

GEM : a distributed goal evaluation algorithm for trust
management
Citation for published version (APA):
Trivellato, D., Zannone, N., & Etalle, S. (2010). GEM : a distributed goal evaluation algorithm for trust
management. (Computer science reports; Vol. 1015). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/add21dd4-0a1f-49e6-aa92-872fd6522fdf

GEM: a Distributed Goal Evaluation Algorithm for Trust
Management

Daniel Trivellato
TU/e Eindhoven

d.trivellato@tue.nl

Nicola Zannone
TU/e Eindhoven

n.zannone@tue.nl

Sandro Etalle
TU/e Eindhoven

University of Twente
s.etalle@tue.nl

ABSTRACT
Trust Management (TM) is an approach to distributed access con-
trol where access decisions are based on policy statements issued
by multiple principals and stored in a distributed manner. Most
of the existing goal evaluation algorithms for TM either rely on a
centralized evaluation strategy, which consists of collecting all the
relevant policy statements in a single location (and therefore they
do not guarantee the confidentiality of intensional policies), or do
not detect the termination of the computation (i.e., when all the an-
swers of a goal are computed). In this paper we present GEM, a dis-
tributed goal evaluation algorithm for TM systems. GEM detects
termination in a completely distributed way without the need of
disclosing intensional policies, thereby preserving their confiden-
tiality. We demonstrate that the algorithm terminates and is sound
and complete w.r.t. the standard semantics for logic programs.

1. INTRODUCTION
Trust Management (TM) is an approach to access control in dis-
tributed systems where access decisions are based on the attributes
of principals, attested by digital certificates (called credentials) [6].
Credentials are derived by means of policy statements issued by
multiple principals and stored in a distributed manner; the set of
policy statements issued by a principal forms the policy of that prin-
cipal. In TM languages, policy statements are often represented as
Horn clauses [17], possibly annotated with the storage location of
the statement, which can be implicit [9, 18] or explicit [1, 4].

A distinguishing ingredient of TM is that all principals are free to
define policy statements and to determine where to store them. Fur-
thermore, the policy statements of a principal can refer to other
principals’ policies, thereby delegating authority to them. For in-
stance, consider a scenario in which the Eindhoven hospital (EhvH)
authorizes the members of project α run by the local pharmaceuti-
cal company C1 to access its medical laboratory. This corresponds
to the policy statement “(for each X) EhvH states that X is autho-
rized to access the medical laboratory if X is a member of project
α at C1”. The statement can be expressed by the following clause:

canAccessMedLab(ehvH,X)← memberOfα(c1, X).

Here, EhvH relies on the policy statements of C1 to determine who

is authorized to access the laboratory. To determine the authorized
principals, it is clear that C1 needs to disclose to EhvH (part of) its
extensional policy, i.e., the list of project members. However, in
most existing TM systems C1 would also have to reveal to EhvH or
to some other authority (part of) its intensional policy, that is, the
policy statements used to determine the project members.

We argue that one of the advanced desiderata of TM systems is that
the amount of information about policies that principals need to re-
veal to each other should be minimized. In fact, policies might con-
tain confidential information about the relationships among princi-
pals that could be exploited by other principals in the domain (e.g.,
rival companies). Furthermore, the loss of policy confidentiality
can result in attempts by other principals to influence the policy
evaluation process [23]. Assume C1’s policy to be the following:

memberOfα(c1, X)← projectPartner(mc, Y),memberOfα(Y,X).

This clause states that all the project members at partner companies
in project α are also project members for C1. The list of partner
companies is determined by the funding company MC, a multi-
national pharmaceutical company. If C1’s policy was disclosed to
other principals for evaluation (e.g., EhvH), the involvement of MC
in project α along with the list of all project partners would be-
come public. As a consequence, some competitors of MC could
start investing on similar projects, limiting MC’s competitive ad-
vantage, or could try to get a trusted individual hired by one of the
partners companies to acquire sensitive information and results of
the project. Preserving the confidentiality of intensional policies
is therefore important not only to protect the relationships of the
policy issuer, and more precisely the principals (and attributes) to
which it delegates its authority, but also to limit the disclosure of
the extensional policies of those principals.

Policy confidentiality is completely disregarded by some TM sys-
tems (e.g., [9, 18], where a central authority collects from the dif-
ferent agents all the clauses necessary to evaluate a given goal), and
is only partially satisfied by others (e.g., [5, 16]). The reason why
present systems do not satisfy this requirement is that in presence of
mutually recursive policy statements it is very hard to detect when
the computation has terminated without disclosing at least part of
the intensional policy. To illustrate this point, let us assume the
complete policy for the example above to be the following:

projectPartner(mc, c2).

projectPartner(mc, c3).

projectPartner(mc, c4).

memberOfα(c2, X)← memberOfα(c1, X).

memberOfα(c2, alice).

memberOfα(c3, bob).

memberOfα(c4, charlie).

To prevent the disclosure of intensional policies it is necessary to
design a completely decentralized evaluation algorithm. Suppose
that EhvH wants to prepare the access cards to the medical labora-
tory for the members of project α, and asks C1 for the list of project
members. Instead of revealing its intensional policy to EhvH, C1
requests first the list of project partners to MC, and then the list
of their project members to C2, C3 and C4; in turn, C2 poses the
same request to C1. A first problem to be solved is that C1 should
refrain from evaluating C2’s request, as doing so could lead to a
non-terminating chain of requests. This pitfall can be avoided us-
ing tabling [7].

However, the real challenge in designing a distributed algorithm
in which intensional policies are not disclosed is to detect when
all the answers have been collected. In our example, we have the
following possible answer flow: C3 returns Bob as answer to C1,
which forwards it to EhvH and C2; C4 returns Charlie as answer
to C1; C1 sends Charlie as additional answer to EhvH and C2; C2
returns Alice, Bob, Charlie as answer to C1, which sends Alice
as additional answer to EhvH and C2. At this point, all requests
have been fully answered, but C1 does not know whether C2 will
ever send additional answers. In other words, C1 is waiting for C2
to announce that its evaluation has terminated, and in turn C2 is
waiting for C1 to announce that its evaluation has terminated. This
situation is not acceptable in access control, where a decision (pos-
itive or negative) always needs to be taken. Detecting termination
is also fundamental to allow for memory deallocation and the use
of negation, which is employed by some TM systems to express
non-monotonic constraints (e.g., separation of duty) [10, 12].

Another non-trivial issue in designing a distributed goal evaluation
algorithm is determining when a principal should send the answers
to a request. The simplest solution is to force each principal to
send an answer as soon as it is computed. This is, however, sub-
optimal from the viewpoint of network overhead; in the example
above, C1 eventually sends three distinct messages to EhvH and
C2, one for each answer. A better solution would be for C1 to wait
for the answers from C3 and C4 before sending its answers to the
other principals. A naïve “wait” mechanism, on the other hand,
might cause deadlocks; for instance, if C1 also waits for C2’s an-
swers, the computation deadlocks. It is therefore preferable to have
a mechanism that allows principals to wait until they collected the
maximum possible set of answers before sending them to the re-
quester, while avoiding deadlocks.

In this paper we present GEM, a distributed goal evaluation algo-
rithm for modern TM systems. Contrarily to most of the existing
algorithms for TM, GEM detects when the computation has termi-
nated (i.e., all the answers of a goal are collected) in a completely
distributed way without the need of disclosing intensional policies,
thereby preserving their confidentiality. GEM enables principals to
delay the response to a request until a “maximal” set of answers
have been computed, without running the risk of deadlocks. We
demonstrate that the algorithm terminates and is sound and com-
plete w.r.t. the standard semantics for logic programs. Even though
GEM has been designed to perform distributed evaluation of TM
policies, we argue that the proposed solution is general enough to
be applied to other domains where mutual recursion and confiden-
tiality of local programs are critical issues.

GEM can be easily extended to protect also the confidentiality of
extensional policies. In particular, by not requiring intensional poli-
cies to be disclosed, the algorithm enables principals to discrimi-
nate between goals that may be accessed by other principals and
goals that may only be used for internal computations, because of
their sensitivity. This distinction is not possible when using a goal

evaluation algorithm that relies on a centralized evaluation strategy
(e.g., [9, 18]). A finer-grained protection of extensional policies can
be achieved by employing trust negotiation (TN) algorithms [24,
25]. TN algorithms regulate the disclosure of extensional policies
(i.e., possibly sensitive credentials) by means of rules that specify
which credentials a requester must provide to get access to the re-
quested credentials. GEM, on the other hand, provides a method
for deriving these credentials. Therefore, GEM and TN algorithms
are complementary, and can be combined to preserve the confiden-
tiality of both intensional and extensional policies. More precisely,
each GEM request might initiate a negotiation that, if successful,
leads to the evaluation of the request.

