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CONTEXT 

The Square Kilometer Array (SKA) is a very large ra- 
dio telescope being planned by an intemational con- 
sortium. It would operate in a very broad frequency 
band and have a collecting area of one square kilome- 
ter. In order to achieve a good resolution, this area will 
be spread over a few tens of stations, located several 
tens or hundreds of kilometers apart. 

The Netherlands Foundation for Research in Astron- 
omy (ASTRON) is studying the possibility of cov- 
ering the mid-range frequencies (- 0.2 to 2 GHz) 
with an instrument based on the phased-may technol- 
ogy. This technology presents the major advantages of 
avoiding mechanically moving structures and of en- 
abling very flexible beamforming. One of the envis- 
aged broadband antenna elements is the tapered slot 
antenna, also called Vivaldi antenna. 

The design of these antennas is based on infinite ar- 
ray models [I], which automatically include the mu- 
tual coupling effects. As each station will probably 
be made of a very large number of small arrays, it 
is important to know how these arrays will behave 
when they are truncated. We developed a computation 
scheme for mays of antennas made of metallic fins. 
In the next section, we justify the adopted approach, 
then details are given for the fast resolution of the re- 
sulting equation system. Finally, examples are shown 
for wide dipoles and comments are made about the ex- 
tension to Vivaldi antennas. 

FINITE ARRAY APPROACH 

Several techniques are described in the literature for 
the rapid computation of finite array effects based on 
infinite array data. Several of them [2] are based on 
the computation of coupling coefficients (impedance, 
admittance or scattering matrix) obtained from infinite 
array solutions. These coefficients are assumed to re- 
main constant in the finite array environment, consid- 
ering absent antennas as antennas with either zero in- 
put current, zero input voltage, or zero incident power 

wave. This kind of assumption proves very good for 
some particular types of antennas, but they are not 
well suited to tapered slot arrays, probably because of 
their three-dimensional structure. 

Another technique [3] consists of assuming in a first 
stage of the analysis that the unknown current distri- 
butions on successive antennas just differ by the exci- 
tation law. When the Method of Moments is used to 
solve for the currents, this assumption leads to a dif- 
ferent equation system for each antenna of the array, 
the dimension of these systems being the same as for 
.a single antenna. This technique yields good results 
when the current distributions on successive antennas 
do not vary too fast, which is not guaranteed for the 
antennas under study here. 

In further applications, the metallic fins may be elec- 
trically connected to each other. This enables currents 
to flow from one antenna to the next, which would 
make the couplings stronger in that direction (y direc- 
tion in Figure 1). This means that truncation effects 
may also be most severe in the plane containing the 
metallic fins. That is why we chose to model arrays 
that are infinite in the 2 direction, and finite in the jj 
direction. 

In the following, the adopted methodology is de- 
scribed, and examples are shown for wide plate 
dipoles, as those represented in Figure 1. The anten- 
nas are assumed to be fed by delta-gap generators, and 
scanning is performed by considering sources with 
constant amplitudes and a linear phase progression 
in both directions. The currents are computed using 
the Method of Moments (MOM). As the antennas do 
not contain dielectric material, the free space Green’s 
function may be used. For structures that are periodic 
in one direction, the Green’s function contains an in- 
finite sum of terms. Using the Poisson sum formula, 
this slowly converging sum can be transformed into 
a rapidly converging one, which corresponds to a se- 
ries of propagating and evanescent cylindrical waves 
[4],[5]. Given that this function is evaluated only in 
the planes containing the antennas, it only depends 
on the radial distance to the source (in the YZ plane). 
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Hence, it can easily be tabulated for later use. if the currents on a given antenna may be considered as 
the linear combination of a small number of standard 

a 

b 

Figure 1 - Array configuration and antennas under test. 

The currents are decomposed into triangular basis 
functions [6] ,  and Galerkin testing is considered. For 
the computation of the MOM impedance matrix, the 
convolution integrations are carried out numerically 
in the space domain, with a separate treatment of the 
1/R singularity, for which the integration over the ba- 
sis functions is performed analytically [6] .  The same 
approach has been adopted for the infinite-by-infinite 
array computations. In this case, the Green’s func- 
tion (without the singular component) is tabulated as 
a function of the y and i coordinates, within a single 
periodic cell. In general, a table containing 50 points 
in both directions provides sufficient accuracy. 

For structures with a large number of elements in the 
finite array direction, the computation time rapidly 
becomes prohibitive. However, a lot of computation 
time can be saved by exploiting the periodicity of the 
structure. When filling the MOM impedance matrix, 
an obvious way to save time is by exploiting the trans- 
lational symmetry of the array. Hence, the filling time 
increases only as nt n,, where nb is the number of ba- 
sis functions on each antenna, and n, is the number of 
antennas in the y direction. 

