ℘(X) is the set of all
subsets of X. Obviously, ℘(∅) = {∅}.
With bags(X), we denote the set of all multisets overX, i.e. the set of all mappings
f : X → N. Let furthermore, for a given bound b ∈ N, bagsb(X) ⊆ bags(X)
denote the set of all those multisets f over X where f(x) ≤ b, for all x ∈ X.

It is easy to see that bags(∅) = {∅} = bagsb(∅), for any bound b.

3.1.2 Petri Nets

In this section, we recall some basic definitions for classical low-level Petri nets
(as introduced in [Rei85], for example) and introduce conventions for notations
that are used in the following. The familiar reader may skip this section.

A net has two types of nodes, places and transitions, as well as a flow relation to
connect nodes of different types. While a transition represents a dynamic element,
for example an activity, a place represents a static element, such as a causality
between activities or the need for a resource to perform an activity.

Definition 3.1.2 (Net).
A net N = [P, T, F] consists of two finite, disjoint sets P of places and T of
transitions, and a set F ⊆ (P × T) ∪ (T × P) of arcs. y

An advantage of (Petri) nets over other formal modeling methods is their intuitive
and easy to understand graphical notation and the compact representation of
concurrency. As usual, places are graphically represented by circles, transitions
are represented by boxes, and arcs are represented by directed arrows between
them.

Notation 3.1.3.
We denote nets by N , N ′, M , etc.; possibly with indices. If not clear from the
context or denoted otherwise, we refer to the parts of a net N by PN , TN , FN .
We often write P ′ instead of PN ′ or P1 instead of PN1 . y

By ignoring the dots, Fig. 3.1(a) shows a net N with five places, PN = {p1, . . . , p5},
one transition, TN = {t1}, and five arcs, FN = {(p1, t1), (p2, t1), (t1, p3), (t1, p4),
(t1, p5)}.
The structural environment of a node is captured in the notions of the preset and
the postset of a place or transition.

Definition 3.1.4 (Preset, postset).
For an element x ∈ P ∪ T of a net N , •x = {y | (y, x) ∈ F} is the preset of x and
x• = {y | (x, y) ∈ F} is the postset of x. We canonically extend this definition to

44

3.1. Preliminaries

sets of elements: if X ⊆ P ∪ T , then •X =
⋃
x∈X

•x and X• =
⋃
x∈X x

• are the
preset and postset of X, respectively. y

The preset of the transition t1 of the net N of Fig. 3.1(a) is the set •t1 = {p1, p2},
the postset of t1 is t1• = {p3, p4, p5}. The postset of {p1, p2}, for example, is the
set {p1, p2}• = p1• ∪ p2• = {t1}.
So far, a net represents a static structure only. To enable dynamics, we introduce
the notions of a state of a net N and of a state change of N . A state of N is
represented by a marking which is a distribution of tokens over (a subset of) the
places of N .

Definition 3.1.5 (Marking).
A marking m of a net N = [P, T, F] is a mapping m : P → N. y

According to this definition, a markingm of a netN is a multiset over the places of
N wherem(p) is the number of tokens on the place p atm. Hence, we may employ
the earlier introduced multiset notation for markings as well and write [p1, p1, p2]
for a marking m which marks the place p1 with two tokens and the place p2 with
one token (and no other place). Graphically, a marking m is depicted by m(p)
black dots on the place p.

In Fig. 3.1(a), the marking m1 = [p1, p2, p2, p5] of the net N is depicted. Fig-
ure 3.1(b) shows the marking m2 = [p2, p3, p4, p5, p5] of N.

p1

p2

t1

p3

p4

p5

(a)

p1

p2

t1

p3

p4

p5

(b)

Figure 3.1: A net N with two different markings (a) m1 and (b) m2.

Fixing one marking of a net as the initial marking of the net yields a Petri net.

Definition 3.1.6 (Petri net).
A Petri net N = [P, T, F,m0] consists of a net [P, T, F] and a distinguished
marking m0 of N , called the initial marking of N . y

Accordingly, Figs. 3.1(a) and 3.1(b) show two different Petri nets. They have
the same structure, i.e. the net N, but different initial markings, i.e. the initial
marking m1 and m2, respectively.

With the state notion defined, we are now ready to introduce the notion of a
state change for Petri nets, i.e. the firing rule. It is defined using the standard

45

Chapter 3. A Formal Framework for Service Modeling

Petri net semantics as introduced in [Rei85]; that is, a transition is enabled at a
marking m if each place of its preset holds at least one token at m. An enabled
transition can fire by consuming one token from each preset place and producing
one token for each postset place, yielding a new (i.e. successor) marking. The
behavior of a Petri net N is then defined by the states (markings) of N and the
firing of transitions.

Definition 3.1.7 (Behavior of a Petri net).
A transition t of a Petri net N is enabled at a marking m of N if m(p) ≥ 1, for
all places p ∈ •t.
Let t be a transition of N that is enabled at m and let m′ be the marking of N
where, for all places p of N ,

m′(p) =

m(p) + 1, if p ∈ t• and p /∈ •t,
m(p)− 1, if p ∈ •t and p /∈ t•,
m(p), otherwise.

Then, m′ is the successor marking of m with respect to (firing of) t; and m, t,
and m′ together form a step of N , written m t−→ m′. y

It is easy to see that the transition t1 of the Petri net N of Fig. 3.1(a) is enabled
at the marking m1. The corresponding successor marking after firing of t1 is the
marking m2. Hence, m1

t1−→ m2 is a step of N.

A marking m′ that can be constructed from a marking m by a sequence of steps is
called reachable from m. The set of reachable markings of a Petri net represents
its state space.

Definition 3.1.8 (Reachability, RN(m)).
The set RN (m) of reachable markings from a marking m of a Petri net N is
inductively defined as follows:

Basis. m ∈ RN (m);

Step. If m′ ∈ RN (m) and there exists a transition t of N with m′ t−→ m′′,
then m′′ ∈ RN (m).

A marking m is called reachable in N if m is reachable from the initial marking
of N , i.e. m ∈ RN (m0). y

Definition 3.1.9 (Bounded Petri net).
A Petri net N is bounded if it has only finitely many reachable markings, i.e. if
the set RN (m0) is finite. y

A marking of a Petri net N that enables a transition can be left by N . It is
therefore a transient marking. A marking that enables no transition of N is a
dead marking.

46

3.2. Service Modeling with Service Nets

Definition 3.1.10 (Transient, dead marking).
A marking m of a Petri net N is transient in N if m enables a transition of N .
Otherwise, m is dead in N . y

Because of enabledness of t1 at m1 in the Petri net N of Fig. 3.1(a), m1 is a
transient marking of N. In contrast, m2 does not enable the only transition t1 of
N. Hence, m2 is dead in N.

A dead marking m does not necessarily represent a design error in the Petri net
model— it may represent a desired final state or it may model the waiting for
some external action to occur. We will employ dead markings for both cases
in the upcoming section when we introduce service nets as a representation for
communicating Petri nets.

3.2 Service Modeling with Service Nets

Services communicate via asynchronous message passing over message channels.
For being able to link different services, we assume a (possibly infinite) set MC
of message channels as a common name space for all service models to be fixed
throughout this thesis. Hereby we assume that each channel is uniquely character-
ized by its name: different names correspond to different channels and equal names
denote the same channel. For technical reasons, we assume the special symbols τ ,
final , true, and false are not used as channel names, i.e. τ,final , true, false /∈MC.
We denote channels by lower case Latin letters, e.g. a, b, c, x, or by the meaning
of a message on the channel, e.g. login, invoice, etc.

Although we assume each channel between services to be directed , a channel
x ∈ MC does not indicate its direction by itself. The direction is fixed through
the usage of the channel x by concrete services. Thereby, x is an input channel of
one service and an output channel for the other one. Furthermore, we require that
each channel is bilateral , i.e. a channel is shared by at most two services— for a
third service C, a communication taking place inside the interaction of services A
and B is internal matter.

To model services, we extend classical Petri nets by an interface, representing the
asynchronous communication with other services over message channels, and final
markings to represent successful termination. To this end, we introduce a new
class of Petri nets called service nets in the following.

Suitability of service nets for service modeling has been proven by two feature-
complete service net semantics for BPEL and BPEL4Chor. Both semantics
are implemented in the compiler BPEL2oWFN [Loh07] (available at http://
service-technology.org/bpel2owfn) which allows for the automatic transla-
tion of (1) a single BPEL process into a single service net, (2) a BPEL4Chor
choreography of multiple BPEL processes into a single service net representing

47

http://service-technology.org/bpel2owfn
http://service-technology.org/bpel2owfn

Chapter 3. A Formal Framework for Service Modeling

the overall process, and (3) the individual translation of each party of a choreogra-
phy into a single service net representing the respective part of the choreography.

3.2.1 Service Nets

Service nets (also termed open workflow nets in [MRS05, LMW07b] or open nets
in [MSSW08, SMB09]) are a special class of Petri nets that introduces an interface
to communicate with other service nets. The interface of a service net consists of
a set Pin of input places for receiving messages from other service nets and a set
Pout of output places for sending messages to other nets. Both Pin and Pout are
finite subsets of MC. Service nets can be composed yielding a new service net
modeling the interaction of the represented services. This idea is based on the
module concept for Petri nets which was first proposed by Kindler [Kin97].

The asynchronous nature of the message channels is reflected by a possible re-
ordering of messages on channels. That is, although a message was sent on one
channel before another message was sent on a different channel, the latter message
may be received before the first one, and even two messages sent to the same chan-
nel can overtake each other. Furthermore, sending or receiving is non-blocking,
i.e. after having sent a message, a service net can continue its execution and does
not have to wait until this message is received.

For simplicity, we assume an unlimited capacity of each channel and abstract
from message content, i.e. data. For data with finite domain, however, important
message content can be represented in our approach. For instance, a channel
receiving messages with Boolean values can be represented by its separation into
two channels: one for messages with content true and one for messages with
content false. For data with infinite domain, standard techniques like abstract
interpretation [CC77]—known from static analysis of programs (see [NNH05] for
an overview)—can be applied to identify a finite abstraction of the relevant parts
of the infinite domain.

Hence, (low-level) Petri net places as a representation of interface channels are
well suited to model asynchronous communication of services, and service nets
provide a simple but adequate formal modeling technique to model services, still
providing sufficient information to analyze the interaction behavior of services.

Definition 3.2.1 (Service net).
A service net N = [P, Pin , Pout , T, F,m0,Ω] consists of

– a Petri net [P, T, F,m0],
– two disjoint sets Pin ⊆ P of input places and Pout ⊆ P of output places,

such that Pin , Pout ⊆MC, •Pin = Pout
• = ∅, and

– a set Ω of distinguished markings, called final markings.

48

3.2. Service Modeling with Service Nets

Let Pio = Pin ∪ Pout denote the interface of N . We demand that neither the
initial marking nor a final marking marks interface places, i.e. m(p) = 0, for each
p ∈ Pio and m ∈ {m0} ∪ Ω. y

The interface places of a service net correspond to the message channels. A
token on an interface place represents a message that is currently pending on
the corresponding channel, i.e. the message has already been sent, but not yet
received.

To graphically emphasize the role of the interface places, they are positioned on
a dashed frame which surrounds the service net.

Figure 3.2 depicts a service net Nshop modeling an online shop service. The service
net has three input places, login, terms, and order, and four output places, new,
known, invoice, and deliver, which are positioned on the frame around the inner
of Nshop. The initial marking of Nshop is the marking [p1], and let the only final
marking of Nshop be the marking [p9].

It is easy to see that Definitions 3.1.7 and 3.1.8, defining the behavior of Petri
nets, extend canonically to service nets. So enabledness of a transition of a service
net is well-defined.

A transition with an output place in its postset sends a message to this channel,
and a transition with an input place in its preset waits for receiving a message
from this channel.

Definition 3.2.2 (Receiving, sending, internal, interface transition).
For a transition t of a service net N , receive(t) = •t ∩ Pin denotes the message
channels from which t receives and send(t) = t• ∩ Pout denotes the messages
channels that t sends messages to.

The transition t is a receiving transition of N if receive(t) 6= ∅, a sending transition
of N if send(t) 6= ∅, and an internal transition of N if send(t) = receive(t) = ∅.
A non-internal transition of N is also called interface transition of N . y

According to Definition 3.2.1, a transition t of some service net N can simulta-
neously receive or send multiple messages in N , or t may even receive and send
messages simultaneously. In Sect. 3.4, we will introduce a special class of ser-
vice nets, called elementarily communicating service nets, where each interface
transition either receives or sends exactly one message. We will show that this
class is sufficient to model services, as any service net can be transformed into a
elementarily communicating service net without changing its semantics.

Notation 3.2.3 (Label of a transition).
Mostly, we label the transitions of a service net N according to their connections
to interface places of N . Thereby, an interface transition is labeled with the set
receive(t)∪send(t) and an internal transition of N is labeled with τ . To emphasize

49

Chapter 3. A Formal Framework for Service Modeling

p1

p2

p3 p4 p5

p6 p7

p8

p9

login

new

known

terms

order

invoice

deliver

?login

!known !new

?order ?terms

?order

τ

!invoice,
!deliver

Figure 3.2: A service net Nshop modeling an online shop. In its initial marking [p1],
the net waits for a login message from a client of the shop. If the message arrives, the
transition named ?login can fire and produces a token on place p2. Then, the shop
internally decides for firing transition !known, representing the successful look-up for the
client in the database of known customers, or for firing transition !new, representing the
first login of a newly registered client. In the first case, the shop awaits the order of
the client (left hand side transition ?order) and then sends an invoice and delivers the
goods to the client (transition !invoice, !deliver). In the second case, the client has to
additionally accept the terms of payments once (?terms). Finally, the shop reaches its
final marking [p9], and the business case is finished successfully.

the direction of the message channels, we add a preceding question mark, “?”, or
a preceding exclamation mark, “!”, to the labels. For example, we label a (single)
transition t by the label ?x, !y, !z, if receive(t) = {x} and send(t) = {y, z}. y

In Fig. 3.2, the transitions of Nshop are already labeled according to this nota-
tion. As there are two transitions which are connected to the place order, Nshop

has two equally labeled transitions ?order.1 The transitions ?login, ?order, and
?terms ofNshop are receiving transitions inNshop with receive(?login) = {login} and

1Note that we omit the brackets and write ?order instead of {?order}, for instance.

50

3.2. Service Modeling with Service Nets

send(?login) = ∅, for instance. The transitions !new, !known, as well as the transi-
tion !invoice, !deliver are sending transitions of Nshop with receive(!known) = ∅ and
send(!invoice, !deliver) = {invoice, deliver}, for instance. Nshop has no transition
which is a receiving and sending transition, but one transition which is neither a
receiving, nor a sending, i.e. an internal transition. It is labeled by τ .

An important requirement for workflows [Aal98] is proper termination, i.e. the
property that no “garbage” is left behind when terminating. Hence, it is also
reasonable in the service domain to demand that all interface places are empty in
the initial and the final markings in the definition of a service net.

Another relevant requirement for workflows, the unique sink place ω, has been
dropped for service nets. The main reason is that a set of final markings is a
more convenient and elegant way to model expected successful “goal states” of a
service and avoids the need of a massaging step during the composition of ser-
vice nets to achieve a structurally well-defined composed service net (compare
Definition 3.2.11 and the composition of workflow modules in [Mar04]). Addi-
tionally, we relax final markings in the service domain such that a final marking
of a service net N does not need to be dead in N (as required for the sink place in
workflows). That is, we allow N to resume work by itself after having reached a
final marking. This allows an easy way of modeling the return of N to its initial
marking after having completed a successful interaction with some other service
net, for instance. That way, the next “round” of communication can be started.
A transient final marking can be compared with the approach of adding a short-
cut transition t∗ to a workflow net, connecting the unique sink place ω with the
unique source place α of the workflow net [Aal98]. Choosing only dead markings
as final markings, however, can be seen as a convention or following modeling
guidelines if needed in a specific application area and is possible for service nets
as well.

The set RN of reachable markings of a service net N consists of all those markings
that N can reach without interacting with another service net. For a typical
service net N this set is intuitively rather small as N might expect input from its
environment relatively soon. For being able to investigate the possible behavior
of N in interaction with some environment, we consider the inner structure of N ,
inner(N). The inner of N can be seen as the version of N in case an environment
provides sufficiently many tokens at the interface of N .

Definition 3.2.4 (Inner of a service net, inner(N)).
The inner of a service net N = [P, Pin , Pout , T, F,m0,Ω] is defined as the service
net inner(N) = [P ′, ∅, ∅, T, F ′,m0,Ω] with P ′ = P \ Pio and F ′ = F \ ((Pin ×
T) ∪ (T × Pout)). y

The inner of a service net N is simply derived from N by removing all interface
places (and all adjacent arcs) of N . Note the use of the restriction of a multiset

51

Chapter 3. A Formal Framework for Service Modeling

(see Sect. 3.1) in the previous definition for the initial and the final markings of
inner(N).

As an example, Fig. 3.3 shows the inner inner(Nshop) of the online shop Nshop

of Fig. 3.2. Whereas the initial marking [p1] is the only reachable marking of
Nshop, its inner inner(Nshop) has a number of reachable markings: [p1], [p2], [p3],
[p4, p5], [p6, p5], [p4, p7], [p6, p7], [p8], and the final marking [p9] of inner(Nshop).

p1

τ

p2

τ τ

p3 p4 p5

τ τ

τ p6 p7

τ

p8

τ

p9

Figure 3.3: The inner of the online shop Nshop of Fig. 3.2, inner(Nshop). As all transi-
tions of inner(Nshop) are internal transitions, they are labeled by τ in inner(Nshop).

This special case of a service net with an empty interface is a closed service net.
The usual case of a service net with a non-empty interface, in contrast, is an open
service net.

Definition 3.2.5 (Open, closed service net).
A service net N with an empty interface (i.e. PioN = ∅) is closed . Otherwise, it
is open. y

Obviously, the inner of any service netN is a closed service net andN = inner(N),
for each already closed service net N .

52

3.2. Service Modeling with Service Nets

To relate different service nets with equal interfaces, we introduce the following
definition of interface equivalent service nets.

Definition 3.2.6 (Interface equivalent service nets).
Two service nets N and M are interface equivalent if PinN = PinM and PoutN =
PoutM . y

3.2.2 Composition of Service Nets

Now we are ready to consider the interaction of services. It is reflected by the
composition of the corresponding service nets on the modeling level. Basically,
composing service nets means merging uniquely named interface places, repre-
senting the shared communication channels of the services. The initial and final
markings are merged accordingly. The resulting composed service net represents
the corresponding services in interaction and is in general an open service net
again. That is, it may have a non-empty interface and might be used as a com-
ponent of another composition later on. That way, service nets serve as flexible
building blocks to construct larger service nets.

On the other hand, the interaction of n services can easily be modeled by a
sequence of n − 1 composition steps, each step composing two service nets. In
fact, service net composition is commutative and associative. Hence, the result
of the composition of n service nets is always uniquely determined by the service
nets and not affected by the choice of which two services are composed in which
order.

As we require that all communication channels are bilateral and directed, we have
to assure that every interface place p has at most one service net that sends mes-
sages to p and at most one service net that receives from p. Hence, we introduce
two compatibility notions in the following that we require to hold in order to
compose two service nets— the service nets must be internally disjoint and inter-
face compatible. The first property is only of a mere technical nature and simply
assures that the composed service net is indeed a well-defined service net. The sec-
ond property assures bilateral and directed communication. Then, it is sufficient
to define the composition for two (internally disjoint and interface compatible)
service nets.

Basically, two service nets are internally disjoint if they share at most interface
places.

Definition 3.2.7 (Internally disjoint service nets).
Two service nets N andM are internally disjoint if the sets TN , TM , (PN \PioN),
and (PM \ PioM) are pairwise disjoint. y

53

Chapter 3. A Formal Framework for Service Modeling

Remark 3.2.8.
Without loss of generality, we assume for the rest of this thesis that all composed
service nets are internally disjoint, as any two service nets sharing an element can
canonically be made internally disjoint by renaming the element accordingly. y

In contrast to the internals of service nets, their interfaces often intentionally
overlap.

Definition 3.2.9 (Shared, free interface place).
An interface place p ∈ PioN ∪PioM of two service nets N or M is shared between
N and M if p ∈ PioN ∩ PioM . Otherwise, p is free between N and M . y

To achieve a proper communication direction of a channel, we only consider the
composition of service nets that are interface compatible. That is, if a place p is
shared between N and M , then p is either an input place of N and an output
place of M or vice versa.

Definition 3.2.10 (Interface compatible service nets).
Two service nets N and M are interface compatible if each shared interface place
is an input place of one service net and an output place of the other one, i.e.
(PioN ∩ PioM) = (PinN ∩ PoutM) ∪ (PoutN ∩ PinM). y

Note that this definition is equivalent to (PinN ∩ PinM) = (PoutN ∩ PoutM) = ∅.
To compose two service nets N andM , we require that they are interface compat-
ible. When considering the composition of n service nets, they must be pairwise
interface compatible. That way, bilateral communication between all service nets
is guaranteed.

Figure 3.4 shows an example client, Nclient, for the online shop Nshop of Fig. 3.2.
Let the initial marking of Nclient be [p10], and let the set of final markings of
Nclient contain the single marking [p15, p16]. Note that Nclient has a transition
which simultaneously receives the new message and sends the terms message.
Hence, it is labeled by ?new, !terms. Obviously, both shop and client are interface
compatible.

Composition of service nets now basically means merging shared interface places.
Whereas all shared interface places become internal to the composition, the free
interface places form the interface of the composed service net.

Definition 3.2.11 (Composition of service nets).
The composition of interface compatible service nets N and M is the service net
N ⊕M = [P, Pin , Pout , T, F,m0,Ω] defined as follows:

– P = PN ∪ PM ,
– Pin = (PinN \ PoutM) ∪ (PinM \ PoutN),

54

3.2. Service Modeling with Service Nets

p10

p11

p12

p13 p14

p15 p16

login

new

known

terms

order

invoice

deliver

!login

?known
?new,
!terms

!order

?deliver ?invoice

Figure 3.4: A service net Nclient modeling a client of the online shop Nshop of Fig. 3.2. In
its initial marking [p10], the client may send a login message to the online shop (transition
!login). Afterwards, the client waits for the information from the shop whether he has to
confirm the terms of payment or not (transitions ?new, !terms and ?known, respectively).
In either case, the client then places his order(s) (transition !order) and finally waits
concurrently for the invoice and the delivery of the ordered goods (transitions ?invoice
and ?deliver). After having received both messages, the client reaches its single final
marking [p15, p16].

– Pout = (PoutN \ PinM) ∪ (PoutM \ PinN),
– T = TN ∪ TM ,
– F = FN ∪ FM ,
– m0 = m0N +m0M , and
– Ω = {mN +mM | mN ∈ ΩN ,mM ∈ ΩM}. y

The requirement for composing only interface compatible service nets ensures
that their composition is a well-defined service net with respect to the service net
definition (Definition 3.2.1) and meets all requirements for bilateral, directed, and
asynchronous communication of the represented service.

55

Chapter 3. A Formal Framework for Service Modeling

As the online shop Nshop of Fig. 3.2 and its client Nclient of Fig. 3.4 are interface
compatible, they can be composed. The composition Ncomposition = Nshop ⊕Nclient

is depicted in Fig. 3.5.

p10

p11

p12

p13 p14

p15 p16

login

new

known

terms

order

invoice

deliver

!login

?known
?new,
!terms

!order

?deliver ?invoice

p1

p2

p3 p4 p5

p6 p7

p8

p9

?login

!known !new

?order ?terms

?order

τ

!invoice,
!deliver

Figure 3.5: The composition Ncomposition = Nshop ⊕ Nclient of the online shop Nshop of
Fig. 3.2 and its client Nclient of Fig. 3.4. The composed initial marking is the marking
[p10, p1], and the single final marking of the composition is [p15, p16, p9]. The composi-
tion is closed, i.e. has an empty interface, and all transitions of Ncomposition are internal
in Ncomposition. Nevertheless, the original transition labeling is kept in the graphics for
convenience.

Proposition 3.2.12 (Commutativity of composition).
The composition of interface compatible service nets N and M is commutative,
i.e. N ⊕M = M ⊕N . y

So far we have defined the composition of two service nets only. To compose more
than two service nets, we assume that they are pairwise interface compatible.
Then, we can break down the n-fold composition into n− 1 compositions of two
service nets. The following proposition states that the order of choosing the
service nets does not matter.

56

3.2. Service Modeling with Service Nets

Proposition 3.2.13 (Associativity of composition).
The composition of pairwise interface compatible service nets N1, N2, and N3 is
associative, i.e. N1 ⊕ (N2 ⊕N3) = (N1 ⊕N2)⊕N3. y

Notation 3.2.14.
Because of the latter proposition, we may omit parentheses when composing ser-
vice nets. y

Obviously, if service nets N1, . . . , Nn are pairwise interface compatible, then the
composition of any subset of these nets is interface compatible to each of the
remaining service nets Ni and even interface compatible to the single service net
of their composition. Furthermore, it is easy to see that a closed service net is
interface compatible to any service net, including other closed ones. However,
their composition results in merely putting the service nets side by side without
connection.

Notation 3.2.15.
In the remainder of this thesis, we implicitly assume that all service nets are
(pairwise) interface compatible whenever we compose them. y

3.2.3 Behavioral Compatibility of Service Nets

The interface compatibility notion for service nets, as introduced in the previous
section, captures the syntactical compatibility of services. However, syntactical
compatibility of services is not sufficient for the expected correct interaction of the
services. Additionally, behavioral compatibility, a crucial criterion for the correct
interaction of the services, is needed on top of their syntactical compatibility.

Two main reasons for non-expected interaction behavior of a service composition,
i.e. behavioral incompatibility of services, can be identified. Firstly, a component
of a composition may be erroneously designed itself. For instance, it may have
a non-local choice, i.e. an internal decision point which influences the expected
behavior of the other component, but the latter is not informed which choice
has actually been made. In such a case, no composition with the erroneous
component may behave correctly. Secondly, each component may be correct with
some other component, but the interactional behaviors of two given services, e.g.
in a concrete choreography of services, do not fit together, or even exclude each
other. For example, the services may get into a situation where one component
waits for a message of the other one, but that component is currently waiting for
a message from the first one itself. In either case, the services are behaviorally
incompatible.

As a service composition may employ nontrivial interactions between their com-
ponents, it is a challenging task to decide whether the whole composition interacts

57

Chapter 3. A Formal Framework for Service Modeling

correctly. Thus, the services have to be analyzed thoroughly for their behavioral
compatibility before they may start interacting.

This raises the need for a formal notion of behavioral compatibility on the level
of service modeling with service nets, which is the topic of this subsection, as well
as methods to decide behavioral compatibility of given service nets, as will be
considered in the following Chaps. 4 and 5.

To this end, we first introduce a behavioral correctness criterion for a single service
net and then derive thereof a notion of behavioral compatibility for two service
netsN andM such thatN andM are behaviorally compatible if their composition
satisfies the correctness criterion.

Thereby, we treat closed and open single service nets differently. Behavioral
correctness of a closed service net is captured in the notion of well-behavior of
the net, which basically means deadlock freedom. For an open service net, in
contrast, the behavioral correctness criterion is called controllability, which means
the existence of another service net such that their composition is well-behaving.

From well-behavior and controllability of one service net, we may then imme-
diately derive the corresponding behavioral compatibility notions between two
service nets N and M . In case N ⊕M is a closed service net, then N and M are
behaviorally compatible if their composition is well-behaving (which is the pro-
posed correctness criterion for a closed net). Then, N is called a strategy for M
(and vice versa). In case N ⊕M is an open service net, then N and M are behav-
iorally compatible if their composition is controllable (the proposed correctness
criterion for open service nets). As the focus of this thesis is the characterization
of all strategies M for N—and not the decision of controllability of a service
net, we may omit the formalization of the second behavioral compatibility notion
between service nets N and M , i.e. behavioral compatibility of N and M where
N ⊕M is controllable rather than well-behaving.

These considerations lead to the following formalizations of behavioral correctness.

Definition 3.2.16 (Deadlock).
A dead marking m of a service net N that is no final marking of N (i.e. m /∈ Ω)
is a deadlock in N . y

Note that this definition of a deadlock differs from the standard definition in
literature as we discriminate between final and non-final dead states. Deadlock
freedom is a fundamental correctness criterion for interacting services, which are
represented by a single closed service net. In contrast, an open service net, rep-
resenting a service in isolation, usually has deadlocks.

Definition 3.2.17 (Well-behaving service net).
A closed service net N is well-behaving if N has no deadlocks, i.e. for each m ∈
RN (m0): m is no deadlock in N . y

58

3.2. Service Modeling with Service Nets

Then, two service netsN andM with a closed compositionN⊕M are behaviorally
compatible if their composition is well-behaving. In this case, M is a strategy for
N .

Definition 3.2.18 (Strategy service net, Strat(N)).
A service netM is a strategy (service net) for a service net N if N ⊕M is a closed
well-behaving service net.
Let Strat(N) denote the set of all strategies for N . y

Considering our example service nets Nshop of Fig. 3.2 and Nclient of Fig. 3.4,
it is easy to see that their closed composition Nshop ⊕ Nclient of Fig. 3.5 is well-
behaving—the only reachable dead marking is [p9, p15, p16], which is the final
marking of Nshop ⊕Nclient. Hence, we conclude that Nclient is a strategy for Nshop.
The strategy notion captures behavioral compatibility of service nets N and M .
Whereas the term “behavioral compatibility” already suggests a symmetric rela-
tion, the phrase “M is a strategy for N ” suggests an asymmetric relation. As
already sketched, however, the strategy notion is symmetric, too:

Corollary 3.2.19 (Strategy is symmetric).
A service net M is a strategy for a service net N iff N is a strategy for M . y

The main reason for this corollary is commutativity of our service net composition
(cp. Proposition 3.2.12) and the formulation of well-behavior as a property of a
single service net representing the composition of two service nets.
The reason for nevertheless choosing the asymmetric strategy notion is that in
the upcoming Chaps. 4 and 5, we will fix one side of the composition, say N ,
and aim at characterizing all strategies M for N , i.e. the set Strat(N). Strat(N)
is of particular interest as it gives a semantics of a service net N in terms of all
behaviorally compatible service nets M for N .
The term strategy originates from a control-theoretic point of view (see [RW87,
CL99], for instance). We may see M as a controller for N imposing well-behavior
of N ⊕M . Therein, the receiving and sending transitions of N correspond to
controllable and observable actions for M . The internal transitions of N are not
observable for the controller M . In accordance with control theory, the controller
M is a strategy for N if the considered correctness criterion is satisfied for the
composed system.
Finally, the analogous behavioral correctness notion for an open service net N ,
representing a service in isolation, is controllability. It states the possibility to add
(compose) a service net M to a service net N such that the resulting composition
is closed and well-behaving, i.e. the existence of a strategy for N .

Definition 3.2.20 (Controllability).
A service net N is controllable if there exists a strategy for N . Otherwise, N is
uncontrollable. y

59

Chapter 3. A Formal Framework for Service Modeling

Due to the existence of the service net Nclient, the service net Nshop of Fig. 3.2 is
controllable. Analogously, Nclient is controllable, too.

Obviously, an uncontrollable service is fundamentally ill-designed. Uncontrollable
services represent the first one of the above introduced reasons for behaviorally
incompatible services. Two controllable services that are no strategies for each
other represent the second reason.

It is easy to see that the set Strat(N) comprises infinitely many strategies for each
controllable service net N . The main reason lies in the possibility for internal
transitions of a strategy M for N . That is, if a service net M is a strategy for
N , then a service net M ′, which performs n internal steps and then behaves as
M , is also a strategy for N . Hence, controllable service nets have infinitely many
strategies. On the other hand, obviously, Strat(N) = ∅ for an uncontrollable
service net N .

In the forthcoming Chaps. 4 and 5 of this thesis, we aim at characterizing the set
Strat(N). The main challenge therein is to find a finite, operational description
of this possibly infinite set and to provide an efficient algorithm to decide the
question M ∈ Strat(N). It will turn out that the operating guideline of N , OGN ,
serves as such a characterization of Strat(N), and a matching procedure can be
used to decide whether a service M is characterized by OGN .

Now we have introduced all fundamental notions and concepts for the first part
of our formal framework, service nets. Service automata, as introduced in the
following section, will complement this framework.

3.3 Service Behavior Modeling with Service
Automata

The set Strat(N) of a service net N is independent of the structure of N and
depends on the interaction behavior of N only. Differently structured service
nets N and N ′ with equal behaviors have the same strategies. Hence, it is more
convenient to characterize only the behavior of all strategies M for a service net
N , which implicitly characterizes all strategies M itself, instead of characterizing
all those service nets M directly. We do not aim at constructing all strategies,
we just want to efficiently decide whether two given services are behaviorally
compatible. Using our approach, however, the construction of strategies is still
possible—by applying standard techniques like the theory of regions [BD98], for
instance.

In this section, we introduce service automata as a formal method for representing
the behavior of service nets. Service automata will be used to characterize sets of
services in Chapter 4 and will form the basis of operating guidelines in Chapter 5.

60

3.3. Service Behavior Modeling with Service Automata

We will first introduce the concept of service automata in detail and then present a
back and forth translation between service nets and service automata, which uses
the setMC as a shared name space between a service net N and its corresponding
service automaton A, as both the interface places of N and the interface channels
of A are subsets of MC. We will show that both formalisms are equally suited
to model services and their interaction. So service nets can be used for service
modeling in an intuitive and convenient way and service automata can be used
for state space analysis of the interaction behavior of services.

3.3.1 Service Automata

Basically, service automata are a simplification of classical I/O automata [Lyn96]
with respect to the handling of asynchronous communication via message chan-
nels. They communicate asynchronously rather than synchronously, and they do
not require the explicit modeling of the states of message channels. Using I/O
automata, the message channel’s states would be modeled explicitly as one part
of the state of an automaton. Hence, our service automaton approach leads to
smaller and thus more readable automata.

Definition 3.3.1 (Service automaton).
A service automaton is an automaton A = [Q, Iin , Iout , δ, q0,Ω] that consists of

– a (possibly infinite) set Q of states,
– two disjoint, finite sets Iin ⊆ MC of input channels and Iout ⊆ MC of
output channels, with Iio = Iin ∪ Iout is the interface of A,

– a transition relation δ ⊆ Q× (Iio ∪ {τ})×Q,
– a distinguished state q0 ∈ Q, called the initial state of A, and
– a set Ω ⊆ Q of distinguished final states.

For a transition (q, x, q′) ∈ δ, x is called the label of (q, x, q′) in A. y

Compared to service nets, a service automaton can basically be seen as the reach-
ability graph of the inner of the corresponding service net where the transition
labels of the service automaton correspond to the interface places of the service
net. A detailed comparison of service nets and service automata can be found in
the upcoming Sect. 3.4. It will turn out that service nets and service automata
are equally well suited as a formal representation of services.

Notation 3.3.2.
We denote service automata by A, A′, B, etc.; possibly with indices. If not clear
from the context or denoted otherwise, we refer to the parts of a service automaton
A by QA, IinA, δA, etc. We often write Q′ instead of QA′ or Q1 instead of QA1 .y

61

Chapter 3. A Formal Framework for Service Modeling

Notation 3.3.3.
To emphasize the direction of an interface channel of a service automaton A
in A’s graphical representation, we represent a label x ∈ Iout in the graphical
representation of A by !x and a label x ∈ Iin by ?x. y

This transition labeling was already introduced for the transitions of a service
net in the previous section (Notation 3.2.3). Therein, however, the transition of a
service net could bear more than one label, which is not possible for the transition
of a service automaton.

Figure 3.6 depicts a service automaton model Ashop of the online shop that was
shown as a service net Nshop in Fig. 3.2. It has 11 states and 13 transitions. The
initial state of Ashop is r1, illustrated by an ingoing arc without source. The only
final state of Ashop is r11, illustrated by a double circle.

Remark 3.3.4.
The interface channels of a service automaton A are not always deducible from
its graphical representation as we allow that a message channel x ∈ Iio of A does
not appear as a transition, i.e. x might be in the interface of A although A has
no x-labeled transition. In such a case, the interface is written as an annotation
to the graphics if relevant. y

Notation 3.3.5 (Present transition).
An x-labeled transition is present at a state q of A if there is a state q′ of A such
that there is a transition (q, x, q′) ∈ δA. y

An important class of service automata are finite service automata.

Definition 3.3.6 (Finite service automaton).
A service automaton A is finite if its set QA of states is finite. y

In the following, we lift all notions defined for service nets to service automata.
Some notions, however, will slightly deviate from the respective service net no-
tion because of the different representation of the message channels in a service
automaton. In such a case, we shall point out the differences when introducing
the respective notion for service automata.

Transitions that are labeled by an input or an output channel are called receiving
or sending transition, respectively. A τ -labeled transition is called an internal
transition:

Definition 3.3.7 (Receiving, sending, internal, interface transition).
An x-labeled transition of a service automaton A is a receiving transition of A if
x ∈ Iin , a sending transition of A if x ∈ Iout , and an internal transition of A if
x = τ . A non-internal transition of A is also called interface transition of A. y

62

3.3. Service Behavior Modeling with Service Automata

r1

r2

r4

r3 r5 r6

r7

r8

r9 r10

r11

?login

!known

!new

?order ?terms

?terms ?order

?order

τ

!invoice !deliver

!deliver !invoice

Figure 3.6: A service automaton Ashop modeling an online shop. Ashop corresponds
to the service net Nshop of Fig. 3.2. In its initial state r1, the shop waits for a login
message. After the message was received by the shop (represented by the ?login-labeled
transition), it internally decides for performing either the !known-labeled or the !new-
labeled transition, representing the login of a known client or the first login of a newly
registered client, respectively. In the first case, the shop awaits an order (left hand side
?order-labeled transition) and then sends an invoice and delivers the goods to the client
in arbitrary order (represented by the transitions !invoice and !deliver). In the second
case, the client has to additionally accept the terms of payments once (transition ?terms).
Finally, the shop reaches its final state r11.
In comparison with the service net Nshop, the concurrent reception of the order and
the terms messages in case of a new client in Nshop is modeled by the reception of both
messages in arbitrary order in Ashop. Accordingly, the simultaneous sending of the invoice
and the deliver messages inNshop is represented by sending the messages in arbitrary order
in Ashop.

The online shop service automaton Ashop of Fig. 3.6 has 6 receiving transitions.
One of these receiving transitions is labeled by ?login, three receiving transitions
are labeled by ?order, and two receiving transitions are labeled by ?terms. Fur-
thermore, it has 6 sending transitions, which are labeled by !known, !new, !invoice,
and !deliver. The only internal transition of Ashop is the transition (r7, τ, r8).

The earlier introduced communicational behavior of a service net (see Sect. 3.2)
is explicitly represented in the net: a message channel x ∈ MC has a direct
representation as an interface place and a receiving or a sending transition of the
service net is directly connected to the corresponding input or output place. In

63

Chapter 3. A Formal Framework for Service Modeling

contrast, the communication capabilities of a service automaton are expressed
more implicitly. The interface channels of a service automaton A appear only
as transition labels of the sending and receiving transitions of A. The current
state of a channel is not introduced until the service automaton participates in a
composition with another automaton.

The handling of received or sent messages is one of the major differences between
service nets and service automata. Whereas a transition of a service net may
simultaneously receive and send multiple messages, an interface transition of a
service automaton either receives exactly one message or it sends exactly one
message. We will prove in Sect. 3.4 that this simplification does not restrict gen-
erality of our approach, but eases the characterization of a set of service automata
in the upcoming Chapter 4.

A special class of service automata are deterministic service automata. Thereby,
we call a service automaton A deterministic if, for each state q of A and each
transition label x ∈ IioA ∪ {τ}, q has at most one present x-labeled transition.

Definition 3.3.8 (Deterministic service automaton).
A state q of a service automaton A is deterministic if, for all states q1, q2 and all
transitions (q, x, q1), (q, x, q2) of A: q1 = q2.

A is a deterministic service automaton if each state of A is deterministic. y

As the transition relation δ of a service automaton A is a set, rather than a mul-
tiset, Definition 3.3.8 in fact also excludes two different transitions d1 = (q, x, q′)
and d2 = (q, x, q′) of A. Hence, for each x ∈ MC ∪ {τ} there is at most one
present x-labeled transition per state of a deterministic service automaton.

This definition of determinism does not exclude internal transitions, as long as
there is at most one present internal transition per state q of A. That is, we do
not distinguish the label τ from any “other” message channel x ∈ MC in this
definition. Note that this deviates from the classical notions of determinism as
these mostly forbid internal transitions as well. However, our definition is strict
enough that we are able to introduce specific, efficient analysis techniques for
deterministic service automata in Sects. 4.2 and 5.2.2, for instance.

Consider again the service automaton Ashop of Fig. 3.6. It is deterministic, as
each state of Ashop has at most one x-labeled present transition, for each channel
x ∈ MC ∪ {τ}. As the internal transition (r7, τ, r8) of Ashop is the only present
internal transition at state r7, its presence does not violate Definition 3.3.8.

The transitions of a service automaton A connect its states. The set of connected
states containing the initial state of A represents the state space of A.

Definition 3.3.9 (δ-reachable state).
The set of δ-reachable states from a state q of a service automaton A = [Q, Iin ,
Iout , δ, q0,Ω] is inductively defined as follows:

64

3.3. Service Behavior Modeling with Service Automata

Basis. q is δ-reachable from q in A;
Step. If q′ is δ-reachable from q in A and there exists a transition (q′, x, q′′) ∈ δ,

then q′′ is δ-reachable from q in A.

A state is δ-reachable in A if it is δ-reachable from q0 in A. y

We only consider states that are δ-reachable in a service automaton A. The
δ-unreachable states provide no information and can be removed from A.

It is easy to see that each state of Ashop in Fig. 3.6 is δ-reachable in Ashop.

Intuitively, a state of a service automaton corresponds to a marking of a service
net and a transition of a service automaton corresponds to a step of a service net.
However, a δ-reachable state of a service automaton A does not correspond to a
reachable marking of a service net N itself, but rather of the inner of N , because
an x-labeled receiving transition represents only the capability of A to receive an
x message in state q and therefore corresponds to a dead marking in N .

To derive a notion corresponding to the reachable markings of N itself, we intro-
duce the internally reachable states of A in the next definition.

Definition 3.3.10 (Internally reachable state, RA(q)).
The set RA(q) of internally reachable states from a state q in a service automaton
A is inductively defined as follows:

Basis. q is internally reachable from q in A;
Step. If q′ is internally reachable from q in A and there is a transition (q′, x, q′′) of

A with x /∈ Iin , then q′′ is internally reachable from q in A.

A state is called internally reachable in A if it is internally reachable from the
initial state of A. y

Hence, only a state q for which there exists a sequence of sending or internal
transitions leading to q is internally reachable in a service automaton. In contrast,
a state that is only δ-reachable by passing a receiving transition (or not δ-reachable
at all) is not internally reachable. This leads to the following definition of transient
and stable states of a service automaton.

Definition 3.3.11 (Transient, stable state).
A state q of a service automaton A is transient in A if there exists a transition
(q, x, q′) ∈ δA with x /∈ IinA. Otherwise, q is stable in A. y

A stable state q has no present transition or it only has present receiving transi-
tions. Hence, a stable state cannot be left by A itself. It represents the possibility
of an action to occur after having received a message from another service au-
tomaton.

65

Chapter 3. A Formal Framework for Service Modeling

In the service automaton Ashop of Fig. 3.6, the initial state r1 is already a stable
state. Hence, only r1 is internally reachable in Ashop. From the transient state r7,
for example, the states r7, r8, r9, r10, and r11 are internally reachable in Ashop.

Obviously, the property RA(q) = {q} holds for all stable states q. However, this
property is not sufficient for being a stable state as there might exist an internal
self-loop transition in A (i.e. a transition (q, τ, q) ∈ δA) which makes q transient.

In accordance to the notions of open and closed service nets, we define open and
closed service automata. An open service automaton usually models a service in
isolation, whereas a closed service automaton may be conceived as a single model
for some services in interaction.

Definition 3.3.12 (Open, closed service automaton).
A service automaton A with an empty interface (i.e. IioA = ∅) is closed . Other-
wise, it is open. y

Different service automata with equal interfaces are interface equivalent.

Definition 3.3.13 (Interface equivalent service automata).
Two service automata A and B are interface equivalent if IinA = IinB and IoutA =
IoutB . y

Obviously, all closed service automata are interface equivalent.

The rest of this section is devoted to the interaction of services, represented by
the composition of the corresponding service automata. First, we consider the
composition of two service automata and then introduce the formalization of our
correctness criteria for service interaction on the service automaton level.

3.3.2 Composition of Service Automata

As already motivated in Sect. 3.2.2 for service nets, we may restrict the composi-
tion of service automata to a composition of just two service automata as service
automata composition will as well be commutative and associative. Hence, the
composition of n service automata can be broken down to n−1 composition steps,
each of them composing two service automata.

Therefore, we first introduce two compatibility notions for service automata and
then define the composition of service automata. The compatibility notions for
service automata correspond exactly to the two compatibility notions of service
nets of Sect. 3.2.2.

Definition 3.3.14 (Internally disjoint service automata).
Two service automata A and B are internally disjoint if A and B have disjoint
sets of states. y

66

3.3. Service Behavior Modeling with Service Automata

Remark 3.3.15.
From now on, all composed services are assumed to be internally disjoint (which
again can be easily achieved by renaming). y

The composition of service automata A and B uses the setMC of message chan-
nels to link the transition labels of A and the transition labels of B. Hence,
common transition labels refer to the same channel and will become internal to
the composition of A and B.

Definition 3.3.16 (Shared, free channel).
A message channel x ∈ IioA ∪ IioB of two service automata A and B is shared
between A and B if x ∈ IioA ∩ IioB . Otherwise, x is free between A and B. y

The following interface compatibility notion for service automata implements the
requirements that all channels are bilateral and directed. That is, for each channel
x ∈MC, at most two service automata are communicating via x and if two service
automata communicate via x, then x is an input channel of one service automaton
and an output channel of the other one.

Definition 3.3.17 (Interface compatible service automata).
Two service automata A and B are interface compatible if each shared interface
channel is an input channel of one service automaton and an output channel of
the other one, i.e. (IioA ∩ IioB) = (IinA ∩ IoutB) ∪ (IoutA ∩ IinB). y

Note that this definition is equivalent to (IinA ∩ IinB) = (IoutA ∩ IoutB) = ∅.
As an example, consider the service automaton Aclient of Fig. 3.7. It models a
client of the online shop of Fig. 3.6 and can be seen as an automaton version of
the service net client Nclient of Fig. 3.4. Let the initial state of Aclient be the state
s1, and let the only final state of Aclient be the state s8. Obviously, Aclient and
Ashop are internally disjoint and interface compatible. All channels of Aclient and
Ashop are shared between Aclient and Ashop.

Now we are ready to consider the interaction of services on the level of (inter-
face compatible) service automata. It is represented by the composition of the
corresponding service automata, formalized by Definition 3.3.18.

The composition A⊕ B of two service automata A and B introduces an explicit
representation of the binding of A and B along their shared interface channels.
As we assume asynchronous communication, such a shared channel carries all
messages that have already been sent by one automaton but have not yet been
received by the other one. Since more than one message of a kind may be pending,
we use one multiset per composed state to represent all currently pending mes-
sages. Hence, a state of A⊕B is now a structure [qA, qB ,M] consisting of a state
qA of A, a state qB of B, and a multiset M ∈ bags(MC) of (internally) pending
messages in the shared channels. If x is a shared channel, then any x-labeled

67

Chapter 3. A Formal Framework for Service Modeling

s1

s2

s3

s4

s5

s6 s7

s8

!login

?new

?known

!terms

!order

?deliver ?invoice

?invoice ?deliver

Figure 3.7: A service automaton Aclient modeling a client of the online shop of Fig. 3.6.
Aclient intuitively corresponds to the service net Nclient of Fig. 3.4. In comparison with
the service net Nclient, the simultaneous reception of the new message and sending of the
terms message in Nclient is modeled by first receiving and then sending the corresponding
message in Aclient. In contrast, the concurrent receiving of the invoice and the deliver
messages in Nclient is represented by their reception in arbitrary order in Aclient.

sending or receiving transition of the components now is an internal transition in
A⊕B that cannot be seen from the outside of the composition. Therefore, these
transitions are τ -labeled in A ⊕ B. A prior x-labeled sending transition thereby
adds an x message to the multiset of pending messages, whereas a prior x-labeled
receiving transition removes an x message from the multiset of pending messages.

In contrast, the free channels between A and B remain as the interface of A⊕B.
If x is a free channel, then A⊕B contains all x-labeled transitions of its respective
component, representing remaining interaction possibilities through the interface
of A ⊕ B. A message x corresponding to a free channel is never contained in a
multiset M of pending messages.

These considerations yield eight cases for transitions of the composition A⊕B:
1. A sends a message x to B over a shared channel (i.e. A adds x to the

multiset),
2. A receives a message x from B over a shared channel (i.e. from the multiset),
3. A sends or receives a message over a free channel (non-internal in A⊕B),
4. A performs an internal transition in A⊕B; and

5.-8. the mirrored four cases from the point of view of B.

68

3.3. Service Behavior Modeling with Service Automata

The following definition is the straightforward realization of the latter considera-
tions.

Definition 3.3.18 (Composition of service automata).
The composition A⊕B of two interface compatible service automata A and B is
the service automaton A⊕B = [Q, Iin , Iout , δ, q0,Ω] with interface Iio = Iin ∪Iout
where

– Q = QA ×QB × bags(IioA ∩ IioB),
– Iin = (IinA \ IoutB) ∪ (IinB \ IoutA),
– Iout = (IoutA \ IinB) ∪ (IoutB \ IinA),
– q0 = [q0A, q0B , []], and
– Ω = ΩA × ΩB × {[]},

and δ ⊆ Q× (Iio ∪ {τ})×Q contains the following elements:
1. ([qA, qB ,M], τ, [q′A, qB ,M + x]) iff (qA, x, q′A) ∈ δA and x ∈ IoutA ∩ IinB ;
2. ([qA, qB ,M], τ, [q′A, qB ,M−x]) iff (qA, x, q′A) ∈ δA, x ∈ IinA∩IoutB , x ∈M ;
3. ([qA, qB ,M], x, [q′A, qB ,M]) iff (qA, x, q′A) ∈ δA and x ∈ Iio ;
4. ([qA, qB ,M], τ, [q′A, qB ,M]) iff (qA, τ, q′A) ∈ δA;
5. ([qA, qB ,M], τ, [qA, q′B ,M + x]) iff (qB , x, q′B) ∈ δB and x ∈ IoutB ∩ IinA;
6. ([qA, qB ,M], τ, [qA, q′B ,M−x]) iff (qB , x, q′B) ∈ δB , x ∈ IinB∩IoutA, x ∈M ;
7. ([qA, qB ,M], x, [qA, q′B ,M]) iff (qB , x, q′B) ∈ δB , x ∈ Iio ; and
8. ([qA, qB ,M], τ, [qA, q′B ,M]) iff (qB , τ, q′B) ∈ δB . y

The eight items for transitions of the composed service automaton A ⊕ B in
this definition correspond exactly to the eight cases which have been motivated
beforehand. They implement an interleaving semantics: each transition of the
composed service automaton A⊕B can be mapped to a prior transition of either
A or B.

Remark 3.3.19.
Note that this definition of the composition technically introduces states of A⊕B
that are not δ-reachable in A ⊕ B (which is a common, standard approach in
automata theory). However, these states do not provide any information and can
be removed from A ⊕ B for convenience. In fact, we never consider such states
and skip them in the graphical representation of a (composed) service automaton,
for example. y

To exemplify our service automata composition, consider the composition of the
example online shop Ashop of Fig. 3.6 and its client Aclient of Fig. 3.7. It is the
service automaton Acomposition = Ashop⊕Aclient, depicted in Fig. 3.8. According to
the composition definition, the initial state of Acomposition is the state [r1, s1, []], and
the single final state of Acomposition is [r11, s8, []]. As stated before, all channels of

69

Chapter 3. A Formal Framework for Service Modeling

Aclient and Ashop are shared between Aclient and Ashop. Hence, Acomposition is closed,
i.e. has an empty interface. Therefore, all transitions of Acomposition are internal
transitions and labeled by τ in Acomposition.

[r1, s1, []] [r1, s2, [login]]

[r2, s2, []]

[r4, s2, [new]] [r4, s3, []] [r4, s4, [terms]] [r4, s5, [terms, order]]

[r6, s4, []] [r5, s5, [terms]] [r6, s5, [order]]

[r7, s5, []][r3, s2, [known]] [r3, s4, []] [r3, s5, [order]]

[r8, s5, []]

[r9, s7, []] [r9, s5, [invoice]] [r10, s5, [deliver]] [r10, s6, []]

[r11, s7, [deliver]] [r11, s5, [invoice, deliver]] [r11, s6, [invoice]] [r11, s8, []]

τ

τ

τ

τ τ τ

τ τ
τ

τ τ
τ

τ

τ

τ τ

τ

τ τ

τ

τ

τ

τ

τ τ
τ τ τ

τ

Figure 3.8: The composition Acomposition = Ashop ⊕ Aclient of the online shop Ashop of
Fig. 3.6 and its client Aclient of Fig. 3.7. The composed initial state is the state [r1, s1, []],
and the single final state of the composition is [r11, s8, []].
Acomposition is a closed service automaton. Hence, all transitions are internal in Acomposition.
Each such transition corresponds to a transition of either Aclient or Ashop. Prior transitions
of Aclient are arranged horizontally, prior transitions of Ashop are arranged vertically.
For instance, the prior transition (s1, !login, s2) of Aclient corresponds to the transition
([r1, s1, []], τ, [r1, s2, [login]]) of Acomposition and is arranged horizontally.

Figure 3.9 shows two service automata A and B and their composition A ⊕ B.
The composed initial state of A⊕B is the state [r1, s1, []], and the two final states
of A ⊕ B are the states [r3, s3, []] and [r4, s4, []] (cp. Definition 3.3.18). Let the
interface of A consist of the channels IinA = {a} and IoutA = {b, c}, and let the
interface of B be IinB = {b, d} and IoutB = {a}. Hence, the channels a and b are
shared between A and B, whereas the channels c and d are free and remain as the
interface of A ⊕ B. Again, each transition of A ⊕ B corresponds to a transition
of either A or B. The c-labeled and d-labeled transitions are added to A ⊕ B
according to items 3. and 7. of Definition 3.3.18, for instance. The occurrence of
the !c-labeled transition at state [r2, s2, []], for example, leads to the state [r4, s2, []]
and does not introduce a c message in the multiset of internally pending messages.