The paper is structured as follows. Section 2 presents preliminar-
ies on logic programming and SLD resolution. Section 3 intro-
duces a basic version of GEM, whose implementation is presented
in Section 4. Section 5 demonstrates the soundness, completeness
and termination of the algorithm, and discusses what information
is disclosed by GEM during the evaluation of a goal. Two possible
extensions of GEM are presented in Section 6. Finally, Section 7
discusses related work and Section 8 concludes.

2. PRELIMINARIES
This section recaps the concepts of function-free logic programs
[2] that are relevant to this paper.

An atom is an object of the form p(t1, . . . , tn) where p is an n-
ary predicate symbol and t1, . . . , tn are terms (i.e., variables and
constants). An atom is ground if t1, . . . , tn are constants. A clause
is a construct of the form H ← B1, . . . , Bn (with n ≥ 0), where
H is an atom called head and B1, . . . , Bn (called body) are atoms.
If n = 0, the clause is a fact. A program is a finite set of clauses.
We say that an atom p(t1, . . . , tn) is defined in the program P iff
there is a clause in P that has p(t1, . . . , tn) in its head. A goal is a
finite, possibly empty sequence of atoms A1, . . . , An. The empty
goal is denoted by 2.

SLD resolution (Selective Linear Definite clause resolution) [2] is
the standard operational semantics for logic programs. In this pa-
per, we consider SLD resolution with leftmost selection rule (ex-
tending the algorithm to an arbitrary selection rule is trivial). Com-
putations are constructed as sequences of “basic” steps. Consider
a goal A1, . . . , An and a clause c in a program P . Let H ←
B1, . . . , Bm be a variant of c variable disjoint from A1, . . . , An.
Let A1 and H unify with most general unifier (mgu) θ. The goal
(B1, . . . , Bm, A2, . . . , An)θ is called a resolvent of A1, . . . , An
and c with selected atomA1 and mgu θ. An SLD derivation step is
denoted by A1, . . . , An

θ→ (B1, . . . , Bm, A2, . . . , An)θ. Clause
H ← B1, . . . , Bm is called its input clause, and atom A1 is called
the selected atom of A1, . . . , An.

An SLD derivation is obtained by iterating derivation steps. The

sequence δ := G0
θ1→ G1

θ2→ · · · θn→ Gn
θn+1→ · · · is called

a derivation of P ∪ {G0}, where at every step the input clause
employed is variable disjoint from the initial goal G0 and from the
substitutions and the input clauses used at earlier steps. Given a
program P and a goal G0, SLD resolution builds a search tree for
P ∪{G0}, called (derivation) tree ofG0, whose branches are SLD
derivations of P ∪ {G0}. Any selected atom in the SLD resolution
of P ∪ {G0} is called a subgoal.

SLD derivations can be finite or infinite. If δ := G0
θ1→ · · · θn→

Gn, with θ = θ1, . . . , θn, is a finite prefix of a derivation, we say
that δ is a partial derivation and θ is a partial computed answer
substitution of P ∪{G0}. If δ ends with the empty goal, θ is called

computed answer substitution (c.a.s.). We also call θ a solution of
G0 and G0θ an answer of G0. The length of a (partial) derivation
δ, denoted by len(δ), is the number of derivation steps in δ.

The most commonly employed mechanism to avoid infinite deriva-
tions is tabling [1, 4, 7, 11]. A goal G0 defined in a program P
is evaluated by producing a forest of (partial) derivation trees, one
for each subgoal in the resolution of P ∪ {G0}. Each tree has an
associated table, where the derived answers are stored. The evalua-
tion of G0 starts by ordinary resolution with the clauses in P : as in
SLD, a subgoal G1 is selected in a resolvent of G0. If a tree for a
variant ofG1 already exists, G1 is added to the set of consumers of
the corresponding table. Otherwise, a tree for G1 is created. When
a new answer of a subgoal is found, it is stored in the respective
table and it is propagated to its consumer subgoals.

3. BASIC GEM
In this section we present a basic version of GEM, a goal evaluation
algorithm for distributed (logic) programs. A distributed program
is a collection of independent local programs stored at different lo-
cations. Differently from other TM languages (e.g., [1, 4]), we do
not modify the standard notation of logic programming to repre-
sent the location where clauses are stored and evaluated. Instead,
we assume that every atom has the form p(loc, t1, . . . , tn), where
loc is a mandatory term representing the location of the program
where the atom is defined, and t1, . . . , tn are terms. For instance,
p(bob, . . .) refers to p as defined at Bob’s location.

GEM requires the location parameter of an atom to be ground when
the atom is selected for evaluation. If this is not the case, the com-
putation flounders, as it is not possible to establish the local pro-
gram in which the atom is defined. A discussion on how to write
flounder-free programs and queries is orthogonal to the scope of
this paper. Here, we just mention that there exist well-established
techniques based on modes [3] which guarantee that certain param-
eters of an atom are ground when the atom is selected.

We assume a one-to-one correspondence between locations and
principals: each principal is responsible for defining and evaluating
the local program at her location (i.e., her policy). Consequently,
each principal maintains the partial derivation tree of the atoms
defined in the local program she controls.

DEFINITION 1. Let G be a goal and PG be the local program
in which G is defined. A partial derivation tree of G is a derivation
tree with the following properties:

• the root is the node (G← G);

• there is a derivation step (G← G)
θ→ (G← B1, . . . , Bn)θ,

where (G ← G) is the root, iff there exists a clause H ←
B1, . . . , Bn in PG (renamed so that it is variable disjoint
from G) s.t. G and H unify with θ = mgu(G,H);
• let (G← B1, . . . , Bn) be a non-root node, and Ans be a set

of answers of goal B1; for each answer B′1 ∈ Ans (renamed
so that it is variable disjoint from B1) there is a derivation
step (G ← B1, . . . , Bn)

θ→ (G ← B2, . . . , Bn)θ, where
θ = mgu(B1, B

′
1);

• for each branch (G ← G)
θ0→ (G ← B1, . . . , Bn)θ0

θ1→
. . .

θn→ (G ← 2)θ0θ1 . . . θn, we say that Gθ (with θ =
θ0θ1 . . . θn) is an answer ofG using clauseH ← B1, . . . , Bn.

Since policy confidentiality is a major concern in TM systems, we
assume that principals do not have access to the programs and the
state of the computation at other principals’ locations.

��
p(a,X)

�� %%KKK
KK

q(b,X)

��

t(d,X)

r(c,X)

(a) Linear Graph

g1

��
p(a,X)

g1a1

��

g1a2

%%JJJJJJJJ

q(b,X)

g1a1b1
��

g1a1b2

??

t(d,X)

r(c,X)

g1a1b1c1

??

(b) Graph with Loops

Figure 1: Dependency Graphs of the Example Program

GEM performs a depth-first computation: a goal G is processed by
evaluating one branch of its partial derivation tree at a time. This
may involve the generation of evaluation requests for subgoals that
are processed by different principals at different locations. When
all the possible answers from each branch of the tree ofG have been
computed, they are sent to the requesters of G. G is completely
evaluated when no more answers of G can be computed.

Suppose that a principal g sends to principal a a request for (the
evaluation of) goal p(a,X), which is evaluated w.r.t. the following
distributed program:

1. p(a,X) ← q(b,X). 4. q(b,e).
2. p(a,X) ← t(d,X). 5. t(d,f).
3. q(b,X) ← r(c,X).

Recall that the first parameter of the atom in the head indicates
the principal evaluating the clause: the first two clauses are evalu-
ated by principal a, clauses 3 and 4 by b, and clause 5 by d. Fig-
ure 1(a) shows the dependency graph of the program for initial goal
p(a,X). A dependency graph consists of a set of nodes and edges:
nodes represent goals, and edges connect the head atom of a clause
with the atoms in its body. In other words, edges correspond to
(evaluation) requests.

When a receives the initial goal, she evaluates the first applicable
clause in the local program (i.e., clause 1) and sends a request for
q(b,X) to b. In turn, b sends a request for r(c,X) to c. c does not
have any clause applicable to r(c,X) and returns an empty set of
answers to b. b evaluates the next applicable clause (i.e., q(b, e)),
which is a fact. Since b does not have any other clause, she sends
the computed answer to a. a applies the next clause (clause 2)
and sends a request for t(d,X) to d, who returns answer t(d, f)
to a after applying clause 5. At this point, p(a,X) is completely
evaluated and a sends answers p(a, e), p(a, f) to g.

The evaluation of a subgoal of a goal G, however, may lead to new
requests for G, forming a loop. Consider the program above with
the following two additional clauses, stored by b and c respectively:

6. q(b,X) ← p(a,X).

7. r(c,X) ← q(b,X).

The new dependency graph is shown in Figure 1(b). Now, when c
receives the request for r(c,X), she applies clause 7 and sends a
request for q(b,X) to b, forming a loop. Similarly, the evaluation
of clause 6 by b leads to another loop. However, a and b cannot
detect whether a request forms a loop, as in a distributed system
several independent requests for the same goal can occur.

