

Configuration management for models : generic methods for
model comparison and model co-evolution
Citation for published version (APA):
Protic, Z. (2011). Configuration management for models : generic methods for model comparison and model co-
evolution. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR716407

DOI:
10.6100/IR716407

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR716407
https://doi.org/10.6100/IR716407
https://research.tue.nl/en/publications/b0837319-059f-4f04-8c39-21f902f0d620

Configuration management for models:

Generic methods for model comparison

and model co-evolution

Z. Protić

This work has been carried out as part of the FALCON project under the respon-
sibility of the Embedded Systems Institute with Vanderlande Industries as the
industrial partner. This project is partially supported by the Netherlands Min-
istry of Economic Affairs under the Embedded Systems Institute (BSIK03021)
program.

The work in this thesis has been carried out under the aus-
pices of the research school IPA (Institute for Programming
research and Algorithmics).

IPA Dissertation Series 2011-12

A catalogue record is available from the Eindhoven University of Technology
Library ISBN: 978-90-386-2650-5

Reproduction: Universiteitsdrukkerij Technische Universiteit Eindhoven

c© Copyright 2011, Z. Protić
All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechan-
ical, photocopying, recording or otherwise, without the prior written permission
from the copyright owner.

Configuration management for models:

Generic methods for model comparison

and model co-evolution

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen

op maandag 3 oktober 2011 om 14.00 uur

door

Protić Zvezdan
geboren te Novi Sad, Servië

Dit proefschrift is goedgekeurd door de promotor:

prof.dr. M.G.J. van den Brand

Copromotor:
dr.ir. T. Verhoeff

Preface

One thing only I know, and that is that I know nothing.

Socrates (469 BC–399 BC)

Searching for the truth has been a privilege of mankind since the dawn of history.
However, the truth has proven to be elusive, and not even the greatest minds of
mankind could say that they knew the truth. Quite contrary, most of the philoso-
phers will agree that the more one knows about the truth, the more questions
about the truth one has. This situation was reflected in science— we still do not
know the truth, but each new discovery brings us closer to the truth, and also
raises new questions about the truth.

In this dissertation I present the results of my search for the truth. However,
while the presented results answer selected research questions as truthfully as
possible, as a result of this research many more questions are raised, that are to
be answered by those who follow in my footsteps.

I would like to thank Mark van dan Brand, and the Falcon interview team, for
giving me the opportunity to work on the research presented in this dissertation.
I would also like to thank Marcel van Amstel for his unending support, both in
terms of research related to the Falcon project, and in terms of adapting to the
Dutch society. Next, I would like to thank my second supervisor, Tom Verhoeff,

v

vi PREFACE

for the fruitful philosophical discussions, which taught me to slow down my
pace, and reflect on my work more. Moreover, I would like to thank both Mark
and Tom for their guidance in improving my writing and communication skills.
Furthermore, I would like to thank the reading committee – Gerti Kappel, Koos
Rooda, and René Krikhaar – for reading and assessing this dissertation. I would
also like to thank Luc, Jeroen, Arjan, Yanja, and Loek, and the Falcon team
members, for the many hours of useful discussions. Furthermore, I would like to
thank Zhare, Dragan and Jasen for accepting me as a friend since my first days in
the Netherlands, and also to Natasha, Meri and Biba for being such good friends
during these four years. Finally, I would like to thank my wife Sonja - without
her ability to make me focus this dissertation would not have been written.

Summary

It is an undeniable fact that software plays an important role in our lives. We
use the software to play our music, to check our e-mail, or even to help us to
drive our car. Thus, the quality of software directly influences the quality of
our lives. However, the traditional Software Engineering paradigm is not able to
cope with the increasing demands in quantity and quality of produced software.
Thus, a new paradigm of Model Driven Software Engineering (MDSE) is quickly
gaining ground.

MDSE promises to solve some of the problems of traditional Software Engi-
neering (SE) by raising the level of abstraction. Thus, MDSE proposes the use
of models and model transformations, instead of textual program files used in
traditional SE, as means of producing software. The models are usually graph-
based, and are built by using graphical notations - i.e. the models are represented
diagrammatically. The advantages of using graphical models over text files are
numerous, for example it is usually easier to deduce the relations between dif-
ferent model elements in their diagrammatic form, thus reducing the possibility
of defects during the production of the software. Furthermore, formal model
transformations can be used to produce different kinds of artifacts from models
in all stages of software production. For example, artifacts that can be used as
input for model checkers or simulation tools can be produced. This enables the
checking or simulation of software products in the early phases of development,

vii

viii SUMMARY

which further reduces the probability of defects in the final software product.

However, methods and techniques to support MDSE are still not mature enough.
In particular methods and techniques for model configuration management
(MCM) are still in development, and no generic MCM system exists. In this
dissertation, I describe my research which was focused on developing methods
and techniques to support generic model configuration management. In partic-
ular, during my research, I focused on developing methods and techniques for
supporting model evolution and model co-evolution. Described methods and
techniques are generic and are suitable for a state-based approach to model con-
figuration management.

In order to support the model evolution, I developed methods for the represen-
tation, calculation, and visualization of state-based model differences. Unlike
in previously published research, where these three aspects of model differences
are dealt with in separation, in my research all these three aspects are integrated.
Thus, the result of model differences calculation algorithm is in the format which
is described by my research on model differences representation. The same rep-
resentation format of model differences is used as a basis of my approach to
differences visualization. It is important to notice that the developed representa-
tion format for model differences is metamodel independent, and thus is generic,
i.e., it can be used to represent differences between all graph-based models.

Model co-evolution is a term that describes the problem of adapting models
when their metamodels evolve. My solution to this problem has three steps.
In the first step a special metamodel is introduced (a metamodel for metamod-
els - MMfMM). Unlike in traditional approaches, where metamodels are rep-
resented as instances of a metametamodel, in my approach the metamodels are
represented by models which are instances of the MMfMM. In the second step,
since metamodels are represented by models, previously defined methods and
techniques for model evolution are reused to represent and calculate the meta-
model differences. In the final step I define an algorithm that uses the calculated
metamodel differences to adapt models conforming to the evolved metamodel.
In order to validate my approaches to model evolution and model co-evolution,
I have developed a tool for model evolution, and a tool for model co-evolution.
These tools, together with small case-studies, are also described.

Contents

Preface v

Summary vii

1 Introduction 1

1.1 MDSE: Models, Metamodels and Metametamodels 4
1.1.1 MOF . 5
1.1.2 Ecore . 8

1.2 MDSE: Model transformations 9

1.3 MDSE: Tool support . 11

1.4 Configuration management . 13
1.4.1 Repositories and versions 15
1.4.2 Model configuration management 19

1.5 Model differences and model co-evolution 20
1.5.1 Model differences . 21
1.5.2 Model co-evolution . 28

1.6 Problem statement . 29

ix

x CONTENTS

1.7 Dissertation outline . 31

2 An Alternative Modeling Framework 33

2.1 An instantiation problem in traditional metametamodels 34

2.2 New modeling framework . 36
2.2.1 New metametamodel 36
2.2.2 Specifying Metamodels 38
2.2.3 Specifying Models . 39
2.2.4 Differences and similarities between EMMM and Ecore 42

2.3 A Metamodel for the definition of differences between models . 43
2.3.1 Model Differences Example 46

2.4 Conclusions and Future work 47

3 Model Differences Representation and Calculation 51

3.1 Introduction . 52

3.2 Representation of Model Differences 56
3.2.1 Enhanced Metametamodel used to describe fine-grained

differences metamodels - EMMM 58
3.2.2 Differences metamodel 62

3.3 Calculation of Differences . 64
3.3.1 Preliminaries: Tree-comparison algorithms 67
3.3.2 Preliminaries: Assumptions and Definitions 67
3.3.3 Model Comparison Algorithm 69

3.4 Conclusions . 76

4 Assessing the Quality of Tools for Model Comparison 77

4.1 Introduction . 78
4.1.1 Comparing Models . 78
4.1.2 Contributions . 79

4.2 Method for assessing the quality of model comparison tools . . . 81

4.3 Data sets for assessment experiments 84
4.3.1 Manually defined data set 85
4.3.2 Generated data set . 85

4.4 A comparative study of EMFCompare and RCVDiff 92
4.4.1 RCVDiff . 92

CONTENTS xi

4.4.2 EMFCompare . 93
4.4.3 Results . 94
4.4.4 Threats to validity . 96
4.4.5 Discussion . 97

4.5 Conclusions and Future Work 98

5 Model Differences Visualization 101

5.1 Introduction . 102

5.2 Model Differences as Information Content 103

5.3 Preliminaries . 105
5.3.1 Representation of model differences 106
5.3.2 Calculation of model differences 108

5.4 Differences Visualization . 109
5.4.1 Metamodel to dot mapping 114
5.4.2 Using the defined mapping to visualize the differences . 115

5.5 Tool . 116

5.6 Conclusions . 119
5.6.1 Discussion . 119
5.6.2 Future Work . 119

6 A Generic Solution for Syntax-driven Model Co-evolution 125

6.1 Introduction . 126

6.2 Preliminaries . 130
6.2.1 Domain-Specific Metametamodel 131
6.2.2 Model differences . 131

6.3 Metamodel Evolution . 132
6.3.1 Metamodel for metamodels - MMfMM 134
6.3.2 Metamodel Differences 135

6.4 Model Co-evolution . 135
6.4.1 Model Differences Calculation Algorithm 136
6.4.2 Validation . 137

6.5 Related work . 139

6.6 Conclusions . 140

xii CONTENTS

7 Conclusions 143

7.1 Contributions . 143
7.1.1 Solution to the model comparison problem 143
7.1.2 Solution to the model differences visualization problem 145
7.1.3 Solution to the model co-evolution problem 145

7.2 An overview of the related work 146
7.2.1 Model comparison . 147
7.2.2 Metamodel and model co-evolution 158

7.3 Future work . 163

7.4 Final remarks . 165

References 183

A Multidimensional Search 185

B Types of mapping rules and example mappings 189

B.1 Rule type 1 . 190

B.2 Rule type 2 . 191

B.3 Rule type 3 . 193

B.4 Rule type 4 . 194

B.5 Rule type 5 . 194

B.6 Examples . 195
B.6.1 Example 1 . 195
B.6.2 Example 2 . 196
B.6.3 Example 3 . 197

C Possible metamodel differences 201

Curriculum Vitae 205

Nederlandse samenvatting 207

List of Figures

1.1 The relation between models, metamodels, and metametamodels
and programs, programming languages, and metalanguages . . . 5

1.2 MetaObject Facility framework schematic (based on Figure 7.8
in [32]) . 6

1.3 MOF 2 model architecture . 7

1.4 Ecore component architecture 9

1.5 An ArgoUML screenshot . 12

1.6 Example versioning process 17

1.7 Example merging process . 18

1.8 State-based model differences metamodel for UML models . . . 23

1.9 Change-based model differences metamodel for Ecore models . 24

xiii

xiv LIST OF FIGURES

2.1 An example of the instantiation problem in layered modeling
frameworks . 35

2.2 Enhanced metametamodel . 37

2.3 Example metamodel . 40

2.4 Example model . 41

2.5 Model differences metamodel 45

2.6 A new version of the example model depicted in Figure 2.4 . . . 47

2.7 Example differences model . 49

3.1 Schematic of an approach to obtain differences metamodel from
a metamodel presented in [50] 57

3.2 UML differences metamodel as defined in [50] 58

3.3 New organization of the layered architecture of metamodels and
models . 59

3.4 Enhanced metametamodel - EMMM 59

3.5 Example metamodel and model 61

3.6 The position of the differences metamodel the new architecture . 63

3.7 Differences metamodel . 64

3.8 Calculation metamodel used in our approach to calculating dif-
ferences . 66

4.1 Metamodel of the configurations used by metamodel generator . 86

4.2 Metamodel of the configurations used by model generator 88

4.3 Metamodel of the configurations used by model mutator 89

LIST OF FIGURES xv

4.4 Metamodel of the operation based differences produced by model
mutator . 91

4.5 RCVDiff differences metamodel 93

4.6 RCVDiff configuration metamodel 94

4.7 EMFCompare differences metamodel 100

5.1 Metametamodel that models used in the calculation of differ-
ences conform to . 106

5.2 Differences metamodel . 107

5.3 Calculation metamodel . 108

5.4 An INHERITANCE SPECIFICATION view and the metamodel-
specific representation of the same example model 113

5.5 Example of combination of polymetric views and metamodel-
specific visualization approaches 114

5.6 Simplified dot metamodel . 115

5.7 Example differences visualization 118

5.8 Initial view on the initial model, with superimposed differences . 120

5.9 GLOBAL TREE view . 121

5.10 GLOBAL CHECKER view . 122

5.11 Metamodel view on the initial model, with superimposed differ-
ences . 123

6.1 The schematic of our approach to co-evolution of models 127

6.2 Metametamodel . 132

xvi LIST OF FIGURES

6.3 Differences metamodel . 133

6.4 A metamodel for metamodels - MMfMM 134

6.5 Example metamodel in both the natural and the transformed form 142

7.1 A model and a tree representation of the same model 155

7.2 Classification of schema matching approaches 161

B.1 Attributes representation formats 192

B.2 Extended state-machine metamodel and an example model . . . 197

B.3 Further extended state-machine metamodel and an example model 198

List of Tables

4.1 Measurements results, for a set of manually defined models . . . 95

4.2 Measurements results, for a set of automatically generated models 96

5.1 The defined set of metrics . 111

6.1 Model co-evolution results . 138

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

The pervasiveness of software is undeniable. From small personal gadgets like
mobile phones or portable music players, via home appliances like television
sets or DVD players, to large industrial machines like package handling systems
or palletizers, software has found a way into most devices around us. However,
surveys show that traditional software development methodologies are unable to
cope with the size and scope of projects currently in industry [35, 37]. One rea-
son for this is that the transfer of knowledge between different phases of the de-
velopment process is problematic. Design decisions that have been made in one
phase need to be manually interpreted in the next. For example, the detailed lay-
out of a warehouse is given to software engineers who need to develop the soft-
ware for controlling the package handling system in that warehouse. Since the
development teams among which knowledge has to be transferred possibly have
different backgrounds, this may lead to all kinds of misinterpretations, which, in
turn, lead to defects in software.

1

2 CHAPTER 1. INTRODUCTION

There are two reasons for this problem. First, when the development phases in-
volve different formalisms, there can be differences in semantics and expressive
power of those formalisms. Therefore, it may occur that concepts expressed in
one formalism cannot be expressed in the other. In an attempt to bridge these se-
mantic gaps, a slightly different interpretation may have to be chosen for certain
concepts. Second, design decisions tend to be insufficiently documented. For
example, decisions that are considered to be trivial for a development team may
have been omitted from the documentation. In this case, developers in a sub-
sequent step may interpret these “trivialities” in a different way than intended.
Surveys show that these problems result in situations where maintenance of the
software accounts for up to 90% of the total cost of the software [46].

Model-driven software engineering (MDSE) is an emerging software engineer-
ing discipline intended to improve traditional software engineering (SE). MDSE
aims at dealing with increasing software complexity and improving productiv-
ity [80, 103]. This is achieved by providing means to raise the level of abstrac-
tion from the problem domain rather into the solution domain, and to increase
the level of automation in the development process. Raising the level of abstrac-
tion is achieved by employing domain-specific modeling languages (DSMLs).
DSMLs offer, through appropriate notations and abstractions, expressive power
focused on, and usually restricted to, the particular problem domain [117]. Thus,
a DSML enables system modelers to model in terms of the domain concepts
rather than concepts provided by general purpose formalisms, which typically
do not provide the required or correct abstractions. For example, in order to de-
scribe a package handling system, a modeler of such a system would be able to
use a set of concepts such as workstations, conveyors, and storages, instead of
generic concepts such as a UML [98] class. Thus, the set of domain-specific
concepts would allow the modeler to express himself in the most natural way for
that particular domain. Moreover, the concepts used in DSMLs are commonly
expressed by using graphical primitives, which also improves understanding of
the modeled system by the diverse set of stakeholders.

Automating the transition between different development phases is achieved by
using model transformations, they provide a mechanism to automatically gen-
erate (or update) new models from existing models. This facilitates the transfer
of models between the different phases of the software development life-cycle,

CHAPTER 1. INTRODUCTION 3

while ensuring consistency between the models. Moreover, by using model
transformations, models do not have to be interpreted by humans, which, in
combination with the domain-specific abstractions, greatly diminishes the risk
of misinterpretations. Furthermore, since the process is automated, it is quicker
and less error-prone.

Model transformations are also used for automated generation of various artifacts
from models throughout the development process [101]. The resulting artifacts
can be used as a starting point for the application of techniques such as model
checking, model verification or model validation, in all phases of the develop-
ment process, increasing the confidence of system modelers in the correctness of
the final product.

However, the increase in productivity offered by MDSE has its price; unlike
in traditional SE, where any textual editor could be used to create software, in
MDSE, tool support is imperative. There are two main reasons for this.

The first reason is that both models, and model transformations, must be formally
defined and tracked throughout the development process. The formal syntax of
a model is described by using a metamodel, and the formal syntax of a model
transformation is described by using a model transformation language. In tradi-
tional SE, the tracking of developed artifacts is done through software configura-
tion management systems, and in MDSE it is done through model configuration
management systems. However, while the process of configuration management
in traditional SE could be facilitated by using a text-based version control sys-
tem, the metadata, and data, about models and model transformations used in
MDSE are more complex, and ordinary text-based version control systems do
not suffice.

The second reason stems from the fact that models may be defined by using
graphical notations, that are not yet standardized. In particular, for each meta-
model a set of (different) graphical primitives is specified, and these primitives
are used to create models conforming to that metamodel. This is analogous to
the concrete syntax of programming languages in traditional SE. Therefore, in
order to create models conforming to a specific metamodel a dedicated (graphi-
cal) editor for the models conforming to that metamodel must exist.

4 CHAPTER 1. INTRODUCTION

In the rest of this chapter, we first discuss basic ingredients of MDSE: models
and metamodels in Section 1.1, and model transformations in Section 1.2. There-
after, we discuss tools for developing models in Section 1.3, we give a short in-
troduction to the field of software configuration management in Section 1.4, and
we discuss model configuration management in Section 1.4.2. Next, since one
of the main artifacts in model configuration management systems are model dif-
ferences, in Section 1.5.1 we discuss the problem of model comparison and the
problem of representing the difference between models. Moreover, since meta-
models can also change during the design process, in Section 1.5.2 we discuss
the process of adapting models in case their metamodels evolve.

Afterwards, in Section 1.6, we define research questions answered within this
dissertation. Finally, in Section 1.7, we give an outline of the dissertation, and
we relate each research question to chapters in which that particular question has
been answered.

1.1 MDSE: Models, Metamodels and Metameta-

models

As already mentioned, in MDSE models are described by using domain-specific
modeling languages (DSMLs). This is similar to the traditional SE, where a pro-
gram is described by using a programming language. A syntax of a DSML is
described by a metamodel, and it is said that a model is an instance of, or that it
conforms to, a metamodel. Thus, metamodels in MDSE play the role of (context
free) programming language grammars in traditional SE. Furthermore, the syn-
tax of a metamodel is described by using a metametamodel. Thus, the role of
metametamodels is similar to the role that metalanguages (e.g. BNF, EBNF) play
in traditional SE. The relations between models, metamodels and metametamod-
els, and the relations between these concepts and the concepts used in traditional
SE, is depicted schematically in the Figure 1.1.

However, the actual, real-world, modeling frameworks are not fully consistent
with the schema depicted in the Figure 1.1. we will elaborate on this subject in
Chapter 2.

CHAPTER 1. INTRODUCTION 5

metamodel

model

modeled system

metametamodel

UML

Class Diagram

Library

MOF

Java language

Java program

Sorting algorithm

EBNF

programming language

program

algorithm

metalanguage

written-in

modeled-by

described-by

instance-of

instance-of

solved-by

instance-of

instance-of

modeled-by

written-in

described-by

solved-by

SE architecture
SE architecture

exampleMDSE architecture
MDSE architecture

example

high abstraction

low abstraction

Abstraction
level

Figure 1.1: The relation between models, metamodels, and metametamodels and pro-
grams, programming languages, and metalanguages

In the next two sections, we will discuss two traditional, widely used, metameta-
models, we will discuss the means of developing metamodels that are instances
of those two metametamodels, and we will discuss the means of developing mod-
els that are instances of metamodels. The first metametamodel we discuss is a
part of the MetaObject Facility framework, and is called MOF 2 model [20]. The
second metametamodel we discuss is called Ecore [11]. Both metametamod-
els are self-describing, i.e. both metametamodels can be represented by models
conforming to metamodels that are instances of those metametamodels.

1.1.1 MOF

The MetaObject Facility framework was constructed as an answer to the problem
of how to specify a metamodeling framework to support Model-Driven Archi-
tecture (MDA) [19]. MDA is an approach to model-driven software engineering
by the Object Management Group [24]. MDA proposes techniques and methods
for the efficient implementation of MDSE compliant tools and frameworks. Note
that MDA (and, with it, MetaObject Facility framework) is essentially just a set
of guidelines, and does not include tool support. The MetaObject Facility frame-
work follows the traditional metamodeling paradigm, as depicted in Figure 1.21.
In MOF, four levels of abstraction, labeled M0 to M3, are distinguished. Level
M0 is the level of actual, real-world systems. Level M1 contains models, level
M2 contains metamodels, and level M3 contains ”a language for building meta-

1Figure based on Figure 7.8 in [32].

6 CHAPTER 1. INTRODUCTION

Class Instance

Class

Attribute

aGame

+title:String

Game

title="WoW"

:Game

classifier

<<instanceOf>>

<<snapshot>>

<<instanceOf>>

<<instanceOf>> <<instanceOf>> <<instanceOf>>

<<instanceOf>> <<instanceOf>> <<instanceOf>>

M0 (Run-time instances)

M3 (MOF)

M2 (UML)

M1 (User model)

Figure 1.2: MetaObject Facility framework schematic (based on Figure 7.8 in [32])

models” or a metametamodel (this language is called the M3-model or a MOF 2
model). We will refer to the MOF 2 model as MOF in this dissertation.

MOF is based on the concepts found in object-oriented programming paradigm,
and is described by using a subset of the Unified Modeling Language (UML) [98]
graphical concepts. The three parts of MOF are the Core, the Essential MOF
(EMOF) and the Complete MOF (CMOF). The architecture of MOF is depicted
in Figure 1.32.

The Core consists of packages3 that contain constructs that can be used to de-
fine metamodel elements. The two main metamodel element types in MOF are
called Class and Relationship. An instance of a Class is used to model a class of
entities. Each Class instance can have Attributes which are used to specify prop-
erties of a class of entities. Relations between classes of entities are modeled
by connecting Class instances with Relationship instances. Metamodels that are
instances of MOF are represented diagrammatically, by using the UML graphi-
cal notation for classes and relationships. In models that are instances of MOF
metamodels, the instance of a Class instance is called an Object, and Objects are

2Figure adopted from http://www.omg.org/spec/MOF/2.4/Beta2/PDF/.
3A package is a container-type entity which allows grouping of related entities.

CHAPTER 1. INTRODUCTION 7

Figure 1.3: MOF 2 model architecture

connected by instances of Relationship instances.

EMOF contains extra packages for associating identifiers with metamodel ele-
ments, for extending the metamodel elements with new, unanticipated informa-
tion, and for providing reflection capabilities to metamodel elements. CMOF

8 CHAPTER 1. INTRODUCTION

extends EMOF with further reflection capabilities, as well as extension capabili-
ties, which are not important for this dissertation, and thus will not be discussed
in detail [21].

1.1.2 Ecore

Ecore is a metametamodel which is based on the KM3 [78] metametamodel.
In essence, Ecore is a concise variant of MOF. Ecore is a part of the Java-based
Eclipse framework [10], and uses Java in its description (in particular for describ-
ing data types), just like MOF uses parts of UML in its description. Furthermore,
like MOF, Ecore is described by using a UML-like graphical notation. The main
components of Ecore and the relations between them are depicted in Figure 1.4
(taken from [11]).

The main components of Ecore are, similarly to MOF, classes and relations (the
latter are called references in Ecore), but also packages, operations and attributes.
However, unlike MOF, which provides only a set of guidelines for the definition
of modeling and metamodeling tools, Ecore is geared towards implementation.
In particular, Ecore is implemented as a set of Java classes. This set of classes
is incorporated in a framework which provides methods for creating and editing
Ecore metamodels and models. The Ecore metamodels and models are thus
represented as Java classes, but can be serialized, and persisted in files. Ecore
metamodels are instances of Ecore, and Ecore models are instances of those
metamodels.

Although the two discussed metametamodels differ in many aspects, both of
them can be considered as equivalents of general purpose languages in the mod-
eling world— i.e. general purpose metametamodels. This is the case because
they both provide constructs (e.g. hierarchies, modules, inheritance, data types,
etc) for dealing with all kinds of possible situations one might encounter while
modeling.

CHAPTER 1. INTRODUCTION 9

Figure 1.4: Ecore component architecture

1.2 MDSE: Model transformations

In MDSE, model transformations are used to transform one model (source model)
into another (target model). The models may conform to the same, or different
metamodels. The use of automatic transformations is recommended, but manual
transformations are also possible.

10 CHAPTER 1. INTRODUCTION

There are many ways to classify model transformations [54, 94]. One possible
classification distinguishes between horizontal and vertical model transforma-
tions [94]. Horizontal model transformations are used to transform a model into
another model having the same metamodel. These transformations can be used,
for example, for refactoring. Vertical model transformations are used to trans-
form a model into another model having a different metamodel. These transfor-
mations have two main usages. The first usage is in refining a model (if the trans-
formations transform a more abstract model into a more concrete model), or in
abstracting a model (if the transformations transform a more concrete model into
a more abstract model). Refining is used to improve the design of a model. Ab-
stracting is used to provide better insight into the parts, or the relations between
the parts, of a model. Another main usage of vertical model transformations is
in transforming a design model into, for example, a verification, validation, or a
simulation model. In this case, the model is transformed into another model that
is semantically loosely related to the original model (while in cause of refine-
ment or abstraction, both the initial and the transformed model are semantically
strongly related). However, this other model can be used to check some proper-
ties of the original model which are hard to check in the original form. The main
challenge in specifying a vertical model transformation is that the syntax and the
semantics of metamodels of the source and the target model differ. This differ-
ence opens a syntactic and a semantic gap that needs to be closed by a model
transformation. However, while it is relatively easy to overcome the syntactic
gap, closing of the semantic gap is not an easy task as shown in [109].

In another classification, the categories of imperative or declarative transforma-
tions are distinguishable [94]. Imperative transformations are specified in some
imperative language. An example of an imperative transformation would be a
Java program for transforming Ecore models. Declarative transformations are
specified by a set of declarative statements (rules). A transformation engine reads
the defined rules and applies them to a source model, producing a target model.
An example of a declarative transformation would be a transformation for trans-
forming Ecore models specified in Atlas Transformation Language (ATL) [1],
QVTr language [25], or VIATRA2 [33].

CHAPTER 1. INTRODUCTION 11

1.3 MDSE: Tool support

Unlike in traditional programming languages, where a text editor was sufficient
to start working on a program, in MDSE specialized tools are essential. As al-
ready mentioned, one of the main reasons for this is that models are created by
using dedicated graphical symbols, and thus cannot be edited by using a textual
editor. Another reason is that in the MDSE paradigm models are the main de-
sign artifacts, and MDSE promotes model transformations as a preferred way
of transforming models between steps of the development process. Thus, mod-
els and model transformations should be formally managed, which requires the
existence of a model configuration management system.

In the rest of this section we will discuss three mature open-source modeling
tools. Although there are many commercial modeling tools (Rational Rhap-
sody [26], Rational Rose [27], Enterprise Architect [12], etc.), we focused on
open-source tools because they are free, and it is possible to get insight into the
precise details of their design and functionality, which is important in order to
discuss them at the appropriate level of details. However, there does not exist an
open-source model configuration management system (MCMS). Thus, we will
not discuss any MCMS. Nevertheless, in Section 1.4 we will describe the major
requirements that any MCMS is expected to fulfill.

The three modeling tools that we discuss differ in scope and generality. The first
tool is ArgoUML, which can be used to create and edit UML models. Thus, the
scope of ArgoUML is quite limited, since it is based on one particular meta-
model—UML. ArgoUML supports the creation of all nine types of diagrams
defined in version 1.4 of the UML. Thus, the generality of ArgoUML is also
quite limited. However this is to be expected, since ArgoUML supports only one
metamodel. A screenshot of ArgoUML is depicted in Figure 1.5. ArgoUML is a
perfect example of an elementary MDSE tool: it provides a hierarchical tree-like
overview of the model in the left part of the main window, the center part of the
main window is reserved for a diagram editor, and in the bottom part of the main
window the properties of the model element selected in the edited diagram can
be inspected and changed.

The second tool that we discuss is a Java-based Eclipse framework [10], and it

12 CHAPTER 1. INTRODUCTION

Figure 1.5: An ArgoUML screenshot

can be used to create and edit Ecore-based metamodels and models. Eclipse has
a much larger scope than ArgoUML, since it provides not only model develop-
ment facilities, but also metamodel development facilities. Actually the scope of
Eclipse is limited only by the capabilities of the Ecore metametamodel. Eclipse
is also more generic than ArgoUML, which is also to be expected since Eclipse
is not tied to a specific metamodel. But, this generality comes with a price:
the concrete syntax (i.e. graphical primitives) must be defined for each meta-
model by using a Graphical Editing Framework (GEF). This is also something
to expect since the models for warehouses, petri nets, or class diagrams use dif-
ferent graphical primitives. However, efficient use of the GEF requires extensive
knowledge of the Java programming language, as well as extensive knowledge
of the internal functioning of the Eclipse framework itself, which limits the gen-
erality of Eclipse.

CHAPTER 1. INTRODUCTION 13

The third tool that we discuss is the Generic Modeling Environment (GME) [17],
which is truly generic. The scope of GME is the same as Eclipse—GME pro-
vides facilities for developing metamodels as well as models. However, unlike
Eclipse, in order to use GME (which is also created by using the Java program-
ming language), metamodel designers do not have to know Java. As in Eclipse,
the concrete syntax of models must be defined, but it is defined by using a special
aspect architecture provided by GME. The aspects can be interpreted as different
types of diagrams for models conforming to a specific metamodel. However, al-
though much more concise, and easier to use than the GEF, the definition of the
concrete syntax of models is still a tedious task. Thus, it is my opinion that both
Eclipse and GME, or any other future generic modeling environment, require a
full-fledged visual meta-language.

In the next section we discuss an important aspect of engineering in general,
namely the process of configuration management.

1.4 Configuration management

Configuration management (CM) is an important part of any production pro-
cess [44, 53, 81, 86]. CM includes identifying, capturing, organizing and dis-
seminating all important constituents of the production process. For example,
CM in a car factory would include capturing, organizing, and disseminating in-
formation on car design documents, car parts availability, car production status,
etc.

In this dissertation, we focus on software configuration management (SCM).
SCM is a subfield of configuration management, specialized for the software
production process. In particular, SCM deals with identifying, capturing, orga-
nizing, and disseminating files constituting a software project. SCM (also called
Revision Control) includes some activities used in general CM, like configura-
tion identification, auditing, status accounting, and control, but it also introduces
several new activities. In order to discuss these activities in detail, the concept
of a revision must be explained. However, before defining a revision, it must
be mentioned that in all SCMs it is possible to manage multiple versions of a
software artifact (i.e. a file). Revision is defined as ”a new version of an item that

14 CHAPTER 1. INTRODUCTION

is intended to replace the old version of the item” [29]. Each revision of an item
is assigned a unique identifier (revision identifier). A closely related term to the
term revision is a term variant. However, while revisions are used to describe
a chronological evolution of an artifact, the term variant describes the parallel
evolution of the same artifact.

The basic SCM activities are [29]:

• Configuration identification in the context of a SCM concerns identifying
and gathering the correct set of artifacts for a certain version of a software
product. The artifacts put under version control are called configuration
items in the context of a SCM system. A revision of a software product
is an identifier assigned to a software product, that enables to track the
evolution of a software product. For example, a software product identified
with revision 1 was released before the (same) software product identified
with revision 2.

• Configuration status accounting concerns recording and reporting the base-
line of a configuration item in a configuration. As defined in [29]: ”A (soft-
ware) baseline is a set of software items formally designated and fixed at
a specific time during the software life cycle”.

• Configuration auditing concerns checking that the functional and perfor-
mance requirements of an entire configuration, or of a specific configura-
tion item, are satisfied.

• Configuration control concerns with a set of rules and guidelines for ap-
proving the change to a configuration item in the baseline.

Due to the specific properties of software (software exists only in a digital form),
SCM introduces some specific activities like release management and defect
tracking. Release management is related to gathering and organizing the in-
formation on build environments, tools, and scripts, which are required for pro-
ducing a specific release of a software system. Moreover, it concerns setting the
criteria for deciding when the status of a versioned software system may change
(e.g., a status may change from in development to released). Defect tracking is
related to tracking defects in the software. This activity allows the developers
to link a software defect to a certain configuration item (or items), such that the

CHAPTER 1. INTRODUCTION 15

defect can be eliminated in a future version of the software.

It is important to mention that a successful application of SCM to a software
project depends on the SCM tools. However, the complexity of an employed tool
should be correlated with the complexity of a project and the size of a company—
setting up a SCM and requiring a strict adherence to SCM rules in an overly
complex tool creates a (unneeded) burden for small projects or small teams.

1.4.1 Repositories and versions

In a project which is not managed by a SCM system, the project files are stored
in a long term memory, such as hard disk. In a SCM managed project, these files
are stored at special locations called repositories. Repositories are also long term
memory, usually stored on hard disks, and the structure of repositories reflects
the structure of a file system. However, repositories have special properties re-
lated to storing and retrieving files. In particular, repositories are capable of
storing multiple versions of the same file, and once stored, permanent deletion
of the file is not allowed.

Based on the type of a repository, there are two types of SCM systems. One
type are the client-server systems, having a central repository. This repository is
located on a computer designated as a server, and clients access this repository
to obtain and update stored configuration items. Example systems of this type
are SVN [28] and CVS [6]. Another type of SCM systems are the distributed
systems, having a distributed repository. Thus, in distributed SCM systems, each
client maintains its local repository, and merging algorithms are used to keep all
local repositories synchronized. Example systems of this type are Mercurial [22]
and GIT [16].

Since each SCM system introduces its own terminology, and introduces terms
not used by other SCM systems, we will explain the concept of versions by using
the terminology specified by a client-server SCM system called SVN [28]. In the
terminology of SVN, the configuration items are files residing in a hierarchical
(directory-like) structure. Each file has an associated revision identifier. The
server repository also contains all older versions of each file, and it is possible

16 CHAPTER 1. INTRODUCTION

to access those versions. Sets of versioned files are organized into branches.
There is always one main branch, which is accessed by default by clients. Files
in the main branch can be tagged to create a logical group. Tags are a common
mechanism to denote different releases of a software product.

The set of (latest versions of) all files in the main branch is called a baseline.
Notice that the baseline revision identifiers can differ for different files. The
copies of all files from a particular server baseline at a client will be called a client
workspace. Clients obtain (copies of) files from a server by invoking initially the
CHECKOUT operation, and subsequently the UPDATE operation.

Changing one or more files in the branch (also called patching) assigns new
revision identifiers to those files. All files that have been changed together in one
patch, receive the same revision identifier. The patching is initiated by clients,
by invoking the COMMIT operation. A successful COMMIT operation transfers
the contents of selected files in the client workspace to the repository, adding
new versions of the changed files on server.

The graphical representation of an example versioning process is depicted in Fig-
ure 1.6. In the example versioning process, initially two files a.txt and b.txt are
put under version control. Later, file a.txt is changed, and gets a new revision
identifier. The new configuration is tagged as V1.0. Next, a new branch is cre-
ated, and a new file c.txt is added to the new branch. Thereafter, the new branch
is merged into the main branch, inserting the file c.txt into the main branch. The
final configuration is tagged as V2.0, and it is a new baseline.

One of the requirements for a SCM system is the efficient storage of files. This
is achieved by not storing all the versions of the evolved file, but by storing only
the initial version, and the differences between subsequent versions (sometimes
the latest version and the difference between the latest and the previous versions
are stored). This works because the combined size of an old version of a file
and the difference between old and the new version usually is smaller that the
combined size of an old and a new version of that file (though with really small
files, or with packed files, it might be the case that combined size of the old file
and the differences is larger than the combined size of the old and the new file).

There are two main approaches for obtaining the difference between two files. In

CHAPTER 1. INTRODUCTION 17

NEW BRANCH

c.txt
revision:4

a.txt
revision:3

MERGE

b.txt
revision:3

a.txt
revision:3

MAIN BRANCH

b.txtb.txt
revision:1 revision:3

a.txt
revision:1

a.txt
revision:3

changeb.txt
revision:1

a.txt
revision:2

add

change

b.txt
revision:3

change

TAG:
V2.0

c.txt
revision:4

b.txt
revision:3

a.txt
revision:3

CREATE
BRANCH

INITIAL
STATE

add

BASELINE

TAG:
V1.0

Figure 1.6: Example versioning process

the first approach, which is called state-based, the difference is calculated by a
special differences calculation algorithm. This calculation algorithm receives as
arguments an initial and a target file, and returns their difference. The returned
difference is a set of atomic differences that can be used together with an old file
as arguments of an inverse calculation algorithm to obtain the new file (i.e. this
set can be used as a patch). In the second approach, which is called operation-
based, the difference consists of a set of operations supplied by editing tools.
This set of operations can be used to transform an initial file into a target file.