70

3.3. Service Behavior Modeling with Service Automata

The production of the message c is not introduced until A⊕ B is composed with
another service automaton such that c becomes a shared channel.

r1

r2

r3 r4

?a

!b !c

(a) A

s1

s2

s3 s4

!a

?b ?d

(b) B

[r1, s1, []] [r1, s2, [a]] [r1, s4, [a]]

[r2, s2, []] [r2, s4, []]

[r3, s2, [b]] [r3, s4, [b]] [r3, s3, []]

[r4, s2, []] [r4, s4, []]

τ

τ τ

τ

τ

τ

!c !c

?d

?d

?d

?d

(c) A⊕ B

Figure 3.9: Two service automata A and B and their composition A ⊕ B. The ini-
tial state of A ⊕ B is the state [r1, s1, []], and the two (δ-reachable) final states of the
composition are the states [r3, s3, []] and [r4, s4, []].
A ⊕ B is an open service automaton. The remaining communication capabilities of
A⊕B are represented by the !c-labeled and ?d-labeled transitions of A⊕B. Again, prior
transitions of B are arranged horizontally, prior transitions of A are arranged vertically.

In accordance to the composition of service nets, service automata composition is
commutative and associative. However, a state of the composed service automa-
ton A ⊕ B is named in a special way, i.e. it is a structure [qA, qB ,M] of a state
qA of A, a state qB of B, and a multiset M of pending messages in the shared
channels. Hence, the corresponding state of the respective composition B ⊕ A is
named [qB , qA,M] instead, and hence, the compositions A⊕B and B⊕A are not
equal, but equal up to isomorphism. That is, there exists an isomorphism between
the sets of states of the service automata to cope with different state names. As
we are mostly not interested in the individual names of the elements of a service
automaton, but concentrate on the (graph) structure and the transition labels of
the respective service automaton, we write A ⊕ B = B ⊕ A, meaning that both
compositions are equal up to isomorphism.

Hence, we conclude that:

Proposition 3.3.20 (Commutativity of composition).
The composition of interface compatible service automata A and B is commuta-
tive, i.e. A⊕B = B ⊕A, y

and:

71

Chapter 3. A Formal Framework for Service Modeling

Proposition 3.3.21 (Associativity of composition).
The composition of pairwise interface compatible service automata A, B, and C
is associative, i.e. A⊕ (B ⊕ C) = (A⊕B)⊕ C. y

Due to the latter proposition, we may omit parentheses when composing multiple
service automata. Moreover, the choice of which two service automata of a set of
n service automata are composed in which order has no impact on the resulting
(structure and transition labeling of the) composed service automaton.

Notation 3.3.22.
For the rest of this thesis, we assume all service automata to be pairwise interface
compatible whenever they are composed. y

3.3.3 Behavioral Compatibility of Service Automata

In the following, we consider the question whether or not two service automata
interact correctly. Therefore, we introduce the notion of well-behavior of a single
service automaton and define that A and B are behaviorally compatible if their
closed composition A⊕B is well-behaving. For open compositions, the respective
correctness notion is controllability.

Each definition in this subsection is a canonical translation of the correspond-
ing definitions of Sect. 3.2.3 from service nets to service automata and bears no
surprise.

Definition 3.3.23 (Deadlock).
A non-final stable state q of a service automaton A is a deadlock state in A. y

Deadlock freedom is a fundamental, minimal correctness criterion for a closed
service net, representing the interaction of multiple services. An open service
automaton, in contrast, represents a single service in isolation and usually has
deadlocks, as it may expect a message from its environment relatively soon.

Hence, the correctness notion for a closed single service automaton is defined as:

Definition 3.3.24 (Well-behaving service automaton).
A closed service automaton A is well-behaving if no internally reachable state is
a deadlock, i.e. for each q ∈ RA(q0A): q is no deadlock state in A. y

Please notice that the set of internally reachable states and the set of δ-reachable
states coincide for closed service automata.

The derived behavioral compatibility notion for service automata A and B reads:

72

3.4. An Equivalent Translation between Service Nets and Automata

Definition 3.3.25 (Strategy service automaton, Strat(A)).
A service automaton B is a strategy (service automaton) for a service automaton
A if A⊕B is a closed well-behaving service automaton.

Let Strat(A) denote the set of all strategies for A. y

Considering our (open) service automaton Ashop of Fig. 3.6, it is easy to see that
already the initial state of Ashop, r1, is an internally reachable deadlock state— it is
a stable state which is not a final state of Ashop. The composed service automaton
Acomposition of Fig. 3.8, however, has no internally reachable deadlock—the only
internally reachable stable state of Acomposition is the state [r11, s8, []], which is also
the final state of Acomposition. Hence, we conclude that Acomposition is well-behaving,
and thus, the client Aclient is a strategy for the online shop service Ashop (and vice
versa).

Again, because the composition of service automata is commutative, the strategy
notion is symmetric.

Corollary 3.3.26 (Strategy is symmetric).
A service automaton B is a strategy for a service automaton A iff A is a strategy
for B. y

Well-behavior is only defined for closed service automata. To consider correct
interaction behavior of a single, open service automaton, the notion of controlla-
bility is introduced.

Definition 3.3.27 (Controllability).
A service automaton A is controllable if there exists a strategy B for A. Otherwise,
A is uncontrollable. y

As in the case of service nets, if a service automaton A is controllable, then the
set Strat(A) is infinite. If A is uncontrollable, then Strat(A) is empty.

So far, all notions have equally been defined for service nets and service automata.
In the next section, we study the relationship between service nets and service
automata in detail. It will turn out that both formalisms are equally well suited
as a formal representation of services and that a service net can easily be trans-
lated into a service automaton and vice versa without losing relevant information.
Hence, we can consider our analysis questions on both models alike.

3.4 An Equivalent Translation between
Service Nets and Service Automata

To elaborate on the relationship between service nets and service automata, we
present a back and forth translation between service nets and service automata

73

Chapter 3. A Formal Framework for Service Modeling

and show the equivalence of both formalisms with respect to the consideration
of behavioral compatibility of services. As a preparation for the translation, we
first introduce a subclass of service nets, elementarily communicating service nets
in Sect. 3.4.1. In an elementarily communicating service net, each transition t is
connected to at most one interface place, i.e. |send(t) ∪ receive(t)| ≤ 1, for all t.
We show that each service net N can be transformed, i.e. sequentialized, into an
elementarily communicating version seq(N) of N without changing the set Strat ,
i.e. Strat(N) = Strat(seq(N)). Hence, we can assume elementarily communicat-
ing service nets for the translation without loss of generality. In Sect. 3.4.2, we
then present a translation of an elementarily communicating service net N into a
corresponding service automaton SA(N). We show that this translation preserves
all strategy relationships, i.e. a service net M is a strategy for a service net N if
and only if the service automaton SA(M) is a strategy for the service automaton
SA(N), for all (elementarily communicating) service nets N and M . This prop-
erty justifies the feasibility of our translation. Finally, in Sect. 3.4.3, we show how
a service automaton A can be translated back into a corresponding service net
PN (A) such that A = SA(PN (A)).

The back and forth translation allows us to decide controllability of a service netN
on the level of service automata. That is, we can infer the controllability ofN from
the controllability of its corresponding service automaton SA(N). Moreover, if we
are able to construct a strategy service automaton B for the service automaton
SA(N), we are immediately able to construct a strategy service net M for the
corresponding service net N as well— the service net M = PN (B) is a strategy
for N by construction.

3.4.1 Elementarily Communicating Service Nets

In this section, we define the subclass of service nets called elementarily commu-
nicating service nets. This class eases the translation step from a service net into
a service automaton in the subsequent section. The introduction of the subclass is
necessary because there is an issue caused by an arbitrary service net’s transitions
which are connected to more than one interface place. Such a transition is called
simultaneously communicating. Recall that communication on the level of service
automata is represented by labels. So, the translation of a service net N with a si-
multaneously communicating transition t into a service automaton SA(N) would
yield a transition of SA(N) that has more than one label. Obviously, this is not
allowed in our definition of service automata (cp. Definition 3.3.1). An elementar-
ily communicating service net has no transition which is connected to more than
one interface place and hence, solves this issue.

In principle, it would be possible to allow a multiset of messages as a label of a
service automaton transition. However, this would cause more technicalities in the
definitions of service automata and the following concept of operating guidelines

74

3.4. An Equivalent Translation between Service Nets and Automata

(Chaps. 4–5). Additionally, it would drastically increase the size of an operating
guideline without adding any value.

First, we introduce the notion of elementarily communicating service nets and a
transformation of an arbitrary service net N into an elementarily communicating
version seq(N). Then, we prove that no service net M can distinguish between a
service net N and its sequentialization seq(N), i.e. M is a strategy for N if and
only if M is a strategy for seq(N). Thus, for the translation of N into SA(N), we
can without loss of generality assume that N communicates elementarily.

As already motivated, a service net is called elementarily communicating if none
of its transitions is connected to more than one interface place.

Definition 3.4.1 (Elementarily communicating service net).
An interface transition t of a service net N is elementarily communicating if
|send(t) ∪ receive(t)| = 1. Otherwise, t is simultaneously communicating.

A service net N is elementarily communicating if each interface transition of N
is elementarily communicating. Otherwise, N is simultaneously communicating .y

Hence, a transition t of an elementarily communicating service net N is either an
internal transition, then |send(t) ∪ receive(t)| = 0, or it is an interface transition
and |send(t) ∪ receive(t)| = 1. We may call a closed service net N elementar-
ily communicating as well because such a net introduces no trouble during the
translation into a service automaton either.

Obviously, neither the online shop Nshop of Fig. 3.2 nor its client Nclient of Fig. 3.4
is elementarily communicating. In Nshop, the transition !invoice, !deliver is simulta-
neously communicating, and Nclient has the simultaneously communicating tran-
sition ?new, !terms.

A nice property of elementarily communicating service nets is that this property
is preserved when composing two elementarily communicating service nets.

Proposition 3.4.2 (Composition preserves sequential communication).
The composition N ⊕M of two elementarily communicating service nets N and
M is an elementarily communicating service net, too. y

This proposition holds as, obviously, each interface transition t of the composed
service net N⊕M has been an interface transition of either N orM . As these nets
are elementarily communicating, t is still elementarily communicating in N ⊕M .

With the notion of elementarily communicating service nets defined, we are now
ready to introduce a sequentialization of an arbitrary service netN into its elemen-
tarily communicating version seq(N). Basically, the sequentialization introduces
for each interface place of N a separate interface transition that handles all mes-
sages to or from the interface place in seq(N). Therefore, this new transition
is connected to a corresponding buffer place which takes over the role that the

75

Chapter 3. A Formal Framework for Service Modeling

interface place had in N . All prior interface transitions of N become internal
in seq(N) and read from or write to the respective buffer place(s) only. This
construction is illustrated in Fig. 3.10.

a

b

c

d

t1

t2

t3

(a) N

a

b

c

d

ta

tb

tc

td

pa

pb

pc

pd

t1

t2

t3

(b) Sequentialization of N

Figure 3.10: Sequentialization of interface transitions. (a) The transitions t1, t2, and
t3 are connected to the interface places a, b, c, and d in N. (b) In the sequentialization
seq(N), these transitions are connected to the internal buffer places pa, pb, pc, and pd

instead. The connections to the buffers preserve all conflicts between these transitions.
The new transitions ta, tb, tc, and td serve as forwarding transitions to (from) the real
interface places of seq(N).
A transition connected to more than one input place is sequentialized analogously to t1.

The formalization of the sequentialization is given in the following definition. For
each interface place of N , named x in the following definition, Definition 3.4.3
introduces a place px and a transition tx and replaces all arcs (x, t) by a chain
of arcs (x, tx), (tx, px), (px, t) if x is an input place of N , and each arc (t, x) is
replaced by a chain of arcs (t, px), (px, tx), (tx, x) if x is an output place of N .

Definition 3.4.3 (Sequentialization of a service net, seq(N)).
Let N = [P, Pin , Pout , T, F,m0,Ω] be a service net and let, without loss of gener-
ality, there exist new places P ∗ = {px | x ∈ Pio} and new transitions T ∗ = {tx |
x ∈ Pio} for N such that P ∗ ∩ P = T ∗ ∩ T = P ∗ ∩ T ∗ = ∅.
Then, the sequentialization of the service net N is the service net seq(N) defined
as seq(N) = [P ′, Pin , Pout , T

′, F ′,m0,Ω] with
– P ′ = P ∪ P ∗,
– T ′ = T ∪ T ∗, and
– F ′ = F \ ((Pin × T) ∪ (T × Pout))

∪ {(x, tx), (tx, px), (px, t) | x ∈ Pin , (x, t) ∈ F}
∪ {(t, px), (px, tx), (tx, x) | x ∈ Pout , (t, x) ∈ F}. y

76

3.4. An Equivalent Translation between Service Nets and Automata

Obviously, the sequentialization seq(N) of a service net N and the net N itself are
interface equivalent, and the initial and the final markings are preserved by the
sequentialization (note the use of the extension of the multisetm0, for example, to
the superset P ′ of P in the last definition). In the special case of sequentializing
a closed service net N , we obviously have N = seq(N), as both P ∗ and T ∗ are
empty.

Furthermore, each transition of the service net seq(N) is connected to at most
one interface place, i.e. seq(N) is elementarily communicating. Hence, we will be
able to directly apply the service automaton translation of the upcoming section
to the service net seq(N), as the translation will not introduce a multi-labeled
transition in the corresponding service automaton.

It is easy to see that in many cases it would be sufficient to sequentialize a subset
of interface places to remove any simultaneously communicating transition. In
the example service net N of Fig. 3.10, the introduction of a buffer for the already
elementarily communicating transition t3 of N is unnecessary, and it would be
sufficient to introduce the buffering for the interface place b only to get elemen-
tarily communicating transitions t1 and t2. Even an unconnected interface place
of some service net N would be sequentialized in seq(N). This leaves space for op-
timization. However, in most cases there is no canonical subset of interface places
to choose for sequentialization. For instance, if N had exactly one simultaneously
communicating transition t with three interface places in send(t)∪receive(t), then
sequentializing any two of these places is sufficient.

We now show that the sequentialization of a service net N preserves all its strate-
gies.

Theorem 3.4.4 (Correctness of sequentialization for Strat).
A service netM is a strategy for a service net N iffM is a strategy for the service
net seq(N). y

Proof.
From M being a strategy for N trivially follows that N ⊕M is a closed service
net. From seq(N) being interface equivalent to N follows that seq(N) ⊕M is a
closed service net, too. Hence, the sequentialization according to Definition 3.4.3
corresponds to applying the standard Petri net transformation rule “fusion of
series places” to get the service net seq(N)⊕M from the service net N ⊕M . This
rule is known to preserve all relevant behavior [Mur89]. �

By commutativity of composition, we directly conclude that we can sequentialize
both service nets without changing well-behavior of the composition.

Corollary 3.4.5 (Correctness of two sequentializations for Strat).
A service net M is a strategy for a service net N iff the service net seq(M) is a
strategy for the service net seq(N). y

77

Chapter 3. A Formal Framework for Service Modeling

In the special case of a closed service net N , the sequentialization seq(N) preserves
N ’s well-behavior, because N = seq(N) in this case.

Proposition 3.4.6 (Correctness of sequentialization for well-behavior).
A closed service net N is well-behaving iff the closed service net seq(N) is well-
behaving, too. y

Due to Corollary 3.4.5 and Proposition 3.4.6, we have laid the basis to assume
elementarily communicating service nets for the rest of this chapter without re-
stricting generality. However, we will introduce another transformation for service
nets first. This transformation will ensure that the inner inner(N) of a service net
N is bounded if and only if the inner inner(seq(N)) of its sequentialized version
seq(N) is bounded as well. This is not always the case with the sequentialization
presented in Definition 3.4.3, as demonstrated in Fig. 3.11.

p1

p2

a t

(a) N

p1

p2

t

(b) inner(N)

p1

p2

a ta pa t

(c) seq(N)

p1

p2

ta pa t

(d) inner(seq(N))

Figure 3.11: Sequentialization changes boundedness of the inner. Whereas the inner
of N (in Fig. 3.11(b)) is bounded, the inner of seq(N) (in Fig. 3.11(d)) is unbounded
instead.

The inner of a service net will be the basis for the following translation of a service
net N into a service automaton SA(N). Whereas a bounded inner will result
in a finite service automaton, an unbounded inner results in an infinite service
automaton. Hence, the service automaton that is translated from a service net
N might be substantially different from the service automaton that is translated
from the sequentialization seq(N) of N . This is obviously not desirable.
To overcome this problem, we informally introduce a small extension of the se-
quentialization according to Definition 3.4.3 in the following. Therein, for each
input place x of N , we add two places (rather than one in Definition 3.4.3), px
and p̄x, where p̄x serves as a complementary place for px. Due to p̄x, the place px
will never carry more than one token at the same time and p̄x will be marked if
and only if px is not marked. The construction is illustrated in Fig. 3.12.
The introduction of a complementary place is a well-known Petri net technique
which preserves all relevant behavior (as it corresponds to applying the rule “fu-
sion of series transitions”, eliminating the place px, followed by applying the rule

78

3.4. An Equivalent Translation between Service Nets and Automata

p1

p2

a ta pa t

(a) seq(N)

p1

p2

a ta pa t

p̄a

(b) seq(N) with complementary place

Figure 3.12: Sequentialization with complementary place.

“eliminating self-loop places”, eliminating the place p̄x, of [Mur89]). Hence, we
may assume the introduction of complementary places without restriction of gen-
erality in the following and will still write seq(N) meaning the new construction
from now on. The main advantage of the new sequentialization seq(N) is stated
by the following proposition.

Proposition 3.4.7 (Sequentialization preserves bounded inner).
By introducing complementary places as illustrated in Fig. 3.12, the inner of a ser-
vice net N , inner(N), is bounded iff the inner inner(seq(N)) of its sequentialized
version seq(N) is bounded as well. y

3.4.2 Translating Service Nets into Service Automata

The assumption of elementarily communicating service nets eases the following
translation of a service net N into its service automaton SA(N). Intuitively,
SA(N) is the reachability graph of the inner of N with its arc labels reflecting the
changes at the interface. Because N is elementarily communicating, the labels of
each transition of SA(N) are uniquely determined by the corresponding service
net transition. For an internal transition t of N , the resulting label is τ ; for an
interface transition t of N , the resulting label is the unique interface place that t
is connected to.

Definition 3.4.8 (Translation SA(N)).
Let N = [P, Pin , Pout , T, F,m0,ΩN] be an elementarily communicating service
net.

Then, the corresponding service automaton of N , SA(N), is defined as SA(N) =
[Q, Iin , Iout , δ, q0,Ω] with

– Q = {qm | m ∈ Rinner(N)(m0)},
– Iin = Pin ,

79

Chapter 3. A Formal Framework for Service Modeling

– Iout = Pout ,
– δ = {(qm, τ, qm′) | there is an internal transition t of N

such that m t−→ m′ is a step of inner(N)}
∪ {(qm, x, qm′) | there is an interface transition t of N

such that m t−→ m′ is a step of inner(N)
and {x} = send(t) ∪ receive(t)},

– q0 = qm, with m is the initial marking of inner(N), and
– Ω = {qm | m is a final marking of inner(N), i.e. m ∈ Ωinner(N)}. y

The translation definition uses the set MC of message channels for linking the
interfaces of N and SA(N). As both the interface places of a service net and
the interface channels of a service automaton are subsets of MC, this connec-
tion is well-defined. That way, the transition labels of SA(N) and the interface
transitions of N are corresponding to each other.

The construction SA(N) can already be seen as an abstraction of the behavior
of N . The individual transition t responsible for a step m

t−→ m′ cannot be
identified by the corresponding transition (qm, x, qm′) as only the label x of t
is preserved, not t itself. If there are transitions t1 and t2 with equal labeling
in N and steps m t1−→ m′ and m

t2−→ m′, then SA(N) has only one respective
transition from qm to qm′ .

However, the translation preserves all relevant behavioral properties with respect
to Strat and well-behavior. Correctness of the translation is justified by the
following observations.

Lemma 3.4.9 (Correctness of SA(N) for well-behavior).
A closed service net N is well-behaving iff the corresponding service automaton
SA(N) is well-behaving. y

Proof.
A marking m is reachable in N iff the state qm is internally reachable in SA(N).
Furthermore, m is a deadlock in N iff qm is a deadlock state in SA(N). Hence,
by Definitions 3.2.17 and 3.3.24, we conclude that N is well-behaving iff SA(N)
is well-behaving. �

To prove the subsequent theorem, we consider the interplay of the SA translation
and the composition operators ⊕ for service nets and service automata.

Lemma 3.4.10 (Relationship between different composition operators).
Let N andM be elementarily communicating service nets and SA(N) and SA(M)
be the corresponding service automata.

Then, SA(N ⊕M) is isomorphic to SA(N)⊕ SA(M). y

80

3.4. An Equivalent Translation between Service Nets and Automata

Proof.
SA(N ⊕M) is constructed from the reachable markings of the inner of N ⊕M .
For convenience in the rest of this proof, we denote such a reachable marking m
of inner(N ⊕M) as a sum mN + mM + mshared where mN (mM , resp.) is the
restriction of m to the inner places of N (M , resp.) and mshared is the restriction
of m to the shared interface places between N andM . Furthermore, for each such
marking m we write q(mN +mM +mshared) meaning the state qm of SA(N ⊕M)
that corresponds to m.

Analogously, SA(N) and SA(M) are constructed from the reachable markings
mN and mM of the inner of N and M , respectively. We write r(mN) for the
state of SA(N) which corresponds to mN , and s(mM) for the state of SA(M)
corresponding to mM .

Now define a mapping h : QSA(N⊕M) → QSA(N)⊕SA(M) as h(q(mN + mM +
mshared)) = [r(mN), s(mM),mshared]. We show that h is an isomorphism.

If mN and mM are the initial markings of N and M , respectively, then (by
definition of service net composition and construction of the inner of a service
net) the marking mN +mM + [] is the initial marking of the inner of N ⊕M and
hence, (by definition of SA) q∗ = q(mN + mM + mshared) is the initial state of
SA(N ⊕M).

Analogously, r(mN) and s(mM) are the initial states of SA(N) and SA(M), re-
spectively. By the definition of service automata composition, the state [r(mN),
s(mM), []] = h(q∗) is the initial state of SA(N)⊕ SA(M). Hence, q∗ is the initial
state of SA(N ⊕M) iff h(q∗) is the initial state of SA(N)⊕ SA(M).

The same argumentation holds for final markings mN and mM of N and M ,
respectively, because all interface places are empty in a final marking according
to the definition of a service net.

Now assume that m = mN +mM +mshared is a reachable marking of inner(N ⊕
M), let x be an interface place of N and/or M , and let t be a transition of
either N or M which is enabled at m. Then, there are eight possible cases for
successor markings m′ of m corresponding to the eight cases motivated directly
before Definition 3.3.18 on page 69. We consider only one of these cases. The
other cases are handled analogously.

1. x is a shared interface place and t is a sending transition of N .

Then, the successor marking of m with respect to t in inner(N ⊕M) is m′ =
m′N + mM + (mshared + x). By the definition of SA, we have a state q(m) in
SA(N ⊕M), the successor state q(m′), and an internal transition (q(m), τ, q(m′))
in SA(N ⊕M).

Analogously, the state r(mN) in SA(N) has the successor state r(m′N) and a
transition (r(mN), !x, r(m′N)) (as t is obviously also enabled in inner(N)). Be-
cause x is a shared channel and by the definition of service automata composition,

81

Chapter 3. A Formal Framework for Service Modeling

there is also a present internal transition at the state [r(mN), s(mM),mshared] in
SA(N)⊕SA(M) leading to the state [r(m′N), s(mM), (mshared+x)] = h(q(m′)).�

This lemma states that the order of applying the composition and the translation
does not affect the resulting service automaton, i.e. translating the composed
service net N ⊕M into a service automaton on the one hand and composing the
service automata SA(N) and SA(M) on the other hand results in one and the
same service automaton.
Thus, we finally conclude:

Theorem 3.4.11 (Correctness of SA(N) for Strat).
Let N andM be elementarily communicating service nets and SA(N) and SA(M)
be the corresponding service automata.
Then, M is a strategy for N iff SA(M) is a strategy for SA(N). y

Proof.
It suffices to show thatN⊕M is well-behaving iff SA(N)⊕SA(M) is well-behaving.
By Lemma 3.4.9, we have N⊕M is well-behaving iff SA(N⊕M) is well-behaving.
By Lemma 3.4.10, we know SA(N ⊕ M) is isomorphic to SA(N) ⊕ SA(M),
which immediately gives SA(N ⊕M) is well-behaving iff SA(N)⊕SA(M) is well-
behaving.
Hence, N ⊕M is well-behaving iff SA(N)⊕ SA(M) is well-behaving. �

The value of Theorem 3.4.11 is that it justifies the whole approach of applying the
analysis techniques for a service net N on the level of the corresponding service
automaton SA(N).
In the following, we introduce a translation of a service automaton A into a
service net PN (A) and show that SA(PN (A)) = A for all service automata A in
the following. Given a strategy service automaton B for a service automaton A,
this property and Theorem 3.4.11 assure that PN (B) is a strategy for PN (A) on
the service net level.

3.4.3 Translating Service Automata into Service Nets

We will now introduce the translation of a service automaton A into a service
net PN (A). Basically, each state q of A will result in a marking mq of PN (A)
and a transition d ∈ δ of A will be a transition td of PN (A). The label of the
service automaton transition determines the connection of td to the interface. As
we will construct a state machine as the underlying structure of PN (A), each
place of the inner of PN (A), inner(PN (A)), exactly corresponds to a marking
of inner(PN (A)). To achieve a well-defined Petri net PN (A) (where the sets
of places and transitions are always finite), we have to require that the service
automaton A is finite (cp. Definition 3.3.6).

82

3.4. An Equivalent Translation between Service Nets and Automata

Definition 3.4.12 (Translation PN (A)).
Then, the corresponding service net PN (A) of a finite service automaton A is
defined as PN (A) = [P, Pin , Pout , T, F,m0,Ω] with

– P = {pq | q ∈ Q} ∪ IioA,
– Pin = IinA,
– Pout = IoutA,
– T = {td | d ∈ δA},
– F = {(pq, td), (td, pq′) | d = (q, τ, q′) ∈ δA}

∪ {(pq, td), (td, pq′), (td, x) | x ∈ IoutA, d = (q, x, q′) ∈ δA}
∪ {(pq, td), (td, pq′), (x, td) | x ∈ IinA, d = (q, x, q′) ∈ δA},

– m0 = [pq0], with q0 is the initial state of A, and
– Ω = {[pq] | q is a final state of A, i.e. q ∈ ΩA }. y

Obviously, the service automaton A and the corresponding service net PN (A)
have equal interfaces, i.e. an element x ∈ MC is an input (output) channel of A
if and only if x is an input (output) place of PN (A), and we have:

Proposition 3.4.13 (PN (A) is elementarily communicating).
If A is a service automaton, then PN (A) is an elementarily communicating service
net. y

It is easy to see that a non-δ-reachable state q of A introduces place pq of PN (A)
that will never get marked by a reachable marking of the inner of PN (A). Hence,
the translation of this service net back into a service automaton SA(PN (A)) filters
such a place p and all transitions t with p ∈ •t. Thus, the property SA(PN (A)) =
A only holds for finite service automata A where each state is δ-reachable from
the initial state.

Proposition 3.4.14 (Feasibility of translation PN (A)).
Let A be a (finite) service automaton where each state is δ-reachable from the
initial state.

Then, SA(PN (A)) = A. y

Proof.
Follows immediately from the constructions of PN (A) and SA(N). �

Another obviously possible translation of a service automaton into a Petri net is
provided by the theory of regions [BD98, CKLY98]. Using the region approach,
the constructed Petri nets would even be more readable as concurrency is explicitly
represented.

The main correctness result for our translation PN (A) is formulated in Theo-
rem 3.4.15. It corresponds to Theorem 3.4.11 for the translation SA(N).

83

Chapter 3. A Formal Framework for Service Modeling

Theorem 3.4.15 (Correctness of PN (A) for Strat).
Let A and B be (finite) service automata where each state is δ-reachable from the
respective initial state.

Then, B is a strategy for A iff PN (B) is a strategy for PN (A). y

Proof.
By Theorem 3.4.11, PN (B) is a strategy for PN (A) if and only if SA(PN (B))
is a strategy for SA(PN (A)). By Proposition 3.4.14 and because each state of
A and B is δ-reachable from the respective initial state, SA(PN (B)) = B and
SA(PN (A)) = A. Hence, PN (B) is a strategy for PN (A) iff B is a strategy for
A. �

Because of the abstraction of the translation SA(N) already discussed after Def-
inition 3.4.8, we cannot always construct N exactly out of SA(N):

Proposition 3.4.16.
In general, it does not hold: PN (SA(N)) = N . y

As an example where N is different from the constructed service net PN (SA(N))
(i.e. translating N into a service automaton and then translating it back into a
service net), assume that N has a dead transition t in the inner of N . Because t
is dead, it has no representation in the corresponding service automaton SA(N).
Hence, it is no reintroduced when SA(N) is translated back into a service net. An-
other example is a service net N with two different transitions with equal presets
and postsets. The translation PN (SA(N)) will only have one such transition.

However, applying the back and forth translation once already reaches a fixed
point.

Proposition 3.4.17.
For a service net N : PN (SA(PN (SA(N)))) = PN (SA(N)). y

3.5 Possible Variants of Service Model Definitions

In the preceding sections, we introduced our formal modeling techniques of service
nets and service automata, as well as behavioral compatibility notions for the
interaction of services. Therein, we made several design decisions for the actual
definition of some of the formal notions. In this section, we want to present
and evaluate different ways for defining service nets, service automata, or related
definitions and the corresponding influences to our presented results.

84

3.5. Possible Variants of Service Model Definitions

3.5.1 Services with Restrictions on their Final States

As introduced in Sects. 3.2.1 and 3.3.1, we allow service nets and service automata
to have transient final markings or states, respectively. We motivated that this
approach allows an easy way of modeling “communication rounds”, i.e. the return
of a service to its initial configuration after having successfully completed an
interaction with some other service. That is, a transient final marking can be
compared with the approach of adding a shortcut transition t∗ to a workflow net,
connecting the unique sink place ω with the unique source place α of the workflow
net [Aal98].

However, requirements from the application domain or modeling guidelines, for
example, may result in the need for stronger criteria on the final markings/states
of a service. In general, such restrictions can be added to the definition of a service
net (or service automaton) without any harm. We consider the implications of
two prominent restrictions in the following.

Services with Non-Transient Final States

The first restriction is to require all final markings to be dead markings, or all
final states to be stable states, respectively. This requirement was already made
in [MRS05, LMW07b, MSSW08, SMB09], for instance. As an advantage of this
approach, the notions of final markings/states get a better intuitive meaning.

As a technical problem, however, this stronger requirement results in a different
definition of the inner of a service net (Definition 3.2.4 on page 51), because a
dead final marking of a service net may become a transient final marking of its
inner (see Fig. 3.13). Hence, the construction of the inner may violate such a
restricted service net definition, i.e. the inner of a service net is no (restricted)
service net. To overcome this problem, the inner of a service net may be defined
as a variant of Petri nets with final markings, and not at all as a service net,
for instance. Alternatively, the inner of a service net with restricted final states
can be defined as a service net with relaxed final states, i.e. the class used in this
thesis.

Services with Strictly Terminating Final States

An even more restricted variant of services is gained by requiring that all final
markings/states are strictly terminal. Thereby, a marking m of a service net is
called strictly terminal ifm is a dead marking even in inner(N). Correspondingly,
a state q of a service automaton is strictly terminal if there is no present transition
at q at all.

85

Chapter 3. A Formal Framework for Service Modeling

p1

p2

x ?x

(a) N

p1

p2

τ

(b) inner(N)

Figure 3.13: A Service net N and its inner inner(N). If [p1] is a final marking of N
(and hence a final marking in inner(N)), then inner(N) does not satisfy the criterion for
dead final markings. Whereas the marking [p1] is dead in N, it is transient in inner(N).

This variant of final states is of particular interest as a service can never again
perform an action after having reached a strictly terminal state once. This prop-
erty is important for practical applications as it is very easy to check, but still
sufficient to positively decide that a service (or a service instance) is no longer
needed and, hence, can be “shut down” (and deleted from memory). In fact,
all services that stem from BPEL, BPEL4Chor, or almost every other practical
specification language are strictly terminating.

As in the variant without restrictions on final markings/states, we are not aware
of any problems arising in the strictly terminating variant of services. Only the
notion of a normal state of Boolean annotated service automata slightly changes
again (see Sect. 4.6.1).

Because services without restrictions on their final markings/states are the more
general class, we decided to consider that variant of services in this thesis.

3.5.2 Strategy Notion for Non-Closed Compositions

In Sects. 3.2.3 and 3.3.3, respectively, the behavioral correctness notion of well-
behavior of a service has been defined for closed services only. Therein, a service
is a strategy for another service only if their composition is closed. In fact, this
approach was also used in [LMW07b, MSSW08, SMB09], for instance. However, in
some cases, an open composition of two services may already be seen as “complete
enough” to call the services strategy for each other.

In this section, we show that our distinction between open and closed composi-
tions does not restrict generality as every pair of service nets N and M can be
transformed in a way such that their composition is closed.

86

3.6. Related Work

Transformation to Yield Closed Compositions

Assume two service nets N andM where N⊕M is an open service net. Obviously,
N and M have free interface places (cp. Definition 3.2.9). Such an interface place
p of N can simply be added to M as a new interface place with •p = p• = ∅,
and vice versa. Then, the composition of the (changed) service nets N and M is
closed, and well-behavior of N ⊕M is well-defined.

Even if we want to assure that one side of the composition, say N , is fixed and
unchanged (as it will be done in the forthcoming chapters), a closed composition
N ⊕M can still be achieved: all free interface places of N are added to M as
described before. In contrast, each free interface place p of M is not added to
N , but is removed from M . To preserve the enabledness of the transitions of M ,
each receiving transition of M with p in its preset is removed from M as well, as
such a transition is never enabled in N ⊕M . Then, the composition of N and M
is closed as well.

It is easy to see that this approach equally works for service automata.

Hence, our assumption of a closed composition N ⊕M for the strategy relation
between N and M does not restrict generality.

3.6 Related Work

Since the beginning of service-oriented computing, lots of efforts have been spent
to back the industrial (web) service specification languages with formal languages
to model and reason about services. Thereby, two main directions of the suggested
models can be distinguished, synchronously and asynchronously communicating
service models. Whereas synchronous modeling languages can be used to an-
alyze simple request/response-based, stateless services, recent literature agrees
that stateful services that communicate via asynchronous message passing are
needed today [Pap07a].

[BFHS03] shows that many behavioral compatibility notions are much easier to
decide in case of synchronous communication models. Hence, the results de-
rived for synchronous communication models cannot be trivially extended to
asynchronously communicating services. However, [FBS05] was able to provide
sufficient conditions under which the synchronous and asynchronous communica-
tion models can be translated into each other. Basically, this is the case if the
asynchronous model can get along with a message buffer of length one.

Synchronous Communication

Several authors suggest the translation of industrial service specification languages
into process algebra. For instance, [BCPV04] describes the translation of conver-

87

Chapter 3. A Formal Framework for Service Modeling

sations (i.e. choreographies) of web services into the process algebra CCS. Alter-
natively, [Fer04] presents a formal semantics for BPEL4WS web services in the
process algebra Lotos. Given a translated process algebra term of a (basic or
composite) service, it can be evaluated for deadlock freedom, inducing behavioral
compatibility of the services, or any other property expressible in the process
algebra. Additionally, [BCPV04] sketches ideas for synthesizing an adapter (in
form of a CCS term) for repairing a deadlocking conversation.

Most other formal models for synchronously communicating services are based on
automata. In [Lyn96], a very basic version of such automata, called I/O automata,
have been introduced. Most notably, an I/O automaton must be receptive towards
every possible input action at every state. This is also called an input enabled, or
“pessimistic” approach as each automaton must be able to react on each incoming
message at any time. Consequently, composition of I/O automata is very simple.
However, the input enabled approach results in rather inflexible and complex
automata models and is not suited to model independent and loosely coupled
services.

Consequently, [AH01] introduced the notion of interface automata which are syn-
tactically closely related to I/O automata. They also assume a synchronization of
communication actions, whereas internal actions are interleaved asynchronously.
In contrast to I/O automata, interface automata follow an “optimistic” approach
where some (or even all) input actions may be not accepted at a state of an inter-
face automaton. This may lead to erroneous states, called illegal states in [AH01],
when interface automata are composed. In an illegal state, one interface automa-
ton wants to send a message but the other one is not able to receive this message.
Hence, [AH01] introduces a compatibility notion for composed interface automata,
basically stating that, at each pair of states q and q′ of two interface automata, q
must at least receive the messages that q′ sends (and vice versa).

[BBMP06] follows a very similar approach as [AH01] and considers service models
as finite-state machines. The authors also introduce a compatibility notion that
requires that each sent message by one automaton must be receivable by the other
automaton.

Another automaton approach to represent services can be found in [BSBM04].
Therein, the authors model services as labeled transition systems and consider
different (simple) compatibility notions, namely opposite behaviors, unspecified
receptions, and deadlock-freeness, of the transition systems. Opposite behaviors
reflect the mirroring of input and output actions, unspecified receptions equals the
compatibility notion of [AH01] and [BBMP06], and deadlock-freeness additionally
requires reachability of a final state. The approach is limited to deterministic
automata and the authors neither provide algorithms to decide the compatibility
notions nor complexity results.

[YS97] provides, besides a compatibility notion, also means of correct implementa-
tion of a protocol (i.e. a service specification) and the generation of basic adapters.

88

3.6. Related Work

However, the authors restrict themselves to deterministic services, assume a syn-
chronous model of communication and agree that the generalization to asyn-
chronous communication is nontrivial.

In [BCGM05], service composition is introduced as the question whether it is
possible to orchestrate a set of available services such that a target specification
is satisfied. Therein, the services as well as the target specification are given as
finite-state machines. If possible, an orchestrator, called mediator, is synthesized.
The mediator has full access to all actions of the available services and may trigger
or delay actions of these services to satisfy the target specification. Due to privacy
issues, this approach is obviously only feasible in practice if all services belong to
one organization and full, centralized access to the actions is guaranteed (and
acceptable).

Although Petri nets (see [Rei85], for example) usually composed via place fusion
(modeling asynchronous communication), a synchronous composition mechanism
(i.e. transition fusion) for Petri nets is possible as well. Synchronous communica-
tion of Petri nets is used in [Aal03, AW01] to compose workflow nets [Aal98], for
instance. Furthermore, [Wol07, Wol09] consider service nets as introduced in this
thesis and present a non-trivial generalization of our notion of strategies where ser-
vice nets can employ both synchronous and asynchronous communication. Con-
sequently, the notion of controllability of a service net N (cp. Definition 3.2.20) is
generalized to the existence of a service net M that communicates synchronously
and/or asynchronously with N such that N and M are behaviorally compatible.
However, there is no characterization (i.e. no operating guideline) of the set of all
such strategies so far.

To support more involved services than mere stateless, request/response-based
services, we use service models that communicate asynchronously via message
passing in this thesis.

Asynchronous Communication

Most automata dialects for asynchronously communicating are based on [BZ83]
where the authors introduce communicating finite-state machines that exchange
messages via unbounded queues. That is, each communication channel between
two communicating finite-state machines is represented by one unbounded buffer,
preserving the order of messages. The authors show that many properties are
undecidable in case of unbounded channels, but they become decidable when
considering only bounded channels.

[HBCS03] provides an overview on different views on SOC and proposes to model
services as mealy machines with asynchronous communication, using bounded
or unbounded queues very similar to [BZ83]. They suggest to check behavioral
compatibility of services by composing the service models and checking the com-

89

Chapter 3. A Formal Framework for Service Modeling

position for the correctness criterion applying standard model checking techniques
(in case of bounded channels).

In contrast to the above articles, [KP06] considers asynchronous communication
between labeled transition systems such that messages can overtake each other.
The authors introduce a conformance notion to express correct implementation
of a (composite) service specification by a concrete (composite) service. To this
end, they assume boundedness of the actual communication and that each sent
message is eventually received. Then, conformance reduces to the existence of a
simulation relation between implementation and specification.

Service automata, as introduced in this thesis, are most closely related to the
labeled transition systems of [KP06]. However, we additionally introduce final
states for being able to distinguish between proper and erroneous termination
and an explicit notion of composition of service automata. That way, we can
express behavioral compatibility of two service automata A and B as deadlock
freedom of their composition. In order to check a relationship between specifica-
tion and implementation, we will employ the operating guidelines of the services
as introduced in the forthcoming Chap. 5. It will turn out that our conformance
notion is much more flexible than the one introduced in [KP06].

In this chapter, we also introduced service nets, a special version of Petri nets, for
the modeling of services. As shown in Sect. 3.4, service nets and service automata
can be translated into each other without loosing behavioral properties of the
service.

Petri nets with special structures, i.e. workflow nets, have been proven success-
ful in the area of business process modeling. For distributed business processes,
workflow nets have been enriched by interface places to workflow modules, en-
abling a workflow module to communicate asynchronously with other workflow
modules [Mar04]. This idea is based on the module concept for Petri nets which
was first proposed by Kindler [Kin97]. Basically, service nets are workflow mod-
ules where structural restrictions (i.e. a unique source and a unique sink place,
etc.) have been dropped. [Mar04] furthermore originally introduced the notion
of usability of a workflow module, which exactly equals the notion of controlla-
bility of a service net. However, all results in [Mar04] are restricted to services
with acyclic behavior and the author does not address a characterization of all
strategies of a service.

3.7 Concluding Remarks

In this chapter, we have introduced two formal modeling techniques to model
services: service nets and service automata. Service nets are a special class of
Petri nets with distinguished interface places to communicate with other service
nets. Service automata are a version of communicating automata and can be

90

3.7. Concluding Remarks

seen as a representation of the behavior of a service. We formalized behavioral
compatibility of services as a strategy relationship between the services, which
basically means deadlock freedom of their composition.

We were able to show that service nets and service automata can be translated
into each other and are therefore equally well suited as a formal representation of
services and their interaction. To this end, we introduced a sequentialization of
service nets and proved with Corollary 3.4.5 and Proposition 3.4.6, that we can
assume elementarily communicating service nets for the translation into service
automata. Furthermore, we were able to show that both translations preserve
our correctness criteria for behavioral compatibility. The main results in this
regard are Theorem 3.4.11 and Theorem 3.4.15. These results enable us to change
arbitrarily between these two formalisms without losing information about the set
of strategies of a service.

An important strength of Petri nets is their nice and intuitive graphical rep-
resentation, especially in the case of concurrency. This significantly eases the
understanding of service models and allows for the manual design of larger case
studies. Furthermore, service net models of services can be derived from various
formalisms, e.g. the industrial service description language BPEL and the service
choreography specification language BPEL4Chor, by applying existent formal ser-
vice net semantics (like the semantics of [Loh08], for instance) of these languages.
That way, our algorithms and techniques can directly be applied to real-world
processes.

Service automata, however, are well suited to analyze the behavior of services and
serve as the basis of our analysis techniques in the upcoming chapters. Service
automata models of services can easily be derived from service nets or by automata
semantics of practical service specification languages. In the forthcoming chapters,
we may develop all further service analysis techniques for service automata only.
Due to the existent translation, in turn, every result equally holds for service nets
as well and could easily be formulated on the service net level.

In fact, the implementation of the analysis methods is based on service nets rather
than service automata (cp. Chap. 7).

The formulation of all analysis questions on the formal level makes our approach
independent of the evolution of real-world service description languages and thus
durable. As our algorithms are computer-aided, the formal level can, however,
to a large extend be hidden in real applications of our methods. Furthermore, it
is easy to incorporate the support of other specific practical process description
languages, such as BPMN [OMG06] and UML [OMG07], for example, or to pro-
vide methods to support further formal service modeling techniques like (other)
automata dialects or process algebra descriptions of services, for example.

91

Part II

Analyzing the Interaction
Behavior of Services

The set of all strategies of a given service, i.e. the set of all services that are
behaviorally compatible to a given service, is of particular interest. If the set
of strategies of a service is empty, the service is uncontrollable. Uncontrollable
services are fundamentally ill-designed. In the case of controllable services, the
set of strategies is infinite. For service discovery, however, efficient techniques
for finding compatible services in a repository are needed. Therefore, a finite
characterization of that set is important. Operating guidelines can be used as
such a characterization.

4 Characterizing Sets of Services

In the last chapter, we have introduced our formal framework for services, i.e.
service nets and service automata, and our behavioral compatibility notion of a
strategy for a service. We have seen that a service S canonically induces the
set of all strategies R for S, denoted by Strat(S). As motivated in Sect. 1.3,
our main goal of this thesis is the characterization of the set of all behaviorally
compatible services R for a given service S, i.e. of the set Strat(S) of S. Before we
will introduce this particular characterization in the forthcoming Chapter 5, this
chapter is devoted to present a general means for characterizing a set of services.

To this end, we introduce Boolean annotated service automata (BSAs) in the
following. Basically, a BSA Bφ is a service automaton B where each state q
of B is annotated by a Boolean formula φ(q). The purpose of a BSA Bφ is to
characterize a set of service automata. Therefore, we develop amatching procedure
to decide whether or not a concrete service automaton C is characterized by a
BSA Bφ. That way, a BSA Bφ canonically induces the set Match(Bφ) of all
service automata C that match with Bφ. The concept of BSAs will turn out to
be well suited to (1) very efficiently decide C ∈ Match(Bφ) and (2) easily compare
the sets Match(Bφ1) and Match(Bψ2) of characterized services of two BSAs Bφ1 and
Bψ2 . Hence, we already take into account the requirements for a characterization
as introduced in Sect. 1.3.

In Chap. 5, we will employ the concept of BSAs and introduce specifically con-
structed BSAs, called operating guideline of a service S, that characterize exactly
the set of strategies Strat(S) of S. In other words, the operating guideline OGS

of a service S is a special BSA such that Match(OGS) = Strat(S). Therein, the
Boolean annotations are used to express requirements on a client service R such
that R satisfies these requirements if and only if R is a strategy for S. The require-
ments are abstract and express conditions for R, rather than describe the internal
structure of S. Hence, a characterization of strategies by a BSA additionally takes
into account privacy issues and hides relevant trade secrets of S.

As BSAs are a general concept and can be used without the purpose of charac-
terizing exactly the set Strat(S) of a service S, we will introduce BSAs as a very
general concept for characterizing some set of services in this chapter, without

95

Chapter 4. Characterizing Sets of Services

considering a special target service S at the moment. We will present many re-
sults that hold for arbitrary BSAs, rather than those BSAs that characterize a
set of strategies.

Throughout this chapter, we will only consider the characterization of services
that are modeled as service automata and omit the respective definitions for
service nets. To consider a service net N , one can easily translate N into its
corresponding service automaton SA(N) and consider all analysis questions for
SA(N) instead of N directly.

The structure of this chapter is as follows. Section 4.1 introduces basic defini-
tions and notations that are used in the following. In Sect. 4.2, we define Boolean
annotated service automata (BSAs) as a finite characterization of a possibly infi-
nite set of service automata. We introduce the matching procedure to efficiently
decide which service automata are characterized by a BSA. The services which
match with a BSA Bφ constitute the matching set Match(Bφ). Section 4.3 starts
with the observation that a BSA may have redundant information that can be
removed without changing the matching results, i.e. without changing the set
Match. Thus, we introduce a normalization procedure for a BSA that deletes all
such garbage, yielding a normal BSA. In Sect. 4.4, we show how the matching
sets of two normal BSAs can be compared by looking at their structure only. We
develop a relation v between the structures of BSAs which imposes a preorder
on their matching sets. The equivalence of BSAs is topic of Sect. 4.5. Herein, we
introduce a minimization procedure for a BSA that basically merges equivalent
states of a BSA without jeopardizing its set Match. We will prove that the result-
ing minimized BSA is minimal and unique, i.e. there is no other BSA with equal
or less states and transitions with the same matching set. Section 4.6 justifies
some design decisions for definitions in this chapter and explores other possible
variants of BSA definitions together with the corresponding consequences. Then,
Sect. 4.7 discusses related work and Sect. 4.8 concludes this chapter.

4.1 Preliminaries

In this section, we recall basic terminology that will be used in the remainder of
this chapter. The familiar reader may skip this section.

4.1.1 Strong Simulation Relation

In order to characterize sets of service automata, we need a means for comparing
the behavior of two service automata. To this end, we recall the classical notion of
strong simulation [Mil71, Mil89] and adapt it to the definition of service automata.

Intuitively, a service automaton A that is strongly simulated by a service automa-
ton B has less or equal behavior than B. Technically, there must exist a strong

96

4.1. Preliminaries

simulation relation % between (the states of) A and B satisfying special require-
ments. Please note the direction: if B strongly simulates A, then % ⊆ QA ×QB .

Definition 4.1.1 (Strong simulation relation).
Let % ⊆ QA × QB be a relation between the states QA and QB of two service
automata A and B such that, for all states qA ∈ QA of A and all states qB ∈ QB
of B: if (qA, qB) ∈ % and there is a transition (qA, x, q′A) ∈ δA in A, then there is
a transition (qB , x, q′B) ∈ δB in B with (q′A, q

′
B) ∈ %, too.

Then, % is a strong simulation relation between A and B if the initial states of A
and B are related by %, i.e. (q0A, q0B) ∈ %.
If there exists a strong simulation relation % between A and B, then we also say
that B strongly simulates A. y

In Definition 4.1.1, an internal, i.e. τ -labeled, transition is treated exactly like an
interface (i.e. sending or receiving) transition. That is, if there is a present internal
transition at a state qA in A, then there must be a present internal transition at
qB in B for qB simulating qA.

Examples for strong simulation relations are given in Fig. 4.1. The figure depicts
final states for the five service automata, but whether a state is a final state or
not is irrelevant for checking simulation relations—only the presence or absence
of transitions is important.

q1

q2

q3

q4

q5

?a

!b

?a

!c

(a) A

r1

r2

r3 r4

?a

!b !c

(b) B

s1

s2

s3 s4

?a

!b !c

τ

(c) C

t1

t2 t3

?a ?b

!c !c

(d) D

u1

u2

u3

?a ?b

!c ?a?b

(e) E

Figure 4.1: (a)–(e) Service automata A, B, C, D, and E. The service automaton
B strongly simulates A, and C strongly simulates B (but not vice versa, respectively),
whereas the service automata D and E strongly simulate each other.

Another simulation relation known in the literature is weak simulation [Mil71,
Mil89]. The main difference is the treatment of τ -labeled transitions: a weak
simulation relation % ignores internal transitions, that is, an automaton A can
have an internal transition at a state qA without enforcing the automaton B to
have an internal transition itself at a state qB with (qA, qB) ∈ %. In the example
of Fig. 4.1, the service automaton B weakly simulates C, but B does not strongly
simulate C due to the τ -transition in C.

97

Chapter 4. Characterizing Sets of Services

In the upcoming Chap. 5, the construction of an operating guideline of a service
ensures that a strategy for this service is strongly simulated by the operating
guideline. For this reason, we may consider only strong simulation relations in
the following.

Notation 4.1.2.
In the rest of this thesis, we say simulation for short meaning a strong simulation
relation. y

Whereas Definition 4.1.1 just defines requirements of a simulation relation, there
is a straightforward algorithm to construct a simulation relation between service
automata A and B (if there is one): starting from the initial states q0A of A and
q0B of B, it considers all transitions present at q0A in A and checks whether there
are correspondingly labeled present transitions at q0B in B. The state pairs which
are reached this way are added to the simulation relation. This step is iterated
until no pair of states is added to % anymore (cp. [Mil89], for instance).

It is well-known that this algorithm constructs a simulation relation % where
removing a state pair from % immediately violates the requirements of Defini-
tion 4.1.1. Such a simulation relation is called a minimal simulation relation.

Definition 4.1.3 (Minimal simulation relation).
A simulation relation % between two service automata A and B is minimal if there
is no simulation relation %′ between A and B with %′ ⊂ %. y

Furthermore, a minimal simulation relation only relates reachable states.

Proposition 4.1.4 (Minimal simulation relation vs. reachable states).
Let A andB be service automata such thatB simulates A with minimal simulation
relation % ⊆ QA ×QB .
Then, for each state qA of A and each state qB of B: (qA, qB) ∈ % implies qA is
δA-reachable in A and qB is δB-reachable in B. y

Additionally, the minimal simulation relation between some service automaton
A and a deterministic service automaton B is unique. In the remainder of this
thesis, the service automaton B will always be deterministic.

Figure 4.2 exemplifies the existence of two different simulation relations % and
%′. The simulation relation % = {(r1, s1), (r2, s2), (r3, s3), (r4, s4)} is minimal. The
relation %′ = %∪ {(r1, s5)} uses the unreachable state s5 of B′ and is a simulation
relation as well, but obviously not minimal. Because B′ is deterministic, there is
no other minimal simulation relation than %.

Another simulation relation known in the literature is a bisimulation relation
[Par81, Mil89]. A relation % is a bisimulation between A and B, if % is a simulation

98

4.1. Preliminaries

r1

r2

r3 r4

?a

!b !c

(a) B

s1

s2

s3 s4

s5

?a

!b !c

?a

(b) B′

% = { (r1, s1), (r2, s2),
(r3, s3), (r4, s4)}

%′ = % ∪ {(r1, s5)}

(c) % and %′

Figure 4.2: Two service automata B and B′ with simulation relations % and %′.

relation between A and B and its inverse %−1 is a simulation relation between B
and A.

Hence, if both service automata are deterministic, then the unique minimal sim-
ulation relation between A and B is even a bisimulation.

Proposition 4.1.5 (Minimal simulation relation vs. bisimulation).
Let A and B be two deterministic service automata.

Then, if A simulates B with minimal simulation relation %, then % is a bisimulation
between A and B. y

Simulation relations are the first ingredient for service automata characterization.
The next section is devoted to Boolean formulae and their evaluation which will
be the second ingredient.

4.1.2 Boolean Formulae

In the following, we will employ a positive, i.e. negation-free, variant of proposi-
tional logics, called Boolean formulae. These formulae are used as annotations to
the states of a service automaton. That way, the annotated service automaton
can be used to characterize a set of services. The atomic propositions of such a
Boolean formula are elements of the setMC of message channels together with the
special elements τ , representing an internal action, and final , representing final
states. As the only Boolean connectors, we use ∨ (Boolean or) and ∧ (Boolean
and). Let, for the rest of this thesis,MC+ denote the setMC ∪ {final , τ}.

Definition 4.1.6 (Boolean formula overMC+, BF).
The set BF of Boolean formulae overMC+ is inductively defined as follows:

Basis. x ∈ MC+ is a Boolean formula, as well as the special Boolean formulae
true and false;

99

Chapter 4. Characterizing Sets of Services

Step. If φ and ψ are Boolean formulae, then their disjunction, (φ∨ψ), and their
conjunction, (φ ∧ ψ), are Boolean formulae. y

As a syntactical simplification, we omit parentheses in case no confusion may
arise, writing e.g. a ∨ b ∨ c for ((a ∨ b) ∨ c).