In most of the existing goal evaluation systems (e.g., [7, 11, 18]),
loop termination is made possible by the system’s “global view” on

the derivation process. Such global view, however, implies the loss
of policy confidentiality. GEM detects loop termination in a com-
pletely distributed way without resorting to any centralized data
structure. In particular, loops are handled in three steps: (1) detec-
tion, (2) processing, and (3) termination.

Loop Detection. Loops are detected by dynamically identify-
ing Strongly Connected Components (SCCs), i.e., sets of mutually
dependent subgoals. To enable the identification of SCCs, we as-
sign to each request a unique identifier from an identifier domain.

DEFINITION 2. An identifier domain is a triple 〈I,<, ↪→〉, where:

• I is a set of strings of characters called identifiers;
• < is a partial order on the identifiers in I . Given two iden-

tifiers id1, id2 ∈ I s.t. id1 < id2, we say that id1 is lower
than id2, and id2 is higher than id1;
• ↪→ is a partial order on the identifiers in I . Given two iden-

tifiers id1, id2 ∈ I s.t. id1 ↪→ id2, we say that id2 is side of
id1.

In addition, < and ↪→ have the following property: given the iden-
tifiers id1, id2, id3, id4 ∈ I s.t. id1 < id2, id3 < id4, and
id2 ↪→ id4, then id1 ↪→ id3.

Intuitively, < defines a top-down ordering, and ↪→ defines a left-
right ordering w.r.t. the dependency graph of the distributed pro-
gram. In other words, < reflects the order in which the goals in
a branch of the graph are evaluated, whereas ↪→ reflects the order
in which the branches are inspected. In the sequel, we consider
identifiers obtained as follows: given a request for a goal G with
identifier id0, the identifier of the request for a subgoal G1 in the
partial derivation tree of G has the form id0s1, denoting the con-
catenation of id0 with a string of characters s1. Then, < is a prefix
relation: in the example, we have that id0s1 < id0. Ordering ↪→ is
a partial order on the strings composing the identifiers. For exam-
ple, consider another subgoal G2 of G with identifier id0s2, which
is evaluated after G1. Then, we have that id0s1 ↪→ id0s2.

In the dependency graph in Figure 1(b), edges are labeled with the
corresponding request identifier. In particular, we concatenate the
identifier of a request for a goal evaluated by principal a with meta-
variables of the form ai. Thus, for instance, a1 and a2 are distinct
strings of characters generated by a.

A loop is detected when a request with identifier id2 is received for
a goal G s.t. a request id1 for a variant of G has been previously
received and id2 < id1. Accordingly, we call the second request
lower request, while the initial request for a goal is called higher
request. Goal G is called the coordinator of the loop. We use the
identifier of the higher request for G, id1, as loop identifier.

An SCC may contain several loops. Given two loops with identi-
fiers id1 and id2, we say that loop id2 is lower than loop id1 if
id2 < id1. The coordinator of the highest loop of the SCC (i.e.,
the loop with the highest identifier) is called the leader of the SCC.

In the example in Figure 1(b), identifiers g1, g1a1, g1a2, and g1a1b1
identify higher requests, while g1a1b1c1 and g1a1b2 identify lower
requests. Goals q(b,X) and p(a,X) are the coordinators of loops
g1a1 and g1 respectively. Loop g1a1 is lower than loop g1, which
is the highest loop of the SCC; therefore, p(a,X) is the leader of
the SCC. Looking at the identifier of the lower requests, a and b can
determine the subgoals involved in the loop, which are q(b,X) and
r(c,X) respectively. Goals inherit the ordering associated with the
identifier of their higher request. In Figure 1(b), p(a,X) is higher
than q(b,X) and r(c,X).

Loop Processing. As soon as a loop is detected, the answers
of the coordinator already computed are sent to the requester of
the lower request, together with a notification about the loop. The
loop is then processed iteratively as follows: in turn, each principal
(i) processes the received answers, (ii) “freezes” the evaluation of
the subgoal involved in the loop, and (iii) evaluates other branches
of the partial derivation tree of the locally defined goal. When all
the branches have been evaluated, the new answers are sent to the
requester of the higher request with a notification about the loop.
When the notification gets back to the coordinator (together with
a possibly empty set of new answers), all lower goals have been
processed. If the processing of the received answers leads to new
answers of the coordinator, these new answers are sent to the re-
questers of lower requests, starting a new iteration. Otherwise, a
fixpoint has been reached (i.e., all possible answers of the goals in
the loop have been computed) and the answers of the coordinator
are sent to the requester of the higher request. Notice that a goal
in a higher loop may eventually provide new answers to a goal in a
lower loop: the fixpoint for a loop must be recalculated every time
new answers of its coordinator are computed.

In Figure 1(b), when b identifies loop g1a1, she informs c that they
both participate in loop g1a1. Since c has no more clauses to eval-
uate, she returns an empty set of answers to b notifying her that
r(c,X) is in loop g1a1. The further evaluation of q(b,X) leads
to the identification of loop g1 and to a new answer q(b, e), which
is sent first to c in the context of loop g1a1. In turn, c computes
answer r(c, e) and sends it to b. Now, a fixpoint for loop g1a1 has
been reached and b sends q(b, e) to a notifying her that q(b,X) is in
loop g1. Notice that q(b,X) is also part of loop g1a1, but since this
loop does not involve a, a is not notified of it. a computes answers
p(a, e) and p(a, f) (the latter being found through the evaluation
of t(d,X)), and sends them to b in the context of loop g1. In turn, b
computes q(b, f). Now, b has to find a fixpoint for loop g1a1 given
the new answer before proceeding with the evaluation of loop g1. It
is worth noting that c is not aware of loop g1. This is because loop
notifications are only transmitted to higher requests (except for the
lower request that has formed the loop).

Loop Termination. The termination of the evaluation of all goals
in the SCC is initiated by the principal handling the leader of the
SCC. In the example, when the answers of q(b,X) do not lead to
new answers of p(a,X), a informs b (which in turn informs c) that
the evaluation of p(a,X) is terminated and sends answers p(a, e)
and p(a, f) to g.

Complex Loops. So far we have only considered simple loops,
i.e., loops formed by lower requests. More complex loops are
formed when the evaluation of a goal G in a SCC leads to a higher
request for a goal G1 in the same SCC. In other words, complex
loops occur when a request with identifier id2 is received for G1

s.t. a request id1 for a variant of G1 has been previously received
and id1 ↪→ id2. Accordingly, we refer to this type of requests as
side requests, and we call G a side goal.

The main problem with side requests is that it is difficult to deter-
mine when they should be responded to. Indeed, even though it is
clear that the two goals involved in the side request participate in
at least one common loop (if this was not the case G1 would be
disposed by the time the side request is received), it may not be
possible to identify (all) the common loops. Technically, to enable
the detection of termination, a side request should be responded
only when a fixpoint is computed for all the loops lower than the
loop in which the side goal is involved. Consider, for instance, the

g1

��
p(a,X)

g1a1

��

g1a2

%%JJJJJJJJ

q(b,X)

g1a1b1
��

g1a1b2

??

t(d,X)

g1a2d1vv
r(c,X)

g1a1b1c1

??

(a) Dependency Graph with Side Request

g1

��
p(a,X)

g1a1

��

g1a2

%%KKKKKKKK

q(b,X)

g1a1b1
��

g1a1b2

??

t(d,X)

g1a2d1
��

r(c,X)

g1a1b1c1

??

r(c,X)

g1a2d1c2
��

q(b,X)

g1a2d1c2b3

YY

BC

ED
g1a2d1c2b4oo

(b) Unfolded Dependency Graph

Figure 2: Dependency Graphs with Side Requests

following additional clause stored by d:

8. t(d,X) ← r(c,X).

The new dependency graph is shown in Figure 2(a). Now, if c sends
answers to d at every iteration of loop g1a1, a would not know
when to stop waiting for answers from d (since a does not know
on which goals t(d,X) depends). On the other hand, c cannot wait
until a fixpoint is reached for loop g1a1, since only b (the principal
handling coordinator) is aware of that.

The simplest solution to this problem, which we present in Sec-
tion 4, is to treat a side request as a new request and to reeval-
uate the goal. Accordingly, when a side request is received, the
algorithm creates a new partial derivation tree for the goal. This
corresponds to inspecting multiple times some branches of the de-
pendency graph of the program (Figure 2(b)). However, this solu-
tion is not satisfactory in practice because the size of the unfolded
graph is in the worst case exponential w.r.t. the number of nodes in
the original graph. In Section 6 we discuss an alternative solution
that preserves soundness, completeness, and termination without
the need of reevaluating side requests.

4. IMPLEMENTATION
In this section we introduce the data structures and procedures used
by basic GEM to evaluate a goal.

Data Structures. In GEM, principals communicate by exchang-
ing request and response messages.

DEFINITION 3. A request is a triple 〈id ,req,G〉, where:

• id is the request identifier;
• req is a principal, called requester;

• G is a goal p(loc, t1, . . . , tn) (where loc is a constant).

A request is an enquiry issued by principal req for the evaluation
of goal G. Each request is uniquely identified by id and is sent to
the principal defining G.