As for the resolution of the MOM equations system, 
a global inversion of the impedance matrix requires a 
computation time proportional to n i  n i .  In the next 
section, we show that this time can be dramatically re- 
duced, using techniques that also provide some insight 
in the finite array effects. 

FAST RESOLUTION 

Standard current distributions 

The number of unknowns can be significantly reduced 

distributions. Two such distributions are obviously 
the infinite-by-infinite array and the single element- 
by-infinite array distributions. This is generally not 
enough to model accurately the currents on all the an- 
tennas located in a finite array. Typical edge distribu- 
tions can be obtained by solving the problem explicitly 
for small arrays. However, if the array is too small, the 
edge distributions may differ significantly from those 
of large arrays. 

Another solution consists of computing edge distribu- 
tions of left and right semi-infinite arrays. The semi- 
infinite array solution is obtained rapidly by replacing 
the infinite-by-infinite array periodic Green’s &nc- 
tion by the Green’s function related to a semi-infinity 
of identical electric dipoles having the proper linear 
phase progression. Techniques for the fast computa- 
tion of this Green’s function can be found in [7],[5], 
where the technique described in the latter reference 
has been used here. 

It is important to realize that this so-called semi- 
infinite array solution is not entirely physical. Indeed, 
given the particular definition of the Green’s function 
used in that case, the currents on successive antennas 
are forced to be periodic (with the proper phase shift). 
When the antennas are very large in the y direction, 
this periodicity assumption is not good, even in the 
purpose of obtaining typical edge distributions. This 
becomes obvious when the antennas are connected to 
each other, as it is typically the case for tapered slot 
antenna arrays [l]. In that case, the edge antennas. 
clearly present different current pattems, compared to 
the next antennas. 

This problem can be overcome by solving explicitly 
the MOM equation system for the two first antennas, 
and by assuming that the currents are the same on an- 
tennas 2, 3, ... to infinity. In this case, the MOM equa- 
tion system can be written as follows: 

where 11 and I2 are vectors containing the current 
coefficients on antennas 1 and 2, and VI and V2 
are the corresponding excitation vectors. 2 1 1  and 
2 2 1  are portions of the finite-by-infinite array MOM 
impedance matrix, related to basis functions located 
on antenna 1, and testing functions located on anten- 
nas 1 and 2, respectively. Zf2 and Z& are similar ma- 
trices for basis functions located on antenna 2, with 
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however a major difference in the Green’s function, 
which now corresponds to the semi-infinite array case. 

to the (approximately known) currents on the other an- 
tennas. In this case, the number of operations per it- 

This reduces the number of unknowns per antenna to 
six, corresponding to the coefficients related to six 
pre-computed current distributions. Hence, the total 
number of unknowns is 6 n,, while the number of 
equations is n, nb. Therefore, the system of equations 
is solved in the least squares sense. If the equation sys- 

eration is multiplied by four, but cases of divergence 
become extremely rare,- and the convergence rate is 
generally much better. Consequently, a few sweeps 
across the array are sufficient to achieve a accu- 
racy, which is certainly sufficient, in view of the accu- 
racy to be expected from the MOM approach itself. 

tem can be written as-A z = b,  the new system to be 
solved reads AH A z = AH b, where the ( H )  super- 
script stands for conjugate transposed. In this case, the 
most time consuming step consists of the computation 
of the A~ A matrix, where the number of elementary 
operations increases as n; nb. Compared to the ex- 

this ,corresponds to a time saving proportional to nt .  

RESULTS 

In the following, results are shown for wide plate 
dipoles, with dimensions of 3 x 12 units, contained 

delta gap source of width 1 and the currents are mod- 
eled by 89 basis functions with triangular basis. 

plicit inversion ofthe whole.MoM impedance matrix, in the y-z plane (Figure l). The antennas are fed by a 

Iterative refinement 

The technique described above provides accuracies of 
the order of one percent. This is sufficient for most 
applications. However, in some cases, the error may 
be larger, and the solution can be refined iteratively. 
The simplest technique probably consists of solving 
explicitly for the currents on a given antenna by con- 
sidering the approximate currents on the other anten- 
nas as an extemal excitation. The dimension of the 
matrix to be inverted is then nb, so that the related 
computation time is limited. This can be done suc- 
cessively for all antennas, till a satisfactory accuracy 
is achieved. 