As an example consider the difference between numbers 63 and 65. A state-
based differences calculation algorithm would return the difference as, for ex-
ample, 2→ 5, noting that the second character of the first number should be
replaced by a character 5. An operation-based difference would be, for example,
+2, denoting that, in order to obtain the second number, one should add 2 to the
first number.

In the example versioning process, the concept of merging branches was men-
tioned. This concept is very important and warrants more explanation. Because
the concept of merging is intertwined with concepts of optimistic and pessimistic

18 CHAPTER 1. INTRODUCTION

approaches to version control, we will discuss these concepts in detail in the next
paragraph.

Optimistic and pessimistic version control

The optimistic and pessimistic approach to version control are related to the pos-
sibility of parallel development of a software system. In the pessimistic approach
to version control, the baseline is locked by one designer. This means that only
the designer that has locked the baseline can change the baseline, and no one else
is permitted to change it until the designer that holds the lock releases the lock.
Thus, in the pessimistic approach, only one developer at a time can effectively
work on the system. In the optimistic approach the baseline is not locked, and
anyone can change it at any time. Thus, in this case, multiple developers can
work on the system at the same time.

In both approaches, there is a possible problem when combining the contents of
the main branch and the contents of a client workspace. This problem, referred
to as the merge problem, occurs when two clients change the same versioned ar-
tifact, in a different way. An illustration of this problem is depicted in Figure 1.7.

USER B

a.txt
revision:3

MERGE

b.txt

revision:5

a.txt
revision:4

MAIN BRANCH

b.txtb.txt
revision:1 revision:3

a.txt
revision:1

a.txt
revision:3

changeb.txt
revision:1

a.txt
revision:2

change
b.txt

revision:3

change

d.txt

b.txt
revision:3b

a.txt
revision:3b

INITIAL
STATE

add

BASELINE

TAG:
V1.0

USER A

a.txt
revision:3

b.txt
revision:3

b.txt
revision:3a

a.txt
revision:3a

change

change

change

change

?

d.txt

revision:4

MERGE

Figure 1.7: Example merging process

CHAPTER 1. INTRODUCTION 19

In the example process, designers A and B initially UPDATE all files from the
main branch to their local workspaces. Next, designer A changes files a.txt and
b.txt and COMMITS the contents of his workspace. In this case, committing
consists of replacing the configuration items in the main branch with the related
configuration items from the client workspace. The differences between configu-
ration items in this case are called “2-way” differences. However, if the designer
B changes the same files with different changes, and tries to commit his changes
after the designer A has committed his files, then the changes that the designer
A has made will be overwritten unless they are exactly the same as the changes
made by designer B. This problem must be solved by using merge algorithms,
to ensure that the changes introduced by both designers A and B are consistently
incorporated in the final baseline configuration item. The differences between
configuration items in this case are called “3-way” differences.

Notice that the problem of merging exists in both the pessimistic and optimistic
approach to version control. The only difference is that in pessimistic approach
to version control the designer who has the lock can safely copy the contents
of his local workspace to the main branch, but all the other designers that are
working on the same model must employ merging algorithms (after they obtain
the repository lock).

1.4.2 Model configuration management

In this section, we will discuss model configuration management (MCM), and
the requirements that MCM systems should fulfill.

MCM is a specialization of SCM, with models as the configuration items. The
differences between MCM and SCM stem from the fact that MCM should be
used in model driven software engineering, where the formal requirements on
versioned artifacts are much stricter than in SCM. For example, all versioned
models must have an associated metamodel, which is not the case with all ver-
sioned text files. Furthermore, metamodels change during the development pro-
cess, thus metamodels should also be versioned, and included in the configura-
tions. This can be considered as an extension of the release management activity
in SCM, and will be called metamodel management. Also, since models change

20 CHAPTER 1. INTRODUCTION

by using formal model transformations, these model transformations must also
be managed by a MCM system. The part of the MCM that manages model
transformations will be called model transformation management. Next, since
models, and model transformations, greatly depend on tools, tool-specific in-
formation should also be managed. This part of the MCM will be called tool
management.

Finally, it is important to mention that models need to be persisted in order to be
versioned. However, different tools use different mechanisms for persisting mod-
els. This creates a problem of managing models persisted by different tools. This
problem does not exist in MCM systems which are based on operation-based dif-
ferences, since these systems have a predefined format of differences that they
expect from tools. However, in MCM systems utilizing state-based differences,
this problem is very important since the differences calculation mechanisms must
be adapted to support all persistence mechanisms. One possible solution to this
problem is to define a common metametamodel, and to represent all models,
metamodels and model transformations by using this metametamodel. This al-
lows MCM systems to use the same differences calculation and representation
mechanisms with all models. However, this solution also requires the definition
of bi-directional transformations of models supplied by each tool, to a common
representation. In this dissertation, we follow this approach.

1.5 Model differences and model co-evolution

As already mentioned in Section 1.4.1, in order to have an efficient MCM sys-
tem, only the differences between two successive versions of a model should be
stored, and shared with clients of the MCM system. For this purpose methods
for representing, calculating, and processing model differences should be devel-
oped and used [84]. Note that this holds in both state-based and operation-based
approaches to versioning. In this dissertation, we focus on the state-based ap-
proach to versioning (and discuss state-based model differences). However, in
Section 1.5.1 we will also briefly discuss the operation-based model differences.

Furthermore, in case that a metamodel evolves, it is required to adapt all models
in a MCM system, that conform to the old version of the metamodel, in order for

CHAPTER 1. INTRODUCTION 21

them to conform to the new version of the metamodel. This process is known
as metamodel and model co-evolution (though we will refer to it as model co-
evolution), and we will discuss this process in Section 1.5.2.

1.5.1 Model differences

In this section, we will first discuss a set of requirements that model differences
should fulfill in order to be used in the context of Model Driven Software Engi-
neering. This set of requirements has been introduced by Cicchetti in [49]. Next,
we will discuss the three main aspects of model differences: representation, cal-
culation, and processing (e.g. visualization).

Requirements

In order to use the model differences in the context of a Model Driven Software
Engineering, they should satisfy the following set of requirements:

• Model based: The differences should be represented by a formal differ-
ences model (i.e., a model conforming to a differences metamodel).

• Transformative: It should be possible to transform one model into another
model using a differences model (i.e., it should be possible to use model
differences as a patch).

• Self-contained: The differences model must contain all the information
autonomously without relying on data contained in the compared models.

• Minimality: The differences should contain a minimal number of entities.
• Metamodel independent: The differences metamodel should be indepen-

dent of a particular metamodel (e.g. UML).
• Layout independent: The differences metamodel must be agnostic of pre-

sentation issues.
• Invertible: It should be possible to revert back to the old model using the

new model and their differences model.
• Compositional: The result of the sequential or parallel modifications is

a differences model whose definition depends only on difference models
being composed and is compatible with the induced transformations.

22 CHAPTER 1. INTRODUCTION

Since in MDSE environments everything is either a model, or a model trans-
formation, the differences should be model based and transformative. The self-
contained requirement and the minimality requirement are related, because they
capture the idea that the differences model should contain all the differences and
only the differences. The differences should be metamodel and layout indepen-
dent because they should be usable in generic environments to allow the build-
ing of domain specific comparison frameworks. The differences model should
be invertible in order to allow the users of a MCM system to easily obtain an
old version of a model from a new version of the model. The compositional
requirement will be discussed in more detail in the following paragraph. The
specified requirements are taken from the work of Cicchetti [49], and a more
detailed discussion on these requirements can be found there.

Representation

As mentioned in previous section, in order for model differences to be used
seamlessly in MDSE, the difference between two models should be represented
by a difference model. Furthermore, difference models, as all other models,
should conform to a difference metamodel. The difference metamodel should
allow the description of the difference between models in both common usage
scenarios, i.e. the differences metamodel should be able to describe both “2-
way” differences and “3-way” differences. This is related to the compositional
requirement for model differences: the “2-way” model differences can be con-
sidered as a result of a sequential modification of a model, and the “3-way”
model differences can be considered as a result of a parallel modification of a
model. However, the differences metamodels for state-based model differences
and operation-based model differences are bound to differ. This is because in
state-based approaches, the differences are the result of a differences calculation
algorithm, and are essentially just data, while in operation-based approaches the
differences must represent both the operations, and the data.

An example metamodel for the description of state-based model differences be-
tween UML based models, as specified in [50], is depicted in Figure 1.8.

Notice that for each UML element (i.e. Class, Attribute, Parameter or Opera-
tion) three additional elements are defined. The instances of these additional

CHAPTER 1. INTRODUCTION 23

A t t r i b u t e

A d d e d A t t r i b u t e D e l e t e d A t t r i b u t e C h a n g e d A t t r i b u t e

+ n a m e : S t r i n g

+ v i s i b i l i t y : V i s i b i l i t y K i n d

C l a s s

A d d e d C l a s s D e l e t e d C l a s s C h a n g e d C l a s s

+ i s A b s t r a c t : B o o l e a n

*

C l a s s i f i e r

+ n a m e : S t r i n g

t y p e

p a r e n t

O p e r a t i o n

+ n a m e : S t r i n g

+ v i s i b i l i t y : V i s i b i l i t y K i n d

+ i s C o n s t r u c t o r : B o o l e a n
o p e r a t i o n s

P a r a m e t e r

+ n a m e : S t r i n g

+ p o s i t i o n I n d e x : I n t e g e r

*

*

A d d e d O p e r a t i o n

D e l e t e d O p e r a t i o n

C h a n g e d O p e r a t i o n

A d d e d P a r a m e t e r

D e l e t e d P a r a m e t e r

C h a n g e d P a r a m e t e r

u p d a t e d E l e m e n t

u p d a t e d E l e m e n t

u p d a t e d E l e m e n t

u p d a t e d E l e m e n t

Figure 1.8: State-based model differences metamodel for UML models

elements model added, deleted, or changed element instances between two com-
pared models.

An example metamodel for the description of operation-based model differences
between Ecore based models, defined in [70], is depicted in Figure 1.9.

Notice that unlike in the state-based differences metamodel, the focus of the
operation-based metamodel are model operations. In particular there are create
and delete operations, which model adding or deleting complete model elements,
and there are feature operations, which model the change to model elements
(because in Ecore features represent attributes of model elements, or relations
between model elements).

Both described approaches have deficiencies, which will be discussed in Chap-
ter 3. Moreover, in Chapter 3, we describe our approach to the representation
of state-based model differences, that solves some deficiencies of the existing
representations of state-based model differences.

Calculation

The calculation of model differences is used in both the state-based and operation-
based approaches to model versioning. However, since in this dissertation we fo-
cus on state-based approach to model versioning, we will describe a calculation

24 CHAPTER 1. INTRODUCTION

Figure 1.9: Change-based model differences metamodel for Ecore models

CHAPTER 1. INTRODUCTION 25

algorithm for that case.

As already specified in the requirements (in particular, the minimality require-
ment), the goal of model differences calculation algorithms is to produce differ-
ences models having a minimal number of elements. Although the difference
representation mechanisms should be applicable in case of both “2-way” and “3-
way” differences, the calculation algorithms differ greatly in these two scenar-
ios. The difference between these concepts is so big, and the research involved
is so broad, that this dissertation focuses predominantly on “2-way” differences.
However, at the end of this section we will give a brief overview of algorithms
for calculating “3-way” differences.

“2-way” differences calculation algorithms usually consist of two phases. In the
first phase a matching of two compared models is done. In the second phase,
based on the found matching, the differences are calculated. The matching of
the two models is a mapping between elements in one model and elements that
(may) represent the same entity in another model. The minimality requirement in
a “2-way” differences calculation algorithms is achieved by calculating a maxi-
mum matching between models being compared. The maximum matching is the
matching that matches the maximum number of elements. There are four dis-
tinguished matching strategies [84]: static-identity, signature-based, similarity-
based and language-specific, which are discussed below.

Static-identity based matching assumes the existence of universally unique iden-
tifiers (UUID) that are assigned to model elements upon creation and that are
persisted together with model elements. Since each entity in the modeled system
should be represented by only one model element, in order to have a consistent
model, in this approach model elements that have identical UUIDs are matched.
This approach is most applicable in case of sequential model development, where
only one designer works on a model during a certain period of time. The reason
for this is that if two users would work on the same model at the same time, it
could happen that they both model the same entity, but by using model elements
having different UUIDs. Moreover, if a user accidentally deletes a model ele-
ment, and re-creates a model element representing the same entity, the matching
algorithm could not match these two elements, although they represent the same
entity.

26 CHAPTER 1. INTRODUCTION

Signature-based matching assumes that for each model element, a uniquely iden-
tifying signature can be calculated based on features of the model element. The
signature can be, for example, a string obtained by concatenating the names of
all ancestor elements, and the name of the selected element. The elements that
have the same signature are matched.

Similarity-based matching requires a similarity function that calculates the sim-
ilarities between two model elements. The similarity function usually returns
a normalized value (i.e. between 0 and 1), and elements with similarity value
greater than a certain threshold value are matched (e.g. all elements with simi-
larity greater than 0.5).

Language-specific matching assumes a matching algorithm particulary tailored
to a specific modeling language (i.e. these matching types are usually metamodel-
dependent). Thus, matching algorithms of this type usually use both syntactic
and semantic information to achieve as best as possible matching for a par-
ticular language. There are two types of approaches in defining the language-
specific matching algorithms. In the approaches of the first type, the matching
algorithm is defined as a set of matching rules. Thus, this is a declarative ap-
proach to matching. An example of this approach is the Epsilon Comparison
Language [13]. In the approaches of the second type, the matching algorithm
is defined through a program in an imperative language. An example of this
approach is EMFCompare [9], where the metamodel-independent matching al-
gorithm is defined in Java.

All four mentioned matching strategies perform well, if a particular set of condi-
tions is fulfilled. However, neither of the four is a silver bullet [45] that provides
the best matching in all cases.

Based on the matching found, the differences are calculated in the following
manner: Assume that the input to the calculation algorithm are models A and B.
Next, assume that the matched elements are given as a set M(A,B). Then the
difference model would contain a set of deleted elements A−M(A,B), a set of
added elements B−M(A,B), and the set of changed elements changes(M(A,B))
(the function changes calculates the changes between matched elements). If the
two matched elements are completely identical then the change is empty, and

CHAPTER 1. INTRODUCTION 27

otherwise the change contains the differences between the contents of model
elements.

“3-way” differences calculation algorithms are more complex and, unlike ”2-
way” differences calculation algorithms, actively include the human operator in
the calculation process 4. There are two main sources of complexity of “3-way”
differences calculation algorithms. The first source of complexity is the fact that
there are three models involved: the client baseline model (A′), the model in a
client workspace (A), and the server baseline model (B). Notice that the client
baseline model A′ is also the ancestor version of a server baseline model B. The
second source of complexity is the fact that the compared models A and B can be
in conflict. A conflict occurs if two designers change the same model element in
a different way. For example, one designer may change the title of a class User
to Client, and another designer may, in parallel, change the title of the same class
to Customer. Resolving these conflicts is not trivial, and has been addressed in
numerous works, e.g. [47, 82, 121]. An implementation of a “3-way” state-based
model differences algorithm, can be found in EMFCompare [9].

Processing

After the differences have been calculated, they can be processed. The most
common use of model differences is a patch.

Another possible usage of model differences is in exploring the evolution of
models. Since models are represented diagrammatically, this includes the visu-
alization of model differences. Usually, the model differences are visualized by
using a unified view on differences. In this approach, the differences are super-
imposed on the old version of the model, and colors are used to highlight the
meaning of differences (e.g. green color is used for added elements, red color is
used for deleted elements, and blue color is used for changed elements). Another
possibility is to use a separate view approach, where both models are visualized
in parallel, and the differences are also highlighted by using colors.

4It is possible to prove that it does not suffice to use only the combination of ”2-way” differences
between models A and A′ and between models B and A′, to obtain “3-way” differences, but the proof
is out of the scope of this dissertation.

28 CHAPTER 1. INTRODUCTION

1.5.2 Model co-evolution

It is often the case that metamodels evolve during the design process or during
the maintenance of a software system. In those cases, it is often required to
adapt the models conforming to the initial metamodel, such that they conform to
the evolved metamodel (otherwise they can be marked as legacy models). This
process is denoted as model co-evolution (or coupled evolution of metamodels
and models).

In order to perform the co-evolution of models, two sub-problems need to be
solved. The first problem is how to calculate the differences between the initial
metamodel and the evolved metamodel. The second problem is how to adapt the
models based on the calculated differences. Existing approaches for solving the
co-evolution problem greatly differ depending on whether differences between
models are known (operation-based approaches) or are not known beforehand
(state-based approaches).

In case the differences between two metamodels are known beforehand, the first
subproblem of model co-evolution disappears. An example approach that as-
sumes this is COPE [71]. Moreover, in COPE it is assumed that the differences
between metamodels are operation-based. An extensive list of metamodel opera-
tions, supported by COPE, is described in [72]. The second subproblem in COPE
is solved by splitting a set of all possible metamodel operations in two subsets5.
In the first sub-set are the operations for which the syntactic and semantic in-
fluence on co-evolving models is known. For these operations it is possible to
automate the co-evolution process completely. An example of this kind of op-
eration is an operation that changes the name of a metamodel element. In this
case, the co-evolution is trivial, since the change of the name of a metamodel
element does not have influence on models. In the second subset are the oper-
ations for which the syntactic and semantic influence on co-evolving models is
not known. For these operations a manual intervention is needed to co-evolve the
models. There are two possible types of manual interventions. In the first type,
the user that performs the co-evolution can create an evolution script (based on
an operation), and this script can be used to automatically co-evolve models with

5In COPE it is assumed that the metamodels are instances of Ecore, and thus all possible (atomic)
operations on metamodels are known.

CHAPTER 1. INTRODUCTION 29

respect to this operation. An example operation of this type is changing the type
of an attribute of a metamodel element. In this case, a user must define a trans-
formation function that can be used to transform values of the initial type to the
values of the evolved type. In the second type, it is not possible to automate the
co-evolution process, and each model must be manually co-evolved with respect
to the selected operation. An example operation of this type is adding a reference
between metamodel elements. In this case, a user needs to connect all the model
instances that should be connected by the instances of this reference.

In case the differences between two metamodels are not known beforehand (i.e.
the differences are state-based), the first subproblem needs to be solved as well.
An example approach that assumes this is an developed by Garcés et. al. [63]. In
their approach, a heuristic metamodel comparison algorithm is used to compare
two metamodels. The differences between two metamodels are described by
using a differences metamodel. Based on the differences found, the co-evolution
is performed by first executing a higher-order transformation, that generates a
transformation that can be used to evolve all models conforming to the initial
metamodel.

Both presented approaches have advantages and disadvantages. A positive side
of COPE is that, since the differences between evolved and initial metamodel
are known beforehand, it is possible to do a more precise co-evolution. How-
ever, COPE requires that the differences between evolved and the original meta-
model are known beforehand, which is not easily accomplishable. A positive
side of the approach by Garcés et. al. is that it is tool-independent (though still
metametamodel dependent). However, by using a custom matching algorithm
for matching metamodels, the quality of calculated metamodel differences may
not be that high, and the co-evolution could be imprecise. Moreover, it is much
more complex to adapt the higher-order transformations, or even generated trans-
formations, when a completely automated co-evolution is not possible.

1.6 Problem statement

Based on the previous discussion, the following summary can be composed:

30 CHAPTER 1. INTRODUCTION

Model Driven Software Engineering is a paradigm that is quickly
replacing traditional Software Engineering as means of developing,
managing and maintaining complex software systems. However,
MDSE depends on tools more than traditional SE. While the tools
for developing models are maturing quickly, the tools for managing
models are far behind in development. In this respect, better meth-
ods and tools for comparing models, for visualizing the resulting
differences, and for co-evolving models, are needed.

Based on the above summary, we have formulated three main research questions.
In this dissertation we discuss, and answer, these research questions.

Research Question 1. How can the quality of methods and tools for model
comparison be improved?

Research Question 2. How can the quality of methods and tools for visualiza-
tion of model differences be improved?

Research Question 3. How can the quality of methods and tools for co-evolving
models be improved?

The first main research question can be further split into these subquestions:

• Which are the existing methods and tools for comparing models?
• What are the aspects of existing methods and tools for comparing models

that can be improved?
• How to improve existing methods and tools for comparing models, and

how to measure these improvements?

The second main research question can be further split into these subquestions:

• Which are the existing methods and tools for visualization of model dif-
ferences?

• What are the aspects of existing approaches to visualization of model dif-
ferences that can be improved?

CHAPTER 1. INTRODUCTION 31

• How to improve existing methods and tools for visualization of model
differences, and how to measure these improvements?

The third main research question can be further split into these subquestions:

• Which are the existing methods and tools for model co-evolution?
• What are the aspects of existing approaches to model co-evolution that can

be improved?
• How to improve existing methods and tools for adapting models in case

their metamodels evolve, and how to measure these improvements?

In the next section, we give the outline of the rest of dissertation, and we relate
each research question to the chapter (or chapters) where it is answered.

1.7 Dissertation outline

This dissertation summarizes our research on model evolution and model co-
evolution, and the structure of the dissertation (except Chapter 2) reflects the
evolution of that research.

In particular, in Chapter 3 we discuss the problem of model comparison, and we
propose a new method for comparing models. The proposed method is based
on, and improves, several existing methods for model comparison, therefore we
also discuss these improvements. Chapter 3 answers Research Question 1 and
is based on the paper that was presented and published at IWMCP 2010 [111].
However, because Chapter 3 is based on a workshop paper, where certain details
of our approach related to model matching could not be described because of the
page limit, these details are described in Chapter 2. Moreover, some of these
details are also discussed in a paper that was submitted to the special issue of
SoSyM journal on models and evolution [110].

In Chapter 4, we discuss a method for assessing the quality of model compar-
ison tools, we define a data set that can be used for this purpose, and we use
the defined method, with the defined data set, to assess the quality of two model

32 CHAPTER 1. INTRODUCTION

comparison tools. One of the assessed tools is RCVDiff and the other one is
EMFCompare. RCVDiff was developed by us, based on the research presented
in Chapter 3. More information on RCVDiff can be found in a paper published
at ME 2010 [113]. EMFCompare is a tool used in Eclipse framework for com-
parison of Ecore-based models. The defined method, data set, and the assess-
ment results can be used as a benchmark data for future modal comparison tools.
Chapter 4 provides a mean of experimental measurement of the improvements
to methods for model comparison discussed in Chapter 3, and thus also partially
answers Research Question 1. Chapter 4 is based on the paper that was presented
and published at IWMCP 2011 [114].

In Chapter 5, we discuss the problem of visualizing model differences. We ar-
gue that the same methods and techniques can be applied for model differences
as for other large-scale information content. Thus, we combine an existing tech-
nique for visualization of model differences, with a technique for visualization of
large-scale information content. The combination provides better insight in the
meaning of model differences than both combined techniques used separately.
This chapter answers Research Question 2 and is based on the paper that was
presented and published at IWMCP 2010 [112].

In Chapter 6, we discuss the problem of model co-evolution, and we propose a
new method for co-evolving models. The specified method proposes a solution
that is conceptually similar to solutions offered by other approaches in this field,
but that brings several concrete improvements. For instance, we propose to use
a specially defined metamodel to represent metamodels as models. This allows
us to use techniques for model comparison, presented in Chapter 3, to compare
metamodels. Furthermore, the resulting differences are used as an argument
of the automatic co-evolution transformation. This chapter answers Research
Question 3 and is based on the paper that was presented and published at TOOLS
2011 [115].

Finally, in Chapter 7, we given a summary of our answers to the formulated
research questions and conclude the dissertation.

Chapter 2

An Alternative Modeling Framework

In this chapter, we will discuss technical details of the two main contributions of
this dissertation. Both of these contributions are briefly described in Chapter 3,
but both warrant a more detailed explanation.

The first main contribution is a modeling framework we developed. The reason
for developing a new modeling framework is that traditional modeling frame-
works under-specify the instantiation relations between different modeling lev-
els. This instantiation problem will be discussed in detail in Section 2.1. The
modeling framework we developed clearly specifies the instantiation relation
between different modeling levels. The developed framework introduces a new
metametamodel that uses the same concepts that are used in traditional metameta-
models (e.g. classes, relations, inheritance, ...), but defines and connects those
concepts in a different manner. Details of the framework are discussed in Sec-
tion 2.2.

33

34 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

The second main contribution is a differences metamodel we developed, that
leverages the new modeling framework, and can be used for the representation
of models of difference between two models. The differences metamodel and
the new modeling framework were designed in parallel, such that the differences
between the models satisfy all the model differences requirements described in
Section 1.5.1. The developed differences metamodel is described in detail in
Section 2.3.

2.1 An instantiation problem in traditional meta-

metamodels

The problem discussed in this section is visible in two of the most commonly
used metametamodels - Ecore and MOF. However, this problem, if not accounted
for, will be present in all layered modeling frameworks. The main cause of the
problem is under-specification of relations between metametamodel elements,
metamodel elements and model elements.

In both MOF and Ecore, the metametamodels are the focus and they are well de-
fined. Under an object-oriented interpretation of the <<instance-of>> relation
between metametamodels and metamodels, it is possible to specify a metamodel
by instantiating a metametamodel. However, for models to be instantiated from
metamodels, one cannot use the same <<instance-of>> relation as the one
between metametamodel and metamodels. The reason for this is that the enti-
ties that appear in a metametamodel have a different syntax and semantics from
entities that appear in metamodels. For example, if entities in metametamodels
are considered classes, then the corresponding type of entities in metamodels
are instantiated classes (or objects). However, these objects cannot be used as
classes, since their syntax and semantics differ from the syntax and semantics of
classes. Rather, if the same <<instance-of>> relation that was used to instan-
tiate metamodels from a metametamodel is to be used to instantiate models from
metamodels, the objects (in metamodels) must be transformed into classes.

An example of this problem is depicted in Figure 2.1, which is divided into four
parts. The first (topmost) part contains a fragment of the Ecore metametamodel

CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK 35

:A
label="B"

:EAttribute
ID=false
name=label

Model

abstract:boolean
interface:boolean
name:String

:EDataType
name=String

EAttribute
ID:boolean
name:String

EDataType
name:String

:EClass
abstract=
interface=
name=A

false
false

A
label:String

EClass

transform

Metamodel

Metamodel'

Metametamodel

instantiate

instantiate

Figure 2.1: An example of the instantiation problem in layered modeling frameworks

that can be used to define metamodel elements. The second part contains a meta-
model that is an instance of the Ecore fragment given in the top part. If entities in
Ecore are considered classes, the elements of this metamodel are objects. Thus,
this metamodel cannot be used to instantiate models. The metamodel’ in the
third part is obtained by transforming the metamodel depicted in the second part,
by a transformation that transforms objects into classes. The metamodel in the
third part can be used to define models, which was exemplified in the fourth part.

The transformation from objects into classes is not formally defined, neither in
MOF nor in Ecore. Consequently, the notion of models is specified incompletely
in traditional metametamodels. Though, e.g. in case of Ecore, this notion can be
understood by examining the source code of Java classes that implement Ecore.
This problem is particulary detrimental in case of calculating differences be-
tween models, since the calculation algorithms must take into account details of
the concrete syntax of models. However, if this syntax is not fully defined, the
mentioned algorithms cannot be used for automated comparison of models.

36 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

For this reason we decided to introduce a metametamodel which makes a clear
separation between the <<instance-of>> relation between metametamodel and
metamodels and the <<instance-of>> relation between metamodels and mod-
els. In fact, instead of the <<instance-of>> relation between metamodels and
models a <<conforms-to>> relation is used to relate metamodels and models,
and an <<instance-of>> relation in our approach relates our metametamodel
and models. The interpretation of the <<conforms-to>> relation is as follows:
A model conforms to a metamodel if each model element is related to only one
metamodel element, and if relations between model elements reflect the rela-
tions between metamodel elements. In this way, the concrete syntax of models
becomes clear, and it is possible to reason about matching model elements at a
sufficient level of detail and formality.

2.2 New modeling framework

In this section we will first describe the overall architecture of our modeling
framework. In particular, we will describe the new metametamodel which is
the core of the framework. Then, we will describe the instantiation relation be-
tween the new metametamodel and metamodels, and we will describe an exam-
ple metamodel. Next, we will describe the instantiation relation between the new
metametamodel and models, and we will describe an example model. Finally we
will discuss the differences and similarities between the developed framework
and Ecore.

Note that, because the new modeling framework serve as the basis for describing
all our other results, and all but the last chapter of this dissertation are slightly
adapted versions of our published papers, the description of the new framework
given in this chapter is replicated in more or less detail in all but the last chap-
ter. However, the description of the framework given in this chapter is the most
complete and encompasses all the other descriptions.

2.2.1 New metametamodel

The new, enhanced, metametamodel (EMMM) is depicted in Figure 2.2.

CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK 37

MMElement

name:String

MMAttribute

name:String

type:String

contains

label:String

cardinalityLB: String

cardinalityUB:String

MElement

MMReference

MAttribute

value:String

Metamodel

URI:String

0..*

1
Model

name:String
version:String

0..*

0..*

0..*

0..*

0..*

1

1

1

1
1

0..*

0..1

0..*

0..*0..*

0..*

0..*

0..*

0..*

conforms to

of role

has

is of type

MReference

is value of

contains

consists of

11
1

refers to

has

inherits

has

1

contains

has

0..*

1

1

0..*

1

refers to

Figure 2.2: Enhanced metametamodel

Like MOF and Ecore, our enhanced metametamodel is depicted by using the
object-oriented notions adopted from UML (classes and relationships). In par-
ticular, EMMM entities are represented by using the class notation. Thus, each
entity has a name and has zero or more attributes. EMMM entities are related
to each other by using the association notation (i.e. by connecting entities with
lines). In EMMM two types of relations are used. The first relation type is the
containment relation, which is represented by a line having a diamond at one
end. The meaning of the containment relation is the following: the instances of
the entity which is connected to the diamond (on the line representing the rela-
tion), contain the instances of the entity which is on the other end of the line.
The term contains denotes that the contained elements must exist within one and
only one container element, and if a container is deleted, the contained elements
are also deleted. The minimum and maximum number of contained elements is
specified by a cardinality attached to the end of the line opposed to the end of the
line with the diamond. The second relation type is the common association rela-
tion. This relation denotes that zero or more instances of one entity are related
to zero or more instances of an other connected entity. The cardinality attached
to the end of the line connected to the entity denotes the minimal and maximal

38 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

number of instances of that entity that can be connected to an instance of the
other connected entity.

However, unlike MOF and Ecore, where the meaning of the used notations was
adopted from UML, the meaning of the concepts in EMMM is different than in
UML. In particular, the entities labeled Metamodel, MMElement, MMAttribute,
MMReference, and the relations between them, are used to define metamodels.
Similarly, the entities labeled Model, MElement, MAttribute, MReference, and
the relations between them, are used to define models. The relations starting from
entities used to define models, and ending at entities used to define metamodels,
are used to model the conforms-to relation between metamodels and models.
In the next two sections, we will explain in detail the meaning of all EMMM
elements.

2.2.2 Specifying Metamodels

A metamodel, in our framework, is an instance of an EMMM element named
Metamodel. Each metamodel must have a unique identifier (i.e. a unique name),
which is represented by an Metamodel attribute URI. At this moment, there are
no mechanisms in place for enforcing the global uniqueness of the URI, but it
is locally enforced in tools. Each metamodel contains zero or more instances
of the metametamodel element named MMElement. Instances of MMElement
represent domain concepts, and correspond to classes in traditional metamod-
els. Each instance of the MMElement can contain zero or more instances of the
same element, thus opening the possibility for hierarchical metamodels. Each
instance of the MMElement has a name, which must be unique in the set of all in-
stances of the MMElement in one metamodel. Each instance of the MMElement
contains zero or more instances of the MMAttribute element and zero or more
instances of the MMReference element. The instances of the MMAttribute repre-
sent attributes of a domain concept represented by their containing MMElement
instance. Each instance of the MMAttribute has a name (that must be unique in
the set of all instances of the MMAttribute in a containing MMElement instance),
and a type. The instances of the MMReference represent relations of a domain
concept represented by their containing MMElement instance, to other entities.
Each instance of the MMReference has a label (which must be unique in the set

CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK 39

of all instances of the MMReference of a containing MMElement instance), and
a lower bound cardinality (cardinalityLB) and an upper bound cardinality (cardi-
nalityUB) (such that cardinalityLB≤ cardinalityUB). The function of lower and
upper bound cardinalities will be discussed in Section 2.2.3, since these cardi-
nalities are related to models. Each instance of the MMReference must be related
to one instance of the MMElement. This denotes the possibility of a relation be-
tween the model element that conforms to the instance of the MMElement, that
the instance of the MMReference is contained in, and the model element that
conforms to the instance of the MMElement that is referenced by the instance of
the MMReference.

Example metamodel

An example metamodel is depicted in Figure 2.3.

The example metamodel allows for the definition of simple state-machines con-
sisting of states and transitions. The metamodel contains an element which rep-
resent states (an instance of the MMElement named State), and an element which
represents a transition (an instance of the MMElement named Transition). Each
state has an attribute named Label, which serves as the label of the state in mod-
els. Transitions are not labeled, but each transition contains two instances of
MMReference. Both of these instances are related to the instance of the MMEle-
ment representing a State. One of these instances is labeled From and represents
the connection to the source (from) state of the transition. Another of these in-
stances is labeled To and represents the connection to the target (to) state of the
transition.

2.2.3 Specifying Models

In our framework, models are instances of an EMMM element named Model.
Each model must be related to one metamodel by an instance of the relation
labeled conforms to (i.e. a model conforms to a metamodel). Each model can
contain zero or more instances of MElement. Each instance of an MElement
contained in a model must be related to an instance of an MMElement in a meta-
model that the model conforms to. Each instance of an MElement can contain

40 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

::MMElement

name="State"

::MMReference

label="From"

cardinalityLB="0"

cardinalityUB="1"

::Metamodel

URI="Statemachine"

::MMAttribute

name="Label"

type="String"

::MMElement

name="Transition"

::MMReference

label="To"

cardinalityLB="0"

cardinalityUB="1"

Figure 2.3: Example metamodel

other instances of an MElement. Each instance of an MElement contained in an-
other instance of an MElement, must be related to an instance of an MMElement
contained in an instance of an MMElement that the containing instance of the
MElement is related to. Each instance of an MElement can contain zero or more
instances of an MAttribute element, and zero or more instances of an MReference
element. Each instance of an MAttribute contained in an instance of an MEle-
ment must be related to an instance of an MMAttribute that is contained in an
instance of the MMElement that is related to an instance of the MElement that
contains that instance of the MAttribute. Each instance of an MAttribute contains
a value of that attribute. The name and type of the attribute can be inferred from
the MMAttribute that the MAttribute is related to. Each instance of an MRefer-
ence contained in an instance of an MElement must be related to an instance of an

CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK 41

::MMElement

name="State"

::MMReference

label="From"

cardinalityLB="0"

cardinalityUB="1"

::MElement

::MReference

::Metamodel

URI="Statemachine"

::Model

name="SM1"

::MMAttribute

name="Label"

type="String"

::MMElement

name="Transition"

::MMReference

label="To"

cardinalityLB="0"

cardinalityUB="1"

::MElement

::MElement

::MAttribute

value="A"

::MAttribute

value="B"

::MReference

version="1"

Figure 2.4: Example model

MMReference that is contained in an instance of the MMElement that is related
to an instance of an MElement that contains that instance of an MReference.

An example model is depicted in Figure 2.4. Notice that the example model is
represented together with the example metamodel, in order to emphasize their
relation (model elements are colored dark-grey). The example model is a model
of a state-machine containing two states and a transition. The first state is labeled
A, and the second state is labeled B. The From reference of the transition refers
to the state labeled A, and the To reference of the transition refers to the state
labeled B. Thus, this transition has the state A as the source state. and has the
state B as the target state.

42 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

2.2.4 Differences and similarities between EMMM and

Ecore

Both EMMM (see Figure 2.2) and Ecore (see Figure 1.4) use similar concepts.
For example, EClass in Ecore is analogous to MMElement in EMMM. The main
difference between EClass and MMElement is that EClass instance can be ab-
stract or interface, while this is not possible for MMElement instances. The rea-
son for not including these concepts in MMElement is that abstract classes, or
interfaces are important for defining metamodels, but are not explicitly included
in models. Since we were interested predominantly in difference between mod-
els, we decided to exclude those concepts from metamodels that are not directly
related to model differences. Thus, concepts like packages (represented by an
EPackage class), factories (represented by an EFactory class), annotations, oper-
ations, and operation parameters, are also not included in EMMM.

EClass instances contain structural features, which are either EReference in-
stances or EAttribute instances. EReference is analogous to MMReference, and
EAttribute is analogous to MMAttribute. Both EReference and EAttribute in-
stances have several attributes (attributes of EStructuralFeature and its ancestor
interfaces) that are included, and have several attributes that are not included in
MMReference or MMAttribute instances. The included attributes are MMRef-
erence label (corresponding to the name of an EReference), lower and higher
cardinality bounds (corresponding to lowerBound and higherBound of an ERef-
erence), the name of the MMAttribute (corresponding to the name of an EAt-
tribute), and the type of the MMAttribute (corresponding to the name of the type
of the EAttribute).