DEFINITION 4. Let r = 〈id ,req,G〉 be a request. A response
to r is a tuple 〈id ,Ans, Sans, Loops〉, where:

• id is the response identifier;
• Ans is a (possibly empty) set of answers of G;
• Sans ∈ {active,loop(id ′),disposed} is the status of the

evaluation of G, where id ′ is a loop identifier;
• Loops is a set of loop identifiers.

A response has the same identifier of the request to which it refers.
It contains a (possibly empty) set of answers of the requested goal
(Ans), together with the status of its evaluation and information
about the loops in which it is involved (Loops). The status is
disposed if the goal has been completely evaluated, active if ad-
ditional response messages are expected, and loop(id ′) if the re-
sponse is sent in the context of the evaluation of loop id ′. Intu-
itively, id ′ identifies the coordinator waiting for the answers.

GEM computes the answers of a goal by a depth-first evaluation of
its partial derivation tree. We represent a partial derivation tree as
a structure called partial tree. The building blocks of a partial tree
are called nodes.

DEFINITION 5. A node is a triple 〈id , c, S〉, where:

• id is the node identifier;
• c is a program clause;
• S ∈ {new , active, loop(ID), answer , disposed} is the sta-

tus of the evaluation of the selected atom in c, where ID is a
set of loop identifiers.

The status of a node is new if no atom from the body of c has
yet been selected for evaluation, active when a body atom is be-
ing evaluated, and disposed when the selected atom is completely
evaluated. The status is loop(ID) if the selected atom is part of
some loops, and answer if c is a fact.

DEFINITION 6. The partial tree of a goal G is a tree with the
following properties:

• the root is node 〈id0,G← G, S〉;
• there is an edge from the root to a node 〈id1, (G← B1, . . . ,
Bn)θ, S

′〉, where id1 < id0, iff there exists a derivation step

(G← G)
θ→ (G← B1, . . . , Bn)θ in the partial derivation

tree of G;
• there is an edge from node 〈id2, G ← B1, . . . , Bn, S

′′〉 to
node 〈id3, (G ← B2, . . . , Bn)θ, S

′′′〉, where id2 < id0

and id3 < id0, iff there exists a derivation step (G ←
B1, . . . , Bn)

θ→ (G← B2, . . . , Bn)θ in the partial deriva-
tion tree of G;

When a principal receives a higher request for a goal G, it creates
a table for G. A table contains all the information about the evalu-
ation of G.

DEFINITION 7. The table of a goal G, denoted Table(G), is a
tuple 〈HR,LR,ActiveGoals,AnsSet,Tree〉, where:

• HR is a higher request for G;
• LR is a set of lower requests for G;

• ActiveGoals is a set of pairs 〈id , counter〉 where id is a
loop identifier and counter is an integer value;
• AnsSet is a set of pairs 〈ans, ID〉 where ans is an answer

of G and ID is a set of request identifiers;
• Tree is the partial tree of G.

The table of a goal G stores the higher request HR for which it has
been created, the set of answers computed so far (AnsSet), and the
partial tree of G (Tree). Possible lower requests for G are stored
in LR. ActiveGoals keeps a counter for each loop in which G is
involved; the counter of a loop id indicates the number of subgoals
in Tree which are involved in loop id , and is decreased whenever
an answer of one of these subgoals is received. The status of the
root node of Tree indicates the status of the evaluation of G.

Procedures. To initiate the evaluation of a new goal G, a princi-
pal a generates a random identifier id and sends the request 〈id , a,G〉
to the principal defining G.1 A response 〈id ,Ans, disposed, {}〉 is
returned to a when the algorithm terminates. GEM computes the
answers of G (defined in the local program PG) by means of the
following procedures:

• CREATE TABLE: if the request is not a lower request, creates
a table forG and initializes its partial tree with the applicable
clauses in PG;
• ACTIVATE NODE: activates a new node in the partial tree of
G;
• PROCESS RESPONSE: processes the answers received for a

subgoal in the partial tree of G;
• GENERATE RESPONSE: determines the requesters of G to

which a response must be sent. It is invoked when there are
no more nodes to activate;
• SEND RESPONSE: sends the computed answers to the re-

questers of G;
• TERMINATE: disposes the table of G. It is invoked when G

is completely evaluated.

Each principal in the distributed system runs a listener which waits
for incoming requests and responses. Whenever a new request is
received, the listener invokes CREATE TABLE. Similarly, PROCESS
RESPONSE is invoked upon receiving a response to a previously
issued request.

CREATE TABLE (Algorithm 1) inputs a request 〈id0, req, G〉 and,
if there exists no table for a variant of G, it creates a table for G
with HR set to 〈id0, req, G〉, and Tree initialized with the clauses
in the local program applicable toG (renamed so that they share no
variable with G) (lines 19-25). The identifiers of the subnodes of
the root are obtained by concatenating id0 with a randomly gener-
ated string of characters s. When the initialization of the table ofG
is terminated, ACTIVATE NODE is invoked (line 26).

If another request for goalG (or a variant ofG) has been previously
received, three situations are possible:

1. The request refers to a goal which has been completely eval-
uated (lines 3-4). In this case, a response with all the answers
of G is sent to the requester by invoking SEND RESPONSE.

2. The request is a lower request for G (lines 5-7). This corre-
sponds to the detection of loop id1 (where id1 is the identi-
fier of HR). The request is added to the set of lower requests
LR and the answers computed so far are sent to the requester,
together with a notification about loop id1.

1Here, we assume that standard cryptographic techniques are in
place to avoid collision of identifiers.

Algorithm 1: CREATE TABLE

input: a request 〈id0, req, G〉
if ∃Table(G′) = 〈〈id1, req

′, G′〉,LR, AG,AS, T 〉 s.t. G′ is a1
variant of G then

let Sroot be the status of the root node of T2
if Sroot = disposed then3

SEND RESPONSE(〈id0, req, G′〉, disposed, {})4
else if id0 < id1 then5

LR := LR ∪ {〈id0, req, G′〉}6
SEND RESPONSE(〈id0, req, G′〉, active, {id1})7

else8
let G′′ be a variable renaming of G s.t. 6 ∃Table(G′′)9
create Table(G′′)10
initialize Table(G′′) to11
〈〈id0, req, G′′〉, {}, {}, {}, 〈id0, G

′′ ← G′′, new〉〉
foreach clause H ← B1, . . . , Bn applicable to G in the12
local program do

let H ′ ← B′1, . . . , B
′
n be a variable renaming of the13

clause s.t. it is variable disjoint from G′′, and
θ = mgu(G′′, H ′)
let s be a randomly generated string of characters14
add subnode 〈id0s, (H

′ ← B′1, . . . , B
′
n)θ, new〉 to the15

root
end16
ACTIVATE NODE(G)17

else18
create Table(G)19
initialize Table(G) to20
〈〈id0, req, G〉, {}, {}, {}, 〈id0, G← G, new〉〉
foreach clause H ← B1, . . . , Bn applicable to G in the local21
program do

let H ′ ← B′1, . . . , B
′
n be a variable renaming of the clause22

s.t. it is variable disjoint from G, and θ = mgu(G,H ′)
let s be a randomly generated string of characters23
add subnode 〈id0s, (H

′ ← B′1, . . . , B
′
n)θ, new〉 to the root24

end25
ACTIVATE NODE(G)26

3. The request is a side request or originates from a different
initial request (lines 8-17). We treat the request as a new
request: a new table for G is created and ACTIVATE NODE
is invoked.

ACTIVATE NODE (Algorithm 2) activates a new node from the
partial tree of a goal G. First, a node with status new is selected
from T (line 5). If the node’s clause is a fact and represents a
new answer, it is added to the set of answers AS (with an empty
set of recipients), and ACTIVATE NODE is invoked again (lines 6-
10). Otherwise, the leftmost atom B1 of the body of the clause
is selected for evaluation. In case that the location parameter of
B1 is not ground, an error is raised and the computation is aborted
by floundering (lines 12-13). Otherwise, a request for B1 is sent
to the corresponding location; the node identifier is used as request
identifier (lines 15-19). If there are no more nodes with status new,
orG is in the set of computed answersAS, GENERATE RESPONSE
is invoked (lines 2-3).

SEND RESPONSE (Algorithm 3) inputs a request, a response sta-
tus, and a set of loop identifiers and sends a response message to
the requester, which includes the answers of G that have not been
previously sent to that requester.