Notation 4.1.7.
Boolean formulae are denoted by lower case Greek letters, e.g. φ, ψ, or χ. An
element x ∈MC+ is called a literal . We write x ∈ φ if the literal x occurs in φ.y

To evaluate Boolean formulae, we use standard propositional logic semantics:

Definition 4.1.8 (Truth value, Boolean assignment, satisfaction, β, |=).
As usual, we fix the truth values true and false.

A Boolean assignment β (assignment for short) is a mapping β : MC+ →
{true, false} assigning to each literal a truth value.

Furthermore, an assignment β satisfies a Boolean formula φ, denoted β |= φ, if φ
evaluates to true under β using standard propositional logic semantics. Thereby,
the formulae true and false are always evaluated to the truth value true and false,
respectively. y

Boolean assignments can be compared by comparing the truth values for each
literal separately. As usual, the truth value true is considered to be greater than
the truth value false.

Definition 4.1.9 (Domination of assignments, β ≤ β′).
An assignment β is dominated by an assignment β′, denoted β ≤ β′, if β(x) = true
implies β′(x) = true, for each x ∈MC+. y

As we do not allow negation in Boolean formulae, we can immediately conclude:

Corollary 4.1.10 (Monotonicity of Boolean formulae).
For each Boolean formula φ and all assignments β, β′: if β(x) |= φ and β ≤ β′,
then β′(x) |= φ. y

Hence, a Boolean formula φ which is evaluated to true under an assignment β is
also evaluated to true by any greater assignment. Consequently, if φ is evaluated
to false by an assignment, then φ is evaluated to false by any smaller assignment.
This property of negation-free Boolean formulae will be exploited to derive a
normal form of Boolean annotated service automata in Sects. 4.2 and 4.3. The
normal form of such Boolean annotated automata is crucial for comparing the
sets of characterized services in Sect. 4.4 and is a prerequisite for the canonical
characterization of services in Sect. 4.5.

In the following, we fix some further notations for Boolean formulae.

100

4.2. Boolean Annotated Service Automata

Notation 4.1.11.
If each satisfying assignment of a Boolean formula φ satisfies a Boolean formula
ψ, then φ implies ψ, denoted by φ ⇒ ψ. If φ and ψ are satisfied by the same
assignments, they are equivalent , denoted by φ ≡ ψ.
A Boolean formula φ that is satisfied by any assignment is a tautology, denoted
by φ ≡ true. A Boolean formula φ that is satisfied by no assignment is a contra-
diction, denoted by φ ≡ false.

If F ⊆ BF is a finite set of Boolean formulae F = {φ1, . . . , φn}, the conjunction
φ1 ∧ . . . ∧ φn is abbreviated by

∧
φ∈F φ. If F = ∅, then the empty conjunction∧

φ∈∅ φ is defined to be true. The disjunction
∨
φ∈F φ over a finite set of Boolean

formulae F is defined analogously; and the empty disjunction is defined to be
false. y

Remark 4.1.12 (Syntactical simplification of Boolean formulae).
We recall some basic simplifications for Boolean formulae:

– (φ ∧ false) ≡ false,
– (φ ∨ false) ≡ φ,
– (φ ∧ (φ ∨ ψ) ≡ φ,
– (φ ∨ (φ ∧ ψ)) ≡ φ,

which we will apply when normalizing annotations in Sect. 4.3. y

Boolean formulae are used as annotations to the states of a service automaton
in the following. With the help of the notion of a simulation relation and the
evaluation of the Boolean formulae, such an annotated service automaton can be
used to characterize a set of service automata.

4.2 Boolean Annotated Service Automata

A Boolean annotated service automaton (BSA) Bφ, as introduced in this section,
is used to characterize a set of service automata. To this end, each state q of the
service automaton B is annotated by a Boolean formula φ(q). Because determin-
istic service automata provide all information needed later on while easing most
subsequent decision procedures, we restrict BSAs to deterministic structures.

Definition 4.2.1 (Boolean annotated service automaton, BSA).
A Boolean annotated service automaton (BSA) Bφ = [B,φ] consists of

– a deterministic service automaton B = [Q, Iin , Iout , δ, q0,Ω] and
– a mapping φ : Q→ BF , called (Boolean) annotation. y

101

Chapter 4. Characterizing Sets of Services

We refer to B as the underlying service automaton of a BSA Bφ. According to
Definition 4.2.1, the underlying service automaton B is deterministic (cp. Defi-
nition 3.3.8 on page 64); that is, B may have τ -labeled transitions, but for all
x ∈ MC ∪ {τ}, there is at most one present x-labeled transition per state, i.e.
(q, x, q′), (q, x, q′′) ∈ δB implies q′ = q′′, for all q ∈ Q.

An example BSA Bφ is depicted in Fig. 4.3(a). Its underlying service automaton
B consists of three states und four transitions and is shown in Fig. 4.3(b). In Bφ,
each state q of B is annotated with a Boolean formula φ(q); the complete mapping
φ is listed in Fig. 4.3(c).

q1: ?a ∧ ?b

q2: !c ∨ !d q3: final

?a
!c

!d

?b

(a) Bφ

q1

q2 q3

?a
!c

!d

?b

(b) B

φ :
q1 7→ ?a ∧ ?b

q2 7→ !c ∨ !d

q3 7→ final

(c) φ

Figure 4.3: A Boolean annotated service automaton Bφ with its constituents.

Notation 4.2.2.
If we consider more than one BSA, we employ indices or primed letters, e.g. Bφ1
or B′φ. y

Notation 4.2.3.
To emphasize the connection between a literal and the corresponding message
channel, we also denote a literal x ∈MC in a Boolean formula φ(q) of a BSA Bφ

by ?x if x is an input channel of B, or by !x if x is an output channel of B.

Furthermore, we lift the notion of interface equivalence of service automata (Def-
inition 3.3.13) to BSAs and call two BSAs Bφ1 and Bψ2 interface equivalent iff the
underlying service automata B1 and B2 are interface equivalent. y

The purpose of a BSA is to characterize service automata. To this end, we
introduce the notion of the matching of a service automaton with a BSA.

4.2.1 Matching

Intuitively, a service automaton C matches with a BSA Bφ if B simulates C and
the states of C provide assignments that satisfy all formulae of φ.

Thereby, the labels of present transitions at a state q of a service automaton C
constitute an assignment: a present x-labeled transition sets the corresponding

102

4.2. Boolean Annotated Service Automata

literal x to true at q. If there is no x-labeled transition at q, then the literal x
is set to false. The special literal final is set to true at state q if and only if q
is a final state of C. This assignment is used to evaluate the annotations of the
corresponding states of a BSA later on.

Definition 4.2.4 (Assignment of a service automaton, βC).
An assignment βC of a service automaton C = [Q, Iin , Iout , δ, q0,Ω] is a set
{βC(q) | q ∈ Q} of Boolean assignments βC(q) :MC+ → {true, false} defined as

βC(q)(x) =

true, if x ∈MC+ \ {final} and there is a q′ with (q, x, q′) ∈ δ,
true, if x = final and q ∈ Ω,
false, otherwise. y

To show an example, reconsider the service automaton B of Fig. 4.3(b), depicted
again in Fig. 4.4(a). The corresponding assignments are listed in Fig. 4.4(b). A
literal x ∈ MC+ not listed in Fig. 4.4(b) is set to false by the corresponding
assignment.

q1

q2 q3

?a
!c

!d

?b

(a) B

βB(q1) : βB(q2) : βB(q3) :

?a 7→ true !c 7→ true final 7→ true
?b 7→ true !d 7→ true

(b) βB

Figure 4.4: The service automaton B and its assignment βB. A literal x ∈ MC+ not
listed in Fig. 4.4(b) is set to false by the corresponding assignment.

The intuitively formulated characterization of a set of services by a single BSA is
now formalized by the following matching definition. The matching of a service
automaton C with a BSA Bφ requires C to be simulated by B and that C satisfies
all annotations of states of B that are used in the simulation relation.

Definition 4.2.5 (Matching, Match(Bφ)).
Let C be a service automaton and let Bφ be a BSA such that C and B are
interface equivalent.

Then, C matches with Bφ if there exists a strong simulation relation % ⊆ QC×QB
such that

– B simulates C (i.e. (q0C , q0B) ∈ %) and
– for all (qC , qB) ∈ %: βC(qC) |= φ(qB).

Let Match(Bφ) denote the set of all service automata that match with Bφ. y

103

Chapter 4. Characterizing Sets of Services

The matching provides a mechanism for characterizing a set of service automata
by a BSA. Given a BSA Bφ, we have canonically given the corresponding set
Match(Bφ) of characterized services. Therefore, the set Match(Bφ) can be seen
as the semantics of a BSA Bφ. More precisely, BSAs can be seen as syntax,
sets of service automata can be seen as the semantical model, and the matching
mechanism is the semantics, i.e. the mapping of BSAs into the semantical model.

To demonstrate the matching, reconsider the example BSA Bφ of Fig. 4.3(a) in
Fig. 4.5(a) and the service automata C, D, and E in Figs. 4.5(b)–4.5(d). The
service automaton C matches with Bφ. The simulation relation between C and
the underlying service automaton B of Bφ contains the elements (r1, q1), (r2, q2),
(r3, q1), and (r4, q3). Furthermore, each annotation of a state q of Bφ is satisfied
by a related state r of C. For instance, the assignment βC(r1) assigns true to the
literals ?a and ?b (because both transitions are present at the state r1), satisfying
the annotation ?a ∧ ?b, i.e. βC(r1) |= ?a ∧ ?b.

However, D and E do not match with Bφ: the state s1 of D does not satisfy the
annotation of state q1 of Bφ; and the !c-labeled transition present at state t1 of
E causes B to not simulate E.

q1: ?a ∧ ?b

q2: !c ∨ !d q3: final

?a
!c

!d

?b

(a) Bφ

r1

r2

r3

r4

?a ?b

!c

?a

?b

(b) C

s1

s2

s3

?a !c

!d

(c) D

t1

t2 t3

?a

!c

?b

!c

(d) E

Figure 4.5: (a) A BSA Bφ. The annotation φ(q) is depicted inside the state q. (b)–(d)
Three service automata C, D, and E. C matches with Bφ, but D and E do not match
with Bφ.

Let Bφ be an arbitrary BSA. Then, from interface equivalence of B and each
C ∈ Match(Bφ) (as required by Definition 4.2.5) immediately follows that all
elements of Match(Bφ) are (pairwise) interface equivalent.

To consider the matching in Fig. 4.5, let this property also hold for the service
automata B, C, D, and E of Fig. 4.5. That is, let !d be in the interface of C, for
instance, although there is no !d-labeled transition in C.

4.2.2 Properties of Matching

In the following, we want to convey a better feeling for BSAs and the matching
procedure. We will consider the matching of non-deterministic service automata

104

4.2. Boolean Annotated Service Automata

with BSAs and will have a closer look on the special literal final . Afterwards, we
will consider BSAs where no service automaton can match with and BSAs with
infinite semantics.

In the upcoming Sect. 4.3, we will then characterize a class of BSAs called normal
BSAs, for which there exist efficient algorithms, e.g. to compare the corresponding
semantics.

Matching for Non-Deterministic Service Automata

Whereas the definition of a BSA Bφ requires its underlying service automaton B
to be deterministic, the definition of the matching between a service automaton
C with Bφ does not assume determinism of C. That is, we allow the matching
of both deterministic and non-deterministic service automata C with a BSA Bφ

and thus, the semantics of a BSA comprises deterministic and non-deterministic
service automata.

In the matching of a non-deterministic service automaton C with a BSA Bφ, the
assignment of C at a state qC of C sets the special literal τ ∈MC+ to true if and
only if qC has a present internal transition in C. That way, an annotation φ(qB)
of a state qB of B with τ ∈ φ(qB) may be satisfied due to this internal transition
of C. Bφ may also strongly simulate such a service automaton C as B is allowed
to have one present internal transition per state.

Let (qC , qB) ∈ %. If C has two present x-labeled transitions (qC , x, q′C) and
(qC , x, q′′C) at the state qC , then both states q′C and q′′C must be in relation with
the unique successor q′B that is reached following the x-labeled transition from qB
in B (if there is one). Then, according to Definition 4.2.5, both q′C and q′′C must
satisfy the annotation φ(q′B) of q′B in Bφ.

Hence, it is sufficient to consider BSAs with deterministic structure only without
restricting generality.

The Relation between Final States and the Literal final

In a BSA, we distinguish final states and states that are annotated with final
(i.e. a state q with final ∈ φ(q)). In the example BSA Bφ of Fig. 4.5(a), these
states coincide: the corresponding final state is also annotated with final . This,
however, is not necessary according to the definition of BSAs.

Figure 4.6 shows examples where final states are different from states annotated
with final . The first two BSAs, B′φ of Fig. 4.6(a) and B′′φ of Fig. 4.6(b), are
derived from Bφ of Fig. 4.5(a) by changing its set of final states. However, it is
easy to see that the corresponding underlying service automata B, B′, and B′′

simulate each other and therefore, Bφ, B′φ, and B′′φ characterize the same set of
strategies—disregarding the different final states.

105

Chapter 4. Characterizing Sets of Services

Hence, the set Ω of final states of a BSA Bφ is completely irrelevant for its
semantics Match(Bφ).

In the third BSA, B′′φ
′
of Fig. 4.6(c), in contrast, the annotation of the initial state

has been changed additionally. The different annotation φ′ results in a different
Match set of B′′φ

′
: for instance, the service automaton C of Fig. 4.5(b) matches

with B′′φ, but does not match with B′′φ
′
(because its initial state r1 is no final

state and hence violates the annotation ?a ∧ final of the initial state of B′′φ
′
).

Furthermore, it is easy to find a service automaton that matches with B′′φ
′
, but

not with B′′φ (e.g. the service automaton D which is derived from B′′ by removing
the ?b-labeled transition).

q1: ?a ∧ ?b

q2: !c ∨ !d q3: final

?a
!c

!d

?b

(a) B′φ

q1: ?a ∧ ?b

q2: !c ∨ !d q3: final

?a
!c

!d

?b

(b) B′′φ

q1: ?a ∧ final

q2: !c ∨ !d q3: final

?a
!c

!d

?b

(c) B′′φ
′

Figure 4.6: Variants of the BSA Bφ of Fig. 4.5(a).

However, we often prefer a BSA Bφ where its underlying service automaton B
itself matches with Bφ. Thereby, the set of final states of B plays an important
role as it determines the assignment of the final literal in the assignment βB of
the underlying service automaton B of Bφ. So in most example BSAs Bφ in the
following, a state q of Bφ with final ∈ φ(q) will also be a final state of Bφ.

Empty and Infinite BSA Semantics

A special case of Boolean annotated service automata is a BSA Bφ that no service
automaton can match with. Such a BSA is called empty BSA.

Definition 4.2.6 (Empty BSA).
A BSA Bφ with Match(Bφ) = ∅ is an empty BSA. y

An example for an empty BSA is a BSA with only one state which is annotated
with false, e.g. the BSA Bφ = [{q0}, Iin , Iout , δ = ∅, q0,Ω = {q0}, φ : q0 7→ false]
for some arbitrary sets of input and output channels Iin and Iout .

On the other hand it is easy to see that if a non-empty BSA Bφ characterizes a
service automaton C with at least one transition, then Bφ characterizes infinitely
many other service automata as well. The main reason for this is the potential
non-deterministic nature of C. C is allowed to have arbitrarily many different

106

4.3. Normal Boolean Annotated Service Automata

successor states that are reached by equally labeled transitions. Hence, Bφ has
infinite semantics. If Bφ is cyclic, another dimension for infinitely many matching
service automata is established by unrolling or repeating the cycle in the matching
service automata.

q1: !a ∨ τ

q2: final

τ

!a

(a) Fφ

r1

r2

!a

(b) G1

r1

r21 r22

!a !a

(c) G2

r1

r21 r22 r23

!a
!a

!a

(d) G3

r11

r12

r2

τ

!a

(e) G1

r11

r12

r13

r2

τ

τ

!a

(f) G2

Figure 4.7: A BSA Fφ with infinite semantics Match(Fφ): the service automata Gi
for i ∈ N have i different !a-successors. The service automata Gj for j ∈ N perform j
internal transitions before sending an a.

An example is depicted in Fig. 4.7. It illustrates two different dimensions to
achieve infinitely many matching service automata: (1) arbitrarily many different
states reached by equally labeled transitions (as seen in Figs. 4.7(b)–4.7(d)) and
(2) n-fold unrolling of a loop in the BSA (illustrated in Figs. 4.7(e) and 4.7(f)).
The second dimension is independent of the label of the unrolled transition, i.e.
internal as well as interface transitions can be unrolled.

Remark 4.2.7.
In case a non-empty BSA Bφ has a single state only (i.e. QB = {q0}) and no
transition, it technically still has an infinite semantics as a matching service au-
tomaton C is allowed to have an unbounded, even infinite, number of states which
are unreachable from C’s initial state. However, we do not consider unconnected
services. y

In either case, the matching procedure gives us a means to decide for a given BSA
Bφ and a given service automaton C whether or not C is characterized by Bφ.

4.3 Normal Boolean Annotated Service Automata

In the previous section, we introduced BSAs and a matching procedure to decide
whether or not a service automaton C is characterized by a BSA Bφ. The match-
ing requires C to be simulated by B and that C satisfies all annotations of states
of B that are used in the simulation relation.

107

Chapter 4. Characterizing Sets of Services

In this section, we show that these two requirements can restrict or even exclude
each other. In such a case, the BSA Bφ is inflated by “garbage” that adds no
information. Therefore, we develop the notion of a normal BSA. A normal
BSA has no such “garbage” and thus provides a sound and intuitive basis for
characterizing services. Furthermore, given two normal BSAs Bφ1 and Bψ2 , it
is possible to decide whether or not Bφ1 comprises the semantics of Bψ2 on the
structures of Bφ1 and Bψ2 only.

To decide this property also for non-normal BSAs, a normalization procedure is
needed that transforms an arbitrary BSA into a normal one. We will develop
such a normalization in the following and prove that the normalization of a BSA
preserves its semantics.

We start by formalizing the above-mentioned interplay of the simulation relation
and the annotations. Then, we introduce the normalization of annotations, fol-
lowed by the normalization of states of a BSA. Finally, both normalizations are
combined to derive normal BSAs.

4.3.1 The Interplay of the Matching Conditions

Intuitively, the two conditions of the matching definition, i.e. the simulation re-
lation and the annotation satisfaction, provide opposite directives for matching
services. Whereas the simulation relation allows a service automaton C to have at
most the transitions which are present at the corresponding state q of the BSA,
the annotation of q constitutes a requirement of minimal present transitions in
C. Hence, as a rule of thumb, the more transitions are present at q in the BSA,
the more services match with it; but the fewer satisfying assignments φ(q) has,
the fewer services match with the BSA. However, both requirements—present
transitions and annotations—clearly interact each other.

Basically, this interplay of present transitions and annotations in a BSA can have
the following shapes:

1. The annotation of a state q considers exactly these literals x ∈ MC ∪ {τ}
for which an x-labeled transition is present at q.

2. There is an x-labeled transition present at q, but x does not occur in the
annotation of q.

3. The annotation considers some literal x ∈MC∪{τ}, but there is no present
x-labeled transition at q.

In fact, all depicted BSAs so far correspond to the first shape of a BSA.

Figure 4.8(a) shows an example of a BSA Cφ corresponding to the second shape:
there is a present ?b-labeled transition at the state q1 of Cφ but the annotation

108

4.3. Normal Boolean Annotated Service Automata

φ(q1) = ?a of this state does not use the corresponding literal ?b. The two service
automata D and D′ of Figs. 4.8(b) and 4.8(c), respectively, match with Cφ, but
the service automaton D′′ of Fig. 4.8(d) does not match with Cφ, because the
state t1 of D′′ violates the annotation φ(q1) = ?a.

If we changed the annotation φ(q1) = ?a into φ′(q1) = ?a ∨ ?b, Cφ
′
would corre-

spond to the first shape now. However, this change influences the semantics of
Cφ: the service automaton D′′ now matches with Cφ

′
. Changing the formula into

φ′′(q1) = ?a ∧ ?b yields another different semantics: only the service automaton
D matches with this BSA Cφ

′′
.

Thus we conclude that the first two shapes are truly different, but both shapes
can be used to express useful requirements, i.e. they represent the “normal” case
without “garbage”.

q1: ?a

q2: ?b q3: ?a

q4: final

?a ?b

?b ?a

(a) Cφ

r1

r2 r3

r4

?a ?b

?b ?a

(b) D

s1

s2

s3

?a

?b

(c) D′

t1

t2

t3

?b

?a

(d) D′′

Figure 4.8: (a) A BSA Cφ. (b)–(d) Three service automata D, D′, and D′′. D and D′

match with Cφ, but D′′ does not match with Cφ.

The third shape, however, causes a BSA to contain unnecessary redundancies.

Figure 4.9 shows a fragment of a BSA Eφ with a state q that corresponds to the
third shape: the annotation φ(q) = b ∨ c references two non-existent transitions
(i.e. transitions labeled with b and c, respectively). In fact, Eφ corresponds to
the second shape, too: there is a present a-labeled transition at q, but there is
no literal a ∈ φ(q). Obviously, there is no matching service automaton C that
can use this state q because it is not possible to (1) neither have a b-labeled nor
a c-labeled transition (as required by the simulation relation) and (2) still satisfy
φ(q) = b ∨ c. Thus, there must not be a state qC of C for which (qC , q) ∈ % as
otherwise qC inevitably violates at least one of the matching requirements and
therefore C does not match with Eφ. This, again, means that q indeed is “garbage”
in Eφ.

The rest of the section is devoted to remove such redundancies. We first for-
malize the connection of the two matching requirements and then introduce a
normalization that removes those redundancies.

To this end, we basically check whether “Bφ satisfies its own annotations”. There-

109

Chapter 4. Characterizing Sets of Services

q: b ∨ c

a

Figure 4.9: Fragment of a BSA Eφ showing a state q with totally unrelated annotation
and present transitions. This state is “garbage” in the BSA and should be removed.

fore, we apply the matching procedure and match the underlying service automa-
ton B of Bφ with the BSA Bφ itself. That is, we employ the assignment βB(q) of
each state q of Bφ and check βB(q) |= φ(q). Thereby, we collect which literals of
φ(q) are set to false by βB(q) and for which states q the assignment βB(q) violates
φ(q). Such literals or states are redundant and can be removed from Bφ.

Taking the original matching algorithm, however, we would remove too many
literals or states. The main reason is that a state qC of C which is simulated by
a state qB of B can set more literals to true than qB does by itself. In fact, one
literal has to be treated differently: the literal final .

4.3.2 The Maximal Assignment

We start with the observation that a service automaton C matching with a BSA
Bφ can assign true only to a limited subset of literals of a formula φ(q) of a state
q of Bφ. This subset is determined by the structure of Bφ itself. The literal final ,
however, can be set to true by C independently of q.

Definition 4.3.1 (Maximal assignment, β+
B).

Let Bφ be a BSA, let q ∈ Q be a state of Bφ, and let βB(q) be the assignment of
B at state q.

Then, the maximal assignment β+
B(q) at q is defined as β+

B(q)(x) = true if x =
final , and β+

B(q)(x) = βB(q)(x), otherwise.

The maximal assignment of B is the set β+
B = {β+

B(q) | q ∈ Q}. y

Given a BSA Bφ with state q and a matching service automaton C with state
qC such that (qC , q) ∈ %, the maximal assignment β+

B(q) at q takes into account
which literals the assignment βC(qC) can at most set to true. As qC must be
simulated by q, qC can have at most the transitions which are present at q in
B. On the other hand, qC may be a final state of C. As final ∈ φ(q) does not
necessarily imply that q is a final state of Bφ, βC(qC) can set the literal final to
true whereas βB(q) sets final to false. Hence, the literal final is always set to true
by β+

B(q).

110

4.3. Normal Boolean Annotated Service Automata

As an example, we recall the BSA Bφ of Fig. 4.3(a) and Fig. 4.5(a) in Fig. 4.10
and show the maximal assignments of Bφ at its states q1 and q3 in Fig. 4.10(c).
Whereas β+

B (q1) changes the value of the final literal compared to βB(q1), β+
B (q3)

is equal to βB(q3) because q3 is already a final state of Bφ.

q1: ?a ∧ ?b

q2: !c ∨ !d q3: final

?a
!c

!d

?b

(a) Bφ

βB(q1) :
?a 7→ true
?b 7→ true

βB(q3) :
final 7→ true

(b) βB

β+
B (q1) :
?a 7→ true
?b 7→ true

final 7→ true

β+
B (q3) :
final 7→ true

(c) β+
B

Figure 4.10: (a) and (b): The BSA Bφ of Fig. 4.3(a) with its assignment βB of
Fig. 4.4(b) recalled. (c): The maximal assignments of Bφ at states q1 and q3. Again, a
literal x ∈MC+ not listed is set to false by the corresponding assignment.

As another example, consider again the state q of the fragment of the BSA Eφ de-
picted in Fig. 4.9. The corresponding maximal assignment β+

E (q) sets the literals
final and a to true only—all other literals, e.g. b and c, are set to false.

The following lemma states that at most literals x with β+
B(qB)(x) = true can be

set to true by an assignment βC of a matching service automaton C, i.e. β+
B(qB)

dominates βC(qC) for all C ∈ Match(Bφ) and all (qC , qB) ∈ %. In this sense,
β+
B(qB) constitutes a maximum with respect to the assignments βC(qC) that an

arbitrary matching C can provide to evaluate φ(qB).

Lemma 4.3.2 (β+
B dominates all assignments of matching C’s).

Let Bφ be a BSA, let C ∈ Match(Bφ) be a service automaton, and let % be the
simulation relation between C and B.

Then, for each (qC , qB) ∈ %: βC(qC) ≤ β+
B(qB). y

Proof.
Let (qC , qB) ∈ %. By matching we know that qB simulates qC . Thus, for each
present x-labeled transition qC in C there is a present x-labeled transition at qB in
B. Therefore, βC(qC)(x) = true implies βB(qB)(x) = true, for all x ∈ MC ∪ {τ}
and therefore, βC(qC)(x) = true implies β+

B(qB)(x) = true, for all x ∈MC+. �

With Lemma 4.3.2 and Corollary 4.1.10 (on page 100) we immediately get that
if φ(qB) evaluates to false under β+

B(qB), then φ(qB) evaluates to false under
any βC(qC). This means that no matching service automaton can satisfy φ(qB).
Therefore, we will apply the maximal assignment β+

B(qB) to normalize the anno-
tation φ(qB) of a state qB (in Sect. 4.3.3) as well as to decide whether qB can

111

Chapter 4. Characterizing Sets of Services

be completely removed from Bφ (in Sect. 4.3.4) without changing the semantics
of Bφ. Finally, the annotation normalization and the state normalization are
combined to normalize BSAs in Sect. 4.3.5.

4.3.3 Annotation Normalization of a Boolean Annotated
Service Automaton

Lemma 4.3.2 justifies the following notion of normal annotations. If φ(q) is a
normal annotation, then each literal x ∈ φ(q) can be set to true by a matching
service automaton C (if q occurs in the respective simulation relation %).

Definition 4.3.3 (Normal annotation).
Let Bφ be a BSA and let q be a state of Bφ with annotation φ(q).

The Boolean formula φ(q) is normal at q if there is no x ∈ φ(q) with β+
B(q)(x) =

false.

Bφ has normal annotations if, for each state q of Bφ: φ(q) is normal at q. y

Informally, the definition of normal annotations excludes the third shape of an-
notations as introduced in Sect. 4.3.1 on page 108.

As an example, Figs. 4.11(a) and 4.11(c) show two service automata, Fφ and Fψ,
with non-normal annotations. In both cases, a literal !b occurs in the annotation
of the respective state q1, but β+

F (q1)(!b) is false. Figures 4.11(b) and 4.11(d)
show two service automata with normal annotations.

Note that the special Boolean formulae true and false are trivially normal at any
state q as there is no x ∈ true or x ∈ false that might violate the criterion of
Definition 4.3.3.

We now introduce a normalization construction that transforms a BSA Bφ with
arbitrary annotations into a BSA normalφ(Bφ) with only normal annotations.
Thereby, literals violating the criterion for a normal annotation (i.e. all liter-
als x ∈ MC+ with β+

B(q)(x) = false) are removed from φ(q). The subsequent
Lemma 4.3.5 states that the semantics of the BSA is not changed during this
transformation.

Definition 4.3.4 (Annotation normalization, normalφ(Bφ)).
The normalization of an annotation φ(q) of a state q of a BSA Bφ, normal(φ(q)),
is defined as the Boolean formula which is derived from φ(q) by replacing each
occurrence of each literal x ∈ φ(q) where β+

B(q)(x) = false by the Boolean formula
false.

The annotation normalization of a BSA Bφ, normalφ(Bφ), is defined as the BSA
normalφ(Bφ) = Bφ

′
where φ′(q) = normal(φ(q)) for each state q ∈ Q. y

112

4.3. Normal Boolean Annotated Service Automata

Obviously, the BSA normalφ(Bφ) has normal annotations.

For further optimization it seems reasonable to apply reduction rules on the for-
mulae as described in Remark 4.1.12 (on page 101).

The normalization of annotations is demonstrated in Fig. 4.11. The annota-
tion of the initial state of Fφ of Fig. 4.11(a), φ(q1) = !a ∨ !b, is normalized to
normal(φ(q1)) = !a in Fig. 4.11(b) because β+

F (q1)(!b) = false and !a ∨ false is
equivalent to !a. As another example, the annotation of the initial state of Fψ of
Fig. 4.11(c), ψ(q1) = !a∧!b, is normalized to normal(ψ(q1)) = false in Fig. 4.11(d)
because !a ∧ false is equivalent to false.

q1: !a ∨ !b

q2: final

!a

(a) Fφ

q1: !a

q2: final

!a

(b) normalφ(Fφ)

q1: !a ∧ !b

q2: final

!a

(c) Fψ

q1: false

q2: final

!a

(d) normalψ(Fψ)

Figure 4.11: Two BSAs Fφ and Fψ with non-normal annotations and their annotation
normalized versions normalφ(Fφ) and normalψ(Fψ), respectively.

The normalization of annotations according to Definition 4.3.4 normalizes both
non-normal as well as already normal annotations. As only literals which cause
a formula to be non-normal are replaced, normalizing a normal annotation has
no effect, i.e. normal(φ(q)) = φ(q) for normal annotations φ(q). This specifically
holds for the special Boolean formulae true and false, i.e. normal(true) = true
and normal(false) = false.

The annotation normalization can be applied both to empty and non-empty BSAs.
If Bφ is an empty BSA, then it will always have a state q with φ(q) = false, but
q is not necessarily the initial state. The BSA normalψ(Fψ) of Fig. 4.11(d) is an
empty BSA with normal annotations.

We now show that the normalization of the annotations of a BSA Bφ preserves
the semantics of Bφ.

Lemma 4.3.5 (Existence of BSA with normal annotations).
For each BSA Bφ there exists a BSA Bφ

′
with normal annotations and the same

semantics as Bφ, i.e. Match(Bφ) = Match(Bφ
′
). y

Proof.
Let Bφ

′
= normalφ(Bφ). We show that Match(Bφ) = Match(normalφ(Bφ)).

Therefore, let C be an arbitrary service automaton that is simulated by B and
let % be the simulation relation. It suffices to show that, for each (qC , qB) ∈ %:
βC(qC) |= φ(qB) iff βC(qC) |= normal(φ(qB)).

113

Chapter 4. Characterizing Sets of Services

By Lemma 4.3.2 we know that βC(qC)(x) = false for each literal x of φ(qB)
that was replaced by false in normalφ(Bφ). As, for any Boolean formula ψ,
(ψ∧ false) ≡ (ψ∧x) if βC(qC)(x) = false; and (ψ∨ false) ≡ (ψ∨x) if βC(qC)(x) =
false, we conclude that βC(qC) |= φ(qB) iff βC(qC) |= normal(φ(qB)). �

By applying the annotation normalization of Definition 4.3.4, we now have BSAs
with “garbage-free” Boolean annotations. However, this is only the first step to-
wards normal BSAs. The next section considers states that can be completely re-
moved from a BSA without changing its semantics. This results in a state normal
BSA. The state normalization is independent of the annotation normalization;
that is, it can be applied to a BSA with non-normal annotations as well.

4.3.4 State Normalization of a Boolean Annotated Service
Automaton

Consider again the (non-initial) state q of the BSA Eφ of Fig. 4.9: the a-labeled
transition is the only present transition at q, but the annotation of q is φ(q) =
b ∨ c. The normalized annotation of q is normal(φ(q)) = false ∨ false which is
equivalent to false. It is easy to see that no matching service automaton C can
“use” q during the matching (i.e. there is no state qC of C with (qC , q) ∈ %)
because no assignment of C can satisfy normal(φ(q)). Therefore, q is a garbage
state and should be removed from Eφ.

Intuitively, a state q of a BSA is normal, if the (sub-)BSA with q as its initial state
is a non-empty BSA, i.e. it is possible for some service automaton to match with
the BSA starting at q. Otherwise, q is non-normal in Bφ. This characterization
of normal states, however, is a semantic one. Using the maximal assignment β+

instead, we have a criterion which can be checked locally for each state and on
the structure of the BSA only.

Definition 4.3.6 (Normal state).
A state q 6= q0 of a BSA Bφ is normal in Bφ if β+

B(q) |= φ(q).

The initial state q0 of Bφ is normal in Bφ if β+
B(q0) |= φ(q0) or if q0 is the only

state of Bφ and Bφ has no transitions (i.e. QB = {q0} and δB = ∅).
Bφ is a normal state BSA if each state q of Bφ is normal in Bφ. y

According to this definition, a normal state q 6= q0 satisfies its own annotation
(up to final) and therefore enables a service automaton to match with q. The
initial state q0 is normal if it satisfies its own annotation (up to final), too. In
case q0 violates its annotation, it is still normal if q0 is the only state (without
any transitions)— then, this single state BSA Bφ is an empty BSA and is normal
as well.

114

4.3. Normal Boolean Annotated Service Automata

A non-normal state provides no information because no service automaton C can
distinguish a present x-labeled transition leading to a non-normal state in a BSA
Bφ from a non-present x-labeled transition in Bφ. In both cases, C is not allowed
to have an x-labeled transition itself at its corresponding state.

Recall the four BSAs of Fig. 4.11. All states of the first three BSAs, i.e. Fφ,
normalφ(Fφ), and Fψ, are normal in the corresponding BSA because each state
satisfies its own annotation. In contrast, the initial state q1 of the empty BSA
normalψ(Fψ) of Fig. 4.11(d) is non-normal because it violates its annotation but
is not the only state of normalψ(Fψ). If, however, the state q2 was removed from
normalψ(Fψ), the resulting BSA would still be an empty BSA, but the state q1
would now be normal in the new BSA. Another example of a non-normal state
is the (non-initial) state q of the BSA Eφ of Fig. 4.9.

The next corollary shows that each state which is used by the matching must be
normal. This means that a non-normal state of a BSA can never be used by a
matching service automaton C.

Corollary 4.3.7 (Normal states sufficient for matching).
Let Bφ be a non-empty BSA, let C be a service automaton with C ∈ Match(Bφ),
and let % ⊆ QC ×QB be the minimal simulation relation, such that B simulates
C.

Then, for all (qC , qB) ∈ %: β+
B(qB) |= φ(qB). y

Proof.
Let (qC , qB) ∈ % be an arbitrary pair of matching states. By assumption C ∈
Match(Bφ), we know βC(qC) |= φ(qB); and by Lemma 4.3.2, we have βC(qC) ≤
β+
B(qB). Together with Corollary 4.1.10 this yields β+

B(qB) |= φ(qB). �

This corollary motivates the idea to simply remove non-normal states.

Unfortunately, a normal state q (q 6= q0) with a non-normal successor q′ can
become non-normal itself when removing q′ and all transitions (q, x, q′). For
instance, consider the BSA Gχ of Fig. 4.12(a). The state q3 with annotation
χ(q3) = ?a is normal in Gχ, but the state q4 with annotation χ(q4) = false is
non-normal in Gχ. If, however q4 is removed (yielding G′χ

′
of Fig. 4.12(b)), the

annotation of q3 is no longer satisfied by the assignment β+
G′(q3) (which assigns

true only to the literal final). Hence, q3 is now non-normal in G′χ
′
. Applying

Corollary 4.3.7 again, we can conclude that this state can be removed as well
without changing the set Match. This yields the normal state BSA G′′χ

′′
of

Fig. 4.12(c).

This step-by-step state removal provides the basis for a state normalization proce-
dure for BSAs. As a non-normal initial state may become normal by the removal
of its last successor, it is explicitly preserved during the removal steps.

115

Chapter 4. Characterizing Sets of Services

q1: ?a ∨ ?b

q2: final q3: ?a

q4: false

?a ?b

?a

(a) Gχ

q1: ?a ∨ ?b

q2: final q3: ?a

?a ?b

(b) G′χ
′

q1: ?a ∨ ?b

q2: final

?a

(c) G′′χ
′′

Figure 4.12: A BSA Gχ with non-normal state q4. If this state is removed, then the
previously normal state q3 becomes non-normal in G′χ

′
and can be removed as well.

G′′χ
′′

= normalQ(Gχ) has normal states only and therefore is a normal state BSA.

Definition 4.3.8 (State normalization, normalQ(Bφ)).
Let Bφ = [Q, Iin , Iout , δ, q0,Ω, φ] be a BSA and let (Bφ)i, i = 0, 1, . . ., be a se-
quence of BSAs (Bφ)i = [Qi, Iin , Iout , δi, q0,Ωi, φi] inductively defined as follows:

Basis. (Bφ)0 = [Q0, Iin , Iout , δ
0, q0,Ω0, φ0] = Bφ,

Step. (Bφ)i+1 = [Qi+1, Iin , Iout , δ
i+1, q0,Ωi+1, φi+1] with

– Qi+1 = {q0} ∪ {q ∈ Qi | q is normal and δi-reachable in (Bφ)i},
– δi+1 = {(q, x, q′) ∈ δi | q, q′ are normal and δi-reachable in (Bφ)i},
– Ωi+1 = Ωi ∩Qi+1, and
– φi+1 = φ|Qi+1 .

Then, the state normalization of Bφ is the BSA normalQ(Bφ) = (Bφ)i for the
smallest i with (Bφ)i = (Bφ)i+1. y

This state normalization procedure iteratively removes non-normal states from
the intermediate BSAs (Bφ)i. By removing a non-normal state, a normal state
can become non-normal and is removed in the next iteration. Additionally, a
state can become unreachable from the initial state. Such states also do not
add information and are removed as well. Because a minimal simulation relation
does not use such unreachable states (cp. Proposition 4.1.4 on page 98), a service
automaton matches with the BSA with or without such a state. As the initial
state is never removed (due to the first argument of the union construction of
Qi+1 in Definition 4.3.8), each (Bφ)i contains at least one state, and is therefore
a well-defined BSA.

In case Bφ has been a non-empty BSA, each state of normalQ(Bφ) satisfies its
own annotation (up to final), and therefore each state is normal in normalQ(Bφ).

In case Bφ has been an empty BSA, then normalQ(Bφ) is a single state empty
BSA by construction (see also Fig. 4.13). If an empty BSA Bφ has had more
than one state or at least one transition, then the initial state q0 of some (Bφ)i

116

4.3. Normal Boolean Annotated Service Automata

eventually becomes non-normal. Then, the construction in Definition 4.3.8 assures
that q0 and all its adjacent transitions are removed (construction of δi+1 and
second argument of the union construction of Qi+1), but q0 will be preserved
(first argument of the union). This step assures that all potential other states are
not reachable from q0 in (Bφ)i+1 anymore. This, again, results in their removal
in the next iteration. That way, normalQ(Bφ) is a single state empty BSA.

q1: ?a ∧ ?b ∧ ?c

q2: final q3: ?a

q4: final

?a ?b

?a

(a) (Hφ)0

q1: ?a ∧ ?b ∧ ?c

q2: final q3: ?a

q4: final

?a

(b) (Hφ)1

q1: ?a ∧ ?b ∧ ?c

(c) (Hφ)2 = (Hφ)3

Figure 4.13: (a) An empty BSA (Hφ)0 with a non-normal initial state q1 (due to a
missing !c-labeled transition). (b) All present transitions at the non-normal state q1 are
removed in (Hφ)1. As all other states are normal in (Hφ)0, they are preserved in (Hφ)1

(but become unreachable). (c) All unreachable states of (Hφ)1 are removed in (Hφ)2.
The initial state q1 was non-normal in (Hφ)1, but is preserved in (Hφ)2. As q1 is now
normal in (Hφ)2, nothing is removed from (Hφ)2, i.e. (Hφ)2 = (Hφ)3, and (Hφ)2 is the
state normalization of (Hφ)0.

Hence, the BSA normalQ(Bφ) is a normal state BSA in either case.

The preservation of the semantics of a BSA during the state normalization is
formalized in the following lemma.

Lemma 4.3.9 (Existence of normal state BSA).
For each BSA Bφ there exists a normal state BSA B′φ

′
with the same semantics,

i.e. Match(Bφ) = Match(B′φ
′
). y

Proof.
Let B′φ

′
= normalQ(Bφ). We show Match(Bφ) = Match(normalQ(Bφ)) by

showing both Match(Bφ) ⊆ Match(normalQ(Bφ)) and Match(normalQ(Bφ)) ⊆
Match(Bφ).

Match(Bφ) ⊆ Match(normalQ(Bφ)):

Let C be an arbitrary service automaton with C ∈ Match(Bφ). We show that
C ∈ Match(normalQ(Bφ)).

To this end, let % be the minimal simulation relation between C and B. By
Lemma 4.1.4 and Corollary 4.3.7 we have that for all (qC , qB) ∈ %: qB is δ-
reachable in B and β+

B(qB) |= φ(qB). Because the construction normalQ(Bφ)

117

Chapter 4. Characterizing Sets of Services

only removes states which are not δ-reachable or states with β+
B(qB) 6|= φ(qB),

we conclude that for all (qC , qB) ∈ %: qB is a state of normalQ(Bφ). Because all
transitions between preserved states are preserved, too, this implies that % is a
minimal simulation relation between C and normalQ(Bφ) as well.

Let qB be an arbitrary state of normalQ(Bφ) with (qC , qB) ∈ %. Let q′B be a
successor state of qB in Bφ (i.e. there is some transition (qB , x, q′B) ∈ δB). If q′B
is not a state of normalQ(Bφ), then, by construction of normalQ(Bφ) we know
that q′B violated its annotation, i.e. β+

B(q′B) 6|= φ(q′B), in some iteration. Ap-
plying Corollary 4.3.7 we conclude that q′B was not used by %. Therefore, qC
has no present x-labeled transition itself, and, hence, βC(qC)(x) is false. Be-
cause βC(qC) |= φ(qB) in Bφ, this implies that βC(qC) still satisfies φ(qB) in
normalQ(Bφ).

Match(normalQ(Bφ)) ⊆ Match(Bφ): Let C be an arbitrary service automaton
with C ∈ Match(normalQ(Bφ)). The simulation relation of C with normalQ(Bφ)
is a simulation relation of C with Bφ as well because B has at most more states
and transitions than normalQ(Bφ). Because the annotations of the original states
of normalQ(Bφ) are not changed in Bφ, annotation satisfaction is also preserved.�

By applying the state normalization of Definition 4.3.8, we now have BSAs with-
out “garbage states”. Besides the annotation normalization, this is the second step
towards normal BSAs. Both steps are independent of each other so far and can
be applied separately. Now, we are going to combine both notions to get normal
BSAs.

4.3.5 Normalization of a Boolean Annotated Service
Automaton

Finally, we are ready to formalize the intuitively motivated notion of normal
BSAs: a BSA Bφ is normal if each state and each annotation of Bφ is normal.

Definition 4.3.10 (Normal BSA).
A BSA Bφ is normal if Bφ is a normal state BSA and Bφ has normal annotations.y

Accordingly, the normalization of a BSA combines the normalization of annota-
tions and the normalization of states.

Definition 4.3.11 (Normalization of a BSA, normal(Bφ)).
The normalization of a BSA Bφ is the BSA normal(Bφ) defined as normal(Bφ)
= normalφ(normalQ(Bφ)). y

Because the removal of a state q from Bφ may make the annotation of a pre-
decessor of q non-normal, the state normalization must precede the annotation
normalization. As none of the two normalizations changes the semantics of Bφ
(Lemmas 4.3.5 and 4.3.9) we directly conclude:

118

4.4. A Preorder on Boolean Annotated Service Automata

Theorem 4.3.12 (Expressiveness of normal BSAs).
For each BSA Bφ there exists a normal BSA B′φ

′
= normal(Bφ) with the same

semantics, i.e. Match(Bφ) = Match(B′φ
′
). y

Normal BSAs provide a sound and intuitive basis for the characterization of ser-
vices. There is no “garbage” in a normal BSA—all states and all literals in the
annotations of a normal BSA carry information and can be used by a matching
service automaton. Removing a state or a literal from a normal BSA results in a
change of the semantics of the BSA.

In the rest of this chapter, we aim at being as general as possible and will formalize
all newly introduced notions for arbitrary, i.e. normal as well as non-normal,
BSAs (if applicable). Most of the decision procedures (in form of lemmas and
theorems), however, will assume normal BSAs in the following. Together with
Theorem 4.3.12, though, this assumption does not restrict generality as each
non-normal BSA could be normalized before applying the corresponding decision
procedure.

4.4 A Preorder on Boolean Annotated Service
Automata

With normal (i.e. garbage-free) Boolean annotated service automata we are now
able to compare the semantics, i.e. the sets of matching service automata, of two
BSAs by looking at the structures of the BSAs only. Consequently, normal BSAs
will enable us to efficiently decide equivalence of BSAs (in the sense of equal
semantics).

We start by defining a structural smaller relation on BSAs. We will then show
that this relation imposes an inclusion relation of the corresponding semantics for
normal BSAs and prove it to be a preorder on normal BSAs.

Definition 4.4.1 (Smaller relation, v, on BSAs).
Let Bφ1 and Bψ2 be interface equivalent BSAs.

Then, Bφ1 is smaller than Bψ2 , denoted B
φ
1 v Bψ2 , if

– there is a simulation relation % ⊆ QB1 ×QB2 such that
– for all (qB1 , qB2) ∈ %: φ(qB1)⇒ ψ(qB2). y

According to this definition, Bφ1 is smaller than Bψ2 if (1) B2 simulates B1 and (2)
the annotation of a state qB1 of B1 implies the annotation of each state qB2 of B2

which simulates qB1 . Note that the implication φ ⇒ ψ of two Boolean formulae
φ and ψ is no Boolean formula itself, but means that each satisfying assignment
β for φ is also a satisfying assignment for ψ (cp. Notation 4.1.11).

119

Chapter 4. Characterizing Sets of Services

The basic idea of these two requirements of Definition 4.4.1 is quite similar to
the matching definition (Definition 4.2.5 on page 103). As the main difference,
the smaller relation requires an implication of the annotations in the second item
rather than the formulae satisfaction requirement of the matching definition. In
other words, the matching definition requires the annotations of B2 to be satisfied
by one specific assignment which is determined by the structure of the matching
service automaton C. The smaller relation, instead, requires the annotations of
B2 to be satisfied by any assignment that satisfies a corresponding annotation of
B1.

The smaller relation will be applied to compare the semantics of normal BSAs.
As the underlying service automaton B of a BSA Bφ as well as all elements of
Match(Bφ) are (pairwise) interface equivalent, it is feasible to define this relation
only for interface equivalent BSAs.

To exemplify the smaller relation, consider the two BSAs Bφ1 and Bψ2 with Bφ1 v Bψ2
in Fig. 4.14. The simulation relation is % = {(q1, s1), (q2, s2), (q3, s3), (q4, s4),
(q4, s5), (q5, s6), (q6, s6)}, and the annotation implication is satisfied for each pair.
For instance, φ(q2) = !c∧!d implies !c∨!d = ψ(s2). It is easy to see that the smaller
relation does not hold in the other direction, i.e. Bψ2 6v Bφ1 . The corresponding
simulation relation is %′ = {(q, q′) | (q′, q) ∈ %}, but obviously ψ(s2) = !c∨ !d does
not imply !c∧!d = φ(q2), which violates the second requirement of Definition 4.4.1.

q1: ?a ∧ ?b

q2: !c ∧ !d q3: !e ∧ !f

q4: final q5: final q6: final

?a ?b

!c !d !e !f

(a) Bφ1

v

s1: ?a ∧ ?b

s2: !c ∨ !d s3: !e ∨ !f

s4: final s5: final s6: final

?a ?b

!c !d !e !f

(b) Bψ2

Figure 4.14: Two BSAs Bφ1 and Bψ2 with Bφ1 v Bψ2 , but Bψ2 6v Bφ1 .

The following theorem justifies the “smaller” relation: it states that a smaller
BSA has a semantics which is included in the greater BSA’s semantics, and if
one semantics is included in another one, there is a smaller relation between the
corresponding BSAs. Because the criteria of the relation v consider the structure
of the compared BSAs only, we have to assume that the BSAs do not contain
garbage, i.e. we assume normal BSAs for the following theorem. Together with
Theorem 4.3.12, however, this assumption does not restrict generality.

It is easy to see that if Bφ1 is a normal, empty BSA, then Bφ1 v Bψ2 for each
(interface equivalent) BSA Bψ2 .

120

4.4. A Preorder on Boolean Annotated Service Automata

Theorem 4.4.2 (Smaller relation vs. matching).
Let Bφ1 and Bψ2 be normal, interface equivalent BSAs.

Then, Bφ1 v Bψ2 iff Match(Bφ1) ⊆ Match(Bψ2). y

Proof.
(⇒): Let Bφ1 v Bψ2 and let C ∈ Match(Bφ1) be arbitrary. We show that C ∈
Match(Bψ2).

Because of C ∈ Match(Bφ1) and Definition 4.2.5 (Matching) there is a simulation
relation %(C,B1) ⊆ QC × QB1 such that Bφ1 simulates C. Because of Bφ1 v Bψ2
and Definition 4.4.1 (Smaller relation) there is a simulation relation %(B1,B2) ⊆
QB1×QB2 such that B2 simulates B1. Define a relation %(C,B2) between the states
of C and Bψ2 as follows: %(C,B2) = {(qC , qB2) | (qC , qB1) ∈ %(C,B1) and (qB1 , qB2) ∈
%(B1,B2)}.
It suffices to show that (1) %(C,B2) is a simulation relation such that B2 simulates
C and that (2) for each (qC , qB2) ∈ %(C,B2) : βC(qC) |= ψ(qB2).

(1): Obviously, the initial state of C is in relation %(C,B1) with the initial state of
B1 and the initial state of B1 is in relation %(B1,B2) with the initial state of B2.
So, by construction of %(C,B2), the initial state of C is in relation %(C,B2) with the
initial state of B2.

Let qC , qB1 , and qB2 be arbitrary states of C, B1, and B2, respectively, with
(qC , qB1) ∈ %(C,B1) and (qB1 , qB2) ∈ %(B1,B2). Because qB2 simulates qB1 and qB1

simulates qC , qB2 also simulates qC .

(2): Let again qC , qB1 , and qB2 be arbitrary states of C, B1, and B2, respectively,
with (qC , qB1) ∈ %(C,B1) and (qB1 , qB2) ∈ %(B1,B2). Because of C ∈ Match(Bφ1),
we have βC(qC) |= φ(qB1) and because of Bφ1 v Bψ2 , we know φ(qB1) ⇒ ψ(qB2).
Hence, βC(qC) |= ψ(qB2).

(⇐): Let Match(Bφ1) ⊆ Match(Bψ2). Let C be a service automaton that is iso-
morphic to B1, but let each state q of C be a final state in C where final ∈ φ(q)
in B1. We prove Bφ1 v Bψ2 by showing (1) there is a simulation relation between
B1 and B2 and (2) each satisfying assignment of a formula of B1 satisfies the
corresponding formula of B2.

(1): C being isomorphic to B1 implies that there is a simulation relation between
the states of C and B1. From the construction of C we have βC(q) = β+

B1
(q) for

each state q of C and B1, i.e. C provides the maximal assignment at state q. From
Bφ1 being normal (i.e. β+

B1
(q) |= φ(q)) we further conclude that βC(q) |= φ(q).

Hence, C matches with Bφ1 , and hence, by assumption, C matches with Bφ2 . By
Definition 4.2.5 (Matching), there is a simulation relation between C and B2.
Together with the isomorphism of C and B1 it follows that there is a simulation
relation between B1 and B2, too.

121

Chapter 4. Characterizing Sets of Services

(2): Let this simulation relation be % and let (q1, q2) ∈ % be arbitrary. Let
furthermore β be an arbitrary assignment with β |= φ(q1). Construct from C
a new service automaton C ′ by removing from q1 in C all present transitions
(q1, x, q′1) with β(x) = false and let q1 be a final state of C ′ iff β(final) = true.
Obviously, βC′(q1)(x) = β(q1)(x), for all x ∈ φ(q) and therefore βC′(q1) ≤ β(q2).

As only transitions with β(x) = false where removed from C, we know with
Definition 4.2.5 (Matching) that C ′ still matches with Bφ1 and therefore, by as-
sumption, C ′ matches with Bψ2 . Again by Definition 4.2.5, we conclude that
βC′(q1) |= ψ(q2), too, and with βC′(q1) ≤ β(q2) we have β(q2) |= ψ(q2). Hence,
all satisfying assignments of φ(q1) satisfy ψ(q2), and therefore φ(qB1)⇒ ψ(qB2).�

According to Theorem 4.4.2, checking an inclusion relation between the semantics
of two normal BSAs Bφ1 and Bψ2 reduces to a check for the existence of a smaller
relation between Bφ1 and Bψ2 . This, again, is a mere check for the existence of a
simulation relation and all relevant annotation implications. Hence, an inclusion
relation between the semantics of two BSAs can be decided by a simple comparison
of the structures of the BSAs.

Applying the theorem to the example of Fig. 4.14 of the two normal BSAs Bφ1 and
Bψ2 with Bφ1 v Bψ2 shows that Bφ1 has a semantics that is included in the semantics
of Bψ2 , i.e. Match(Bφ1) ⊆ Match(Bψ2). With Bψ2 6v Bφ1 (and hence Match(Bψ2) 6⊆
Match(Bφ1)) we conclude Match(Bφ1) ⊂ Match(Bψ2). An example for a service
automaton matching with Bψ2 but not with Bφ1 is the service automaton C (not
depicted) that is derived from B2 by removing state s5. C would still satisfy the
formula !c ∨ !d but would violate !c ∧ !d due to the missing !d-labeled transition
at the state s2.