The next difference is that EReference instances are used to model both asso-
ciation and containment relations in Ecore. However, in EMMM, containment
relations are modeled by a special relation labeled contains. Because of this, all
containment relations in EMMM are unordered and have 0..∗ cardinality. Again,
since we were not interested in a “full-fledged” modeling framework, this con-
straint does not have much influence on models.

Furthermore, in Ecore there are pre-defined data types (taken from Java), while
in EMMM there are no pre-defined data types, and the value of each attribute is

CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK 43

a string. Thus, the semantics of data types must be defined by the developers of
the metamodels (or, similarly to Ecore, those developers can use Java data types,
and inherit their semantics from Java).

2.3 A Metamodel for the definition of differ-

ences between models

In this section we will explain the details of the metamodel, that we developed,
for the representation of difference between two models. This explanation should
serve as a proof that the difference models, obtained by using our approach,
fulfill all the requirements that the model differences should satisfy, as defined
in Section 1.5.1.

Before going into the details of the differences metamodel, we will briefly ex-
plain the concept of a model difference. This discussion will be in context of
the state-based approach to model differences. In this context, the difference
between two models (e.g. the original and the target) is represented by another
model, which is called the difference model. The difference model is calcu-
lated by a calculation algorithm that takes the original and the target model
as arguments, and returns the differences between them: differenceModel =
calculate(original, target).

We consider the models as hierarchical acyclic graphs (i.e. trees). This is achieved
by interpreting the model elements as nodes of the tree, and by interpreting con-
tainment relations between model elements as the edges between nodes of the
tree. In order to calculate the difference between two trees, it is required to
match the nodes in both trees that model identical entities. The matching pro-
cess is part of the calculation algorithm and will not be discussed here, but its
description can be found in Section 3.3.3.

After the nodes have been matched, the calculation of a difference is done by a
process that traverses the tree representing the original model. The difference
consists of a set of atomic differences, which are instances of elements in the
differences metamodel. In order to define the types of all the possible atomic
differences, we will describe the process of the difference calculation.

44 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

In the first step of the process, if the top nodes are not matched, then the dif-
ference is represented by a combination of both complete original and target
models. Otherwise, the following recursive procedure is applied starting with
the top nodes: For all matching nodes MN1 in the original model and MN2 in
the target model, the difference between their attributes and references should
be calculated first. Then, the difference between their children is calculated. All
the children of the node MN1 that are not matched to children of the node MN2,
are considered as deleted in the target model. All the children of the node MN2

that are not matched to children of the node MN1, are considered as added to the
original model. All the children of the node MN1 that are matched to children
of the node MN2, but that are not identical to their matches, are considered as
changed in the target model. All the children of the node MN1 that are matched
to children of the node MN2, and are identical to their matching elements, are
considered as unchanged in the target model.

Based on the specified difference calculation process, it can be concluded that
there are three main types of atomic differences between two models: added
model elements, deleted model elements, and changed model elements. How-
ever, the described calculation process does not take into account the possibil-
ity of moved model elements. A moved model element is a model element in
the original model that models the same entity as a model element in the target
model, but the parents of those model elements do not match. Since the moving
of model elements is a real possibility, especially in manually designed models,
the fourth type of possible atomic differences are moved model elements.

The model differences metamodel is depicted in Figure 2.5.

Differences models are instances of the Differences Model element. All differ-
ences models reference two models, denoted by the references labeled original
and target connecting the Differences Model element and the Model element.
The models referenced by the original and the target reference are the mod-
els that have been used in the calculation of the differences represented by the
differences model. Each differences model contains zero or more instances of
the ElementDifference element. Instances of the ElementDifference element re-
present added, deleted, changed, or moved model elements. In particular, the
element AddedElement represents added elements, the element DeletedElement

CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK 45

ElementDifference

AddedElement DeletedElement MovedElement

AttributeDifference

ReferenceDifference

AddedReference

DeletedReference

ChangedReference

1

DifferencesModel

final parent

MElement

MAttribute

value:String

Model

name:String
version:String

0..*

0..1

1
1

0..1

0..*

0..*

0..*

has

MReference

contains

1

refers to

ChangedElement
11

1

1

1

0..*

0..*

0..*

0..1

0..*

0..*

1

1
1
1

1

0..*

0..1 0..1

contains

final model

initial model

new ref

0..*

0..*

1

1

initial parent

new attr

old ref

old attr

Figure 2.5: Model differences metamodel

represents deleted elements, the element ChangedElement represents changed
elements, and the element MovedElement represents moved elements.

Each instance of the AddedElement contains one instance of the added MEle-
ment. This contained instance of the MElement is the complete added element.
The containment relation is used instead of the association relation to satisfy the
self-contained requirement (if the association relation would have been used in-
stead, the differences model could not have been used without the model that it
would have been associated with). Each instance of the DeletedElement contains
one instance of the deleted MElement.

Each instance of the ChangedElement contains zero or more instances of the Ele-
mentDifference. In this way the hierarchy is implemented in the differences mod-
els. Furthermore, each instance of the ChangedElement references a matched
original model element and a matching target model element. This is required
in order to fulfill the Invertible requirement, because in this way it is possible
to revert back to the original model by using the target model and the differ-

46 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

ences model. Each changed element can also contain zero or more instances of
the AttributeDifference element and zero more instances of the ReferenceDiffer-
ence element. An instance of the AttributeDifference element represents changes
to one of the attributes of the model element. For each changed attribute there
can be only one instance of the AttributeDifference element. For reasons of re-
versibility, each AttributeDifference instance contains the values of the attribute
in both the original and the target model. An instance of the ReferenceDiffer-
ence element represents changes to references of the model element. Since the
number of references of a model element is not pre-defined, it is possible to
add references, delete references, or change references. This is represented by
AddedReference, DeletedReference, and ChangedReference elements.

2.3.1 Model Differences Example

In this subsection we discuss an example differences model. The example dif-
ferences model is obtained by a calculation algorithm, specified in Section 3.3.3,
that considers the model depicted in Figure 2.4 as the original model, and con-
siders the model depicted in Figure 2.6 as the target model. The original model
is a state machine containing two states labeled A and B, and a transition from
state A to state B. The target model has one more state, labeled C, and this state
is connected to the state labeled A. Furthermore, in the target model the state
labeled B has a different label - BA.

The resulting differences model is depicted in Figure 2.7. Note that the contents
of the differences model depend on the calculation algorithm, and the depicted
differences model is just one of the many possibilities.

The light-gray elements in the example differences model represent elements that
are either an instance of the Differences Model element, or are contained, directly
or indirectly in those elements. The dark-gray elements in the example difference
model represent elements that are parts of the original or the target model, and as
such must conform to a metamodel that those two models conform to. This is the
case even if the dark-grayed element is contained in the light-grayed element, as
is the case with the instance of the AttributeDifference.

CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK 47

::MMElement

name="State"

::MMReference

label="From"

cardinalityLB="0"

cardinalityUB="1"

::MElement

::MReference

::Metamodel

URI="Statemachine"

::Model

name="SM1"

::MMAttribute

name="Label"

type="String"

::MMElement

name="Transition"

::MMReference

label="To"

cardinalityLB="0"

cardinalityUB="1"

::MElement

::MElement

::MAttribute

value="A"

::MAttribute

value="C"

::MReference

version="2"

::MElement

::MAttribute

value="BA"

::MElement

::MReference

::MReference

Figure 2.6: A new version of the example model depicted in Figure 2.4

2.4 Conclusions and Future work

In this chapter we discussed an instantiation problem of existing layered ap-
proaches to setting up a modeling infrastructure, i.e. a metametamodel. The
cause of this problem is the fact that the instantiation relation cannot be used to
connect more than two modeling layers, unless a transformation is performed
on the results of the instantiation to make them again instantiable. The conse-
quence of this problem is that the model differences cannot be represented in
the required level of details. To alleviate this problem, we have defined our own
metametamodel. By using our metametamodel we have defined a metamodel
for the representation of model differences that shows all the details of model
differences. The comparison of our approach and the most popular approach
to represent differences between MOF-based models is given in more detail in
section 3.2.

However, our metametamodel was designed to be minimal and elegant, and it
was not designed to be a full-fledged modeling framework. Thus, it would be
interesting, as future work, to expand our metametamodel to include modeling

48 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

concepts (such as packages, operations, diagram types, etc.) used in more pop-
ular formalisms such as MOF or Ecore.

CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK 49

:M
E

le
m

en
t

:M
R

ef
er

en
ce

:D
if

fe
re

n
ce

sM
o

d
el

:M
E

le
m

en
t

:M
E

le
m

en
t

:M
A

tt
ri

b
u

te

v
a
lu

e
=

"
B

"

:M
A

tt
ri

b
u

te

v
a
lu

e
=

"
C

"

:M
R

ef
er

en
ce

:M
E

le
m

en
t

:M
A

tt
ri

b
u

te

v
a
lu

e
=

"
B

A
"

:M
o

d
el

fi
n

a
l

v
e
rs

io
n

=
"
1

"

:M
o

d
el

n
a
m

e
=

"
S

M
1

"

v
e
rs

io
n

=
"
2

"

:A
d

d
ed

E
le

m
en

t
:A

d
d

ed
E

le
m

en
t

:A
tt

ri
b

u
te

D
if

fe
re

n
ce

:M
E

le
m

en
t

n
a
m

e
=

"
S

M
1

"

n
e
w

V
a
lu

e

:C
h

a
n

g
ed

E
le

m
en

t

:M
A

tt
ri

b
u

te

v
a
lu

e
=

"
A

"

:M
A

tt
ri

b
u

te

v
a
lu

e
=

"
B

"

o
ld

V
a
lu

e

:M
A

tt
ri

b
u

te

v
a
lu

e
=

"
B

A
"

fi
n

a
lE

in
it

ia
lE

in
it

ia
l

Figure 2.7: Example differences model

50 CHAPTER 2. AN ALTERNATIVE MODELING FRAMEWORK

Chapter 3

Model Differences Representation and

Calculation

This chapter describes our research in representation and calculation of

state-based model differences. The main goals of this research were to im-

prove the quality of existing methods for the representation of model dif-

ferences, and to improve the quality of existing approaches for the calcu-

lation of model differences. In order to achieve the highest clarity in rep-

resenting model differences, we introduced a new metametamodel. By us-

ing this metametamodel we created a metamodel for model differences that

discloses important facts of model differences, that were not discussed in

any of the existing approaches. Our algorithm for the calculation of model

differences is based on existing state-of-the-art differences calculation al-

gorithms. However, while all other algorithms leverage only one type of

model matching, in our algorithm all recognized types of model matching

can be used. This was achieved by designing our calculation algorithm in

51

52 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

parallel with the special configuration metamodel, that allows the users of

the algorithm to configure it to use the type of model matching that gives

the best results for a particular metamodel.

3.1 Introduction

Model Driven Software Engineering (MDSE) is a field of Software Engineering
that focuses on models as main design artifacts, and imposes model transfor-
mations as means of relating models. Consequently, mature model configuration
management systems are required to manage the complexity of modeled systems
in MDSE environments. One of the major functions of model configuration man-
agement systems is model comparison. Model comparison (or differencing) is a
complex process, which involves at least three concerns: representation, calcu-
lation, and processing of differences [84]. The rationale behind this separation
of concerns is that usually it is not only required to calculate differences, but it is
required to store, process, and visualize them in the context of a model configu-
ration management system. However, most of the existing approaches to model
comparison deal with only one aspect of model comparison, and thus make it
hard to integrate all aspects into one approach. Moreover, there are only a few
tools that can be used as a part of a model configuration management system to
compare models. The reason for this is that these tools are either metamodel-
specific, meaning that they can be used to compare only models conforming to
one metamodel (e.g., UMLDiff [123]), or that these tools are framework specific
(e.g., EMF Compare [9]).

The goal of the research whose results are presented in this and in chapter 5,
was to specify a methodology that integrates all three aspects of model compar-
ison, and to build a tool that is framework-independent, that allows metamodel-
independent model comparison, and that can be used stand-alone or in a context
of a configuration management system. In order to fulfill this goal, we have first
explored existing approaches to representation, calculation and visualization of
model differences. Next, we have selected state-of-the-art approaches in all of
the explored aspects, and we have extended those approaches such that our goal
would be fulfilled.

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 53

In order to use the model differences in the context of MDSE the representation
of differences should satisfy the following set of requirements, initially defined
in [49]:

• Model based: The differences should be represented by a formal difference
model.

• Minimalistic: The differences should contain a minimal number of ob-
jects.

• Self-contained: The differences model must contain all the information
autonomously without relying on data contained in the compared models.

• Transformative: It should be possible to transform one model into another
model using their difference model.

• Invertible: It should be possible to revert back to the initial model using
the transformed model and their difference model.

• Compositional: The result of subsequent or parallel modifications is a dif-
ference model whose definition depends only on difference models being
composed and is compatible with the induced transformations.

• Metamodel independent: The difference metamodel should be indepen-
dent of a particular metamodel (e.g. UML).

• Layout independent: The difference metamodel must be agnostic of the
presentation issues.

The complete rationale behind these requirements can be found in [49]; we will
just give a short explanation of why these requirements are needed. The differ-
ences should be model based and transformative in order to be used in MDSE
environments. The self-contained and minimalistic requirements are related, in a
sense that they capture the idea that the differences should contain all the changes
and only the changes. The differences should be invertible in order to allow the
revert operation, which is commonly used in configuration management systems.
They should be metamodel and layout independent because they should be us-
able in generic environments to allow the building of domain specific comparison
frameworks.

Traditional approaches to the representation of model differences, by means of
difference models [50, 85, 89], do not completely fulfill all the specified re-

54 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

quirements. For example, in the approach presented in [50], for each (MOF-
based [20]) metamodel a new difference metamodel is generated. However, the
generated difference metamodels are too coarse, in the sense that the elements of
the difference metamodel are related only to complete metamodel elements, and
not to their parts. For example, changing one attribute of an object requires the
inclusion of the complete object in the difference model. Thus, the difference
models can contain unnecessary information, because usually changes do not af-
fect the complete model element but only parts of it. Also, changes to instances
of relations between metamodel elements are not considered in the difference
metamodel. In the approach of [89], which is based on GME [17], models are
considered as graphs, and the difference metamodel is also graph based. How-
ever, their difference metamodel is designed such that the information related
to the change of edges is not contained in difference models (e.g. only added
or deleted edges are considered), and it lacks in handling of ambiguous models
(models in which an element can contain two or more identical sub-elements).
In the approach of [85], which is based on Ecore [11], a model-independent dif-
ference metamodel is specified. However, the specified difference metamodel is
not invertible because it does not consider added or deleted model elements.

A solution to the aforementioned shortcomings of the mentioned approaches is
to define only one difference metamodel that is able to capture all the differences
at appropriate granularity and without containing unnecessary information. In
order to do this we deviate from the usual four-layer metamodeling architecture.
We introduce an enhanced metametamodeling architecture that offers a different
organization of layers and relations between them. The introduced architecture
can be considered a domain specific metametamodeling architecture [125] which
is specialized in describing model differences, unlike traditional metametamod-
eling architectures, like MOF and Ecore, which are specialized for modeling.
However, the results we obtained by using this architecture are applicable to
other architectures as well. By using this enhanced metametamodeling archi-
tecture, we define a difference metamodel that satisfies all the specified require-
ments. Section 3.2 gives a more detailed description of our approach for repre-
senting differences.

After the representation format has been set, the calculation process can be spec-
ified. The calculation process takes two models as arguments and returns their

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 55

difference model conforming to the specified difference metamodel. Traditional
approaches to difference calculation consider models as trees, and use the struc-
ture provided by these trees to guide the calculation process [39, 79, 83, 89]. The
calculation algorithms used for calculating differences are based on matching el-
ements in one model to elements in another model by using one of the four recog-
nized types of matchings: static-identity, signature-based, similarity-based and
language-specific [84]. There are two traditional approaches to specifying the
calculation algorithm—imperative and declarative. An example of an imperative
specification is work presented in [83], where a special language is used to define
the matching criteria for two models of the same metamodel. However, impera-
tive approaches, although more powerful, since the user can define all the details
of the matching, are less generic, since for each new metamodel the compari-
son algorithm needs to be rewritten. Thus, we focus on declarative approaches
which are more generic. However, most traditional declarative approaches have
a fixed calculation algorithm and use a specific type of matching. For example,
in [39] a four-step top-down algorithm for calculating model differences based
on static-identities of model elements is presented. In a differences calculation
approach by [89] a two-step top-down algorithm is presented. In the first step a
signature-based matching is used to map elements of one model to elements of
the other model. In the second step the similarity-based matching is used to im-
prove the results of the first step by matching elements, not matched in the first
step, based on the similarity of their relations. In the approach proposed by [79]
an algorithm for calculating model differences using similarity based matching
is presented. This is a bottom-up algorithm, which has two steps, and is based
on a tree-comparison algorithm of Chawathe et al. [48]. In the first step, model
elements are matched based on their similarities, and in the second step the dif-
ferences are calculated by taking into consideration matched elements. Unlike
the other two mentioned algorithms, the calculation process of this algorithm can
be influenced by setting the threshold values for a similarity function.

Our approach to calculating differences extends the approach of Keller et al. [79].
We chose to extend this approach because it uses similarity-based matching,
that is the most generic metamodel-independent approach to model matching,
and because it was presented in the context of MDSE, and thus was easy to
extend and adopt to our purposes. The core of our approach is a comparison

56 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

metamodel that all the models being compared must conform to. This meta-
model allows us to represent models as trees, thus enabling us to use the ideas
of tree-comparison [48] in our algorithm. Although our algorithm is based on
similarity-based matching, the comparison metamodel, the similarity function,
and the comparison algorithm are designed in such a way that it is possible to
use all four types of matching. For example it is possible to define external
functions which can be used to match similar elements of a specific type, thus
enabling the signature-based matching. Also, it is possible to declare a set of at-
tributes as a carrier of the unique identifier of model elements, thus enabling the
static-identity matching and the language-specific matching. Section 3.3 gives a
more detailed description of our approach to calculating differences.

Based on the presented approaches we have created a prototype tool for repre-
sentation, calculation and visualization of differences which can be found online
in [30].

3.2 Representation of Model Differences

As already mentioned, traditional four-layer metamodeling approaches are lim-
ited in describing differences metamodels which fully satisfy the model differ-
ence requirements introduced in Section 3.1. In order to illustrate this, we pro-
vide a description of the approach of Cicchetti et al. [50], which is a state-of-the-
art approach in the representation of differences between MOF-based models.
The schematic representation of their approach is depicted in Figure 3.1. In their
approach, for each MOF-based Metamodel a specific Differences Metamodel is
generated. Particulary, as depicted in the top right part of Figure 3.1, for each
Metamodel element, three elements of the Differences Metamodel are created
(Added, Deleted, and Changed element). For each selected Metamodel element
the instances of the created elements represent added, deleted or changed in-
stances of the selected Metamodel element.

Next, we will consider the UML differences metamodel (see Figure 3.2) which
is specified in [50]. Based on this metamodel, the following two claims can be
made: The first claim is that the ChangedOperation element of the differences
metamodel specializes and references an Operation element of the UML meta-

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 57

MOF

Metamodel

Metamodel

MM

Model

Real System

M3

M1

M2

M0

MM2MMD

transformation

Differences

Metamodel

(MMD)

Differences Model

(MD)

conformsTo

conformsTo

conformsTo

conformsTo
representedBy

conformsTo

Added

Deleted

Changed

ModelElement

updatedElement

induces

Figure 3.1: Schematic of an approach to obtain differences metamodel from a metamodel
presented in [50]

model. As a consequence, if an instance of an Operation element has changed,
the difference model will contain both the instance of the Operation element and
the instance of the ChangedOperation element. Thus, even if the change has hap-
pened to only one attribute of the instance of an Operation element, the complete
instance of the Operation element must be included in the differences model.
Furthermore, in models with deeper hierarchies, a change to an attribute of an
instance of a metamodel element deep in the hierarchy induces the inclusion
of all the ancestors of this element instance in the differences model. The sec-
ond claim is that the relations between metamodel elements are not transformed.
As a consequence, the instances of these relations are not directly included in
the difference models. For example, if an instance of a Class element changes its
parent, it is not specified in the differences metamodel how this change is treated.
Based on these claims, it is clear that the difference metamodels obtained by us-
ing the approach of [50] do not fully satisfy all of the requirements specified in
the introduction, in particular minimality and self-containment.

The cause of this shortcoming is the fact that traditional metametamodels (MOF
in this case), in order to be generic, equate is-instance-of and conforms-to re-
lations between the metametamodel, metamodels and models. Thus, models
conform to, and are considered the instances of metamodels. Consequently,
metamodels are at the appropriate ”level” for defining difference metamodels.
However, since the metamodels are instances of metametamodels, in order to

58 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

A t t r i b u t e

A d d e d A t t r i b u t e D e l e t e d A t t r i b u t e C h a n g e d A t t r i b u t e

+ n a m e : S t r i n g

+ v i s i b i l i t y : V i s i b i l i t y K i n d

C l a s s

A d d e d C l a s s D e l e t e d C l a s s C h a n g e d C l a s s

+ i s A b s t r a c t : B o o l e a n

*

C l a s s i f i e r

+ n a m e : S t r i n g

t y p e

p a r e n t

O p e r a t i o n

+ n a m e : S t r i n g

+ v i s i b i l i t y : V i s i b i l i t y K i n d

+ i s C o n s t r u c t o r : B o o l e a n
o p e r a t i o n s

P a r a m e t e r

+ n a m e : S t r i n g

+ p o s i t i o n I n d e x : I n t e g e r

*

*

A d d e d O p e r a t i o n

D e l e t e d O p e r a t i o n

C h a n g e d O p e r a t i o n

A d d e d P a r a m e t e r

D e l e t e d P a r a m e t e r

C h a n g e d P a r a m e t e r

u p d a t e d E l e m e n t

u p d a t e d E l e m e n t

u p d a t e d E l e m e n t

u p d a t e d E l e m e n t

Figure 3.2: UML differences metamodel as defined in [50]

use metamodels to instantiate models they need to be interpreted. This interpre-
tation abstracts from the metametamodel details that are important for defining
differences at a granularity required to satisfy the minimality requirement. For
example, it is not possible to relate elements of the differences metamodel to
parts of the elements present in the metamodel (parts such as attributes and re-
lations), but the elements of the differences metamodel are related to complete
metamodel elements. Also, the important information on the relations between
metamodel elements is hidden behind their interpreted forms, which are edges
connecting metamodel elements.

In order to specify a differences metamodel which fully supports the require-
ments defined in Section 3.1, and in order to shed more light on the meaning of
model differences, we introduce a new metametamodel architecture.

3.2.1 Enhanced Metametamodel used to describe fine-

grained differences metamodels - EMMM

The enhanced metametamodel is simple enough to allow an effective representa-
tion of model differences, and it is powerful enough to describe all graph-based
models. This metametamodel also induces a new organization of the standard
four-layer architecture. The new architecture is depicted in Figure 3.3, and the

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 59

M E T A M E T A M O D E L

M E T A M O D E L

R E A L S Y S T E M

i s - i n s t a n c e - o f i s - i n s t a n c e - o f

c o n f o r m s - t o

m o d e l s

M O D E L

M 3

M 2 M 1

M 0

Figure 3.3: New organization of the layered architecture of metamodels and models

MMElement

name:String

MMAttribute

name:String

type:String

MMReference

label:String

cardinalityLB: String

cardinalityUB:String0..*

0..*

0..*

MElement

MAttribute

MReference

0..*
value:String

0..*

0..*

0..*

0..*

1
1

1

0..*Metamodel

URI:String

Model

name:String
0..*

0..*

1 0..*

1 0..*

0..*

1

version:String

Figure 3.4: Enhanced metametamodel - EMMM

enhanced metametamodel (EMMM) is depicted in Figure 3.4. A more extensive
discussion on the reasons for introducing the enhanced metametamodel, and on
the syntactic and semantic details of the enhanced metametamodel is given in
Chapter 2.

In the traditional four-layer architecture, a model is obtained by first instantiating
the metametamodel into a metamodel and then instantiating the metamodel into
a model. Thus, it uses two instantiations in sequence. These instantiations are
of a different nature, since they start from different kinds of models and result
in different kinds of models. This is comparable to a two-level grammar. In the
new architecture, both the metamodel and the model are obtained by instantiation
from the metametamodel. Here, there is only one notion of instantiation, which

60 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

is applied ‘in parallel’. This is comparable to a single programming-language
grammar that defines both type constructions (cf. metamodels) and typed ex-
pressions (cf. models).

Our enhanced metametamodel explicitly captures the relation between metamod-
els and models on one level. The interpretation of the enhanced metametamodel
is as follows: The metametamodel describes both the metamodels and the con-
forming models. Metametamodel elements that are related to metamodels are
colored light-grey, and those elements that are related to models are colored
dark-grey. Metamodels are instances of the Metamodel element, and models are
instances of the Model element. Metamodels contain instances of the MMEle-
ment. Models contain instances of the MElement. Each MElement instance is
related to one MMElement instance (similarly for MReference and MAttribute).
Instances of MElement correspond to Objects and instances of MMElement cor-
respond to Classes in the standard object-oriented paradigm.

An example metamodel and a model conforming to that metamodel are depicted
in Figure 3.5 (A::B expresses that A is an instance of metametamodel element B).
The example metamodel allows the definition of State Machines. The elements
constituting the metamodel are colored light-gray. The metamodel contains two
instances of the MMElement. One of them, named State, represents states and the
other one, named Transition, represents transitions. The MMElement instance
representing states contains an instance of an MMAttribute named label. The
MMElement instance representing transitions contains two instances of MMRef-
erence, which both reference an MMElement instance representing states. One
of these MMReference instances denotes the end of the transition connected to
the source (From) state, and the other MMReference instance denotes the end of
the transition connected to the target (To) state.

The example model is named SM1, and its elements are colored dark-gray. SM1
contains three instances of the MElement. Of those three instances, two are states
and one is a transition (since two of them reference MMElement instance named
State and one of them references MMElement instance named Transition). One
of the states contains an MAttribute instance having the value A, and the other
state contains an MAttribute instance having the value B. This means that the
labels of those states are A and B respectively. The transition contains two in-

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 61

::MMElement

name="State"

::MMReference

label="From"

cardinalityLB="0"

cardinalityUB="1"

::MElement

::MReference

::Metamodel

URI="Statemachine"

::Model

name="SM1"

::MMAttribute

name="Label"

type="String"

::MMElement

name="Transition"

::MMReference

label="To"

cardinalityLB="0"

cardinalityUB="1"

::MElement

::MElement

::MAttribute

value="A"

::MAttribute

value="B"

::MReference

version="1"

Figure 3.5: Example metamodel and model

stances of the MReference. One of those instances is associated to MMReference
instance labeled From and it references a state labeled A. Thus, state A is the
From state. The other instance of the MReference is associated to MMReference
instance labeled To and it references state labeled B. Thus, state B is the To state.

Our enhanced metametamodel (and its associated architecture) makes the re-
lation between models and metamodels more explicit than the traditional four-
layer architectures. This also allows for a fine-tuned representation of differences
metamodel, which we describe in the next section.

62 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

3.2.2 Differences metamodel

To describe our differences metamodel, we will first define the structure and
meaning of differences between two models. We will assume that there are
two models A and B being compared, that both of these models conform to the
same metamodel, and that both are instances of the EMMM. Then, model A and
model B each consist of a set of MElement instances (we will use ‘object’ as a
synonym for ‘MElement instance’ in this section). Within the set of objects of
model B there could exist objects which represent the same entities as objects in
model A. We will say that those objects match objects in model A. The mecha-
nism to check if two objects from two different models match will be discussed
in Section 3.3.

Since one of the requirements for model differences is that they are transforma-
tive, we will consider the differences between the models A and B as a mini-
mal set of objects such that it is possible to use that set of objects to transform
model A into model B by model transformations. Since models A and B consist
of sets of objects, we consider the following set operations as a model transfor-
mation that transforms model A into model B′, equal to model B:

• Delete all objects in the set of objects of model A that are not matched by
any object in the set of objects of model B, obtaining the model B′.

• Add all objects to the model B′ that are in the set of objects of model B
that are not matched by any object in the set of objects of model A.

• For each object OA in model B′ that has a matching object OB in model B,
transform the attributes, references and sub-objects of object OA such that
the resulting object is identical to object OB. If two matching objects are
already identical, do nothing.

The last operation is specified to satisfy the minimality requirement, because
although only the first two operations can be used to transform one set of ob-
jects into another set of objects, the resulting difference models would contain
unnecessary information.

Our differences metamodel is created as an extension of EMMM to support the
specified requirements and set operations. The relation of the differences meta-

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 63

model and the new architecture is depicted in Figure 3.6, and the metamodel
itself is depicted in Figure 3.7.

M E T A M E T A M O D E L

M E T A M O D E L

M O D E L

R E A L S Y S T E M

i s - i n s t a n c e - o f

i s - i n s t a n c e - o f

c o n f o r m s - t o

m o d e l s

D I F F E R E N C E S

M E T A M O D E L

e x t e n d s

D I F F E R E N C E S

 M O D E L

i s - i n s t a n c e - o f

i s - r e l a t e d - t o

i s - r e l a t e d - t o

Figure 3.6: The position of the differences metamodel the new architecture

The interpretation of the differences metamodel is as follows: The difference
models are instances of DifferenceModel. The difference models contain the in-
stances of ElementDifference. The objects that should be deleted from the set
of objects of model A are represented by an instance of a DeletedElement. The
objects from model B that should be added to the resulting set are represented by
an instance of an AddedElement. The ChangedElement contains the differences
between attributes, references and sub-objects of objects in model A and match-
ing objects in model B. The differences contained in a ChangedElement are
sufficient to transform an object from model A to its matching object in model B.
Notice that in order to fulfill the invertibility requirement, the relations between
difference elements and model elements are containments, and not references.

Our representation gives a clearer picture of what differences really are, viz. sets
of difference objects that are used in a model transformation to transform (the set
of objects representing) one model into (the set of objects representing) another
model. Our differences metamodel is truly metamodel independent, since the
elements that represent differences are only related to metametamodel elements
representing model elements. This representation is fine-grained and solves the
shortcomings of the approach of [50], because the instances of our difference
metamodel contain only the actual changes to (the parts of) objects of the model,
and not complete objects. Thus, difference models contain complete objects only

64 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

MAttribute

MReference

0..*

0..*

MElement

ElementDifference

AddedElementDeletedElementChangedElement

AttributeDifference

ReferenceDifference

0..11

AddedReference

DeletedReference

ChangedReference
0..1

0..1

0..1

1
1

1

0..11

1

0..*

0..*

0..*

0..*
subelements

subelement changes

reference changes
attribute changes

oldValue

0..11 newValue

1
0..1

oldReference

newReference

1

DifferencesModelModel

0..*

1..*

0..*

1

1

0..1

0..1

initial
final

value:String

name:String
version:String

0..*

1

Figure 3.7: Differences metamodel

when those objects are added or deleted, and contain only the changed parts of
changed objects. Also, this representation treats the relations between model
elements in the same way it treats other parts of model elements.

3.3 Calculation of Differences

The process of calculating model differences usually consists of three parts: rep-
resenting the two models being compared as trees (i.e. exposing the tree-like
structure of models), matching the nodes in those trees, and calculating differ-
ences based on the matchings found [39, 79, 89]. Representing models as trees
is possible because traditional metametamodels allow a hierarchical representa-
tion of models. The matching of the nodes in model trees has the goal of finding
objects that represent the same entities in both trees. There are four general ap-
proaches to matching [84]. Static-identity based matching assumes the presence
of universally unique identifiers (UUID) that are assigned to model elements

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 65

upon creation and that persist with the model elements. In this approach, model
elements that have identical UUIDs are matched.

Signature-based matching assumes that for each model element, a uniquely iden-
tifying signature can be calculated based on features of the model element. The
elements that have the same signature are matched.

Similarity-based matching requires a similarity function that calculates the simi-
larities between two model elements. Only elements with similarity value greater
than a certain threshold value are matched.

Language-specific matching assumes that the metamodel offers a way of uniquely
identifying model elements. For example, in Ecore [11], some attributes of a
model element can be marked as keys. Two instances of the model element in
Ecore can be matched if they have identical values of the attributes marked as
keys.

Our approach to calculating differences extends the approach of Kelter et al. [79],
which utilizes similarity-based matching. In their approach, two models being
compared are represented as trees. Their calculation algorithm has two steps.
In the first step the model trees are traversed bottom-up, and similar model ele-
ments in both trees are matched by using a similarity function. In the second step
the model trees are traversed top-down and based on the matchings discovered
in the first step, the differences are calculated. However, the similarity function
provided is not sufficiently generic. For example, the matching process cannot
be influenced except by setting the threshold value of model element types. Also,
certain structural properties of the models being compared, particularly type in-
formation, are not considered.

In our opinion, the similarity function, and with it the comparison process, should
be more controllable. For example, there should be the possibility to define sim-
ilarity sub-functions for attributes of model elements. In this way, a domain
expert could tune the calculation process such that domain specific matching is
obtained. To allow a more configurable calculation algorithm and to allow the
inclusion of the additional structural properties in the calculation algorithm, we
extended the metamodel specified by Kelter et al. [79]. The extension is such that
our new metamodel allows not only similarity-based matching, but also other

66 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

types of matching. Since we use the enhanced metametamodel to represent the
differences metamodel, our calculation metamodel is specified in conformance
to the enhanced metametamodel, and is depicted in Figure 3.8. The calculation

MMElement MMAttribute

ComparisonMMAttribute

key:boolean

used:boolean

group:integer

sfunctionName:String

ComparisonMMElement

attrssimexpression:String

threshold:float

externalsimfunction:String

MElement

ComparisonMElement

hashValue:String

hasKey:boolean

keyValue:String

level:int

typepath:String

0..*CalculationConfiguration

Metamodel

1

referenceThreshold:float

aweight:float

URI:String name:String
name:String

type:String

CID:String

1 1

1

0..*

0..*

0..*

0..*0..*

1
1

rweight:float

overallThreshold:float

subobjectThreshold:float

soweight:float

Figure 3.8: Calculation metamodel used in our approach to calculating differences

metamodel allows the representation of models as trees, and consists of two (log-
ically) separated parts. The first part is represented by the CalculationConfigu-
ration, ComparisonMMElement and ComparisonMMAttribute elements. This
part is related to the metamodel, and can be considered as a metamodel-specific
configuration of a difference calculation process. For each metamodel element
a domain expert can relate an instance of a ComparisonMMElement (and within
it instances of a ComparisonMMAttribute), and thus configure the comparison
algorithm in order to ensure the best matching of model elements conforming
to that specific metamodel element. Notice that although the model differences
are metamodel independent, the calculation process is metamodel dependent be-
cause the comparison algorithm exploits the structure specified by metamodels.

The second part is represented by the ComparisonMElement, and is related to the
models being compared. This part contains information such as the hash-value
of a model element, or the existence of universally unique identifiers (called

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 67

Keys here) in certain model elements. The instance of ComparisonMElement is
generated in a preprocessing step for each model element in each model being
compared, and is used instead of a model element as a node in the model tree.

3.3.1 Preliminaries: Tree-comparison algorithms

In [124] an algorithm is given for calculating the best edit distance between a
string and a tree (the edit distance is a minimum-cost mapping between two
trees). The authors prove that the problem of calculating the edit distance be-
tween two unordered trees is in general NP-complete. The cause of this is the
lack of structure of the trees being compared. However, if a specific structure
is imposed upon the trees being compared, polynomial time algorithms exist as
shown by Liu et al. [90] for unordered trees, or as shown by Chawathe et al. [48]
for ordered trees (LaDiff algorithm).

The algorithm that we define, however, does not calculate the minimum edit dis-
tance as defined in [124]. Because of the extra structural properties imposed by
the models we use in the calculation process, the minimum edit distance cannot
be used in its original form. The main reason for this is that the additional struc-
tural properties allow only the deletion of a complete sub-tree, thus disallowing
replacing a node with its sub-tree. Another reason for not calculating minimum
edit distances is that the model differences should help in understanding the evo-
lution of models. Minimum edit distances, in the mathematical sense, could
impose difference models that are not understandable because the elements that
do not represent the same entities in both models would be included in differ-
ences. Thus, in our approach we have two related sub-goals: finding minimal
differences, such that they provide the most insight into the (possible) evolution
of one model into another model.

3.3.2 Preliminaries: Assumptions and Definitions

We assume the existence of two models, A and B, having the same metamodel,
and conforming to the EMMM. The requirement is to calculate the differences
between A and B such that those differences conform to a differences metamodel

68 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

specified in Section 3.2.

Our algorithm for calculating differences consists of three steps. In the first step
the similarities between objects in models A and B are calculated. In the second
step, based on the similarities found, a matching of objects is calculated. In the
last step the calculation of differences based on the calculated matchings is done.

Some approaches, for example [48] or [79], combine the first and the second
step into one step where the similarities are calculated and similar objects are
immediately matched. We kept these steps separate, because the structure of
trees representing models and the characteristics of our similarity function then
allow better matchings to be found.

There are four structural properties of the models being compared that are ex-
ploited in our calculation algorithm to improve its performance and precision.
The first property is that the trees representing models (referred to as compari-
son trees in the remainder) will be composed only of instances of a Comparison-
MElement element (thus, only objects will appear as nodes in comparison trees).
The attributes and references of objects will not be considered as nodes in the
comparison tree (though they will be used in the calculation). Since elements in
the model are considered nodes in comparison trees, we use node as a synonym
for model element from now on.