Responses are processed by PROCESS RESPONSE (Algorithm 4).
The node n to which the response refers is identified by looking
at the response identifier (line 1). If the status of the response

Algorithm 2: ACTIVATE NODE

input: a goal G
let Table(G) be 〈HR,LR, AG,AS, T 〉1
if (6 ∃ a non-root node n ∈ T with status new) or (〈G, ID〉 ∈ AS)2
then

GENERATE RESPONSE(G)3
else4

select a non-root node n = 〈id1, H ← B1, . . . , Bn, new〉 from5
T
if n = 0 then6

set the status of n to answer7
if H is not subsumed by any answer in AS then8
AS := AS ∪ {〈H, {}〉}9

ACTIVATE NODE(G)10
else11

if the location of B1 is not ground then12
halt with an error message /* floundering */13

else14
set the status of n to active15
let Sroot be the status of the root node of T16
if Sroot = new then17
Sroot := active18

send request 〈id1, local, B1〉 to the location of B119

Algorithm 3: SEND RESPONSE

input: a request 〈id0, req, G〉, a response status Sans, a set of
loop identifiers Loops

let Table(G) be 〈HR,LR, AG,AS, T 〉1
Ans := {}2
foreach 〈ans, ID〉 ∈ AS s.t. id0 /∈ ID do3

Ans := Ans ∪ {ans}4
ID := ID ∪ {id0}5

end6
send response 〈id0,Ans, Sans, Loops〉 to Req7

is disposed, the selected atom B1 of n is completely evaluated.
Therefore, n is disposed and, if B1 is in a loop, also all the other
nodes in any loop of the SCC are disposed (lines 5-8). This is be-
cause the termination of a loop is ordered by the principal handling
the leader of the SCC once all the goals (and consequently, all the
loops) in the SCC are completely evaluated.

Otherwise, the status of n is updated depending on whether the
response contains a loop notification, i.e., Loops contains some
loop identifier (lines 10-13). In this case, an entry is added to the
set of active goals AG for each new loop in Loops (line 14). If
the response has been sent in the context of the evaluation of a loop
id3, the counter of id3 in AG is decreased and the status of the
table is changed to loop({id3}) (lines 15-18).

After updating the node and table status, the set of answers in the
response is processed (lines 19-23). In particular, a new subnode of
n is created for each answer. The clause of the new node is (H ←
B2, . . . , Bn)θ, where θ is the mgu of B1 and the answer, and its
identifier is obtained by concatenating the identifier id1 of the root
node of T with a randomly generated string of characters s. When
all answers have been processed, if the principal is not waiting for a
response for any subgoal in the partial tree of G, ACTIVATE NODE
is invoked to proceed with the evaluation of G (line 25).

GENERATE RESPONSE (Algorithm 5) is invoked when all the clauses
in the partial tree of a goal G (except for the ones in a loop) have
been evaluated. If G is not part of a loop, TERMINATE is invoked
(lines 2-3). Otherwise, we distinguish three cases:

Algorithm 4: PROCESS RESPONSE

input: a response 〈id0,Ans, Sans, Loops〉
let n = 〈id0, H ← B1, . . . , Bn, Sn〉 be the node in the partial1
tree of goal G to which the response refers
let Table(G) be 〈HR,LR, AG,AS, T 〉2
let 〈id1, G← G,Sroot〉 be the root node of T3
if Sroot 6= disposed then4

if Sans = disposed then5
if Sn = loop(ID) then6

dispose all the nodes in T involved in any loop7
Sn := disposed8

else9
if Sn = loop(ID) then10

ID := ID ∪ Loops11
else if Loops 6= {} then12
Sn := loop(Loops)13

AG := AG ∪ {〈id2, 0〉|id2 ∈ Loops and 〈id2, c〉 /∈ AG}14
if Sans = loop(id3) then15

decrease the counter of id3 in AG by 116
if Sroot = active then17
Sroot := loop({id3})18

foreach ans ∈ Ans do19
let ans′ be a variable renaming of ans s.t. it is variable20
disjoint from B1, and θ = mgu(B1, ans

′)
let s be a randomly generated string of characters21
add subnode 〈id1s, (H ← B2, . . . , Bn)θ, new〉 of n22

end23
if (Sroot = active) or (Sroot = loop(ID) and ∀id4 ∈ ID ,24
〈id4, 0〉 ∈ AG) then

ACTIVATE NODE(G)25

Algorithm 5: GENERATE RESPONSE

input: a goal G
let Table(G) be 〈HR,LR, AG,AS, T 〉1
if (6 ∃〈id0,c,loop(ID)〉 ∈ T) or (〈G, ID ′〉 ∈ AS) then2

TERMINATE(G)3
else4

let 〈id1, G← G,Sroot〉 be the root node of T5
if G is the coordinator of a loop id1 and ∃ans ∈ AS s.t. ans6
has not been sent to some request in LR then

set the counter of id1 in AG to the number of subgoals in T7
involved in loop id1

if Sroot = loop(ID ′′) then8
Sroot := loop(ID ′′ ∪ {id1})9

else10
Sroot := loop({id1})11

foreach 〈id2,req,G〉 ∈ LR do12
SEND RESPONSE(〈id2, req, G〉, loop(id1), {})13

end14
else if G is the leader of the SCC then15

TERMINATE(G)16
else17

let Loops be the set {id3|〈id3, C〉 ∈ AG and id1 < id3}18
set the counter of each id3 ∈ Loops to the number of19
subgoals in T in loop id3

if Sroot = loop(ID ′′) and ∃id4 ∈ ID ′′ s.t. id1 < id4 then20
SEND RESPONSE(HR, loop(id4), Loops)21

else22
SEND RESPONSE(HR, active, Loops)23

Sroot := active24

1. If G is the coordinator of a loop id2 and there are new an-
swers to be sent to the lower requests in LR, a response with
status loop(id2) is sent to each of them (lines 6-14). The
status of the root node of T keeps track of the loops that are

Algorithm 6: TERMINATE

input: a goal G
let Table(G) be 〈HR,LR, AG,AS, T 〉1
dispose all non-answer nodes in T2
foreach 〈id0, req, G〉 ∈ {HR} ∪ LR do3

SEND RESPONSE(〈id0, req,G〉, disposed, {})4
end5
HR := LR := AG := {}6

currently being processed and the counter of id2 in AG is
set to the number of subgoals in T involved in loop id2 (i.e.,
the number of subgoals for which a response in the context
of loop id2 will be returned).

2. If G is the leader of the SCC and no new answers of G have
been computed, the loop is terminated by invoking TERMI-
NATE (lines 15-16).

3. Otherwise, a response including the identifier of the loops in
which G is involved is sent to the requester of HR (lines 18-
24). The status of the response depends on whether HR is in-
volved in one of the loops that are currently being processed.

TERMINATE (Algorithm 6) is responsible of disposing a table once
all the answers of its goal G have been computed. A response with
status disposed is sent to the requesters of HR and LR (lines 3-5).

5. PROPERTIES OF GEM
In this section we present the soundness, completeness and termi-
nation results of basic GEM. Furthermore, we discuss what infor-
mation is disclosed by GEM during the evaluation of a goal.

Soundness, Completeness and Termination. Here, we re-
fer to an arbitrary but fixed set P1, . . . , Pn of local programs, and to
the corresponding distributed program P = P1∪. . .∪Pn. To prove
soundness and completeness, we demonstrate that GEM computes
a solution iff such a solution can be derived via SLD resolution,
which has been proved sound and complete [2].

THEOREM 1 (SOUNDNESS). Let G1 be a goal. Let S be the
set of tables resulting from running GEM onG1 (w.r.t. P1, . . . , Pn).
LetG1, . . . , Gk be the goals for which there exists a table in S. For
each goal Gi ∈ {G1, . . . , Gk} let Soli = {θi,1, . . . , θi,ki} be the
(possibly empty) set of solutions of Gi generated by the algorithm.
Then, for each Gi ∈ {G1, . . . , Gk} and for each θi,j ∈ Soli there
exists an SLD derivation of P ∪ {Gi} with c.a.s. σ s.t. Giθi,j is a
renaming of Giσ.

THEOREM 2 (COMPLETENESS). Let G1 be a goal. Let S be
the set of tables resulting by running GEM onG1 (w.r.t.P1, . . . , Pn).
Assume that running GEM on G1 (w.r.t. P1, . . . , Pn) did not result
in floundering. If there exists an SLD derivation of P ∪ {G1} with
c.a.s. θ, then there exists a solution σ of G1 in S s.t. G1θ is a
renaming of G1σ.

For termination, we have to prove the following theorem.

THEOREM 3 (TERMINATION). Given a goalG evaluated w.r.t.
a finite distributed program P , GEM terminates.

Termination is a consequence of two observations: (i) the depen-
dency graph ofP is finite, and (ii) the number of response messages
exchanged by the principals involved in the evaluation of G is fi-
nite. Proofs of soundness, completeness and termination are given
in Appendix A.

Disclosed Information. A primary objective of GEM is to
preserve the confidentiality of local programs (i.e., intensional poli-
cies). Here, we discuss what policy information principals are able
to collect during the evaluation of a goal. We say that a goal G1

depends on a goal G2 if there is a path (i.e., a chain of requests)
from G1 to G2 in the dependency graph of the distributed program
in which the goals are defined.

Let a be a principal, and G1 be any goal in a distributed program.
The question that we address is what can a infer about the defini-
tion of G1. Obviously, by requesting the evaluation of G1, a can
learn the set of answers to the request, i.e., the extensional policy
relative to G1; this is necessary for any goal evaluation algorithm.
However, we are more interested in what a can learn about the in-
tensional policy relative to G1.