This is equivalent to applying a stationary group- 
iterative technique to solve the MOM equations system 
[8]. It is interesting to notice that the matrix to be in- 
verted at each step is always the same. Hence, this op- 
eration can be performed once and for all before the 
iterations are started. The most time consuming oper- 
ation consists of the estimation of the equivalent exci- 
tation due to the currents on the other antennas. If the 
procedure is swept once across the array, the number 
of operations is proportional to n: ng . Compared to an 
explicit inversion, this corresponds to a time saving of 
the order n, nb. 

The convergence of this stationary procedure cannot 
be guaranteed, and many sweeps may be necessary 
before the desired accuracy is achieved. The conver- 
gence is usually greatly enhanced when, at each step, 
the currents are solved explicitly for two successive 
antennas, while the new solution is kept for the first 
of those antennas only. This ensures a certain mini- 
mum distance between the antennas for which the cur- 
rents are to be updated, and the extemal sources, due 

In the first case, the dipoles are oriented along y, and 
the wavelength is 24 units. The element spacings are 
12 units in the i direction and 16 units in the y di- 
rection. The array is scanned at an elevation angle of 
10 degrees with respect to the i axis and an azimuth 
angle of 30 degrees with respect to the i axis. Fig- 
ure 2 shows results obtained for & array containing 
15 elements in the finite array direction. The antenna 
index increases in the +y direction. The horizontal 
lines give the active input impedance for the infinite- 
by-finite array solution. The solution based on six un- 
knowns per antenna (crosses) already provides a suf- 
ficient accuracy, which is of the order of 0.1 percent. 
The impedances obtained based on the periodicity as- 
sumption (dotted line) are not as good, but they follow 
quite well the trend of the finite array effects. 

In the second example, the dipoles are oriented along 
i, and the wavelength is 20 units. The element spac- 
ings are 10 units in the 2 direction and 5 units in the y 
direction. Owing to the orientation of the dipoles, this 
array does not radiate in the i direction, hence results 
will be shown for scan angles far enough from normal, 
i.e. an elevation angle of 30 degrees and an azimuth 
angle of 60 degrees. Results are shown in Figure 3. 
In this case, the solution based on 6 unknowns per an- 
tenna still provides a very good accuracy, while the pe- 
riodicity assumption yields results that do not exhibit 
the same trend at all. 

The two stars at each end of the arrays stand for the so- 
lution obtained for semijinfinite arrays. They already 
give a good idea of the deviations from the infinite ar- 
ray solutions for the edge antennas. 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 1, 2009 at 06:23 from IEEE Xplore.  Restrictions apply. 



301 

e = io'; 0 = 30'; a =iz; b 4 6 ;  A = 24 

I 
x -15' J 

0 2 4 6 8 10 12 14 16 
Antenna index 

Figure 2 - Active input impedances in a finite-by-infinite 
array of wide plate dipoles oriented along the finite ar- 
ray direction. Circles: explicit solution; crosses: with 
six unknowns per antenna; dots: based on periodiciiy 
assumption; solid line: infinite-by-infinite array solu- 
tion. 
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Figure 3 - Active input impedances in a finite-by-infinite 
array of wide plate dipoles perpendicular to the array 
plane. 

First attempts have been made with Vivaldi antennas. 
This case presents the additional difficulty that the an- 
tennas are connected to each other, so that currents can 
flow across the array. Tests were performed with an- 
tennas loaded with a resistance equal to the real part 
of the infinite array solution for broadside scan. In 
this case, the solution with six unknowns per antenna 
yields an accuracy of the order of a few percent, and 
an iterative refinement may be necessary. Further re- 
search is being carried out to define a set of standard 
current distributions that better matches the particular 

geometry of the Vivaldi antennas. 

CONCLUSION 

Truncation effects are studied in arrays made of metal- 
lic plates perpendicular to the array plane. Given 
that classical approximations cannot be used, finite- 
by-infinite arrays are studied, the finite array direction 
being in the plane of the plates, where the couplings 
are expected to be the strongest. 

With the help of a specific Green's function, the 
Method of Moments impedance matrix can be com- 
puted rapidly. Its resolution is strongly accelerated by 
exploiting the periodicity ofthe array in the finite array 
direction. First, the number of unknowns is reduced 
by considering the currents on a given antenna as a lin- 
ear combination of six typical current distributions, re- 
sulting fiom infinite and semi-infinite array solutions. 
Next, the solution is refined by a stationary iteration 
technique, where the currents are updated for each an- 
tenna successively, by solving the problem explicitly 
for some neighborhood around that antenna. 

Compared to a blind resolution of the MOM equations 
system, large time savings are achieved. For example 
when the number of basis functions per antenna is of 
the same order as the number of antennas (na N n, E 

n), the times saving is proportional to n2. 
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