We will say that t(x) is a type of a node x, par(x) is a parent of x and an(x) is an
ancestor of x. The ancestor relation is the transitive closure of the parent relation.
Relation m(x,y) expresses that objects x and y match. Finally, s(x,y) expresses
that objects x and y are similar.

The second property involves the structure provided by the metamodel: if an
object x in model A matches object y in model B (m(x,y)), then t(x) = t(y).
This property states that two objects can match only if their types coincide. The
type of an object is the MMElement instance that that object is related to. This
property is used in the first step of the algorithm to improve performance, by
matching only objects of the same type.

The third property reflects our view on the relation between similar and matched
objects, in case that moved objects are not allowed: if object x in model A

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 69

matches object y in model B, then m(an(x),an(y)), and t(x) = t(y), and s(x,y)
holds. This property states that two objects can match if their ancestors match,
if they are of the same type, and if they are similar. It is used in the third step of
the algorithm to match similar elements.

The final property is that all objects in both models are identifiable. Thus, each
object has a locally unique identifier, which is unique in the model that the object
resides in. For example, this unique identifier can be the address of the memory
location of the object.

A detailed description of the comparison algorithm can be found in the following
Section.

3.3.3 Model Comparison Algorithm

This section provides further details of our comparison algorithm.

In order to calculate similarities between two objects, the meaning of the simi-
larity between two objects needs to be defined first. We will say that two objects
are similar if they can be considered the same entity in both models. The same
in this context means that the designer of the second model considers the entity
in the second model as an evolved version of an entity in the first model. Thus,
the same entities do not have to be identical.

One way to define similarities is by using a similarity function. The similarity
function defined in [79] takes two model elements (also referred to as objects),
and returns a real value between 0 and 1. If the similarity value between two
objects is above a certain threshold, then those objects are considered the same.

In [79], the similarity function is calculated between all model elements that are
on the same level in the first and the second model. This approach to calculating
similarity is fast enough for smaller models, but for larger models it poses a bot-
tleneck. For larger models, which contain thousands of objects, with large num-
ber of attributes, this algorithm, although of polynomial complexity, requires an
excessive amount of processing time. The approach presented in [108] alleviates
the problem by using results from the field of multidimensional search. In their

70 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

approach, each attribute is considered as one dimension in a multidimensional
space, and a set SB is transformed into a structure which allows fast discovery
of the most similar objects to the objects in this set. However, these results can
only be applied in cases where all attributes are related, and when all attributes
can be transformed into a metric space. In general this is not the case, thus we
have decided to use a different format of the similarity function.

We define the similarity function as a function that returns a value between 0 and
1, but for each metamodel element a threshold is set. In line with our definition
of the same entities, if two model elements (objects further on) can be considered
the same, then the similarity between them is larger than the defined threshold.

In order to give a formalized definition of our similarity function, we must con-
sider parts of objects. As defined by the enhanced metametamodel, each object
may contain attributes, references, and sub-objects (attributes are instances of
the MAttribute element, references are instances of the MReference element, see
Figure 3.4). We introduce separate similarity sub-functions for attributes, refer-
ences, and sub-elements, and the results returned by those similarity functions
are used to calculate the final similarity value between two objects. In particular,
for each object that is able to match object X , three similarity values concerning
object X are kept, one for attributes, one for references, and one for sub-objects.
Separate similarity functions are introduced because attributes, references, and
sub-objects are conceptually different, and thus it is safe to do separation of con-
cerns at this level. Let Sattributes(X) be a set of objects that are similar to object X
considering attributes. Let Sre f erences(X) be a set of objects that are similar to
object X considering references. Let Ssubob jects(X) be a set of objects that are
similar to object X considering sub-objects. Then, for all distinct objects Y in
sets Sattributes(X), Sre f erences(X) and Ssubob jects(X), the final similarity value be-
tween any of those objects and object X , is obtained as: 1 Note that t(X) is the
type of a node X, and, e.g., t(X).aweight is the weight for attributes for all nodes
of the type t(X).

S(X ,Y) =
(t(X).aweight ∗ sattributes(X ,Y)+ t(X).rweight ∗ sreferences(X ,Y)+ t(X).soweight ∗ ssubobjects(X ,Y)

t(X).aweight + t(X).rweight + t(X).soweight
.

1This is true only in case that the object X does not have keys, in the case that the object X do
have keys, the value of keys determine the similarity value, in a binary fashion

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 71

float attributeSimilarity(ComparisonMElement o1 , ComparisonMElement o2,

CalculationConfiguration c) {

float similarities [] = new float[o1.attributes.length];

for (i = 0; i < o1.attributes.length; i++) {

MAttribute o1attribute = o1.attributes[i];

MMAttribute attributetype = o1attribute.type;

MAttribute o2attribute = o2.attributes.getByType(attributetype);

SimilarityFunction sf = c.getSimilarityFunction(attributetype);

similarities[i] = sf.calculate(o1attribute , o2attribute);

}

float result = 0.0f;

if (c.getAttributesSimilarityExpression(o1.getType ()) == null) {

for (i = 0; i < o1.attributes.length; i++) {

result = result + similarities[i];

}

result /= o1.attributes.length;

} else {

SimilarityExpression se = c.getAttributesSimilarityExpression(

o1.getType ());

result = se.calculate(similarities[i]);

}

return result;

}

Listing 3.1: Pseudocode of the similarity function for attributes

The similarity function between two objects can now be defined as:

s(X ,Y) = true iff S(X ,Y)> t(X).overallthreshold

The interpretation of the similarity function is as following: An object is similar
to another object only if the similarity value between them is larger than a prede-
fined threshold. The final similarity value between two objects is calculated by
taking into account similarities between attributes, reference, and sub-objects.
However, attributes, references and sub-objects contribute to the similarity value
in different ways, denoted by weights. Thus, if attributes have a stronger influ-
ence on the similarity between objects of a specific type, the weights assigned to
attributes should be larger than weights assigned to references and sub-objects.

Similarity functions for attributes, references, and sub-objects are given next.
Listing 3.1 shows the simplified pseudocode of the similarity function for at-
tributes. The actual implementation described in Appendix A uses results from
the field of multidimensional search, and is more complex in order to be fast.

72 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

float referenceSimilarity(ComparisonMElement o1 , ComparisonMElement o2,

CalculationConfiguration c) {

ReferenceSets rs1[] = o1.splitReferencesByType ();

ReferenceSets rs2[] = o2.splitReferencesByType ();

float similar = 0.0f;

int totalsimilarReferences = 0;

int totalReferences = 0;

for (i = 0; i < rs1.length; i++) {

int numberOfSimilarReferences = compareReferenceSets(rs1[i], rs2

[i]);

totalsimilarReferences += numberOfSimilarReferences;

totalReferences += rs1.length;

}

similar = totalsimilarReferences / totalReferences;

return similar;

}

Listing 3.2: Pseudocode of the similarity function for references

Next, we will consider the similarity function for references. As already men-
tioned, each reference is related to a certain MMReference element which we will
call the type of the reference. We will separate the sets of reference instances of
objects being compared into sub-sets based on the type of the reference. Next,
we will only calculate the similarity between sets that contain references of the
same type. The “naı̈ve” solution of calculating the similarity between two ref-
erences is to calculate the similarity between two objects that those references
reference. However, the problem is that the referenced objects might not yet be
processed (since the first step processes model trees bottom-up). Thus, in or-
der to calculate reference similarities, the first step of the algorithm needs to be
split into two sub-steps. First, similarities between objects need to be calculated
without taking references into account. Second, the similarities found should be
used to calculate reference similarities and to fix object similarities. This is also
known as similarity flooding. However, unlike in traditional approach to similar-
ity flooding, where the similarities are recalculated until they stabilize, we make
a more pragmatical approach, where the number of floods can be pre-defined,
thus increasing the speed of the algorithm. A simplified pseudocode of the simi-
larity function for references is presented in Listing 3.2. The similarity function
for sub-objects is very similar to the similarity function for references. However,
since the similarities between sub-objects are known while calculating the sim-
ilarity of their parent object, it is not necessary to have two sub-steps as with

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 73

float subobjectSimilarity(ComparisonMElement o1 , ComparisonMElement o2,

CalculationConfiguration c) {

SubobjectSets sos1[] = o1.splitSubobjectsByType ();

SubobjectSets sos2[] = o2.splitSubobjectsByType ();

float similar = 0.0f;

int totalsimilarSubobjects = 0;

int totalSubobjects = 0;

for (i = 0; i < sos1.length; i++) {

int numberOfSimilarSubobjects = compareSubobjectSets(sos1[i],

sos2[i]);

totalsimilarSubobjects += numberOfSimilarSubobjects;

totalSubobjects += sos1.length;

}

return similar;

}

Listing 3.3: Pseudocode of the similarity function for sub-objects

references. The pseudocode of the similarity function for sub-objects is given in
Listing 3.3.

Bottom-up calculation of similarities

In the first step of the algorithm, model trees are traversed bottom-up (the root
of the tree is the model itself). At each level of the tree, the objects are separated
into groups by two criteria: their type, and their parent. Thus, groups are made
of objects that have the same parent, and are of same type. This is done in both
trees. Next, each group of objects in the first tree is compared to a group of
objects in the second tree which has the same type, and the parent of the same
type (one group can be compared to several other groups). The comparison
is done by selecting, one by one, objects in all groups of the first model, and
comparing them to all objects in the matching groups of objects from the second
model. For each object in the first model, a list of similar objects in the second
model is created. For each object in the created list a similarity between that
object and the object in the first model is also retained.

The hash-value of an object is used to speed up the calculation of similarities
between objects, because if the objects have the same hash-values, all of their
sub-elements are considered to be identical. However, the use of hash-values is
very limited, since it is computationally hard to calculate hash-values for objects

74 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

containing references.

During the calculation of similarities, if objects in a certain group have Keys
(i.e. universally unique identifiers), the values of these Keys are used instead of a
similarity function (i.e. objects are considered similar if they have the same key
value). After the first step of the algorithm is done, for each object in model A
there is a (possibly empty) list of similar objects in model B.

Top-down calculation of matchings

The second step consists of a recursive top-down traversal of the model trees. At
each recursion step, a set of objects from one tree is compared to a set of objects
from the second tree, and certain elements are possibly matched. At first step,
the sets of objects are top level elements in both models. In subsequent steps, the
sets of objects that are being compared are the sub-objects of the matched objects
at the previous step. The recursion finishes when it is not possible to match any
two objects in the two sets of compared objects (this includes the situation when
one or both of these two sets are empty).

The matching itself is a combinatorial problem. The setup is as follows: there
are two sets of objects, and each object in the first set has the list of objects it
can be matched to in the second set (i.e. similar objects found in the first step of
the algorithm). Furthermore, for all elements that an object can be matched to, a
similarity value is also available. The goal is to maximize the number of matched
elements based on these lists of possible matches and similarities. This is very
similar to a known weighted bipartite graph matching problem - i.e. assignment
problem. Thus, we use a modified Hungarian algorithm to find best matches of
the sets of sub-objects for two matching objects. The modification is due to the
fact that in an assignment problem the matchings are done to minimize the sum
of weights. However, we would like to make matchings which maximize the
similarities. However, since the similarities have an upper bound (value 1.0), we
subtract the similarities from the value 1, and use this values as weights.

Note that the calculation algorithm presented in this chapter is the one that ap-
peared in our paper presented in [111]. However, this algorithm does not cal-
culate the moved elements (elements in model A that have a different parent in

CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . . 75

model B). In order to calculate the moved elements, this algorithm needs to be
extended with two more sub-steps, after the current step. In the first sub-step
of the extended algorithm, similarities are calculated for all unmatched elements
of the same type. In the second sub-step of the extended algorithm, all suffi-
ciently similar elements of the same type are matched (as moved elements). We
implemented this extension for our research in model co-evolution discussed in
chapter 6.

Bottom-up calculation of differences

The third step consists of three sub-steps. The first sub-step calculates the dif-
ferences in terms of deleted or changed sub-elements and attributes. The second
sub-step determines added elements, and the third sub-step determines changes
in references.

The first sub-step consist of a bottom-up traversal of a tree representing the first
model in comparison. For a certain object it might be the case that this object
has a match or that this object does not have a match. If an object does not have
a match, it is instantiated as a DeletedElement difference object. The created
difference model object is stored, and processed further when the parent of the
deleted object is processed. It can be the case that the parent of this object was
deleted also, in that case this difference object is deleted, because it is replaced by
its parent difference delete object. Another case is that the parent of the deleted
object was changed. In that case, the deleted difference object is included as
part of the change object of its parent (an instance of the ChangedElement of
its parent will contain this difference object). If an object has a match, then,
if its matching object is completely identical, nothing happens. Otherwise, a
ChangedElement difference object is created referencing the changed object, and
for all attributes and sub-objects of this object change objects are calculated and
stored in this difference object.

In the second sub-step, a top-down traversal of the tree representing the second
model is performed, and all elements that are not matched are transformed into
AddedElement difference objects.

In the third sub-step, all the references in the first tree are traversed, and for all

76 CHAPTER 3. MODEL DIFFERENCES REPRESENTATION AND . . .

references, all elements that had their identifier changed (i.e. all objects that have
been matched to objects such that the matching object identifier differs from the
initial object identifier) have also their identifier changed in the references.

3.4 Conclusions

In this chapter we presented our extensions to state-of-the art approaches in the
fields of presentation and calculation of model differences. Our approach to
the presentation of model differences introduces an enhanced metametamodel,
where both metamodels and models are directly instantiated from the metameta-
model. This makes it possible to define a more fine-grained difference meta-
model than with traditional metametamodels (e.g. MOF or Ecore). Furthermore,
our difference metamodel is independent of metamodels, thus our approach is
generic.

Our approach to the calculation of differences uses a highly configurable simi-
larity function. This function can express four well-known types of matching:
static-identity, signature-based, similarity-based, and language-specific. The al-
gorithm exploits structural model properties and multidimensional search to ob-
tain good precision and performance.

Chapter 4

Assessing the Quality of Tools for

Model Comparison

In this chapter we discuss three research results that, combined, provide

an experimental validation of our algorithm for the calculation of model

differences described in the previous chapter. The first result discussed is a

method for assessing the quality of model comparison tools. This method

defines means of measuring and interpreting three quality attributes of a

model comparison tool: speed, precision and recall. The next result dis-

cussed is a set of experimental data that we developed. This data set can

be used with the described method to assess the quality of model compari-

son tools that support metamodel-independent model differences. Next, we

describe two tools for metamodel-independent model comparison; one of

which we developed based on our model differences calculation algorithm,

and one commercial tool. As a final result, we describe a series of exper-

iments that were performed by applying the defined data, according to the

77

78 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

defined method, to the two described tools. The results of the experiments

show that the tool we developed is slightly slower than the commercial tool,

but that it calculates the model differences more accurately.

4.1 Introduction

Advances in model driven software engineering have paved the way for many
new research areas, one of which is model comparison - a process of comparing
two models to obtain the difference between those models. This process is es-
sential for understanding the evolution of a model over a period of time, since
this involves comparing different versions of that model. In existing approaches
for model comparison [50, 79, 85, 111], the difference between models is rep-
resented as a set of atomic differences that represent added, deleted, or changed
model elements.

4.1.1 Comparing Models

The process of comparing models consists of the two subprocesses: model-
matching and difference calculation. The model-matching subprocess concerns
the discovery of relations between model elements that model the same entity in
the models being compared. There are four recognized types of model match-
ing: static-identity based, signature based, similarity based and language spe-
cific [83]. Each of these approaches leverages different knowledge on the syntax
and semantics of matched models, in order to provide as accurate matching as
possible. Once the model elements are matched, a differences-calculation sub-
process uses the discovered matchings, and returns the difference between two
models.

Model comparison can be metamodel-dependent, or metamodel-independent. In
metamodel-dependent model comparison, the comparison process is tailored to-
wards comparing models that conform to a specific metamodel (e.g. UML).
In this regard, both the syntax and semantics of the models conforming to that
metamodel are taken into consideration during the comparison [123].

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 79

In metamodel-independent model comparison, the comparison process is not tai-
lored to a specific metamodel, but can be used to compare models regardless
of their metamodel. However, although the existing approaches to metamodel-
independent model comparison use a generic model-matching algorithm, most
of them offer some way of adapting the comparison process to suit a particular
metamodel. For example, model comparison processes that use similarity-based
model matching can be configured by using weights [79, 111].

The advantage of metamodel-independent approaches to model comparison is
their generality. The disadvantage is that the completely automated part of the
comparison process is based only on the syntax of the models being compared,
disregarding any (dynamic) semantics of models. Thus, metamodel-independent
approaches usually provide less accurate results than metamodel-dependent model
comparison approaches. For example, two UML state-machines may be syntac-
tically different, but can exhibit the same behavior. Thus, if only the syntax of
state-machines is taken into consideration, an incorrect or misleading difference
could be reported.

4.1.2 Contributions

In both metamodel-dependent and metamodel-independent approaches to model
comparison, it is required to assess the quality of a particular approach. The
reason for this requirement is that there is no perfect approach, i.e., that would
be able to calculate all the correct differences and only the correct differences.
One way of assessing the quality of a particular approach is through assessing
the quality of a tool implementing that approach. In this chapter, we define a
method and an benchmarking data set, that can be used to assess the quality of
model comparison tools through controlled experiments.

In our approach, the quality of the tool is assessed by measuring three metrics
on the defined benchmarking data. This list of three measured metrics can be
extended easily. In particular, we choose to measure comparison speed, preci-
sion, and recall, which are metrics commonly used for measuring the quality
of tools for comparing models or metamodels (see e.g. [63, 123]). These met-
rics were chosen because they reflect the most desirable properties from the user

80 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

point of view: the comparison tool should provide results fast1, it should return
as much correct differences as possible (i.e. it should have a high recall), and it
should return as few incorrect differences as possible (i.e. it should have a high
precision).

In this work, we focus on metamodel-independent approaches to model com-
parison, though our method and the benchmarking data can also be applied to
metamodel-dependent approaches. We chose this approach since, in our opin-
ion, metamodel-independent approaches are a preferred solution for model com-
parison. The reason for this is that metamodel-independent approaches can
be used off-the-shelf to compare models conforming to a variety of metamod-
els, while metamodel-dependent approaches must be developed for each meta-
model separately. Thus, a company utilizing many metamodels or with evolving
metamodels will prefer a configurable off-the-shelf metamodel-independent tool,
rather than multiple metamodel-dependent tools which would require a model-
comparison expert to develop and maintain.

We applied our method, by using the defined benchmarking data, to two model
comparison tools that offer metamodel-independent model comparison, namely
EMFCompare [9] and RCVDiff [113]. EMFCompare is a tool used in the Eclipse
Modeling Framework (EMF) for both model comparison and model merging
of models that are instances of Ecore [11]. RCVDiff is an academic tool that
can be used for comparison and visualization of models conforming to our en-
hanced metametamodel (EMMM) described in Chapter 2. These particular tools
were selected since both of them are publicly available, are past the initial de-
velopment phase, and are sufficiently documented. We have also considered Fu-
jaba [15] (which utilizes SiDiff [79] comparison algorithm), and OdysseyVCS
[99]. However, these tools are focusing on comparison of UML models (i.e. they
are metamodel-dependent) and thus did not fit our requirements.

The rest of this chapter is organized as follows: In Section 4.2, our method for as-
sessing the quality of model comparison tools is described in detail. Thereafter,
in Section 4.3, a benchmarking data set is described. Next, in Section 4.4, a brief
description of RCVDiff and EMFCompare is given, whereafter we present and

1Fast is a relative term, and it depends both on the modeled system, and on the developers that
are developing the system.

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 81

discuss the results of assessing the quality of those tools by using our defined
method and our benchmarking data set. Finally, in Section 4.5, we discuss possi-
ble improvements to our method and benchmarking data set, and we offer some
concluding remarks.

4.2 Method for assessing the quality of model

comparison tools

Our method assumes that the compared models conform to a metamodel that
conforms to Ecore [11] (or that the compared models (and the metamodels that
they conform to), can be transformed to models (and metamodels) conforming
to Ecore). We have chosen Ecore as the metametamodel (and not MOF [20] or
EMMM [111]) because it is both simple and widely used.

To measure the quality of a model-comparison tool using our method, the tool
should be able to return the model of difference between two models. Moreover,
it is required that the returned difference model consists of atomic differences
which represent added, deleted, or changed model elements. These (atomic)
differences are used to calculate the precision and recall. If the models being
compared are denoted as the original and the target, then:

• A deleted model element is a model element that exists in the original
model but there is no model element in the target model that models the
same entity.

• An added model element is a model element that exists in the target model
but there is no model element in the original model that models the same
entity.

• A changed model element is a model element in the original model that
models the same entity as a model element in the target model, but that is
not identical to the corresponding model element in the target model.

In this paper, the changes to a model element are constrained to changed val-
ues of attributes, and changed, added, or deleted reference instances. Added or
deleted sub-elements are considered as added or deleted model elements, and

82 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

changed sub-elements are considered as changed model elements. Thus, if a
model element A contains a model element B that is changed, then, although el-
ement A is indirectly changed, it is not considered as a changed element in this
method.

As already mentioned, we have chosen to measure three metrics commonly used
for model and metamodel differences: comparison speed, precision, and recall.
Comparison speed is an efficiency metric, while precision and recall are func-
tionality metrics [75].

Comparison speed is measured as the time (in milliseconds) elapsed during the
differences calculation process. In order to describe the precision and recall
metrics, several other terms must be introduced.

• correct differences is the number of atomic differences between two mod-
els as specified by the designer that evolved the original model. In case
that compared models are not evolutionary related, an oracle must exist
which is able to provide the correct differences (i.e. the size of the set of
correct differences);

• found differences is the number of atomic differences between two mod-
els as returned by the comparison tool (i.e. the size of the set of returned
differences);

• matching differences is the number of atomic differences returned by the
comparison tool which are in the set of correct differences (i.e. the size of
the intersection of the sets of correct and returned differences).

Precision is defined as the measure of correctness or fidelity; higher precision of
a tool means that less incorrect differences are returned by the tool. Precision is
a rational value between 0 and 1 and is calculated as:

precision =


matching differences

found differences if found differences 6= 0
1 if found differences = 0

and matching differences = 0

Recall is the measure of completeness of comparison; higher recall of a tool
means that the tool finds more correct differences. Recall is a rational value

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 83

between 0 and 1 and is calculated as:

recall =


matching differences
correct differences if correct differences 6= 0

1 if correct differences = 0
and matching differences = 0

It is clear that in order to calculate the precision and recall metrics, it is required
to have a set of correct atomic differences for each pair of models being com-
pared. Thus, the set of samples for assessment experiments should consist of
triples of models:

experiment samples = {(M1,M2,DM)}

The first model in each sample triple (M1) is considered as the original model.
The second model in each triple (M2) is considered as the evolved (version of the)
original model (this model will be referred to as the target model). The last model
in each triple (DM) is (the model of) the correct difference between the original
and the target model, i.e. DM = diff (M2,M1). For example, if the name of a class
was changed from A to B by a model designer, a correct difference model would
include only the atomic difference which reports that the class has changed its
name. An example incorrect difference would contain two atomic differences,
one representing the deletion of a class named A, and another representing the
addition of a class named B. In order to use a sample as a benchmark sample,
each sample should be accompanied with the benchmark result2:

benchmark result = (precision,recall,speed)

Measurement of the selected metrics by a tool for model comparison is done
by the following procedure, for all experiment samples: First, an experiment
sample (M1,M2,DM) is selected. Next, by using the tool, models M1 and M2 are
compared. The difference model returned by the tool is denoted as ReturnedDM.
Next, one should calculate the correct differences and the found differences num-
bers. The correct differences is the number of elements in the DM difference
model, and found differences is the number of elements in the ReturnedDM dif-
ference model. Next, DM and ReturnedDM must be compared in order to calcu-
late the matching differences number. In order to compare DM and ReturnedDM,

2The benchmark result is used to compare the result returned for the assessed tool with the result
of a benchmark tool.

84 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

it should be possible to relate a particular atomic difference element to a partic-
ular model element. In order to calculate the matching differences number, the
following algorithm is applied:

• Find all pairs of deleted elements in DM and in ReturnedDM, that are
related to the same model element.

• Find all pairs of added elements in DM and in ReturnedDM, that are re-
lated to the same model element.

• Find all pairs of changed elements in DM and in ReturnedDM, that are
related to the same model element, and that their changes are identical.

• Combine all the found elements in a set, and calculate the size of that set.
This size is the matching differences number.

Thereafter, the values of precision and recall for the experiment sample can be
calculated (and all three calculated metrics can be compared to the benchmark
results for the used sample).

4.3 Data sets for assessment experiments

In our assessment experiments, we used two subsets of model triples. The first
of those subsets is a small set of manually defined CIF [5] model triples. This set
of model triples is described in the first subsection of this Section; it represents
models actually encountered in practice. The second subset of model triples
contains a large number of models automatically generated by several generator
tools we developed. The generation process, as well as the tools used to generate
the triples in this test set, are described in the second subsection of this Section.

We chose to use two experiment sets because we did not have access to a large
number of manually defined model triples. Thus, in order to increase the confi-
dence in the correctness of the measured results, we decided to generate another,
larger, set of model triples. Also, it is easier to control certain model character-
istics, such as size, complexity and coverage of various features in a generated
set.

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 85

4.3.1 Manually defined data set

CIF stands for Compositional Interchange Format. It has been designed as a
generic interchange format for hybrid transition systems [5, 43]. CIF models
can be created in the Eclipse framework and have two possible representations:
grammar-based by using Xtext [34] and model-based by using Ecore [11].

For this study, we selected several CIF models developed by designers in the De-
partment of Mechanical Engineering at Eindhoven University of Technology. All
selected models are versioned and can be found in the CIF repository. However,
since most of the available CIF models are in the grammar-based representation,
model transformations were used to obtain the model-based representation of the
selected models. Each selected CIF model gave rise to one experiment sample
triple. The first component of each of the CIF model triples is the first version of
a selected model in the repository. The last committed version in the repository
is taken as the second component of each triple (the revision number of each
version of each selected model is mentioned in the results). The third compo-
nent of each triple, i.e., the correct differences model between an original model
and an evolved model, was obtained with the help of developers that evolved
the selected models. In particular, the developers were given a tool for manual
model matching, that allowed them to manually match the elements in both the
original and the evolved model. Based on the manual matchings, the tool calcu-
lated the correct differences between those models. The calculated differences
are represented by a differences model conforming to the differences metamodel
depicted in Figure 4.4. After the calculated differences were inspected to validate
their correctness, they were used as a third component in a sample triple.

4.3.2 Generated data set

The second set of experiment sample triples contains generated models. The
models constituting the first component of each triple are Ecore-based, and are
generated by a model-generator tool. Moreover, the metamodels of those models
are generated by a metamodel-generator tool. These generator tools are Java-
based, and can be configured to produce metamodels or models having a speci-
fied (but possibly randomized) structure. A detailed description of the generation

86 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

process of the first component of each of the generated sample triples is given in
Section 4.3.2. The second and third component of each triple are also automat-
ically generated. A detailed description of the generation process of the second
and the third components is given in Section 4.3.2.

Our approach to the generation of metamodels and models is similar to the ap-
proach presented in [97]. However, while the authors of [97] generate only mod-
els, we generate both models and metamodels. Moreover, our generation process
can be configured by using several random distributions, and not only the uni-
form one proposed by the authors of [97]. Also, while it is possible to use a
transformation language such as Epsilon [13] or ATL [1] to generate metamod-
els and models, we have opted to use Java for this purpose. The reason is that
our generation process relies heavily on several random distributions which are
not included in transformation languages.

Generating models and metamodels

The metamodel-generator tool is configured by using configuration models con-
forming to the (metamodel-)configuration metamodel depicted in Figure 4.1.

name : EString
number : Eint

UserDefined

RGenerailzation

AttributeConfig OverallRelationConfig DataTypesConfig

PerClassConfig

rate : EDouble

Triangular Lognormal Exponential

ClassConfig

RAssociation

percentage : EInt

CNormal

CInterfaces

CAbstract

ANoKeys

AKeys

keyspercent:Eint

MetaModelConfig

AMix RAggregation

PercentageInterface

Distribution
classname : EString
functionname : EString
parameters : EString

min : EInt
max : EInt

avg : EInt mean : EDouble
stddev : EDouble

AggregationDepth

Figure 4.1: Metamodel of the configurations used by metamodel generator

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 87

Each metamodel-generator configuration contains an instance of a Metamodel-
Configuration class. Values of attributes of instances of this class specify the
number of metamodels that should be generated, the names of metamodels to be
generated, and the location in which the generated metamodels should be stored.
Each MetamodelConfiguration instance can contain sub-objects. A ClassConfig
object specifies how the classes should be created. In particular, one can specify
the percentage of normal, abstract or interface classes. Moreover, one can spec-
ify the distribution which is used to calculate the number of generated classes.
An OverallRelationConfig object specifies the overall number and type of ref-
erences generated, and PerClassConfig object specifies the number and type of
references generated per class 3. An AttributeConfig object specifies the number
and type of attributes generated per class. A DataTypesConfig object specifies
the number of data types generated. In the version of the metamodel-generator
used for this study, we have simplified the generation such that each generated
metamodel has only one package, and that the only data type used is EString.

In order to configure the metamodel-generator tool, we first obtained a large set
of metamodels from the ATLAN metamodel zoo [2]. Next, we measured pa-
rameters relevant to a metamodel-generator configuration on the obtained set of
metamodels (e.g. the distribution of classes in metamodels, or the distribution
of attributes in classes), and we set-up one metamodel-generator configuration
by using those parameters. It is important to note that in both the metamodel-
generator tool and the model-generator tool, a random distribution must be de-
fined for each element in the configuration. This distribution is used to ran-
domize the structure of the generated metamodels and models. We obtained the
distributions and their parameters, by fitting the measured data using the tool
CumFreq [7]. For this study, we have generated 10 metamodels.

The model-generator tool is configured by using configuration models conform-
ing to the (model-)configuration metamodel depicted in Figure 4.2. The model-
generator configuration specifies the number of created models, the name of
models, the tree-structure of models, and the structure of the objects constituting
the model. It is important to note that our model-generator tool considers only
syntactical features of metamodels in order to generate models. Thus, semantical

3In case of conflicts, the values generated by using the OverallRelationConfig object have priority.

88 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

name : EString
number : Eint

UserDefined

RelationInstancesConfig

PerClassConfig

rate : EDouble

Triangular Lognormal Exponential

ClassInstancesConfig

ModelConfig

Distribution
classname : EString
functionname : EString
parameters : EString

min : EInt
max : EInt

avg : EInt mean : EDouble
stddev : EDouble

Figure 4.2: Metamodel of the configurations used by model generator

constrains (e.g., OCL constraints) are not taken into consideration. This is not
an issue if metamodel-independent model comparison tools are used, since the
comparison algorithms are based only on the syntax of models, but could be an
issue if a larger data set should be generated for testing model-dependent model
comparison tools.

To configure the model-generator tool we have used a large set of ATL models
found in the ATL transformations zoo [3]. We measured the parameters relevant
to the model-generator configuration (e.g., we measured the number of objects
per model, and we used the CumFreq tool for the distribution fitting of this pa-
rameter), and we set-up one model-generator configuration by using those pa-
rameters. For the purpose of this validation study we have generated 50 models
for each generated metamodel, hence 500 models in total.

Generated differences and patching models

To automatically generate the correct differences for models generated by the
model-generator tool, we have created a tool for generating model differences.
To generate the evolved versions of the models generated by the model-generator
tool, we have created a tool for applying the generated differences. Since the
role of the model differences in this case was to ”mutate” the initial models, in
this section the term model mutations is used as a synonym for the term model
differences. Also, the term patching is used to denote the application of a model
difference to an original model in order to obtain the evolved (i.e. target) model.

The tool for creating model mutations, similarly to the other two generator tools,

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 89

can be configured by using configurations that are models conforming to the
(mutator-)metamodel depicted in Figure 4.3.

min : EInt
max : EInt
avg : EInt

MutationSpecification

TriangularDistributionConfiguration
- Low (1)
- Medium (2)
- High (3)

FuzzyComplexity

udmClassName : EString

UserDefinedMutation

coveragepercent : EInt
newclassespercent : EInt
deletedclassespercent : EInt

CoverageConfiguration

rmComplexity : FuzzyComplexity

ReferencesMutation

amClassName : EString
amDistanceValue : FuzzyComplexity

AttributeMutation
copypercent : EInt
mutationpercent : EInt

CopyObjectMutation

subobjectComplexity : FuzzyComplexity
normalized : EBoolean
name : EString

MutationConfiguration

Figure 4.3: Metamodel of the configurations used by model mutator

There are two types of configurations for the model-mutator tool. The first type
are the distribution configurations, that are instances of TriangularDistribution-
Configuration class. The second type are coverage configurations, that are in-
stances of CoverageConfiguration class.

Distribution configurations are used to generate a random number of mutations
by using a predefined (triangular) distribution. The parameters of the distribution
(minimum, maximum and an average number of generated mutations) are set as
the attributes of the configuration object. Coverage configurations are used to
generate mutations that affect a certain percent (i.e. a certain coverage) of all el-
ements in the model. The configurations of the Distribution type can be used to
generate a predefined number of mutations, while the configurations of the Cov-
erage type can be used to generate mutations which affect a certain percentage
of all model elements in a model.

For both configuration types, mutation aspects of attributes, references, or sub-
objects of elements in models can be specified. For attributes, the name of the
function that will do the actual mutation, and (by using fuzzy numbers) the dis-
tance between the initial value and the evolved value of the attribute, must be
specified. For references, the complexity of the references (also by using fuzzy

90 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

numbers) must be specified. In this study, the complexity of the references is
reflected in the connectedness of the mutated references. Thus, more complex
references mutations are those that result in more connected references. For
sub-objects, the percentage of objects that will be copied, and the percentage of
mutations applied to those copies must be specified.

For this validation study, we have developed 10 configurations. Eight of those
are coverage configurations, that combine different coverage percentages and
different mutation complexities. Two of those are distribution mutations, with
the same distribution but different mutation complexities for attributes and refer-
ences.

The result of the model mutator tool is a set of operation-based model differences
that conforms to the metamodel depicted in Figure 4.4.

This set of difference operations is designed based on the set of difference op-
erations described by Herrmannsdoerfer et al. [72]. However their differences
operations are not concrete enough, and cannot be immediately used as a patch.
Thus, we improved this metamodel such that its instances can be immediately
used to generate the evolved model from the original model (i.e., it can be used
to patch the original model). Notice that the differences metamodel used for mu-
tations differs from the differences metamodels used in RCVDiff and EMFCom-
pare. The reasons for adopting another differences metamodel are of a practical
nature: The differences metamodel used by RCVDiff is not appropriate since the
models and mutations should be Ecore-based. The differences metamodel used
by EMFCompare is not suitable to be used as a patch (one of the main reasons
for this is that the persisted difference model contains neither original nor the
changed values of attributes.).

Moreover, we have used the operation-based differences metamodel instead of
a state-based differences metamodel (used by RCVDiff and EMFCompare) for
two reasons. The first reason is that the operations used in this metamodel are
easily comparable to atomic differences used by RCVDiff and EMFCompare.
Thus, it is easy to calculate the matching differences number. The second reason
is that the operations can be easily used as a patch. Thus, the creation of a
model-patcher tool is simplified.