First of all, by sending a request for G1 (say, with identifier id1), a
can learn whether G1 depends on a predicate defined in her policy.
Indeed, if a receives a request for a goal G2 with identifier id2 s.t.
id2 < id1, then G1 depends on G2.

If G1 depends on a number of goals defined by a, then by request-
ing G1 a learns:

• What are the goalsG2, . . . , Gn defined by a thatG1 depends
on.
• For each Gi ∈ {G2, . . . , Gn}, a learns the principal pi that

requested Gi; therefore, a learns that G1 depends on some
predicate defined by pi. Principal a, however, does not learn
which predicate it is.
• Depending on the implementation of identifiers, a might be

able to learn also some information about the length of the
derivation chain from G1 to Gi. For example, if identifiers
were constructed by concatenating the identifier of a request
with strings of fixed length, awould be able to infer the num-
ber of goals involved in the chain of requests from G1 to Gi.

We believe that the information disclosed by GEM is not only nec-
essary to handle loops correctly, but also consistent with the con-
cept of TM. A principal a is only able to infer if and how a given
goal G1 depends on predicates defined by herself. If this is the
case, then there is a chain of trust from the principal definingG1 to
a; it seems legitimate that the existence of this chain of trust should
not remain secret to a. We also argue that the knowledge about
goal dependencies disclosed by GEM is not sufficient for a to in-
fer the intensional policy of the other principals. Indeed, different
intensional policies can have the same dependency graph [8].

6. EXTENSIONS OF BASIC GEM
This section discusses two possible extensions of basic GEM, one
for avoiding the reevaluation of side requests and the other to deal
with negation (as failure).

GEM + Early Loop Detection. In basic GEM, side requests
need to be reevaluated for two reasons: (1) principals are not aware
of all the loops in which they are involved (loop notifications are
only transmitted to higher requests), and (2) only the principal han-
dling a coordinator knows when the fixpoint for the loop is reached.
This implies that principals might not be able to know when a re-
sponse to side requests should be sent.

In this section, we propose a variant of GEM which avoids the
reevaluation of side requests by enabling early loop detection. In
practice, we add a loop finalization step each time a fixpoint for
a loop is reached that enables principals to identify the loops in
which a side request is involved and to determine when it should be

responded to. When a fixpoint for a loop is reached, the principal
handling its coordinator (say goal G) sends a finalization message
to the requesters of lower requests forG, who in turn propagate the
message to the other principals involved in the loop, similarly to a
loop notification. During this propagation process, principals that
handle coordinators of lower loops forward the message to the prin-
cipals involved in such loops, so that eventually all the principals
handling goals lower than G are informed.

The finalization message that the principal handling the coordina-
tor of a loop idc transmits to the other principals in its loop is a
tuple 〈idr, idc, idf , id l, ID〉, where idr identifies the request in
response to which the message is sent, idc indicates the “source”
of the finalization message, idf is the loop for which a fixpoint has
been reached, id l identifies the loop whose coordinator is waiting
for a response, and set ID contains the identifiers of all the loops in
which the coordinator of loop idc is involved. Notice that no final-
ization is needed for the highest loop of the SCC: when a fixpoint
for that loop is reached, all the goals in the SCC (including side
goals) have been completely evaluated.

By knowing all the loops to which their subgoals participate (ID),
principals can detect the loops in which a side request with identi-
fier id1 is involved. This is done by checking if there is any loop
identifier id known by the principal s.t. id1 < id . A principal
responds to the side request with a notification about the loops in
which it is involved. If there is no known loop with identifier id s.t.
id1 < id , the request is not a side request, but originates from a
different initial request and the requested goal is reevaluated. The
reevaluation of a goal for each different initial request is necessary
to identify SCCs.

Identifier idc allows a principal to know when a response should be
sent to side requests. More precisely, idc is used to determine how
many finalization messages will be received on behalf of the same
coordinator. When all such messages have been received (i.e., the
counter of idc is 0), a response can be sent to the side requests and
the finalization message is propagated to the higher requests. This
guarantees that all the subgoals of the locally evaluated goal have
been processed when a response is sent to higher or side requests.

By knowing the loop for which a fixpoint is reached (idf), a prin-
cipal can identify to which side requests a response should be sent.
More specifically, the principal has to respond to the side requests
involved in the “next” loop, i.e., the loop whose identifier has the
longest prefix w.r.t. idf among the known loops. Identifier id l de-
termines the status of the response. This information is necessary
to guarantee the correct functioning of counters.

In the implementation, we introduce a new field SR (the set of
Side Requests) to the table of a goal, and ActiveGoals is now a list
ordered by increasing identifier (i.e., from lower to higher loops).
Upon receiving a finalization message, a principal first identifies the
goal and the table to which the message refers, by looking at idr .
Then, the principal adds set ID to ActiveGoals in the appropriate
order, and decreases the counter of idc. If the counter of idc is 0,
the message is propagated to HR (if it is involved in loop idf), and
a response with status loop(id l) is sent to the side requests in SR
involved in the loop following idf in ActiveGoals.

The soundness, completeness, and termination results of this vari-
ant of GEM are discussed in Appendix A.

Dealing with Negation. Basic GEM is devised to work with
definite logic programs, i.e., programs without negation. Nega-
tion is used by some TM systems (e.g., [10, 12]) to express non-

monotonic constraints in the body of a clause, such as separation
of duty or “distrust” in principals with certain attributes (e.g., em-
ployees of a rival company). Here, we propose a relatively simple
extension of GEM to support the use of negation. In particular, we
extend the algorithm as follows. Given a clause with a literal ¬B
selected for evaluation:

1. if B is not ground, an error is raised and the computation
flounders;

2. if the evaluation of atom B succeeds with an answer, then
¬B fails and the clause is disposed;

3. if B is completely evaluated and has no answers, then ¬B
succeeds and a new clause is added to the partial tree of the
goal, removing ¬B from the body;

4. if a loop notification for atomB is received, an error is raised
and the computation flounders.

Conditions (1), (2) and (3) are standard when defining negation as
failure: (1) is necessary to guarantee correctness [2], while (2) and
(3) define the semantics of negation. Since GEM is able to de-
tect loops, (3) captures also the case of infinite failure, as done, for
instance, by the well-founded semantics [13]. Condition (4) states
that the algorithm flounders when it detects a loop through negation
(e.g., for clause p← ¬p); this is because dealing consistently with
loops through negation requires the use of a three-valued semantics
[21]. Relying on three-valued models in the context of access con-
trol, however, raises the issue of how to interpret the “undefined”
answer, as the result of a computation must always be mapped to a
positive or negative decision. It is straightforward to demonstrate
that the proposed extension of GEM:

• always terminates (for arbitrary programs and requests), and
• for non-floundering computations, it is sound and complete

w.r.t. the Well-Founded semantics [13].

It is also worth noting that both types of floundering can be avoided
by imposing restrictions on the program. In particular, floundering
of type (1) can be avoided by restricting to well-moded programs
[3], while floundering of type (4) can be avoided by restricting
to weakly stratified programs [20], which include locally strati-
fied and stratified programs [19]. However, while the definition
of well-moded program requires each clause independently to be
well-moded, the definition of weakly stratified program relies on
a “global ordering” among all the (ground) atoms in a program.
In the context of TM, where a program is a collection of indepen-
dent local programs defined by different principals, enforcing well-
modeness is feasible, but guaranteeing that a program is weakly
stratified requires principals to agree beforehand on the allowed de-
pendencies among (ground) goals. The added value of GEM is that
it does not require a program to be weakly stratified: its loop iden-
tification mechanism detects loops through negation at run-time,
preserving soundness, completeness and termination of the algo-
rithm for non-floundering programs and requests.

7. RELATED WORK
Research on goal evaluation has been carried out both in the field
of logic programming (LP) and TM. In this section we compare
our work with existing frameworks focusing on the information
disclosed during the evaluation process. Additionally, we indicate
whether the analyzed systems employ a centralized or distributed
goal evaluation algorithm and termination detection mechanism.
Within termination detection, we distinguish between termination
of the whole computation initiated by a particular request and ter-
mination of the single goals involved in the computation (i.e., de-
tecting when a goal is completely evaluated). Table 1 summarizes
the results of this analysis.