The assumption of Bφ1 and Bψ2 being normal was only used in the replication
direction of the proof of Theorem 4.4.2. Hence, a weaker version of this theorem,
considering only an implication, even holds for non-normal BSAs, i.e. Bφ1 v Bψ2
implies Match(Bφ1) ⊆ Match(Bψ2) for arbitrary BSAs. Therein, a non-normal
state q of the smaller BSA can be in relation with a normal or non-normal state
q′ of the greater BSA. As q is never used by a service automaton C matching
with the smaller BSA, the state q′ is also not used if C is matched with the
greater BSA. For the other replication direction, however, it is easy to see that
Match(Bφ1) ⊆ Match(Bψ2) does not necessarily imply Bφ1 v Bψ2 for arbitrary
BSAs. A simple example are the BSAs Gχ and G′χ

′
of Fig. 4.12 (on page 116).

Both BSAs have the same semantics, and hence Match(Gχ) ⊆ Match(G′χ
′
), but

G′ does not simulate G, and thus Gχ 6v G′χ
′
.

We are now ready to show that the smaller relation v induces a preorder on
normal, interface equivalent BSAs. Again, the interface equivalence requirement
is motivated by the fact that all elements of any Match set are (pairwise) interface
equivalent themselves.

122

4.5. The Canonical Representative of a BSA

Lemma 4.4.3 (v is a preorder relation).
The smaller relation v is a preorder on normal, interface equivalent BSAs:

Reflexivity : Bφ1 v Bφ1 .
Transitivity : if Bφ1 v Bψ2 and Bψ2 v Bχ3 , then Bφ1 v Bχ3 . y

Proof.
Let Bφ1 , B

ψ
2 , and B

χ
3 be normal, interface equivalent BSAs and let v be as defined

above.

Reflexivity : From Match(Bφ1) ⊆ Match(Bφ1) and Theorem 4.4.2 immediately fol-
lows Bφ1 v Bφ1 .
Transitivity : From Match(Bφ1) ⊆ Match(Bψ2) and Match(Bψ2) ⊆ Match(Bχ3) fol-
lows Match(Bφ1) ⊆ Match(Bχ3). Together with Theorem 4.4.2 again, this implies
Bφ1 v Bχ3 . �

The smaller relation v is, however, no partial order relation as from Match(Bφ1) =
Match(Bψ2) does not follow Bφ1 = Bψ2 . As an example, consider again the two
BSAs Bφ1 and Bψ2 of Fig. 4.14. If the annotations of the states q2 and s2 and the
annotations of the states q3 and s3 were equal, both BSAs would characterize
the same set of service automata. However, B1 and B2 are definitely structurally
different.

In the next section, we will apply the smaller relation to derive an equivalence
notion for BSAs and to decide equivalence of BSAs.

Furthermore, the preorder relation can be applied to decide accordance [ALM+09,
ALM+07, SMB09], an important notion in the research area of substitutability
of services, i.e. the question whether a service S can be substituted by a new
service S′ under preservation of certain properties. Accordance between S′ and S
basically demands that the substituting service S′ preserves all strategies of the
substituted service S. Representing the strategies of S and S′ by two BSAs Bφ1
and Bψ2 , checking the existence of a smaller relation between Bφ1 and Bψ2 can be
used to decide accordance of S′ with S.

4.5 The Canonical Representative of a
Boolean Annotated Service Automaton

As already mentioned in the last section, there are different BSAs that nevertheless
have the same semantics, i.e. characterize the same set of services. In this sense,
those BSAs are equivalent. This section is devoted to such equivalent BSAs in
general. The main result will be the characterization of a canonical representative
in each set of equivalent BSAs. This representative is minimal with respect to the

123

Chapter 4. Characterizing Sets of Services

number of states. That is, there is no equivalent BSA which has a fewer number
of states than the representative. Furthermore, we develop a minimization of a
BSA that transforms an arbitrary normal BSA into the respective representative.

The representative of a BSA is particularly important as given two representatives,
checking semantical equivalence of these BSAs reduces to a graph isomorphism
problem and a check for annotation equivalence of isomorphic states. These checks
are even more efficient than checking for a bisimulation relation between the
BSAs and checking two formula implications. Additionally, there is the obvious
advantage of reduced capacity requirements for storing a representative of a BSA
instead of the BSA itself.

We continue as follows. In Sect. 4.5.1, we derive a notion of equivalence of BSAs
Bφ1 and Bψ2 which can be decided on the structures of Bφ1 and Bψ2 (if both BSAs
are normal). To this end, we recall the smaller relation v and apply it to decide
the equivalence of normal BSAs. From the equivalence of BSAs we then derive
an equivalence relation on the states of a single BSA in Sect. 4.5.2. With the help
of these equivalence relations, we will then be able to present a minimization for
normal BSAs in Sect. 4.5.3. The minimization basically merges equivalent states.
We will show that the minimized BSA is minimal in the corresponding set of all
equivalent BSAs and therefore serves as the representative.

4.5.1 Equivalence of Boolean Annotated Service Automata

Intuitively, two BSAs are equivalent if they characterize the same set of service
automata, i.e. if they have the same matching sets.

In the following, we will formalize this equivalence notion on BSAs. As Match
can be seen as a function assigning to each BSA its set of characterized service
automata, this equivalence notion is canonically derived and bears no surprise.

Definition 4.5.1 (Equivalent BSAs, ≡).
Two interface equivalent BSAs Bφ1 and Bψ2 are (semantically) equivalent , denoted
Bφ1 ≡ Bψ2 , if Match(Bφ1) = Match(Bφ2). y

Figure 4.15 shows two equivalent BSAs Bφ1 and Bψ2 . Bφ1 is the already known BSA
from Fig. 4.5(a) (on page 104). It is easy to see that the service automaton C of
Fig. 4.5(b), for instance, matches with both Bφ1 and Bψ2 .

In order to decide the semantically defined equivalence of two BSAs, we obviously
can apply the structurally defined smaller relation v on BSAs which was intro-
duced in the last section. As mentioned above, we have to assume normal BSAs
for this decision procedure.

Corollary 4.5.2 (Deciding the equivalence of BSAs).
Let Bφ1 and Bψ2 be normal, interface equivalent BSAs.

124

4.5. The Canonical Representative of a BSA

q1: ?a ∧ ?b

q2: !c ∨ !d q3: final

?a
!c

!d

?b

(a) Bφ1

s1: ?a ∧ ?b

s2: !c ∨ !d s3: final s4: final

s5: ?a ∧ ?b

?a

?a

!c

!d

?b

?b

(b) Bψ2

Figure 4.15: Two equivalent BSAs Bφ1 and Bψ2 . For instance, the service automaton C
of Fig. 4.5(b) matches with both BSAs.

Then, Bφ1 ≡ Bψ2 iff Bφ1 v Bψ2 and Bψ2 v Bφ1 . y

Proof.
The corollary follows immediately from Theorem 4.4.2 and Definition 4.5.1: Bφ1 ≡
Bψ2 iff Match(Bφ1) = Match(Bψ2) iff Match(Bφ1) ⊆ Match(Bψ2) and Match(Bψ2) ⊆
Match(Bφ1) iff Bφ1 v Bψ2 and Bψ2 v Bφ1 . �

In order to decide equivalence of two non-normal BSAs Bφ1 and Bψ2 , one can
easily transform both BSAs into their corresponding normal forms normal(Bφ1)
and normal(Bψ2) (cp. Definition 4.3.11 on page 118) and then apply Corollary 4.5.2
for normal(Bφ1) and normal(Bψ2).

As the smaller relation v is defined on the structure of the compared BSAs
(cp. Definition 4.4.1), the latter corollary provides a mechanism to check the
equivalence notion ≡ of BSAs on the structures of the BSAs, too. This means
we do not have to compare the two infinite sets of matching service automata,
but just have to find two simulation relations and check all relevant annotation
implications. This check can easily be performed during one depth-first traversal
of both BSAs.

Our example BSAs Bφ1 and Bψ2 of Fig. 4.15 are both normal. Hence, we easily
check equivalence of Bφ1 and Bψ2 by checking Bφ1 v Bψ2 and Bψ2 v Bφ1 . The two
corresponding simulation relations are % = {(q1, s1), (q2, s2), (q3, s3), (q3, s4),
(q1, s5), (q3, s4)} and %′ = %−1. As the annotations of each pair (q, s) ∈ % and
(s, q) ∈ %′ are equal, we trivially have both implications. Thus, we conclude
Match(Bφ1) = Match(Bψ2) and therefore Bφ1 ≡ Bψ2 .

To justify the “equivalence” notion, we prove the following lemma which states
that ≡ is indeed an equivalence relation. It equally holds for normal as well as
non-normal BSAs.

125

Chapter 4. Characterizing Sets of Services

Lemma 4.5.3 (≡ is an equivalence relation).
The relation ≡ is an equivalence relation on interface equivalent BSAs. y

Proof.
Let Bφ1 , B

ψ
2 , and B

χ
3 be (pairwise) interface equivalent BSAs. It suffices to show:

Reflexivity, Bφ1 ≡ Bφ1 .
Symmetry, Bφ1 ≡ Bψ2 iff Bψ2 ≡ Bφ1 .
Transitivity, if Bφ1 ≡ Bψ2 and Bψ2 ≡ Bχ3 , then Bφ1 ≡ Bχ3 .
All three items follow from reflexivity, symmetry, and transitivity of set equality
and Definition 4.5.1. �

As usual, the equivalence relation ≡ on BSAs is used to derive the canonical
equivalence class of a BSA Bφ.

Definition 4.5.4 (Equivalence class of a BSA, [Bφ]).
The equivalence class [Bφ1] of a BSA Bφ1 is defined as [Bφ1] = {Bψ2 | Bψ2 ≡ Bφ1 }. y

Obviously, the example BSAs Bφ1 and Bψ2 of Fig. 4.15 are in the same equivalence
class.

The set [Bφ] represents all BSAs which have the same semantics as Bφ. As [Bφ]
comprises normal and non-normal BSAs, it is an infinite set even for an empty
BSA Bφ. In other words, for each BSA there are infinitely many different BSAs
that have the same semantics. Even when restricting the equivalence class of a
BSA Bφ to normal BSAs, there is still a dimension to yield an infinite class: a
loop of Bφ can be unrolled arbitrarily often.

Therefore, there is the need for a canonical representative of the class [Bφ].

4.5.2 Equivalence of BSA states

In order to present a minimization procedure that transforms an arbitrary BSA
into the corresponding representative in Sect. 4.5.3, this subsection is devoted to
derive an equivalence relation ' on the states of a single BSA from the equivalence
relation ≡ on BSAs. Then, the minimization basically merges equivalent states
such that the semantics of the BSA is not changed.

Again, this equivalence notion of states, as well as the notion of an equivalence
class of a BSA state, follow canonically from the equivalence notion for BSAs.

Intuitively, two states q1 and q2 are equivalent in a BSA Bφ if the (sub-)BSAs
starting at q1 and q2, respectively, characterize the same services. Therefore, we
first formalize the notion of the q-starting BSA of Bφ and then employ the equiv-
alence relation ≡ of the q1-starting and q2-starting BSAs of Bφ to characterize
the equivalence of the states q1 and q2 in Bφ.

126

4.5. The Canonical Representative of a BSA

Definition 4.5.5 (q-starting BSA of Bφ, Bφq).
Let Bφ = [Q, Iin , Iout , δ, q0,Ω, φ] be a BSA and q ∈ Q a state of Bφ.

Then, the q-starting BSA Bφq of Bφ is defined as Bφq = [Q, Iin , Iout , δ, q,Ω, φ]. y

The q-starting BSA of Bφ is a variant of Bφ where the initial state is set to q
instead of q0.

As an example, Fig. 4.16 shows the s3-starting and s4-starting BSAs of the BSA
Bψ2 of Fig. 4.15(b). It is easy to see that both BSAs characterize the same set of
services, i.e. they are equivalent.

s1: ?a ∧ ?b

s2: !c ∨ !d s3: final s4: final

s5: ?a ∧ ?b

?a

?a

!c

!d

?b

?b

(a) s3-starting BSA of Bψ2

s1: ?a ∧ ?b

s2: !c ∨ !d s3: final s4: final

s5: ?a ∧ ?b

?a

?a

!c

!d

?b

?b

(b) s4-starting BSA of Bψ2

Figure 4.16: The s3-starting and s4-starting BSAs of the BSA Bψ2 of Fig. 4.15(b).
Unreachable states are grayed out. Obviously, both BSAs are equivalent.

Now we are ready to define equivalence of states of a BSA.

Definition 4.5.6 (Equivalent states of a BSA, ').
Let Bφ be a BSA, q1, q2 be states of Bφ, and Bφq1 and Bφq2 be the q1-starting and
q2-starting BSAs of Bφ, respectively.

Then, q1 and q2 are equivalent in Bφ, denoted q1 'Bφ q2, if Bφq1 ≡ Bφq2 . y

We omit the index and write q1 ' q2 if the considered BSA is clear from the
context.

Corollary 4.5.7 (' is an equivalence relation).
The relation 'Bφ is an equivalence relation on the states of a BSA Bφ. y

Proof.
Reflexivity, symmetry, and transitivity of ' directly follow from reflexivity, sym-
metry, and transitivity of ≡ and Definition 4.5.6. �

It is easily possible to generalize the state equivalence ' of one BSA to a state
equivalence between states of different BSAs. Then, two states of different BSAs

127

Chapter 4. Characterizing Sets of Services

are equivalent if their corresponding q-starting BSAs are equivalent. However, we
will apply the state equivalence only for the minimization of a BSA by merging
equivalent states of this BSA. Hence, we may restrict the state equivalence to the
states of one BSA only.

In analogy to the equivalence ≡ on BSAs, the equivalence relation ' on the states
of a BSA determines the canonical equivalence class of a state q of a BSA.

Definition 4.5.8 (Equivalence class of a BSA state, [q]).
Let Bφ be a BSA with set Q of states and let q ∈ Q be a state of Bφ.

Then, the equivalence class [q] of q is defined as [q] = {q′ | q′ ∈ Q, q′ ' q}. y

The equivalence ' of states is defined for normal and non-normal states of a
BSA Bφ. It is easy to see that any two non-normal states q1 and q2 of Bφ
are equivalent to each other because the corresponding q-starting BSAs Bφq1 and
Bφq2 (cp. Definition 4.5.5) both are empty BSAs, and therefore Bφq1 and Bφq2 are
equivalent. Hence, all non-normal states of Bφ are in one equivalence class.

To illustrate the equivalence of states, Fig. 4.17 recalls the BSAs Bφ1 and Bψ2 of
Fig. 4.15. In Fig. 4.17, a number is assigned to each state of Bφ1 and Bψ2 . All states
of one BSA with equal numbers are equivalent in the respective BSA and the set
of states with equal numbers constitute the equivalence class of these states in
the respective BSA. In Bφ1 , no two states are equivalent to each other, whereas in
Bψ2 , the states s1 and s5 are equivalent, as well as the states s3 and s4.

q1: ?a ∧ ?b

q2: !c ∨ !d q3: final

?a
!c

!d

?b

[1]

[2] [3]

(a) Bφ1

s1: ?a ∧ ?b

s2: !c ∨ !d s3: final s4: final

s5: ?a ∧ ?b

?a

?a

!c

!d

?b

?b

[1]

[1]

[2] [3] [3]

(b) Bψ2

Figure 4.17: The two BSAs Bφ1 and Bψ2 of Fig. 4.15. The number attached to a state
denotes the corresponding equivalence class of the state. That is, states with equal
numbers are equivalent in the respective BSA. Whereas Bψ2 has equally numbered, i.e.
equivalent, states, no two states of Bφ1 are equivalent to each other.

In the following, we will present a minimization procedure for a BSA which basi-
cally merges equivalent states. Beforehand, we prove two lemmas on properties of

128

4.5. The Canonical Representative of a BSA

equivalent states of normal BSAs that will ease the minimization procedure later
on.

First, we show that equivalent (normal) states have equivalent annotations.

Lemma 4.5.9 (Equivalent states have equivalent annotations).
For all states q1 ' q2 of a normal BSA Bφ: φ(q1) ≡ φ(q2). y

Proof.
Let Bφq1 = [Q, Iin , Iout , δ, q1,Ω, φ] and Bφq2 = [Q, Iin , Iout , δ, q2,Ω, φ] be the respec-
tive q-starting BSAs of Bφ.

We have q1 ' q2 iff Bφq1 ≡ Bφq2 (by Definition 4.5.6) and hence, Bφq1 v Bφq2
and Bφq2 v Bφq1 (by Corollary 4.5.2). Thus, we know that φ(q1) ⇒ φ(q2) and
φ(q2)⇒ φ(q1) (by Definition 4.4.1), which yields φ(q1) ≡ φ(q2). �

Next, we can prove that equivalent states simulate each other.

Lemma 4.5.10 (Equivalent states simulate each other).
For all states q1 ' q2 of a normal BSA Bφ: q1 simulates q2 and q2 simulates q1.y

Proof.
Let Bφ = [Q, Iin , Iout , δ, q0,Ω, φ] be a normal BSA, let q1, q2 ∈ Q be arbitrary
with q1 ' q2, and let Bφq1 and Bφq2 be the respective q-starting BSAs of Bφ.

By q1 ' q2 and Corollary 4.5.2, we have Bφq1 v Bφq2 and Bφq2 v Bφq1 . This
implies that q1 (of Bφq1) simulates q2 (of Bφq2) and vice versa. As Bφq1 and Bφq2 are
isomorphic to Bφ, this implies q1 simulates q2 and q2 simulates q1 in Bφ. �

Obviously, both lemmas do not hold if Bφ is non-normal, because two non-normal
states may be equivalent but have different present transitions or annotations
which are not equivalent.

4.5.3 Minimization of a Boolean Annotated Service
Automaton

Using these equivalence notions, we are finally ready to approach the main goal
of this section, the canonical representative of a BSA.

To this end, we define the minimization of a BSA Bφ. As already sketched,
the minimization basically merges equivalent states. Technically, each state of
the minimized BSA minimal(Bφ) is an equivalence class of the states of Bφ. A
transition of Bφ is now represented by a transition between the corresponding
equivalence classes in minimal(Bφ).

129

Chapter 4. Characterizing Sets of Services

Definition 4.5.11 (Minimization of a BSA, minimal(Bφ)).
The minimization of a BSA Bφ = [Q, Iin , Iout , δ, q0,Ω, φ] is defined as the BSA
minimal(Bφ) = [Q′, Iin , Iout , δ′, q′0,Ω

′, φ′] with
– Q′ = {[q] | q ∈ Q},
– δ′ = {([q], x, [q′]) | (q, x, q′) ∈ δ},
– q′0 = [q0],
– Ω′ = {[q] | q ∈ Ω},

and φ′ : Q′ → BF is defined as φ′([q]) = φ(q), for all [q] ∈ Q′. y

In Fig. 4.17, the BSA Bφ1 is (isomorphic to) the minimization of the BSA Bψ2 .
The state q1 corresponds to the equivalence class [1] = {s1, s5}, q2 corresponds
to the equivalence class [2] = {s2}, and q3 corresponds to the equivalence class
[3] = {s3, s4}. Because the initial state s1 of Bψ2 is in class [1], q1 is the initial
state of Bφ1 . As there is a final state in class [3], q3 is a final state of Bφ1 . The
annotations of the states q1, q2, and q3 are arbitrarily chosen from the annotation
of some state in the corresponding class.

The minimization procedure of Definition 4.5.11 works for normal and non-normal
BSAs. As all non-normal states of a BSA Bφ are equivalent to each other, the
minimized BSA minimal(Bφ) has at most one non-normal state. Unfortunately,
merging two non-normal states may result in a normal state of minimal(Bφ).
This, in general, causes a change of the semantics of Bφ. In this sense, the mini-
mization relies on the fact that equivalent normal states have equivalent annota-
tions and equally labeled transitions. Hence, the following Theorem 4.5.14 states
that the semantics of Bφ is not changed by the minimization, i.e. Match(Bφ) =
Match(minimal(Bφ)), only if Bφ is normal.

To ease the argumentation in the proof of Theorem 4.5.14, we first derive two
corollaries from Lemma 4.5.9 and Lemma 4.5.10.

Corollary 4.5.12 (Annotation of equivalence class).
Let B be a normal BSA and let minimal(Bφ) = [B′, φ′] be its minimization. Let
q be a state of Bφ and [q] be the corresponding state of minimal(Bφ).

Then, φ(q) ≡ φ′([q]). y

Proof.
Follows from Lemma 4.5.9 and the construction of φ′ in Definition 4.5.11. �

Corollary 4.5.13 (Equivalence class and simulation).
Let B be a normal BSA and let minimal(Bφ) be its minimization. Let q be a
state of Bφ and [q] be the corresponding state of minimal(Bφ).

Then, q simulates [q] and [q] simulates q. y

130

4.5. The Canonical Representative of a BSA

Proof.
Follows from Lemma 4.5.10 and the construction of δ′ in Definition 4.5.11. �

By combining the results of these corollaries, we are finally able to prove that the
minimization procedure of Definition 4.5.11 does not change the semantics of a
normal BSA:

Theorem 4.5.14 (Minimization preserves semantics).
For each normal BSA Bφ, Match(Bφ) = Match(minimal(Bφ)). y

An obvious way to prove Theorem 4.5.14 is to show Bφ v minimal(Bφ) and
minimal(Bφ) v Bφ. With Theorem 4.4.2 this immediately implies Match(Bφ) ⊆
Match(minimal(Bφ)) and Match(minimal(Bφ)) ⊆ Match(Bφ). However, we will
show both inclusions directly.

Proof (of Theorem 4.5.14).
We show Match(Bφ) = Match(minimal(Bφ)) by showing both Match(Bφ) ⊆
Match(minimal(Bφ)) and Match(minimal(Bφ)) ⊆ Match(Bφ).

Match(Bφ) ⊆ Match(minimal(Bφ)): Let C ∈ Match(Bφ), let % be the corre-
sponding simulation relation, and define a relation %′ between (the states of) C
and (the states of) minimal(Bφ) as %′ = {(qC , [qB]) | (qC , qB) ∈ %}. It suffices
to show %′ is a simulation relation and for all (qC , [qB]) ∈ %′: βC(qC) satisfies the
annotation of φ′([qB]).

To this end, let (qC , qB) ∈ % be arbitrary. As C ∈ Match(Bφ), we know qB
simulates qC and qC satisfies φ(qB).

By the construction of %′, we have (qC , [qB]) in %′. According to Corollary 4.5.13,
[qB] simulates qB , and according to Corollary 4.5.12, φ′([qB]) ≡ φ(qB).

Hence, [qB] simulates qC and qC satisfies φ′([qB]), too, and we can conclude that
C ∈ Match(minimal(Bφ)) and therefore Match(Bφ) ⊆ Match(minimal(Bφ)).

Match(minimal(Bφ)) ⊆ Match(Bφ): Let C ∈ Match(minimal(Bφ)), let %′ be the
corresponding simulation relation, and define a relation % between (the states of)
C and Bφ as % = {(qC , qB) | (qC , [q]) ∈ %′, qB ∈ [q]}. It suffices to show % is
a simulation relation and for all (qC , qB) ∈ %: βC(qC) satisfies the annotation
φ(qB).

To this end, let (qC , [q]) ∈ %′ be arbitrary. As C ∈ Match(minimal(Bφ)), we know
[q] simulates qC and qC satisfies φ′([q]).

We have for all qB ∈ [q]:
– (qC , qB) in % (by the construction of %),
– qB simulates [q] (by Corollary 4.5.13), and
– φ(qB) ≡ φ′([q]) (by Corollary 4.5.12).

131

Chapter 4. Characterizing Sets of Services

Hence, % is a simulation relation as requested and qC satisfies all φ(qB), too. Thus,
we conclude C ∈ Match(Bφ) and therefore Match(minimal(Bφ)) ⊆ Match(Bφ).�

In other words, Bφ and minimal(Bφ) are in the same equivalence class of BSAs,
i.e. [Bφ] = [minimal(Bφ)].
Furthermore, the Corollaries 4.5.12 and 4.5.13 immediately imply:

Corollary 4.5.15 (Minimization preserves normal form).
If Bφ is a normal BSA, then minimal(Bφ) is a normal BSA, too. y

The rest of this section is devoted to show that the minimization minimal(Bφ) of
a BSA Bφ may indeed serve as the canonical representative of the corresponding
equivalence class.
As minimal(Bφ) is derived from Bφ by merging states, minimal(Bφ) has at most
a smaller number of states than Bφ. Next, we prove that a minimal BSA is indeed
minimal, i.e. there is no BSA B′ψ such that B′ψ is equivalent to minimal(Bφ) and
B′ψ has less states than minimal(Bφ). Thus, minimal(Bφ) is a suitable candidate
to serve as the representative of its equivalence class.

Definition 4.5.16 (Minimal BSA).
A BSA Bφ is minimal in its equivalence class [Bφ] if there is no BSA B′ψ such
that B′ψ ∈ [Bφ] and |QB′ | < |QB |. y

Theorem 4.5.17 (Minimality of minimal(Bφ)).
For each normal BSA Bφ, the BSA minimal(Bφ) is minimal in the equivalence
class [Bφ]. y

For the proof of this theorem, we first prove two lemmas which help us to derive
from the equivalence of two BSAs Bφ and B′ψ an equivalence of states q and q′
of a state q of Bφ and q′ of B′ψ.

Lemma 4.5.18.
Let Bφ and B′ψ be normal, interface equivalent BSAs. Let Bφ v B′ψ and let %
be the corresponding simulation relation between states of B and B′.
Then, for each (q, q′) ∈ %: Bφq v B′ψq′ . y

Proof.
The simulation relation % between Bφ and B′ψ is a simulation relation between
Bφq and B′ψq′ as well. As φ(q)⇒ ψ(q′) for all (q, q′) ∈ %, we conclude Bφq v B′ψq′ .�

Lemma 4.5.19.
Let Bφ and B′ψ be normal, interface equivalent BSAs. Let Bφ ≡ B′ψ and let %
be the corresponding simulation relation between the states of Bφ and B′ψ.
Then, for each (q, q′) ∈ %: Bφq ≡ B′ψq′ . y

132

4.5. The Canonical Representative of a BSA

Proof.
By Corollary 4.5.2, Bφ ≡ B′ψ iff Bφ v B′ψ and B′ψ v Bφ. Let % and %′ be the
respective simulation relations.

By Lemma 4.5.18, Bφ v B′ψ implies Bφq v B′ψq′ for all (q, q′) ∈ %; and B′ψ v Bφ

implies B′ψq′ v Bφq for all (q′, q) ∈ %′. As (by Proposition 4.1.5 on page 99),
%′ = %−1, we conclude: Bφq v B′ψq′ and B′ψq′ v Bφq for all (q, q′) ∈ %. Applying
Corollary 4.5.2 again, this yields Bφq ≡ B′ψq′ for all (q, q′) ∈ %. �

Proof (of Theorem 4.5.17).
Let Bφ be the minimization of a normal BSA as constructed in Definition 4.5.11
and let Q be the set of states of Bφ. We show that, for all BSA Cψ ∈ [Bφ]:
|QC | ≥ |Q|.
To this end, let Cψ ∈ [Bφ] be arbitrary and assume |QC | < |Q|. We show that
this assumption leads to a contradiction.

From Cψ ∈ [Bφ] we know Cψ ≡ Bφ (by Definition 4.5.4). This implies Bφ v Cψ
(by Corollary 4.5.2). Let % be the corresponding simulation relation.

Because of the assumption |QC | < |Q|, there must exist states qC ∈ QC and
qB , q

′
B ∈ Q such that (qB , qC) ∈ %, (q′B , qC) ∈ %, and qB 6= q′B . From Cψ ≡ Bφ

and Lemma 4.5.19, we know BφqB ≡ CψqC and Bφq′B
≡ CψqC . With ≡ being an

equivalence relation (and therefore being transitive), this yields BφqB ≡ B
φ
q′B

, which
again means qB ' q′B . But qB 6= q′B and qB ' q′B violates the precondition that
Bφ is a minimal BSA as constructed in Definition 4.5.11. Hence, the assumption
|QC | < |Q| must be wrong and, therefore, Bφ is indeed minimal in [Bφ]. �

The minimality of minimal(Bφ) in the equivalence class [Bφ] of a normal BSA Bφ

justifies the use of minimal(Bφ) as the canonical representative of Bφ. According
to Theorem 4.5.17, there is no equivalent BSA for a BSA minimal(Bφ) with less
states than minimal(Bφ). Together with Lemma 4.5.19 this also means that there
is no BSA with an equal number of states but less transitions (as otherwise the
states cannot be equivalent). Hence we conclude:

Corollary 4.5.20 (Canonical representative of a BSA).
The BSA minimal(Bφ) of a normal BSA Bφ is uniquely defined (up to isomor-
phism) and thus called the canonical representative of Bφ. y

Therefore, it is possible to decide equivalence of two BSAs by minimizing both
BSAs and then checking isomorphism of the resulting minimizations and annota-
tion equivalence of isomorphic states.

Another, particularly important advantage of the minimization procedure is the
reduced capacity requirement for storing a representative of a BSA instead of the
original BSA.

133

Chapter 4. Characterizing Sets of Services

Although all BSAs have a deterministic structure, the effect of the minimization
can drastically reduce the number of states (and transitions) of a BSA.

Figure 4.18 illustrates one such case. The BSA Bφ, depicted in Fig. 4.18(a),
has three present transitions at the states q1, q2, q3, and q4, respectively, each
transition leading to a different state. In total, Bφ has 13 states and 12 transitions.
It can easily be seen, however, that the states q2, q3, and q4 are equivalent to each
other; as well as the states q5 to q13. Hence, the minimized BSA minimal(Bφ)
of Fig. 4.18(b) has only three states, s1, s2, and s3. The state s1 represents the
state q1; the state s2 represents q2, q3, and q4; and s3 represents the states q5 to
q13. If Bφ had even more transitions per state or more than two “communication
steps” before ending in a final state, the reduction would be even stronger.

q1: ?a ∨ ?b ∨ ?c

q2: ?a ∨ ?b ∨ ?c
q3: ?a ∨ ?b ∨ ?c

q4: ?a ∨ ?b ∨ ?c

q5: final q6: final q7: final

q8: final
q9: final

q10: final

q11: final q12: final q13: final

?a ?b ?c

?a ?b ?c

?a
?b

?c

?a ?b ?c

(a) Bφ

s1: ?a ∨ ?b ∨ ?c

s2: ?a ∨ ?b ∨ ?c

s3: final

?a ?b ?c

?a ?b ?c

(b) minimal(Bφ)

Figure 4.18: Minimization of a BSA with drastic reduction.

In Chapter 5, we will see that a BSA such as the one depicted in Fig. 4.18(a) can
indeed be computed as the operating guideline OGA of a service automaton A.
That is, Bφ is no artificial example and practically relevant. This emphasizes the
importance of our minimization procedure, as we obviously do not want to store
Bφ, if we could store the equivalent BSA minimal(Bφ).

4.6 Possible Variants of BSA Definitions

In this section, we want to analyze possible different ways for defining Boolean an-
notated automata and the corresponding influences to other definitions or existent
results.

4.6.1 Services with Restrictions on their Final States

As already motivated in Sect. 3.5.1, there are different possible restrictions for
the choice of final states of a service net or service automaton. Such a restriction

134

4.6. Possible Variants of BSA Definitions

reduces the number of service automata C which are possibly matched with a BSA
Bφ. Hence, additional constraints have to be considered in the normalization of
a BSA.

Services with Non-Transient Final States

If final states are required to be non-transient, then the state normalization of a
BSA Bφ must also remove states q with annotation φ(q) = x ∧ final if x is an
output channel of Bφ. No service automaton C’s assignment βC can satisfy such
a formula, because only a state qC of C which is a final state in C assigns true
to the literal final , i.e. βC(qC)(final) = true, but as x is also an output channel
of C in this case, qC cannot have an x-labeled outgoing transition in such a final
state. So βC(qC)(x) = false and hence βC(qC) 6|= φ(q).

Services with Strictly Terminating Final States

In the case of strictly terminating services, the normalization of a BSA Bφ must
remove all states q with annotation φ(q) = x∧final for arbitrary message channels
x ∈ MC. A matching service automaton C can assign true to the literal final at
a state qC only if qC is a final state of C. As C is strictly terminating, qC then
has no present transitions at all and thus βC(qC)(x) = false for each x ∈ MC.
Hence, βC(qC) 6|= φ(q) and q must be removed from Bφ.

4.6.2 BSAs with Different Underlying Structures

BSAs without Internal Transitions

A BSA Bφ as defined in Definition 4.2.1 (on page 101) has an underlying de-
terministic service automaton B that can have internal transitions (according to
Definition 3.3.8 on page 64). As already stated, this is a rather uncommon defi-
nition of determinism. In this subsection, we show that it is possible to restrict
the definition of BSAs to deterministic structures in the classical sense, i.e. it is
possible to disallow internal transitions for BSAs.

Then, however, the matching procedure of a service automaton C and a BSA
Bφ has to be adjusted such that it “tolerates” internal transitions in C. This
can easily be achieved by preserving τ -literals in the annotations (and therefore
retain classical annotation satisfaction) but relaxing the simulation relation to a
weak simulation relation. Then, however, an inconvenient level of indirection is
introduced in most proofs that rely on the simulation relation %.

Furthermore, the notion of a normal state BSA Bφ has to be slightly adjusted to
preserve the result Match(Bφ) = Match(normal(Bφ)): a present literal τ in an

135

Chapter 4. Characterizing Sets of Services

annotation φ(q) has to be set to true by the maximal assignment β+(q) although
the state q of the BSA has no present τ -labeled transition. In other words, the
τ literal must now be treated like the final literal and not like a literal x ∈ MC.
Consequently, all proofs relying on the maximal assignment β+

B(q) have to be
adjusted.

In summary, disallowing internal transitions in a BSA would not change any result,
but would result in different definitions and proofs. In fact, the implementation
in Fiona (see Chap. 7) does not store internal transitions.

Non-deterministic BSAs

On the other hand it is also possible to relax Boolean annotated service automata
to a fully non-deterministic version. This mainly results in the possibility that
there are several different simulation relations for the matching of a service au-
tomaton C with a BSA Bφ.

Therefore, the matching procedure must be adjusted such that it is sufficient that
one of these simulations fulfills the annotation satisfaction requirement. Analo-
gously, the requirements of the smaller relation v between BSAs (cp. Sect. 4.4)
have to be adjusted such that the annotation implication holds for at least one
simulation relation.

However, finding the “correct” simulation relation is far more complex than finding
the unique simulation relation in the deterministic case (with or without deter-
ministic internal transitions) and therefore raises the complexity of the matching
and the check for v. Hence, a non-deterministic BSA is not suited to efficiently
decide matching.

4.6.3 Negation in Boolean Formulae

Allowing the negation of a literal in a Boolean formula enhances the expressiveness
of BSAs. For instance, consider a state q with annotation φ(q) = ¬(a ∧ b) and
two present transitions at q labeled with a and b, respectively. A BSA with such
a state would allow for the characterization of a set of service automata that
cannot be characterized without negation, because the formula ¬(a ∧ b) cannot
be expressed without negation.

Additionally, many results of this chapter would be lost. For instance, the dom-
ination of assignments is no longer a sufficient criterion for the satisfaction of
Boolean formulae. This considerably complicates the normalization of BSAs.
Furthermore, the structural relation v induces no longer a relationship between
the semantics of the considered BSAs and we do not see an obvious way to repair
this theorem.

136

4.7. Related Work

4.7 Related Work

Boolean annotated automata similar to BSAs as introduced in this chapter have
already been developed in [WFMN04]. Therein, the authors suggest to annotate
each state q of an automaton A by a Boolean formula φ(q). This Boolean formula
is then used to decide behavioral compatibility of A with another (annotated)
automaton B.

In contrast to our service automata, the automata in [WFMN04] communicate
synchronously, i.e. the composition of annotated automata A and B according
to [WFMN04] is their synchronous product A⊗B. Thereby, A⊗B has a common
x-labeled transition leaving a state (q, q′) of A ⊗ B if and only if A has an !x-
labeled transition at q and B has a corresponding ?x-labeled transition at q′ (or
vice versa). During the composition, the annotation of a composed state (q, q′)
is the conjunction of the annotations of q and q′. That way, the composed state
(q, q′) can have less leaving transitions than q or q′ and the local states q and q′ may
satisfy their respective formulae1 whereas the composed state (q, q′) may violate
the composed formula. In this case, the state (q, q′) represents an erroneous state
(comparable to non-normal states of BSAs in this thesis). The corresponding
compatibility notion of [WFMN04] is then the existence of at least one transition
sequence over non-erroneous states of the composition A ⊗ B leading to a final
state.

Compared to our BSA approach, we see several disadvantages of the annotated
automata of [WFMN04]. First of all, the automata of [WFMN04] are based
on a synchronous communication model, simplifying the correctness verification
to an emptiness question of the accepted language of the composed automaton
A ⊗ B. Secondly, their compatibility notion does not capture deadlock freedom
of the composition but only the existence of one successful interaction. Finally,
the authors propose their annotations as a specification technique. That is, the
designer has to manually annotate the automata for being able to detect errors
of the composition later on. In contrast, we will present a method to generate
the Boolean annotations in the forthcoming Chap. 5 and thus allow for a fully
automatic characterization of compatible services.

In [MWF05], the authors build upon their results of [WFMN04] and introduce an
abstraction technique of infinite accepted transition sequences of an annotated
automaton to finite transition sequences such that the abstraction preserves the
compatibility relationship to other annotated automata. With the help of the
finite abstraction, standard indexing algorithms can be applied for being able
to efficiently find a behaviorally compatible service in a (possibly large) set of
published services. A case study shows the feasibility of the approach for a set
containing up to 822 services. It is interesting future work to check the applica-
bility of this approach to our BSAs.

1Meaning βA(q) |= φ(q) and βB(q′) |= φ(q′) in our terms.

137

Chapter 4. Characterizing Sets of Services

4.8 Concluding Remarks

In this chapter, we have introduced Boolean annotated service automata (BSAs)
as a means to characterize a set of services. To this end, a BSA is a special service
automaton whose states are annotated by Boolean formulae. That is, such a BSA
Bφ consists of a service automaton B and a mapping φ assigning to each state
q of B a Boolean formula φ(q). Then, a matching procedure is used to decide
whether or not another service automaton C is characterized by Bφ. The set of
service automata characterized by a BSA Bφ, i.e. the set Match(Bφ), forms the
semantics of Bφ.

We then introduced a normal form of BSAs to remove redundant information
from the BSA. By the help of a normalization procedure, an arbitrary BSA can
be transformed into its normal form while preserving the semantics of the BSA.
The main result in this regard is Theorem 4.3.12. Using normal BSAs, we were
then able to relate the semantics of two BSA by comparing the structure of the
BSAs. That way, we can also efficiently decide equivalence of BSAs (Theorem 4.4.2
and Corollary 4.5.2). Finally, we derived the canonical representative of a BSA
and a minimization procedure to transform an arbitrary normal BSA Bφ into its
canonical representative minimal(Bφ). In Theorem 4.5.14, we could prove that
this minimization also preserves the semantics of a BSA. Furthermore, we showed
that the minimization minimal(Bφ) is minimal and unique. That is, there is no
other equivalent BSA with a smaller or equal number of states or transitions.

BSAs will be employed in the upcoming Chapter 5, where we will introduce the
notion of an operating guideline OGA of a service automaton A. OGA will turn
out to be a specially constructed BSA such that its semantics is equal to the set
of strategies of A, i.e. Match(OGA) = Strat(A).

138

5 Operating Guidelines for
Services

In Chap. 3, we have introduced our formal framework for service modeling and
motivated the need for a formal analysis of correct interaction of services. We
have developed the notion of a strategy B for a service automaton A, capturing
behavioral compatibility of A and B. The set Strat(A), representing all strategies
for A, is of particular interest as it gives a semantics for a service A in terms of
all behaviorally compatible services B for A.

In the subsequent Chap. 4, we have seen how to characterize some set of services
with the help of a Boolean annotated service automaton (BSA) Bφ. To this end,
we have introduced a matching procedure to efficiently decide C ∈ Match(Bφ).

In this chapter, we will combine both notions and present a construction of a
special BSA for a given service A that characterizes exactly the set of strategies
for A. Such a BSA is called operating guideline of A.

Definition 5.0.1 (Operating guideline, OGA).
A BSA Bφ is called operating guideline for a service automaton A, denoted OGA,
iff Match(Bφ) = Strat(A). y

As already seen in the previous chapter, different BSAs may characterize the same
set of services. Correspondingly, there is no notion of the operating guideline of
a service. However, the minimization procedure for BSAs can also be applied to
operating guidelines in order to derive the canonical representative of all operating
guidelines of a service.

The rest of this chapter is organized as follows. We start with a characterization
of deadlocks between arbitrary (interface compatible) service automata A and
B from the point of view of B in Sect. 5.1. To decide deadlock freedom of A
and B, we investigate the knowledge of B about A, basically a projection of the
composition A ⊕ B to the states of B. Then, Sect. 5.2 is devoted to completely
break the symmetric characterization of deadlocks into an asymmetric character-
ization of strategies. Therefore, we will construct a special service automaton FA

139

Chapter 5. Operating Guidelines for Services

for A such that the knowledge of FA about A and conditions on the simulation
relation between B and FA are sufficient to decide whether B is a strategy for A
or not. Unfortunately, FA allows for almost no abstraction from the internals of
A and, even worse, FA is usually infinite. Consequently, the subsequent sections
are devoted to these issues. We will first restrict our strategy characterization to
finite strategies B for A by a finite part of FA in Sect. 5.3, and then formulate all
conditions on the knowledge of this finite part of FA as Boolean annotations to
the states of FA in Sect. 5.4. That way, we derive a BSA characterizing the set of
finite strategies B for A, i.e. an operating guideline of A. Again, we will explore
different design decisions for operating guidelines and their induced consequences
in Sect. 5.5. Section 5.6 describes related work in detail and finally, Sect. 5.7
concludes this chapter.

In the forthcoming Chap. 7, we will finally present an implementation of the
operating guidelines approach in our analysis tool Fiona. We furthermore show
a case study justifying (1) the computability of operating guidelines for real-
world services and (2) the feasibility of using operating guidelines as an artifact
to efficiently decide behavioral compatibility of services.

5.1 A Characterization of Deadlocks

In Chapter 3, a deadlock was defined as a behavioral property of a single service.
Based on this property, a service is a strategy for another service if and only
if their interaction—represented by the single service of their composition— is
deadlock-free. In this sense, we did not distinguish between the participants of a
composition for deciding their behavioral compatibility.

This section is devoted to lay the basis for breaking this symmetry: we will fix one
service, always called A in the following, and want to characterize deadlocks that
may occur in the interaction of some service B with A from the point of view of B.
To this end, we will develop certain conditions that are necessary and sufficient
to decide the existence (or absence) of deadlocks in the composition A⊕B. The
basic idea is sketched in Fig. 5.1.

B

. . .

B

A

conditions

conditions

Figure 5.1: Schematic overview of deadlock characterization between a service au-
tomaton A and several service automata B. We formulate conditions from the point of
view of B that are sufficient and necessary for B ∈ Strat(A).

The presented characterization will be applicable to arbitrary (interface compat-

140

5.1. A Characterization of Deadlocks

ible) service automata A and B and allows for open compositions A ⊕ B in this
section. Section 5.2 will then consider strategy relationships only, i.e. closed com-
positions A⊕B.

5.1.1 Situations and Knowledge

Consider a state [qA, qB ,M] of the composition A ⊕ B of two service automata
A and B. It consists of a state qA of A, a state qB of B, and a multiset M
of currently pending messages. In order to decompose such a composed state,
we employ the notion of a situation of a service automaton. A situation of A
comprises its state qA and the message multiset M . That is, the situation of A
corresponding to the state [qA, qB ,M] is [qA,M]. Accordingly, the corresponding
situation of B is [qB ,M].

The situation [qA,M] of A reflects the point of view of a service automaton B
on the state [qA, qB ,M] of the composition A ⊕ B if B is in its state qB . That
way, we are able to consider a composition A⊕B from the service automaton B’s
viewpoint. To this end, we first introduce the general concept of a situation and
then formalize the point of view of B in the notion of the knowledge of B about
the service automaton A.

Definition 5.1.1 (Situation, situations(A)).
Let A be a service automaton, let qA ∈ QA be a state of A, and letM ∈ bags(IioA)
be a multiset of messages.

Then, [qA,M] is a situation of A. Furthermore, let situations(A) = QA ×
bags(IioA) denote the set of all situations of A. y

Figure 5.2 shows two service automata A and B. The set of situations of A
comprises, among infinitely many others, the situations [r1, [a]], [r1, [a, a, a, a, a, a]],
[r2, [b, b]], and [r3, [a, b, c, c]], for instance, as r1, r2, and r3 are states of A, and a, b,
and c are in the interface of A. Analogously, [s1, [a]], [s1, [a, a, a, a, a, a]], [s2, [b, b]],
and [s3, [a, b, c, c]], for instance, are situations of B.

Situations are used to represent the point of view of one service automaton par-
ticipating in a composition A ⊕ B on a state [qA, qB ,M] of the composition. As
composition is symmetric, we can equally consider the viewpoint of any of the
two service automata A and B.

Corollary 5.1.2 (Mutual situations).
Let A and B be two service automata and let [qA, qB ,M] be a state of their
composition A⊕B.

Then, [qA,M] is a situation of A and [qB ,M] is a situation of B. y

141

Chapter 5. Operating Guidelines for Services

r1

r2

r3

r4

r5

!a

?c

?d

!b

?c

(a) A

s1

s2

s3

s4 s5

?a ?b

!c
?a

!d

?b

(b) B

Figure 5.2: Two interface compatible service automata A and B. It is easy to see that
B is a strategy for A.

Proof.
From [qA, qB ,M] being a state of A⊕B and by the definition of service automata
composition (Definition 3.3.18) immediately follows that each x ∈M is a shared
channel between A and B, i.e. x ∈ IioA ∩ IioB , for all x ∈M . Hence, each x ∈M
is an interface channel of B. By the definition of a situation of B this directly
implies that [qB ,M] is a situation of B. �

In the following, we will fix the service automaton A and always consider deadlocks
from the point of view of some interface compatible service automaton B for A,
i.e. we consider deadlocks from the viewpoint of B. This idea has already been
illustrated in Fig. 5.1.

So far, the notion of a situation of a service automaton A is very general and the
set situations(A) contains combinations of a state of A and messages M that can
never be part of a state of a composition A⊕B for any B.

For instance, the service automaton A of Fig. 5.2(a) sends at most one message
b. Hence, all situations of A with more than one pending b, e.g. the situation
[r2, [b, b]] of A, can never “occur” in a composition with A.

To link the situations of a service automaton to the actual participants of a com-
position, we introduce the notion of the knowledge of one service automaton about
the other one. Intuitively, the knowledge of B about A is the set of situations of
A that A might be in while B is in state qB . More precisely, the knowledge of a
state qB of a service automaton B collects all situations [qA,M] of A such that
[qA, qB ,M] is an internally reachable state of the composition A ⊕ B. Hence, it
reflects B’s point of view of the composition A⊕B at its state qB .

Definition 5.1.3 (Knowledge, k(q)).
Let A and B be service automata and let A⊕B be their composition.

Then, the knowledge of B about A is a mapping k(B,A) : QB → ℘(situations(A))
defined as k(B,A)(qB) = {[qA,M] | there exists a state qB ∈ QB such that
[qA, qB ,M] ∈ QA⊕B and [qA, qB ,M] is internally reachable in A⊕B}. y

142

5.1. A Characterization of Deadlocks

We omit the index of the knowledge k(B,A)(qB) and write k(qB) if the considered
service automata and the direction are clear from the context. Furthermore, we
often refer to k(qB) as the knowledge set (of B) at qB and the situations in k(qB)
as knowledge values at qB .

To exemplify the knowledge notion, consider again the service automata A and B
of Fig. 5.2. The composition of these interface compatible service automata, A⊕B,
is depicted in Fig. 5.3(a). Figure 5.3(b) shows the service automaton B with all its
knowledge values at a state q depicted inside q. For instance, the knowledge of B
at its state s1, k(B,A)(s1), contains each situation [qA,M] of A that occurs with s1
in the composition in Fig. 5.3(a). Considering the initial state [r1, s1, []] of A⊕B,
we easily see that the situation [r1, []] is an element of k(B,A)(s1). Collecting all
states of A⊕B with second element s1, we get k(B,A)(s1) = {[r1, []], [r2, [a]], [r4, [b]]}.
Hence, as long as B is in state s1, A is in one of the situations [r1, []], [r2, [a]], or
[r4, [b]].

[r1, s1, []]

[r2, s1, [a]]

[r2, s2, []]

[r2, s3, [c]]

[r1, s3, []]

[r2, s3, [a]] [r4, s3, [b]]

[r2, s4, [d]]

[r3, s4, []]

[r4, s1, [b]]

[r4, s5, []]

τ

τ

τ

τ

τ τ

τ

τ

τ

τ

τ

τ

(a) A⊕ B

s1

[r1, []]
[r2, [a]]
[r4, [b]]

s2

[r2, []]

s3

[r2, [c]]
[r1, []]
[r2, [a]]
[r4, [b]]

s4

[r2, [d]]
[r3, []]

s5

[r4, []]

?a ?b

!c

?a

!d

?b

(b) B with k(B,A)

Figure 5.3: (a) Composition A ⊕ B of the two interface compatible service automata
A and B of Figs. 5.2(a) and 5.2(b) with the states of B highlighted. (b) The service
automaton B with its knowledge about A depicted inside the corresponding state of B.

From the point of view of B, the knowledge of B about A at a state qB of B
represents the set of all states that A can be in by receiving (already present)
messages or sending messages on its own. Assuming that B knows the structure
of A (e.g. the sets QA of states and δA of transitions of A) and the history of sent
and received messages only, B does not know the actual state that A is currently
in. From its information, however, B can deduce, for each of its states qB , a set
of situations of A which contains the current situation of A. Thus, the knowledge
k(B,A)(qB) can be seen as a hypothesis of B with respect to the actual state of A

143

Chapter 5. Operating Guidelines for Services

and the actual state of the message channels.

In the knowledge sets of Fig. 5.3(b), we can see that there is no state of B with
a situation [r5,M] (for some M) as knowledge value in k(B,A). That is, the state
r5 of A does never occur in the composition with B. This can also be seen in the
composition A⊕ B in Fig. 5.3(a). There is no composed state with r5 as the first
component. If we construct the knowledge values for the opposite direction, i.e.
the knowledge k(A,B) of A about B, we end up with a special knowledge set at this
state r5, i.e. k(A,B)(r5) = ∅.
Such a knowledge set k(q) = ∅ represents the fact that there is no internally reach-
able state in the composition “using” q. It is usually called empty knowledge. The
empty knowledge is one of the reasons that the knowledge k of a service automa-
ton B about some service automaton A is already an (albeit small) abstraction of
the composed service automaton A ⊕ B. That is, it is in general not possible to
fully reconstruct A from B and k(B,A) alone, as states of A that do not occur in
the knowledge of B about A cannot be reconstructed from the knowledge. Fur-
thermore, no information about final states of A is preserved by the knowledge
construction according to Definition 5.1.3.

Figure 5.4 illustrates the abstraction. It shows another service automaton, A′,
and its composition A′ ⊕ B with the service automaton B of Fig. 5.2(b). The
most important difference between the service automaton A of Fig. 5.2(a) and A′

is that the respective state r3 is a final state in A, but not in A′. Hence, the state
[r3, s4, []] is a deadlock in A′⊕B, but not in A⊕B. Furthermore, A′ has no unused
state, i.e. for each state q of A′, there is a multiset M of messages and a state qB
of B with [q,M] is a knowledge value at qB . However, the knowledge of B about
A and the knowledge of B about A′ are equal, i.e. A and A′ are indistinguishable
by B. For instance, the situation [r3, []] of A is a knowledge value of the state s4,
just as the situation [r3, []] of A′.

As deadlocks are specifically important for the characterization of strategies, we
present a classification of the situations of a service automaton in the following
and distinguish, in analogy to the notions of transient and stable states of a service
automaton (cp. Definition 3.3.11), transient and stable situations.

Definition 5.1.4 (Transient, stable situation).
A situation [q,M] of a service automaton A is stable in A if for all transitions
(q, x, q′) ∈ δA: x ∈ IinA and x /∈M . Otherwise, [q,M] is transient in A. y

Considering again the service automaton A of Fig. 5.2(a), the situations [r1, [a]]
and [r1, [a, a, a, a, a, a]], for instance, are transient (as there is a present sending
transition at r1), but the situations [r2, [b, b]] and [r3, [a, b, c, c]], for instance, are
stable in A (as there is no present b-labeled receiving transition at the state r2 or no
present transition at all at the state r3, respectively). In the service automaton B
of Fig. 5.2(b), the situation [s1, [a]], for instance, is transient (as there is a present

144

5.1. A Characterization of Deadlocks

r1

r2

r3

r4

!a

?c

?d

!b

?d

τ

(a) A′

[r1, s1, []]

[r2, s1, [a]]

[r2, s2, []]

[r2, s3, [c]]

[r1, s3, []]

[r2, s3, [a]] [r4, s3, [b]]

[r2, s4, [d]]

[r3, s4, []]

[r4, s1, [b]]

[r4, s5, []]

τ

τ

τ

τ

τ τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

(b) A′ ⊕ B

Figure 5.4: (a) A service automaton A′ which is a structurally different version of the
service automaton A of Fig. 5.2(a). (b) Consequently, the composition A′⊕B is different
from the composition A⊕B of Fig. 5.3(a). In particular, the state [r3, s4, []] is a deadlock
of A′ ⊕ B, whereas A⊕ B has no deadlock.
Hence, B is a strategy for A, but B is no strategy for A′. However, in each state of B, the
knowledge of B about A′ is equal to its knowledge about A, i.e. k(B,A)(qB) = k(B,A′)(qB)
for each state qB of B.

a-labeled receiving transition at the state s1 and there is an a pending in this
situation).

5.1.2 A Characterization of Deadlocks by Knowledge

The knowledge of a service automaton B about some service automaton A, to-
gether with the information about final states of A and the distinction between
transient and stable situations, is sufficient to characterize internally reachable
deadlocks in A⊕B from the point of view of B.

According to the following lemma, a state [qA, qB ,M] of A ⊕ B is an internally
reachable deadlock if and only if both situations [qA,M] and [qB ,M] are stable in
the respective service automaton and [qA, qB ,M] is no final state of A⊕B. That
is, neither A nor B can make a “move” on its own, but A⊕B is not yet in one of
its final states.

Lemma 5.1.5 (Characterization of deadlocks).
Let A and B be service automata, A ⊕ B their composition, and let k be the
knowledge of B about A.

145

Chapter 5. Operating Guidelines for Services

Then, A ⊕ B has an internally reachable deadlock iff there is a state qB of B
and a situation [qA,M] of A with [qA,M] ∈ k(qB) such that all of the following
conditions hold:

(i) the situation [qA,M] of A is stable in A and
(ii) the situation [qB ,M] of B is stable in B and
(iii) qA /∈ ΩA or qB /∈ ΩB or M 6= []. y

Proof.
(⇒): Let [qA, qB ,M] be an internally reachable deadlock of A ⊕ B. By Defini-
tion 3.3.18 (composition) and Definition 5.1.3 (knowledge), qB is a state of B with
[qA,M] ∈ k(qB). We show (i), (ii), and (iii).