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 91

o
ri
g
in

a
lM

o
d
e
lN

a
m

e
 :
 E

S
tr

in
g

e
v
o
lv

e
d
M

o
d
e
lN

a
m

e
 :
 E

S
tr

in
g

u
s
e
d
R

e
fe

re
n
c
e
s
R

e
s
o
lv

e
r

:
E

S
tr

in
g

c
la

s
s
U

s
e
d
T
o
P

e
rs

is
tA

tt
ri
b
u
te

s
 :
 E

S
tr

in
g

M
u
ta

ti
o
n

n
a
m

e
 :
 E

S
tr

in
g

C
o
m

p
le

x
O

p
e
ra

ti
o
n

p
o
s
it
io

n
 :
 E

In
t

n
e
w

V
a
lu

e
:
E

S
tr

in
g

s
e
q
u
e
n
c
e
p
o
s
it
io

n
 :
 E

In
t

O
p
e
ra

ti
o
n

0
..
*

s
u
b
o
p
e
ra

ti
o
n
s

1
..
1

A
d
d
O

b
je

c
tO

p
e
ra

ti
o
n

P
ri
m

it
iv

e
O

p
e
ra

ti
o
n

C
h
a
n
g
e
O

b
je

c
tO

p
e
ra

ti
o
n

M
o
v
e
O

b
je

c
tO

p
e
ra

ti
o
n

D
e
le

te
R

e
fe

re
n
c
e
O

p
e
ra

ti
o
n

fe
a
tu

re
N

a
m

e
:E

S
tr

in
g

v
a
lu

e
 :
 E

S
tr

in
g

A
tt
ri
b
u
te

O
p
e
ra

ti
o
n

M
A

D
e
le

te
V

a
lu

e
O

p
e
ra

ti
o
n

M
A

C
h
a
n
g
e
V

a
lu

e
O

p
e
ra

ti
o
n

C
h
a
n
g
e
R

e
fe

re
n
c
e
O

p
e
ra

ti
o
n

R
e
fe

re
n
c
e
O

p
e
ra

ti
o
n

ID
R

e
fe

re
n
c
e

D
e
le

te
O

b
je

c
tO

p
e
ra

ti
o
n

c
la

s
s
if
ie

rN
a
m

e
 :
 E

S
tr

in
g

A
d
d
R

e
fe

re
n
c
e
O

p
e
ra

ti
o
n

O
b
je

c
tR

e
fe

re
n
c
e

Q
N

R
e
fe

re
n
c
e

o
b
je

c
tQ

N
 :
 E

S
tr

in
g

H
a
s
h
C

o
d
e
d
R

e
fe

re
n
c
e

0
..
*

1
..
1

1
..
1

1
..
1

e
v
o
lv

e
d
o
b
je

c
t

1
..
1

re
fe

re
n
c
e
s
fr

o
m

o
b
je

c
t

a
d
d
e
d
s
u
b
o
b
je

c
ts

d
e
le

te
d
a
tt
ri
b
u
te

s

d
e
le

te
d
s
u
b
o
b
je

c
ts

o
ri
g
in

a
lo

b
je

c
t

n
e
w

p
a
re

n
t

re
fe

re
n
c
e
s
to

o
b
je

c
t

re
fe

re
n
c
e
s
to

o
b
je

c
t

s
u
b
c
h
a
n
g
e
s

c
re

a
te

d
a
tt
ri
b
u
te

s

re
fe

re
n
c
e
s
fr

o
m

o
b
je

c
t

n
e
w

re
fe

re
n
c
e

re
fe

re
n
c
e
d

F
e
a
tu

re
O

p
e
ra

ti
o
n

A
d
d
D

e
le

te
O

b
je

c
tO

p
e
ra

ti
o
n

S
in

g
le

A
tt
ri
b
u
te

O
p
e
ra

ti
o
n

M
A

A
d
d
V

a
lu

e
O

p
e
ra

ti
o
n

p
o
s
it
io

n
 :
 E

In
t

p
o
s
it
io

n
 :
 E

In
t

n
e
w

V
a
lu

e
 :
 E

S
tr

in
g

U
s
e
rD

e
fi
n
e
d
R

e
fe

re
n
c
e

re
fe

re
n
c
e
V

a
lu

e
:E

S
tr

in
g

o
b
je

c
tH

a
s
h
C

o
d
e
:E

In
t

o
b
je

c
tI
D

 :
 E

S
tr

in
g

Figure 4.4: Metamodel of the operation based differences produced by model mutator

Based on the differences metamodel depicted in Figure 4.4, we developed a
model-patcher tool that takes the model and a mutation and produces a mutated
(i.e. evolved) model. By using the model-mutator tool and the model-patcher

92 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

tool, we have obtained the second and the third component of all triples in the
second test set.

4.4 A comparative study of EMFCompare and

RCVDiff

In this section, we first briefly describe the RCVDiff and EMFCompare tools for
comparing models. Thereafter, we present the results obtained from those two
tools by applying our method described in Section 4.2, and by using the bench-
marking data sets described in Section 4.3. Finally, we discuss the assessment
results4.

4.4.1 RCVDiff

RCVDiff is a tool that can be used for the calculation and visualization of model
differences [113]. The metamodel of differences returned by RCVDiff is de-
picted in Figure 4.5. In this study, moved elements were not considered.

RCVDiff uses a similarity-based model matching algorithm that can be config-
ured to support all other types of model matching (i.e., static-identity based, sig-
nature based, and language-specific). A matching algorithm used by RCVDiff is
configured by an instance of a configuration metamodel depicted in Figure 4.6.
Each configuration (i.e., an instance of a configuration metamodel) is defined for
one metamodel, and can be used to improve the matching results when instances
of that metamodel are compared. In particular, for each metamodel element, one
can instantiate a configuration element that specifies how to match the instances
of that metamodel element. It is possible to specify the influence of attributes,
references and sub-elements on the comparison process. Moreover, it is possible
to specify a user defined function that will be used instead of the predefined algo-
rithm to compare the instances of a particular metamodel element. This function
can be used to take into account both the syntactic and the semantic aspects of
model elements during the comparison. Details of the configuration metamodel,

4The experimentation data and all results can be found at [4].

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 93

ElementDifference

AddedElement DeletedElement MovedElement

AttributeDifference

ReferenceDifference

AddedReference

DeletedReference

ChangedReference

1

DifferencesModel

final parent

MElement

MAttribute

value:String

Model

name:String
version:String

0..*

0..1

1
1

0..1

0..*

0..*

0..*

has

MReference

contains

1

refers to

ChangedElement
11

1

1

1

0..*

0..*

0..*

0..1

0..*

0..*

1

1
1
1

1

0..*

0..1 0..1

contains

final model

initial model

new ref

0..*

0..*

1

1

initial parent

new attr

old ref

old attr

Figure 4.5: RCVDiff differences metamodel

and the matching algorithm of RCVDiff can be found in Section 3.3.3.

4.4.2 EMFCompare

EMFCompare is a tool that can be used for 2-way and 3-way comparison of
Ecore-based models, as well as for manual or automatic merging of Ecore-based
models [9]. EMFCompare is an integral part of the Eclipse framework start-
ing from the version Helios [10]. The comparison process in EMFCompare is
split into two sub-processes: model matching and differences calculation. EMF-
Compare uses a generic, similarity-based, heuristic model matching algorithm,
and offers the possibility of manually defining custom matching algorithms. Af-
ter the models have been matched, the calculation of differences is done by a
generic difference algorithm, that is (almost) trivial and does not warrant user
extensions.

The differences returned by EMFCompare conform to a metamodel for state-

94 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

MMElement MMAttribute

ComparisonMMAttribute

key:boolean

used:boolean

group:integer

sfunctionName:String

ComparisonMMElement

attrssimexpression:String

threshold:float

externalsimfunction:String

MElement

ComparisonMElement

hashValue:String

hasKey:boolean

keyValue:String

level:int

typepath:String

0..*CalculationConfiguration

Metamodel

1

referenceThreshold:float

subobjectThreshold:float

URI:String name:String
name:String

type:String

CID:String

1 1

1

0..*

0..*

0..*

0..*0..*

1

1

Figure 4.6: RCVDiff configuration metamodel

based differences depicted in Figure 4.7.

Unlike RCVDiff, that uses a declarative approach to model comparison, EM-
FCompare uses an imperative approach, and cannot be configured easily. In
particular, the matching algorithm used by EMFCompare is hard-coded in Java
classes, and there is no clear description on how to adapt the algorithm for a spe-
cific metamodel. For example, a source of the class named StatisticBasedSimi-
larityChecker contains a set of weights that are used in comparison. However,
those weights are not related to a specific metamodel element, but are used for all
metamodel elements. Thus, extending EMFCompare is a complex and tedious
process, which requires extensive knowledge of Java, Ecore, and EMFCompare
itself.

4.4.3 Results

Manually defined data set

The measurement results, in case that CIF model-triples set is used, are given in
the Table 4.1 5.

In this case, we performed three experiments. In the first experiment, we used

5Next to the model name, revision numbers of compared versions of a particular model are given.

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 95

RCVDiff RCVDiffcon f igured EMFCompare

Model name Model SizeMutation SizeRecallPrecisionPerformanceRecallPrecisionPerformanceRecallPrecisionPerformance
bottle (r1348,r1550) 422 57 0.54 0.28 814 0.54 0.30 585 0.61 0.74 250
buffer (r1374,r1571) 212 20 0.87 0.50 814 0.9 0.53 295 0.9 0.78 47

parallel composition (r1514,r1732) 285 25 0.12 0.04 1159 0.12 0.04 729 0.04 0.02 94
aut def2 (r1415,r1431) 164 16 1 0.13 762 1 0.13 568 0.81 0.76 62

aut def2 roundtrip (r1430,r1557) 400 11 1 0.05 982 1 0.05 927 0.36 0.25 156
auts (r1415,r1557) 531 25 0.16 0.03 783 0.88 0.59 742 1 0.86 125

scoping core (r1431,r1557) 39 3 1 1 273 1 1 167 1 1 31

Averages 293 22 0.68 0.29 744.57 0.77 0.38 573.28 0.67 0.63 109.29

Table 4.1: Measurements results, for a set of manually defined models

our method with the defined data set, to measure the defined metrics on RCVDiff,
with the default values of configuration parameters. In the second experiment we
configured RCVDiff to work with CIF models, and measured the metrics again.
In the third experiment we measured the defined metrics on EMFCompare, by
using the default EMFCompare configuration.

It is clear that EMFCompare is an order of magnitude faster than RCVDiff (how-
ever, almost all comparison times are less then 1 second, and are thus acceptable
to a user). The reason for this is a complex metamodel of CIF models (having
around 60 elements and many relations), which is transformed in a very large
EMMM metamodel (around 1200 elements), slowing down the comparisons in
RCVDiff (it takes around 160 milliseconds to load and process the CIF meta-
model and its default configuration). However, while the recall values of RCVD-
iff in the first experiment are practically equal to the ones obtained by the third
experiment, the recall values obtained by RCVDiff in the second experiment are
higher than the ones obtained in the first and third experiments. This was ex-
pected since RCVDiff was configured in this case. The precision of RCVDiff is
considerably lower than the precision of EMFCompare in both cases. In order to
find the reason for this behavior further research is required.

Generated data set

Since in the case of generated models, the tools were compared by using 500
models, but only 10 different mutation configurations, the results are shown as
averages for each mutation configuration. Each mutation configuration is applied
to 5 models conforming to each of 10 metamodels, thus the average results are
over 50 models. The results, sorted by a configuration number, are given in

96 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

Table 4.2 6.

RCVDiff EMFCompare
Configuration IDAvg. Model SizeAvg. Mutation SizeAvg. PrecisionAvg. RecallAvg. PerformanceAvg. PrecisionAvg. RecallAvg. Performance

C1 242.44 206.54 0.78 0.59 296.06 0.46 0.34 95.52
C2 186.72 267.8 0.63 0.67 153.38 0.46 0.55 106.42
C3 207.46 213.38 0.74 0.62 196 0.48 0.36 109.16
C4 239.36 406.86 0.66 0.67 236.74 0.49 0.55 167.62
C5 198.68 191.62 0.74 0.59 157.04 0.47 0.34 92.9
C6 202.6 333.26 0.64 0.71 202.7 0.47 0.54 132.32
C7 199.52 189.92 0.76 0.56 196.42 0.48 0.39 93.62
C8 215.76 322.46 0.67 0.69 193 0.47 0.65 122.06
C9 230.44 198.26 0.74 0.57 200.3 0.48 0.35 112.4
C10 199.84 432.1 0.62 0.64 186.36 0.44 0.48 115.22

Column averages 212.28 276.22 0.7 0.63 201.8 0.47 0.45 114.72

Table 4.2: Measurements results, for a set of automatically generated models

In the case of generated models, the speed of RCVDiff and EMFCompare is in
the same order of magnitude. However, precision and recall values obtained by
using RCVDiff, are, in average, significantly better than those obtained by using
EMFCompare.

4.4.4 Threats to validity

In this section we will discuss threats to the validity of our experiments. The
first threat is concerned with the requirement that the experimental data must
contain correct differences. In our manually defined experimental data set, this
threat was addressed by having the users, that developed and evolved the se-
lected models, define the correct differences. The users were given a tool for this
purpose, and, based on the users mappings, this tool produced both a differences
model, and a human-readable text notation that could be checked for correctness
of the calculated differences. In our generated experimental data set, the correct
differences are generated, and are thus correct by construction.

The second threat is concerned with the soundness and completeness of the ex-
perimental data set. A sound experimental data set is a correct one. A complete
data set is the one that contains all types of atomic model differences that can be
calculated by the tools.

The models in both experimental data sets are sound - all models are Ecore-

6All the columns except the configuration IDs contain averages

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 97

based, and can be loaded by Eclipse. The correct differences in the manually
defined experimental data set are sound since we checked all the differences
manually. The correct differences in the generated experimental data set are
sound by construction. The choice of operation-based differences makes this
easy to prove, since by generating correct operations, one also generates correct
differences.

Since our manually defined data set was relatively small and we could not guar-
antee its completeness, we decided to generate a larger data set to ensure com-
pleteness. However, we did not formally check the experimental data set for
completeness.

Another threat to validity emerges from the fact that we used a different differ-
ence metamodel in the data sets, then difference metamodels used by the tools. In
order to address this threat, we first labeled all elements in all models. Next, we
related each atomic difference (in all difference models) to a particular model el-
ement, by using the labels of those model elements. Then, we defined a mapping
between the correct difference models used in the data sets, and the difference
models returned by the tools. Next, for each atomic model difference in the data
set, we checked if there is an atomic model difference returned by the tool, that is
related to the same model element. If this was the case, and there was a mapping
between these differences, we considered these differences as the same.

4.4.5 Discussion

The results show that the speed of the comparison, of the two compared tools,
is in the same order of magnitude if simpler metamodels are used, and it is in
favor of EMFCompare when complex metamodels are used. Nevertheless, both
tools calculate the differences in a timespan acceptable to the user (up to a few
seconds).

In the case of manually defined experiment data, if the tools are not configured,
the average recall is almost the same for both tools, and EMFCompare has a
better precision. However, after configuring RCVDiff, both its precision and
recall increased.

98 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

In the case of generated experiment data, the recall and precision values for
EMFCompare tool are around 0.5, which means that in average half of the re-
turned differences are correct. The average precision and recall of RCVDiff in
this case are 0.7 and 0.63. However, the values of 0.5, or even 0.7, for preci-
sion and recall are surprisingly low, and further research is required to discover
reasons for this behavior.

4.5 Conclusions and Future Work

In this chapter, we have described a method and a benchmarking data set, for
assessing the quality of model-comparison tools. Moreover, by using our defined
method and benchmarking data, we have performed a series of experiments on
the model-comparison tools EMFCompare and RCVDiff. Comparison of the
results of those experiments show that the quality of these two tools is similar.
Furthermore, the obtained results, together with the data set, can be used as a
benchmark for assessing the quality of future tools for (metamodel-independent)
model-comparison.

Future work could involve, for example, extending our method with new met-
rics. Also, further test cases could be included in the benchmarking data set;
in particular, more manually defined test samples are needed. Moreover, we
considered only metamodel-independent approaches and tools. Thus, while our
method is applicable to both metamodel-independent and metamodel-dependent
approaches, the data set is not applicable to metamodel-dependent approaches,
and metamodel-dependant data could be included in the data set.

Next, the generator tools that were used to generate test samples, could be im-
proved by considering even more structural aspects of metamodels and models
(or even by considering semantical aspects of models). Moreover, these tools
are also useful in other areas of Model-Driven Software Engineering, for exam-
ple for generating larger test cases for other modeling facilities (e.g. for testing
model transformations).

Furthermore, we did not take into account the comparison of models in which
model elements are moved (a moved model element is an element in a target

CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . . 99

model, that models the same entity as a matching model element in an original
model, but the parents of a moved element and the matching element do not
model the same entity in the compared models), and this could also be included
in future extensions of the method and the benchmarking data set.

Finally, although we are confident that our experimental data set is complete, a
formal proof of completeness of the experimental data set should be provided.

100 CHAPTER 4. ASSESSING THE QUALITY OF TOOLS FOR . . .

Figure 4.7: EMFCompare differences metamodel

Chapter 5

Model Differences Visualization

This chapter describes our approach to visualization of state-based model

differences, that improves state-of-the-art approaches in this field. Our im-

provement is based on the fact that all existing approaches focus on only

one visualization formalism in order to visualize model differences. We ar-

gue that in order to visualize model differences, multiple formalisms should

be combined in order to achieve the best results. Thus, in our approach

we combine two existing formalisms. The combination offers better under-

standability of the syntax and semantics of the model differences than each

of its components in isolation. We validated our approach by building a tool

for the visualization of model differences. The details of this tool are also

described in this chapter.

101

102 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

5.1 Introduction

Model Driven Software Engineering (MDSE) is a field of Software Engineering
which focuses on models as main design artifacts, and uses model transforma-
tions as means of relating models. Consequently, mature model configuration
management systems are required to manage the complexity of modeled systems
in MDSE environments. One of the major functions of model configuration man-
agement systems is model comparison. Model comparison (model differencing)
is a complex process which consists of three concerns: representation, calcula-
tion, and processing of differences [84]. The rationale behind this separation of
concerns is that usually it is not only required to calculate differences, but it is
required to store, process, and visualize them in the context of a model configu-
ration management system.

In this chapter we consider visualization of model differences. In [120] it was
observed that traditional difference visualization approaches using text-based,
tree-based or even diagrammatic visualization techniques, poorly scale with the
size of the differences model. There are two reason for this behavior. The first
reason is based on the fact that model differences are considered information
content. Thus, we believe that their visualization should be based on the follow-
ing idea of information visualization specified by Shneiderman [105]: overview
first, zoom and filter, then details-on-demand. However, the existing approaches
are not suited to visualize model differences in a way that completely supports
the above mentioned idea. The second reason can be derived implicitly from
the first reason: the traditional approaches use only one technique. However, in
order to provide the best insight into the meaning of differences, more than one
technique should be used. In Section 5.2 we give a detailed discussion on these
two reasons.

In order to improve the model differences visualization capabilities provided by
traditional approaches, we extend and combine two existing techniques: poly-
metric views [87] and a generic visualization framework for metamodel-based
languages. We choose the first approach because it was already used in the
context of visualizing model differences, and it provides good overview, zoom,
and filtering capabilities. We choose to develop a generic visualization frame-
work for metamodel-based languages in order to support the semantically rich

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 103

detailed representations of differences. A recent approach, described in [102],
which combines a tree-based visualization technique provided by EMF Com-
pare [9] with a visualization framework called GMF [18], uses similar ideas
and makes a step beyond traditional approaches, but is tightly coupled with the
Eclipse framework [10]. Our approach, and an associated tool, are generic, and
both are metamodel and framework independent. The preliminaries required for
understanding our approach are given in Section 5.3. Thereafter, in Section 5.4, a
detailed description of our approach is presented. Next, in Section 5.5, details of
a prototype tool that implements the described approach are presented. Finally,
in Section 5.6 we discuss the results and propose some ideas for further research.

The main contributions of this chapter are:

• We discuss two reasons why traditional differences approaches poorly
scale with the size of the difference models.

• We specify a new visualization approach that combines polymetric views
and a framework for the visualization of metamodel-based languages, and
thus scales excellently in the presence of large difference models.

• We present the details of a model difference visualization tool based on
our approach.

5.2 Model Differences as Information Content

In our approach to visualizing model differences, we adopt the idea of infor-
mation visualization proposed by Shneiderman [105]: Overview first, zoom and
filter, then details-on-demand. The reason for adopting this idea is based on the
fact that model differences are information that needs to be visualized. Thus, it
is required to have overview capabilities, such that the global meaning of differ-
ences can be comprehended. Next, it should be possible to zoom in and filter
differences, such that the user of configuration management systems (referred to
as user in the rest of this section) can syntactically and semantically associate
the differences to the parts of the models that those differences are related to.
Finally, the selected differences should be rendered by using a sufficient level of
detail to provide the best insight into their meaning.

104 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

Traditional approaches to difference visualization do not fully agree with Shnei-
derman’s idea. It was observed that they scale poorly with the size of the dif-
ference model [120]. One of the reasons for this is that traditional visualization
techniques cannot fully support Shneiderman’s idea. In order to support this
claim, we will provide a formalized definition of overview, zoom, filtering, and
details-on-demand in the context of model differences. Thereafter, we will show
why the traditional approaches have problems in satisfying these requirements.
The important thing to know is that the ultimate goal of all the described concepts
is providing the maximum insight into the meaning of model differences.

Useful overview techniques in the context of model differences should provide
an overview of one or both models used to calculate the differences, and should
relate the elements of those models to the elements in the differences model.
Thus, an overview should allow the user to get a grip on the meaning of model
differences in the context of the models that they are calculated from. The zoom
should allow the users to focus on the interesting details. The filtering should
allow the user to quickly navigate to the parts of the difference model that are
important to her. The filtering should be based on the meaning of the differ-
ences, not only on their structure. The details-on-demand should allow the user
to extract and focus on the details of selected differences.

Having defined the concepts of overview, zoom, filtering, and details-on-demand,
we will provide an explanation for why the traditional approaches to visualiza-
tion of model differences do not satisfy all of these concepts.

For example, in text-based visualization, it is hard to provide overview, because
the text usually does not fit the display. Modern text-based visualization tech-
niques, for example the technique described in [107] provide means for overview,
zooming, and filtering by having a slider on which the position of changed ele-
ments in relation to initial models is marked. However, the overview, zooming
and filtering in this case are syntax-based and do not provide much insight into
the meaning of differences. Furthermore, in order to get insight into the details
of selected differences a user needs to spend quite some time interpreting the
textual representation of the differences.

In tree-based visualization, for example in [9], getting the overview of the dif-

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 105

ferences is still not so easy for larger models because the size of the visible part
of the tree is limited by the size of the display. However, the combination of the
overview and inherent zooming allows for a much better insight in the meaning
of the differences. The filtering in tree-based visualization approaches is also
easier than in text approaches, since the hierarchical structure of the tree allows
for an easier interpretation of the meaning of differences. However, the filtering
still does not provide the means to extract just the required combination of parts
of the model and parts of the differences model. Also, the details of the differ-
ences are still not easy to comprehend, since the user needs to interpret the tree
representation of the differences.

In the diagrammatic visualization approaches, for example in [102], the differ-
ences are represented in a natural visualization environment of the metamodel of
the models used to calculate the differences. The combination of overview and
zoom allows the differences to be examined at the appropriate level of detail,
thus providing clear insight into their meaning. For example, a small overview
is combined with a larger zoom view, such that the portion of the system that
is currently in the focus of the zoom is also outlined in the overview. However,
the filtering of differences based on their meaning is still hard; for example, it
is hard to extract all element types having a certain property, because these ele-
ment types might be in different parts of the system, and thus they might only be
visualized in different diagrams.

The mentioned examples uncover another reason why traditional approaches
scale poorly with the size of the differences model—the traditional approaches
use only one visualization technique. Thus, approaches that aim to provide a
visualization of model differences that scales well, have to combine multiple
techniques.

5.3 Preliminaries

As already mentioned, the three main concerns in the process of comparing mod-
els are the representation of, the calculation of, and the processing (e.g., visual-
ization) of model differences. In this section we first describe our approach to
the representation of model differences, which specifies the difference presen-

106 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

MMElement

name:String

MMAttribute

name:String

type:String

contains

label:String

cardinalityLB: String

cardinalityUB:String

MElement

MMReference

MAttribute

value:String

Metamodel

URI:String

0..*

1
Model

name:String
version:String

0..*

0..*

0..*

0..*

0..*

1

1

1

1
1

0..*

0..1

0..*

0..*0..*

0..*

0..*

0..*

0..*

conforms to

of role

has

is of type

MReference

is value of

contains

consists of

11
1

refers to

has

inherits

has

1

contains

has

0..*

1

1

0..*

1

refers to

Figure 5.1: Metametamodel that models used in the calculation of differences conform
to

tation format used in our visualization technique. This approach is generic and
metamodel-independent, and is similar to approaches like EMFCompare [9] or
the approach presented in [50]. Next, we briefly describe our approach to the
calculation of model differences that produces difference models that conform to
the specified presentation format. The details of both approaches can be found
in [111].

5.3.1 Representation of model differences

Our approach to the representation of model differences allows those differences
to be used in Model Driven Engineering environments. Thus, the differences be-
tween two models are represented by a difference model which conforms to a dif-
ference metamodel. The difference metamodel is based on the metametamodel
that the models (and metamodels) used in the process of calculating differences
conform to. This metametamodel is depicted in Figure 5.1. This metametamodel
describes both metamodels and models. Metamodels are obtained by instantiat-
ing the Metamodel element, and models are obtained by instantiating the Model
element. This metametamodel can be considered as a domain specific metameta-
model which is geared towards representation of model differences, and not to-
wards general modeling like MOF or Ecore. Thus, it is more comparable to the

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 107

M
A
tt
ri
b
u
te

M
R
ef
er
en
ce

0
..
*

0
..
*

M
E
le
m
en
t

E
le
m
en
tD
if
fe
re
n
ce

A
d
d
ed
E
le
m
en
t

D
el
et
ed
E
le
m
en
t

C
h
an
g
ed
E
le
m
en
t

A
tt
ri
b
u
te
D
if
fe
re
n
ce

R
ef
er
en
ce
D
if
fe
re
n
ce

0
..
1

1

A
d
d
ed
R
ef
er
en
ce

D
el
et
ed
R
ef
er
en
ce

C
h
an
g
ed
R
ef
er
en
ce

0
..
1

0
..
1

0
..
1

111

0
..
1

1

1

0
..
*

0
..
*

0
..
*

0
..
*

su
b
el
em

en
ts

su
b
el
em

en
t
ch
an
g
es

re
fe
re
n
ce
 c
h
an
g
es

at
tr
ib
u
te
 c
h
an
g
es

o
ld
V
al
u
e

0
..
1

1
n
ew

V
al
u
e

1
0
..
1

o
ld
R
ef
er
en
ce

n
ew

R
ef
er
en
ce

1

D
if
fe
re
n
ce
sM

o
d
el

M
o
d
el

0
..
* 1
..
*

0
..
*

1 1

0
..
1

0
..
1

in
it
ia
l

fi
n
al

M
M
E
le
m
en
t

n
am

e:
S
tr
in
g

M
M
A
tt
ri
b
u
te

n
am

e:
S
tr
in
g

ty
p
e:
S
tr
in
g

M
M
R
ef
er
en
ce

la
b
el
:S
tr
in
g

ca
rd
in
al
it
y
L
B
:
S
tr
in
g

ca
rd
in
al
it
y
U
B
:S
tr
in
g

0
..
*

0
..
*

0
..
*

1

M
et
am

o
d
el

U
R
I:
S
tr
in
g

0
..
* 1

1
0
..
*

0
..
*

1

1

0
..
*

0
..
*

v
al
u
e:
S
tr
in
g

n
am

e:
S
tr
in
g

v
er
si
o
n
:S
tr
in
g

0
..
*1

0
..
*

Figure 5.2: Differences metamodel

cores of MOF and Ecore, and does not contain some of the advanced modeling
concepts like packages or inheritance. However, the ideas presented using this
metametamodel also apply to other, more complete, metametamodels.

The difference metamodel is an extension of the introduced metametamodel and
is depicted in Figure 5.2. The difference models are instances of the Differ-
encesModel element. The main building blocks of the difference models are
instances of ChangedElement, DeletedElement, and AddedElement. Assuming
that the difference model represents the differences between models A and B,
then the instances of the AddedElement are elements that are in model B and not
in model A, the instances of the DeletedElement are elements that are in model
A but not in model B, and the instances of the ChangedElement are elements that

108 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

represent the same entities in both models but are not structurally identical.

5.3.2 Calculation of model differences

Traditional approaches to the calculation of model differences are based on tree-
matching algorithms. These algorithms match the nodes of two trees that repre-
sent two models being compared and based on this matching the differences are
calculated. Several types of matching are recognized: static-identity, signature-
based, similarity based or language-specific. Our algorithm for calculating dif-
ferences is also based on tree-matching algorithms. Unlike traditional approaches
that support only one type of matching, our algorithm is defined in such a way to
support all four types of matching. In order to allow such a highly configurable
calculation process, we extend the differences metametamodel with additional
elements. The extended metametamodel is interpreted as a calculation meta-
model and is depicted in Figure 5.3.

M M E l e m e n t

M M A t t r i b u t e

M M R e f e r e n c e0 . . *

0 . . *

C o m p a r i s o n M M A t t r i b u t e

k e y : b o o l e a n

u s e d : b o o l e a n

g r o u p : i n t e g e r

s f u n c t i o n N a m e : S t r i n g

C o m p a r i s o n M M E l e m e n t

a t t r s s i m e x p r e s s i o n : S t r i n g

t h r e s h o l d : f l o a t

e x t e r n a l s i m f u n c t i o n : S t r i n g

M E l e m e n t

C o m p a r i s o n M E l e m e n t

h a s h V a l u e : S t r i n g

h a s K e y : b o o l e a n

k e y V a l u e : S t r i n g

l e v e l : i n t

t y p e p a t h : S t r i n g

0 . . *

11

1

0 . . *

11

C a l c u l a t i o n C o n f i g u r a t i o n

0 . . *

M e t a m o d e l

0 . . *

1
0 . . *

r e f e r e n c e T h r e s h o l d : f l o a t

s u b o b j e c t T h r e s h o l d : f l o a t

Figure 5.3: Calculation metamodel

Calculation models are used by our algorithm and they have two important fea-
tures. The first feature is represented by instances of the CalculationConfigu-
ration element. This feature of the calculation model offers the possibility of

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 109

specifying the metamodel-specific configurations that are used to influence the
calculation process of models related to the specific metamodel. Thus, for all
models that conform to a specific metamodel, only one calculation configuration
needs to be set. The second feature is represented by instances of the Compar-
isonMElement. The instances of the ComparisonMElement represent nodes in
model trees, and are generated for each model element in a preprocessing step,
with the help of the metamodel-specific configuration.

Model comparison algorithm

The input to our comparison algorithm are two models A and B and a metamodel-
specific configuration. Our comparison algorithm consists of three steps. In the
first step the similarities between objects in the models A and B are calculated.
We say that two objects are similar if they can be considered the same entity. We
define similarities by using a similarity function which returns true if two objects
are similar, and false otherwise.

In the second step, based on the similarities found, a matching of objects is cal-
culated. The matching is performed by traversing the tree top-down. At the
first level, based on the similarities found, some objects may be matched. For
all matched objects at the first level, the matching process continues recursively
until the bottom of the tree is reached or there are no sub-objects that can be
matched.

In the last step, the calculation of differences is done based on the matchings
found. This step consists of three sub-steps. The first sub-step is the calculation
of differences in terms of deleted or changed sub-elements and attributes (for all
matched and not-matched elements in model A). The second sub-step consists
of the calculation of added elements (for all non-matched elements in model B).
The third sub-step consists of the calculation of changes in references.

5.4 Differences Visualization

As already noted, our approach to the visualization of model differences ex-
tends and combines two other approaches. The first approach involves polymet-

110 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

ric views, which were first described in [87]. A polymetric view is a lightweight
visualization component, which gives insight into a certain aspect of the system
by combining simple visualization and metric information. The idea of [87] was
used for visualizing model differences in [120]. In the approach of [120], two
trees representing two models being compared are represented in a unified form.
This unified form represents matched elements in models being compared as the
same node in the tree. This representation allows the definition of metrics related
to model differences based on the unified tree. These metrics can then be used to
specify views that provide insight in the relation of model differences and model
elements.

We follow the approach of [120], and use a unified tree as a representation of
both models used in comparison. However, since we do not impose a restriction
that a calculation process is included in the visualization process, we do not use
calculated similarities between objects as a basis of a metric calculation. The
metrics in our case are calculated only by using the initial model (used in cal-
culating the differences) and the differences model. Also, we do not presuppose
the significance of changes, but this significance can be encoded in the metrics
calculation functions.

Our approach to polymetric views is generic, in a sense that we allow user-
defined views and metric functions. However, as noted by Lanza et al. [87],
since the users rarely define their own views and metrics, we defined a small set
of metrics, and by using those metrics we defined a default set of views (based
on the set of cluster views defined in [87]). The set of metrics we defined is
presented in Table 5.1. The metrics apply to instances of MElement, which are
also called objects in this context. The subobjects are instances of MElement
contained in another instance of MElement.

Based on this set of metrics, we defined a set of views. For example, the SYS-
TEM HOTSPOTS view specified below defines an overview of the system: all
elements in the model are visualized, the width of each element is relative to
the number of attributes, the height of each element is relative to the number of
references in the element. The color of each element is based on the relative
number of changes to the element (the color gradient from white to red is used to
represent the relative number of changes), the elements are sorted by the color,

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 111

Name Description
MA Number of attributes
MR Number of references
MSO Number of subobjects
NA Number of changed attributes
NR Number of changed references
NSOD Number of changed direct subobjects
NSOT Number of changed subobjects which takes into account the

transitive closure of the subobject relation
NC Sum of attribute, reference and subobject changes
RNA Relative number of changed attributes
RNR Relative number of changed references
RNSOD Relative number of changed direct subobjects
RNSOT Relative number of changed subobjects which takes into ac-

count the transitive closure of the subobject relation
RNC Relative number of sum of attribute, reference and subobject

changes
MMName Encoding of the MMElement instance names

Table 5.1: The defined set of metrics

112 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

and the elements are presented in the form of a checker table (a checker table is
a simple matrix representation, where elements are visualized in the cells of a
matrix based on the specified sort criteria).

• SYSTEM HOTSPOTS - Layout: Checker. Target: Objects. Scope: All.
Width: MA. Height: MR. Color: NC. Outline: -. Sort: Color.

The attributes of the views are almost the same as defined in [87]: Width, Height
and Color of an icon representing a selected model element. The exception is an
extra attribute: Outline adapted from [120], which is defined as a colored out-
line of the icon representing a selected model element. Each of the attributes is
related to a defined metric, and this connection is used to provide visual charac-
teristics to the icon representing a model element in a view.

Polymetric views provide a good overview of the changes, the zoom capabili-
ties are also supported by selecting the type of elements to be visualized, and
the filtering is done by variations in dimensions and colors of visualized ele-
ments. However, the meaning of details of differences is not easily grasped. An
example that reveals this problem is depicted in Figure 5.4. In this example, a
simplified INHERITANCE CLASSIFICATION view of an example model, and a
semantically rich view of the same model are presented.

In order to provide better insight to the meaning of the differences details, we
extend the polymetric views approach with the possibility of defining special
”views” that expose the details of the differences in a natural (metamodel-spe-
cific) way. Thus, for example, a user can select an icon in a polymetric view,
and choose to visualize its details in the metamodel-specific way. In software
language terminology, the metamodel specific way of visualizing the model cor-
responds to a concrete syntax of a model. The example is given in Figure 5.5.

The second approach borrows the ideas of an ”Open Visualization Framework
for Metamodel-Based Modeling Languages” specified in [55], and is also quite
similar to the automated approach to generation of model editing environments
called EuGENia [14], which allows the users to declaratively map metamodel
elements to GMF [18] elements which are used to visualize and edit Eclipse-

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 113

Figure 5.4: An INHERITANCE SPECIFICATION view and the metamodel-specific rep-
resentation of the same example model

based models [10]. This permits semi-automatic creation of model editors. How-
ever, unlike the authors of EuGENia (and GMF) we are not focused on creating
complete editors. Our goal is a framework-independent approach to visualizing
model differences that fits into the idea of polymetric views.

In our approach we specify a small set of rule types for defining rules to map
an arbitrary metamodel onto a graphical metamodel based on dot [8]. This al-
lows visualization of models conforming to the mapped metamodel. By using a
unified representation of models and differences, it also allows the visualization
of model differences. Since the dot framework is able to automatically layout
graphs, we get the layout of the visualized model differences for free. The rules
also allow for the definition of a metamodel-specific differences layout. In the
following sections we will first present the mapping, the rationale behind it, and
the mapping language. Then we will present our approach to the visualization of
differences by using the specified mapping.

114 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

document

object1::State object2::State

name="name"

value="A"

object3::Transition

reference1::From reference2::ToAO1::Attribute

name="name"

value="B" -> "BC"

AO2::Attribute

elementID=1 elementID=2 elementID=3

referencedID=1 referencedID=2

B -> BC

SCENARIO1: the user clicks the object2::State rectangle:

SCENARIO2: the user clicks the document rectangle:

B -> BCA

Polymetric view: SYSTEM OVERVIEW

Figure 5.5: Example of combination of polymetric views and metamodel-specific visu-
alization approaches

5.4.1 Metamodel to dot mapping

In order to define a generic metamodel-to-dot mapping, we specify a require-
ment that all elements and references in a metamodel are identifiable. The ex-
ample metametamodel that we use in this chapter supports this requirement (see
Figure 5.1).

The mapping is represented by a set of rules. Each rule specifies a mapping
of one metamodel element to one or more dot graphical elements. Each dot
graphical element is described by a simplified metamodel depicted in Figure 5.6.

We define five rule types. The first rule type defines a mapping of an instance
of an MMElement into a dot node. All instances of the MElement related to the
mapped instance of an MMElement will be graphically represented by a dot node
of shape and size as specified by the mapping. The second rule type defines a
mapping of an instance of an MMElement into a dot cluster. The dot cluster is
a rectangular area that groups a set of dot nodes. This rule enables the creation
of a compositional hierarchy of elements. The third rule type defines a map-

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 115

Graph

ID:String

Node

NID:String

name:String

0..*

shape:String

color:String

rank:String

Edge

0..*

1

1

0..*

0..*

fromshape:String

toshape:String

pentype:String

from

to

Cluster

0..*

Figure 5.6: Simplified dot metamodel

ping of an instance of an MMElement into a dot edge. This rule type enables
the creation of connections between objects. This can be used to visualize ob-
jects that represent, for example, associations or generalizations in UML class
diagrams or transitions in UML state machine diagrams. The fourth rule type
defines a mapping of an instance of an MMReference, into a dot edge. This rule
type enables the creation of tree-like hierarchical structures. The fifth rule type
defines a mapping of an instance of an MMElement into a nexus. The nexus is a
dot node which has one or more incoming dot edges, and one or more outgoing
dot edges. The nexus can be used to visualize elements like, for example, pseu-
dostates in UML state machine diagrams. The reasons for specifying these rule
types, the details of those rule types, and example mappings, can be found in the
Appendix B.