Frameworks Evaluation Computation Goal Disclosed InformationTermination Termination

LP

SLG [7] centralized centralized centralized intensional policy, extensional policy
YapTab [22] centralized centralized centralized intensional policy, extensional policy
Hulin [15] centralized centralized centralized intensional policy, extensional policy
Damasio [11] distributed distributed distributed dependency graph, extensional policy
Hu [14] distributed distributed distributed dependency graph, extensional policy

TM

RT [18] centralized centralized centralized intensional policy, extensional policy
Tulip [9] centralized centralized centralized intensional policy, extensional policy
SD3 [16] distributed N/A N/A intensional policy, extensional policy
Becker et al. [5] distributed N/A N/A intensional policy, extensional policy
Cassandra [4] distributed no no extensional policy

PeerTrust [1] distributed distributed no extensional policy
distributed distributed distributed dependency graph, extensional policy

MTN [26] distributed distributed no extensional policy
GEM distributed distributed distributed some goal dependencies, extensional policy

Table 1: Summary of Related Work

SLG [7], Yaptab [22] and the work by Hulin [15] are centralized
tabling systems in which the complete program is available during
the evaluation. SLG identifies loops by observing goal dependen-
cies in the “call stack” of the program, and termination is detected
when no more operations can be applied to the goals in the stack.
Yaptab and Hulin focus on improving the efficiency of goal evalua-
tion by proposing a parallel tabled execution strategy. Similarly to
SLG, Yaptab resorts to centralized data structures to identify loops
and detect termination. In [15], each process communicates its ter-
mination to a global variable, whose access is limited to one process
at a time by means of a deadlock mechanism.

Distributed goal evaluation frameworks are presented in [11] and
[14]. In [11], termination detection resorts to a static dependency
graph known to all principals and determined at compile time. The
work by Hu [14] assumes the presence of global data structures,
and requires goal dependencies to be propagated among the differ-
ent principals. Consequently, the confidentiality of (part of) inten-
sional policies is not preserved.

In TM, distributed goal evaluation is a main issue as policies are
distributed among principals. RT [18] and Tulip [9] rely on a cen-
tralized goal evaluation strategy: all the clauses necessary for the
evaluation of a goal are collected in a single location. In SD3
[16], when queried for a goal, a principal returns to the requester
the clauses defining the goal, with locally defined atoms already
evaluated. Becker et al. [5] present an algorithm in which the
body atoms of a clause are sent in turn to the principals respon-
sible for their evaluation; each principal evaluates the locally de-
fined atom(s) and sends all the atoms to the next principal. Neither
[16] nor [5] discuss how termination is detected. Cassandra [4]
employs a completely distributed evaluation strategy in which no
information about intensional policies is disclosed among princi-
pals. However, it does not detect neither the complete evaluation of
single goals, nor the termination of the whole computation.

PeerTrust [1] and MTN [26] detect termination of the computa-
tion started by a particular request in a fully distributed way; this
is achieved by “observing” when no more messages are exchanged
among principals and all the goals are quiescent. In [1], the authors
present two solutions: the first, based on [11], is also able to detect
the completion of single goals, but requires the dependency graph
of the distributed program to be known to all principals a priori.
The second solution, which is also adopted in [26], detects termi-
nation of the computation without disclosing information about in-
tensional policies. However, since all messages are tagged with the
identifier of the initial request, some information about goal depen-
dencies could be inferred as discussed in Section 5. In addition,

this solution does not detect termination of individual goals, which
is required to free the resources used during evaluation and to allow
the use of negation. Finally, neither PeerTrust nor MTN provide a
loop identification mechanism; when using negation, the detection
of possible loops through negation allows to preserve the soundness
and completeness of the computation w.r.t. the standard semantics
of logic programs. We enable the detection of goal termination and
the identification of loops at the cost of possibly revealing (at run
time) some goal dependencies. In Section 6 we have shown how
GEM can be extended to support a restricted use of negation.

8. CONCLUSIONS
In this paper we have presented GEM, a distributed goal evaluation
algorithm based on a foundation language for modern TM systems.
GEM detects termination of the computation in a completely dis-
tributed way without the need of disclosing intensional policies,
thereby preserving their confidentiality. We have proved that the
algorithm terminates and is sound and complete w.r.t. the standard
semantics for logic programs. As future work, we plan to extend
GEM to support constraint rules [17].

In a TM system, confidentiality of extensional policies is also an
important requirement, as the answers of a goal might contain sen-
sitive information (e.g., the list of patients of a mental hospital).
Therefore, the disclosure of extensional policies should also be pro-
tected. Confidentiality of both intensional and extensional policies
can be preserved by complementing GEM with a trust negotiation
algorithm [24, 25]. In particular, each GEM request might initiate a
negotiation that, if successful, leads to the evaluation of the request.

Although efficiency is not a primary objective of this paper, GEM
can contribute to keep network traffic low. In most distributed goal
evaluation systems, answers are sent as soon as they are computed.
On the contrary, GEM delays the communication of the answers of
a goal until all the possible answers have been computed, i.e., until
all the branches of the partial derivation tree of the goal have been
inspected. This strategy simplifies the termination detection mech-
anism, and we believe reduces the number of messages exchanged
by principals during a computation.

In this paper we have compared GEM with other TM frameworks
based on their features (Table 1). In the next future we intend to
compare GEM and its variant with (some of) these frameworks in
terms of performance, by means of a benchmark. With this respect,
we have already implemented the basic version of the algorithm
and applied it to a number of case studies in the Maritime Safety
and Security (MSS) and e-Learning domain. We are currently im-
plementing the variant of GEM with early loop detection.

9. REFERENCES
[1] M. Alves, C. V. Damásio, W. Nejdl, and D. Olmedilla. A

Distributed Tabling Algorithm for Rule Based Policy
Systems. In Proc. of POLICY ’06, pages 123–132. IEEE
Computer Society, 2006.

[2] K. R. Apt. Logic programming. In Handbook of theoretical
computer science (vol. B): formal models and semantics,
pages 493–574. MIT Press, 1990.

[3] K. R. Apt and E. Marchiori. Reasoning about Prolog
programs: from Modes through Types to Assertions. Formal
Aspects of Computing, 6(6A):743–765, 1994.

[4] M. Y. Becker. Cassandra: flexible trust management and its
application to electronic health records. PhD Thesis, 2005.

[5] M. Y. Becker, J. F. Mackay, and B. Dillaway. Abductive
Authorization Credential Gathering. In Proc. of POLICY’09,
pages 1–8. IEEE Computer Society, 2009.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust
Management. In Proc. of S&P’96, pages 164–173. IEEE
Computer Society, 1996.

[7] W. Chen and D. S. Warren. Tabled Evaluation With Delaying
for General Logic Programs. Journal of the ACM,
43(1):20–74, 1996.

[8] S. Costantini. Comparing different graph representations of
logic programs under the Answer Set semantics. In Proc. of
ASP’01, 2001.

[9] M. Czenko and S. Etalle. Core TuLiP Logic Programming
for Trust Management. In Proc. of ICLP’07, LNCS 4670,
pages 380–394. Springer, 2007.

[10] M. Czenko, H. Tran, J. Doumen, S. Etalle, P. Hartel, and
J. H. den. Nonmonotonic Trust Management for P2P
Applications. In Proc. of STM’05, pages 101–116. Elsevier
Science, 2005.

[11] C. V. Damásio. A Distributed Tabling System. In Proc. of
TAPD’00, pages 65–75, 2000.

[12] C. Dong and N. Dulay. Shinren: Non-monotonic trust
management for distributed systems. In Proc. of IFIPTM’10,
pages 125–140. Springer Boston, 2010.

[13] A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM,
38(3):619–649, 1991.

[14] R. Hu. Efficient tabled evaluation of normal logic programs
in a distributed environment. PhD thesis, 1997.

[15] G. Hulin. Parallel processing of recursive queries in
distributed architectures. In Proc. of VLDB’89, pages 87–96.
Morgan Kaufmann Publishers Inc., 1989.

[16] T. Jim and D. Suciu. Dynamically distributed query
evaluation. In Proc. of PODS’01, pages 28–39. ACM, 2001.

[17] N. Li and J. C. Mitchell. Datalog with Constraints: A
Foundation for Trust Management Languages. In Proc. of
PADL’03, LNCS 2562, pages 58–73. Springer, 2003.

[18] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed
credential chain discovery in trust management. Journal of
Computer Security, 11(1):35–86, 2003.

[19] F. Protti and G. Zaverucha. On the Relations between
Acceptable Programs and Stratifiable Classes. In Proc. of
SBIA ’98, pages 141–150. Springer-Verlag, 1998.

[20] H. Przymusinska and T. C. Przymunsinski. Weakly stratified
logic programs. Fundamenta Informaticae, 13(1):51–65,
1990.

[21] T. Przymusinski. The Well-Founded Semantics Coincides
with Three-Valued Stable Semantics. Fundamenta

Informaticae, 13:445–463, 1990.
[22] R. Rocha, F. Silva, and V. S. Costa. YapTab: A Tabling

Engine Designed to Support Parallelism. In Proc. of
TAPD’00, pages 77–87, 2000.

[23] K. Stine, R. Kissel, W. C. Barker, A. Lee, and J. Fahlsing.
Guide for Mapping Types of Information and Information
Systems to Security Categories. Special Publication SP
800-60 Rev. 1, National Institute of Standards and
Technology (NIST), 2008.

[24] W. H. Winsborough, K. E. Seamons, and V. E. Jones.
Automated Trust Negotiation. In Proc. of DISCEX’00,
volume 1, pages 88–102. IEEE Computer Society, 2000.