By Definition 3.3.23 (deadlock) and Definition 3.3.11 (stable state), there is no
sending transition and no internal transition in A⊕B starting at [qA, qB ,M].

Hence, by the construction of A⊕B, this implies that there is no sending and no
internal transition in neither A nor B, as well as there is no x-labeled receiving
transition in neither A nor B with x ∈M . Hence, we conclude (i) and (ii).

Furthermore, [qA, qB ,M] being a deadlock of A⊕B implies that [qA, qB ,M] is no
final state of A⊕B. Again by the construction of A⊕B, this implies (iii).

(⇐): Let qB be a state of B, [qA,M] be a situation of A with [qA,M] ∈ k(qB), and
let (i), (ii), and (iii) hold. By Definition 3.3.18 (composition) and Definition 5.1.3
(knowledge), [qA, qB ,M] is an internally reachable state of A ⊕ B. We show
[qA, qB ,M] is a deadlock of A⊕B.

From (i), (ii), and the construction of A⊕B, we conclude that there is no transition
in A ⊕ B starting at [qA, qB ,M]. From (iii) we know that [qA, qB ,M] is no final
state of A⊕B. Hence, [qA, qB ,M] is a deadlock in A⊕B. �

With the help of Lemma 5.1.5 we are able to decide whether or not the composition
A ⊕ B of service automata A and B has an internally reachable deadlock by
checking the three conditions for each situation of A in the knowledge of each state
of B. If all three conditions are fulfilled by a situation [qA,M] in the knowledge of
a state qB , then the state [qA, qB ,M] is an internally reachable deadlock of A⊕B.
Hence, Lemma 5.1.5 provides conditions whose check is sufficient and necessary
for behavioral incompatibility of two service automata A and B.

A positive reformulation of the latter lemma is given in Corollary 5.1.6. It provides
a direct characterization when the composition A⊕B is deadlock-free, i.e. has no
internally reachable deadlock. In this case, A and B are behaviorally compatible.

Corollary 5.1.6 (Characterization of deadlock freedom).
Let A and B be service automata, let A ⊕ B be their composition, and let k be
the knowledge of B about A.

146

5.1. A Characterization of Deadlocks

Then, A ⊕ B has no internally reachable deadlock iff for all states qB of B and
all situations [qA,M] of A with [qA,M] ∈ k(qB), at least one of the following
conditions is fulfilled:

(i) [qA,M] is transient in A or
(ii) the situation [qB ,M] of B is transient in B or
(iii) qA ∈ ΩA and qB ∈ ΩB and M = []. y

Proof.
The corollary is an equivalent reformulation of Lemma 5.1.5 by negating both
sides of the lemma. �

According to Corollary 5.1.6, the composition of service automata A and B is
deadlock-free if and only if for each pair qB and [qA,M] ∈ k(qB), at least one of
the conditions of Corollary 5.1.6 is fulfilled.

As an example, we apply Corollary 5.1.6 to the service automata A and B of
Fig. 5.2, and easily verify deadlock freedom of the composition A ⊕ B shown in
Fig. 5.3(a). The only stable situations of A occurring in the knowledge k(B,A) (see
Fig. 5.3(b)) are:

– [r2, [a]] and [r4, [b]] in the knowledge of s1, but both [s1, [a]] and [s1, [b]] are
transient situations in B;

– [r2, []] in the knowledge of s2, but [s2, []] is transient in B;
– [r2, [a]] and [r4, [b]] in the knowledge of s3, but both [s3, [a]] and [s3, [b]] are

transient in B;
– [r3, []] in the knowledge of s4, but r3 is a final state of A, s4 is a final state

of B, and there are no messages pending; and
– [r4, []] in the knowledge of s5, but r4 is a final state of A, s5 is a final state

of B, and there are no messages pending.

That is, at least one condition of Corollary 5.1.6 is fulfilled for each state q of B
and each situation in k(B,A)(q). Hence, A⊕B has no internally reachable deadlock.
As additionally A⊕ B is closed, we conclude that B is a strategy for A.

In contrast, A′ ⊕B of Fig. 5.4(b) has a deadlock. This can be easily verified with
Corollary 5.1.6, too. The situation [r3, []] of A′ is in the knowledge of the state s4
of B, too, but neither [r3, []] nor [s4, []] is transient (violating conditions (i) and
(ii) of the corollary), and the state r3 is no final state in A′ (violating condition
(iii) of the corollary). Hence, all conditions of Corollary 5.1.6 are violated for the
state s4 of B and the situation [r3, []] ∈ k(B,A)(s4). Hence, B is no strategy for A′.

It is worth to mention that Corollary 5.1.6 equally holds for open and closed
compositions A ⊕ B. That is, we can verify deadlock freedom also for service
automata A and B, where A⊕B is an open service automaton.

147

Chapter 5. Operating Guidelines for Services

As an example, reconsider the service automata A and B and their open compo-
sition A ⊕ B of Fig. 3.9, recalled in Fig. 5.5. We apply Corollary 5.1.6 to reveal
all deadlocks of A⊕ B.

– Due to the composed state [r4, s2, []], the knowledge of B about A at B’s
state s2 contains the stable situation [r4, []] of A. As [s2, []] is stable in B
as well, but s2 is no final state of B, all conditions of Corollary 5.1.6 are
violated. Hence, [r4, s2, []] is a deadlock of A⊕ B.

– Furthermore, due to the composed state [r3, s4, [b]], the knowledge of B
about A at state s4 contains the stable situation [r3, [b]] of A. As [s4, [b]] is
stable in B, but the multiset of pending messages is non-empty, all condi-
tions of Corollary 5.1.6 are violated, and [r3, s4, [b]] is another deadlock of
A⊕ B.

r1

r2

r3 r4

?a

!b !c

(a) A

s1

s2

s3 s4

!a

?b ?d

(b) B

[r1, s1, []] [r1, s2, [a]] [r1, s4, [a]]

[r2, s2, []] [r2, s4, []]

[r3, s2, [b]] [r3, s4, [b]] [r3, s3, []]

[r4, s2, []] [r4, s4, []]

τ

τ τ

τ

τ

τ

!c !c

?d

?d

?d

?d

(c) A⊕ B

Figure 5.5: The two interface compatible service automata A and B of Fig. 3.9 and
their open composition A⊕ B. Corollary 5.1.6 can be used to reveal the two (internally
reachable) deadlocks [r4, s2, []] and [r3, s4, [b]] of A⊕ B.

5.2 An Asymmetric Characterization of Strategies

So far we have seen how to decide whether the composition A ⊕ B of arbitrary
interface compatible service automata A and B is deadlock-free. Therefore, we
made use of the knowledge of B about A and formulated in Corollary 5.1.6 con-
ditions which are sufficient and necessary to decide deadlock freedom of A ⊕ B.
The major drawback of this approach, however, is that the knowledge of B about
A has to be computed for each considered B. That is, to decide deadlock freedom
of A ⊕ B for a number of B’s, the respective knowledge of B about A has to be
computed separately for each B in order to check the conditions of Corollary 5.1.6
(cp. Fig. 5.1).

148

5.2. An Asymmetric Characterization of Strategies

This section is devoted to speed up the check for several B’s significantly. There-
fore, we completely break the symmetry of the deadlock characterization by in-
troducing a specific interface compatible service automaton FA for a given service
automaton A such that the knowledge of FA about A and simple conditions be-
tween a service automaton B and FA can be used to decide deadlock freedom of
B’s interaction with A.

For the construction of FA, we will restrict ourselves to the decision of the strategy
relationship between a service automaton B and a given service automaton A only.
That is, we consider only those service automata B for A where A⊕B is a closed
service automaton. In other words, we restrict ourselves to decide the question
B ∈ Strat(A).

For service automata B such that A⊕B is closed, the knowledge of FA about A
and simple conditions on the simulation relation between the respective B and FA
suffice to decide whether or not B is a strategy for A. That way, the knowledge
of the B’s about A is not needed; only the knowledge of FA about A has to be
computed once and only the simulation relation between each B and FA has to be
checked for the conditions. The use of FA to characterize the strategies for a given
service automaton A is illustrated in Fig. 5.6. We claim that this is more efficient
than checking deadlock freedom of each B with A according to Corollary 5.1.6 as
illustrated in Fig. 5.1.

B

. . .

B

FA A

conditions

conditions

strategy by

construction

Figure 5.6: Schematic overview of an asymmetric strategy characterization between
a service automaton A and several service automata B using the automaton FA of A.
Checking conditions on the simulation relation between B and FA suffices to decide
B ∈ Strat(A).

However, it will turn out that FA has two major drawbacks. Firstly, FA is infinite
for most service automata A. Secondly, the conditions which have to be checked
to decide behavioral compatibility of B and A still use the knowledge of FA about
A and thus require detailed knowledge about the internal structure of A. Hence,
FA is not suited to be published as behavioral description by a service provider.
The upcoming Sects. 5.3 and 5.4 are devoted to these issues. We will identify a
finite part of FA characterizing finite strategies B for A and present a translation
of the conditions for verifying the strategy relationship into Boolean annotations
to (the states of) FA which will replace the knowledge of FA about A. This
finally results in a Boolean annotated service automaton (BSA) as introduced in
Chap. 4, characterizing the set of (finite) strategies B for A. Thus, this BSA
constitutes an operating guideline of A.

149

Chapter 5. Operating Guidelines for Services

5.2.1 Operations on Knowledge Sets

For the construction of FA, we first introduce two operations on sets of situations
of A. As these operations are applied to derive the knowledge k(FA,A) of FA about
A later on, we denote a set of situations by K in the following.

Definition 5.2.1 (Closure, closure(K)).
Let A be a service automaton and K ⊆ situations(A) be a set of situations of A.

Then, the closure of K, closure(K), is inductively defined as follows:

Basis. K ⊆ closure(K);
Step. If [q,M] ∈ closure(K) and (q, x, q′) ∈ δA, then

– [q′,M + x] ∈ closure(K) if x ∈ IoutA;
– [q′,M − x] ∈ closure(K) if x ∈ IinA and x ∈M ; and
– [q′,M] ∈ closure(K) if x = τ . y

Intuitively, the closure of a set of situations K of A considers each transient
situation of A in K and adds all those situations of A to K that can be “reached”
from the transient situation by A without input of B. Therefore, each sending
transition of A, each x-labeled receiving transition where x ∈M , and each internal
transition of A is considered, and the respectively reached situation of A is added
to closure(K). It is important to notice that a message x is added to M by the
closure construction only if x is an output channel of A.

Proposition 5.2.2 (Closure yields situations).
Let A be a service automaton and K ⊆ situations(A) be a set of situations of A.

Then, closure(K) ⊆ situations(A). y

Obviously, closure(closure(K)) = closure(K), for all K.

To exemplify the closure construction, consider again the service automaton A of
Fig. 5.2(a). The closure of the singleton set K = {[r1, []]} of situations of A is
the set closure(K) = {[r1, []], [r2, [a]], [r4, [b]]}. This set closure(K) can be found
in Fig. 5.3(b) as the knowledge of B about A at state s1. It is easy to see in
Fig. 5.3(b) that each knowledge set k(B,A)(q) of a state q of B is the closure of
any of its subsets, i.e. k(B,A)(q) = closure(K) for each K ⊆ k(B,A)(q).

The closure operation is the first operation to construct FA. The second oper-
ation is called x-event. Whereas closure is devoted to the construction of the
knowledge values of FA, the x-event operation is needed to represent the effects
of a communication action of FA to a set of situations of A.

Definition 5.2.3 (Event, event(K,x)).
Let A be a service automaton, K ⊆ situations(A) be a set of situations of A, and
let x ∈ IioA ∪ {τ}.

150

5.2. An Asymmetric Characterization of Strategies

Then, the x-event of K in A, event(K,x), is defined as

event(K,x) =

{[q,M + x] | [q,M] ∈ K}, if x ∈ IinA,
{[q,M − x] | [q,M] ∈ K,x ∈M}, if x ∈ IoutA,
K, otherwise, i.e. if x = τ . y

In contrast to the definition of closure, a message x is added to M by an x-event
only if x is an input channel of A. Hence, the notion of an x-event expresses
the effect of a strategy of A on a set of situations of A. For this reason, we will
consider the ?a-event in A if a is an output channel of a service automaton A and
the !b-event in A if b is an input channel of A.

Proposition 5.2.4 (Event yields situations).
Let A be a service automaton and K ⊆ situations(A) be a set of situations of A.

Then, event(K,x) ⊆ situations(A), for each x ∈ IioA ∪ {τ}. y

To exemplify the event construction, consider the setK = {[r1, []], [r2, [a]], [r4, [b]]}
of situations of our example service automaton A of Fig. 5.2(a). The ?a-event of
K in A is the set K ′ = event(K, ?a) = {[r2, []]}, because a is an output channel
of A, the only situation in K with a ∈ M is [r2, [a]], and [a] − a = []. It is
easy to see in Fig. 5.3(b), that K is the knowledge of B about A at state s1,
and K ′ is the knowledge of B about A at state s2, which is reached from s1 by
the ?a-labeled transition of B. Furthermore, the !c-event of K ′ = {[r2, []]} is
K ′′ = event(K ′, !c) = {[r2, [c]]}, which is a subset of the knowledge of B about A
at state s3 in Fig. 5.3(b).

As another example, the !c-event of K = {[r1, []], [r2, [a]], [r4, [b]]} in A is the set
event(K, !c) = {[r1, [c]], [r2, [a, c]], [r4, [b, c]]}, because c is an input channel of A
and therefore c is added to each multiset M of a situation [q,M] of K. The set
event(K, !c) is not depicted in Fig. 5.3(b) because there is no present !c-labeled
transition in our example service automaton B at state s1 (see also Fig. 5.2(b)).

5.2.2 The Overapproximation F of Strategies

Having defined these two operations, we are now able to construct FA, repre-
senting an overapproximation of all strategies B for A. In fact, FA represents
any interface compatible service automaton B such that A⊕B is a closed service
automaton, i.e. any potential strategy B for A.

Definition 5.2.5 (Overapproximation of strategies, F).
The overapproximation of strategies for a service automaton A is defined as the
service automaton FA = [Q, Iin , Iout , δ, q0,Ω] with

151

Chapter 5. Operating Guidelines for Services

– Q = {qK | K ⊆ situations(A)},
– Iin = IoutA,
– Iout = IinA,
– δ = {(qK , x, qK′) | K,K ′ ⊆ situations(A), x ∈ IioA ∪ {τ},

K ′ = closure(event(K,x))},
– q0 = qK0 with K0 = closure({[q0A, []]}), and
– Ω = {qK | K ⊆ situations(A), [q, []] ∈ K, q ∈ ΩA}. y

Notation 5.2.6.
We omit the index and write F instead of FA if the considered service automaton
A is clear from the context. y

Obviously, the overapproximation F of strategies for A is interface compatible to
A. Hence, we could immediately apply our strategy check according to Corol-
lary 5.1.6 of the previous section to decide whether or not F itself is a strategy
for A by computing the knowledge of F about A. As motivated above, however,
we will employ F to classify (other) service automata B according to whether or
not B is a strategy for A, i.e. to decide B ∈ Strat(A). As the composition A⊕F
is even a closed service automaton, we will consider those service automata B
that are interface equivalent to F (and hence A ⊕ B is closed as well). We will
show that the knowledge of F about A and conditions on the simulation rela-
tion between the respective service automaton B and F can be used to decide
B ∈ Strat(A) without having to compute the knowledge of B about A.

It is easy to see that F usually has infinitely many states, as the set situations(A)
is usually infinite. Hence, there may be infinitely many sets K ⊆ situations(A)
and thus infinitely many states qK . Even the set of δ-reachable states of F is
usually infinite. If A has at least one input channel x, the corresponding F
may perform the respective !x-event arbitrarily often, always incrementing the
number of x elements in the set M of the situation [q0A,M] of A, for instance.
The forthcoming Sect. 5.3 will be devoted to this issue. Therein, we identify a
relevant finite part of F characterizing all finite strategies B for A.

To exemplify the overapproximation of strategies, Fig. 5.7(a) shows a new service
automaton A. As A has only finitely many states and no input channel, the
δ-reachable part of its overapproximation FA of strategies for A is finite. It is
depicted in Fig. 5.7(b). FA is constructed according to Definition 5.2.5. The set
K of a state qK of FA is depicted inside the respective state qK . Additionally, we
assigned a new (i.e. short) name to each state qK . For instance, the initial state
qK0 with K0 = closure({[q0A, []]}) now bears the name q1. Note that the τ -event
at a state qK of FA leads to the state qK again, as event(K, τ) = K, for all K.

Another special characteristic of FA can be seen at state q7 in Fig. 5.7(b). As there
is no situation [q,M] with b ∈ M in the set K of e.g. the state q3 (or q5 or q6),

152

5.2. An Asymmetric Characterization of Strategies

r1

r2

r3

r4

!a

!a

!b

τ

(a) A

q1

[r1, []]
[r2, [a]]

[r3, [a, a]]
[r4, [a, a, b]]

[r3, []]
[r4, [b]]

q2

[r2, []]
[r3, [a]]

[r4, [a, b]]

q3

[r4, [a, a]]
[r4, []]

q4

[r3, []]
[r4, [b]]

q5

[r4, [a]]
q7

∅

q6

[r4, []]

?a ?b

?a ?b ?a ?b

?b ?a

?b
?a
?a

?b

?a

?b

τ

τ τ

τ τ τ

τ

(b) FA

Figure 5.7: (a) A service automaton A and (b) its overapproximation FA of strategies
for A. The set K ⊆ situations(A) of a state qK of FA is depicted inside the state qK .
According to Definition 5.2.5, the states q3 and q6 are final states of FA, as the situation
[r4, []] is a knowledge value of the respective set K.

the respective ?b-event yields the empty set of situations (cp. Definition 5.2.3).
As ∅ ⊆ situations(A), this empty state q∅ is a well-defined state of FA according
to Definition 5.2.5.

We record that the empty state can only be reached in F by a receiving transition.

Proposition 5.2.7 (The empty state q∅ of F).
Let F be the overapproximation of strategies for some service automaton A.

Then, the special state q∅, called the empty state of F , is δ-reachable in F iff A
has at least one sending transition. y

By the definitions of closure and event, we furthermore conclude:

Proposition 5.2.8 (The empty state q∅ of F is persistent).
Let F be the overapproximation of strategies for some service automaton A, and
let q∅ be the empty state of F .
Then, each present transition at q∅ leads to q∅ again, i.e. for each transition
(q∅, x, q) ∈ δF : q = q∅. y

153

Chapter 5. Operating Guidelines for Services

Before introducing the characterization of strategies by F , we first collect some
further important properties of F needed for the simulation relations later on.
Afterwards we show that the knowledge of F about A is determined by the oper-
ations closure and event. Then, in the upcoming Sect. 5.2.3, we will show how to
characterize strategies B for A with the help of the knowledge of F about A and
the simulation relation between B and F .

Lemma 5.2.9 (F is complete).
Let A be a service automaton and let F be its overapproximation of strategies.

Then, for each state q of F and each message channel x ∈ IioF ∪ {τ} there is
exactly one state q′ of F with (q, x, q′) ∈ δF . y

Proof.
LetK ⊆ situations(A) be such that q = qK and let x ∈ IioF∪{τ} be arbitrary. By
Propositions 5.2.2 and 5.2.4, K ′ = closure(event(K,x)) ⊆ situations(A). Hence,
by the construction of F , there is a state qK′ of F and a transition (qK , x, qK′) ∈
δF . Again by the construction of F and because K ′ is uniquely defined by K and
x, there is no other present x-labeled transition at qK . �

Remark 5.2.10.
The letter F , used to denote the overapproximation of strategies for a service
automaton A, already suggests the full usage of message channels at each state
of F . y

Lemma 5.2.9 immediately implies:

Corollary 5.2.11 (F simulates all B).
Let A be a service automaton and let F be its overapproximation of strategies.

Then, F simulates each service automaton B such that A⊕B is closed. y

That is, the structure of F is rich enough to comprise any strategy B for A,
expressed by the respective simulation relation between B and F . This simula-
tion relation provides the basis for the characterization of strategies for A in the
upcoming section.

Furthermore, Lemma 5.2.9 yields:

Corollary 5.2.12 (F is deterministic).
The overapproximation F of strategies for a service automatonA is deterministic.y

Determinism of F is crucial for an efficient computation of simulation relations
of some other service automaton B with F .
The following lemma states that the knowledge of F about A is directly correlated
to the construction of the states of F by the sets K ⊆ situations(A) of situations
of A, i.e. for each state qK of F , the knowledge of F at qK is the set K itself.

154

5.2. An Asymmetric Characterization of Strategies

Lemma 5.2.13 (Knowledge of F determined by closure and event).
Let A be a service automaton and let F be its overapproximation of strategies.

Then, for each δ-reachable state qK of F : k(F,A)(qK) = K. y

Proof.
We abbreviate k(F,A) by k and show k(qK) = K by structural induction on δ in
F . Please notice that A ⊕ F is closed, i.e. A ⊕ F has only internal transitions.
Hence, a state [qA, qK ,M] is δ-reachable in A⊕F iff [qA,M] ∈ k(qK).

Basis. We show k(qK0) = K0 for the initial state qK0 of F . By definition of k(qK0)
and becauseK0 = closure({[q0A, []]}), it is sufficient to show [qA, qK0 ,M] ∈
QA⊕F iff [qA,M] ∈ closure({[q0A, []]}).
This obviously holds for the initial state [q0A, qK0 , []] of A ⊕ F , as (by
definition of closure) [q0A, []] ∈ closure({[q0A, []]}). As (by definition of
F) F and A have no free channels, the cases of adding a situation to
closure({[q0A, []]}) correspond exactly to the (remaining) three cases for
transitions in A⊕F (cp. Definition 3.3.18).

Step. Let k(qK) = K and let (qK , x, qK′) ∈ δ. We show k(qK′) = K ′ by showing
k(qK′) ⊆ K ′ and k(qK′) ⊇ K ′.
(⊆): Let [qA,M] ∈ k(qK′) be an arbitrary situation of A. Hence,
[qA, qK′ ,M] ∈ QA⊕F is a δ-reachable state in A ⊕ F . By the construc-
tion of A ⊕ F there exists a δ-reachable state [q∗A, qK ,M

∗] in A ⊕ F such
that [qA, qK′ ,M] is δ-reachable from [q∗A, qK ,M

∗] in A ⊕ F by following
a transition ([q∗A, qK ,M

∗], τ, [q∗A, q
′
K ,M

∗∗]) in A⊕F which corresponds to
the transition (qK , x, qK′) in F , followed by a sequence of transitions that
all correspond to A from [q∗A, q

′
K ,M

∗∗] to [qA, qK′ ,M].
From [q∗A, qK ,M

∗] being δ-reachable in A⊕ F , we have [q∗A,M
∗] ∈ k(qK);

and by the assumption k(qK) = K we know [q∗A,M
∗] ∈ K.

By the definition of event, we derive [q∗A,M
∗∗] ∈ event(K,x). By the

definition of closure we get [qA,M] ∈ closure(event(K,x)). Finally, with
K ′ = closure(event(K,x)), we know [qA,M] ∈ K ′.
(⊇): Let [qA,M] ∈ K ′ be an arbitrary situation of A. By (qK , x, qK′) ∈ δ
(from the assumption) and the construction of F , we know that K ′ =
closure(event(K,x)). Hence, there must exist situations [q∗A,M

∗] and
[q∗A,M

∗∗] of A with [q∗A,M
∗] ∈ K, [q∗A,M

∗∗] ∈ event({[q∗A,M∗]}, x), and
[qA,M] ∈ closure({[q∗A,M∗∗]}).
From [q∗A,M

∗] ∈ K follows (with the assumption k(qK) = K) that
[q∗A, qK ,M

∗] ∈ QA⊕F . By the construction of event, we hence conclude
that [q∗A, q

′
K ,M

∗∗] ∈ QA⊕F . By the construction of closure, we finally
derive [qA, q′K ,M] ∈ QA⊕F . �

The main value of this lemma is that we do not have to construct the composition
A⊕F to derive the knowledge of F about A—the constructions closure and event

155

Chapter 5. Operating Guidelines for Services

are sufficient for deriving all knowledge sets. Furthermore, the construction of a
successor state qK′ of qK by the property K ′ = closure(event(K,x)) suggests the
successive computation of (the internally reachable part of) F starting from qK0

with K0 = closure({[q0A, []]}), instead of first generating all states of F and then
connecting all those pairs of states qK , qK′ by a transition (qK , x, qK′) which fulfill
the property K ′ = closure(event(K,x)).

Lemma 5.2.13 can easily be verified for the example overapproximation FA of
strategies for the service automaton A of Fig. 5.7(a), depicted in Fig. 5.7(b).
Recall that the set K of a state qK of FA is depicted inside the state qK . For
each state qK , the set K is equal to the knowledge of FA about A at qK . The
construction of the composition A⊕FA of A and FA, however, is left as an exercise
for the interested reader.

The property of Lemma 5.2.13 justifies the graphical representation of the set K
of a state qK inside the respective state in Fig. 5.7 as it was already done earlier
for the knowledge at the state.

By Lemma 5.2.13, together with the efficient computation of the simulation rela-
tion between a service automaton B and F due to the deterministic structure of
F , we conclude that F is a well-suited candidate to decide B ∈ Strat(A).

5.2.3 A Characterization of Strategies by F

In the following, we show how the overapproximation F of strategies for a service
automaton A can be used to decide whether or not B ∈ Strat(A) for arbitrary B.

To this end, the following lemma will generalize the result of Lemma 5.2.13 and
basically says that the knowledge k(F,A) of F about A can be used to deduce the
knowledge k(B,A) of another service automaton B about A. Therefore, only the
simulation relation between B and F has to be computed. This means that we
can apply Corollary 5.1.6 also for deciding whether or not B is a strategy for A
without actually computing k(B,A) from the composition A⊕B.

Lemma 5.2.14 (Knowledge of B is union of knowledge of F).
Let F be the overapproximation of strategies for a service automaton A, let B be
a service automaton that is interface equivalent to F , and let % ⊆ QB × QF be
the minimal simulation relation between B and F .
Then, k(B,A)(qB) =

⋃
(qB ,qF)∈% k(F,A)(qF), for each state qB of B. y

Proof.
We abbreviate k(B,A) by kB and k(F,A) by kF . Notice that both A ⊕ B and
A ⊕ F are closed. We show kB(qB) =

⋃
(qB ,qF)∈% kF (qF) by showing kB(qB) ⊆⋃

(qB ,qF)∈% kF (qF) and
⋃

(qB ,qF)∈% kF (qF) ⊆ kB(qB).

156

5.2. An Asymmetric Characterization of Strategies

(⊆): We show kB(qB) ⊆ ⋃(qB ,qF)∈% kF (qF). Let therefore qB be an arbitrary
state of B and let [qA,M] ∈ kB(qB). It suffices to show that there exists a state
qF of F with (qB , qF) ∈ % such that [qA,M] ∈ kF (qF).

From [qA,M] ∈ kB(qB) we know that the state [qA, qB ,M] of A⊕B is reachable
in A ⊕ B. Let σ be an arbitrary sequence of (all internal) transitions of A ⊕ B
such that [qA, qB ,M] is reached from the initial state of A ⊕ B by σ. Consider
now the transitions d1, . . . , dn in σ that correspond to transitions of B and let the
corresponding labels of these transitions in B be x1, . . . , xn.

Because F is full (according to Lemma 5.2.9), it can perform any x-labeled transi-
tion at any of its states. Hence, we can construct a sequence σ′ in the composition
A⊕ F by replacing each transition di of B in σ by an equally labeled transition
of F . By the definition of service automata composition, following σ′ in A ⊕ F
reaches a state [qA, qF ,M] of A ⊕ F . Hence, [qA,M] ∈ kF (qF). Due to the
construction of σ′, we further know that (qB , qF) ∈ %.
(⊇): We show

⋃
(qB ,qF)∈% kF (qF) ⊆ kB(qB). Let therefore qF be an arbitrary

state of F such that (qB , qF) ∈ % and let [qA,M] ∈ kF (qF) be arbitrary. It
suffices to show [qA,M] ∈ kB(qB).

As (qB , qF) ∈ % and because % is minimal, there exists a sequence of transition
labels x1, . . . , xn such that qB (qF , respectively) is reached in B (F , respectively)
from the initial state of B (F , respectively) by following correspondingly labeled
transitions in B (F , respectively).
From [qA,M] ∈ kF (qF) and Lemma 5.2.13, we know that [qA,M] can be con-
structed by applying the operations closure and event. By the definition of clo-
sure and event, their application defines a sequence σ of transitions of A⊕F such
that the state [qA, qF ,M] of A ⊕ F is reached from the initial state of A ⊕ F .
Thereby, the application of closure corresponds to following transitions of A, and
the application of event corresponds to following transitions of F . As the state
qF can be reached in F by a sequence of transitions labeled x1, . . . , xn, there even
exists such a sequence σ in A⊕F , where the event operations are performed with
message channels x1, . . . , xn. Hence, the transitions that corresponding to F in
this sequence σ are labeled x1, . . . , xn in F .
As the state qB of B can be reached by following transitions labeled x1, . . . , xn in
B as well, we can (by the definition of service automata composition) replace each
transition of F in σ by an equally labeled transition of B and yield a transition
sequence σ′ in A⊕B reaching [qA, qB ,M] in A⊕B. Thus, [qA,M] ∈ kB(qB). �

That is, the knowledge of a state q of B is equal to the union of the knowledge
values of all those states qF of F which are used in the simulation relation between
B and F (under the assumption that B is interface equivalent to F).
As an example, consider the service automaton B of Fig. 5.8(a) with its knowl-
edge about the service automaton A of Fig. 5.7(a). Figure 5.8(c) shows the

157

Chapter 5. Operating Guidelines for Services

minimal simulation relation % between (the states of) B and FA. According to
Lemma 5.2.14, the knowledge of B about A at a state qB of B is the union of all
states q of FA where (qB, q) ∈ %. We verify this property for the state s2 of B.
From Fig. 5.8(c), we have (s2, q2), (s2, q4), and (s2, q7) in %. Hence:

k(B,A)(s2) =
k(FA,A)(q2) ∪ k(FA,A)(q4) ∪ k(FA,A)(q7) =

{[r2, []], [r3, [a]], [r4, [a, b]]} ∪ {[r3, []], [r4, [b]]} ∪ ∅ =

{[r2, []], [r3, [a]], [r4, [a, b]], [r3, []], [r4, [b]]},

which exactly corresponds to the knowledge depicted inside the state s2 of B in
Fig. 5.8(a).

s1

[r1, []]
[r2, [a]]

[r3, [a, a]]
[r4, [a, a, b]]

[r3, []]
[r4, [b]]

s2

[r2, []]
[r3, [a]]

[r4, [a, b]
[r3, []]
[r4, [b]

s3

[r4, [a]]
[r4, []]

?a

?b

?a

?a

(a) B with knowl-
edge about A

q1

[r1, []]
[r2, [a]]

[r3, [a, a]]
[r4, [a, a, b]]

[r3, []]
[r4, [b]]

q2

[r2, []]
[r3, [a]]

[r4, [a, b]]

q3

[r4, [a, a]]
[r4, []]

q4

[r3, []]
[r4, [b]]

q5

[r4, [a]]
q7

∅

q6

[r4, []]

?a ?b

?a ?b ?a ?b

?b ?a

?b
?a
?a

?b

?a

?b

τ

τ τ

τ τ τ

τ

(b) FA

% = { (s1, q1),
(s2, q2),
(s2, q4),
(s2, q7),
(s3, q5),
(s3, q6),
(s3, q7) }

(c) %

Figure 5.8: (a) A service automaton B with its knowledge about the service automaton
A of Fig. 5.7(a). (b) The overapproximation FA of strategies for A, taken from Fig. 5.7(b).
(c) The minimal simulation relation between B and FA such that FA simulates B.
The dashed line inside the knowledge of a state in Fig. 5.8(a) visualizes the union of the
knowledge sets of the different states of FA.

Figure 5.8 also points out another advantage of the construction of F . While the
knowledge of F about A can be computed by the simple operations closure and
event, the knowledge of some B about A can (in general) not be derived that

158

5.2. An Asymmetric Characterization of Strategies

simple. For example, the knowledge of the state s2 of the service automaton B
of Fig. 5.8(a) is not equal to the closure of the ?a-event of the knowledge of its
state s1, i.e. k(B,A)(s2) ⊃ closure(event(k(B,A)(s1), ?a)). However, the knowledge
at s2 can be deduced from the simulation relation between B and FA and the
knowledge of FA.

Unfortunately, Lemma 5.2.14 does, in general, not hold for open compositions.
For instance, assume a slightly changed service automaton B′ of our example
service automaton B of Fig. 5.8(a) having only the states s1 and s2, and let
the message channel b be not in the interface of B′. Hence, b is free between
A and B′ and is never added to the multiset M of pending messages in A ⊕ B′

(cp. Definition 3.3.18). Thus, the knowledge of B′ at its state s2 does not contain
the situations [r4, [a, b]] and [r4, [b]], but the situations [r4, [a]] and [r4, []] instead.
Hence, it is not the union of the knowledge sets of FA at its states q2, q4, and q7.

The result of Lemma 5.2.14 for closed compositions A⊕B, however, is sufficient
to formalize the characterization of strategies for a service automaton A by using
the knowledge of F about A.

Theorem 5.2.15 (Characterization of strategies for A by F).
Let A be a service automaton and F be the overapproximation of strategies for
A. Let furthermore B be a service automaton which is interface equivalent to F
and % ⊆ QB ×QF be the minimal simulation relation between B and F .
Then, B is a strategy for A iff for all states qB of B, all (qB , qF) ∈ %, and all
situations [qA,M] of A with [qA,M] ∈ k(F,A)(qF), at least one of the following
conditions is fulfilled:

(i) [qA,M] is transient in A or
(ii) the situation [qB ,M] of B is transient in B or
(iii) qA ∈ ΩA and qB ∈ ΩB and M = []. y

Proof.
The theorem is mainly a reformulation of Corollary 5.1.6 using the property of
Lemma 5.2.14.

Since, according to Lemma 5.2.14, [qA,M] ∈ k(B,A)(qB) iff [qA,M] ∈ k(F,A)(qF)
for some (qB , qF) ∈ %, we can immediately apply Corollary 5.1.6 to infer deadlock
freedom of A⊕B.

From the assumption that B and F are interface equivalent, we conclude that
A⊕B is a closed service automaton. Hence, B is a strategy for A iff at least one
condition is fulfilled for each situation of A in the knowledge sets of F . �

Due to the construction of the overapproximation F for A, the interface equiva-
lence requirement between B and F in the latter theorem implies that the com-
position of A and B is closed. Hence, Theorem 5.2.15 is a characterization of

159

Chapter 5. Operating Guidelines for Services

strategies B for A by using the overapproximation F of strategies for A. That
is, to decide well-behavior of A⊕B, we only have to check conditions between B
and F , A is not needed anymore once F is computed.

Without this theorem, the knowledge of B about A was needed to decide B ∈
Strat(A), which simply means that we had to construct the composition A ⊕
B. With this theorem, the knowledge of B about A can be derived from the
knowledge of F about A and the simulation relation between B and F—without
constructing A⊕B. Because the knowledge of F about A can be derived by the
simple operations closure and event, and the simulation relation between B and F
can be computed efficiently due to the deterministic structure of F , this strategy
characterization is feasible.

For the characterization of strategies according to Theorem 5.2.15, the final states
of F are not considered and therefore have no relevance. We have seen a similar
approach already in Sect. 4.2.2, where the final states of a BSA Bφ are completely
irrelevant for the matching of a service automaton C with Bφ. According to
Definition 5.2.5, a state qK of F is final if the corresponding set of situations K
contains a situation [qA, []] of A representing a final state qA of A and empty
message channels. That way, the composed state [qA, qK , []] is a final state of
A ⊕ F . This, however, is only a beauty constraint and not relevant for deciding
B ∈ Strat(A).

As Theorem 5.2.15 is based on Lemma 5.2.14, it inherits the restriction of the
lemma to closed compositions A⊕B (assured by the condition that B is interface
equivalent to F). This restriction results in the characterization of strategies for a
service automaton A only, instead of characterizing arbitrary service automata B
such that A ⊕ B is deadlock-free in Theorem 5.2.15. However, as already shown
in Sect. 3.5.2, this does not restrict generality of our approach as every pair of
services can be transformed in a way such that their composition is closed.

For a practical application of our strategy characterization for a service according
to Theorem 5.2.15, two other issues with F have to be considered. Firstly, F
may still have infinitely many δ-reachable states. Hence, an implementation of
the construction of F according to Definition 5.2.5 would not terminate in such a
case and thus, the decision procedure introduced by the latter theorem is useless
for practical purposes. Secondly, the knowledge of F is no real abstraction of
the structure of A, and most of the states and transitions of A can usually be
reconstructed from F (see again the example of Fig. 5.4 and the corresponding
discussion).

The upcoming Sects. 5.3 and 5.4 are devoted to these issues. In Sect. 5.3, we
will restrict our strategy characterization to finite-state services. Mainly, this re-
striction will enable us to represent the conditions of Theorem 5.2.15 by Boolean
formulae in Sect. 5.4. Therefore, we can attach to each state q of F a Boolean for-
mula φ(q), which expresses the requirements that a state qB of a service automaton
B must satisfy for B being a strategy for A. The formulae replace the knowledge

160

5.3. Restriction to Finite-State Services

of F , which is discarded once the annotations have been derived. That way, we
get a Boolean annotated service automaton (BSA) Fφ as introduced in Chap. 4
such that Fφ characterizes the set of strategies of A, i.e. Match(Fφ) = Strat(A).
Hence, this BSA serves as an operating guideline OGA of A.

5.3 Restriction to Finite-State Services

The results of the previous section enable us to characterize strategies B for
a service automaton A with the help of the overapproximation F of strategies
for A. However, the presented decision procedure of Theorem 5.2.15, which is
based on checking special conditions for the simulation relation between B and
F , is only of theoretical nature. The fundamental construct used in this theorem,
the overapproximation F , is usually infinite and the need of its construction is
therefore obviously not feasible for practical purposes.

Furthermore, we were able to show that controllability is even undecidable for
services with infinite state space [MSSW08]. However, we considered a stronger
correctness criterion, weak termination, in [MSSW08] than the one, i.e. deadlock
freedom, used in this thesis.

In the rest of this thesis, we follow the approach of [LMW07b] and restrict our-
selves to the characterization of those strategies B for A where the composition
A⊕B is a finite service automaton (cp. Definition 3.3.6), which we claim to be a
realistic assumption in practice. To this end, we assume that all considered ser-
vice automata A and B are finite. Unfortunately, the composition A⊕ B of two
finite service automata A and B is not necessarily finite itself, because infinitely
many pending messages may be accumulated between A and B. Hence, we ad-
ditionally introduce a message bound b, basically limiting the number of pending
messages that each message channel x ∈ MC can carry, and demand b-bounded
communication between A and B in the following. That way, the composition
A⊕B will be guaranteed to have only finitely many reachable states, i.e. be finite
as well. Then, we may canonically derive the notion of a b-strategy for a service.
In the upcoming Sect. 5.4, we will finally show that there is a finite part of F
characterizing all b-strategies B for A—which therefore constitutes the basis of
the operating guideline OGA of a service automaton A.

Recall that bagsb(MC) denotes the set of all those multisets overMC where each
x ∈MC occurs at most b times (cp. Sect. 3.1).

Definition 5.3.1 (b-bounded communication, message bound b).
Let A and B be two service automata and let b ∈ N be a given message bound .

Then, A and B communicate b-bounded if QA⊕B ⊆ QA ×QB × bagsb(MC). y

161

Chapter 5. Operating Guidelines for Services

Please notice that b-bounded communication between A and B alone is also not
sufficient to ensure a finite composition A ⊕ B. Only the combination of requir-
ing finite service automata A and B and b-bounded communication results in
finiteness of A⊕B.

Proposition 5.3.2 (Finite composition).
If two service automata A and B are finite and communicate b-bounded, for some
message bound b ∈ N, then their composition A⊕B is finite. y

The reason for the latter proposition is as follows. By QA and QB being finite
and QA⊕B ⊆ QA ×QB × bagsb(MC) due to b-bounded communication, we know
that QA⊕B is obviously finite as well. Hence, we conclude that A⊕ B is a finite
service automaton.

Remark 5.3.3.
Technically, the latter proposition holds in both directions, i.e. it also holds: if
a composition A⊕ B is finite, then the two service automata A and B are finite
and communicate b-bounded, for some message bound b ∈ N. The reason for this
property lies in the composition definition according to Definition 3.3.18, where
we defined the set of states of the composition A⊕ B of A and B to be equal to
QA ×QB × bags(IioA ∩ IioB).

However, it is possible that the set of internally reachable states of A⊕B may be
finite although the sets of states of A or B are infinite, i.e. it is possible that the
infinite behavior of A and B is restricted by their communication. Nevertheless,
requiring finite service automata is reasonable in practice. y

We assume the message bound b to be given a priori. This number can stem from
practical considerations like limited capacity of the physical message channels,
it can be agreed upon between the parties of a cooperation before they start to
interact, it may be calculated by prior statical analysis of the communication
capabilities of the services, or the number can just be chosen arbitrarily.

With the notions of finite service automata and b-bounded communication, we
may now canonically derive the notion of a b-strategy B for A.

Definition 5.3.4 (b-strategy, Stratb(A)).
A service automaton B is a b-strategy for a service automaton A if

– A and B are finite,
– A and B communicate b-bounded, and
– A⊕B is a closed well-behaving service automaton.

Let Stratb(A) denote the set of all b-strategies for A. y

Analogously, the notion of controllability of a service automaton A extends to the
notion of b-controllability of A.

162

5.3. Restriction to Finite-State Services

Definition 5.3.5 (b-controllability).
A service automaton A is b-controllable for some given message bound b ∈ N if
there exists a b-strategy B for A. y

Obviously, 0-controllability forbids any message exchange and results in merely
putting A and B side by side without any connection.

It is important to notice that each b-strategy B for a service A is a (b+1)-strategy
for A as well. Hence, a b-controllable service is also b′-controllable, for any b′ > b.
On the other hand, for every message bound b ≥ 1, there are services which are
b-controllable, but not (b − 1)-controllable. As an example, consider a service A
which sends b many messages x and then rests in its final state. It is b-controllable
by a mirrored service B receiving all x messages. However, as A sends b many
messages already by itself, A is not (b− 1)-controllable.

There are even services which are controllable but not b-controllable, for any b.
As an example, consider another service automaton A that has one (initial and
final) state q and one sending transition (q, !x, q). Hence, A sends an unbounded
number of x’s by itself. Again, the mirrored service B, which has one (initial and
final) state s and one transition (s, ?x, s), is a strategy for A as their composition
is obviously deadlock-free. However, for each number b, there is a reachable state
of the composition with more than b many x messages pending.

Just as for arbitrary strategies, the set Stratb(A) is infinite if and only if A is
b-controllable, even in the restricted setting of considering only b-strategies. Anal-
ogously, Stratb(A) is empty if and only if A is b-uncontrollable.

All presented service automata in this thesis, as well as their respective composi-
tions are finite. For example, the service automata A and B of Fig. 5.2 commu-
nicate 1-bounded, as can be seen in their composition in Fig. 5.3(a). Hence, A is
b-controllable, for each b ≥ 1.

The service automata A of Fig. 5.7(a) and B of Fig. 5.8(a) communicate 2-
bounded, which can be seen in the knowledge of the state s1 of B where two a
messages are pending between A and B. Hence, A is b-controllable, for each b ≥ 2.
As A sends two a messages already by its own, it is obviously not 1-controllable.

Recall the definition of an operating guideline of a service automaton A given at
the beginning of this chapter in Definition 5.0.1. With the introduction of the
message bound b we derive the notion of b-operating guidelines, characterizing all
b-strategies, for a given message bound b.

Definition 5.3.6 (b-operating guideline, OGb
A).

A BSA Bφ is called b-operating guideline for a service automaton A, denoted
OGb

A, if Match(Bφ) = Stratb(A). y

As done before, we may omit the index A and write OGb if the considered service
automaton A is clear from the context. Furthermore, we will always assume some

163

Chapter 5. Operating Guidelines for Services

message bound b ∈ N to be given in the following. Consequently, we may also
omit the bound b and write OGA for an b-operating guideline of A for some
message bound b.

Before continuing with the characterization of all b-strategies for a service, we
derive the canonical notion of a b-situation of a service automaton.

Definition 5.3.7 (b-situation, situationsb(A)).
Let A be a service automaton, let qA be a state of A, and let M ∈ bagsb(IioA) be
a multiset of messages where each x ∈ IioA occurs at most b times.

Then, [qA,M] is a b-situation of A. Furthermore, let situationsb(A) = QA ×
bagsb(IioA) denote the set of all b-situations of A. y

The set of b-situations of A will be employed in the characterization of b-strategies
in the upcoming section.

5.4 An Operating Guideline Characterization of
Strategies

In this section, we build upon the characterization of (arbitrary) strategies ac-
cording to Theorem 5.2.15 and aim at characterizing all finite strategies that
communicate b-bounded with a given service automaton A (for some given mes-
sage bound b). To this end, we will show that a specific part of F is sufficient to
characterize all b-strategies. We will denote this part of F by Fb and show that
Fb is always finite, i.e. it has a finite set of states and, for each state qK of Fb, K
is finite. For this reason, the restriction to b-strategies enables us to translate the
conditions of Theorem 5.2.15 into Boolean formulae, expressing the requirements
that some B has to fulfill to be a b-strategy for A. That way, we get a Boolean
annotated service automaton Bφ (as introduced in Chap. 4), characterizing all
b-strategies for A, i.e. Match(Bφ) = Stratb(A). It is thus called b-operating guide-
line OGb

A for A. By introducing OGb
A as an abstraction from the conditions in

Fig. 5.6, we derive the operating guideline approach to decide B ∈ Stratb(A) for
a service automaton A by matching B with OGb

A as depicted in Fig. 5.9.

B

. . .

B

OGb
A F b

A A

matching

matching

conditions fulfilled

by construction

b-strategy

by construction

Figure 5.9: Schematic overview of a strategy characterization using the b-operating
guideline OGb

A of A. Matching B with OGb
A according to the BSA matching of Sect. 4.2

suffices to decide B ∈ Stratb(A).

164

5.4. An Operating Guideline Characterization of Strategies

5.4.1 A Characterization of b-Strategies by Fb

We start with presenting a slightly changed definition of the overapproximation
F of strategies for a service automaton A, causing F to have finitely many states
and finite knowledge at each state. Beforehand, we motivate a precondition for
the changed construction of F in the following lemma. It provides a sufficient
criterion for b-uncontrollability of a service automaton A.

Lemma 5.4.1 (Sufficient criterion for b-uncontrollability).
A service automaton A with closure({[q0A, []]}) 6⊆ situationsb(A) is b-uncontrol-
lable. y

Proof.
Let closure({[q0A, []]}) 6⊆ situationsb(A), let B be an arbitrary service automaton
which is interface compatible to A, and let q0B be the initial state of B. From
the composition definition we know that [q, q0B ,M] is an internally reachable
state of A ⊕ B, for each [q,M] ∈ closure({[q0A, []]}). By assumption, there is a
situation in closure({[q0A, []]}) violating the message bound. Hence, there is an
internally reachable state of the composition A⊕B, violating the message bound,
too. Hence, B is no b-strategy for A. �

Applying this lemma, we easily prove that the service automata A of Fig. 5.7(a)
(on page 153) is not 1-controllable. Because the initial state q1’s knowledge K0

of the overapproximation FA of Fig. 5.7(b) contains the situation [r3, [a, a]], it
violates the message bound 1. Hence, K0 = closure({[r1, []]}) 6⊆ situations1(A)
and thus, A is not 1-controllable according to Lemma 5.4.1.

Because we want to characterize b-strategies using F in the following, we can
assume closure({[q0A, []]}) ⊆ situationsb(A) for the construction of F in the fol-
lowing definition.

Definition 5.4.2 (Overapproximation of b-strategies, Fb).
Let A be a finite service automaton where closure({[q0A, []]}) ⊆ situationsb(A).

Then, the overapproximation of b-strategies for A, Fb, is defined as the service
automaton Fb = [Q, Iin , Iout , δ, q0,Ω] with

– Q = {qK | K ⊆ situationsb(A)},
– Iin = IoutA,
– Iout = IinA,
– δ = {(qK , x, qK′) | K,K ′ ⊆ situationsb(A), x ∈ IioA ∪ {τ},

K ′ = closure(event(K,x))},
– q0 = qK0 with K0 = closure({[q0A, []]}), and
– Ω = {qK | K ⊆ situationsb(A), [q, []] ∈ K, q ∈ ΩA}. y

165

Chapter 5. Operating Guidelines for Services

In comparison with the definition of F in Definition 5.2.5 (on page 151), the
only change in the new definition of Fb is the introduction of the message bound
limit for the considered sets K of situations of A and the additional precondition
closure({[q0A, []]}) ⊆ situationsb(A). Mainly, the precondition assures that qK0

is a well-defined state according to the definition of the set of states Q of Fb.
Together with the additional assumption of a finite service automaton A, we
assure finiteness of all components of Fb, as formalized in the following lemma.

Lemma 5.4.3 (Finiteness of Fb and its knowledge).
For each service automaton A, the overapproximation Fb of b-strategies for A is a
finite service automaton and for each state qK of Fb, the knowledge K is finite.y

Proof.
By the assumption of A being finite in Definition 5.4.2, we know that QA is finite.
Together with IioA, and thus bagsb(IioA), being finite, the set situationsb(A)
(cp. Definition 5.3.7) is finite. This directly implies that Fb is finite as well. From
K ⊆ situationsb(A), we further know that each knowledge set K is finite, too. �

In order to exemplify the overapproximation of b-strategies according to Defini-
tion 5.4.2, consider again the overapproximation FA of (arbitrary) strategies of
the service automaton A of Fig. 5.7(a) as depicted in Fig. 5.7(b). As mentioned
above, A is not 1-controllable. Hence, F1

A is undefined. As A is 2-controllable,
the corresponding overapproximation F2

A is defined. In fact, it is equal to FA, i.e.
F2

A = FA. Moreover, FA equals FbA, for all b ≥ 2. The main reason for this is that
A has no input channels and itself sends at most 2 messages a (and only one b).

As an example where only the introduction of a message bound b makes the
overapproximation Fb finite, we recall the service automaton A of Fig. 5.2(a) in
Fig. 5.10(a). The input channel c (or d) of A allows its overapproximation FA of A
(not depicted) to perform arbitrarily many !c-events (or !d-events), causing FA to
have infinitely many δ-reachable states. The corresponding overapproximation F1

A

of 1-strategies for A, in contrast, allows for at most one simultaneously pending
c (or d) message and is therefore finite. It is depicted in Fig. 5.10(b). The figure
shows all (δ-reachable) states qK of F1

A withK ⊆ situations1(A), as well as each x-
labeled transition between states qK and qK′ such thatK ′ = closure(event(K,x)),
for x 6= τ .

Please notice that Fb is not complete anymore (cp. Lemma 5.2.9), i.e. there may
exist a message channel x and a state q of Fb such that q has no present x-labeled
transition. Due to the construction of Fb, however, we know that the x-successor
of q would violate the message bound b in this case. More precisely, only states qK
where K violates the message bound are not part of the overapproximation Fb of
b-strategies compared to the overapproximation F of arbitrary strategies. Hence,
we “lose” only such service automata B which do not communicate b-bounded
with A. This is formalized in the following corollary.

166

5.4. An Operating Guideline Characterization of Strategies

r1

r2

r3

r4

r5

!a

?c

?d

!b

?c

(a) A

q0

[r1, []]
[r2, [a]]
[r4, [b]]

q1

[r1, [d]]
[r2, [a, d]]
[r4, [b, d]]
[r3, [a]]

q2

[r4, [d]]

q3

[r4, [d, c]]
[r5, [d]]

q4

[r4, []]

q5

[r4, [c]]
[r5, []]

q6

∅

q7

[r2, []]

q8

[r2, [d]]
[r3, []]

q9

[r2, [c, d]]
[r1, [d]]

[r2, [a, d]]
[r4, [b, d]]
[r3, [c]]
[r3, [a]]

q10

[r2, [c]]
[r1, []]
[r2, [a]]
[r4, [b]]

!d

?b

?a

?b

?a

!c

!d
!c

!d

!d !c

?a

!c

?a

?b

?b

!d

?a,?b

?a,?b

?a,?b

?a,?b

?a,?b

?a,?b

?a,?b,!c,!d

(b) F1
A

Figure 5.10: (a) The service automaton A of Fig. 5.2(a). (b) The overapproximation
F1

A of 1-strategies for A. For better readability, we omit all τ -loops. However, they
are part of F1

A (as shown in Fig. 5.7(b), for instance). Furthermore, transitions leading
to the empty state q∅ of F1

A are grayed out, and multiple arc labels denote multiple
transitions between two states. Moreover, underlined situations in a knowledge set K
illustrate stable situations of A in F1

A .

Corollary 5.4.4 (Fb simulates all b-bounded communicating B).
Let A be a service automaton and let Fb be its overapproximation of b-strategies.

Then, Fb simulates each service automaton B such that A and B communicate
b-bounded and A⊕B is closed. y

That is, the structure of Fb is rich enough to comprise any b-strategy B for A,
expressed by the respective simulation relation between B and Fb.
Hence, we may apply the conditions of Theorem 5.2.15 to decide B ∈ Stratb(A)
using Fb instead of F and conclude the following corollary.

Corollary 5.4.5 (Characterization of b-strategies for A by Fb).
Let A be a service automaton and let Fb be its overapproximation of b-strategies.

Then, a service automaton B is a b-strategy for A iff B satisfies the conditions of
Theorem 5.2.15 using Fb instead of FA. y

167

Chapter 5. Operating Guidelines for Services

The advantage of Fb over F is justified by Lemma 5.4.3. Whereas F is usually
infinite, Fb is always finite. Fb can still be constructed using the operations
closure and event. Whenever this construction introduces more than b messages
of the same channel, it can be stopped and the currently computed set K can be
skipped, as qK is not needed to characterize b-strategies. That way, we can assure
that the construction of Fb terminates, and Fb is therefore feasible in practice.

However, the second issue motivated at the end of Sect. 5.2.3, i.e. the weak ab-
straction of A by its overapproximation of strategies, still remains. That is, the
usage of Fb enables us to reconstruct A from the knowledge of Fb about A to a
large extend. For this reason, we will translate the conditions on the situations
expressed by Theorem 5.2.15 into a Boolean annotation of the states of Fb in the
following section. Due to this translation, the knowledge of Fb about A is not
needed anymore and can be removed from Fb. Only the structure of Fb, i.e. its
states and transitions, and the annotations are used in the future characteriza-
tion. That way, the reason why B satisfies or violates Theorem 5.2.15 will be
hidden—only the satisfaction or violation as such will be preserved.