5.4.2 Using the defined mapping to visualize the differ-

ences

Consider the differences metamodel as defined in Section 5.3. There are three
basic types of differences: added, deleted or changed objects or parts of objects.
We will use coloring as a way of expressing differences, and thus we assign three
colors to these differences. The added objects or parts of objects will be colored
green, the deleted objects or parts of objects will be colored red, and the changed
objects or parts of objects will be colored blue. The visualization uses both the
initial model and the differences model to create a visualization of differences.

116 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

The visualization of differences depends both on the mapping, and on the type
of difference. We will now describe all the possible combinations of types of
differences and mappings of model objects.

If the difference is the addition of an object, and the object is mapped to a node
or a cluster, the node or a cluster is presented colored green. If the difference is
the addition of an object, and the object is mapped to an edge, the edge is colored
green. If the difference is the addition of an object, and the object is mapped to
a nexus, the nexus is colored green with all incoming and outgoing edges also
colored green.

The coloring principle for the added objects also holds for deleted objects, which
are colored red, and for changed objects, which are colored blue.

5.5 Tool

The implemented visualization prototype tool is part of the Java-based frame-
work that also supports the graphical representation of models and metamod-
els, as well as the graphical representation and the calculation of model differ-
ences [30]. In a default setting, the differences are visualized by using a set
of predefined polymetric views. This set of predefined views can be changed
and extended easily by the users of the tool. The predefined views use a set of
predefined metrics. This set of metrics can be extended by new metrics con-
forming to the predefined interface (new metrics are implemented as Java meth-
ods). In order to visualize differences between models conforming to a specific
metamodel in a natural way, i.e., in order to use a framework for visualization
of metamodel-based languages, a mapping between that metamodel and a dot
metamodel should be defined by the user. However, this mapping needs to be
defined only once for a specific metamodel, and can then be reused for visual-
izing all model differences obtained by comparing models conforming to that
metamodel.

The implemented tool is capable of visualizing the differences between models,
completely metamodel independent, as long as models and metamodels provided
conform to the metametamodel specified in Section 5.3.1.

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 117

To provide more insight into the possibilities of our approach, this section pro-
vides a small use-case scenario.

Assume that the first designer has created model A, and that afterwards a second
designer has changed that model to a model A′. Next, the first designer would
like to inspect the changes to the initial model. In order to do that, he would like
to have an overview of the system, such that the elements of the system and the
degree of change to each element are given in a form of a checker table, such that
he can discern the most changed parts of the system, and he can get an overall
impression of changes to the system. Also, he would like to select a changed el-
ement and to check the changes to that element in a natural environment for that
element (for example to examine the class diagram of the most changed class).
Assuming that the models A and A′, as well as their metamodel (MA) conform to
the required metametamodel (see Figure 5.1), the first designer should first in-
voke the differences calculation tool to calculate the differences. The difference
calculation tool initially uses a predefined metamodel-independent calculation
configuration, however this configuration can be changed to obtain more precise
results.

Next, in order to visualize differences in a metamodel-specific way, the first de-
signer needs to define the mapping between the metamodel MA and the dot meta-
model. Then, the first designer can invoke the visualization tool and choose an
appropriate view (e.g., SYSTEM HOTSPOTS view), to get an overview of the
differences. Zooming is done by selecting the appropriate type of elements to
visualize in a view, and filtering is done by consulting the color of the elements
(e.g., more red are more changed elements). Thereafter, the first designer can
select a glyph present in this view and visualize it in a metamodel-specific way,
in order to obtain details-on-demand of a specific model element.

Two example models A and A′, conforming to the metamodel in Figure 5.4 are
presented in Figure 5.7.

The visualization of the differences between models A and A′ is presented through
a series of screenshots of our visualization tool. The first screenshot, shown in
Figure 5.8, depicts the initial, tree-like, view on the initial model, with the dif-
ferences model superimposed on the initial model using a coloring technique.

118 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

A B C D

MODEL A

A C BA D

MODEL A’

Simplified SYSTEM HOTSPOTS View

METAMODEL SPECIFIC View

Figure 5.7: Example differences visualization

The second screenshot, shown in Figure 5.9, depicts the GLOBAL TREE view.
This view depicts the model, tree-like, but now each model element that has been
changed has been colored in different hue of red.

The third screenshot, shown in Figure 5.10, depicts the GLOBAL CHECKER
view. In this view, all elements in the model are presented in the checker table,
and all changed elements have been colored in different hue of red. Moreover,
the elements have been sorted, in ascending order of changes.

The last screenshot, shown in Figure 5.11, depicts the metamodel dependent
view on the changes. In this view, the differences were superimposed on the
initial model using a coloring technique.

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 119

5.6 Conclusions

5.6.1 Discussion

The traditional difference visualization approaches using only text-based, tree-
based or diagrammatic techniques, scale poorly with the size of the difference
models. Using polymetric views to visualize model differences, as presented
in [120], was a step beyond traditional approaches. However, insight into the
meaning of the details of the differences is not easily obtained by using only
polymetric views. Thus, we combined polymetric views with a framework for
visualizing metamodel-based languages, to obtain more insight into the details of
differences. As already noted, a similar approach as ours is described in [102],
where a tree-based visualization technique provided by EMFCompare is com-
bined with a visualization framework for visualizing model differences by reusing
GMF. However, since polymetric views efficiently deal with overview, zooming,
and filtering, we believe that polymetric views are better suited for providing
an overview of larger difference models than the tree-based visualization tech-
nique. Also, our approach and accompanying tool are metamodel and framework
independent, and thus easily adaptable for a wide spectrum of modeling environ-
ments.

5.6.2 Future Work

We are currently performing a validation of our approach in an industrial set-
ting. We intend to use the results of that validation for researching new visu-
alization techniques that can be used specifically for the visualization of model
differences. Another possible research direction is investigating the applicabil-
ity of our approach in a setting of an existing model configuration management
system. However, our current approach is focused on differences between two
models, but configuration management systems also require a difference function
between three models. Thus, research into the applicability of our approach for
presenting, calculating, and visualizing differences between three models should
be performed first.

120 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

Figure 5.8: Initial view on the initial model, with superimposed differences

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 121

Figure 5.9: GLOBAL TREE view

122 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

Figure 5.10: GLOBAL CHECKER view

CHAPTER 5. MODEL DIFFERENCES VISUALIZATION 123

Figure 5.11: Metamodel view on the initial model, with superimposed differences

124 CHAPTER 5. MODEL DIFFERENCES VISUALIZATION

Chapter 6

A Generic Solution for Syntax-driven

Model Co-evolution

This chapter describes our approach to adaptation of models in case their

metamodels evolve (also referred to as model co-evolution). In our ap-

proach, metamodels are transformed into models conforming to the special

metamodel for metamodels (MMfMM) that we developed. This allowed

us to use techniques described in Chapter 3 to compare the metamodels,

now represented as models. Furthermore, because the syntax of MMfMM

is known, all the possible atomic differences between metamodels are also

known. Based on this set of possible atomic differences, we have defined

a set of rules that can be used with the differences between an initial and

an evolved metamodel to co-evolve models conforming to the initial meta-

model. In order to validate our approach we have developed a tool for

model co-evolution, that is also described in this chapter. Furthermore, we

have performed, and described, a series of experiments to test the devel-

125

126 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

oped tool. The results of the experiments show that our approach to model

co-evolution behaves as expected.

6.1 Introduction

Model evolution is a frequent research topic in the context of model-driven engi-
neering. Modelers often need to determine the extent and the nature of changes
between different versions of the same model. To understand the evolution of a
model, modelers compare two versions of that model, and visualize the resulting
differences.

Traditionally, models are described as instances of metamodels that, in turn, are
instances of a selected metametamodel. Without exception, metametamodels
(e.g. MOF [20] or Ecore [11]) allow for the representation of models as hierar-
chical labeled attributed graphs, i.e. each model can be represented as a tree1.
The model differences are also considered as trees in [9, 50, 70, 85, 111], and
the comparison of models [79, 111] is based on tree comparison techniques [48].

There are two conceptually different types of approaches to the representation
and calculation of model differences. In the state-based approaches, the model
differences are calculated between two states of a model, i.e. between two ver-
sions of a model. In the operation-based (also called change-based) approaches,
the model differences are represented by a set of operations which when applied
to the initial model produce the final model. Thus, in the operation-based ap-
proaches, all the tools used to develop models must supply the operations in a
predefined form, while in the state-based approaches this is not necessary. Visu-
alization of the model differences is usually accomplished by superimposing the
model differences on the old version of a model, and by using different colors to
denote different types of differences (e.g. green for added, red for deleted, and
blue for changed model elements) [112, 120].

Often, the metamodels also evolve in the modeling process, either during de-

1Model elements are nodes of the tree, and edges of the tree are aggregation relations between
model elements.

CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . . 127

velopment or during maintenance2. This raises the question of co-evolution of
models3: how to adapt models conforming to the original version of a meta-
model such that they conform to the target (evolved) version of that metamodel?
Since metamodels in model-based engineering correspond to languages in lan-
guage-based engineering, model co-evolution can be compared to the situation
in language-based engineering, where a new version of a programming language
requires adaptation of the source code written in the old version of a language.
Similar problems also exist in database schema evolution, where evolution of
a database schema (which corresponds to a metamodel of the underlying data)
induces evolution of the related database content.

The basic idea of existing approaches to model co-evolution, which we also
adopt here, is: first calculate the differences between an evolved metamodel and
an original version of the same metamodel, and then, based on those differences,
(semi-)automatically generate model differences. The schematic of our approach
is depicted in Figure 6.1.

New MetamodelOld Metamodel

Metamodel Differences

Old Model

conforms-to conforms-to

Calculate
Metamodel
Differences

New (Co-evolved) Model

Model Differences

1

2

3

Generate
Model Differences

Calculate
Resulting Model

Figure 6.1: The schematic of our approach to co-evolution of models

In this paper we consider model co-evolution in the context of model configu-
ration management systems. Therefore, we have specified a set of requirements
that a co-evolution process should satisfy in order to be efficiently usable in such

2Similarly to model difference, a metamodel difference denotes the change set between an old and
a new version of a metamodel.

3Also called coupled evolution of models or coupled evolution of metamodels and models.

128 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

systems, and we have defined our co-evolution process to satisfy these require-
ments:

1. The co-evolved models are syntactically correct, i.e., conforming to the
new metamodel.

2. The difference between the old model and the new (co-evolved) model is
minimal, i.e., only ‘necessary’ changes are carried through.

3. The co-evolution process allows for (user-defined) extensions to preserve
semantic correctness.

4. The co-evolution process itself maximizes automation, i.e., minimizes hu-
man intervention, and where intervention is unavoidable it should be well-
defined.

In order to satisfy the first requirement our process of co-evolution is guided
by syntax. We decided to focus on syntax because in co-evolution approaches
which deal with state-based (meta)model differences, it is very hard to correctly
infer the intention of a developer in case of complex changes. Thus, in the state-
based co-evolution approaches it is much harder to reason about the influence
of metamodel changes on models, than in the co-evolution approaches that deal
with operation-based model differences, where the intent of the model devel-
oper is discernible from the nature and the order of the operations supplied by
tools. Therefore, in our approach we consider only the syntactic structure and the
static semantics of models as a basis of the automated part of the co-evolution
process, and do not take into account dynamic semantics of models. By dy-
namic semantics we mean a formal system of rules (e.g. Structured Operational
Semantics), that allows reasoning about the behavior of systems represented by
models. Thus, in contrast to approaches to database schema evolution, which
are geared towards automatic resolution of semantic issues (i.e. retaining the re-
lations between data items), but are constrained only to schema evolution, we
loosen the requirement of automatic resolution of semantic issues, in order to
be more generic and to support arbitrary metamodels. Hence, our approach can
support the co-evolution of databases, ontologies, state machines, petri-nets, etc.
Nonetheless, as specified in the third requirement, it is possible to define user
extensions to ensure the semantic correctness of the co-evolved models. This
means that advanced algorithms for schema evolution or petri-net evolution can

CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . . 129

be applied as extensions to our approach.

The second requirement states that the co-evolved model should be changed as
little as possible to conform to the new metamodel, thus allowing efficient im-
plementation of our approach in configuration management systems.

The fourth requirement states that the co-evolution process should be as auto-
matic as possible, and that the reasons for, and extent of, human interventions
should be well-specified and minimized. In this regard, existing approaches
to model co-evolution [49, 52, 62, 67, 71, 118] classify metamodel differences
based on how they affect both the co-evolving models and the possibility to auto-
mate the co-evolution process. Three groups can be distinguished: non-breaking
differences, breaking but resolvable differences, and breaking but non-resolvable
differences. Non-breaking differences (NBD) to a metamodel do not require any
change in the models. Breaking but resolvable differences (BRD) require a trans-
formation of the model, which can be automated. Breaking but non-resolvable
differences (BNRD) require user intervention and are almost impossible to au-
tomate. Next, the existing approaches define, depending on which metameta-
model is used (e.g. MOF or Ecore), all possible metamodel differences, and re-
late these differences to the three defined groups. Furthermore, the non-breaking
differences, and breaking but resolvable differences, are used to automatically
generate model differences, and the breaking but non-resolvable differences are
resolved with the help of a human.

We split the possible differences into four groups based on their influence on
the syntactic structure of co-evolving models and based on the possible automa-
tion of the co-evolution process. In particular the group of breaking but non-
resolvable differences is split into two groups: breaking and semi-resolvable
differences (BSRD) and breaking and human-resolvable differences (BHRD).
Breaking and semi-resolvable differences are differences which can be automat-
ically resolved by configuring the co-evolution process. These differences also
encompass the semantic differences which can be resolved by taking into ac-
count the semantics of the models. Breaking and human-resolvable differences
can only be resolved by a user in a differences-resolution environment and can-
not be fully automated. For example, if a reference, which has a lower bound
of 1, is added to a metamodel, in order to obtain the correct resulting models,

130 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

concerning the intention of a metamodel developer, a user needs to connect the
correct objects in models.

As already mentioned, although our approach is not geared towards automatic
resolution of semantic problems, the specified tool architecture is extensible and
can be extended to deal with the semantic issues. For example, a logic-based
conflict resolver such as Aleph used in [51], a generic model transformation
method like Viatra [33], or, in case of database schemas, a database schema
matching algorithm like Cupid [91] can be used to resolve possible semantic
problems.

The outline of the rest of the chapter is as follows. In Section 6.2, we discuss
some preliminaries necessary to understand our approach. Then, in Section 6.3,
we discuss the evolution of metamodels. Next, in Section 6.4 we discuss the
process of co-evolution of models. Furthermore, we describe the tool we built
that faithfully implements our approach, and we describe an experiment we per-
formed to validate our approach. Finally, in Section 6.6, we conclude the paper
and give some directions for further research.

6.2 Preliminaries

In this section we give some preliminaries necessary for understanding our me-
thod of model co-evolution. We first describe a special domain-specific meta-
metamodel which we use in describing our method. This metametamodel is
simple, but allows formal reasoning on metamodels, models, and their relation.
Next, we describe a generic differences metamodel, which is based on the de-
scribed metametamodel. This differences metamodel is used to capture the dif-
ferences between two models, and, in our approach, also the differences between
two metamodels4.

4The details of both metametamodel and the differences model can be found in Chapter 3.

CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . . 131

6.2.1 Domain-Specific Metametamodel

We approached the problem of generic model differences by designing a domain-
specific metametamodel, that exposes not only the details of metamodels, but
also the details of models, and the relations between metamodels and models.
Metamodels are obtained by instantiating the Metamodel element (non colored
elements in Figure 6.2), and models are obtained by instantiating the Model ele-
ment (grey elements in Figure 6.2). Each metamodel can contain a set of named
elements. Each of these elements can contain named and typed attributes, and
labeled references to other metamodel elements. Each model can contain a set
of model elements, that must conform to metamodel elements. Moreover, each
model element can contain attribute instances (containing values), and reference
instances (referencing other model elements). Unlike in traditional metameta-
modeling approaches (e.g. MOF or Ecore), in our approach models are not con-
sidered instances of metamodels, but models only conform-to metamodels. How-
ever, both models, metamodels, and their relationships, are instances of the in-
troduced metametamodel. Notice that although our metametamodel is designed
for a specific domain of model differences, it allows for description of labeled
attributed graphs, and thus is quite generic (i.e. it allows for description of all
graph-based systems). For example, we have developed transformations from
metamodels conforming to Ecore, and models conforming to those metamodels,
to our formalism. This makes it possible to use our co-evolution approach with
the Ecore-based metamodels and models. The architecture of our metameta-
model allows the specification of a metamodel-independent differences meta-
model [111], which is discussed in the following section.

6.2.2 Model differences

Our approach to the representation of model differences satisfies all of the re-
quirements specified in [50], These requirements allow model differences to
be seamlessly used in model configuration management systems. The differ-
ences between two models are represented by a differences model that conforms
to a differences metamodel. The differences metamodel is an extension of the
metametamodel introduced in the previous section and is depicted in Figure 6.3.
Differences models are instances of the DifferencesModel element. The build-

132 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

MMElement

name:String

MMAttribute

name:String

type:String

contains

label:String

cardinalityLB: String

cardinalityUB:String

MElement

MMReference

MAttribute

value:String

Metamodel

URI:String

0..*

1
Model

name:String
version:String

0..*

0..*

0..*

0..*

0..*

1

1

1

1
1

0..*

0..1

0..*

0..*0..*

0..*

0..*

0..*

0..*

conforms to

of role

has

is of type

MReference

is value of

contains

consists of

11
1

refers to

has

refers to

has

1

contains

has

0..*

1

1

Figure 6.2: Metametamodel

ing blocks of the differences models are instances of ChangedElement, Delet-
edElement, AddedElement, and MovedElement. Assuming that the differences
model represents the differences between models A and B, then the instances
of the AddedElement are elements that are in model B and not in model A, the
instances of the DeletedElement are elements that are in model A but not in
model B, and the instances of the ChangedElement are elements that represent
the same entities in both models but are not structurally identical. Since a differ-
ences model contains only references to models, this differences metamodel is
generic (metamodel-independent).

6.3 Metamodel Evolution

Traditional approaches to metamodel evolution define special mechanisms for
representing, calculating and visualizing metamodel differences. These methods
are usually based on techniques for representing, calculating and visualizing
model differences, but there is a clear separation between metamodels and mod-
els, and thus also between metamodel differences and model differences.

In our approach, the techniques for representing, calculating and visualizing
model differences are applied directly to metamodel differences. Our key idea is

CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . . 133

ElementDifference

AddedElement DeletedElement MovedElement

AttributeDifference

ReferenceDifference

AddedReference

DeletedReference

ChangedReference

1

DifferencesModel

final parent

MElement

MAttribute

value:String

Model

name:String
version:String

0..*

0..1

1
1

0..1

0..*

0..*

0..*

has

MReference

contains

1

refers to

ChangedElement
11

1

1

1

0..*

0..*

0..*

0..1

0..*

0..*

1

1
1
1

1

0..*

0..1 0..1

contains

final model

initial model

new ref

0..*

0..*

1

1

initial parent

new attr

old ref

old attr

Figure 6.3: Differences metamodel

to represent metamodels as models conforming to a special metamodel. In this
way, all the techniques for model comparison can be directly applied to meta-
model comparison.

In order to represent metamodels as models, we define a special metamodel for
metamodels (MMfMM). The metamodels can now be interpreted as (i.e. trans-
formed to) the models conforming to the MMfMM. Consequently, the differ-
ences between metamodels are obtained by transforming metamodels to models,
and by calculating the differences between the resulting models. This approach is
particulary useful in the context of a model configuration management systems,
because it allows a unified treatment of models and metamodels.

In the next section we describe our metamodel for metamodels (MMfMM). By
consulting this metamodel, it is possible to specify all the possible types of meta-
model differences, and their influence on co-evolving models, which is discussed
in Section 6.3.2.

134 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

6.3.1 Metamodel for metamodels - MMfMM

In this section we discuss a metamodel for metamodels (MMfMM), depicted in
Figure 6.4. Since MMfMM is a metamodel, it is an instance of the Metamodel el-

:Metamodel

URI="MMfMM"

:MMElement

name="MMElement"

:MMElement

name="MMAttribute"

:MMElement

name="MMReference"

:MMAttribute

name="name"
type="String"

:MMAttribute

name="name"
type="String"

:MMAttribute

name="type"
type="String"

:MMAttribute

name="label"
type="String"

:MMAttribute

name="cardinalityUB"
type="String"

:MMAttribute

name="cardinalityLB"
type="String"

:MMReference

label="contains"
cardinality
cardinality

UB="*"
LB="0"

:MMReference

label="references"
cardinalityUB="*"

LB="0"cardinality

Figure 6.4: A metamodel for metamodels - MMfMM

ement from our domain-specific metametamodel (depicted in Figure 6.2). Mod-
els that conform to the MMfMM represent metamodels. Thus, each metamodel
has two representations: its natural representation (instance of the Metamodel
element), and a transformed representation (instance of the Model element that
conforms to the MMfMM) 5. However, we designed MMfMM in such a way that
a transformation from a natural representation of a metamodel to a transformed
representation is trivial. For example, an MMfMM element named MMEle-
ment represents metamodel elements. Elements in models that are instances of
MMfMM, and that conform to MMfMM element named MMElement represent
metamodel elements.

A natural representation of an example metamodel, and a transformed represen-
tation of the same metamodel, are depicted in Figure 6.5.

5In EMF terminology, MMfMM corresponds to a metamodel Ecore.ecore. Ecore.ecore is an
Ecore-based metamodel that allows for the creation of Ecore-based models such that there is a bijec-
tion between any of those models and an Ecore-based metamodel.

CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . . 135

A natural representation of a metamodel (top left part of the Figure 6.5) is named
example, and has two metamodel elements named State and Transition. Both the
State element, and the Transition element, have an attribute Name of type String.
Moreover, a Transition element has a reference that has a label Connects. In the
transformed (i.e. model) representation of a metamodel (lower right part of the
Figure 6.5), the rectangles represent instances of model elements conforming to
specific MMfMM elements. The labels of those rectangles can be split into two
parts, before and after the token ”:”. The first part denotes the MMfMM element
that the element represented by the rectangle conforms to. The second part repre-
sents the type of the model element (MElement, MAttribute or MReference). For
example, a metamodel element named State is represented with one model ele-
ment, and with one attribute of that model element that has a value State (dark
grey part of Figure 6.5). The attribute Name of a metamodel element named
State is also represented with one model element. However, this element has two
attributes having values Name and String, representing the name and type of the
Name attribute.

6.3.2 Metamodel Differences

As already mentioned, in this chapter we focus on automatic processing of syn-
tactic changes (differences) to metamodels. The list of all detectable metamodel
differences, and the consequences of these differences are given in Appendix C.
In some cases we mention the relation of differences to the (static) semantics
of models, and these relations guided our reasoning in many cases. However,
since we did not choose any semantic formalism for interpreting the behavior of
models conforming to a certain metamodel, we did not formally reason about
semantics.

6.4 Model Co-evolution

In this section we present a method for calculating model differences, based on
metamodel differences.

In order to obtain the model differences from the metamodel differences, a nec-

136 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

essary prerequisite is the existence of formal methods for the representation of
metamodels, models and model differences, as well as a method for the calcu-
lation of model differences. As mentioned before, without loss of generality
we use the metametamodel depicted in Figure 6.2 for the representation of meta-
models and models, and a metamodel for the representation of model differences
depicted in Figure 6.3.

Next, we assume that the differences between the evolved and original meta-
model have been calculated and are presented as a differences model labeled
differences. Then, for each model M that conforms to the original metamodel,
the algorithm described in the following section can be used to calculate the dif-
ferences model DM, that can be used to patch model M to obtain a new (evolved)
model M′ that conforms to the evolved metamodel.

6.4.1 Model Differences Calculation Algorithm

The calculation algorithm is an implementation of the causal relations between
metamodel differences and model differences described in Appendix C. The
algorithm traverses the graph representation of a model (actually a tree represen-
tation, where the edges are instances of the containment relation, is traversed),
and for each model element checks whether the metamodel element that that el-
ement conforms to has changed. If this was the case, then, based on the changes
to the metamodel element, the model differences for that particular element are
generated, otherwise nothing happens.

For solving breaking and human-resolvable differences we introduced two spe-
cial functions in the algorithm. The first of these functions is labeled warningre-
quest(name, id). This function first checks for the presence of conflicts (breaking
and human-resolvable differences) of the specified name in all model elements
that conform to the metamodel element of the specified id. If there are no con-
flicts then the function terminates, and if there are conflicts, an environment for
manual conflict resolution is started. This function is used in case of possible
conflicts. For example, if the bounds of a reference change, this function checks
if the model is in a conflicting state, and, if this is the case, starts an environment
for manual conflict resolution. The second function is conflictrequest(name, id).

CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . . 137

This function denotes that there is a conflict, having a name as specified in the
argument of the function, and that it is necessary to start an environment for man-
ual conflict resolution, for all model elements that conform to the metamodel
element identified by the specified id argument. This function is used in case of
affirmed conflicts, for example if the type of a reference changes.

6.4.2 Validation

In order to validate our co-evolution method we built a tool that faithfully im-
plements our method, and we systematically tested this tool with a large set of
metamodels and models.

The tool consists of two parts. The first part is responsible for the completely
automatic transformation of models by considering non-breaking differences, or
the breaking differences which are resolvable by providing a configuration file.
The second part is a graphical application, that allows manual resolution in case
of breaking changes which are not resolvable automatically. The tool is exten-
sible, and thus users can define additional (e.g. metamodel specific) transforma-
tions in order to solve semantic issues that may arise during the co-evolution
process. The tool can be configured to call the user-defined transformation func-
tions before, during, or after the part of the co-evolution process that is fully
automated.

Our goals in testing the tool were:

• Assessing the capability of a tool in detecting metamodel differences;
• Assessing the functional correctness of a tool in cases of both automatic

and semi-automatic processing of differences;
• Assessing the extent of user involvement in adaptation of a larger set of

co-evolved models.

For the testing we selected 10 metamodels, and for each metamodel 10 conform-
ing models, giving rise to one hundred models altogether6. In order to make

6The metamodels used in the tests are generated by using a metamodel-generator tool that we

138 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

our experiment transparent, we decided to co-evolve the selected models by us-
ing the co-evolution scenarios specified in previous research in this area. For
this reason, we selected 9 operations from the set of 61 co-evolution operations
defined in [72], and we applied each operation to each metamodel, thus obtain-
ing 90 co-evolved metamodels. These operations were selected such that they
ensure coverage of all cases of possible resolution scenarios as specified in Sec-
tion 6.3.2. Next, we applied our co-evolution tool to each evolved metamodel,
co-evolving models accordingly.

For each operation we measured: the number of metamodels for which the tool
correctly detected the co-evolution operation, the number of fully automatically
co-evolved models, the number of semi-automatically co-evolved models, the
number of models that need to be manually co-evolved, and the number of mod-
els that did not need to change. The results are given in Table 6.1.

Operation Automatically Semi-automatically Manually Unaffected Total
adapted models adapted models adapted models models models

Create Class 0 0 0 100 100
Create Attribute 0 80 0 20 100
Create Reference 0 0 100 0 100
Delete Reference 100 0 0 0 100
Rename Attribute 0 0 0 100 100

Make Reference Composite 0 100 0 0 100
Change Attribute Type 0 90 0 10 100

Move Feature Over Reference 0 73 0 27 100
Reference To Class 0 74 0 26 100

TOTALS 100 417 100 283 900

Table 6.1: Model co-evolution results

The interpretation of the results is as follows: Create Class and Rename At-
tribute operations are completely automated, and the models do not need adap-
tation. Delete Reference operation is also completely automated, but models
are affected. Create Reference operation requires user intervention in specifying
possible instances of the created reference. Create Attribute operation is semi-
automated by defining the configuration entry specifying the default value of the
created attribute. Change Attribute Type operation is semi-automated by defin-

developed, and models used in the tests are generated by using a model-generator tool that we devel-
oped. The output metamodels and models are Ecore-based, but are transformed to our metamodeling
formalism for the purpose of this validation study.

CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . . 139

ing the configuration entry specifying a function for transforming the values of
attributes of the original type, to attributes of the new type. Make Reference
Composite, Move Feature Over Reference and Reference To Class operations
are semi-automated by specifying specific model transformations that deal with
semantic issues of these operations. In particular, these operations are built up
of many atomic metamodel differences, thus detecting these operations requires
pattern matching on model differences7. Furthermore, the resolution of these
operations requires more complex algorithms than the ones initially provided by
a tool.

Our conclusion is that while most models require some form of intervention, this
intervention can usually be specified on a per-operation, or on a per-metamodel
basis, and not on a per-model basis.

The developed tool, as well as the test metamodels and models, are available
online [31]8.

6.5 Related work

Our approach is applicable in case of a state-based representation and calculation
of model differences [111]. In contrast to approaches that deal with operation-
based representation and calculation of model differences, such as COPE [70],
our approach can also be used for modeling tools that have as output only com-
plete (meta)models and not the set of operations. Thus, our approach is most
useful if a company uses multiple tools for managing its models. However, if
a company uses only one tool for managing all its models, and if that tool can
provide operations, an operation-based approach would be preferred.

In our approach, we represent metamodels as models conforming to a metamodel
specifically designed for this purpose. Thus, metamodels need to be transformed
to equivalent models in order to be used in this manner. The first advantage of
our approach with respect to the existing approaches featuring state-based model
co-evolution is that we do not need to invent a special representation mechanism

7In a state-based approach to model differences, which is employed by us.
8http://www.win.tue.nl/˜zprotic/coevol.html

140 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

for metamodel differences, but we represent the metamodel differences as model
differences. This allows us to use generic techniques for the representation and
calculation of model differences as described in [111], to represent and calculate
metamodel differences. For example in [50, 51], for each metamodel a custom
differences metamodel must be specified, whereas in our approach only one dif-
ferences metamodel is used. Furthermore, our differences metamodel provides
a more detailed representation of model differences than, for example, the ones
used in [50, 51] (for details see [111]).

Another advantage of our approach is that, since our technique for representing
(and calculating) differences is state-based, it does not require special modeling-
tool support like operation-based approaches [67, 71], but can be used also with
the tools that provide this support.

Furthermore, most existing co-evolution approaches [62, 63], use a single heuris-
tic algorithm for metamodel comparison, where we reuse a generic declara-
tive model-differences calculation algorithm, which is based on tree-comparison
techniques, and can be configured such that it does not use heuristics at all [111].
Therefore, in our approach it is possible to easily configure the comparison al-
gorithm, such that it suits the needs of the users.

Finally, we introduce a metametamodel which involves only two metamodeling
levels. Because of this we do not require the use of higher-order model trans-
formations for calculating co-evolved model differences [50, 51, 62], but the
differences are obtained by an ordinary, first-order model transformation. The
advantage of this is that the tool based on our co-evolution approach is easy to
build and maintain.

6.6 Conclusions

In this paper we define a method to support the co-evolution of models as induced
by the evolution of metamodels. Our main contributions are:

• We show that by representing metamodels as models conforming to a
special metamodel, existing techniques for representing and calculating

CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . . 141

model differences can be directly applied to calculation of metamodel dif-
ferences;

• We show that the group of breaking and non-resolvable metamodel differ-
ences can be further split into two sub-groups based on further possibilities
for automation of the resolution process;

• We show that it is possible to have only one, generic, transformation for
co-evolving models, which is an improvement to the previous approaches
where higher-order transformations were employed;

• We execute a large validation study, showing that it is possible to automate
most of the co-evolution process, and that for only a small percentage of
changes to metamodels, the co-evolution requires manual intervention.

Our method ensures syntactic correctness of the resulting models. Ensuring se-
mantic correctness of the co-evolved models is supported by providing an ex-
tension mechanism for user-defined transformation functions. An example of a
semantic issue that can be solved by a user-defined transformation is the intro-
duction of an attribute in a metamodel element whose value in the corresponding
model element is to be obtained by combining multiple values of attributes in
other model elements.

Since our method uses a state-based approach to representation and calculation
of model differences, and since it is independent of a specific framework and
(meta)metamodel, it is directly applicable in an industrial context for companies
that use a variety of tools and that would like to co-evolve models developed
with those tools. The stand-alone tool that we developed supports this claim.

Future work includes conducting an even larger and more thorough case study
based on an industrial case. Furthermore, it would be interesting to adapt our
approach to more popular metamodeling formalisms like MOF [20] or EMF [11].

142 CHAPTER 6. A GENERIC SOLUTION FOR SYNTAX-DRIVEN . . .

M
E

T
A

M
O

D
E

L

M
M

fM
M

O
U

R
 D

O
M

A
IN

-S
P

E
C

IF
IC

 M
E

T
A

M
E

T
A

M
O

D
E

L

in
s
ta

n
c
e
-o

f
<

M
o
d
e
l>

 e
le

m
e
n
t

"N
a

tu
ra

l"
R

e
p

re
s
e

n
ta

ti
o

n

c
o
n
fo

rm
s
-t

o

:M
M

E
le

m
e
n
t

n
a
m

e
=

"S
ta

te
"

:M
e
ta

m
o
d
e
l

U
R

I=
"e

x
a
m

p
le

"

:M
M

A
tt
ri
b
u
te

n
a
m

e
=

"N
a
m

e
"

ty
p
e
=

"S
tr

in
g
"

:M
M

E
le

m
e
n
t

N
a
m

e
=

"T
ra

n
s
it
io

n
"

:M
M

A
tt
ri
b
u
te

n
a
m

e
=

"N
a
m

e
"

ty
p
e
=

"S
tr

in
g
"

:M
M

R
e
fe

re
n
c
e

la
b
e
l=

"C
o
n
n
e
c
ts

"
c
a
rd

in
a
lit

y
L
B

=
"1

"
U

B
=

"*
"

c
a
rd

in
a
lit

y

M
M

fM
M

:M
o

d
e

l

n
a

m
e

=
"e

x
a

m
p

le
"

v
e

rs
io

n
=

"1
"

M
M

A
tt

ri
b

u
te

:M
E

le
m

e
n

t
M

M
E

le
m

e
n

t:
M

E
le

m
e

n
t

ty
p

e
:M

A
tt

ri
b

u
te

v
a

lu
e

=
"S

tr
in

g
"

v
a

lu
e

=
"T

ra
n

s
it
io

n
"

n
a

m
e

:M
A

tt
ri
b

u
te

v
a

lu
e

=
"N

a
m

e
"

M
M

E
le

m
e

n
t:

M
E

le
m

e
n

t

n
a

m
e

:M
A

tt
ri
b

u
te

v
a

lu
e

=
"S

ta
te

"

n
a

m
e

:M
A

tt
ri
b

u
te

M
M

A
tt

ri
b

u
te

:M
E

le
m

e
n

t

ty
p

e
:M

A
tt

ri
b

u
te

v
a

lu
e

=
"S

tr
in

g
"

n
a

m
e

:M
A

tt
ri
b

u
te

v
a

lu
e

=
"N

a
m

e
"

M
M

R
e

fe
re

n
c
e

:M
E

le
m

e
n

t
c
a

rd
in

a
lit

y
U

B
:M

A
tt

ri
b

u
te

v
a

lu
e

=
"*

"

la
b

e
l:
M

A
tt

ri
b

u
te

v
a

lu
e

=
"C

o
n

n
e

c
ts

"

c
a

rd
in

a
lit

y
L

B
:M

A
tt

ri
b

u
te

v
a

lu
e

=
"1

"

re
fe

re
n

c
e

s
:M

R
e

fe
re

n
c
e

in
s
ta

n
c
e
-o

f
<

M
e
ta

m
o
d
e
l>

 e
le

m
e
n
t

in
s
ta

n
c
e
-o

f
<

M
e
ta

m
o
d
e
l>

 e
le

m
e
n
t

M
e

ta
m

o
d

e
lR

e
p

re
s
e

n
ta

ti
o

n

M
o

d
e

lR
e

p
re

s
e

n
ta

ti
o

n

"T
ra

n
s
fo

rm
e

d
"

R
e

p
re

s
e

n
ta

ti
o

n

Figure 6.5: Example metamodel in both the natural and the transformed form

Chapter 7

Conclusions

7.1 Contributions

This dissertation addresses three problems in the field of model management:
model comparison, model differences visualization, and model co-evolution. In
the next three sections we will summarize these problems, and we will discuss
our solutions to these problems.

7.1.1 Solution to the model comparison problem

The first problem discussed is the problem of model comparison, that was ex-
pressed in Chapter 1 by the following research question:

Research Question 1. How can the quality of methods and tools for model
comparison be improved?

143

144 CHAPTER 7. CONCLUSIONS

This research question was addressed in Chapters 2, 3, and 4 of this dissertation.

In Chapter 3 we discussed existing methods for comparing models and for rep-
resenting the difference between compared models, and we exposed aspects of
those methods that can be improved. In particular, the way to improve methods
for the representation of model differences, is to specify a metamodel of model
differences clearly, rigorously, and unambiguously. However, existing modeling
formalisms, such as Ecore or MOF, are inadequately equipped for this. Thus,
we first specified a new modeling framework, that is conceptually similar to ex-
isting modeling frameworks, but that is equipped with means of expressing the
metamodel of model differences as required. This new framework, as well as
the metamodel of model differences we developed using this framework, was
briefly described in Chapter 3. However, since we consider this new framework
as an important contribution, we described the inadequacies of existing model-
ing frameworks, the new modeling framework, and the metamodel for model
differences, in more detail in Chapter 2.