[25] M. Winslett. An Introduction to Trust Negotiation. In Proc.
of iTrust’02, LNCS 2692, pages 275–283. Springer, 2003.

[26] C. C. Zhang and M. Winslett. Distributed Authorization by
Multiparty Trust Negotiation. In Proc. of ESORICS’08.
Springer-Verlag, 2008.

APPENDIX
A. PROOFS

DEFINITION 8 (RANKING). Let S be the set of tables result-
ing from running GEM on a goal G w.r.t. P1, . . . , Pn. Let G′

be a goal whose table is in S. Let θ be a solution of G′ using
clause H ← B1, . . . , Bn. Then, by construction ∃θ0, . . . , θn s.t.
θ0 = mgu(G′, H) and θj is a solution of Bjθ0 . . . θj−1 (with
j ∈ {1, . . . , n}). The ranking of θ is defined inductively as fol-
lows:

• rank(θ) = 1 if n = 0 (i.e., the clause is a fact),
• rank(θ) = 1 + max(rank(θ1), . . . , rank(θn)) otherwise,

where rank(θj) is the ranking of solution θj .

Proof (sketch) of Theorem 1. We proceed by contradiction and
assume that there exists at least a “wrong” solution θi,j in Soli ∈
{Sol1, . . . , Solk}, i.e., a solution s.t. there is no corresponding
SLD derivation of P ∪ {Gi} with c.a.s. σ s.t. Giθi,j is a renaming
of Giσ (Hypothesis).

Let us choose θi,j to be a “wrong” solution with minimal ranking
(*). Since θi,j is a solution of Gi, there exists a partial tree of Gi
in S created by CREATE TABLE with root 〈id , Gi ← Gi, new〉,
a subnode with clause c = H ← B1, . . . , Bn and substitutions
θ0, . . . , θn s.t. θ0 = mgu(Gi, H), and for each l ∈ {1, . . . , n}
there exists:

• A node in the partial tree ofGi with selected atomBlθ0 . . . θl−1

(ACTIVATE NODE).
• A partial tree of Blθ0 . . . θl−1 created by CREATE TABLE at

the location of Blθ0 . . . θl−1.
• A solution θl of Blθ0 . . . θl−1; the answer Blθ0 . . . θl is sent

to the requester of Blθ0 . . . θl−1 by GENERATE RESPONSE.
• A node with clause (H ← Bl+1, . . . , Bn)θ0 . . . θl added to

the partial tree of Gi by PROCESS RESPONSE.

Then, θi,j = θ0 . . . θn. If the body of c is empty, the proof is
straightforward, and omitted. Now, for each l ∈ {1, . . . , n}, rank(θl)
< rank(θi,j). So, by the minimality argument (*), for each l ∈
{1, . . . , n} there exists an SLD derivation of P ∪ {Blθ0 . . . θl−1}
with c.a.s. σl s.t. Blσ0 . . . σl−1σl = Blθ0 . . . θl−1θl. But then,
by standard LP results (given the presence of clause c), there ex-
ists a successful SLD derivation of P ∪ {Gi} with c.a.s. σ s.t.
Giσ = Giθi,j , contradicting the hypothesis. 2

Proof (sketch) of Theorem 2. We proceed by contradiction, and
assume that S is missing a solution of G1. That is, there exists a

successful SLD derivation of P ∪ {G1} with c.a.s. θ and there is
no solution σ of G1 generated by the algorithm s.t. G1θ = G1σ.
(Hypothesis) This implies that there exist a (maximal) set of goals
G1, . . . , Gk in S s.t. for each i ∈ {1, . . . , k} there is a non-empty
maximal set of substitutions {θi,1, . . . , θi,mi} s.t.:

• Gi is a goal in S.
• θi,1, . . . , θi,mi are correct solutions of Gi according to SLD

resolution: for each θi,j there exists a successful SLD deriva-
tion of P ∪ {Gi} with c.a.s. θi,j (up to renaming).
• The algorithm does not generate the answersGiθi,1, . . . , Giθi,mi

(up to renaming).

The set G1, . . . , Gk is not empty as it contains at least G1.

For each i, j, let deri,j be the shortest SLD derivation of P ∪{Gi}
with c.a.s. θi,j . Let us choose integers p, q in such a way that derp,q
has minimal length among the derivations in the set {deri,j}. The
fact that derp,q has minimal length implies that for any goal G′ in
S, the following holds: if there exists an SLD derivation of P ∪
{G′} of length smaller than len(derp,q) with c.a.s. θ′, then the
algorithm generates a solution ϑ′ for which G′θ′ = G′ϑ′ (*).

Let c be the clause used in the first step of the derivation derp,q .
If c is a fact, we immediately have a contradiction: since Gp is a
goal in S, this means that there exists a partial tree ofGp created by
CREATE TABLE with root node 〈id , Gp ← Gp, new〉 and a node
with clause c as subnode of the root node. Therefore, the algo-
rithm will compute a c.a.s. equivalent to θp,q (ACTIVATE NODE),
contradicting the hypothesis.

If c is a rule H ← B1, . . . , Bn, and σ0 = mgu(Gp, H), then
by hypothesis there exist SLD derivations derB1 , . . . , derBn , and
substitutions σ1, . . . , σn s.t. Hσ0 . . . σn = Gpθp,q , and for each
i ∈ {1, . . . , n}:
• derBi is an SLD derivation of P ∪ {Biσ0 . . . σi−1}.
• The c.a.s. of derBi is σi, and len(derBi) < len(derp,q).

(**)

Since Gp is a goal in S, there exists a partial tree of Gp created by
CREATE TABLE with root node 〈id , Gp ← Gp, new〉 and a node
with clause c as subnode of the root node. Then, it is easy to see
that for each i ∈ {1, . . . , n}:
• There exists a node in the partial tree of Gp with selected

atom Biσ0 . . . σi−1 (ACTIVATE NODE).
• There exists a partial tree of Biσ0 . . . σi−1 created by CRE-

ATE TABLE at the location of Biσ0 . . . σi−1.
• Since len(derBi) < len(derp,q), by (*) and (**) the algo-

rithm computes a solution equivalent to σi of the goalBiσ0 . . . σi−1.
• The answerBiσ0 . . . σi is sent to the requester ofBiσ0 . . . σi−1

by GENERATE RESPONSE.
• There exists a node with clause (H ← Bi+1, . . . , Bn)σ0 . . . σi

added to the partial tree of Gp by PROCESS RESPONSE.

Therefore, σ1, . . . , σn is (equivalent to) a solution of the partial tree
of Gp, contradicting the hypothesis. 2

Proof (sketch) of Theorem 3. We assume that nodes (i.e., goals) in
the dependency graph of P inherit the identifier (and the associated
ordering) of the request for which they are created. Termination
follows from two observations: (i) the dependency graph of P is
finite, and (ii) the number of response messages exchanged by the
principals involved in the evaluation of G is finite.

The dependency graph of P is finite (i) for the following reasons:

1. The set of goals over predicates inP (up to renaming) is finite.
This is because terms that are not variables are constants in P .

2. There is no infinite path in the goal dependency graph of P
composed of nodes id1, . . . , idn s.t. idn < . . . < id1. This
is because of (1) and because the algorithm never creates a
new node with identifier id i for a goal if a node with identifier
id j already exists for a variant of that goal and id i < id j .

3. The outdegree of each node in the goal dependency graph of
P is finite.

The number of response messages is finite (ii) because:

1. The (possibly empty) set of answers of a goal are transmitted
only when a node for the goal is first created or new answers
of its subgoals are received.

2. For any nodes id1 and id2, a set of answers that flows from
id2 to id1 in response to a request id2 never contains answers
previously communicated in response to request id2.

3. An empty set of answers may flow from id2 to id1 only if
id2 < id1, or id1 identifies a lower request and a loop id2
has just been identified.

4. There is no infinite path composed of nodes idn, . . . , id1 in
the goal dependency graph of P through which the answers
flow s.t. idn < . . . < id1. 2

GEM + Early Loop Detection. The soundness, completeness, and
termination properties of basic GEM are preserved by this variant
of the algorithm. Since the way in which answers are computed has
not been modified, the soundness result still holds. Completeness
is guaranteed by the finalization step. In particular, the modified
GENERATE RESPONSE procedure sends the answers to higher re-
quests at every iteration of a loop, and sends the answers to side
requests when the loop in which they are involved is the next to
be processed. Since every loop (except for the highest) is finalized
each time a fixpoint is reached, eventually every side request will
receive the answers of the requested goal. In the proof of termi-
nation, we change step (3) in part (ii) as follows: an empty set of
answers may flow from id2 to id1 only if id2 < id1, id2 ↪→ id1,
or id1 identifies a lower request and a loop id2 has just been iden-
tified. In addition, a finalization message may flow from id2 to id1
only if id2 < id1, id2 ↪→ id1, or id1 identifies a lower request
and a fixpoint for loop id2 has just been reached. Between any two
finalization steps a new answer must be computed by some goal in
the SCC.