5.4.2 A Characterization of b-Strategies by Operating
Guidelines

Recall the three conditions that our strategy characterization according to Theo-
rem 5.2.15 requires for a service automaton B to be a b-strategy for a service au-
tomaton A. For each situation [qA,M] in all knowledge sets of Fb “used” by a state
qB of B, fulfillment of one of the conditions is sufficient to verify B ∈ Stratb(A):

(i) [qA,M] is transient in A or
(ii) the situation [qB ,M] of B is transient in B or
(iii) qA ∈ ΩA and qB ∈ ΩB and M = [].

However, if we fix a service automaton A and check the three conditions for several
service automata B, we can easily see that condition (i) is equally evaluated for
every B—only A itself has influence on the fulfillment of this first condition. Fur-
thermore, considering the fulfillment of condition (ii), FA “knows” each situation
[qA,M] of A for which the situation [qB ,M] of B is checked for being transient.
It is easy to see that only those transitions of B at the state qB can make the
situation [qB ,M] transient in B that are either internal (i.e. τ -labeled) or sending
transitions in B, or that are receiving transitions labeled by some x ∈M . Finally,
the first and the third part of condition (iii) are fixed by A as well, and the second
part can as well be easily expressed as a Boolean value of the state qB of B.

As a motivating example, consider the knowledge sets K1 and K2 about the service
automaton A of Fig. 5.7(a) as depicted in Fig. 5.11. We elaborate on the relation-
ship between the fulfillment of (one of) the three conditions of Theorem 5.2.15

168

5.4. An Operating Guideline Characterization of Strategies

and the structure of a service automaton B in order to derive a Boolean formula
for each knowledge set. This formula equivalently expresses the conditions in the
sense that one of the conditions are fulfilled by B if and only if the formula is
satisfied under the assignment of the currently considered state qB of B.

K1

[r1, []]
[r2, [a]]

[r3, [a, a]]
[r4, [a, a, b]]

[r3, []]
[r4, [b]]

(a) K1

τ ∨ ?b

(b) φK1

K2
[r4, [a, a]]
[r4, []]

(c) K2

(τ ∨ ?a) ∧ (τ ∨ final)

(d) φK2

Figure 5.11: (a) and (c) Two knowledge sets K1 and K2 about the service automaton A
of Fig. 5.7(a). The set K1 is equal to the knowledge set k(q1) of the overapproximation
FA of Fig. 5.7(b). The set K2 equals the knowledge set k(q3) of FA. For convenience,
dead situations of A are underlined in Fig. 5.11.
(b) and (d) Two Boolean formulae that equivalently express the fulfillment of the con-
ditions of Theorem 5.2.15 by the respective knowledge sets. This suggests a translation
of the conditions of into Boolean annotations.

In Fig. 5.11(a), the situation [r1, []] of A is transient in A. Hence, condition (i)
will always be fulfilled by each B which is checked for B ∈ Stratb(A). Hence,
[r1, []] cannot cause B to be no strategy. The same argument holds for the other
situations which are not underlined. However, according to Theorem 5.2.15, at
least one of the three conditions must hold for each knowledge value. Considering
the situation [r4, [a, a, b]], the first condition (i) is not fulfilled as [r4, [a, a, b]] is
stable in A. As M = [a, a, b] is non-empty, also the third condition (iii) cannot be
fulfilled completely. However, as there are an a and a b message pending inM , the
second condition can be fulfilled by a service automaton B if the considered state
qB of B has an internal or a sending transition, or it has an a-labeled or a b-labeled
receiving transition present at qB . Assuming that a and b are the only interface
channels of A, this yields the formula τ ∨ ?a∨ ?b. However, B must additionally
fulfill a condition for the second stable situation [r4, [b]] in this knowledge set.
There, no a is pending, making an a-labeled transition insufficient for B to be a
strategy for A. Hence, the conditions of Theorem 5.2.15 can be translated to the
Boolean formula τ ∨ ?b depicted in Fig. 5.11(b), which we claim to be satisfied by
some B if and only if B fulfills at least one of the conditions of Theorem 5.2.15.
Figure 5.11(c) shows another knowledge set about the service automaton A of
Fig. 5.7(a). Both situations of A in this set are stable, violating the first condi-
tion. The first situation has an a message pending, thus violating also the third
condition. Hence, a service automaton B must fulfill condition (ii) for this situa-
tion. That is, B must either have an internal transition or an ?a-labeled transition

169

Chapter 5. Operating Guidelines for Services

present at its current state qB . Furthermore, B must also fulfill one condition
for the second situation [r4, []] of A. As M is empty in this situation, B cannot
receive any message at this situation. However, as r4 is a final state of A, B can
fulfill condition (iii) for [r4, []]. Hence, the corresponding Boolean formula is a
conjunction of the formulae τ ∨ ?a (for the first situation) and τ ∨ final (for the
second situation).

These considerations suggest the translation of the three conditions of Theo-
rem 5.2.15 into one Boolean formula per state of Fb. Then, each formula “used”
by a state qB has to be satisfied by B to verify B ∈ Stratb(A). That way, the
Boolean formulae are sufficient to decide B ∈ Stratb(A), and the knowledge of
FA is not needed anymore.

Definition 5.4.6 (Canonical Boolean annotation, ψFb).
Let A be a finite service automaton and let Fb be its overapproximation of b-
strategies.

Then, the canonical Boolean annotation of Fb, ψFb , is a mapping ψFb : QFb →
BF where, for each state qK of Fb:

ψFb(qK) =
∧

[qA,M]∈K

(
ψi(qA,M) ∨ ψii(M) ∨ ψiii(qA,M)

)
with

– ψi(qA,M) =

{
true, if [qA,M] is transient in A,
false, otherwise,

– ψii(M) = τ ∨
(∨

x∈IoutFb
x
)
∨
(∨

x∈IinFb ,x∈M
x
)
,

– ψiii(qA,M) =

{
final , if qA ∈ ΩA and M = [],
false, otherwise. y

First, we make the observation that the canonical Boolean annotation at a state
qK of Fb is a negation-free Boolean formula over MC+ according to Defini-
tion 4.1.6 at page 99, as used throughout Chap. 4.

Furthermore, the formula ψFb(qK) at each state qK of Fb is in conjunctive nor-
mal form (CNF), i.e. ψFb(qK) is a conjunction of one clause for each situation
[qA,M] ∈ K. Each such clause consists of three disjunctively connected subfor-
mulae ψi(qA,M), ψii(M), and ψiii(qA,M). For satisfying ψFb(qK), it is therefore
sufficient to satisfy one of the subformulae per clause.

As an example for the canonical Boolean annotations, Fig. 5.12(a) depicts the
overapproximation F2

A of 2-strategies for the service automaton A of Fig. 5.7(a).
As motivated above, F2

A equals the overapproximation FA of arbitrary strategies
of Fig. 5.7(b). Figure 5.12(b) depicts the clauses of the canonical annotation of

170

5.4. An Operating Guideline Characterization of Strategies

ψF2
A
in the order in which the corresponding situations of A occur in the knowledge

of the respective state of F2
A. For instance, the first clause at state q1, true ∨ τ ∨

false, corresponds to the situation [r1, []] of A, which is the first situation in the
knowledge of F2

A at state q1. Because [r1, []] is transient in A, the first subformula
of true∨τ∨false is true; becauseM = [] and IoutF2

A
= ∅, the second subformula is

just τ ; and because r1 is no final state of A, the third subformula equals false. As
another example, the fourth clause at state q1, false∨τ∨?a∨?b∨false, corresponds
to the fourth situation of q1, [r4, [a, a, b]]. Because this situation is stable, the first
subformula is false; because there are an a and a b message pending, the second
subformula is τ ∨ ?a ∨ ?b; and because M 6= [], the third subformula is false.

The canonical annotation ψF2
A
of a state of F2

A is the conjunction of all clauses
listed for this state in Fig. 5.12(b).

q1

[r1, []]
[r2, [a]]

[r3, [a, a]]
[r4, [a, a, b]]

[r3, []]
[r4, [b]]

q2

[r2, []]
[r3, [a]]

[r4, [a, b]]

q3

[r4, [a, a]]
[r4, []]

q4

[r3, []]
[r4, [b]]

q5

[r4, [a]]
q7

∅

q6

[r4, []]

?a ?b

?a ?b ?a ?b

?b ?a

?b
?a
?a

?b

?a

?b

τ

τ τ

τ τ τ

τ

(a) F2
A for A

q1 :
true ∨ τ ∨ false
true ∨ τ ∨ ?a ∨ false
true ∨ τ ∨ ?a ∨ false
false ∨ τ ∨ ?a ∨ ?b ∨ false
true ∨ τ ∨ false
false ∨ τ ∨ ?b ∨ false

q2 :
true ∨ τ ∨ false
true ∨ τ ∨ ?a ∨ false
false ∨ τ ∨ ?a ∨ ?b ∨ false

q3 :
false ∨ τ ∨ ?a ∨ false
false ∨ τ ∨ final

q4 :
true ∨ τ ∨ false
false ∨ τ ∨ ?b ∨ false

q5 :
false ∨ τ ∨ ?a ∨ false

q6 :
false ∨ τ ∨ final

(b) ψF2
A

Figure 5.12: (a) The overapproximation F2
A of 2-strategies for the service automaton

A of Fig. 5.7(a), together with the knowledge k of F2
A about A. (b) The clauses of

the canonical annotation of F2
A in the order in which the situations occur in F2

A . The
annotation ψF2

A
of the state q1 of F2

A (i.e. the conjunction of all depicted clauses) is
equivalent to the formula φK1 = τ ∨ ?b of Fig. 5.11(b). The annotation of the state q3 is
equivalent to the formula φK2 = (τ ∨ ?a) ∧ (τ ∨ final) of Fig. 5.11(d).

171

Chapter 5. Operating Guidelines for Services

It is easy to see in Fig. 5.12 that the knowledge k(q1) is equal to the knowledge
set K1 of Fig. 5.11(a). Consequently, the canonical annotation ψF2

A
(q1) of the

state q1 (cp. Fig. 5.12(b)) is equivalent to the Boolean formula φK1 = τ ∨ ?b of
Fig. 5.11(b). Analogously, the knowledge set k(q3) equals the knowledge set K2
of Fig. 5.11(c); and the canonical annotation ψF2(q3) is equivalent to the Boolean
formula φK2 = (τ ∨ ?a) ∧ (τ ∨ final) of Fig. 5.11(d).

Intuitively, the subformula ψi(qA,M) of the formula ψFb(qK) corresponds to con-
dition (i) of Theorem 5.2.15 (as recalled at the beginning of this section). In
case the situation [qA,M] is transient in A, the first condition of the theorem
is fulfilled, and the other conditions are irrelevant. Accordingly, ψi(qA,M) is a
tautology in this case (expressing that there are no further requirements for B).
In case [qA,M] is stable in A, the first condition is violated and (one of) the
other conditions must be fulfilled by B. Correspondingly, the Boolean formula
ψi(qA,M) is unsatisfiable, i.e. a contradiction, in this case.

The second subformula ψii(M) corresponds to condition (ii) of Theorem 5.2.15.
It expresses the constellations making the situation [qB ,M] of B transient in B.
Either, B has a present internal transition or sending transition at qB , or B has
a present x-labeled receiving transition at qB with x ∈M . One such transition is
sufficient to fulfill condition (ii).

The third subformula ψiii(qA,M) corresponds to condition (iii). Only if A is in
a final state qA and the multiset of pending messages is empty, then B can fulfill
condition (iii) if qB is also a final state of B. Hence, we set ψiii(qA,M) to final
only if qA ∈ ΩA and M = []. Otherwise, condition (iii) is violated anyway.

In case of the empty state q∅ of an overapproximation Fb, there is no situation
[qA,M] ∈ K = ∅ at this state. Hence, the canonical annotation of Fb at state
q∅, ψFb(q∅), is always equal to the empty conjunction. Recall that the empty
conjunction is a tautology by definition. Hence, the canonical annotation of the
empty state q∅ is the formula true, for all service automata A.

It is easy to see in Fig. 5.12(b) that there is no clause depicted for the state q7 of
F2

A, because there is no situation in the knowledge at q7—this state is the empty
state of F2

A. Hence its annotation ψF2
A
(q7) is true.

Remark 5.4.7 (Non-empty, true-annotated state of Fb).
It is easy to construct a service automaton A where Fb has a state qK such that
K consists of a single, transient situation [q, []] of A. In this case, the canonical
annotation ψFb(qK) at the state qK is equivalent to true —just as the canonical
formula of the empty state. However, qK is obviously not the empty state (due
to the situation [q, []] in K). Hence, not every true-annotated state of Fb is the
empty state. y

As motivated above, the canonical annotation at a state qK of Fb corresponds to
the conditions of Theorem 5.2.15. The next theorem formalizes this connection.

172

5.4. An Operating Guideline Characterization of Strategies

Basically, it states that the canonical annotations are satisfied if and only if the
conditions are fulfilled for each situation in the respective knowledge setK. Hence,
satisfaction of the annotations can be used to decide B ∈ Stratb(A), even without
considering the knowledge of Fb about A. To this end, we employ the assignment
βB of a service automaton B as defined in Chap. 4 (Definition 4.2.4 on page 103)
to evaluate the Boolean formulae of Fb.
Theorem 5.4.8 (Formula characterization of b-strategies).
Let A be a service automaton, Fb be the overapproximation of b-strategies for A,
and B be a service automaton which is interface equivalent to Fb. Let βB be the
assignment of B, and % ⊆ QB ×QFb be the minimal simulation relation between
B and Fb.
Then, B is a b-strategy for A iff for all states qB of B and all state qK of Fb with
(qB , qK) ∈ %: βB(qB) satisfies the annotation of qK , i.e. βB(qB) |= ψFb(qK). y

We prove the theorem by showing that there exists a deadlock [qA, qB ,M] in
A⊕B if and only if βB(qB) 6|= ψFb(qK) for some state qK of Fb with (qB , qK) ∈
%. Therefore, we reduce the violation of the annotation ψFb(qK) to the three
conditions of Lemma 5.1.5.

Proof.
Let, throughout this proof, k denote the knowledge of Fb about A and let, for

each state qK of Fb, ψFb(qK) =
∧

[qA,M]∈K

(
ψi(qA,M) ∨ ψii(M) ∨ ψiii(qA,M)

)
be defined as in Definition 5.4.6.
(→): Let [qA, qB ,M] be a deadlock of A ⊕ B. By Definition 5.1.3, we have
[qA,M] ∈ k(B,A)(qB). By Lemma 5.2.14, we further know that there is a state
qK of Fb with (qB , qK) ∈ % and [qA,M] ∈ k(qK). We show that qB violates the
annotation of qK , i.e. (a) βB(qB) 6|= ψi(qA,M) and (b) βB(qB) 6|= ψii(M) and (c)
βB(qB) 6|= ψiii(qA,M).
By [qA, qB ,M] being a deadlock and Lemma 5.1.5, we know that (i) [qA,M] is
stable in A, (ii) [qB ,M] is stable in B, and (iii) qA /∈ ΩA or qB /∈ ΩB or M 6= [].
From (i) and the construction of ψi(qA,M), we know ψi(qA,M) = false, and
hence, we conclude (a).
From (ii) and the definition of βB(qB), we know βB(qB)(x) = false for x = τ , for
all x ∈ IoutB , and for all x ∈ IinB with x ∈ M . Hence, every literal of ψii(M) is
set to false by βB(qB), and hence, we conclude (b).
From (iii) and the construction of ψiii(qA,M), we know either ψiii(qA,M) = false
(in case qA /∈ ΩA or M 6= []), or βB(qB)(final) = false (in case qB /∈ ΩB). In both
cases we conclude (c).
(←): Let βB(qB) 6|= ψFb(qK) for some state qK of Fb with (qB , qK) ∈ %. We show
that there exists a situation [qA,M] ∈ k(B,A)(qB) with [qA, qB ,M] is a deadlock
of A⊕B. By Lemma 5.2.14, it suffices to show that [qA,M] ∈ k(qK).

173

Chapter 5. Operating Guidelines for Services

By βB(qB) 6|= ψFb(qK) and the construction of ψFb(qK), we know that there
must exist a situation [qA,M] ∈ k(qK) such that (a) βB(qB) 6|= ψi(qA,M) and
(b) βB(qB) 6|= ψii(M) and (c) βB(qB) 6|= ψiii(qA,M).

From (a) we conclude that [qA,M] must be stable in A. From (b) we know that
all literals of ψii(M) must be set to false by βB(qB), and hence we conclude
[qB ,M] is stable in B. From (c) and the construction of ψiii(qA,M), we know
either βB(qB)(final) = true, but ψiii(qA,M) = false; or ψiii(qA,M) = final , but
βB(qB)(final) = false. In the first case, qA /∈ ΩA or M 6= [], in the second case
we know qB /∈ ΩB .

Hence, all three conditions of Lemma 5.1.5 are fulfilled and hence, [qA, qB ,M] is
a deadlock of A⊕B. �

With this result, we are finally able to characterize all b-strategies B for a given
service automaton A (and a given message bound b) using the ψFb -annotated
overapproximation Fb of b-strategies for A.
We will see that Fb and ψFb constitute a BSA as introduced in Chap. 4. Hence,
it is a suitable candidate for our main goal, the operating guideline OGA of A.
To emphasize the redundancy of the set K of a state qK of Fb, however, we will
not call this BSA operating guideline here, but introduce another formalization
in the upcoming Corollary 5.4.10.

Obviously, the annotation at a state q of Fb can be simplified drastically by ap-
plying the syntactical simplifications as described in Remark 4.1.12 (on page 101).
There even exist several obvious optimizations already during the construction of
ψFb . A clause that corresponds to a transient situation of A in K will always be
equivalent to true, and adds no information to the CNF at the state qK . Hence,
all transient situations could be skipped completely in Definition 5.4.6. If thereby
no clause at all is added to a CNF, it is the empty conjunction and is itself equiv-
alent to true; as it would be when adding all these true clauses. Furthermore,
the false elements added to a clause due to a stable situation or a non-final state
of A can be skipped as well, because they add no information either. Due to the
literal τ added by the subformula ψ(ii), a clause can never become empty.

Notation 5.4.9.
For the rest of this thesis, we will simplify the canonical annotation ψFb(qK) of a
state qK of Fb if possible. In particular, we omit true clauses and false elements of
a clause. Furthermore, we will not depict the τ -loops (qK , τ, qK) at each state qK
of Fb, as well as the τ literals in the annotations, as both can always be derived
canonically from the figures. Analogously, we will omit the empty state q∅ if it is
not important in the current context. Again, the empty state can canonically be
derived from the figures. y

Now we are ready to formalize the notion of the canonical operating guideline
OGA for A, which is derived from Fb and ψFb .

174

5.4. An Operating Guideline Characterization of Strategies

It is easy to see that Fb is a deterministic service automaton according to Defini-
tion 3.3.8. Furthermore, the canonical annotation ψFb of Fb is obviously a valid
Boolean annotation to the states of Fb. Hence, Fb and ψFb constitute a BSA
according to Definition 4.2.1. Together with Theorem 5.4.8, we conclude:

Corollary 5.4.10 (Canonical operating guideline, OGA).
Let b ∈ N be some given message bound and let A be a service automaton with
closure({[q0A, []]}) ⊆ situationsb(A). Let furthermore Fb be the overapproxima-
tion of b-strategies for A and ψFb be the canonical annotation of Fb.
Let B be a service automaton which is isomorphic to Fb under isomorphism h and
let φ : QB → BF be a Boolean annotation of B defined as φ(qB) = ψFb(h(qB)),
for each state qB of B.

Then, OGb
A = Bφ serves as b-operating guideline for A according to Defini-

tion 5.3.6, i.e. Match(OGb
A) = Stratb(A). Thus, OGb

A is called the canonical
operating guideline for A under message bound b.

For a service automaton A with closure({[q0A, []]}) 6⊆ situationsb(A), we fix an
empty BSA as its canonical operating guideline OGb

A. y

According to Corollary 5.4.10, the semantics of the BSA OGb
A for A is the set of

b-strategies for A, i.e. OGb
A characterizes the set Stratb(A). Again, we will write

OGA if the message bound b is not important in the current context.

The use of a new service automaton B in the previous corollary emphasizes the
redundancy of the knowledge of Fb about A. Only the annotations are needed to
decide B ∈ Stratb(A) once they are derived from the knowledge. Consequently,
the knowledge can be discarded to hide the internal structure of A. Besides the
finiteness of OGA, this is the second advantage of OGA over the automaton FA
of Sect. 5.2.

To exemplify the matching of a service automaton with an operating guideline,
we repeat the service automaton A of Fig. 5.7(a) in Fig. 5.13(a). Figure 5.13(b)
depicts the canonical operating guideline OGA which is computed from A’s over-
approximation F2

A of Fig. 5.12(a). The Boolean annotations of OGA replace the
knowledge of F2

A. In Fig. 5.13(c), we show the service automaton B of Fig. 5.8(a)
for A again. This time, the assignment βB(qB) of a state qB of B is depicted inside
the state qB (instead of B’s knowledge about A). As done earlier, the elements
which are set to false are not listed in Fig. 5.13(c). It is easy to see that B does
not match with OGA as it already violates the initial state q1’s annotation ?b in
its state s1. Hence, B is no strategy for A. We could also verify this using the
knowledge of B about A, for instance. Checking the conditions according to one
of the characterizations that make use of this knowledge, however, would have
revealed a concrete deadlock [r4, s1, [b]] in A⊕ B. Using the annotations instead,
only the fact that B must have a present ?b-labeled transition in its state s1 for

175

Chapter 5. Operating Guidelines for Services

being a strategy for A is revealed, which we claim to be a necessary information
for deciding deadlock freedom of the composition.

r1

r2

r3

r4

!a

!a

!b

τ

(a) A

q1: ?b

q2: ?a ∨ ?b q3: ?a ∧ final

q4: ?b q5: ?a

q6: final

q7: true

?a ?b

?a ?b ?a ?b

?b

?a ?b
?a

?a
?b

?a

?b

(b) OGA

s1

?a → true

s2

?a → true
?b → true

s3

?a → true
final → true

?a

?b

?a

?a

(c) B with βB

Figure 5.13: (a) The service automaton A of Fig. 5.7(a). (b) Its 1-operating guideline
OGA, computed from the overapproximation F2

A of Fig. 5.12(a). For better readability,
we omit the τ -loops of F2

A for OGA. (c) The service automaton B of Fig. 5.8(a) with its
assignment βB(qB) listed inside qB . Already in the initial state s1 of B we can see that
B does not match with OGA as the annotation ?b of q1 is not satisfied by βB(s1).

As the operating guideline OGA for a service automaton A is a BSA according to
Chapter 4, we can apply all the results presented in that chapter to OGA as well.
That is, we can normalize OGA and may decide strategy inclusion of two services
A and A′ by checking the preorder relation between their operating guidelines,
i.e. we may check OGA v OGA′ . Furthermore, we can consider the equivalence
of operating guidelines or even minimize the canonical operating guideline OGA.
Hence, each other BSA which is equivalent to the canonical operating guideline
OGA of A may serve as a valid b-operating guideline according to Definition 5.3.6
as well.
The particular need for a minimization of operating guidelines is illustrated by
the following example. It shows that two states qK and qK′ of the intermediate
Fb with different knowledge sets K and K ′ can result in equivalent annotations,
which itself may result in equivalent states q and q′ of OGA. These states can be
merged under preservation of the semantics of OGA (cp. Sect. 4.5.3). As the set
situationsb(A) may become quite large, there are potentially many states which
can be merged. This may result in quite a lot of reduction by the minimization of
operating guidelines constructed from Fb. Furthermore, merging different states
of OGA yields an even greater abstraction of the internal structure of A.
To this end, consider the service automaton A′ of Fig. 5.14(a). Its overapproxima-
tion FA′ of b-strategies for any b ≥ 2 is depicted in Fig. 5.14(b). Its states qK = q2

176

5.4. An Operating Guideline Characterization of Strategies

and qK′ = q3, for instance, obviously have different knowledge sets K and K ′,
respectively. However, as FA′ can at most receive a message a, b, or c—and there
is at least one situation with an a, b, or c message currently pending in both K
and K ′—the canonical annotation yields ψFA′ (q2) = ?a ∨ ?b ∨ ?c = ψFA′ (q3).
Analogously, the canonical annotation of the states q5, . . . are all equal to final.
Hence, the operating guideline OGA′ computed from FA′ looks exactly like the
BSA presented in Fig. 4.18(a) (on page 134). Hence, the equivalently minimized
OG is isomorphic to the minimized BSA of Fig. 4.18(b), which is significantly
smaller than the computed OG according to Corollary 5.4.10.

Hence, we suggest to minimize each operating guideline after computation.

r1

r2

r3

r4

r5 r6 r7

r8
r9

r10

r11 r12 r13

!a !b !c

!a !b !c

!a
!b

!c

!a !b !c

(a) A′

q1

[r1, []]
[r2, [a]], [r3, [b]], [r4, [c]]

[r5, [a, a]], [r8, [b, a]], [r11, [c, a]]
[r6, [a, b]], [r9, [b, b]], [r12, [c, b]]
[r7, [a, c]], [r10, [b, c]], [r13, [c, c]]

q2

[r2, []], [r7, [c]]
[r5, [a]], [r8, [b]]
[r6, [b]], [r11, [c]]

q3

[r3, []], [r9, [b]]
[r6, [a]], [r10, [c]]
[r8, [a]], [r12, [c]]

. . .

q5

[r5, []]

q6

[r6, []]
[r8, []]

.

q10

[r10, []]
[r12, []]

?a ?b ?c

?a ?b ?c ?a ?b ?c

(b) FA′

Figure 5.14: Illustration for the need of a minimization of an OG. (a) A service au-
tomaton A′ sending two out of the three messages a, b, and c. (b) The overapproximation
FA′ (for any message bound b ≥ 2). In FA′ , the states q2, q3, and q4 (not depicted)
result in the canonical annotation ?a∨?b∨?c, whereas the states q5, . . . , q13 result in the
annotation final. Hence, the states q2, q3, and q4 are equivalent to each other, as well
as the state q5, . . . , q13. Hence, the OG computed from FA′ can be reduced drastically.

The construction of the b-operating guideline OGA of a service A has been pro-
totypically implemented in our service analysis tool Fiona. We refer to Chap. 7
for a presentation of the implementation as well as a case study showing the com-
putability of operating guidelines for real-world services. We will compare the
efforts for computing the operating guideline OGA of A and matching several
services B with OGA on the one hand with the efforts to verify the absence of
(reachable) deadlocks in the composition B ⊕ A for each service B on the other

177

Chapter 5. Operating Guidelines for Services

hand. This will justify the operating guideline approach to efficiently decide be-
havioral compatibility of services as sketched in Fig. 5.9.

5.5 Possible Variants of OG Definitions

As it was done for our formal representation of services in Chap. 3 and for BSAs
in Chap. 4, we will motivate some relevant design decisions that we made for
introducing operating guidelines in this chapter. We will present and discuss
other possibilities and investigate the implications thereof.

5.5.1 Strategy Notion for Non-Closed Compositions

In Sects. 3.2.3 and 3.3.3, respectively, the behavioral correctness notion of well-
behavior of a service has been defined for closed services only. Hence, the oper-
ating guideline OGA of A characterizes only service automata B where A⊕B is
closed. As we have shown in Sect. 3.5.2, this distinction between open and closed
compositions does not restrict generality as every pair of services A and B can be
transformed in a way such that their composition is closed.

In this section, however, we discuss the changes needed for directly characterizing
strategies B for A where the composition A ⊕ B is again an open service au-
tomaton, i.e. where A and B have free interface channels (cp. Definition 3.3.16).
Basically, to characterize such open strategies B for A, the matching procedure
between B and OGA must be adjusted to tolerate the free channels.

Tolerating Free Channels

If B has a smaller interface than A (in the sense that each free channel belongs to
A), then such an open composition does not introduce any trouble, and both the
computation of OGA and the matching procedure can be used without change—
only the precondition of interface equivalence in Definition 4.2.5 has to be dropped.

If B has a greater interface than A, however, then OGA does not simulate B any-
more. To overcome this problem, two approaches can be used. On the one hand,
one could fix a finite name space MC such that B can at most have additional
channels x ∈ MC. Then, the computation of FA and hence OGA can canoni-
cally be extended to include all such channels. This, however, would potentially
increase the size of the operating guideline OGA significantly, which we think is
not feasible. On the other hand, one could tolerate such additional channels of B
during the matching. As the interface of OGA is fixed, each transition of B not
present in OGA can uniquely be distinguished as a free channel or as a transition
which is not allowed at this state. Hence, the simulation relation criterion of

178

5.5. Possible Variants of OG Definitions

the matching procedure can be relaxed easily. However, such a message is never
added to the multiset of pending messages in the composition of A and B and
therefore the matching of B with OGA cannot assure that the message bound is
not violated for the additional channels.

As an example, consider the service automaton A and its corresponding canonical
operating guideline OGA under message bound b = 1 in Fig. 5.15 (this time de-
picted with the knowledge of FA). Assume b /∈ IioA. Obviously, A is 1-controllable
by a service that sends one a and then rests in its final state, for instance (which
can be seen easily by considering OGA). The service automaton B of Fig. 5.15(c),
however, has the possibility to also send two b messages. As b is free between A
and B, it occurs as a transition label in their composition A ⊕ B in Fig. 5.15(d).
Obviously, A and B communicate 1-bounded—there is no state of A⊕B with more
than one pending message. However, curiously, the composed service automaton
A⊕B itself is not 1-controllable as it sends two b’s (which is now in the interface
of A ⊕ B) by itself. This effect should be avoided by introducing a scope of the
message bound for the currently considered composition, for instance. That is,
the message bound b is considered for the composition A⊕B only. For a further
composition (A⊕B)⊕ C, a new message bound b′ (possibly smaller than b) has
to be considered.

r1

r2

?a

(a) A

q1: !a

[r1, []]

q2: final

[r1, [a]]
[r2, []]

!a

(b) OGA with knowledge

s1

s2 s3

s4

!a !b

!b

(c) B

[r1, s1, []]

[r1, s2, [a]]

[r2, s2, []]

[r1, s3, []]

[r1, s4, []]

τ

τ

!b

!b

(d) A⊕ B

Figure 5.15: A service automaton A with its operating guideline OGA. Tolerating
the free channel !b in the matching of the service automaton B with OGA yields a
curious result. B matches with OGA although A⊕ B has a deadlock, and the composed
service automaton A ⊕ B is 1-uncontrollable although A is 1-controllable and A and B
communicate 1-bounded.

Additionally, A ⊕ B has an internally reachable deadlock, [r1, s4, []]. That is, the
tolerating matching procedure must nevertheless reject the service automaton B,
which cannot be evaluated by the annotations of OGA so far. Hence, a present
sending transition of a service automaton B at a state qB must be tolerated if
and only if qB matches only with the empty state of OGA.

Due to the additional need for a distinction between these cases, we decided to use
the strict strategy notion in this thesis and demand a closed composition A⊕B.

179

Chapter 5. Operating Guidelines for Services

Due to the availability of the transformation of an open composition into a closed
one as described in Sect. 3.5.2 (on page 86), this assumption does not restrict
generality of our approach.

5.5.2 Other Correctness Criteria

The correctness criterion considered in this thesis is deadlock freedom of the com-
position A ⊕ B of two service automata A and B. However, there are plenty of
other, mostly stricter, correctness criteria, e.g. livelock freedom or weak termi-
nation (i.e. deadlock freedom and livelock freedom) that can be considered for
correct service interaction.

Note that for services with acyclic behavior, weak termination and deadlock free-
dom coincide.

In general, the consideration of other correctness criteria yields the notion of an
X-strategy, where X denotes the respective correctness notion (as introduced
in [Wol09]). For each X, however, a completely different approach may be needed
to characterize all X-strategies.

For weak termination, for instance, a BSA as introduced in Chap. 4 is insufficient
as a characterization of all weak-termination-strategies. One can easily construct
two service automata A and A′ such that each service automaton B has equal
knowledge about A and A′, but A is weak-termination-uncontrollable, whereas
A′ is weak-termination-controllable. Hence, a characterization of such strategies
by Boolean formulae as proposed in this chapter is insufficient.

A different approach, called fragment approach, tries to solve this issue [SW08].
Basically, a fragment corresponds to a state qK of our overapproximation FA.
Additionally, qK stores reachability information between the situations of A inside
the knowledge set K, as well as reachability information between the situations of
different knowledge sets K and K ′. Then, the new matching procedure consists of
one step checking for deadlocks (as done in this thesis) and a second step involving
model checking for livelocks. The major drawback of this approach is the need
for storing detailed information about the internals of the service A, as well as
the additional model checking step.

5.6 Related Work

The term strategy, introduced in Chap. 3, already suggests a control-theoretic
point of view of the behavioral compatibility relation between two services A and
B. That is, we may see B as a controller for A imposing well-behavior of A⊕B.

180

5.6. Related Work

Accordingly, the constructions presented in this chapter can, in fact, be seen as a
variant of controller synthesis for discrete event systems (DESs). Controller syn-
thesis approaches consider a plant which has to be controlled, a controller which
may control the plant in different ways, and a target property of the composed
system of plant and controller. Basically, the controller may hinder the plant to
perform specific events if this would result in a violation of the target property.
Different settings are considered in which the controller may have only limited
access to the plant (i.e. there are controllable and uncontrollable events), limited
knowledge (i.e. there are observable and unobservable events), the controller can
be most permissive (making as few as possible restrictions to the events of the
plant) or not, and plant and controller might either be composed synchronously
or asynchronously.

In our terms, the plant is the service automaton A for which the operating guide-
line has to be computed, the controller is the overapproximation F of strategies
for A, and the target property is deadlock freedom of the composition. The set-
ting of this thesis employs non-deterministic automata with partial observability
(as the concrete current state of the controlled service automaton A is hidden for
the controller F) and uncontrollable events (as F may only control A by (not)
sending messages to A or may only receive messages from A to observe that some
transition of A must have sent this message).

Whereas there exist lots of papers on controller synthesis for DESs (see [RW87,
CL99], for instance), and even for Petri nets (see [HKG97], for an extensive
overview), most of the approaches consider either full observability or full control-
lability (e.g. [HGZ96]), very restricted classes of controlled systems (as marked
graphs [DX03, GRX03] or state machine Petri nets [BBB95]), or very general
properties of the target system (like enforcement of arbitrary µ-calculus proper-
ties [PR05]).

To the best of our knowledge, there is no controller synthesis approach considering
exactly our setting. Furthermore, controller synthesis is at most suited to con-
struct one (possibly most permissive) strategy for a service. A characterization
of all strategies is out of scope of these approaches.

Further related work considers extensions of our original operating guideline ap-
proach. In [LW09], the authors present a representation of operating guidelines
as a Petri net, i.e. a Petri net operating guideline. To this end, they apply the
theory of regions concept to compactly represent the structure of the operating
guideline OGN of a service net N as a service net M . Obviously, M is a strategy
for N by construction. Furthermore, [LW09] shows how to represent the Boolean
annotations of OGN by three sets of markings of the Petri net operating guideline
M . A new matching procedure between another service net M ′ with the Petri
net operating guideline M now requires to construct the state spaces of M ′ and
M (for checking the simulation relation) and to check certain conditions about
which marking of M ′ may occur in combination with a marking of one of the

181

Chapter 5. Operating Guidelines for Services

three sets stored for M ′ (replacing the annotation evaluation). [LW09] shows a
case study illustrating that (classical) operating guidelines can be represented by
much smaller Petri net operating guidelines. However, they lack a case study
comparing the matching efforts between both approaches. In any case, the ap-
proach sets on top of the operating guidelines approach as presented in this thesis
as it is only a different representation of OGN and requires the computation of
OGN in a preliminary step.

Another extension considers a stronger behavioral compatibility notion, i.e. weak
termination of the composed services [WSOD09]. Therein, the authors show how
to construct a set of fragments which allows for a characterization of all strategies
B for A such that the composition A⊕B is deadlock-free and livelock-free. That
is, from every reachable state of A ⊕ B, a final state of A ⊕ B is reachable.
However, the characterization is substantially different from the one presented in
this thesis. That is, given a querying service B, the authors propose to construct
a state space of the composition B ⊕A′ where A′ is basically an abstract version
of the service A itself, represented by the fragments. Afterwards, the composition
has to be checked for the presence of lifelocks using standard model checking
techniques. Whilst the result is a strictly stronger compatibility notion than the
one presented here, the approach needs to represent the internal structure of the
service A (at least in an abstract way) and the matching is by far more difficult
and time consuming than the matching procedure in this thesis.

5.7 Concluding Remarks

In this chapter, we have presented the construction of a special Boolean annotated
service automaton, called operating guideline OGA for A, that characterizes the
set of b-strategies for a given service A, i.e. the set Stratb(A). Hence, OGA can be
used to decide whether two services A and B are behaviorally compatible before
both services are bound and start to interact.

The computation of OGA is based on two simple operations on setsK of situations
of A, closure(K) and event(K,x), which are used to construct the underlying ser-
vice automaton F of OGA. Furthermore, we were able to translate the conditions
of the main Theorem 5.2.15 for the characterization of strategies B for A by F
into a Boolean annotation ψ to the states of F in case of characterizing only finite
strategies.

Hence, checking whether or not B ∈ Strat(A) reduces to the simple matching
problem B ∈ Match(OGA), introduced already in Chap. 4.

The major advantage of using the operating guideline OGA of A to decide B ∈
Strat(A) is twofold. Firstly, the constant construction effort to compute OGA

easily pays off if a number of B’s are checked for their strategy relationship with
A, because OGA has to be constructed only once, and the matching between

182

5.7. Concluding Remarks

B and OGA is by far more efficient than constructing A ⊕ B and checking its
state space for deadlocks. Secondly, the operating guideline of A reflects only the
requirements that B must meet to be a strategy for A. That way, the reason why
B is (or is not) a strategy is hidden—only the fact as such is preserved.

Finally, operating guidelines are BSAs as introduced in Chap. 4. Hence, all results
presented there hold for operating guidelines as well. That is, we may normalize
operating guidelines, consider the inclusion of the characterized sets of services,
or the equivalence of services with respect to their strategies. Furthermore, the
operating guideline OGA of a service automaton A can be minimized, resulting
in another, equivalent operating guideline for A, which is possibly much smaller
than the original one. Moreover, merging different states of OGA yields an even
greater abstraction of the internal structure of A.

In Chap. 6, we will consider possible applications of operating guidelines in differ-
ent research areas in the context of services in detail. These areas comprise service
discovery, substitutability of service, and the generation of behavioral adapters.

Chapter 7 is then devoted to present the implementation of the construction of
operating guidelines (and all other results presented in this Part II of the thesis)
in the tool Fiona. Furthermore, we present a case study showing the practical
applicability of operating guidelines for the discovery of behavioral compatible
services.

183

Part III

Applications and
Implementation

Operating guidelines can be applied in a variety of research areas in the context of
behavioral correctness of service interaction. These applications include, but are
not limited to, service discovery, substitutability of services, and the generation of
behavioral adapters between behaviorally incompatible services. In this part, we
briefly introduce these research areas and show how operating guidelines can be
helpful to support the solutions in the respective area. Furthermore, we present
Fiona, a tool to construct operating guidelines, to match services with operating
guidelines, to normalize, to minimize operating guidelines, and many more.

6 Applications of Operating
Guidelines

In the previous chapters, we have introduced BSAs as general constructs to charac-
terize some set of services and operating guidelines as special BSAs to characterize
all strategy services R for a given service S.

This chapter is devoted to exemplify the applicability of operating guidelines in the
paradigm of service-oriented computing. We will show that operating guidelines
constitute a flexible and convenient artifact useful in a variety of analysis questions
in this context. To this end, we will apply operating guidelines to approach the
open research questions presented in Sect. 1.3.

In particular, we consider how operating guidelines can be employed in the dis-
covery of behaviorally compatible published services by a client in Sect. 6.1, we
present decision procedures to decide basic service substitutability notions by com-
paring the corresponding operating guidelines of the services in Sect. 6.2, and we
exemplify the use of operating guidelines for the synthesis of behavioral adapters
in Sect. 6.3. Finally, Sect. 6.4 concludes this chapter.

6.1 Service Discovery

As introduced in Sect. 1.3, service discovery in an SOA addresses the question
whether there exist published services in the service registry that satisfy the spec-
ified search criteria of a client. Behavioral service discovery refines this question
by considering only those published services that are behaviorally compatible to
the client service. For being able to decide behavioral compatibility, we propose
to publish the operating guidelines of the provider services to the registry. The
operating guideline OGS of a service S then serves as a description of the behavior
of S that can be used to decide behavioral compatibility of some client service R
with S.

A comprehensive approach to service discovery taking into account behavioral,
semantical, and non-functional aspects of services is an open research question

187

Chapter 6. Applications of Operating Guidelines

crucially important for the success of service-orientation [PTDL08].

The whole process of service brokering under support of operating guidelines
comprises the three steps of (1) computing the operating guideline OGS of S, (2)
publishing the computed operating guideline OGS , and (3) discovering a provider
service S which is behaviorally compatible to a querying client’s service R by
using the published operating guideline OGS . These three steps are reasonably
organized as follows.

6.1.1 Computation of Operating Guidelines

Given a newly created provider service S which shall be made publicly available,
the first service brokering step considers the computation of the operating guide-
line OGS of S. As described in Chap. 5, the OG computation is directly based
on the knowledge values of S and the operations closure and event. That is,
the computation of operating guidelines requires detailed knowledge of the inner
structure of S. As this kind of information is often subject to trade secrets, the
responsible SOA role to perform the OG computation step is usually the service
provider of the service S itself.

As the knowledge values are only needed during the computation of the operating
guideline OGS of S, they can be discarded once the computation of OGS is
finished. Then, OGS represents the canonical operating guideline of S according
to Corollary 5.4.10 and hides all relevant internals of S. Only the fact that a
client service satisfies or violates the operating guideline is preserved—the reason
why is hidden. Accordingly, OGS can then be published to the registry without
interfering with privacy issues.

Another advantage of the computation of operating guidelines by the service
provider is that the computational efforts for the OG construction are spent at
design time. At this stage, investing the time and memory efforts needed to
compute operating guidelines is reasonable.

6.1.2 Publishing of Operating Guidelines

The second service brokering step is to publish the computed operating guideline
to the service registry. As the operating guideline OGS of S contains enough
information to decide behavioral compatibility between a client service R and the
provided service S later on, OGS thereby serves as a behavioral description of S
according to the extended SOA’s foundation layer (cp. Fig. 2.2 on page 36).

A normalization and minimization of all published operating guidelines is impor-
tant in order to reduce the storing capacity requirements for operating guidelines
in the registry. Both steps are uncritical for privacy issues and can be performed

188

6.1. Service Discovery

by the service provider before publishing OGS or by the service broker during or
after the reception of OGS .

Additional information describing QoS related properties of the service S, the
semantical meanings of the messages and operations of S, or information about
the provider itself should accompany the operating guidelines to enable the client
to evaluate the additionally specified search criteria in the third step.

6.1.3 Service Discovery with Operating Guidelines

The last step corresponds to the actual SOA operation of service discovery (which
is called “find” in the basic SOA of Fig. 2.1). Therein, the client specifies certain
search criteria, typically including minimal QoS requirements and business goals
the client wants to achieve, and searches the repository for fitting published ser-
vices. If such services could be found, the client may then select one of these
services to collaborate with. This selection can be guided by the expected costs
of using the provider service or other preferences of the client.

Operating guidelines as published behavioral descriptions in the registry now en-
able the client to also take into account behavioral aspects of the selected service.
To this end, the client service R should be matched with the operating guidelines
of the fitting services in order to detect behavioral errors like deadlocks in the in-
teraction before the actual binding has taken place. That way, published services
that are not behaviorally compatible to the service R of the client can be filtered
and are not considered for the final selection.

To decide behavioral compatibility, we have introduced the matching procedure
in Sect. 4.2. This procedure amounts to a depth-first traversal of both the service
and the operating guideline while evaluating the annotations of the states of the
operating guideline. This is a very efficient procedure and therefore well suited
for service discovery at runtime.

As the matching procedure requires detailed knowledge of the internal structure
of the client service R, it should be performed by the client itself.

6.1.4 Conclusion

The operating guidelines approach applied to a service brokering of behaviorally
compatible services as described above takes into account all aspects motivated
in Sect. 1.3. It respects the privacy issues of both the client and the provider.
To this end, the approach separates the computation of the operating guideline
OGS by the provider and the matching of R with OGS by the client. The only
construct that is exchanged between both parties is the operating guideline OGS ,
which hides all relevant internals of S. Furthermore, our operating guidelines
approach shifts a large part of the computational efforts to the design phase

189

Chapter 6. Applications of Operating Guidelines

before publishing a service S. The remaining runtime operation in this setting
amounts to a matching procedure of R and OGS that is very efficient compared
to a model checking of the composition of R and S for behavioral errors. That
way, we take into account that the publish operation of an SOA typically happens
less often than the discovery operation.

Section 7.4 presents a case study comparing the efforts for computing the oper-
ating guideline OGS of a service S and matching several services R with OGS

on the one hand with the efforts to verify behavioral compatibility of R and S
by model checking the composition R ⊕ S for each service R on the other hand.
We will show that even the efforts spent at design time easily pay off after a few
matchings. That is, even the sum of computing OGS once and checking n match-
ings of services R1 to Rn is smaller than model checking n compositions Ri ⊕ S
for deadlocks—already for a small number n.

As a prerequisite for being able to apply operating guidelines for service discovery,
the OG approach requires the formal modeling of the provider service S (for being
able to construct the operating guideline OGS of S) as well as the client service
R (for matching R with OGS). Without a formal model of services, behavioral
errors are hard or even impossible to detect [LMSW06, LMSW08].

6.2 Substitutability of Services

Service substitutability is another important open research challenge raised in the
SOC research roadmap of [PTDL08]. Behavioral service substitutability consid-
ers the following question. Given an existing, well-behaving service interaction
(specified either as an orchestration or as a choreography) involving n services S1

to Sn, under which conditions can one of these services, say S1, be substituted by
another service S′1 such that the overall service interaction of S′1 with the services
S2 to Sn is still well-behaving.

In general, the reasons for a substitution of a service S can be manyfold. For
instance, the owner of the service may want to add a new functionality to S or
has to restructure S to improve its quality parameters, or S is currently just not
accessible and another service providing the functionality of S is needed by the
remaining parties (organizations) to achieve the overall business goal.

Another setting in which service substitution plays an essential role is known
as the contract approach to interorganizational business processes. Therein, the
parties involved in a future collaboration jointly specify a global, abstract spec-
ification of the overall target process and agree on a distribution of the tasks of
the process to the single parties. The overall process specification together with
the duties of each party serves as the service contract. The contract can be seen
as a service composition of n services S1 to Sn where each service Si represents
the specification for the party i. After the contract has been successfully specified

190

6.2. Substitutability of Services

(and analyzed for its behavioral correctness), each party locally implements its
specification Si. That way, the service Si is substituted by a service S′i, and the
actual execution of the contract involves the new services S′1 to S′n.

In both settings, service substitutability of S by S′ is devoted to guarantee that
substituting S by S′ does not alter well-behavior of any interaction that S is
involved in.

One of the main challenges to decide service substitutability of S by S′ is again
found in the restrictions given by privacy issues. The collaborating parties may
be competitors in other business areas and usually do not want to reveal any
internals of their services to the other parties. Hence, service substitutability
must be checked locally for each party on the one hand, but nevertheless assure the
global behavioral correctness of the whole composition on the other hand. Thus,
we are looking for local relations between the services S and S′ guaranteeing that
no composition of S with other services is “affected” by this substitution.

6.2.1 Behavioral Substitutability of Services

In [SMB09], we have proposed a number of general behavioral substitutability
notions. Therein, the most basic service substitutability relation is called behav-
ioral equivalence of two services S and S′. It states that behaviorally equivalent
services are behaviorally compatible to exactly the same environments. In our
terms, S and S′ are behaviorally equivalent if they have the same strategies.

Definition 6.2.1 (Equivalent services).
Two services S and S′ are behaviorally equivalent if Strat(S) = Strat(S′). y

If S and S′ are behaviorally equivalent, then S can be equivalently substituted by
S′. That is, each well-behaving service composition that S is involved in is also
well-behaving with the new service S′ replacing S in this composition (and vice
versa).

Corollary 6.2.2 (Equivalent substitution sufficient for well-behavior).
For all services R and all behaviorally equivalent services S and S′: R ⊕ S is
well-behaving iff R⊕ S′ is well-behaving. y

As R itself can be a composition of services, this substitutability notion can be
applied to arbitrary service compositions S1 to Sn. Considering the service S1

for substitution, the services S2 to Sn correspond to the service R in the previous
corollary and the service S1 can be equivalently substituted by any behaviorally
equivalent service S′1.

If we restrict ourselves to finite service compositions with b-bounded communica-
tion (for some message bound b), i.e. to the preservation of the set Stratb(S) by

191

Chapter 6. Applications of Operating Guidelines

S′, we derive the notion of (behavioral) b-equivalence of the services. It is easy
to see that operating guidelines can be directly used to decide b-equivalence of
services S and S′.

Corollary 6.2.3 (Decision of equivalent substitution).
Let b be some message bound. Then, two services S and S′ are b-equivalent iff
OGb

S ≡ OGb
S′ . y

That means that we can decide b-equivalence of two services S and S′ by comput-
ing the operating guidelines OGb

S and OGb
S′ of S and S′ and checking the BSA

equivalence relation ≡ for the operating guidelines (cp. Sect. 4.5.1) which can be
decided on the structures of the operating guidelines only.

A drawback of this substitutability notion is that behavioral equivalence is a very
strict requirement for services allowing for rather small differences between the
services S and S′. For this reason, a more relaxed substitutability relation between
S and S′ is needed. Consequently, we have introduced the notion of substitution
under accordance in [SMB09]. Thereby, a service S′ accords with a service S if
S′ is behaviorally compatible to at least all strategies R of S. Formally, we have:

Definition 6.2.4 (Accordance relation).
A service S′ accords with a service S if Strat(S′) ⊇ Strat(S). y

The accordance relation between S and S′ allows that the new service S′ can have
more strategies than S, which is a more relaxed notion than behavioral equivalence
of S and S′. According to the following corollary, substituting a service S by a
service S′ which accords to S does not restrict any current composition of S with
another (simple or composite) service R.

Corollary 6.2.5 (Accordant substitution sufficient for well-behavior).
For all services R and S and all services S′ that accord with S: R ⊕ S is well-
behaving implies that R⊕ S′ is well-behaving, too. y

Again considering only finite services that communicate b-boundedly, we can de-
cide b-accordance using operating guidelines, too.

Corollary 6.2.6 (Decision of accordance).
Let b be some message bound. Then, a service S′ b-accords with a service S iff
OGb

S′ w OGb
S . y

That is, we can reduce the (b-)accordance relation question of two services S and
S′ to the problem of deciding the smaller relation v (as introduced in Sect. 4.4)
of their corresponding operating guidelines.

Both substitutability notions, equivalent substitution and substitution under ac-
cordance, are defined on the (usually infinite) sets of (b-)strategies of the services

192

6.2. Substitutability of Services

S and S′. Hence, checking structural criteria for deciding the equivalence or pre-
order relation of the operating guidelines of S and S′ is a valuable tool for deciding
basic behavioral substitutability notions for services.

6.2.2 Multiparty Service Contracts

A currently quite common approach to realize interorganizational business pro-
cesses is known as the contract approach [AW01, ALM+07, ALM+09]. Therein, a
contract serves as a common agreement on the “rules of engagement” between the
parties of a future collaboration. The contract can be seen as a composite service
consisting of n service specifications S1 to Sn for the parties (agents) A1 to An.
Each service Si is called the public view of the party Ai and describes the duties
for this party in the contract.

Definition 6.2.7 (Contract, public view).
Let A = {A1, . . . , An} be a set representing the involved parties. Then, a contract
is a service C such that

– C is a well-behaving composition of services S1 to Sn,
– each service Si belongs to the party Ai and is called public view of Ai. y

An important requirement for contracts is that the public views leave most im-
plementation details for the parties open. That way, a party is free to optimize
the implementation of its share in the contract. The new, implemented service S′i
of the party Ai then serves as the private view of Ai. While the contract itself is
agreed upon the public views Si, the actual execution of the contract is based on
the private views S′i of the parties.

Accordingly, each public view must be (behaviorally) substitutable by the cor-
responding private view. To this end, different substitutability notions between
public and private view can be considered that allow for varying degrees of free-
dom for filling in implementation details. In [ALM+07, ALM+09], we have shown
that accordance is a well-suited substitutability notion in this setting. Accordance
is relaxed enough to allow for, e.g., reordering or combining the sending or re-
ceiving of messages as well as the introduction of concurrency in the private view.
Accordance further allows for introducing alternative branches that will never be
executed in the contract. That way, a party may easily reuse an already existing
implementation S′ with more functionality than is actually needed in the current
contract setting [ALM+07, ALM+09]. In sum, accordance is a weaker substi-
tutability notion than behavioral equivalence and even weaker than projection
inheritance [AB02, BA01], an established refinement notion for workflow nets.
Correspondingly, accordance allows for using more services S′i as behaviorally
correct implementations of the contract.

193

Chapter 6. Applications of Operating Guidelines

The main result of using accordance in the contract setting is that even if each
party independently implements its public view (and locally analyzes the accor-
dance relation between public and private view), the overall contract implemen-
tation is still guaranteed to be well-behaving [ALM+07, ALM+09].

Theorem 6.2.8 (Implementation of a contract).
Let C be a (well-behaving) contract between parties A = {A1, . . . , An}. If, for
all i ∈ {1, . . . , n}, S′i (the private view of Ai) accords with Si (the public view
of Ai), then the composition C′ of the private views S′1 to S′n (i.e. the actual
implementation of the contract) is well-behaving, too. y

To check the accordance criteria between the public and private views of each
party Ai required in this theorem, we can once more apply operating guidelines.
Therefore, each party locally computes the operating guidelines of both its public
and its private view and checks the smaller relation of these OGs.
As an advantage over the general substitutability setting, the needed message
bound b for the computed operating guideline can be generated automatically
from the contract C by counting the number of simultaneously pending messages
between the service specifications Si in the original contract C.

6.2.3 Conclusion

Many general behavioral substitutability notions are based on a relation between
the sets of strategies for a service S and its new version S′. As two examples
for such substitutability notions, we have introduced equivalent substitution and
substitution under accordance which are based on behavioral equivalence and ac-
cordance between the services S and S′, respectively. Whereas behavioral equiv-
alence between S and S′ requires that S and S′ have the same strategies, the
accordance relation allows that the new service S′ can have more strategies than
the substituted service S. Operating guidelines can be used to decide these rela-
tions.
In the setting of multiparty service contracts, operating guidelines are well suited
to characterize all valid private implementations of a public view of a party’s
share in a contract. Thereby, all substitutability checks can be performed locally
to each party. Thus, operating guidelines help to overcome privacy issues that
are encountered when organizations collaborate in interorganizational business
processes such as service contracts.