In order to improve methods for calculating model differences, the algorithms for
model differences calculation should be made more flexible. For instance, exist-
ing algorithms for calculating model differences are all based on (only) one of
the four approaches for model matching: static-identity based, signature-based,
similarity-based or language specific. However, it might be the case that for one
metamodel a signature-based approach is more applicable, and that for another
metamodel a similarity-based approach is more applicable. Thus, we defined
a configurable, similarity-based, algorithm, that enables all of the four model
matching approaches to be used. We achieved this by designing the calculation
algorithm and the configuration metamodel in parallel, such that the combina-
tion of the configuration models and the algorithm overcome the limitations of
similarity-based comparison, and allow all other model matching types to be
used. The developed algorithm and the configuration metamodel are described
in Chapter 3.

While in Chapter 3 we described conceptual improvements to existing methods
for model comparison, in Chapter 4 we provide an experimental validation of
introduced improvements. In order to perform this validation we first developed
a tool for model comparison based on the algorithm we specified. Next, we de-

CHAPTER 7. CONCLUSIONS 145

fined a method for assessing the quality of model comparison tools, we defined
a set of experimental data, and we applied the defined data, as specified by the
defined method, to the developed tool. Moreover, we applied the defined experi-
mental data, as specified by the developed method, to another, commercial, tool
for model comparison, in order to asses the developed assessment method also.
The results show that the comparison tool we developed (and with it our method)
is of similar, or of higher quality, than the industrial tool.

7.1.2 Solution to the model differences visualization prob-

lem

The second problem addressed in this dissertation is the problem of visualization
of model differences, that was expressed in Chapter 1 by the following research
question:

Research Question 2. How to improve existing methods and tools for visualiza-
tion of model differences?

This research question was answered in Chapter 5 of this dissertation. In partic-
ular, in Chapter 5 we first review existing methods for visualizing model differ-
ences. Next, we argued that model differences should be treated as a large-scale
information content, and that in order to improve existing methods for visual-
izing model differences, they should be combined with methods for visualizing
large-scale information content. In this respect, we described our approach that
combines two existing visualization techniques, in a technique that is better for
visualization of model differences than both combined techniques. We validated
our approach by building a tool for visualization of model differences.

7.1.3 Solution to the model co-evolution problem

The third problem addressed in this dissertation is the problem of model co-
evolution, that was expressed in Chapter 1 by the following research question:

Research Question 3. How to improve existing methods and tools for adapting
models in case their metamodels evolve (i.e. how to co-evolve models)?

146 CHAPTER 7. CONCLUSIONS

This research question was answered in Chapter 6 of this dissertation. In par-
ticular, in Chapter 6 we first reviewed existing methods for co-evolving models
and proposed several improvements to these methods. The first improvement
we proposed is based on the fact that existing methods leverage ad-hoc com-
parison algorithms to compare metamodels. We proposed to transform meta-
models to models, by a bijective model transformation. This allowed us to use
existing methods and techniques for model comparison to compare metamod-
els (now represented as models). The second improvement is related to the fact
that most of the existing methods leverage higher-order model transformations to
co-evolve models. However, higher-order model transformations work best only
when it is possible to fully automate the co-evolution process. In other cases,
e.g., in case that different metamodel elements require different co-evolution
strategies, higher order model transformations are not the best option. In order
to improve this aspect of existing methods, we specified means of using the ordi-
nary model transformations to co-evolve models. This is possible because, in our
approach, metamodels are represented as models, conforming to a metamodel for
metamodels (MMfMM). Thus, since all the atomic differences in metamodels
(now represented as models conforming to MMfMM) are easily distinguishable,
it is possible to define a transformation that takes as an input a model of dif-
ferences between an initial and an evolved metamodel (represented as models),
and that transforms (i.e. evolves) models conforming to the initial metamodel
based on the found differences. We validated our approach by building a tool
for co-evolution of models, by evolving 10 metamodels (each metamodel was
evolved differently), and by co-evolving 50 models conforming to each of those
10 metamodels (500 models in total).

7.2 An overview of the related work

In this section we will give an overview of the work related to model compar-
ison and model co-evolution. Note that we discuss the related work from the
perspective of its possible applicability in model configuration management and
the relation to our work.

CHAPTER 7. CONCLUSIONS 147

7.2.1 Model comparison

Recall that in this dissertation we focus on 2-way model comparison. In the con-
text of model configuration management, there are two interpretations of a term
“2-way model comparison”. In the first interpretation, 2-way model compari-
son is the comparison of two models (initial and target), to obtain a difference
between those models that takes the least memory. This interpretation is aimed
at efficient storage of models, which is paramount in configuration management
systems. In the second interpretation, model comparison involves discovering
and presenting the difference between two models (initial and target), such that
the discovered difference is as close as possible to the difference that a human
user applied (or would apply) to the initial model to obtain the target model.
In this case, it is assumed that the initial and the target model are evolutionary
related (either the initial model is an ancestor of the target model, or that the ini-
tial and target model have the same ancestor). In this dissertation we discussed
model comparison related to the second interpretation, and in this section we
discuss work related to this second interpretation.

Three main aspects of model comparison are:

• Representation of the difference between models

• Calculation of the difference between models

– Matching models

– Creation of the difference model

• Visualization of the difference between models

In other software engineering disciplines (other than MDSE) there are no strongly
related approaches to representation and visualization of differences between
models. Therefore we discussed the work related to these two aspects in the
chapters where we discussed our approaches to representation and visualization
of model differences (Chapter 3 and Chapter 5, respectively). Moreover, the
creation of a difference model, after the models have been matched, is straight-
forward, as described in Section 3.3.3. Thus in this section we mainly discuss
approaches related to model matching. The model matching problem, discussed

148 CHAPTER 7. CONCLUSIONS

in Chapter 1, can also be formulated as: given two models initial and target, de-
termine all pairs of model elements, one from initial and the other from target,
that represent the same entity in the modeled system.

We first discuss the cognitive aspects of similarities between entities. There-
after, we discuss the relation of model matching to the field of ontologies, in
particular ontology matching. An ontology represents conceptualizations of a
domain (which is a subset of the entire corpus of knowledge), that can be used
to reason about that domain [66]. For example, one ontology may consist of a
concept named Person connected by a relation named <lives-at> to a concept
named Address, while another ontology may consist of a concept named Individ-
ual connected by a relation named <lives-at> to a concept named HomeAdress.
Ontology matching denotes matching of the same concepts in different ontolo-
gies. The problem in ontology matching is that the same concepts may have
different representations in different ontologies. For instance, in the previous
example, a correct matching consists of a match of the concept named Person to
the concept named Individual, as well as a match of the concept named Address
to the concept named HomeAdress. The field of ontology matching is strongly
related to the field of model matching because the methods and techniques used
to match concepts present in ontologies are very similar to the methods and tech-
niques used to match (parts of) model elements.

Next, we discuss the relation of model matching to the field of schema matching.
A schema is a term from a database community that describes a blueprint of a
database. Schemas contain the definitions of the database tables, the definitions
of the attributes of those tables, the definitions of relations between tables, and
the constraints imposed upon entities in the schema. Schema matching denotes
matching the elements of two schemas that describe the same real-world entities.
For example, a table named Person in one schema may be matched to a table
named Individual in another schema. The field of schema matching is strongly
related to the field of ontology matching, and thus it is strongly related to the
field of model matching.

Thereafter, we will discuss the methods and approaches in the field of tree com-
parison. Trees are directed acyclic graphs, that have one root node. All tra-
ditional metametamodels (MOF, Ecore) define the aggregation relation, which

CHAPTER 7. CONCLUSIONS 149

specifies that each model element may have only one parent (i.e. each model
element must be contained in only one other element). Thus, models can be
transformed to trees by a projection defined using the aggregation relation, and
most MDSE approaches to model comparison use the tree structure inherent to
models to define the model matching algorithms. Therefore the field of tree
comparison is strongly related to the field of model matching.

Finally, we give an overview of the research approaches to model comparison in
the MDSE community.

Cognitive aspects and relation to ontologies

A common question in cognitive sciences, and one deeply related to model
matching, is what makes two objects similar in the mind of a human being [64].
Four major psychological models of similarity are the following: geometric,
feature-based, alignment-based, and transformational [65]. In geometric models,
the entities are presented as points in N dimensional space, where a dimension in
the space depends on user judgments and is discovered through interviews [104].
In feature-based models the similarity of entities is calculated by matching fea-
tures of compared entities. Then, similarity is increased for similar features, and
decreased for dissimilar features. In alignment-based models, entities are put in
correspondence if they have more features in common, and features are put in
correspondence if more entities have them in common [93]. In transformational
models, the entities are transformed into each other by a series of transforma-
tions, and it is assumed that the similarity between object decreases as the num-
ber of transformations required to transform an entity to another entity increases.
The transformational approaches are related to Kolmogorov complexity theory,
which states that the complexity of an object is proportional to the length of the
shortest program that generates that object [88].

It is important to note that none of the mentioned psychological models of simi-
larity is best in all cases. This is expected, since if a specific psychological model
would have been the best in all cases, this would be reflected in having one best
model matching variant.

In our approach to model matching, we directly support geometric and feature-

150 CHAPTER 7. CONCLUSIONS

based models of similarity. As discussed in Chapter 3, our calculation algorithm
allows users to group attributes of a metamodel element, based on their perceived
semantic similarity, and the calculation of similarities for a group of attributes is
performed by using a multidimensional search. Moreover, the model elements
are considered more similar if their features are more similar. Alignment-based
and transformational models can be emulated by a user defined function for cal-
culating similarity, assigned to a metamodel element in the configuration file.

To test the hypotheses about the nature of similarity, by using a computer, one
needs to formally represent knowledge. Ontologies are the most common way
to do this within a computer. As already mentioned, an ontology represents a
conceptualization of a domain (which is a subset of the entire corpus of knowl-
edge). This definition is very similar to the definition of a metamodel, since a
metamodel is also a conceptualization of a domain. Moreover, an ontology can
also be ”instantiated”, and an instance of an ontology is analogous to a model.

However, the ontology is not a metamodel. The main difference between an
ontology and a metamodel is the intended usage. Where a metamodel has a con-
structive nature and is used to construct models, an ontology has a descriptive
nature and is used to reason about reality. For this reason, the relations between
metamodel elements, and the relations between ontology elements are of a dif-
ferent nature. For example, the relation named ”equals”, which denotes that one
element in an ontology is equivalent to another element of that ontology, does
not exist in metamodels. Moreover, ontologies usually have an ”open-world”
semantics, while models usually have a ”closed-world” semantics.

The experiments related to the nature of similarity, and thus potentially usable
in model matching, are performed in the area of ontology matching. Ontology
matching deals with matching two or more ontologies in order to discover pairs
of entities in both ontologies that represent the same concepts. Based on previous
discussion, it should be clear that ontology matching is analogous to metamodel
matching and is not analogous to model matching. One more confirmation for
this can be found in the fact that virtually all approaches to ontology match-
ing use names of entities to match them. However, while metamodel elements
are usually named, elements of models are not. Thus, it can be concluded that
ontology matching is not directly applicable to model matching.

CHAPTER 7. CONCLUSIONS 151

Nevertheless, although ontology matching is not directly applicable to model
matching, a class of approaches to ontology matching, so-called instance match-
ing, can be used in model matching. In instance matching, the matching of
ontologies is done by matching ontology instances. Since ontology instances
correspond to models, the research done in this area may be useful in model
matching. The basic idea in instance matching is to relate the similarity between
instances of concepts to similarity between concepts. There is a large number
of possible metrics used for this purpose; we will mention a few of them. The
common metric used for this purpose is the Jaccard similarity [40, 74]. This
metric calculates the similarity between concepts represented by instance sets A
and B, as the ratio between the size of the intersection of sets A and B, divided
by the size of the union of those two sets. Another commonly used metric in this
context is the K-statistic [73]. This metric is calculated based on the intersec-
tion, union, and difference of sets A and B. Another metrics used in this context
is (slightly adapted) Pointwise Mutual Information (PMI) [74]. PMI is a met-
rics used in statistics to measure the association between two random variables,
given two outcomes of those variables. In instance matching, the random nature
of the variables is approximated by using co-occurrence counts. The last metric
we mention is the Information Gain (IG) metric [74]. IG describes the amount of
information about some hypotheses that can be gained by observing the results
of the experiments. In instance matching, IG is used to describe the difficulty of
assigning an instance to a concept if that instance had already been assigned to
another concept.

The main problem with all approaches to instance matching, in relation to model
matching, is that they are not designed towards distinguishing between non-
identical elements in ontology instances. This, however, is not the case with
model matching, since in the case of model matching, structurally identical
model elements are easily matched, but the problem is in discovering structurally
non-identical model elements, that represent the same entity in matched models.

However, one techniques from ontology instance matching is used in our match-
ing algorithm. In particular, we use (adapted) Jaccard similarity to calculate the
similarity of two model elements considering their sub-elements.

152 CHAPTER 7. CONCLUSIONS

Schema matching and relation to databases

A database schema is a collection of statements, in some formal language, that
specifies a set of possible database instances [77]. This view of a database
schema is very similar to the view of a metamodel as a collection of statements,
that specifies a set of possible models‘[76]. Database schema specifies the tables
in a database, the columns of those tables, the relations between those tables, and
constraints on those tables and their parts. This is very similar to a metamodel
where the tables correspond to metamodel elements, the columns correspond
to metamodel element attributes, and associations between metamodel elements
correspond to relations between database tables. The differences between meta-
models and database schemas stem from their semantics. Thus, while metamod-
els use notions from object-oriented paradigms, like hierarchies or inheritance,
and use an object-oriented semantics, the database schemas use notions from a
relational model [56], like relations or domains, and use a semantics of relational
algebras.

Within the database community there is a large corpus of work on schema match-
ing. While this work is not directly applicable to model matching (since database
schemas correspond to metamodels and not models), some ideas from this area
can be applied to model matching. In particular, instance matching is a technique
in schema matching that can be applied to model matching. Instance matching
in databases is very similar to instance matching in ontologies. However, in-
stance matching for databases actively takes into consideration the existence of
imprecise data, and actively copes with similar, and not only identical, values of
attributes. For example, in [58], the authors propose two approaches to schema
matching using instance matching. One proposed approach is a constraint-based
matching, where a set of constraints is extracted from the attributes of two rows
being compared, and the similarity is calculated based on the extracted con-
straints. Another approach proposed is a content-based matching, where the
similarity of the entities is calculated by performing a pair-wise comparison of
instance values for different attributes of entities. The final similarity between
tables is obtained by aggregating the obtained similarity values.

In our approach to model matching we use an adapted variant of content-based
matching, for calculating similarities between attributes of model elements, in

CHAPTER 7. CONCLUSIONS 153

case that those attributes are not grouped.

A research area in the database community more related to model matching
is the area of duplicate record detection [57], also called instance identifica-
tion [119]. Duplicate record detection deals with identifying matching records
in two databases that have the same (or matching) schema. There are two major
problems that need to be solved in duplicate record detection. One of them is
matching the field values, and the other one is matching entire records.

Matching of field values is performed by comparing field values via a selected
similarity metric. The classes of similarity metrics commonly used for this
purpose are: character-based, token-based, and phonetic similarity measures.
Character-based similarity metrics are geared towards matching strings that are
typographically similar (i.e. these metrics are good for matching strings that have
only typographical errors). These metrics can be used to match the values of
string based attributes that have typing mistakes. Token-based similarity met-
rics are usable if the matched strings consist of tokens that should be matched
separately. These metrics can be used to match the values of multi-word string
based attributes, e.g. address fields. Phonetic similarity metrics are usable for
matching strings if they are phonetically similar. These metrics can be used to
match the values of string based attributes that model names, surnames, or other
phonetically similar concepts.

Matching of field values directly corresponds to matching of attributes of model
elements, in particular string-based attributes. In our approach, we support match-
ing of attributes by allowing users to specify a similarity function for matching of
an attribute. This metrics used in that function should correspond to the similar-
ity metric (or a combination of metrics) that best fits the semantic of the attribute.

In order to match an entire record, the similarity results obtained by matching
fields must be aggregated. The approaches to match records can be divided into
two categories. In the first category are probabilistic and machine learning ap-
proaches that use training data to match records. If it is possible to specify the
training data then these approaches are applicable to model matching. In the sec-
ond category are the approaches that rely on domain knowledge, or on generic
distance metrics to match records, without using the training data. Since the

154 CHAPTER 7. CONCLUSIONS

training data may be hard to obtain, these approaches are more applicable to
model matching than the approaches that use training data.

In our approach to model matching we do not support the probabilistic ap-
proaches, but we rely on generic, or user supplied threshold values to match
model elements. However, it is plausible to use the training set (e.g. the bench-
mark data set discussed in Chapter 4) to train our model matching algorithm for
setting the best threshold values for comparing models conforming to a particular
metamodel.

Tree comparison

A tree is a (directed or an undirected) graph, where each two nodes are con-
nected by a single path, i.e. a graph without cycles. In computer science many
artifacts can be represented as directed trees, e.g. a directory structure. There-
fore, a commonly encountered problem (in computer science) is comparing two
artifacts that have a tree(-like) structure (e.g. directories, XML files, ...).

The result of the comparison is the difference between the trees representing
these artifacts. This difference is commonly represented as a sequence of atomic
operations of adding, deleting, inserting or replacing a node in the initial tree,
in order to obtain the target tree [124]. If all these operations are assigned a
cost, then the sum of all costs of all operations is denoted as the edit distance (of
transforming an initial tree into a target tree). A minimal edit distance is an edit
distance between two trees where the sum of costs of all involved operations is
minimal [124].

In order to calculate an edit distance, nodes in the initial tree must be matched
with nodes in the target tree. This process is called tree matching. In [124],
an algorithm is given for calculating the minimal edit distance between a string
and a labeled tree, and the authors prove that the problem of calculating the
edit distance between two unordered labeled trees is in general NP-complete.
This is caused by the lack of structural constraints in the trees being compared.
However, if specific constraints are imposed upon the trees being compared,
polynomial time algorithms for matching trees exist. For example, if a con-
straint is that only a complete subtree can be matched to a complete subtree, then

CHAPTER 7. CONCLUSIONS 155

title="B"

:Library

:Book
title="A"
:Book 2 3

1

Figure 7.1: A model and a tree representation of the same model

polynomial time algorithms are given in [60, 90]. In case that the trees being
matched have a few internal nodes, or few branching nodes, polynomial time
algorithms achieved by using dynamic programming can be found in [68]. An
algorithm applicable to similar trees (i.e. trees with small edit distance), working
in O(2.62k× poly(n)) time and O(n2) space (where k is the edit distance and n
is the size of the tree), is given in [38]. For ordered labeled trees a polynomial
matching algorithm is given in [48] (LaDiff algorithm).

In general, models defined by using existing metametamodels (e.g. MOF, Ecore)
can be represented as graphs. Moreover, if one considers model elements as
nodes, and the instances of the aggregation relations (between model elements)
as edges, then models can be considered as (unordered) trees. We will call a tree-
like representation of a model: a model-tree. An example is given in Figure 7.1.

Thus, it seems plausible to use traditional tree matching approaches to match
model elements and to compare models. However, the traditional approaches to
tree matching rely on node labels as a means of matching nodes. But the labels
of nodes representing model elements are not immediately distinguishable1. For
example, in case all model elements have been assigned a universally unique
identifier, this identifier can be used as a label, but the matching of elements in
this case is trivial anyway. Another possible solution to this problem is to use

1Though the labels of metamodel elements are usually easily distinguishable and unique!

156 CHAPTER 7. CONCLUSIONS

the signatures of model elements as labels, or to generate labels based on the
features of model elements and their relations to other elements. However, even
in the case that a label is defined for each model element, a direct application
of the existing tree-matching algorithms to models is not possible. A reason for
this is that each model element conforms to a metamodel element. Thus, it is not
possible to match arbitrary elements (although they might have identical labels),
but it is only possible to match elements that conform to the same metamodel
element. This constraint, in theory, simplifies the algorithms for tree matching,
and makes them available for model matching. One approach that considers this
constraint is XDiff [36], that is developed for the matching of XML documents.
However, the authors of XDiff impose a constraint that only elements that are
of the same type 2, and whose ancestors are of the same type, can be matched.
This constraint thus disallows matching of moved model elements. However, in
models it is not possible to ignore the prospect of moved model elements, and in
that case it can be proven that the problem of calculating minimum edit distance
between two models is NP complete (e.g. by specifying a metamodel that allows
for the representation of arbitrary graphs).

MDSE approaches

Recall that there are four identified model matching problem variants in MDSE
[84]: static-identity based, signature-based, similarity-based, and language-specific.
The application of these variants depends on syntactical and semantical con-
straints in models being matched. For example, if model elements carry uni-
versally unique identifiers (UUIDs), static-identity based matching can be per-
formed. However, neither of the model matching variants is the best (or is even
applicable) in all cases. For example, assuming that model elements are equipped
with UUIDs, when a developer deletes a model element and later re-creates that
same element, the match relation would fail to relate these two elements because
the UUID of the new element has changed. Thus, an appropriate variant should
be chosen depending on the syntactical and semantical aspects of the models
being matched.

Model matching algorithms can be classified into two groups: metamodel-de-

2Model elements are of the same type if they conform to the same metamodel element.

CHAPTER 7. CONCLUSIONS 157

pendent algorithms, and metamodel-independent algorithms. Metamodel-depen-
dent algorithms utilize language-specific matching, i.e., they are geared towards
a specific metamodel (e.g. UML). Metamodel-independent algorithms can be
applied for comparing models conforming to arbitrary metamodels.

A well-known example of a metamodel-dependent approach is UMLDiff [123].
In UMLDiff the containment spanning-trees of both matched UML models are
traversed and, at each level, elements that are ”the same” are identified. The
traversal of the model-tree is top-down, and the elements that are significantly
similar (i.e. whose similarity is above a certain threshold value) are matched.

As metamodel-independent approaches are concerned, an example differences
calculation approach that relies on unique identifiers (UUIDs) for matching model
elements is given in [39]. The problem with this approach, as well as all ap-
proaches that use only UUIDs for matching model elements, is that they work
well when comparing evolutionary related models (i.e. when one model is an
evolved version of another model). However, when comparing arbitrary models
(or even models that have the same ancestor, but were developed in parallel),
since their UUIDs are unrelated, this approach is not applicable.

Another metamodel-independent approach is SiDiff [79]. In SiDiff, the contain-
ment spanning-trees of both matched models are traversed, but a combination of
bottom-up and top-down traversals are used. In particular, the bottom-up traver-
sal is used until the match is found, and then a top-down traversal is used to
match the children of two matched elements.

Finally, in DSMDiff [89], the containment spanning-trees of both matched mod-
els are traversed top-down, and at each level of the tree for all elements two met-
rics are calculated, and based on the values of these metrics the model elements
are matched. The first calculated metric is the signature of nodes and edges, and
the second calculated metric is the structural similarity of nodes. The signature
of the node is calculated as a combination of the type, the kind, and the name of
the node, The signature of the edge is calculated as a combination of the type,
the kind and the name of the edge, and the signatures of nodes connected by that
edge. In this approach it is possible to detect moved elements only between par-
ents at the same level of the model tree (since only one top-down traversal of the

158 CHAPTER 7. CONCLUSIONS

spanning tree is performed). Moreover, it is required that the signatures of model
elements are identical, in order to match those elements. As a consequence, if
the name of a model element in the initial model has changed just slightly in the
target model, it would not be possible to match these elements. However, this is
easily rectified by using a similarity-based matching for the signatures.

Our approach to model matching has some similarity to UMLDiff, but has the
most similarity to SiDiff. In particular, we extended the configuration metamodel
of SiDiff to allow our model matching algorithm to support all four recognized
types of model matching. Moreover, unlike in SiDiff, we specify a representation
mechanism for model differences, and we allow for moved model elements to be
matched.

7.2.2 Metamodel and model co-evolution

Metamodel and model co-evolution is a term that denotes a coupled evolution
of metamodels and models. A coupled evolution (co-evolution) of models oc-
curs after a metamodel evolves. In this case it may be required to adapt (co-
evolve) the models conforming to the initial version of the metamodel, such that
they conform to the target (evolved) version, preserving the intended meaning
of the initial model if possible. In order to perform this adaptation, a difference
between initial and target metamodel must be discovered. Then, based on the
discovered difference, adaptation of models can be performed. Approaches to
model co-evolution can be classified as ”state-based”, if the difference between
two metamodels needs to be calculated, and ”operation-based”, if a difference
between two metamodels is supplied beforehand (e.g. is produced by a tool used
to evolve the metamodel). In this dissertation we focused on ”state-based” ap-
proaches, that calculate the difference between two metamodels.

Similar to model comparison, a part of the process of calculating metamodel
differences involves matching of two metamodels–metamodel matching. As al-
ready noted, the metamodels are similar to ontologies, and even more similar to
database schemas, thus it seems plausible that methods for matching ontologies
and schemas should be easily adaptable for matching metamodels. In the next
two sections we will describe some existing approaches in ontology matching

CHAPTER 7. CONCLUSIONS 159

and schema matching, and we will discuss the applicability of those approaches
to metamodel matching. Finally, we will give an overview of the work on model
co-evolution in the MDSE community, with an emphasis on metamodel match-
ing.

Relation to ontology matching

There are two major classes of ontology matching approaches: approaches that
match ontologies directly, and approaches that use explicit external knowledge to
match ontologies [40]. Approaches that match ontologies directly can be further
classified into terminological, structural, instance-based and global.

Terminological approaches to ontology matching are further classified into string-
based matching approaches, and language-based matching approaches. String-
based matchers rely on string-comparing functions to calculate the similarity be-
tween different terms. These methods are directly usable for metamodel match-
ing, but their usability is restricted to renamed metamodel elements whose names
are syntactically similar to the original names. Language-based matchers as-
sume that the matched ontologies have given meaningful names to concepts they
describe, and that those names are in the same language. If this is the case,
the expressive and productive properties of natural languages can be used to
match syntactically dissimilar, but semantically similar terms. The applicability
of language-based matchers to metamodel matching is similar to the applica-
bility of string-based matchers, since the metamodels matched are described in
the same language, and, usually, meaningful names are assigned to metamodel
elements.

In our approach, metamodel matching is done by transforming metamodels into
models, and by performing matching on those models. Both string-based and
language-based matchers can be used in metamodel matching, by defining a
similarity function that takes two values of the name attribute of two metamodel
elements, and returns a similarity between these values.

Structural approaches to ontology matching use the underlying graph structure
of the ontologies to perform matching. The idea behind these approaches is
that similar entities in one ontology will be related to similar entities in another

160 CHAPTER 7. CONCLUSIONS

ontology. There are two classes of structural approaches. In the class of graph-
based matchers, the entire underlying graph of an ontology is used for matching.
In the class of hierarchy-based matchers, only certain relations are used to project
an ontology into a tree. Examples of relations used are the ”part-of” relation
and the ”child-of” relation. Since common relations used in metamodels are of
similar nature to the relation used in ontologies, both the graph and hierarchical
approaches to ontology matching are directly applicable to metamodel matching.

In our approach to metamodel matching, graph-based matching is directly sup-
ported. To achieve a hierarchy-based matching, zero weights should be assigned
to certain relations between metamodel elements.

Instance-based approaches to ontology matching have already been discussed in
the Section 7.2.1. These approaches are not usable for metamodel matching,
since there are no models conforming to the evolved metamodel, which could be
used to match on models conforming to the initial metamodel.

Global approaches to ontology matching combine the similarities obtained by
applying several other approaches to ontology matching to obtain a match that is
better than matches of any of the approaches applied individually. An example
global approach is COMA++ [42].

In our approach to metamodel matching, a combination of approaches to calcu-
late similarities can be only applied to match individual metamodel elements, but
it is not possible to combine different approaches to match entire metamodels.

Approaches that use explicit external knowledge to match ontologies can be sub-
classified into approaches that rely on background-based similarity measures,
and approaches that use a background ontology to match ontologies. Approaches
that rely on background-based similarity measures utilize external lexical re-
sources like thesauri, dictionaries, vocabularies, etc., to match ontology terms.
One commonly used lexical database is WordNet [96]. Approaches that use a
background ontology are performing matching of two ontologies through a third
ontology (called background ontology), by relating terms in both matched on-
tologies to terms in the background, and by calculating their similarity based on
those matches. While approaches that rely on external lexical resources can be
directly used in metamodel matching, the approaches that use background on-

CHAPTER 7. CONCLUSIONS 161

tologies cannot be used, since there is no third metamodel that can play a role of
a background ontology.

In our approach to metamodel matching, approaches that use background-based
similarity measures to calculate similarities between ontologies can be directly
used by defining a similarity function that takes two values of the name attribute
of two metamodel elements, and returns a similarity between these values

Relation to schema matching and schema evolution

A survey of approaches to schema matching [100], gives several, largely orthog-
onal, classifications, depicted in Figure 7.2.

Figure 7.2: Classification of schema matching approaches

As already noted, instance-based approaches to schema matching are not directly
applicable to metamodel matching, since instances of the evolved metamodel do
not exist, but should be generated. Schema-only based matchers are directly
applicable to metamodel matching [92]. In particular, element-level matchers
can be effectively used to match attributes, while structure-level matchers can
be used to effectively match model elements, and relations between model ele-
ments. Combined approaches are also directly applicable to metamodel match-

162 CHAPTER 7. CONCLUSIONS

ing.

MDSE approaches

In this section, we will describe approaches to metamodel and model co-evolution
in the field of Model Driven Software Engineering.

One of the first papers to cover the metamodel and model co-evolution topic
was the paper by Favre [59]. In that paper Favre discusses the idea and role of
co-evolution in the modeling process. The first paper to cover metamodel and
model co-evolution, and to provide in-depth implementation details, was [106].
In that paper, the authors discuss the co-evolution process through the prism of
domain-specific visual languages (DSVL). The authors discuss the influence of
syntax, static semantics, and dynamic semantics on the co-evolution process.
The authors represent metamodel differences in term of transformation opera-
tions, and also represent the co-evolution process as a transformation. Thus, this
approach to metamodel and model co-evolution is ”operation-based”, and does
not include model matching. Another ”operation-based” approach to model co-
evolution is described in [118]. The author defines a set of operations that can
be used for metamodel refactoring and evolution, and discusses the influence of
those operations on models that should be co-evolved. This idea was adopted,
and extended, in COPE [71]. The authors of COPE have performed a study to
discover an extensive list of metamodel operations that are commonly used while
editing metamodels [72]. All possible metamodel operations have been split into
two subsets. In the first subset are the operations for which the syntactic and
semantic influence on co-evolving models is known. For these operations it is
possible to automate the co-evolution process completely. An example of this
kind of operation is an operation that changes the name of a metamodel element.
In this case, the co-evolution is trivial, since the change of the name of a meta-
model element does not have any influence on models. In the second subset
are the operations for which the syntactic and semantic influence on co-evolving
models is not known. For these operations a manual intervention is needed to
co-evolve the models. The latest advance in metamodel and model co-evolution
is the proposal to use in-place transformations to perform co-evolution [95, 122].
The approaches that use in-place transformations do not calculate the differences
between two metamodels, but merge those metamodels, which opens the possi-

CHAPTER 7. CONCLUSIONS 163

bility to use in-place transformations to co-evolve models. There are two ex-
isting approaches to merging of metamodels. In the operation-based approach
applied in [95], the difference between initial and target metamodel are given
as a sequence of operations. Operations are grouped based on their influence
of co-evolving models, and a merged metamodel is produced for each group of
operations. In [122], the authors apply a state-based approach, and propose an al-
gorithm that uses simple name-based string matching to match classes, attributes
and references. Based on these matches, a merged metamodel is created and
used as a basis for defining in-place operations.

A metamodel and model co-evolution approach that assumes ”state-based” dif-
ferences is developed by Garcés et. al. [63]. In their approach, a heuristic meta-
model comparison algorithm is used to compare two metamodels. The differ-
ences between two metamodels are described by using a differences metamodel.
Based on the differences found, the co-evolution is performed by first executing
a higher-order transformation, that generates a transformation that can be used to
adapt all models conforming to the initial metamodel, and then by transforming
all the required models by using the generated transformation.

Our approach to model co-evolution is ”state-based”. However, we do not de-
fine a special algorithm for the calculation of metamodel differences, but we
transform metamodels into models, and use a model comparison algorithm to
calculate metamodel differences. In this way, all possible atomic differences
between metamodels are known, and, in our approach, are used as a basis for a
co-evolution algorithm. Similarly to the approaches that use in-place transforma-
tions, the parts of the co-evolved models that conform to unchanged metamodel
elements are kept the same, and only the parts of the co-evolved models that
conform to the changed metamodel elements are changed. However, we do not
require that the co-evolved models conform to initial, target metamodel, or any
other metamodel, during the co-evolution process.

7.3 Future work

In Chapters 2, 4, 5, and 6, the future work related to topics discussed in those
chapters has already been addressed, and in this section we will only recapitulate

164 CHAPTER 7. CONCLUSIONS

those discussions. However, the future work presented in this section will not be
organized by chapters, but according to some common criteria. We selected the
most interesting criteria, which, sorted by ascending order of complexity, are:
adapting our approaches to other formalisms, adding support for “3-way” model
comparison, and including the semantics of models in our approaches.

Our approaches to the representation, calculation and visualization of model dif-
ferences, discussed in Chapters 2, 3, 4, and 5 as well as our approach to co-
evolution of models, discussed in Chapter 6, have been described by using the
metametamodel defined by us. It would be interesting to examine the limits of
our approaches in case they are applied for models that are based on more popu-
lar metametamodels such as Ecore (or MOF). The reason is that those metameta-
models have more mature tools for create and editing models and metamodels,
as well as more concepts that can be used to assist the users in the modeling
process. The amount of research required for this extension is expected to be
relatively low. The reasons for this are the following. The first reason is that our
model differences representation mechanism is similar to the one used in Ecore,
and thus it should be easy to adapt our representation mechanism to Ecore. The
second reason is that our calculation algorithm is based on the tree-like repre-
sentation of models, which is also supported by other metametamodels. Thus,
this algorithm should be almost immediately applicable to models based on other
metametamodels. The next reason is that our method for visualization of model
differences works by mapping metamodel elements to graphical elements, and
by relating metrics to metamodel elements. The metamodel elements in this case
do not have to come from our metametamodel. Finally, e.g. in Ecore, it is pos-
sible to bijectively transform metamodels to models conforming to a metamodel
for metamodels, thus opening the possibility of applying our approach to model
co-evolution.

Our approaches to the calculation and visualization of model differences, dis-
cussed in Chapter 3 and 5, are defined to support only “2-way” model differ-
ences. However, in order to support the merge operation in model configuration
management systems, these approaches should be extended to support “3-way”
model differences3. This research track is expected to be more complex, since,

3Notice that the our model differences representation mechanism can be used for both “2-way”
and “3-way” model differences.

CHAPTER 7. CONCLUSIONS 165

as already mentioned in the introduction, this entire dissertation considers only
“2-way” differences, and similar amount of work is expected for “3-way” dif-
ferences. The simple solution of representing “3-way” difference by a pair of
“2-way” differences does not work, since the “3-way” difference between two
models may contain some atomic differences which are not contained in the “2-
way” differences.

Our approach to the calculation of model differences, discussed in Chapter 3,
and our approach to the co-evolution of models, discussed in Chapter 6, exploits
only the syntax of models in their fully automated parts. It would be interest-
ing to examine the possibilities of including the semantic of models in the fully
automated parts of those approaches. Furthermore, our approach to generating
metamodels and models, discussed in Chapter 4, also takes into consideration
only on the syntactic structure of metamodels and models, and it would be inter-
esting to explore the inclusion of the semantics in the generation process. This
is the most complex research track, and in order to address it properly an en-
tire research team might have to be involved. One of the reasons is that there
is not yet consensus on the dynamic semantics of models in general (for static
semantics, OCL [23] is taking the dominant role). Another reason is that even if
the traditional techniques for describing semantics (e.g. structural operational se-
mantics) would be applied to models, there are still many possible equivalences
between labeled transition systems that arise from the models. For example,
some equivalences are: bisimulation equivalence, trace equivalence, ready-trace
equivalence, fault equivalence, etc. The problem is that those equivalences are
applicable from case to case (i.e. from metamodel to metamodel), and it might be
the case that a specific metamodel requires the definition of its own equivalence.
Thus, the inclusion of the semantics in model comparison, in a generic manner,
would imply that many of the important problems in the area of semantics of the
modeling languages have been solved, thus making this research very important.

7.4 Final remarks

Model Driven Software Engineering is slowly, but steadily, replacing traditional
Software Engineering as a preferred paradigm for developing complex software
systems. However, some of the core support assets of MDSE, like models or

166 CHAPTER 7. CONCLUSIONS

model transformations, are stil not mature enough regarding their formal syntax
and semantics, and thus they may be interpreted in an ad-hoc way. This creates
three problems.

The first problem is that the results published by one team of scientists are very
hard, or even impossible, to assess and reproduce by other scientists. This prob-
lem can be somewhat alleviated by embodying the results of the research in a
tool [116]. For instance, Ecore metametamodel is supported by a set of Java
classes, that can be examined to discover parts of Ecore syntax and semantics
that are not visible in the metametamodel itself.