6.3 Service Synthesis for Adapter Generation

Often, services are not behaviorally compatible. In this case, they cannot interact
with each other without the risk to run into severe behavioral errors such as dead-

194

6.3. Service Synthesis for Adapter Generation

locks, for instance. Operating guidelines may help to filter such services. They
can be used to discover, select, and bind only those services R and S that are
behaviorally compatible to each other. However, in some cases, the incompatibili-
ties between two services R and S are rather small and could be avoided/repaired
by mediating between the services. Such mediators between services are called
adapters. A behavioral adapter A is devoted to (re-)organize the message flow
between the (behaviorally incompatible) services R and S such that the overall
composition of R, A, and S is well-behaving. In this sense, the adapter A is a
distinguished service which is itself behaviorally compatible to the composition of
the services R and S.

A suggesting approach to automatically generate such an adapter A is to employ
our construction method for a behaviorally compatible strategy service for the
services R and S. That is, the computation of the operating guideline Bφ =
OGR⊕S of the composition R⊕ S of the services R and S, as well as methods to
translate the underlying service automaton B of OGR⊕S into a strategy service
net for R⊕ S can be used for adapter generation.

However, the requirement that the adapter is behaviorally compatible to the com-
position R⊕S is not sufficient. It allows for very trivial and unintended adapters
that arbitrarily generate messages which are not yet available. This is obviously
not intended for messages that represent real trade items or confidential data like
passwords. Hence, the adapter must further respect certain rules for the ma-
nipulation of messages. Such rules are often expected as additional input to the
adapter generation task.

This approach has also been followed in [GMW08]. Therein, the authors propose
to use a specification of the elementary activities (SEA) as such adapter rules.
The SEA describes which activities the intended adapter is allowed to perform
for which messages. It is different for each pair of adapted services R and S
and the concrete rules are determined by the semantics of the messages that are
exchanged between R and S as well as security and privacy issues. The SEA
constitutes the engine part E of the adapter A. Using these rules, a controller
part C of A is synthesized controlling the message flow between R and S by only
using the allowed adapter rules of the engine part E. If such a controller exists,
the adapter is the composition A = E ⊕ C and is behaviorally compatible to the
services R and S by construction. This concept is illustrated in Fig. 6.1.

In the rest of this chapter, we follow the approach of [GMW08] and assume service
net models of the adapted services R and S and consider the generation of a service
net adapter A. The results, however, are not limited to service nets and can be
easily formulated for service automata or other formal methods for which the
operating guidelines (or another controller synthesis) approach can be applied.
The whole adapter generation approach using operating guidelines is organized
as follows.

195

Chapter 6. Applications of Operating Guidelines

x′

y′

. . .

. . .

R

x

y

. . .

. . .

S

x′

y′

x

y

e1 e2 e3

. . .

. . .

. . .

. . .

E

e1 e2 e3

.

C

Figure 6.1: Schematic overview of the adapter generation for service nets R and S.
The adapter A consists of the engine part E and the controller part C, i.e. A = E⊕ C.

6.3.1 Specification of Adapter Rules

In a first step, the possibilities of the adapter with respect to the messages that
are exchanged between the services R and S have to be specified as adapter rules,
constituting an SEA. The SEA describes whether the intended adapter is allowed
to create, copy, delete, transform, split, merge, or reroute a message of a specific
type. An SEA can be derived from semantical annotations to the interfaces of
R and S, for instance. Alternatively, the rules can be specified manually by a
service designer responsible for the adaption of R and S, or they can be inferred
from commonly agreed-upon rules in a fixed cooperation environment.

If the rules are specified, they are translated into the engine part E of the adapter.
To interconnect E with the original services R and S, these services are completely
decoupled by renaming their interface places such that PioR∩PioS = ∅ first. Then,
the engine part E may be established as a connection between R and S by naming
the interface of E correspondingly (cp. Fig. 6.1).

Additional interface places of E enable the controller part C of the adapter to
trigger the individual rules. Therefore, C can control the order of applying the
adapter rules, and it can send and receive the messages to/from the services R
and S at the right moment.

6.3.2 Synthesizing the Controller Part

The composition R ⊕ E ⊕ S is an open service net representing the new com-
munication possibilities of R and S with respect to the adapter rules. The next
step of the adapter generation is now devoted to find/choose the right order of

196

6.3. Service Synthesis for Adapter Generation

performing the rules such that the overall composition is well-behaving. That is,
we search for a strategy service net for the composition R ⊕ E ⊕ S. If such a
strategy is found, it constitutes our controller part C of the adapter and assures
well-behavior by construction. If no strategy exists for R⊕E ⊕ S, then R and S
are not adaptable—at least not with the specified adapter rules.

To construct the controller part, we can apply the operating guideline construction
for the composition R⊕E⊕S. In fact, the resulting operating guideline OGR⊕E⊕S
characterizes all such possible controllers C (for a given message bound). More
precisely, the operating guideline OGR⊕E⊕S of R⊕E⊕S characterizes all service
automata that represent behaviorally compatible behaviors of strategy service
nets M for R ⊕ E ⊕ S. That is, each service net M such that the corresponding
service automaton SA(M) is characterized by OGR⊕E⊕S is a valid candidate for
the controller part C of the intended adapter.

The actual selection which M is to take as controller part of the adapter depends
on the expected costs for storing, rerouting, or copying the messages exchanged
between R and S, for instance. To this end, we suggest to annotate the specified
adapter rules with costs for being able to select the smallest M with respect to
these costs.

6.3.3 Composing Engine and Controller Part

Having successfully computed (and selected) the controller part C of the adapter,
the overall adapter A is the composition of both the engine part E and the
controller part C, i.e. A = E⊕C. It is behaviorally compatible to the composition
R ⊕ S of the original services R and S by construction and, thus, the overall
composition R⊕A⊕S is well-behaving. Furthermore, the adapter A respects all
adapter rules (i.e. the SEA) specified by the service designer of the adapter, or
derived from semantical annotations of the interfaces of R and S.

A further structural reduction of the adapter A may help to simplify a further
analysis of the composition R⊕A⊕ S and may reduce the storage requirements
for the adapter A as well as enhance the performance of A.

6.3.4 Conclusion

The generation of a behavioral adapter for behaviorally incompatible services R
and S consists of two steps. Firstly, adapter rules for the adapter are specified,
defining the capabilities of the intended adapter with respect to which action
(create, copy, delete, transform, split, merge, or reroute) the adapter is allowed to
perform for which message type exchanged between R and S. The adapter rules
define the engine part E of the adapter A.

197

Chapter 6. Applications of Operating Guidelines

Secondly, a controller is synthesized as a service behavior which is behaviorally
compatible to the composition R⊕E ⊕ S. To this end, we can apply the operat-
ing guideline computation for R⊕E ⊕ S. The corresponding operating guideline
OGR⊕E⊕S characterizes all such behaviorally compatible behaviors. As the op-
erating guideline is an operational characterization, one can easily derive one of
these characterized behaviors from the operating guideline. The selection may be
guided by the expected costs or by other aspects of the target adapter. It may
either be the underlying service automaton of the operating guideline OGR⊕E⊕S
itself or any other matching service automaton. Then, the selected behavior is
translated into a service net, representing the controller part C of the adapter. For
the translation, we can either apply our construction PN (introduced in Sect. 3.4.3
on page 82) or use the theory of regions approach [BD98]. Alternatively, any ser-
vice net C where SA(C) matches with the operating guideline OGR⊕E⊕S is well
suited as controller part.

The overall adapter A is then the composition of E and C and imposes the
property of well-behavior for the interaction between R, A, and S.

6.4 Conclusion

Operating guidelines as a characterization of the set of behaviorally compatible
services R for a given service S constitute a flexible and convenient concept that
can be employed in a variety of analysis questions in the context of service-oriented
computing. They can be used to support service discovery in an SOA, to decide a
number of service substitutability relations, and to synthesize behavioral adapters
for services. These are rather different applications, but are all particularly im-
portant and listed as open research challenges for the near future [PTDL08].

Thereby, different properties of operating guidelines contribute to the applicability
in these areas. In the application setting of service discovery, operating guidelines
can be used as a behavioral description of a published service S. That way, a
querying client benefits because the operating guideline of a published service
S provides sufficient information to decide behavioral compatibility of its service
R with S before both services are bound together. The provider, in turn, can
publish the operating guideline without risking to reveal crucial trade secrets of
its service S.

In a service substitutability setting, the operating guidelines approach enables a
service owner to locally check the desired behavioral substitutability relation—
like behavioral equivalence or accordance—of an existing service S and a new
version S′ of S while assuring the global property of well-behavior of the overall
service composition when S is substituted by S′. Thereby, the comparison of two
usually infinite sets of strategies of S and S′ is reduced to a simple decision of

198

6.4. Conclusion

structural criteria— like the equivalence relation ≡ or the smaller relation v—of
the corresponding operating guidelines of S and S′.

Finally, operating guidelines are operational descriptions of the set of strategies
for a service. Hence, they can not only be used as a basis for the decision of be-
havioral compatibility, but may also be employed for the synthesis of behaviorally
compatible services for a given service. This property of operating guidelines al-
lows for their use in the adapter setting, where a controller part of the adapter can
be synthesized with the help of the underlying service automaton of an operating
guideline.

In sum, the operating guideline of a service S is a finite, abstract, and operational
characterization of the set of behaviorally compatible services for S. It supports
efficient methods for deciding whether a service R is characterized by the op-
erating guideline of S, respects privacy issues and allows for the local check of
substitutability notions, and it supports the synthesis of a behaviorally compati-
ble service R for S. That is, the concept of operating guidelines as introduced in
the last chapters of this thesis takes into account all requirements introduced for
such a characterization in the research goal of Sect. 1.3.

199

7 Implementation in the Tool
Fiona

In Part II of this thesis, we have developed different formal notions and concepts
for analyzing the interactional behavior of services. However, the definition of
operating guidelines (specifically Definition 5.4.2 of the basis Fb of an OG), for
instance, at most sketches an algorithm to really construct the operating guideline
OGS for a given service S. Furthermore, all definitions are optimized for proving
our theoretical results and mostly not suited to be implemented easily.

For being able to show the feasibility of our concepts, all results presented in this
thesis have been implemented in Fiona, a tool to check behavioral compatibility
of two services and several other behavioral properties of services.

This chapter is devoted to introduce the implementation of the most important
results of this thesis in the analysis tool Fiona.

To this end, this chapter is organized as follows. In Sect. 7.1 and Sect. 7.2, we
will shortly introduce the tool Fiona and give an overview of its functionality.
Section 7.3 then provides implementation details of the computation of operating
guidelines and the minimization of BSAs. For these two algorithms, the imple-
mentation in Fiona significantly deviates from the theory as presented in this
thesis. We will point out the differences and explain our design decisions. In
Sect. 7.4, we then present experimental results illustrating the sizes of operating
guidelines of real-world services and the respective computation time needed to
construct the respective OG . Furthermore, we compare the discovery of behav-
iorally compatible services using operating guidelines with the service discovery
approach of verification behavioral compatibility using model checking. Finally,
Sect. 7.5 concludes this chapter.

7.1 About Fiona

The development of Fiona [LMSW06, MW08] started in the end of 2005 as
a rather small project at the theory of programming group of Wolfgang Reisig

201

Chapter 7. Implementation in the Tool Fiona

(Humboldt-Universität zu Berlin, Germany) and was partially funded by the Fed-
eral Ministry of Education and Research (BMBF) project “Tools4BPEL”. Cur-
rently, Fiona is developed in close cooperation with the group of Karsten Wolf
(University of Rostock, Germany). It involves more than 10 developers and uses
a subversion repository to coordinate the distributed development. The author is
one of the core developers of Fiona and responsible for the operating guidelines
part of Fiona and many related parts.

Fiona is written in C++ and released as free software under the terms of the GNU
General Public License. Fiona’s distribution is based on the GNU autotools,
which provide the possibility to run Fiona on many operating systems. The latest
source code, a documentation, and different precompiled binaries are available for
download at http://service-technology.org/fiona.

Fiona is designed to be used as a background service of existing service modeling
tools. Thus, Fiona provides no own graphical user interface (GUI)—the analysis
task as well as the input file(s) are given to Fiona via command line options.
Fiona then computes and reports the result and, if needed, generates the output
file(s).

7.2 Functionality of Fiona

The functionality of Fiona comprises all results presented in Part II of this the-
sis. Fiona may compute operating guidelines, match a service with an operating
guideline, normalize and minimize operating guidelines, and compare two oper-
ating guidelines with respect to the sets of characterized services. Furthermore,
Fiona can synthesize behavioral adapters and perform several other functionali-
ties.

The implementation, however, in some cases differs significantly from the theory
for the respective result. This is mostly caused by the used data structures which
are designed to optimize memory usage and to speed up computation. One of the
most fundamental differences is that the theory is based on (and was presented
for) service automata in this thesis, but Fiona uses Petri net representations
of services instead. That is, the main input of Fiona is a service net, and the
algorithms of Fiona are directly based on Petri net technologies. Figure 7.1
depicts an overview of the main functionalities of Fiona in terms of a service net.

Thereby, a functionality of Fiona is represented as a transition in Fig. 7.1. The
name of a transition is depicted in the upper box of the transition, the (most
important) internal data structures that are used by a functionality are placed
as boxes at the bottom of the corresponding transition, and major components
(algorithms) used are mentioned as boxes in the middle of a transition. For
instance, the functionality OG computation uses an internal representation of a
service net for which the OG shall be computed, a separate data structure to

202

http://service-technology.org/fiona

7.2. Functionality of Fiona

PN PN

OG

IG/OG

OG

controllable

yes/no

PV

strategy

adapter
rules

n

adapter rules
adapter

Figure 7.1: The main functionality of Fiona depicted as a service net Nfiona.

store the knowledge values needed to compute the OG , and a data structure for
the Boolean annotated service automaton (BSA) that represents the basis of the
OG . The computation of OGN of a service net N uses an analysis component
that is devoted to evaluate the knowledge of OGN about N and to compute the
annotation of a state of OGN .

We consider the following scenarios as the most important analysis features of
Fiona.

Operating guidelines construction. In this scenario, we use Fiona to con-
struct the operating guideline OGN of a service net N . To this end, we expect
a service net file as input (represented by the input place labeled PN in Nfiona),
which is parsed to an internal representation of N (represented by the PN-labeled
internal place of Nfiona). If needed, N may be structurally reduced (transition
structural reduction in Fig. 7.1). Then, Fiona computes the operating guide-
line OGN of N as a BSA including the knowledge of OGN about N (transition
OG computation). Depending on the parameters, OGN is normalized and/or min-

203

Chapter 7. Implementation in the Tool Fiona

imized before it is written to a file representing the output of this scenario (output
place OG). Thereby, the knowledge is not written to the file but is discarded.

For constructing the operating guideline of a service net, the corresponding mes-
sage bound (cp. Sect. 5.3) can be passed to Fiona via a command line option. If
not specified, it is set to 1 as the default value.

Decision of controllability. In this scenario, Fiona is used to decide control-
lability of a service net N . We therefore expect a service net which may again be
structurally reduced. Then, we construct a special BSA IGN (from interaction
graph) for N (transition IG computation). Basically, IGN is a reduced version of
OGN that does not characterize each strategy for N , but a strategy (if there is
one). To this end, several reduction rules are applied that are proven to preserve
controllability, but result in a much smaller underlying service automaton of IGN

than the strategy overapproximation F of OGN (cp. Sect. 5.4). If IGN is non-
empty, then N is controllable. Otherwise, N is uncontrollable. The respective
result is stated by Fiona (represented by the output place controllable in Fig. 7.1).

Note that in principle also operating guidelines can be used to decide controllabil-
ity which is represented in Fig. 7.1 by the preplace IG/OG of the output transition
generating the controllability result in this scenario.

Matching. To match a service net M with the operating guideline OGN of a
service net N (cp. Sect. 4.2), Fiona expects both service nets N and M as input,
generates the operating guideline out of N , and then applies the matching algo-
rithm forM and OGN (transition matching). As the matching algorithm needs to
compute a simulation relation betweenM and OGN , we have to sequentialize the
service net M first (transition sequentialization). As the output in this scenario,
Fiona states whether or not M matches with OGN . In case that M does not
match with OGN , Fiona also reports diagnostic information, i.e. the marking of
M and the state of OGN where either the simulation relation is violated (M has
an x-labeled transition not allowed by OGN) or the assignment of M violates the
annotation of OGN .

Normalization. For a given operating guideline OGN of a service netN , Fiona
can be used to normalize OGN (transition normalization). Because many function-
alities require normal operating guidelines (cp. Sect. 4.3), normalization is default
in Fiona and thus applied to all computed operating guidelines. However, it can
be switched off by a command line option—mostly used for debugging purposes.

Minimization. Operating guidelines can also be minimized by Fiona (transi-
tion minimization) which is, however, not enabled by default. The minimization
of an operating guideline requires a normal operating guideline to work correctly
(cp. Sect. 4.5). Thus, the minimization scenario always performs a normalization
first.

204

7.2. Functionality of Fiona

Preorder and equivalence. Given two service nets N and M , Fiona can
compare the corresponding sets of strategies Strat(N) and Strat(M) using the
operating guidelines OGN and OGM . Strat(N) and Strat(M) can be checked for
an inclusion relation (transition preorder) of for equality (transition equivalence).
In case a check fails, the reason for failure (i.e. the point where the simulation
relation or the annotation implication fails) is reported. As in the minimization
scenario, both checks require normal operating guidelines (cp. Sect. 4.4 and 4.5.1)
and thus perform a normalization first.

The preorder and equivalence scenarios can be used to decide substitutability of
the services N and M as described in Sect. 6.2.

Strategy generation. The underlying service automaton of both IGN and
OGN represents a behaviorally compatible strategy service automaton for the ser-
vice net N . Thus, we may translate this service automaton into a service net in
order to construct a strategy service net M for N (if N is controllable). However,
we do not apply the translation PN (A) as introduced in Sect. 3.4, but use the the-
ory of regions approach [BD98, CKLY98] instead. This results in smaller and more
readable service nets. To this end, Fiona calls the tool Petrify [CKK+02] (avail-
able at http://www.lsi.upc.es/~jordicf/petrify/distrib/home.html).

Adapter generation. As described in Sect. 6.3, Fiona can be used to syn-
thesize a behavioral adapter for n incompatible services N1 to Nn. To this end,
all n service nets as well as the adapter rules (representing the engine part E of
the adapter) are given to Fiona as input. Then, in a first step, the nets and the
adapter rules are composed to a single, overall service net N∗. For N∗, we then
construct either IGN∗ or OGN∗ , depending on the parameters that are given to
Fiona. Again, the underlying service automaton of both IGN∗ and OGN∗ rep-
resents a behaviorally compatible strategy service automaton for N∗. Hence, we
translate this service automaton into a service net M (again using Petrify). M
represents the controller part of the adapter. The overall adapter consists of both
engine and controller part, i.e. it is the service net E ⊕M . This net is written to
a file representing the output of this scenario (output place adapter of Nfiona).

Public view generation. Based on the operating guidelines concept, Karsten
Wolf has formulated a formal notion of a public view N ′ of a service N and a
construction method for N ′ using the operating guideline OGN of N . Therein,
OGN is computed in an intermediate construction step in order to completely
abstract from the internal structure of N and to preserve only the behaviorally
compatible interaction possibilities of strategies for N . Then, the public view N ′

of N is constructed from OGN by “reversing” the OG construction. That is, from
the abstract representation OGN , a service net N ′ is reconstructed that has OGN

as its operating guideline. Obviously, N and N ′ are equivalent with respect to
their strategies by construction. Due to the abstraction achieved by OGN , N ′
is a suitable candidate for a public view of N . Although the results are not yet

205

http://www.lsi.upc.es/~jordicf/petrify/distrib/home.html

Chapter 7. Implementation in the Tool Fiona

published, they are already implemented in another application scenario of Fiona
(transition public view generation).

Please notice that Fig. 7.1 is a rather abstract representation of the functionalities
of Fiona. Some functionalities are not depicted in the figure. As an example,
Fiona may also directly read operating guidelines from a file. That way, it sup-
ports the matching of a service net M with the operating guideline OGN without
having to (re-)compute OGN first, for instance. Furthermore, some functional-
ities need additional internal steps that are not represented in Fig. 7.1 or have
preconditions (as a prior normalization before a minimization, for instance) which
are not shown in Fig. 7.1.

Another important feature of Fiona is that we do not differentiate between op-
erating guidelines and arbitrary BSAs in Fiona. This means that we can read,
normalize, minimize, etc. any BSA that is given to Fiona as a file.

7.3 Implementation of the Results

In this section, we will introduce the implementation of the results of this thesis
in Fiona and explain the differences of the implementation compared to the
theoretical algorithm suggested by the corresponding theoretical result.

Because the implementation of the normalization of a BSA (Sect. 4.3), as well as
the decision of the preorder between two BSAs (Sect. 4.4) are implemented rather
straightforward, we will not elaborate on the implemented algorithms for these
scenarios.

The implementation of the matching procedure of a service net M and a BSA Bφ

bears also no big surprise. First,M is sequentialized. Then, the reachability graph
of the inner of M is constructed which basically equals the translation SA(M) as
introduced in Sect. 3.4.2. Already during this construction, the currently reached
marking ofM is matched with the current state of Bφ. It is worth to mention that
we use a weak simulation matching approach in Fiona. That is, we only check
markings m of M that enable an interface transition of M for the annotation
satisfaction of Bφ. This implements the considerations already introduced in
Sect. 4.6.2.

The only important difference in the implementation of the equivalence of two
BSAs Bφ1 and Bψ2 (Sect. 4.5.1) is that the implementation does not check two
independent preorder relations Bφ1 v Bψ2 and Bψ2 v Bφ1 (as suggested by Corol-
lary 4.5.2), but constructs the minimal simulation relation % between B1 and B2

only once. As both B1 and B2 are deterministic, we can rely on Proposition 4.1.5
and check for each pair (q1, q2) ∈ % whether or not (1) q1 simulates q2, and (2) q2
simulates q1, and (3) φ(q1) implies ψ(q2), and (4) ψ(q2) implies φ(q1). Only if all
four conditions are satisfied by each state pair, then B1 and B2 are equivalent.

206

7.3. Implementation of the Results

As the scenarios of deciding controllability, constructing public views, and syn-
thesizing strategies or behavioral adapters are not the focus of this thesis, we
will omit an introduction of the implementation thereof and concentrate on the
implementation of the minimization of a BSA (Sects. 4.5.2 and 4.5.3) and the
construction of operating guidelines (Chap. 5) in the following.

To this end, we will first describe the basic data structures used to represent
service nets, to store knowledge sets about a service net, and to represent BSAs
(and thus operating guidelines). Afterwards, we will introduce the implemented
construction of the operating guideline OGN of a service net N . Finally, we will
show how a BSA is minimized in Fiona. In either case, the implementation is
compared to the theoretical algorithm suggested by the corresponding theoretical
result.

7.3.1 Basic Data Structures

As mentioned earlier in this chapter, Fiona is based on Petri net (more precisely
service net) representations of services rather than service automata. The rea-
sons for this fundamental design decision are threefold. Firstly, Petri nets are,
from our perspective, much better suited to manually design services than au-
tomata dialects—Petri nets have a nice, compact graphical representation and
the designer does not have to specify each interleaving separately in case of con-
currency. This significantly eases the modeling of test examples and allows for the
design of larger case studies. Secondly, the Petri net basis enables us to directly
use the output of the compiler BPEL2oWFN [Loh07], which translates services
specified in BPEL or BPEL4Chor into Petri net models of the services. Both
reasons suggest to use Petri nets at least as a possible input of Fiona. Last
but not least, we have had the support of Karsten Wolf to reuse large parts of
the code of the explicit Petri net model checking tool LoLA [Sch00] (available at
http://service-technology.org/lola). The implementation of LoLA is de-
signed to support huge state spaces by very efficient data structures to store Petri
nets and their state spaces as well as several state-of-the-art state space reduction
techniques. Thus, we decided to develop Fiona based on Petri net data struc-
tures and methods that originate from LoLA. Furthermore, the input formats of
LoLA and Fiona are intendedly very similar.

Petri Net Representation

The Petri net representation of Fiona is very similar to the one of LoLA. To rep-
resent the additional interface, we extended the data structure by representations
of the input and output places of a service net and by methods to manipulate the
corresponding members.

207

http://service-technology.org/lola

Chapter 7. Implementation in the Tool Fiona

It is relevant to notice that Fiona (like LoLA) distinguishes one special marking,
called current marking, representing the marking that a net N is currently in.
Initially, the current marking equals the initial marking of N . This marking is then
changed by firing transitions of N . As the transition firing is the core activity of
explicit state space generation, a Petri net transition t in Fiona “knows” which
other transitions might get enabled or disabled by the firing of t. Thus, only these
transitions have to be checked for enabledness after having fired t. That way, time
needed for firing transitions is minimized. Thus, even backtracking is organized
as a backfiring of afore fired transitions.

Knowledge Representation

In our theory, the knowledge of a BSA about a service automaton A at a state
q of the BSA is a set of situations [qA,M] of A (cp. Sect. 5.1). As the service is
represented by a service net N in Fiona, a situation of the service corresponds
exactly to a marking of N . Thereby, the “state part” qA of the situation corre-
sponds to a marking of the inner of N , and the “message part” M of the situation
corresponds to a marking of the interface places of N . Hence, the knowledge of a
BSA at a state q of the BSA is nothing more than a set of reachable markings of
N in Fiona.

Consequently, the representation of a knowledge set in Fiona has been adapted
from the representation of a set of markings in LoLA. Therein, a marking m(p)
of a place p of N is represented by a bit vector. For storing a setM of markings
m ∈ M of N , the first marking m of N is simply a concatenated bit vector of
all markings m(p) of the places of N (assuming a fixed order of the places). The
more states are added to the data structure, the more it converges to a binary
decision tree [Sch00]. Thereby, each decision point in the tree represents the first
difference of the bit vectors of two markings with a common prefix. Using this data
structure, the containment of a marking in the structure can be decided in linear
time. Furthermore, although the overhead for storing a small number of states is
rather high (due to the additional needs for organizing the binary decision tree),
adding more markings to the data structure only requires a logarithmic amount
of additional space.

The reachability information (i.e. the step from the set of reachable markings to
the reachability graph) is stored separately from the storage structure.

BSA Representation

Fiona uses a class Graph to represent arbitrary service automata with states
(which can be marked as initial or final), transitions, and transition labels. This
class provides simple methods to traverse the graph and to add states and tran-
sitions, for instance. A child class of the class Graph is the class AnnotatedGraph,

208

7.3. Implementation of the Results

representing BSAs. In an annotated graph, each state has an additional data
member representing the Boolean formula that is annotated to the state and
methods to manipulate the annotation. The AnnotatedGraph class has itself a
child class, called CommunicationGraph. A communication graph object repre-
sents a BSA with knowledge. That is, a state of a communication graph has an
additional data member representing the set of markings which constitute the
knowledge set at this state. The markings itself are stored in the data structure
as described above. The communication graph class provides general methods
to perform the closure and event operations in order to construct a BSA with
knowledge, and it enables Fiona to compute an annotation out of a knowledge
set. Operating guidelines and interaction graphs are represented by classes OG
and IG, respectively. Both classes inherit from the CommunicationGraph class.
They provide methods designated to operating guidelines (like the exhaustive it-
eration over all possible events) and interaction graphs (like the reduction rules
to construct small interaction graphs), respectively.

Because especially operating guidelines can have huge graph structures, all these
classes are designed in order to be “slim”. That is, whenever reasonable, we
prefer to save memory by spending computation time. For instance, a graph
state only knows its successors, but not its predecessors. This is sufficient for a
depth-first traversal of the graph needed during the IG/OG computation but often
requires additional steps in other scenarios, like the normalization or minimization
of BSAs. As the decision of controllability of a service net N and the computation
of the operating guideline of N are the core functionalities of Fiona, we have
chosen in favor of this design decision.

7.3.2 Construction of Operating Guidelines

Overview

The construction of operating guidelines in Fiona is implemented quite differently
from the theory presented in Chap. 5. The main differences are as follows:

1. The operating guidelines computed by Fiona characterize only responsive
strategies. Thereby, a service net M is responsive with respect to a service
net N if and only if there is no livelock in N ⊕M where only transitions
of M are enabled. It is easy to see that the set of responsive strategies is a
subset of the set of all strategies for N .

2. The construction follows an iterative, depth-first computation approach.
That is, we start with the initial state of OGN and apply the operations
closure and event to compute its successor states. From these states, the
operations closure and event are applied again to compute more OG states.
If thereby the message bound is violated by a knowledge value of a newly

209

Chapter 7. Implementation in the Tool Fiona

computed OG state, we stop the successor computation and apply back-
tracking to return to the last computed state. That way, only OG states are
computed in Fiona which are δ-reachable from the initial state of OGN .

The design decision to characterize only responsive strategies results in signif-
icantly smaller operating guidelines than operating guidelines characterizing all
deadlock-free interacting servicesM for a service net N . However, non-responsive
service nets may perform quite artificial behavior (like sending a lot of messages
and then performing an internal τ -loop forever). For this reason, operating guide-
lines for non-responsive strategies have to characterize also these behaviors (be-
cause the composition of such a service net has no deadlock with N). This is not
feasible in practice. Furthermore, operating guidelines for responsive strategies
can be used as a basis to decide whether or not M is a deadlock-free strategy for
N as well. Assume that a service M is not characterized by the responsive oper-
ating guideline. Then there are only two possibilities—eitherM is not responsive
with respect to N , or N and M have a reachable deadlock in their composition.
Thereby, both cases can usually be easily distinguished from each other by looking
at M only. Thus, responsive operating guidelines can be used to characterize all
strategies with an additional check after the matching. This check, however, is
not yet implemented in Fiona.

In the remainder of this chapter, we will say operating guidelines for short meaning
operating guidelines for responsive strategies.

The iterative computation approach to construct an operating guideline has the
obvious advantage of only computing those states of operating guidelines that
can be used during the matching. The depth-first computation is justified by
the observation that it is often possible to decide that a state q of the OG is
non-normal without knowing all of q’s successor states. In this case, we can
immediately stop computing the subgraph starting at q. This potentially saves a
huge amount of time and memory.

Algorithmic Implementation Details

The states of operating guidelines in Fiona are marked with colors. A blue color
of a state q denotes that q is part of the OG later on, a red color marks a non-
normal state. Red states will not be part of the OG later on. As introduced in
Sect. 4.3.4, a currently normal (i.e. blue) state q can become non-normal (i.e. red)
by removing a successor state q′ of q (i.e. setting q′ to color red). Red states stay
red forever. Initially, a state is blue.

The initial state q0 of the OG of a given service net N is computed as follows.
First, we compute the knowledge set K0 by simply computing those markings of
N that are reachable from N ’s initial marking. This construction step is based on
the data structures and methods that origin from LoLA. During the computation

210

7.3. Implementation of the Results

of K0, we check each reached marking for a message bound violation. If the given
message bound is violated, N is not controllable under this message bound and
Fiona exits with a respective error message. Having successfully computed K0,
we create a new state object representing q0 and assign the knowledge K0 to q0.
Then, we immediately compute the annotation φ(q0) from the knowledge K0 in
conjunctive normal form. By setting the color of q0 to blue, the computation of
the initial state q0 of OGN is finished.

Given a state q of OGN , a successor state of q is computed as follows. First, we
select an event x from the (yet unprocessed) interface channels of OGN . Then,
the knowledge set K of q is manipulated according to the definition event(K,x)
to yield a new knowledge set K ′. Then, from each marking of K ′ we compute
the reachable markings and add each such marking to K ′ (to perform the closure
operation). Again, we already check during the firing whether the message bound
is violated. If violated, the computation ofK ′ is aborted and Fiona returns to q to
choose the next event to perform. Otherwise, K ′ is eventually computed. Having
K ′, we search for an already computed state of OGN with K ′ as knowledge. If
such a state is found, it becomes the x-successor of q and Fiona returns to q to
choose the next event. If no such state is found, we generate a new, initially blue
colored state q′ as the x-successor of q and assign K ′ to q′. Then, we generate
the annotation φ(q′) of q′ from K ′ and assign it to q′ as well. This completes the
computation of q′, and Fiona continues computing the successors of q′.

Whenever Fiona returns to a state q (either due to a message bound violation
during the computation of a successor or when all events of the interface of OGN

have been performed for a successor of q), the annotation φ(q) of q is first normal-
ized and then evaluated whether it is still satisfiable. Thereby, transitions that
lead to red OG states count as not present and transitions corresponding to yet
unprocessed events count as present. If φ(q) is unsatisfiable, the state q must be
non-normal and is thus set to red. In this case, we immediately return to the
latest predecessor of q and do not consider the remaining events at q. By the help
of this early evaluation of OG states, the computation of possibly large subgraphs
of states that will have to be deleted afterwards can be avoided.

For being able to apply the early evaluation as often as possible, we apply two
heuristics for “steering” the choice which events are performed to calculate the
successors of a state q. To this end, Fiona sorts the clauses of the annotation
φ(q) by their lengths and counts the number of occurrences of each literal in φ(q).
Then, from one of the shortest clauses, one of the events with highest number of
occurrences is considered first. In general, such literals have the most impact on
the value of φ(q). If the corresponding successor is set to red, the whole annotation
may become unsatisfiable and further analysis of q can be skipped.

Furthermore, Fiona can make use of special annotations to events in the input file
of a service net N . These annotations give a maximal number stating how often
the respective event can be performed in a successful interaction with N . The

211

Chapter 7. Implementation in the Tool Fiona

annotations can be gained by static analysis of N or can be specified manually.
In fact, all service nets that origin from the compiler BPEL2oWFN carry such
annotations. They are derived by static program analysis of the BPEL code before
it is translated into service nets. To use this information, Fiona annotates each
state q of OGN with a table listing which event has been performed how often
at a path from the initial state q0 to q and compares these numbers with the
specified event annotations. If the specified number is reached for an event, it is
not considered at this state, but is suppressed instead.

If the computation of OGN is finished, the color of the initial state of OGN de-
termines whether or not N is controllable. In case of a red initial state, OGN is
an empty BSA characterizing no service. Hence, N is uncontrollable. Otherwise,
the connected blue subgraph containing the initial state q0 represents the (already
normalized) operating guideline OGN of N . The graph with the red states rep-
resents a non-normal, equivalent version of OGN . Depending on the parameters,
Fiona now removes red states and/or the knowledge sets (preservation of the
knowledge can be used for a diagnosis why a service net is uncontrollable, for in-
stance). Finally, Fiona generates a graphical as well as a textual representation
of OGN and stores both in separate files. For the graphical layout, Fiona invokes
GraphViz Dot (available at http://www.graphviz.org).

Example

In this section, we will give an example for the computation of OGN for the service
net N of Fig. 7.2. N corresponds to the service automaton A of Fig. 5.10(a). We
illustrate the computation of the operating guideline OGA of A exactly as it is
performed by Fiona. Assume therefore a message bound 1, and let the final
markings of N be the three markings [p3], [p4], and [p5]. The overapproximation
F1

A of 1-strategies for A was already shown in Fig. 5.10(b).

p1

p2

p3

p4

p5

a b

c

d

Figure 7.2: Example service net N with three final markings [p3], [p4], and [p5] to
illustrate the OG computation. N corresponds to the service automaton A of Fig. 5.10(a).

212

http://www.graphviz.org

7.3. Implementation of the Results

In the first step, the initial state q0 of OGN is generated. To this end, the
markings reachable from the initial marking [p1] of N are computed (Fig. 7.3(a)).
They constitute the knowledge set K0 of q0 and are depicted inside the state q0
in Fig. 7.3(a). Then, q0 is set to blue and the annotation of q0 is computed from
the knowledge. Therefore, Fiona considers dead markings only. The resulting
annotation of q0 is (!c ∨ !d ∨ ?a) ∧ (!c ∨ !d ∨ ?b). Therein, !c and !d occur the
most often and thus have highest priority.

q0

[p1]
[p2, a]
[p4, b]

(a)

q0

[p1]
[p2, a]
[p4, b]

q1

[p1, d]
[p2, a, d]
[p4, b, d]
[p3, a]

!d

(b)

q0

[p1]
[p2, a]
[p4, b]

q1

[p1, d]
[p2, a, d]
[p4, b, d]
[p3, a]

q2

[p4, d]

!d

?b

(c)

q0

[p1]
[p2, a]
[p4, b]

q1

[p1, d]
[p2, a, d]
[p4, b, d]
[p3, a]

q2

[p4, d]

q3

[p4, d, c]
[p5, d]

!d

?b

!c

(d)

Figure 7.3: Example showing the intermediate steps of the computation of OGN of the
service net N of Fig. 7.2. The blue (solid) states of OGN are (currently) normal states;
the red (dashed) states represent non-normal states of OGN. Underlined markings are
dead markings of N.

Arbitrarily, !d is selected to be performed at q0 next (Fig. 7.3(b)). Thus, we add
a d to each marking in K0. Thereby, the dead marking [p2, a] in K0 results in the
transient marking [p2, a, d] in K1, for instance. Then, we compute all reachable
markings from the markings of K1 and add them to K1, eventually yielding the
final knowledge set K1. As this set has not been computed before, a new, initially
blue state q1 is generated with predecessor q0 and knowledge K1. Finally, the
annotation of q1 is computed as (!c ∨ !d ∨ ?a) ∧ (!c ∨ !d ∨ ?b). Again, !c and !d
have highest priority.

Arbitrarily, !d is selected to be performed at q1 next (not depicted). However, dur-

213

Chapter 7. Implementation in the Tool Fiona

ing the calculation of the new knowledge set, we encounter the marking [p2, a, d, d]
(because a d is added to the marking [p2, a, d] of K1), which violates the mes-
sage bound. Thus, the calculation is stopped and no new state is added to
the graph. Returning to q1, the annotation of q1 is immediately normalized
to (!c ∨ ?a) ∧ (!c ∨ ?b) with !c having the highest priority now. Thus, it is se-
lected. However, we violate the message bound again, because a c is added to
the marking [p2, a, d] of K1, yielding the marking [p2, a, d, c] which enables the
?c-labeled transition in N and subsequently the !a-labeled transition. That way,
the marking [p2, a, a, d] is reachable, which violates the message bound. Hence,
we return to q1 once more and normalize its annotation to ?a ∧ ?b.

As both ?a and ?b have the same priority, we arbitrarily select ?b at q1 now
(Fig. 7.3(c)). The computed knowledge set is new and we add a blue state q2
with annotation !c ∨ !d. It is easy to see that sending another d violates the
message bound. Hence, the remaining (normalized) annotation is !c.

Selecting !c for q2, we get a new, initially blue state q3 with annotation !c ∨ !d
(Fig. 7.3(d)). However, due to the marking [p4, d, c] in K3, it is easy to see that
both events will result in a message bound violation. Thus, the annotation is
eventually normalized to false. Hence, it is unsatisfiable and q3 is set to red. By
backtracking, we return to q2. Because the !c-successor is now red, its annotation
!c is as well normalized to false and q2 is as well set to red. Returning to q1, the
latest annotation of q1 was ?a ∧ ?b, but the ?b-successor q2 is red now. Thus,
the red color propagates to q1 as well, and we return to the initial state q0 with
normalized annotation (!c ∨ ?a) ∧ (!c ∨ ?b) (Fig. 7.3(d)). Because !c occurs more
often than all other events, it is performed next at q0 (not depicted). However,
again the message bound is violated (the additional c allows N to return to p1 to
produce a second a). Thus, the new annotation of q0 is ?a ∧ ?b.

Selecting the event ?b at q0 to be performed next, we get the graph depicted
in Fig. 7.4(a) (with the old red states omitted for reasons of space). The new
successor state is q4. Because the marking [p4] is a final marking of N of Fig. 7.2,
its annotation is final ∨ !c ∨ !d.

Performing !d first again at q4, we recompute a knowledge set that is already
assigned to state q2 (cp. Fig. 7.3(d)). Thus, q2 becomes the !d-successor of q4.
Because q2 is colored red, the annotation of q4 is now normalized to final ∨ !c.

Considering now the event !c at q4, we get a new state q5 (Fig. 7.4(b)) with
annotation final ∨ !c ∨ !d (because the only dead marking in K5, [p5], is a final
marking of N).

Performing !d next at q5 recomputes the knowledge of the red state q3, and
performing !c at q5 violates the message bound. Hence, we eventually return to
q5 with normalized annotation final. Although there are no further events in the
annotation, the remaining events have nevertheless to be performed in order to
characterize all strategies. These events are ?a and ?b. Both events obviously

214

7.3. Implementation of the Results

q0

[p1]
[p2, a]
[p4, b]

q4

[p4]

!d

?b

(a)

q0

[p1]
[p2, a]
[p4, b]

q4

[p4]

q5

[p4, c]
[p5]

!d

?b

!d
!c

(b)

q0

[p1]
[p2, a]
[p4, b]

q1

[p1, d]
[p2, a, d]
[p4, b, d]
[p3, a]

q2

[p4, d]

q3

[p4, d, c]
[p5, d]

q4

[p4]

q5

[p4, c]
[p5]

q7

[p2]

q8

[p2, d]
[p3]

q9

[p2, c, d]
[p1, d]

[p2, a, d]
[p4, b, d]
[p3, c]
[p3, a]

q10

[p2, c]
[p1]

[p2, a]
[p4, b]

!d

?b

?a

?b

!c

!d
!c

!d

!d !c

!c

?b

!d

?a

(c)

Figure 7.4: Example showing further steps of the computation of OGN of the service
net N depicted in Fig. 7.2.

lead to the empty state of OGN. We do, however, not depict this state in the
graphics. This is also the default behavior of Fiona. The empty state can be
shown by calling Fiona with a respective parameter.

After having considered ?a and ?b at state q5, we return to state q4. As the
!c-successor of q4 is blue, the annotation final ∨ !c of q4 is not changed. Then,
the remaining events, again ?a and ?b, are considered, both leading to the empty
state. Hence, we return to the initial state q0 with its current annotation ?a ∧ ?b.
Only ?a has not yet been considered at q0. Hence, we consider this event ?a at
q0 next. Eventually, the final basis of our OG of the service net N of Fig. 7.2 is
computed, as depicted in Fig. 7.4(c).

After normalizing this basic OG (i.e. deleting all red states and transitions) and
replacing all knowledge values by the computed annotations, we get the final
1-operating guideline OGN for N. It is depicted in Fig. 7.5.

As mentioned above, the service net N of Fig. 7.2 corresponds to the service au-
tomaton A of Fig. 5.10(a). Correspondingly, the automaton with knowledge values
depicted in Fig. 7.4(c) corresponds to the overapproximation F1

A of Fig. 5.10(b)
for A. However, there are some differences between both figures. For instance, F1

A

215

Chapter 7. Implementation in the Tool Fiona

q0: ?a ∧ ?b

q4: !c ∨ final

q5: final

q7: !c ∨ !dq8: final

q10: ?a ∧ ?b

?b ?a

!c

!d

!c

?b ?a

Figure 7.5: The final operating guideline OGN of the service net N of Fig. 7.2.

has a ?a-labeled transition between its states q1 and q8, whereas there is no such
transition in Fig. 7.4(c). This is caused by the optimizations of the implementa-
tion. At the moment when Fiona would consider this ?a-event, the red color of
q1 is already fixed. Hence, any further computation at q1 is suppressed. In the
specific example, however, the optimizations only suppress some transitions, and
do not help to suppress the computation of a state of F1

A of Fig. 5.10(b). This is
mostly based on the small message bound of b = 1 in the example. For a greater
message bound, whole states would have been skipped.

Evaluation of the Implementation

Several of our design decisions have a substantial impact on the implemented
OG computation’s efficiency—both for time and memory needs. We will shortly
summarize these decisions in the following and evaluate the respective effects.

First of all, we have decided for using Petri net representations of services. This
decision allowed us to reuse very efficient data structures and methods from the
Petri net model checking tool LoLA [Sch00]. A re-implementation of these struc-
tures and methods would have increased the implementation efforts tremendously
without providing any advantage. However, this design decision also bears two
disadvantages. Firstly, the firing of transitions in LoLA is based on one distin-
guished marking, the current marking, which is optimal if each marking is derived
by firing or backfiring transitions. This is the case in LoLA. However, the con-
struction of operating guidelines requires Fiona to perform the event operation
for computing the knowledge of a successor state q′ of a state q. This operation
“jumps” directly to a marking without firing. Thus, this marking has to be de-
coded from the storage data structure and all transitions have to be checked for
their enabledness. This is a rather time-consuming operation, and it has to be
performed at least once per considered event x per state q in Fiona. The sec-
ond disadvantage is that the additional memory need for organizing the storage
data structure only pays off after it stores a certain number of states. Often, this
number is not reached in the examples.

216

7.3. Implementation of the Results

However, for a behavioral analysis like the computation of operating guidelines,
usually the memory capacity (and not time) is the limiting factor. Thus, data
structures and methods optimized for large state spaces are recommended, and
we decided for using the data structures and methods of LoLA in Fiona as well.

Two further important design decisions for constructing operating guidelines are
the computation in depth-first order with early checks for the red color of OG
states and the “steering” of the events which are performed next. These decisions
are mainly devoted to speed up OG computation. Although we have to spend
time for the additional normalization, the satisfiability analysis of the annotations,
and the computation of the event priorities, these efforts easily pay off by avoiding
the computation of a possibly large number of markings in the knowledge sets of
these states. Furthermore, successful early checks also result in less memory
requirements—both for storing the additional markings and the corresponding
OG states. The heuristics for choosing the next event for computing the successors
of a state q result in a prioritization of sending events (as sending events occur in
every clause) and cause red states to be computed at the earliest. This potentially
enables us to decide the unsatisfiability of a state’s annotation much earlier.

As an important design decision in favor of speeding up computation by increasing
memory consumption, Fiona does not remove an OG state q from memory when
its color changes from blue to red. Instead, red states are stored until the OG
is fully computed. Only after the OG computation is finished, red states are
removed. Thereby, the memory needs for storing the red states are significant. In
most cases, the number of red states is a multiple of the number of blue states
for computed OGs. However, removing a state whenever it changes its color to
red would result in a multiple re-computation of large (non-normal) parts of the
OG . Because the red part is much larger than the blue part of the OG , the loss
of performance is enormous. Hence, we opted for storing red states until the OG
is fully computed. However, we only compute non-normal OG states that are
needed to decide the color of some other state. That is, each computed red state
was computed for a certain purpose and OGs are not inflated unnecessarily.

In sum, the performance of the OG computation heavily depends on the power
of the optimizations implemented in Fiona. How powerful these optimizations
for a concrete service net N are is hard to predict. To further optimize the OG
computation, we search for further heuristics that allow us to suppress one or
more events at an OG state. For instance, we want to implement static analysis
features in Fiona that allow us to derive event annotations like the annotations
provided by BPEL2oWFN for service nets that stem from BPEL.

Section 7.4 presents a small case study. It shows the computation time needed
to construct the operating guidelines of real-world services and compares the
operating guideline approach to the discovery of behaviorally compatible services
with the approach of model checking the composition of services to decide their
behavioral compatibility.

217

Chapter 7. Implementation in the Tool Fiona

7.3.3 Minimization of a BSA

Overview

The minimization of a BSA Bφ bases on a decision procedure whether or not
two states of Bφ are equivalent. The corresponding equivalence check, i.e. the
functionality equivalence of Fig. 7.1, had already been implemented before the
minimization procedure was implemented. To reduce the implementation efforts,
the minimization procedure of a BSA Bφ in Fiona thus calls the equivalence
functionality for pairs of states of Bφ. If two states are equivalent, they will be
merged to one state representing both of them later on.

The implementation is based on the following considerations. Therefore, assume
a fixed order q1, . . . , qn of the states of a BSA and call a state qi smaller than a
state qj if i < j. Correspondingly, qi is greater than qj if i > j.

1. Whenever a state qi is equivalent to a smaller state qj , then qj is also
equivalent to qi (due to symmetry of equivalence). Hence, it is sufficient to
consider only the equivalence of qi with greater states qj .

2. Whenever a state qi is equivalent to two greater states qj and qk, then qj and
qk are equivalent as well (due to symmetry and transitivity of equivalence).
Hence, it is sufficient to consider only the equivalence of qi with the next
greater state qj .

3. If two normal states qi and qj are equivalent, then they have equivalent
annotations (cp. Lemma 4.5.9), they have the same present transitions
(cp. Lemma 4.5.10), and the respective successors of qi and qj are equiv-
alent as well (cp. Lemma 4.5.19). Hence, merging qi and qj reduces to a
redirection of the incoming transitions of qi to qj . The leaving transitions
do not have to be redirected as the successors will themselves be merged
later on, and the annotations need not to be merged.

Algorithmic Implementation Details

The current implementation of the minimization of a BSA consists of three inde-
pendent steps and works as follows.

In the first step, the BSA is normalized for being able to rely on all assumptions
made above and to reduce the number of state pairs that have to be checked for
equivalence. Because we want to be able to minimize also BSAs that are specified
manually, we do not rely on the correctness of the blue color of a BSA state and
perform a full normalization (instead of simply removing all red states).

In the second step, we iterate over the states q1 to qn. Recall that the BSA data
structure (i.e. the class AnnotatedGraph) is limited such that a BSA state does
not know its predecessor states. This saves memory when constructing operating

218

7.4. Case Study

guidelines. For the minimization, however, we have to know the predecessors of a
state and thus remember the current state qi in this iteration as a predecessor of
all of its successors. Furthermore, for each qi with i < n, we iterate over the states
qi+1 to qn and check for each pair (qi, qj) whether or not they are equivalent. If
two equivalent states are found, we store the index pair (i, j), immediately stop the
inner loop, and continue with the outer iteration. That way, we eventually have
computed the complete predecessor relation, and know for each state either no
equivalent state (then it is a singleton equivalence class) or exactly one equivalent
greater state.
The third step is then devoted to merge pairs of equivalent states. To this end,
we iterate again over the states q1 to qn. For each equivalent state pair (qi, qj)
(with j > i), we redirect the predecessors of qi to the state qj . Furthermore, if
the state qi has been the initial state of the BSA, then qj is set as the new initial
state.
Finally, the computed BSA is the minimized version of the original one. Be-
cause we have normalized the BSA first, the minimized BSA is also normal by
construction.

Evaluation of the Implementation

The implementation was guided by the reuse of existing algorithms (i.e. the nor-
malization procedure and the equivalence check) on the one hand, and optimized
implementation of the new algorithms on the other hand. The result is a proto-
typic implementation of the minimization of a BSA feasible for BSAs of moderate
sizes.
We currently see several possible optimizations for the minimization implementa-
tion. First of all, we claim that the second and third iteration can be united into
one iteration. The main problem is that we then have to merge a state qi with
an equivalent state qj although we do not know all predecessors of qi. However,
it should be possible to redirect all current predecessors of qi in the moment that
we know that qi and qj are equivalent, and to redirect a newly found predecessor
of qi later on.

7.4 Case Study

In this section, we present experimental results illustrating the sizes of operating
guidelines for real-world services and the corresponding computation time of the
operating guidelines. The results are summarized in the table of Fig. 7.6.
Furthermore, we compare the operating guidelines approach to service discovery
as described in Sect. 6.1 with the model checking alternative introduced in the
problem description of Sect. 1.3. The corresponding results are shown in Fig. 7.7.

219

Chapter 7. Implementation in the Tool Fiona

7.4.1 Computation of Operating Guidelines

The first case study is devoted to show the computability of operating guidelines of
services of realistic sizes. To this end, we have computed the operating guidelines
of several processes that stem from two small German consulting companies, as
well as other services. The results are listed in Fig. 7.6.

The table shows for each service net N the name of N , the size of N (numbers
of all places P , of input places Pin , of output places Pout , and of transitions
T), the size of the respective full operating guideline of N (number of all, i.e.
normal (blue) and non-normal (red) states Q and transitions δ), and the size of
the normalized version of the operating guideline (number of normal, i.e. blue,
states Q and transitions δ only).

In order to compute the normalized operating guideline, the full operating guide-
line has to be computed first by applying the operations closure and event. As
these operations are based on the knowledge sets of the OG states, we also list the
number of different knowledge values (column labeled by k), i.e. the number of
different markings of N that have been computed and stored in the data structure
in order to compute the final operating guideline. Please note that each marking
can occur in more than one OG state, and thus the number of references to mark-
ings is sometimes a multiple of this number k. The last column, labeled by t (s),
represents the time in seconds it took to calculate the full operating guideline in-
cluding the normalization. All experimental results have been computed running
Fiona, version 3.1, on a Windows machine (under Cygwin) with 2 GB RAM and
an Intel Pentium M 1.73 GHz processor.

The examples stem from various sources and are grouped in Fig. 7.6 according to
their origin. Most of these examples were given to us as BPEL processes. In this
case, the respective process was translated into a service net using the service net
semantics of [Loh08] and the compiler BPEL2oWFN. Afterwards, each service
net was structurally reduced by applying standard Petri net reduction rules (i.e.
[Mur89]) under special consideration of the interface places. These reduction rules
are also implemented in BPEL2oWFN.

The first two services, i.e. the “Loan Approval” and “Purchase Order” process, are
realistic web services from the BPEL specification [Alv07]. The corresponding
(structurally reduced) service nets are quite simply structured, have 6 (respec-
tively 10) interface places, and result in rather small operating guidelines with
20 to 168 states of the final, normalized operating guidelines. Both operating
guidelines could be computed in less than one second.

The second group contains nine processes representing typical services from differ-
ent practical domains. For instance, the “car breakdown” service models a part of
a car rental service in case a car breaks down. Other examples represent banking
and online shopping services. All examples have been modeled in the modeling
suite of a small German consulting company by customers of the company. Each

220

7.4. Case Study

se
rv
ic
e
ne
t

fu
ll

O
G

no
rm

al
O

G
Se
rv
ic
e
na

m
e

P
P

in
P

o
u
t

T
Q

δ
Q

δ
k

t
(s

)
Lo

an
A
pp

ro
va
l

26
3

3
9

21
84

20
36

76
0

P
ur
ch
as
e
O
rd
er

22
4

6
7

16
9

1,
18
2

16
8

54
8

46
4

0
B
re
ak

do
w
n

24
6

7
16

69
7

2,
40
0

33
73

2,
52
8

3
C
ar

B
re
ak

do
w
n

13
3

5
6

33
15
5

24
46

56
0

C
ar

R
ep
ai
r

24
5

11
10

1,
11
7

6,
49
4

25
0

78
3

2,
30
4

3
C
us
to
m
er

Se
rv
ic
e

31
5

9
22

1,
48
9

7,
81
9

28
9

1,
04
5

5,
24
8

5
M
or
tg
ag
e
G
ua

ra
nt
ee

17
6

4
6

15
3

97
0

15
2

48
4

28
8

0
O
rd
er

pr
oc
es
si
ng

22
6

7
9

46
5

2,
56
5

20
8

69
1

97
6

1
R
en
ta
lI
nf
o
D
el
iv
er
y

9
2

3
4

19
62

15
26

34
0

R
es
er
va
ti
on

s
18

2
7

14
25
9

1,
88
7

24
9

97
3

56
4

0
T
ic
ke
t
B
oo

ki
ng

20
3

7
11

10
5

70
6

92
29
2

35
2

0
Id
en
ti
ty

C
ar
d
Is
su
e

36
2

9
9

1,
53
7

15
,1
15

1,
53
6

7,
93
6

13
,8
28

5
R
eg
is
tr
at
io
n
O
ffi
ce

81
3

3
26

25
10
0

24
48

1,
14
8

0
D
at
ab

as
e
Se
rv
ic
e

12
2

5
5

14
0

55
1

37
95

31
1

0
H
el
p
D
es
k
Se
rv
ic
e

15
4

4
8

43
13
6

16
30

10
4

0
O
liv

e
O
il
O
rd
er
in
g

12
3

3
6

23
77

16
27

51
0

B
ro
ke
r
w
it
h
5
A
ir
lin

es
59

1
7

44
15

10
7

14
18

3,
95
4

2
B
ro
ke
r
w
it
h
7
A
ir
lin

es
79

1
9

60
19

17
3

18
24

82
,4
75

45
B
ro
ke
r
w
it
h
8
A
ir
lin

es
89

1
10

68
21

21
2

20
27

40
0,
35
0

32
5

Se
qu

en
ce

of
le
ng

th
5

11
5

0
5

32
80

32
80

63
0

Se
qu

en
ce

of
le
ng

th
14

29
14

0
14

16
,3
84

11
4,
68
8

16
,3
84

11
4,
68
8

32
,7
67

66
5
D
in
in
g
P
hi
lo
so
ph

er
s

36
5

5
16

1,
43
4

8,
39
5

1,
43
2

3,
43
5

9,
75
7

8
6
D
in
in
g
P
hi
lo
so
ph

er
s

43
6

6
19

6,
14
0

43
,1
34

6,
13
8

17
,6
76

61
,1
13

81

Figure 7.6: Experimental results of computing operating guidelines with Fiona.

service was exported to BPEL and then translated to service nets. Although most
of these examples have a rather simple internal structure, the number of reached

221

Chapter 7. Implementation in the Tool Fiona

markings of the service net varies from some 30 markings to several thousands
of markings. The “Customer Service” is the largest one with respect to both the
operating guideline and the number of computed markings. It could be computed
in approximately 5 seconds.

The next two services, “Identity Card Issue” and “Registration Office”, stem
from another industrial cooperation partner and model administrative workflows.
Again, the services were exported as BPEL processes and then translated into
service nets. Although the internal structure of the “Identity Card Issue” service
net is rather complex and results in 13, 828 computed markings, the operating
guideline could be computed in 5 seconds as well.

The “Database Service” [BCB+06], the “Help Desk Service” (from the Oracle
BPEL Process Manager), and the “Olive Oil Ordering” process [AFK05] are other
web services that use BPEL features like fault and event handling. They have
been directly modeled as BPEL processes and were then translated into service
nets. The structural reduction of the translated service nets results in quite small
nets despite the involved structure of the BPEL processes.

It is easy to see that all these practical examples so far could be computed in
reasonable time. Nevertheless, tool support for computing operating guidelines
is necessary because the operating guidelines of these services partly have more
than one thousand states.

The last two groups of services represent academic, technical examples. Therein,
the “Broker with n Airlines” is an open BPEL4Chor [DKLW07] choreography
adapted from [LKLR08]. It models a travel agency (the Broker) who expects a
ticket request of a traveler and then asks n different airlines for a ticket offer. The
cheapest offer is finally selected and returned to the traveler. For the computation
of the operating guideline, we have considered the agency together with 5 (or 7, or
8) airlines as one composite service and translated this composition into a service
net using the compiler BPEL2oWFN as well. These examples yield the biggest
service nets (with up to 89 places and 68 transitions after structural reduction) as
well as the biggest operating guidelines (with more than 5 minutes computation
time). Thereby, the size of the OG (i.e. the number of OG states) is not very
big. However, more than 400, 000 markings (i.e. different knowledge values) have
to be computed which is already a rather complex state space for a service.

The last group of services consists of sequence services and services represent-
ing the known dining philosophers problem. The “sequence” services wait for 5,
respectively 14, different messages in a sequence. Due to the asynchronous com-
munication of services, the operating guidelines reflect the possibility of strategies
to send all 5 (14) messages in arbitrary order. This results in diamond-structured
operating guidelines with lots of intermediate states. Raising the number of mes-
sages by 1 doubles the number of OG states and more than doubles the compu-
tation time. These examples can thus be used to evaluate the computation of

222

7.4. Case Study

operating guidelines with many states. The “Dining Philosophers” model a ver-
sion of the philosophers problem, where the strategy has to choose an order in
which the philosophers take their forks. It is an even harder challenge example
for Fiona as adding one philosopher to the system approximately quadruples the
number of OG states. Furthermore, the internal structure of the philosophers is
much more complicated than the structure of the sequence services. This results
in both large operating guidelines and huge numbers of computed markings. Con-
sequently, the computation of the operating guideline for 7 philosophers already
takes a few minutes and several hundred thousands of markings (comparable to
the “Broker with 8 Airlines” service).

For computing the operating guidelines, we mostly used a message bound of 1.
Only the database service requires a message bound b = 2 to be controllable.
Raising this number usually raises the computation time significantly without
necessarily increasing the (normalized) operating guideline’s size. Hence, choosing
a realistic message bound for the computation of operating guidelines is important
for not wasting computation time unnecessarily.

7.4.2 Service Discovery with Operating Guidelines

As motivated in Sect. 6.1, the operating guideline OGS of a service S is usu-
ally computed before S is made publicly available, i.e. at design time. At this
stage, spending the computational efforts to construct the operating guideline
is reasonable. After S has been published to a registry, when a client searches
for a behaviorally compatible published service for its service R, however, the
efforts for deciding behavioral compatibility of R and S, i.e. deciding the question
R ∈ Strat(S), are spent at runtime. Thus, an efficient decision procedure to check
R ∈ Strat(S) is crucial for the service brokering concept of publishing and discov-
ering services in an SOA. Consequently, an approach that shifts at least a part of
the computational efforts to the first phase may help to enhance the performance
of service discovery in the second phase substantially.

In the introduction, we have motivated the concept of operating guidelines as
an approach to support the discovery of behaviorally services S for a querying
client’s service R. The corresponding service discovery approach with operating
guidelines has been described in Sect. 6.1. It takes into account all relevant
aspects motivated in the problem description of Sect. 1.3. Most notably, it shifts
the (potentially) costly computation of the operating guideline OGS of a service
S to the design phase and allows for an efficient matching procedure to decide
R ∈ Strat(S) at the discovery phase.

The following small case study shall back this claim with numbers. It recalls the
“Broker with n Airlines” example service from the previous section. In the table of
Fig. 7.7, we repeat the needed computation time of the respective operating guide-
line for 5, 7, and 8 airlines. Furthermore, we translated a fitting traveler for this

223

Chapter 7. Implementation in the Tool Fiona

open choreography (also taken from [LKLR08]) into a service net and considered
the matching of the traveler with the computed operating guideline. The time
needed for the matching takes approximately 130 milliseconds, which underlines
the intended distribution of the efforts between design time and runtime.

Computation Matching with Model checking of
Open Choreography of OG, t (s) Traveler, t (s) Composition, t (s)
Broker with 5 Airlines 1.5 0.128 0.350
Broker with 7 Airlines 44.7 0.130 7.511
Broker with 8 Airlines 324.9 0.130 57.512

Figure 7.7: Experimental comparison of Model Checking with LoLA versus Matching
with Fiona. In the cases of 5 and 7 Airlines, seven matchings are sufficient to outperform
the model checking approach. In the case of 8 Airlines, even six matchings are sufficient
to break even with the model checking approach.

As a competing approach, we translated the same choreography, this time with all
participants including the traveler, into a closed Petri net, representing all parties
in interaction. To this end, we used the compiler BPEL2oWFN once again, which
is capable of translating BPEL and BPEL4Chor into the input format of the Petri
net model checking tool LoLA [Sch00] as well.1 Again, we applied the structural
reduction techniques implemented in BPEL2oWFN to reduce the structure of the
translated Petri net. Furthermore, the final states induced by the BPEL4Chor
specification have been translated into a CTL formula expressing that, from each
reachable marking of the Petri net, a final marking is reachable. That way, we are
easily able to verify the absence of deadlocks (i.e. non-final, dead, and reachable
markings) of the net. The corresponding time needed by LoLA is given in the last
column of the table of Fig. 7.7. All results were computed on the same machine.

It is easy to see that the runtime efforts between both approaches drastically
differ—whereas the matching basically takes constant time of approximately 130
milliseconds, the time for model checking the composite service of agency, airlines,
and traveler significantly grows with the number of considered airlines.

Even if we take into account the overall sum of computation time (i.e. when also
including the OG computation), then our OG approach still easily pays of after
a small number of performed matchings. In case of less than 8 Airlines, only
seven matchings are sufficient to outperform the model checking approach. In
the case of a price request of 8 Airlines, the break even is already reached after
matching the traveler six times. As we assume that the publish operation of
the service brokering in an SOA typically happens significantly less often than
the discovery operation, we summarize that the operating guideline approach for
service discovery is feasible.

1Recall that Fiona is based on the data structures and algorithms of LoLA, and that the
input formats of LoLA and Fiona are very similar.

224

7.5. Conclusion

7.5 Conclusion

All results presented in Part II of this thesis have been prototypically implemented
in our service analysis tool Fiona. That is, Fiona can decide controllability of a
service and compute its operating guideline. Fiona can normalize and minimize
BSAs (and thus operating guidelines), match a service with an operating guideline,
and compare the sets of strategies of two services for equivalence or inclusion.
Furthermore, the functionality of Fiona comprises additional features that have
not been the focus of this thesis. For example, Fiona can be used to synthesize
strategy services for a given service, to compute a public view of a service, or to
generate a behavioral adapter between behaviorally incompatible services.

Experimental results have shown that the computation of operating guideline is
feasible in practice. That is, it is possible to construct the operating guidelines of
service of realistic sizes in reasonable time. Furthermore, the operating guideline
approach for the discovery of behaviorally compatible services outperforms the
competing model checking approach to verify behavioral compatibility after only
a few matchings. This justifies the application of operating guidelines in service-
oriented architectures as a behavioral description of a provider service S published
to the service registry.

The implementation of Fiona was guided by the use of efficient data structures
and methods for being able to analyze services of practical sizes. The implemen-
tation of additional heuristics can further increase performance.

225

8 Conclusions and Future Work

8.1 Conclusions

In the service-oriented approach, services are used as building blocks to develop
large dynamical interorganizational business processes. A key concept in this
approach is the discovery of published services that meet the search criteria of a
client. Therein, one major challenge is to ensure behavioral compatibility between
the client and the (selected) published service. In case of behavioral incompati-
bilities, severe global errors in the whole interorganizational business process can
be the result.

In this thesis, we have presented a framework to formally analyze the interaction
of services for behavioral compatibility. We introduced service nets and service
automata as equally well-suited formal methods to model services and their in-
teraction and formalized behavioral correctness in the notions of well-behavior
and controllability of a service. Suitability of service nets for service modeling
has been proven through a feature-complete formal service net semantics for the
industrial Web service description language BPEL. The semantics is implemented
in the compiler BPEL2oWFN and therefore allows for the automatic translation
of a BPEL process into a service net. That way, our algorithms and techniques
can directly be applied to real-world processes. Experimental results have shown
that we can detect non-trivial model flaws of interacting services that would have
been hard or impossible to find manually.

With the concept of the operating guideline OGS of a service S, we proposed an
artifact that characterizes the set Strat(S) of all behaviorally compatible services
R for S, i.e. all strategies for S. The semantics of OGS is formalized by a matching
algorithm in form of the set Match(OGS). With the help of this algorithm,
we can efficiently decide whether or not R is characterized by OGS , i.e. decide
R ∈ Match(OGS). Together with the main property of operating guidelines,
Strat(S) = Match(OGS), we are able to decide behavioral compatibility between
R and S, i.e. the question R ∈ Strat(S), by simply deciding R ∈ Match(OGS).

OGS is finite, operational, and reveals only such information about S that are

227

Chapter 8. Conclusions and Future Work

inevitably needed to decide behavioral compatibility with S. Hence, OGS is well
suited to support the discovery of behaviorally compatible published services.
Consequently, we propose to publish the operating guideline of a service as addi-
tional available information in a service repository.

We further developed a procedure to decide the inclusion relation between the
semantics Match(OGS) and Match(OGS′) of two operating guidelines OGS and
OGS′ of two services S and S′. To this end, we introduced a preorder relation
v. It is defined on the structures of OGS and OGS′ only and can therefore be
efficiently decided. The preorder relation can be used to analyze several notions
that are relevant in the context of behavioral substitutability of services and for
service contracts.

The construction of operating guidelines is implemented in our analysis tool
Fiona and experimental results have shown that the computation of operating
guidelines is feasible for services of realistic sizes. The compiler BPEL2oWFN
complements our analysis possibilities. Together with BPEL2oWFN, we have a
technology chain that starts out with a BPEL process, transforms it into a ser-
vice net, and computes its operating guideline. Analogously, we may also start
with another BPEL process, transform it into a service net, and match this net
with the published operating guideline to decide behavioral compatibility of both
services.

The presented approach is based on service nets and service automata in this
thesis. However, it is not limited to these formalisms and can easily be translated
into other frameworks using asynchronous message passing as a communication
paradigm. Furthermore, our approach can also be applied to services specified
in a service description languages other than BPEL as long as this language can
be translated into some formal model and therefore into service nets or service
automata. For example, there exists tool support to translate languages like
BPEL4Chor [DKLW07], WS-CDL [KBR+05], UML activity diagrams [OMG07,
Stö04], and BPMN [OMG06] into a formal model.

Finally, the work presented in this thesis already serves as a foundation for other
ongoing doctoral projects in the area of substitutability, adapter generation, or
test case generation. All these works heavily base on operating guidelines and
partially extend the concept of operating guidelines for their respective needs.

8.2 Future Work

The many the applications of operating guidelines are, the many are the possible
directions for future research. From our perspective, the most important future
research questions are the following ones.

228

8.2. Future Work

Distributed operating guidelines. So far, operating guidelines reflect correct
interaction of two services only. The interaction of a service S with more than
one client R1, . . . , Rn is not addressed. This question is closely related to the
question of distributed controllability as considered in [Wol09]. The main challenge
for distributed operating guidelines is the availability of choices. That is, the
interaction of R1 with S has an impact on which interaction of R2 with S is
correct, and which is not. To characterize all combinations of correct interactions
of R1 with S and R2 with S, the corresponding operating guideline of S should
have annotations like “If R1 performs/has performed this (or that) action, then
R2 must satisfy this (or that) Boolean formula.”

Compositional computation. The current computation approach for con-
structing the operating guideline OGS for a service S requires a complete recal-
culation of OGS whenever S is changed. Consequently, S can only be analyzed
reasonably after it has been designed completely. An approach that can at least
reuse some part of the construction of the old operating guideline could decrease
the needed computational efforts significantly.

Boundedness of communication. In Sect. 5.3, we have introduced the re-
striction of our characterization to strategies R that have b-bounded communica-
tion with S. This restriction was introduced to ensure a finite state composition
of R and S. However, there are pairs of services where the composition is finite
although there is no message bound b such that R and S have b-bounded commu-
nication. In other words, b-bounded communication is only sufficient for a finite
composition, but not necessary. A criterion that is also necessary is an interesting
theoretical future work.

Combination with other properties. As a goal in the broader context of
services and SOC, the results of this thesis should be combined with other cor-
rectness notions of services. Especially in the area of service discovery, the notion
of behavioral compatibility of services should be integrated into results regarding
the compatibility of the semantics of services as well as non-functional, quality
of service (QoS) aspects. Only a service discovery process that takes care of all
aspects of service compatibility will satisfy the needs to realize the vision of high
flexibility and loose coupling of service compositions.

229

Bibliography

[Aal98] W. M. P. van der Aalst. The Application of Petri Nets to Work-
flow Management. The Journal of Circuits, Systems and Computers,
8(1):21–66, 1998.

[Aal03] W. M. P. van der Aalst. Inheritance of Interorganizational Workflows:
How to agree to disagree without loosing control? Information Tech-
nology and Management Journal, 4(4):345–389, 2003.

[AB02] W. M. P. van der Aalst and T. Basten. Inheritance of Workflows:
An Approach to Tackling Problems Related to Change. Theoretical
Computer Science, 270(1-2):125–203, 2002.

[ACKM03] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services:
Concepts, Architectures and Applications. Springer, September 2003.

[AFK05] J. Arias-Fisteus, L. S. Fernández, and C. D. Kloos. Applying Model
Checking to BPEL4WS Business Collaborations. In The 2005 ACM
Symposium on Applied Computing (SAC), pages 826–830. ACM,
2005.

[AH01] L. de Alfaro and T. A. Henzinger. Interface Automata. ACM SIG-
SOFT Software Engineering Notes, 26(5):109–120, 2001.

[ALM+07] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and
K. Wolf. From Public Views to Private Views – Correctness-by-
Design for Services. In 4th International Workshop on Web Ser-
vices and Formal Methods (WS-FM 2007), volume 4937 of Lecture
Notes in Computer Science, pages 139–153, Brisbane, Australia,
2007. Springer.

[ALM+09] W. M. P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and
K. Wolf. Multiparty Contracts: Agreeing and Implementing Interor-
ganizational Processes. The Computer Journal, 2009. (to appear).

231

Bibliography

[Alv07] A. Alves et al. Web Services Business Process Execution Language
(WS-BPEL) Version 2.0. Committee specification, Organization for
the Advancement of Structured Information Standards (OASIS), Jan-
uary 2007.

[AW01] W. M. P. van der Aalst and M. Weske. The P2P approach to In-
terorganizational Workflows. In 13th International Conference on
Advanced Information Systems Engineering (CAiSE 2001), volume
2068 of Lecture Notes in Computer Science, pages 140–156, Inter-
laken, Switzerland, August 2001. Springer.

[BA01] T. Basten and W. M. P. van der Aalst. Inheritance of Behavior.
Journal of Logic and Algebraic Programming, 47(2):47–145, 2001.

[Baj06] S. Bajaj et al. Web Services Policy 1.2 - Framework (WS-Policy).
Technical report, W3C, April 2006.

[BBB95] R. K. Boel, L. Ben-Naoum, and V. van Breusegem. On forbidden
state problems for a class of controlled Petri nets. IEEE Transactions
on Automatic Control, 40(10):1717–1731, 1995.

[BBMP06] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. A Priori Confor-
mance Verification for Guaranteeing Interoperability in Open Envi-
ronments. In 4th International Conference on Service-Oriented Com-
puting (ICSOC 2006), volume 4294 of Lecture Notes in Computer
Science, pages 339–351. Springer, 2006.

[BCB+06] J. Bolie, M. Cardella, S. Blanvalet, M. Juric, S. Carey, P. Chandran,
Y. Coene, K. Geminiuc, M. Zirn, and H. Gaur. BPEL Cookbook:
Best Practices for SOA-based integration and composite applications
development. Packt Publishing, 2006.

[BCGM05] D. Berardi, D. Calvanese, G. De Giacomo, and M. Mecella. Com-
position of services with nondeterministic observable behavior. In
3rd International Conference on Service-Oriented Computing (IC-
SOC 2005), volume 3826 of Lecture Notes in Computer Science, pages
520–526. Springer, 2005.

[BCPV04] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing Web
Service Choreographies. Electronic Notes in Theoretical Computer
Science, 105:73–94, 2004.

[BD98] E. Badouel and P. Darondeau. Theory of Regions. In Lectures on
Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Com-
puter Science, pages 529–586. Springer, 1998.

232

Bibliography

[BDH05] A. P. Barros, M. Dumas, and A. H. M. ter Hofstede. Service Interac-
tion Patterns. In 3rd International Conference on Business Process
Management (BPM 2005), volume 3649 of Lecture Notes in Com-
puter Science, pages 302–318, 2005.

[BFHS03] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation Specification:
A New Approach to Design and Analysis of E-Service Composition.
In 12th international conference on World Wide Web (WWW 2003),
pages 403–410. ACM, 2003.

[BFM02] C. Bussler, D. Fensel, and A. Maedche. A Conceptual Architecture
for Semantic Web Enabled Web Services. ACM SIGMOD Record,
31(4):24–29, 2002.

[BHL+05] B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On
automating Web services discovery. The International Journal on
Very Large Data Bases, 14(1):84–96, 2005.

[BN08] B. Benatallah and H. R. Motahari Nezhad. Service Oriented Archi-
tecture: Overview and Directions. In Advances in Software Engi-
neering: Lipari Summer School 2007, volume 5316 of Lecture Notes
in Computer Science, pages 116–130. Springer, 2008.

[BSBM04] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are Two
Web Services Compatible? In 5th International Workshop on Tech-
nologies for E-Services (TES 2004), volume 3324 of Lecture Notes in
Computer Science, pages 15–28. Springer, 2004.

[BZ83] D. Brand and P. Zafiropulo. On Communicating Finite-State Ma-
chines. Journal of the ACM (JACM), 30(2):323–342, 1983.

[CC77] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lat-
tice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints. In 4th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 1977),
pages 238–252, Los Angeles, California, January 1977. ACM Press,
New York, NY, USA.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weeravarana.
Web Service Discription Language (WSDL) 1.1. Technical re-
port, Ariba, International Business Machines Corporation, Microsoft,
March 2001.

[CGP00] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, 2000.

233

Bibliography

[CKK+02] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev. Logic synthesis of asynchronous controllers and inter-
faces. Springer, 2002.

[CKLY98] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving
Petri Nets from Finite Transition Systems. IEEE Transactions on
Computers, 47(8):859–882, 1998.

[CL99] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Kluwer Academic Publishers, 1999.

[CTD05] I. Chebbi, S. Tata, and S. Dustdar. Cooperation Policies for Inter-
organizational Workflows. In The 2005 Symposium on Applications
and the Internet Workshops (SAINT-W), pages 222–225, Washing-
ton, DC, USA, January 2005. IEEE Computer Society.

[DBN08] M. Dumas, B. Benatallah, and H. R. Motahari Nezhad. Web Service
Protocols: Compatibility and Adaptation. IEEE Data Engineering
Bulletin, 31(3):40–44, 2008.

[DHM+04] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity
Search for Web Services. In 30th International Conference on Very
Large Data Bases (VLDB 2004), pages 372–383. VLDB Endowment,
2004.

[DK76] F. DeRemer and H. H. Kron. Programming-in-the-Large Versus
Programming-in-the-Small. IEEE Transactions on Software Engi-
neering, 2(2):80–86, June 1976.

[DKLW07] G. Decker, O. Kopp, F. Leymann, and M. Weske. BPEL4Chor: Ex-
tending BPEL for Modeling Choreographies. In IEEE International
Conference on Web Services (ICWS 2007), pages 296–303, Salt Lake
City, UT, USA, July 2007. IEEE Computer Society Press.

[DS05] S. Dustdar and W. Schreiner. A survey on web services composition.
International Journal of Web and Grid Services, 1(1):1–30, August
2005.

[DSGF06] V. Deora, J. Shao, W. A. Gray, and N. J. Fiddian. Modelling Quality
of Service in Service Oriented Computing. In 2nd IEEE International
Symposium on Service-Oriented System Engineering (SOSE 2006),
pages 95–101, Washington, DC, USA, 2006. IEEE Computer Society.

[DX03] P. Darondeau and X. Xie. Linear control of live marked graphs.
Automatica, 39(3):429–440, 2003.

234

Bibliography

[FBS05] X. Fu, T. Bultan, and J. Su. Synchronizability of Conversations
among Web Services. IEEE Transactions on Software Engineering,
31(12):1042–1055, 2005.

[Fer04] A. Ferrara. Web services: a process algebra approach. In 2nd Inter-
national Conference on Service-Oriented Computing (ICSOC 2004),
pages 242–251, New York, NY, USA, 2004. ACM Press.

[Gie08] C. Gierds. Finding Cost-Efficient Adapters. In 15th German Work-
shop on Algorithms and Tools for Petri Nets (AWPN 2008), volume
380 of CEUR Workshop Proceedings, pages 37–42. CEUR-WS.org,
September 2008.

[GMW08] C. Gierds, A. J. Mooij, and K. Wolf. Specifying and generating
behavioral service adapter based on transformation rules. Preprint
CS-02-08, Universität Rostock, Rostock, Germany, August 2008.

[Got00] K. Gottschalk. Web Services Architecture Overview. IBM White-
paper, IBM developerWorks, September 2000. http://ibm.com/
developerWorks/web/library/w-ovr/.

[GRX03] A. Ghaffari, N. Rezg, and X. Xiaolan. Feedback Control Logic for
Forbidden-State Problems of Marked Graphs: Application to a Real
Manufacturing System. IEEE Transactions on Automatic Control,
48(1):18–29, 2003.

[HBCS03] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: A
Look Behind the Curtain. In Proceedings of the 22nd ACM sympo-
sium on Principles of database systems (PODS 2003), pages 1–14.
ACM Press, 2003.

[HGZ96] L. E. Holloway, X. Guan, and L. Zhang. A Generalization of State
Avoidance Policies for Controlled Petri Nets. IEEE Transactions on
Automatic Control, 41(6):804–816, 1996.

[HKG97] L. E. Holloway, B. H. Krogh, and A. Giua. A Survey of Petri Net
Methods for Controlled Discrete Event Systems. Discrete Event Dy-
namic Systems: Theory and Applications, 7(2):151–190, 1997.

[HR00] R. Hauck and H. Reiser. Monitoring Quality of Service across Orga-
nizational Boundaries. In 3rd International IFIP/GI Working Con-
ference on Trends in Distributed Systems, pages 124–137, London,
UK, 2000. Springer.

[KBR+05] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and
C. Barreto. Web Services Choreography Description Language (WS-
CDL) Version 1.0. W3C Candidate Recommendation 9 November
2005, W3C, Cambridge, Massachusetts, USA, 2005.

235

Bibliography

[Kin97] E. Kindler. A compositional partial order semantics for Petri net
components. In 18th International Conference on Application and
Theory of Petri Nets (ICATPN 1997), volume 1248 of Lecture Notes
in Computer Science, pages 235–252. Springer, June 1997.

[KL09] K. Kaschner and N. Lohmann. Automatic Test Case Generation
for Interacting Services. In 6th International Conference on Service-
Oriented Computing (ICSOC 2008), Workshops Proceedings, volume
5472 of Lecture Notes in Computer Science, pages 66–78. Springer,
December 2009. (in press).

[KP06] R. Kazhamiakin and M. Pistore. Choreography Conformance Anal-
ysis: Asynchronous Communications and Information Alignment. In
3rd International Workshop on Web Services and Formal Methods
(WS-FM 2006), volume 4184 of Lecture Notes in Computer Science,
pages 227–241. Springer, 2006.

[LDL08] F. Lécué, A. Delteil, and A. Léger. Towards the Composition of State-
ful and Independent Semantic Web Services. In The 2008 ACM sym-
posium on Applied computing (SAC), pages 2279–2285, New York,
NY, USA, 2008. ACM.

[LK08] N. Lohmann and J. Kleine. Fully-automatic Translation of Open
Workflow Net Models into Simple Abstract BPEL Processes. In Mod-
ellierung 2008, volume P-127 of Lecture Notes in Informatics (LNI),
pages 57–72. GI, March 2008.

[LKLR08] N. Lohmann, O. Kopp, F. Leymann, and W. Reisig. Analyzing
BPEL4Chor: Verification and Participant Synthesis. In 4th Inter-
national Workshop on Web Services and Formal Methods (WS-FM
2007), volume 4937 of Lecture Notes in Computer Science, pages 46–
60, Brisbane, Australia, September 2008. Springer.

[LMSW06] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing In-
teracting BPEL Processes. In 4th International Conference on Busi-
ness Process Management (BPM 2006), volume 4102 of Lecture Notes
in Computer Science, pages 17–32, Vienna, Austria, September 2006.
Springer.

[LMSW08] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing
Interacting WS-BPEL Processes Using Flexible Model Generation.
Data Knowledge Engineering, 64(1):38–54, January 2008.

[LMW07a] N. Lohmann, P. Massuthe, and K. Wolf. Behavioral Constraints
for Services. In 5th International Conference on Business Process

236

Bibliography

Management (BPM 2007), volume 4714 of Lecture Notes in Com-
puter Science, pages 271–287, Brisbane, Australia, September 2007.
Springer.

[LMW07b] N. Lohmann, P. Massuthe, and K. Wolf. Operating Guidelines for
Finite-State Services. In 28th International Conference on Appli-
cations and Theory of Petri Nets and Other Models of Concurrency
(ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 321–341, Siedlce, Poland, June 2007. Springer.

[Loh07] N. Lohmann. A Feature-Complete Petri Net Semantics for WS-
BPEL 2.0 and its Compiler BPEL2oWFN. Informatik-Berichte 212,
Humboldt-Universität zu Berlin, August 2007.

[Loh08] N. Lohmann. A Feature-Complete Petri Net Semantics for WS-BPEL
2.0. In 4th International Workshop on Web Services and Formal
Methods (WS-FM 2007), volume 4937 of Lecture Notes in Computer
Science, pages 77–91, Brisbane, Australia, April 2008. Springer.

[LRS02] F. Leymann, D. Roller, and M. Schmidt. Web services and business
process management. IBM Systems Journal, 41(2), 2002.

[LW09] N. Lohmann and K. Wolf. Petrifying Operating Guidelines for Ser-
vices. In 9th International Conference on Application of Concurrency
to System Design (ACSD 2009). IEEE Computer Society, July 2009.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mar04] A. Martens. Verteilte Geschäftsprozesse - Modellierung und Verifika-
tion mit Hilfe von Web Services. PhD thesis, Institut für Informatik,
Humboldt-Universität zu Berlin, 2004.

[MBM+07] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci,
K. Sycara, D. L. Mcguinness, E. Sirin, and N. Srinivasan. Bring-
ing Semantics to Web Services with OWL-S. World Wide Web,
10(3):243–277, 2007.

[MCHP08] M. Mancioppi, M. Carro, W.-J. van den Heuvel, and M. P. Papa-
zoglou. Sound Multi-party Business Protocols for Service Networks.
In 6th International Conference on Service-Oriented Computing (IC-
SOC 2008), volume 5364 of Lecture Notes in Computer Science, pages
302–316, 2008.

[MGB+07] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F. Rosenberg,
and S. Dustdar. A Context-Based Mediation Approach to Compose
Semantic Web Services. ACM Transactions on Internet Technology,
8(1):1–23, 2007.

237

Bibliography

[Mil71] R. Milner. An Algebraic Definition of Simulation Between Programs.
In 2nd International Joint Conferences on Artificial Intelligence (IJ-
CAI), pages 481–489, London, UK, 1971.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

[MRS05] P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline
Approach to the SOA. Annals of Mathematics, Computing & Tele-
informatics, 1(3):35–43, 2005.

[MS05] P. Massuthe and K. Schmidt. Operating Guidelines - An Automata-
Theoretic Foundation for the Service-Oriented Architecture. In 5th
International Conference on Quality Software (QSIC 2005), pages
452–457, Melbourne, Australia, September 2005. IEEE Computer
Society.

[MSSW08] P. Massuthe, A. Serebrenik, N. Sidorova, and K. Wolf. Can I find a
Partner? Undecidablity of Partner Existence for Open Nets. Infor-
mation Processing Letters, 108(6):374–378, Nov 2008.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. Pro-
ceedings of the IEEE, 77(4):541–580, April 1989.

[MW07] P. Massuthe and K. Wolf. An Algorithm for Matching Non-
deterministic Services with Operating Guidelines. International Jour-
nal of Business Process Integration and Management (IJBPIM),
2(2):81–90, 2007.

[MW08] P. Massuthe and D. Weinberg. Fiona: A Tool to Analyze Interacting
Open Nets. In 15th German Workshop on Algorithms and Tools for
Petri Nets (AWPN 2008), volume 380 of CEUR Workshop Proceed-
ings, pages 99–104. CEUR-WS.org, September 2008.

[MWF05] B. Mahleko, A. Wombacher, and P. Fankhauser. Process-annotated
Service Discovery facilitated by an n-gram-based index. In Inter-
national Conference on e-Technology, e-Commerce, and e-Services
(EEE 2005), pages 2–8. IEEE Computer Society, 2005.

[NNH05] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer, 2nd edition, 2005.

[OMG06] Business Process Modeling Notation (BPMN) Specification. Fi-
nal adopted specification, dtc/06-02-01, Object Management Group,
February 2006.

[OMG07] UML superstructure, v2.1.2, formal/07-11-02. Standard, Object
Management Group, 2007.

238

Bibliography

[Pap01] M. P. Papazoglou. Agent-oriented technology in support of e-
business. Communications of the ACM, 44(4):71–77, 2001.

[Pap03] M. P. Papazoglou. Service-Oriented Computing: Concepts, Char-
acteristics and Directions. In 4th International Conference on Web
Information Systems Engineering (WISE 2003), pages 3–12, Rome,
Italy, December 2003. IEEE Computer Society.

[Pap07a] M. P. Papazoglou. Web Services: Principles and Technology. Pearson
- Prentice Hall, Essex, July 2007.

[Pap07b] M. P. Papazoglou. What’s in a Service? In 1st European Conference
on Software Architecture (ECSA 2007), volume 4758 of Lecture Notes
in Computer Science, pages 11–28. Springer, 2007.

[Par81] D. Park. Concurrency and Automata on Infinite Sequences. In
5th GI-Conference on Theoretical Computer Science, pages 167–183,
London, UK, 1981. Springer.

[PH07] M. P. Papazoglou and W.-J. van den Heuvel. Service oriented archi-
tectures: approaches, technologies and research issues. The Interna-
tional Journal on Very Large Data Bases, 16(3):389–415, 2007.

[PR05] S. Pinchinat and S. Riedweg. You Can Always Compute Maximally
Permissive Controllers Under Partial Observation When They Exist.
In American Control Conference (ACC 2005), volume 4, pages 2287–
2292, Portland, Oregon, June 2005.

[PTDL08] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-
Oriented Computing: a Research Roadmap. International Journal on
Cooperative Information Systems, 17(2):223–255, 2008.

[Rei85] W. Reisig. Petri Nets. Springer, Berlin, Heidelberg, New York,
Tokyo, EATCS Monographs on Theoretical Computer Science edi-
tion, 1985.

[RPD06] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Perfor-
mance and Dependability Attributes of Web Services. IEEE Inter-
national Conference on Web Services (ICWS 2006), 0:205–212, 2006.

[RW87] P. J. Ramadge and W. M. Wonham. Supervisory control of a class
of discrete event processes. SIAM Journal Control and Optimization,
25(1):206–230, 1987.

[Sch00] K. Schmidt. LoLA: A Low Level Analyser. In 21st International
Conference on Application and Theory of Petri Nets (ICATPN 2000),
volume 1825 of Lecture Notes in Computer Science, pages 465–474.
Springer, June 2000.

239

Bibliography

[Sch05] K. Schmidt. Controllability of Open Workflow Nets. In Enterprise
Modelling and Information Systems Architectures (EMISA 2005),
volume 75 of Lecture Notes in Informatics (LNI), pages 236–249.
GI, 2005.

[SMB09] C. Stahl, P. Massuthe, and J. Bretschneider. Deciding Substi-
tutability of Services with Operating Guidelines. LNCS Transac-
tions on Petri Nets and Other Models of Concurrency (ToPNoC),
5460(II):172–191, March 2009.

[Stö04] H. Störrle. Semantics of Control-Flow in UML 2.0 Activities. In
IEEE Symposium on Visual Languages and Human Centric Com-
puting (VL/HCC 2004), pages 235–242. IEEE Computer Society,
September 2004.

[SW08] C. Stahl and K. Wolf. An Approach to Tackle Livelock-Freedom in
SOA. In 15th German Workshop on Algorithms and Tools for Petri
Nets (AWPN 2008), volume 380 of CEUR Workshop Proceedings,
pages 69–74. CEUR-WS.org, September 2008.

[TP04] P. Traverso and M. Pistore. Automated Composition of Semantic
Web Services into Executable Processes. In 3rd International Se-
mantic Web Conference (ISWC 2004), volume 3298 of Lecture Notes
in Computer Science, pages 380–394. Springer, 2004.

[VMK+07] T. Vitvar, A. Mocan, M. Kerrigan, M. Zaremba, M. Zaremba,
M. Moran, E. Cimpian, T. Haselwanter, and D. Fensel. Semantically-
enabled service oriented architecture : concepts, technology and ap-
plication. Service Oriented Computing and Applications, 1(2):129–
154, 2007.

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson. Web Services Platform Architecture. Prentice Hall PTR,
March 2005.

[WFMN04] A. Wombacher, P. Fankhauser, B. Mahleko, and E. J. Neuhold.
Matchmaking for Business Processes Based on Choreographies. In-
ternational Journal of Web Services Research (JWSR), 1(4):14–32,
2004.

[Wol07] M. Wolf. Synchrone und asynchrone Kommunikation in offenen
Workflownetzen. Studienarbeit, Humboldt-Universität zu Berlin,
May 2007. (In German).

[Wol09] K. Wolf. Does my service have partners? LNCS Transac-
tions on Petri Nets and Other Models of Concurrency (ToPNoC),
5460(II):152–171, March 2009.

240

Bibliography

[WSOD09] K. Wolf, C. Stahl, J. Ott, and R. Danitz. Verifying Livelock Freedom
in an SOA Scenario. In 9th International Conference on Application
of Concurrency to System Design (ACSD 2009). IEEE Computer
Society, July 2009.

[YS97] D. M. Yellin and R. E. Strom. Protocol Specifications and Compo-
nent Adaptors. ACM Transactions on Programming Languages and
Systems (TOPLAS), 19(2):292–333, 1997.

[ZBDH06] J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hofstede.
Let’s Dance: A Language for Service Behavior Modeling. In 14th In-
ternational Conference on Cooperative Information Systems (CoopIS
2006), volume 4275 of Lecture Notes in Computer Science, pages
145–162, Montpellier, France, 2006. Springer.

241

Index

A bold page number refers to the definition or introduction of a terminology or
notation. A page number in normal font refers to relevant information on a sub-
ject, or the informal explanation of a concept. An italic page number emphasizes
important notations or main results.

Symbols
[] see multiset, empty
∅ see multiset, over ∅
⊕see composition
b see message bound
Bφ .see BSA
Bφq see BSA, q-starting of
v . . see BSA, preorder relation for
bags .see bags
β see assignment
β+see assignment, maximal
≤ . . see assignment, domination of
BFsee Boolean formula
closure(K)see closure
δ .see service automaton transition
≡ see equivalence, of BSAs
[Bφ]see equivalence, class of a BSA
' . . see equivalence, of BSA states
[q] . . . see equivalence, class of BSA

state
event(K,x)see event
F see overapproximation
Fb see overapproximation,

bounded
final . see literal
Iiosee interface, of a service

automaton
Iin see input channel
Iout see ouput channel
inner see service net, inner of
k see knowledge, function
K see knowledge, set
m

t−→ m′ see step
Match see matching
MC . . see message channels, set of
minimal see BSA, minimization of
normal see normalization
OGsee operating guidelines
Ω see marking, final; or state, final
φ see annotation, of a BSA
ψsee annotation, of a BSA
ψFb see annotation, canonical
|=see Boolean formula, satisfaction

of
Pio . . see interface, of a service net
Pin see input place
Pout see output place
PN (A) see translation, service

automaton to service net
% see simulation relation
%−1 see relation, inverse of
R see reachability

243

Index

receive(t)see service net transition,
receiving

SA(N) . see translation, service net
to service automaton

send(t) . see service net transition,
sending

seq see service net,
sequentialization

situations see situation
Strat see strategy
τ see service net

transition, internal; or ser-
vice automaton transition,
internal

A
annotation
canonical 170, 173, 174
normal . 112
normalization . see normalization,

of BSA annotations
of a BSA . 101
assignment 100
domination of 100, 100
maximal. .110
of a BSA . 103

B
bags . 44
bounded .44
bisimulation relation 98
Boolean annotated service automa-

ton . see
BSA

Boolean assignmentsee assignment
Boolean formula 99
empty conjunction.101
equivalence of 101
negation-free 99
satisfaction of 100
simplification of 101

BSA .101
q-starting of 127
empty .106

matching with see matching
minimization of130, 176
preorder relation for 119

C
closure . 150
composition
of service automata 69
associativity of 72
commutativity of 71

of service nets 54
associativity of 57
commutativity of 56

relation between operators 80
controllability
bounded. .163
of a service automaton73
of a service net 59

D
deadlock
of a service automaton . . 72, 146,

147
of a service net 58
deterministic service automaton

see service automaton, de-
terministic

E
empty BSAsee BSA, empty
empty state see state, empty
equivalence
class of a BSA126
class of a BSA state 128
of BSA states 127
of BSAs . 124
event . 151

F
Fiona 27, 136, 201–225

I
input channel 61
input place . 48

244

Index

interface
channel .61
free .67
shared . 67

of a service automaton61
of a service net 49
place . 49
free .54
shared . 54

interface compatible
service automata.67
service nets 54
interface equivalent
BSAs .102
service automata.66
service nets 53
internally disjoint
service automata.66
service nets 53

K
knowledge
function . 142
set . 143

L
literal . 100

M
mapping .42
marking . 45
dead .47
final . 48
initial .45
reachable . 46
transient. .47
matching . 103
maximal assignment see

assignment, maximal
message bound 161
message channels
bilateral. .47
directed . 47
set of . 47

minimization of a BSA . . see BSA,
minimization of

multiset . 43
empty . 43, 69, 146, 147, 159, 170
over ∅ .43, 44

N
normalization
of BSA states 116
of a BSA . 118
of a service net . . . see service net,

sequentialization of
of annotations112

O
open net see service net
open workflow net. .see service net
operating guideline 139
bounded. .163
canonical .175
output channel.61
output place 48
overapproximation151, 159
bounded165, 173

P
Petri net .45
bounded .46
preorder on BSAs see BSA,

preorder relation for

R
reachability
for Petri nets 46
for service automata . . . see state,

internally reachable
relation .42
inverse of 42, 99

S
sequentialization of a service net

see service net, sequential-
ization of

service automaton 61

245

Index

closed . 66
deterministic . . . 64, 101, 102, 105
finite . 62
open. .66
underlying a BSA 102
service automaton transition . . . 61
interface . 62
internal .62
label of . 61
present . 62
receiving. .62
sending . 62
service net . 48
closed . 52
elementarily communicating . . 75
inner of .51
open. .52
sequentialization of 76
simultaneously communicating75
service net transition
interface . 49
internal .49
label of . 49
receiving. .49
sending . 49
simulation relation 97, 98
minimal . 98
situation . 141
bounded. .164
stable . 144
transient . 144
smaller relation on BSAs see BSA,

preorder relation for
state .61

δ-reachable 64
empty 153, 153, 172
final . 61
initial .61
internally reachable65
normal . 114
stable. .65
transient. .65
step . 46
strategy
bounded162, 167, 173
service automaton 73, 159
service net .59
strong simulation relation.see

simulation relation

T
transition
of a Petri net 45
of a service automaton see service

automaton transition
of a service net. . . .see service net

transition
translation
service automaton to service net

83
service net to service automaton

79

W
weak simulation relation 97
well-behaving
service automaton 72
service net .58

246

Operating Guidelines for
Services – Summary

In the paradigm of service-oriented computing, companies organize their core
competencies as services and may request other functionalities from services of
other companies. Services provide high flexibility, platform independent loose
coupling, and distributed execution. They may thus help to reduce the com-
plexity of dynamically binding and integrating heterogenous processes within and
across organizations. The vision of service-oriented architectures is to provide a
framework for publishing new services, for on demand searching for and discov-
ery of existing services, and for dynamically binding services to achieve common
business goals. That way, each individual organization gains more flexibility to
dynamically react on new challenges.

As services may be created or modified, or collaborations may be restructured at
any point in time, a new challenge arises in this setting—the challenge for decid-
ing the compatibility of the composed services before their actual binding. Recent
literature distinguishes four different aspects of service compatibility: syntactical,
behavioral, semantical, and non-functional compatibility. In this thesis, we focus
on behavioral compatibility and abstract from the other aspects. Potential be-
havioral incompatibilities between services include deadlocks (two services wait
for a message of each other), livelocks (two services keep exchanging messages
without progressing), and pending messages that have been sent but cannot be
received anymore.

For stateful services that interact via asynchronous message passing, deciding
behavioral compatibility is far from trivial. Local changes to one service may
introduce errors in some or even all other services of an interaction. The veri-
fication of behavioral compatibility suffers from state explosion problems and is
restricted by privacy issues. That is, the parties of an interaction are essentially
autonomous and may be competitors in other business fields. Consequently, they
do not want to reveal the internals of their processes to the other participants in
order to hide trade secrets.

247

Summary

To systematically approach this challenge, we introduce a formal framework based
on Petri nets and automata for service modeling and formalize behavioral com-
patibility as deadlock freedom of the composition of the services. The main con-
tribution of this thesis is to introduce the concept of the operating guideline of a
service. Operating guidelines provide a formal characterization of the set of all be-
haviorally compatible services R for a given service S. Usually, this set is infinite.
However, the operating guideline OGS of a service S serves as a finite represen-
tation of this infinite set. Furthermore, the operating guideline of S reveals only
internals that are inevitably necessary to decide behavioral compatibility with S.
We provide a construction method of operating guidelines for finite-state services
with bounded communication.

Operating guidelines can be used in many applications in the context of service-
oriented computing. The most fundamental application is to support the discovery
of behaviorally compatible services. To this end, we develop a matching procedure
that efficiently decides whether a given service R is characterized by the operating
guideline OGS of a service S. If R matches, then both services R and S are
behaviorally compatible and can be bound together to interact with each other.
If R does not match with OGS , then the services are behaviorally incompatible
and may run into severe behavioral errors and not reach their common business
goal.

Operating guidelines can furthermore be applied in the novel research areas of
service substitutability and the generation of adapter services, for instance. To
this end, we develop methods to compare the sets of services characterized by the
operating guidelines OGS and OGS′ . If OGS′ characterizes more services than
OGS , then the service S can be substituted by the service S′ without loosing any
behaviorally compatible interaction partner R. Furthermore, we show how to syn-
thesize a service R from the operating guideline OGS such that R is behaviorally
compatible to S by construction.

All results presented in this thesis are implemented in our service analysis tool
Fiona. Fiona may compute operating guidelines for services modeled as Petri
nets. It may match a service with an operating guideline, compare operating
guidelines for equivalence or an inclusion relation, and synthesize service adapters
for behaviorally incompatible services. Together with the tool BPEL2oWFN—
which translates web services specified in BPEL into Petri net models of the
services—we can immediately apply our results to services that stem from prac-
tice.

248

Acknowledgements

First of all, I would like to thank Karsten Wolf for all his support during the
last years. He always impresses with his theoretical understanding as well as his
visions for applications and new research questions. It has been a pleasure to
work with you.

Furthermore, I want to thank Wolfgang Reisig and Kees van Hee for supervising
my thesis and giving me both organizational support and constructive comments.
In particular, I want to acknowledge the fruitful discussions with Wolfgang about
how to formally introduce service nets and automata. This has led to big im-
provements in the quality of the respective chapter of this thesis. I am grateful to
Wil van der Aalst, Schahram Dustdar, and Johann-Christoph Freytag to act as
reading committee members. Especially, I thank Wil for his detailed comments
which led to many improvements of the presentation.

I also thank my colleagues from the theory of programming group for all the
support over the last years. I really enjoyed the warm and pleasant working at-
mosphere and our productive discussions as well as the spirit of critical evaluation
of a presentation. Especially, I want to express my great gratitude to Christian
Stahl for the time he invested in proof reading the thesis. He always gives very
fruitful comments and finds every minor lack in an argumentation. Thank you. I
also want to thank Daniela Weinberg, Dirk Fahland, and Christian Gierds for their
proof reading. The presentation in this thesis is also a result of their feedback.

Lots of thanks also go to the members of the architecture of information system
group who I got to know when we started with our BEST program and where I
experienced an open and warm welcome.

Last, but definitely the most, I thank my family for their patience and support
during long periods of stressful hours for writing the thesis. Most of all I want to
thank Antje for showing me a light in times where I could not see it by myself.

Peter Massuthe
Berlin, 13th March 2009

249

Erklärung

Ich erkläre hiermit, dass

• ich die vorliegende Dissertationsschrift „Operating Guidelines for Services“
selbständig und ohne unerlaubte Hilfe angefertigt sowie nur die angegebene
Literatur verwendet habe,

• ich mich nicht bereits anderwärts um einen Doktorgrad beworben habe oder
ich einen solchen besitze und

• mir die Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fa-
kultät II der Humboldt-Universität zu Berlin (veröffentlicht im Amtlichen
Mitteilungsblatt Nr. 34/2006) bekannt ist.

Peter Massuthe
Berlin, den 13. März 2009

251

Curriculum Vitae

Peter Massuthe was born on the 23rd of July 1976 in Wriezen, Germany. From
1990 to 1995, he attended the grammar school “Gymnasium B. Brecht” in Bad
Freienwalde. In 1996, he started his study in computer science at Humboldt-
Universität zu Berlin, with focus on theoretical computer science. Peter graduated
at the Theory of Programming group of Prof. Wolfgang Reisig in 2004. His
thesis with the topic “Refinement Methods for the Temporal Logic of Distributed
Actions (TLDA)” got the best thesis award of the computer science department
of Humboldt-Universität zu Berlin.

During his study, he worked from 1999 to 2001 at DaimlerChrysler Berlin, Depart-
ment of Research and Technology in the working group on System Safety. In 2001,
Peter joint the Theory of Programming group of Prof. Reisig as a student assis-
tant. He worked in the field of Temporal Logics and took part in the “Task Force:
Business Process Execution Language for Web Services (BPEL4WS)”, where he
came in contact with the formal analysis of (Web) services.

Since April 2004, Peter has been working as a research assistant at the Theory
of Programming group in the area of Petri nets, model checking, and formal
methods for the analysis of service interaction. In 2005, he became part of the
“Tools4BPEL” project on “Correctness and Reliability of Interacting Web Services
on the Example of the Web Services Business Process Execution Language (WS-
BPEL)”, funded by the Federal Ministry of Education and Research (BMBF).

Peter Massuthe
Berlin, 13th March 2009

253

SIKS Dissertations

SIKS Dissertatiereeks
====
1998
====

1998-01 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-02 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-03 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

1998-04 Dennis Breuker (UM)
Memory versus Search in Games

1998-05 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

====
1999
====

1999-01 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-02 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-03 Don Beal (UM)
The Nature of Minimax Search

1999-04 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-05 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-06 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-07 David Spelt (UT)
Verification support for object database design

1999-08 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

====
2000
====

2000-01 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

255

SIKS Dissertations

2000-02 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-03 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.

2000-04 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-05 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-06 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-07 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-08 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-09 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

====
2001
====

2001-01 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-02 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-03 Maarten van Someren (UvA)
Learning as problem solving

2001-04 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-05 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-06 Martijn van Welie (VU)
Task-based User Interface Design

2001-07 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-08 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

256

SIKS Dissertations

2001-09 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language
for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models in Business Systems Design

====
2002
====

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology;
Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

257

SIKS Dissertations

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

====
2003
====

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to

258

SIKS Dissertations

Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

====
2004
====

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

259

SIKS Dissertations

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

====
2005
====

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)

260

SIKS Dissertations

Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by
Exploiting Application Semantics

====
2006
====

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

261

SIKS Dissertations

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards a Theory of Requirements
Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic’ (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

====
2007
====

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach

262

SIKS Dissertations

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy: a Legislative Framework for
Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support: A Rational Approach to Dynamic
Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in Institutions and Organizations for
Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on residential adoption and usage of
broadband internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramírez Camps (CWI)
Structural Features in XML Retrieval

263

SIKS Dissertations

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

====
2008
====

2008-01 Katalin Boer-Sorbán (EUR)
Agent-Based Simulation of Financial Markets: A modular,continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware information systems from a
cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence
Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for the Markov
Decision Process Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)

264

SIKS Dissertations

Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and Performance of Focused
Text Search

2008-20 Rex Arendsen (UVA)
Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie van
elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair using
Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users, and Other
Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and Querying Media
Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Observable Markov Decision
Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

====
2009
====

265

SIKS Dissertations

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks - Based on Knowledge,
Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

266

	List of Figures
	List of Definitions and Notations
	1 Introduction
	1.1 Motivation
	1.2 Formal Analysis of Service Behavior
	1.3 Problem Description and Research Goal
	1.4 Contributions
	1.5 Outline of the Thesis

	I Service Behavior Modeling
	2 Background on Services and Service-Oriented Computing
	2.1 Services
	2.2 Service-Oriented Computing (SOC)
	2.3 Service-Oriented Architecture (SOA)
	2.4 Compatibility Criteria for Services
	2.5 Formal Modeling of Services

	3 A Formal Framework for Service Modeling
	3.1 Preliminaries
	3.2 Service Modeling with Service Nets
	3.3 Service Behavior Modeling with Service Automata
	3.4 An Equivalent Translation between Service Nets and Automata
	3.5 Possible Variants of Service Model Definitions
	3.6 Related Work
	3.7 Concluding Remarks

	II Analyzing the Interaction Behavior of Services
	4 Characterizing Sets of Services
	4.1 Preliminaries
	4.2 Boolean Annotated Service Automata
	4.3 Normal Boolean Annotated Service Automata
	4.4 A Preorder on Boolean Annotated Service Automata
	4.5 The Canonical Representative of a BSA
	4.6 Possible Variants of BSA Definitions
	4.7 Related Work
	4.8 Concluding Remarks

	5 Operating Guidelines for Services
	5.1 A Characterization of Deadlocks
	5.2 An Asymmetric Characterization of Strategies
	5.3 Restriction to Finite-State Services
	5.4 An Operating Guideline Characterization of Strategies
	5.5 Possible Variants of OG Definitions
	5.6 Related Work
	5.7 Concluding Remarks

	III Applications and Implementation
	6 Applications of Operating Guidelines
	6.1 Service Discovery
	6.2 Substitutability of Services
	6.3 Service Synthesis for Adapter Generation
	6.4 Conclusion

	7 Implementation in the Tool Fiona
	7.1 About Fiona
	7.2 Functionality of Fiona
	7.3 Implementation of the Results
	7.4 Case Study
	7.5 Conclusion

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography
	Index
	Summary
	Acknowledgements
	Erklärung
	Curriculum Vitae
	SIKS Dissertations