The second problem is that the exchange of models and model transformations
between different tools is very hard to accomplish. This problem occurs because
the tools cannot exchange models (or model transformations) automatically, un-
less the syntax and semantics of models is formally specified. A step in the di-
rection of the solution to this problem is the definition of modeling frameworks
— if all models are defined by using the same metametamodel, then it is easier
to exchange models and model transformations. However, as discussed in Chap-
ter 2 of this dissertation, existing modeling frameworks are under-specified, and
should be specified more precisely.

The third problem is that it is hard to define the syntax and semantics of model
differences if the syntax of models is not fully formally specified. We addressed
this problem in Chapter 3 of this dissertation. Our solution to this problem was
to introduce a new modeling framework, and within it a new metametamodel.
The introduced framework specifies the syntax, semantics, and relations between
models, metamodels, in rigorous detail. However, the introduced framework is
not meant to replace the existing frameworks, but it is rather focused on de-
tails of formal syntactic description of models and metamodels. Thus, while
this framework can be used to define metamodels and models, and discuss their
characteristics, it should be extended with more modeling concepts (like pack-
ages, operations, etc.), in order to be considered as a proper modeling frame-
work. Moreover, we only developed tools to support model management (i.e.
model comparison and co-evolution) for this framework, and did not develop
tools for model development. Thus, if this framework is to be used in an indus-
trial context, tools for model development should be developed. Furthermore,

CHAPTER 7. CONCLUSIONS 167

tools for model comparison and model co-evolution we developed are academic,
and should be refactored, if they are to be used in an industrial context.

From the above discussion it should be clear that, while the focus of this disserta-
tion are methods for the support of model evolution (and co-evolution), in order
to define these methods we had to solve other, more fundamental, MDSE prob-
lems. Thus, we conclude by arguing that both our ideas and methods related to
model evolution, and ideas and methods related to modeling frameworks would
be invaluable, and should be considered, in the process of design and implemen-
tation of any new modeling framework, or in the process of evolution of existing
modeling frameworks.

168 CHAPTER 7. CONCLUSIONS

Bibliography

[1] ATL transformation language. http://www.eclipse.org/atl/

(Viewed May 2011), .

[2] ATLAN metamodel zoo. http://www.emn.fr/z-info/atlanmod/

index.php/Ecore (Viewed January 2011), .

[3] ATL transformations zoo. http://www.eclipse.org/m2m/atl/

atlTransformations/ (Viewed May 2011), .

[4] A benchmark set of experimental data for assesing the quality of model-
comparison tools. http://www.win.tue.nl/~zprotic/benchmark.

html (Viewed May 2011).

[5] CIF: The compositional interchange format for hybrid systems. http:

//se.wtb.tue.nl/sewiki/cif/start (Viewed May 2011).

[6] CVS project. http://www.nongnu.org/cvs (Viewed May 2011).

[7] Cumulative frequency analysis with probability distributions. http://

www.waterlog.info/cumfreq.htm (Viewed May 2011).

169

170 BIBLIOGRAPHY

[8] The DOT language. http://www.graphviz.org/content/

dot-language (Viewed May 2011).

[9] EMF compare project. http://www.eclipse.org/emf/compare/

(Viewed May 2011).

[10] Eclipse. www.eclipse.org (Viewed May 2011).

[11] Ecore. download.eclipse.org/modeling/emf/emf/javadoc/2.

5.0/org/eclipse/emf/ecore/package-summary.html#details

(Viewed May 2011).

[12] Enterprise Architect. http://www.sparxsystems.com.au/ (Viewed
May 2011).

[13] Epsilon Comparison Language. http://www.eclipse.org/gmt/

epsilon/doc/ecl/ (Viewed May 2011).

[14] EuGENia. www.eclipse.org/gmt/epsilon/doc/articles/

eugenia-gmf-tutorial (Viewed May 2011).

[15] Fujaba. http://www.fujaba.de (Viewed May 2011).

[16] Git version control system. http://git-scm.com/ (Viewed May 2011).

[17] GME: Generic Modeling Enviroment. www.isis.vanderbilt.edu/

projects/gme (Viewed May 2011).

[18] Gmf. www.eclipse.org/modeling/gmf (Viewed May 2011).

[19] OMG Model Driven Architecture. http://www.omg.org/mda/

(Viewed May 2011).

[20] MetaObject facility. www.omg.org/mof (Viewed May 2011), .

[21] MetaObject facility 2.4 specification. http://www.omg.org/spec/

MOF/2.4/Beta2/PDF (Viewed May 2011), .

[22] Mercurial source control management tool. http://mercurial.

selenic.com/ (Viewed May 2011).

BIBLIOGRAPHY 171

[23] Object Constraint Language. http://www.omg.org/technology/

documents/modeling_spec_catalog.htm#OCL (Viewed May 2011).

[24] Object Management Group. http://www.omg.org/marketing/

about-omg.htm (Viewed May 2011).

[25] Query-View-Transformation language. http://www.omg.org/spec/

QVT/1.0/ (Viewed May 2011).

[26] Rational Rhapsody. http://www-01.ibm.com/software/awdtools/
rhapsody/ (Viewed May 2011), .

[27] Rational Rose. http://www-01.ibm.com/software/awdtools/

developer/rose/ (Viewed May 2011), .

[28] Subversion software projec. http://subversion.tigris.org/

(Viewed May 2011).

[29] Swebok. http://www.computer.org/portal/web/swebok (Viewed
May 2011).

[30] Metamodel-assisted model comparison tool. www.win.tue.nl/

~zprotic/mctool.html (Viewed May 2011), .

[31] Model co-evolution tool. www.win.tue.nl/~zprotic/coevol.html

(Viewed May 2011), .

[32] UML infrastructure V2.4. http://www.omg.org/spec/UML/2.4/

Infrastructure/Beta2/PDF (Viewed May 2011).

[33] VIsual Automated model TRAnsformations - viatra. http://www.

eclipse.org/gmt/VIATRA2/ (Viewed May 2011).

[34] Xtext. http://www.eclipse.org/Xtext/ (Viewed May 2011).

[35] The Standish Group report. http://www.standishgroup.com/

chaos/intro1.php (Viewed May 2011), 1995.

[36] X-Diff: an effective change detection algorithm for XML documents,
2003.

172 BIBLIOGRAPHY

[37] Software project management practices - failure versus success.
http://www.crosstalkonline.org/storage/issue-archives/

2004/200410/200410-0-Issue.pdf (Viewed May 2011), 2004.

[38] Tatsuya Akutsu, Daiji Fukagawa, Atsuhiro Takasu, and Takeyuki Tamura.
Exact algorithms for computing the tree edit distance between unordered
trees. Theor. Comput. Sci., 412:352–364, February 2011. ISSN 0304-
3975. doi: http://dx.doi.org/10.1016/j.tcs.2010.10.002.

[39] Marcus Alanen and Ivan Porres. Difference and union of models. TUCS
Technical Report No 527, TUCS Turku Centre for Computer Science,
2003.

[40] Zharko Aleksovski. Using background knowledge in ontology matching.
Technical report, Vrije Universiteit, Amsterdam, 2008.

[41] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and
Angela Y. Wu. An optimal algorithm for approximate nearest neighbor
searching fixed dimensions. J. ACM, 45(6):891–923, 1998. ISSN 0004-
5411. doi: doi.acm.org/10.1145/293347.293348.

[42] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm.
Schema and ontology matching with coma++. In International Con-
ference on Management of Data, pages 906–908, 2005. doi: 10.1145/
1066157.1066283.

[43] D. A. van Beek, P. Collins, D. E. Nadales, J.E. Rooda, and R. R. H. Schif-
felers. New concepts in the abstract format of the compositional inter-
change format. In A. Giua, C. Mahuela, M. Silva, and J. Zaytoon, editors,
3rd IFAC Conference on Analysis and Design of Hybrid Systems, pages
250–255, Zaragoza, Spain, 2009.

[44] Edward H. Bersoff. Elements of software configuration management.
IEEE Trans. Software Eng., 10(1):79–87, 1984.

[45] Frederick P. Brooks, Jr. No silver bullet essence and accidents of software
engineering. Computer, 20:10–19, April 1987. ISSN 0018-9162. doi:
http://dx.doi.org/10.1109/MC.1987.1663532.

BIBLIOGRAPHY 173

[46] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley Professional, aniversery (second) edition,
1995.

[47] Petra Brosch, Martina Seidl, and Gerti Kappel. A recommender for con-
flict resolution support in optimistic model versioning. In Proceedings
of the ACM international conference companion on Object oriented pro-
gramming systems languages and applications companion, SPLASH ’10,
pages 43–50, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0240-
1. doi: http://doi.acm.org/10.1145/1869542.1869549.

[48] Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and
Jennifer Widom. Change detection in hierarchically structured informa-
tion. In SIGMOD ’96: Proceedings of the 1996 ACM SIGMOD Inter-
national Conference on Management of data, pages 493–504, New York,
NY, USA, 1996. ACM. ISBN 0-89791-794-4. doi: doi.acm.org/10.1145/
233269.233366.

[49] Antonio Cicchetti. Difference Representation and Conflict Manage-
ment in Model-Driven Engineering. PhD thesis, Universita’ degli Studi
dell’Aquila, 2007.

[50] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. A metamodel independent approach to difference represen-
tation. Journal of Object Technology, pages 165–185, 2007.

[51] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. Meta-model differences for supporting model co-evolution.
In Proceedings of the 2nd Workshop on Model-Driven Software Evolution
- MODSE2008, Athene, Greece, 2008.

[52] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. Managing
dependent changes in coupled evolution. In Proceedings of the 2nd Inter-
national Conference on Theory and Practice of Model Transformations,
pages 35–51, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-
642-02407-8. doi: http://dx.doi.org/10.1007/978-3-642-02408-5 4.

174 BIBLIOGRAPHY

[53] Edmund H. Conrow and Patricia S. Shishido. Implementing risk manage-
ment on software intensive projects. IEEE Softw., 14:83–89, May 1997.
ISSN 0740-7459. doi: 10.1109/52.589242.

[54] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Syst. J., 45:621–645, July 2006. ISSN
0018-8670. doi: http://dx.doi.org/10.1147/sj.453.0621.

[55] Peter Domokosa and Daniel Varro. An open visualization framework for
metamodel-based modeling languages. Electronic Notes in Theoretical
Computer Science, pages 69–78, 2002. doi: doi:10.1016/S1571-0661(05)
80531-6.

[56] F. Codd E. Derivability, redundancy and consistency of relations stored in
large data banks. SIGMOD Rec., 38:17–36, June 2009. ISSN 0163-5808.
doi: http://doi.acm.org/10.1145/1558334.1558336.

[57] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios.
Duplicate record detection: A survey. IEEE Trans. on Knowl. and Data
Eng., 19:1–16, January 2007. ISSN 1041-4347. doi: http://dx.doi.org/10.
1109/TKDE.2007.9.

[58] Daniel Engmann and Sabine Mamann. Instance matching with coma. In
Datenbanksysteme in Bro, Technik und Wissenschaft(German Database
Conference), pages 28–37, 2007.

[59] Jean-Marie Favre. Meta-Model and Model Co-evolution within the 3D
Software Space. In Intl. Wshp on Evolution of Large-scale Industrial Soft-
ware Applications at ICSM, Amsterdam, September 2003.

[60] Pascal Ferraro and Christophe Godin. Optimal mappings with minimum
number of connected components in tree-to-tree comparison problems. J.
Algorithms, 48:385–406, September 2003. ISSN 0196-6774. doi: 10.
1016/S0196-6774(03)00079-8.

[61] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An
algorithm for finding best matches in logarithmic expected time. ACM
Trans. Math. Softw., 3(3):209–226, 1977. ISSN 0098-3500. doi: doi.acm.
org/10.1145/355744.355745.

BIBLIOGRAPHY 175

[62] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Practical
adaptation of models to evolving metamodels. INRIA Technical Report
No 6723, INRIA, 2008.

[63] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. Man-
aging model adaptation by precise detection of metamodel changes. In
Proceedings of the 5th European Conference on Model Driven Archi-
tecture - Foundations and Applications, ECMDA-FA ’09, pages 34–49,
Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-02673-7.
doi: http://dx.doi.org/10.1007/978-3-642-02674-4 4.

[64] R. L. Goldstone, D. L. Medin, and D. Gentner. Relational similarity and
the nonindependence of features in similarity judgments. Cognitive Psy-
chology, 23(2):222–262, 1991.

[65] Robert L. Goldstone and Ji Yun Son. Similarity. Psychological Review,
100:254–278, 2004.

[66] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. Int. J. Hum.-Comput. Stud., 43:907–928, December
1995. ISSN 1071-5819. doi: 10.1006/ijhc.1995.1081.

[67] Boris Gruschko, Dimitrios Kolovos, and Richard Paige. Towards synchro-
nizing models with evolving metamodel. In Proceedings of the 1st Inter-
national Workshop on Model-Driven Software Evolution - MoDSE2007,
2007.

[68] Magnús M. Halldórsson and Keisuke Tanaka. Approximation and special
cases of common subtrees and editing distance. In Proceedings of the 7th
International Symposium on Algorithms and Computation, ISAAC ’96,
pages 75–84, London, UK, 1996. Springer-Verlag. ISBN 3-540-62048-6.

[69] A. Henrich, H. W. Six, and P. Widmayer. The LSD tree: spatial access
to multidimensional and non-point objects. In VLDB ’89: Proceedings of
the 15th international conference on Very large data bases, pages 45–53,
San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc. ISBN
1-55860-101-5.

176 BIBLIOGRAPHY

[70] Markus Herrmannsdoerfer and Maximilian Koegel. Towards a generic
operation recorder for model evolution. In Proceedings of the 1st Inter-
national Workshop on Model Comparison in Practice, IWMCP ’10, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-960-2.

[71] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. COPE
- automating coupled evolution of metamodels and models. In Proceed-
ings of the 23rd European Conference on Object-Oriented Programming,
pages 52–76, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-
642-03012-3. doi: http://dx.doi.org/10.1007/978-3-642-03013-0 4.

[72] Markus Herrmannsdoerfer, Sander D. Vermolen, and Guido Wachsmuth.
An extensive catalog of operators for the coupled evolution of metamodels
and models. In Proceedings of the Third international conference on Soft-
ware language engineering, SLE’10, pages 163–182, Berlin, Heidelberg,
2011. Springer-Verlag. ISBN 978-3-642-19439-9.

[73] Ryutaro Ichise, Hiedeaki Takeda, and Shinichi Honiden. Integrating mul-
tiple internet directories by instance-based learning. In Proceedings of the
18th international joint conference on Artificial intelligence, pages 22–28,
San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc.

[74] Antoine Isaac, Lourens van der Meij, Stefan Schlobach, and Shenghui
Wang. An Empirical Study of Instance-Based Ontology Matching. pages
253–266. 2008. doi: 10.1007/978-3-540-76298-0\ 19.

[75] ISO - International Organization for Standardization. International Stan-
dard ISO/IEC 25000 - Software engineering – Software product Quality
Requirements and Evaluation (SQuaRE). Geneva, Switzerland, 2005.

[76] Ethan Jackson and Janos Sztipanovits. Formalizing the structural se-
mantics of domain-specific modeling languages. Software and Sys-
tems Modeling, 8(4):451–478, 2009. ISSN 1619-1374. doi: 10.1007/
s10270-008-0105-0.

[77] Manfred A. Jeusfeld and Uwe A. Johnen. An executable meta model for
re-engineering of database schemas. In Proceedings of the13th Interna-
tional Conference on the Entity-Relationship Approach, ER ’94, pages
533–547, London, UK, 1994. Springer-Verlag. ISBN 3-540-58786-1.

BIBLIOGRAPHY 177

[78] Frédéric Jouault, Jean Bézivin, and Atlas Team. Km3: a DSL for meta-
model specification. In Proceedings of 8th FMOODS, LNCS 4037, pages
171–185. Springer, 2006.

[79] Udo Kelter, Jürgen Wehren, and Jörg Niere. A generic difference algo-
rithm for UML models. In Peter Liggesmeyer, Klaus Pohl, and Michael
Goedicke, editors, Software Engineering 2005, volume 64 of LNI, pages
105–116. GI, 2005. ISBN 3-88579-393-8.

[80] S. Kent. Model Driven Engineering. In M. Butler, L. Petre, and K. Sere,
editors, Proceedings of the 3rd International Conference on Integrated
Formal Methods (IFM’02), volume 2335, pages 286–298, Turku, Finland,
May 2002. Springer.

[81] Larry Klosterboer. Implementing ITIL Configuration Management. IBM
Press, 1st edition, 2008. ISBN 0132425939, 9780132425933.

[82] Maximilian Koegel, Jonas Helming, and Stephan Seyboth. Operation-
based conflict detection and resolution. In Proceedings of the 2009 ICSE
Workshop on Comparison and Versioning of Software Models, CVSM
’09, pages 43–48, Washington, DC, USA, 2009. IEEE Computer Soci-
ety. ISBN 978-1-4244-3714-6. doi: http://dx.doi.org/10.1109/CVSM.
2009.5071721.

[83] Dimitrios S. Kolovos. Establishing correspondences between models
with the epsilon comparison language. In ECMDA-FA ’09: Proceed-
ings of the 5th European Conference on Model Driven Architecture -
Foundations and Applications, pages 146–157, Berlin, Heidelberg, 2009.
Springer-Verlag. ISBN 978-3-642-02673-7. doi: http://dx.doi.org/10.
1007/978-3-642-02674-4 11.

[84] Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and
Richard F. Paige. Different models for model matching: An analy-
sis of approaches to support model differencing. ICSE Workshop on
Comparison and Versioning of Software Models, pages 1–6, 2009. doi:
doi.ieeecomputersociety.org/10.1109/CVSM.2009.5071714.

[85] Patrick Könemann. Model-independent differences. In Proceedings of the
2009 ICSE Workshop on Comparison and Versioning of Software Models

178 BIBLIOGRAPHY

(CVSM ’09), pages 37–42, Washington, DC, USA, 2009. IEEE Computer
Society. doi: dx.doi.org/10.1109/CVSM.2009.5071720.

[86] René Krikhaar, Wim Mosterman, Niels Veerman, and Chris Verhoef.
Enabling system evolution through configuration management on the
hardware-software boundary. Syst. Eng., 12:233–264, August 2009. ISSN
1098-1241. doi: 10.1002/sys.v12:3.

[87] Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight
visual approach to reverse engineering. IEEE Trans. Softw. Eng., 29(9):
782–795, 2003. ISSN 0098-5589. doi: dx.doi.org/10.1109/TSE.2003.
1232284.

[88] Ming Li and Paul M.B. Vitnyi. An Introduction to Kolmogorov Complex-
ity and Its Applications. Springer Publishing Company, Incorporated, 3
edition, 2008. ISBN 0387339981, 9780387339986.

[89] Yuehua Lin, Jeff Gray, and Frederic Jouault. DSMDiff: a differentiation
tool for domain-specific models. European Journal of Information Sys-
tems, 16(4):349–361, August 2007. doi: 10.1057/palgrave.ejis.3000685.

[90] Shaoming Liu and Eiichi Tanaka. On the editing distance between un-
ordered labeled trees. In Electronics and Communications in Japan, pages
1358–1371. Scripta Technica, Inc, 1996.

[91] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema
matching with Cupid. In Proceedings of the 27th International Confer-
ence on Very Large Data Bases - VLDB ’01, pages 49–58, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-804-4.

[92] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema
matching with cupid. In Proceedings of the 27th International Conference
on Very Large Data Bases, VLDB ’01, pages 49–58, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-804-4.

[93] A. B. Markman and D. Gentner. The effects of alignability on memory.
Psychological Science, 8:363–367, 1997. doi: 10.1111/j.1467-9280.1997.
tb00426.x.

BIBLIOGRAPHY 179

[94] Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
Electron. Notes Theor. Comput. Sci., 152:125–142, March 2006. ISSN
1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.2005.10.021.

[95] Bart Meyers, Manuel Wimmer, Antonio Cicchetti, and Jonathan Sprinkle.
A generic in-place transformation-based approach to structured model co-
evolution. Electronic Communications of the European Association of
Software Science and Technology (EASST), TBD 2011.

[96] George A. Miller. Wordnet: a lexical database for english. Commun.
ACM, 38:39–41, November 1995. ISSN 0001-0782. doi: http://doi.acm.
org/10.1145/219717.219748.

[97] Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michèle Soria. Uni-
form random generation of huge metamodel instances. In Proceedings
of the 5th European Conference on Model Driven Architecture - Foun-
dations and Applications, ECMDA-FA ’09, pages 130–145, Berlin, Hei-
delberg, 2009. Springer-Verlag. ISBN 978-3-642-02673-7. doi: http:
//dx.doi.org/10.1007/978-3-642-02674-4 10.

[98] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between versions
of UML diagrams. SIGSOFT Software Engineering Notes, 28(5):227–
236, 2003. doi: http://doi.acm.org/10.1145/949952.940102.

[99] Hamilton Oliveira, Leonardo Murta, and Cláudia Werner. Odyssey-VCS:
a flexible version control system for uml model elements. In Proceedings
of the 12th international workshop on Software configuration manage-
ment, SCM ’05, pages 1–16, New York, NY, USA, 2005. ACM. ISBN
1-59593-310-7. doi: http://doi.acm.org/10.1145/1109128.1109129.

[100] Erhard Rahm and Philip A. Bernstein. A survey of approaches to au-
tomatic schema matching. The VLDB Journal, 10:334–350, December
2001. ISSN 1066-8888. doi: http://dx.doi.org/10.1007/s007780100057.

[101] W. Kozaczynski S. Sendall. Model Transformation: The Heart and Soul
of Model-Driven Software Development. IEEE Software, 20(5):42–45,
September 2003.

180 BIBLIOGRAPHY

[102] Arne Schipper, Hauke Fuhrmann, and Reinhard von Hanxleden. Visual
comparison of graphical models. In ICECCS ’09: Proceedings of the
2009 14th IEEE International Conference on Engineering of Complex
Computer Systems, pages 335–340, Washington, DC, USA, 2009. IEEE
Computer Society. ISBN 978-0-7695-3702-3. doi: dx.doi.org/10.1109/
ICECCS.2009.15.

[103] D. C. Schmidt. Model-Driven Engineering. Computer, 39(2):25–31,
February 2006.

[104] Roger Shepard. The analysis of proximities: Multidimensional scaling
with an unknown distance function. i. Psychometrika, 27:125–140, 1962.
ISSN 0033-3123. 10.1007/BF02289630.

[105] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In VL ’96: Proceedings of the 1996 IEEE
Symposium on Visual Languages, page 336, Washington, DC, USA, 1996.
IEEE Computer Society. ISBN 0-8186-7508-X.

[106] Jonathan Sprinkle and Gabor Karsai. A domain-specific visual language
for domain model evolution. Journal of Visual Languages and Computing,
15:291–307, 2004. doi: 10.1016/j.jvlc.2004.01.006.

[107] Edward Suvanaphen and Jonathan C. Roberts. Textual difference visu-
alization of multiple search results utilizing detail in context. In TPCG
’04: Proceedings of the Theory and Practice of Computer Graphics 2004
(TPCG’04), pages 2–8, Washington, DC, USA, 2004. IEEE Computer
Society. ISBN 0-7695-2137-1. doi: dx.doi.org/10.1109/TPCG.2004.33.

[108] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Differ-
ence computation of large models. In ESEC-FSE ’07: Proc. of the the
6th joint meeting of the ESEC and the ACM SIGSOFT symposium on The
FSE, pages 295–304, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-811-4. doi: doi.acm.org/10.1145/1287624.1287665.

[109] Marcel van Amstel, Mark van den Brand, Zvezdan Protić, and Tom Ver-
hoeff. Transforming process algebra models into UML state machines:
Bridging a semantic gap? In Proceedings of the 1st international con-
ference on Theory and Practice of Model Transformations, ICMT ’08,

BIBLIOGRAPHY 181

pages 61–75. Springer-Verlag, 2008. ISBN 978-3-540-69926-2. doi:
http://dx.doi.org/10.1007/978-3-540-69927-9 5.

[110] Mark van den Brand, Zvezdan Protić, and Tom Verhoeff. A unified frame-
work for metamodel-independent model matching. Submitted to SoSyM
special issue on Models and Evolution.

[111] Mark van den Brand, Zvezdan Protić, and Tom Verhoeff. Fine-grained
metamodel-assisted model comparison. In Proceedings of the 1st Inter-
national Workshop on Model Comparison in Practice, IWMCP ’10, pages
11–20, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-960-2. doi:
http://doi.acm.org/10.1145/1826147.1826152.

[112] Mark van den Brand, Zvezdan Protić, and Tom Verhoeff. Generic tool for
visualization of model differences. In Proceedings of the 1st International
Workshop on Model Comparison in Practice, IWMCP ’10, pages 66–75,
New York, NY, USA, 2010. ACM. ISBN 978-1-60558-960-2. doi: http:
//doi.acm.org/10.1145/1826147.1826160.

[113] Mark van den Brand, Zvezdan Protić, and Tom Verhoeff. RCVDiff - a
stand-alone tool for representation, calculation and visualization of model
differences. Proceedings of International Workshop on Models and Evo-
lution - ME 2010, 2010.

[114] Mark van den Brand, Albert Hofkamp, Tom Verhoeff, and Zvezdan Protić.
Assessing the quality of model-comparison tools: a method and a bench-
mark data set. In Proceedings of the 2nd International Workshop on Model
Comparison in Practice, IWMCP ’11, pages 2–11, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0668-3. doi: http://doi.acm.org/10.1145/
2000410.2000412.

[115] Mark van den Brand, Zvezdan Protić, and Tom Verhoeff. A generic
solution for syntax-driven model co-evolution. In Proceedings of the
49th international conference on Objects, models, components, patterns,
TOOLS’11. Springer-Verlag, 2011.

[116] Mark G.J. van den Brand and Kim Mens. Guest editors’ introduction to
the 3rd issue of experimental software and toolkits (est): A special issue

182 BIBLIOGRAPHY

on academic software development tools and techniques (wasdett 2008).
Science of Computer Programming, 75(4):214 – 215, 2010. ISSN 0167-
6423. doi: DOI:10.1016/j.scico.2009.11.003. Experimental Software and
Toolkits (EST 3): A special issue of the Workshop on Academic Software
Development Tools and Techniques (WASDeTT 2008).

[117] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: an annotated bibliography. SIGPLAN Not., 35:26–36, June 2000.
ISSN 0362-1340. doi: http://doi.acm.org/10.1145/352029.352035.

[118] Guido Wachsmuth. Metamodel adaptation and model co-adaptation.
In Erik Ernst, editor, Proceedings of the 21st European Conference on
Object-Oriented Programming, volume 4609 of Lecture Notes in Com-
puter Science, pages 600–624. Springer-Verlag, July 2007.

[119] Y. Richard Wang and Stuart E. Madnick. The inter-database instance iden-
tification problem in integrating autonomous systems. In Proceedings of
the Fifth International Conference on Data Engineering, pages 46–55,
Washington, DC, USA, 1989. IEEE Computer Society. ISBN 0-8186-
1915-5.

[120] Sven Wenzel. Scalable visualization of model differences. In CVSM ’08:
Proceedings of the 2008 International Workshop on Comparison and Ver-
sioning of Software Models, pages 41–46, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-045-6. doi: doi.acm.org/10.1145/1370152.
1370163.

[121] Bernhard Westfechtel. A formal approach to three-way merging of EMF
models. In Proceedings of the 1st International Workshop on Model Com-
parison in Practice, IWMCP ’10, pages 31–41, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-960-2. doi: http://doi.acm.org/10.1145/
1826147.1826155.

[122] M. Wimmer, A. Kusel, J. Schnbck, W. Retschitzegger, W. Schwinger, and
G. Kappel. On using Inplace Transformations for Model Co-evolution. In
Proceedings of the 2nd International Workshop on Model Transformation
with ATL (MtATL 2010), 2003.

BIBLIOGRAPHY 183

[123] Zhenchang Xing and Eleni Stroulia. UMLDiff: an algorithm for object-
oriented design differencing. In Proceedings of the 20th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE ’05,
pages 54–65, New York, NY, USA, 2005. ACM. ISBN 1-58113-993-4.
doi: http://doi.acm.org/10.1145/1101908.1101919.

[124] Kaizhong Zhang, Rick Statman, and Dennis Shasha. On the editing dis-
tance between unordered labeled trees. Inf. Process. Lett., 42(3):133–139,
1992. ISSN 0020-0190. doi: dx.doi.org/10.1016/0020-0190(92)90136-J.

[125] Steffen Zschaler, Dimitrios S. Kolovos, Nikolaos Drivalos, Richard F.
Paige, and Awais Rashid. Domain-specific metamodelling languages for
software language engineering. In SLE ’09: Proceedings of the inter-
national conference on software language engineering, pages 334–353.
Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-12106-7. doi:
doi.acm.org/10.1007/978-3-642-12107-4.

184 BIBLIOGRAPHY

Appendix A

Multidimensional Search

In this section we will provide a detailed description of the similarity function
for matching objects by considering only their attributes. However, we will not
consider a problem of comparing two objects, but we will consider the problem
of comparing all objects in one set of objects to all objects in another set of
objects, because this variant of similarity calculation is used in our algorithm.
Thus, the setup of the problem is: for all objects in a set of objects SA of certain
type, find all similar objects in a set SB of objects of the same type, such that the
similarity is calculated by using only the attributes of the objects. Each attribute
type has an associated similarity function which returns a real value between 0
and 1, and each attribute type has an associated threshold value such that if the
result of the similarity function is equal or larger than the specified threshold
value, two objects are considered similar.

We will first introduce a naive solution and show its shortcomings. In a naive
approach, a similarity between object B in a set SB and object A in a set SA is

185

186 APPENDIX A. MULTIDIMENSIONAL SEARCH

calculated in O(m), where m is the number of attributes of those objects. If there
are n objects in set SB, each of them needs to be compared with the object A,
which takes O(n) time. The maximum similarity between all found similarities is
found in time complexity O(1), thus the complexity of the algorithm is O(m×n).
To calculate the similarities between all objects in set SB and all (k) objects in
set SA, the total computational complexity is O(n× k×m). For large n and k,
although the complexity is polynomial, this operation becomes a bottleneck of
the system.

One of the solutions to this problem is to consider the similarity calculation as
a search problem and use the results from the field of multidimensional search.
In order to solve this problem by using multidimensional search, the attributes
of objects are to be considered as dimensions of a multidimensional space. The
objects in the sets SB and SA are considered as points in the multidimensional
search space, and for each point representing an object in the set SA (search
object) a search is performed to find the closest point in the search space from the
set SB (also called the nearest neighbor). The object represented by the nearest
neighbor is considered the most similar object to the search object. In order
to make the search faster than the naive approach, a search structure is created
based on the elements of set SB that allows for a faster search. There are many
proposed structures and we will give a brief explanation of some of them. We
will first describe approaches tuned to finding the exact nearest neighbor (NN
algorithms). One of the simplest structures are k-d trees [61]. In this approach
generalized binary trees are used to represent the elements of the set SB. Another
similar approach is introduced in [69], using LSD trees as a search structure.
LSD trees provide different split strategy than k-d trees, and behave better for a
wider range of data distributions. An approach presented by [108] facilitates the
fast comparison between large models by using SSSV trees, which are based on
LSD trees. The expected search time of these algorithms is O(n∗ log(k)∗m).

A somewhat different class of algorithms are algorithms for finding approximate
nearest neighbor (ANN algorithms). These algorithms do not try to find the point
that is the closest to the search point, but try to find the point that is possibly
closest, within certain error margin. An approach by Arya et al. [41] solves
the problem of finding the approximate nearest neighbor by using balanced-box
decomposition (BBD) trees. The idea behind these trees is to separate the search

APPENDIX A. MULTIDIMENSIONAL SEARCH 187

space into regions, such that each region can be associated to only one point from
the search set. An advantage of this algorithm is that it is easily adapted such that
more neighbors of a search point can be found fast.

However, both NN and ANN algorithms cannot be used directly in our calcu-
lation algorithm. One reason for this is that in order to use the NN (or ANN)
algorithms, the values of the attributes must form a metric space. This means
that, for example, if an object would contain an attribute of type string, the NN
algorithms could not be used because strings in general do not form a metric
space. Another reason why these algorithms cannot be used directly in our al-
gorithm is that they are are tuned to geometric objects. In particular the nearest
neighbor of a search point is the point that fits into a multidimensional ball (a
ball of certain radius around a search point) of the smallest radius. However,
this implies that the dimensions are related, and in the case that this is not true,
these algorithms cannot be used. Consider for example the objects representing
persons that have two attributes named Age and DrivingLicenceNumber. It is
unclear what is the meaning of the multidimensional ball in the space defined by
these attributes. Knowing this, it is clear that multidimensional search techniques
must be adapted in order to be used as a multi-attribute search technique.

Next we will present our approach for comparing attributes.

We allow the users to separate all attributes into two classes. In the first class are
attributes which type is (or can be cast to) a real number, or the attributes which
can be transformed into real values such that those values form a metric space
(for example characters can fit in this class). The attributes in the first class can
be separated into groups of related attributes. For each group of related attributes,
an ANN search will be used to find all the similar objects that are within specified
threshold. We use ANN algorithms because they allow for finding multiple sim-
ilar objects fast, which fits into the description of our similarity function, which
returns true for all similar objects of an object. The group of an attribute is de-
fined in the ComparisonMMAttribute instance that is related to the MMAttribute
instance that the attribute is related to (the group is an integer equal or greater
than 1). In the second class are all other attributes (the group of these attributes is
set to 0). The second class contains attributes of types which do not form a met-
ric space (for example, strings and arrays can be in the second class). Next, for

188 APPENDIX A. MULTIDIMENSIONAL SEARCH

each group of attributes in the first class we calculate the similar objects. Then,
for each attribute in the second class we calculate the similar objects (we provide
default similarity functions for several types of attributes, for all other types the
users should provide similarity functions). Finally, we use a logical expression
which combines the obtained results. The default expression states that two ob-
jects are similar if all of their attributes are similar, but as already mentioned in
Section 3.3 this expression can be redefined by domain experts to express the
domain-specific way of calculating similarity between objects.

Appendix B

Types of mapping rules and example

mappings

As already noted, the mapping between an arbitrary metamodel and a dot meta-
model is represented by a set of rules. The goal of each rule is to provide a
declarative description of the graphical shape which will be used to represent the
instance of a specific metamodel element. Thus, each rule is related to one meta-
model element, but is used to visually represent all model elements conforming
to that metamodel element. There are five rule types. These types are formulated
in such a way to enable an extremely wide range of visualization possibilities.

The detailed rationale behind all the rule types is the following: The MMEle-
ments are the main ingredients of the metamodels, thus they are included in most
rule types. Attributes of MMElements are not mapped, because they are consid-
ered inseparable parts of MMElements, and are treated like that. Thus, all types
of rules used to transform MMElements have an option to include the attributes in

189

190 APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . .

one of the predefined ways (for example, attributes could be visualized in a rect-
angle which is connected to the node representing the mapped object, separated
by horizontal lines and sorted by the name of the attribute). References are in-
cluded in the mappings in three ways: First, while mapping an MMElement into
an edge, two instances of MMReference of that MMElement are selected, such
that the instances of MElements that are referenced by the instances of MRefer-
ences that are references by the selected MMReferences instances are chosen as
the initial or target node connected by an edge. The second way of including
the references in the mapping is represented by the fourth rule type and is self
explanatory. The third way of including the references in the mapping is repre-
sented by the mapping of an MMElement into a nexus. In this mapping a set of
references is chosen as the incoming edges in the nexus, and the set of references
is chosen as the outgoing edges from the nexus.

Next we will give a detailed description of each rule type. Each rule expects a
Metamodel element ID. A Metamodel element ID is needed in order to connect
the rule to a specific metamodel element. The model elements conforming to the
specified metamodel element will be visualized by using this rule.

B.1 Rule type 1

This type of a rule can be used to transform model elements to dot nodes. It can
be used to represent classes in a class diagram, or states in a state machine. It
has the following attributes:

• Metamodel element ID

• Node shape

• Attribute name that will be used as a Node label

• The format of visualization of metamodel element attributes

• Positioning attributes list

The Node shape is one of the possible shapes for dot nodes [8]. The attribute
name is the name of the attribute that will be used as a label of this node. If the

APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . . 191

metamodel element has no attributes, or the node does not need to have a label,
this attribute can be set to the empty string. Positioning attributes is a list contain-
ing the identifiers of four attributes of a model element that will be interpreted as
a positioning data for that element(top, left, bottom and right coordinates). The
format of visualizations of model element attributes can be one of the following:

• NONE

• RECORD

• HIDDEN RECORD

• TREE

If the format is set to NONE, no attributes of the model element will be visu-
alized. It is important to know that if the format is set to NONE, changes to
attributes will not be visible in the visualization of the differences. If the for-
mat is set to RECORD, all the attributes are shown in a box, with each attribute
separated from others by a horizontal or vertical line. The box representing at-
tributes is connected to the node representing the model element. The HIDDEN
RECORD format is similar to the RECORD format, the difference is that the
edge that connects the attribute box with the node representing the model ele-
ment is hidden. If the format is set to TREE, the attributes are visualized by us-
ing oval-shape nodes, which are connected to the node representing the mapped
model element. An example of all four attributes representation formats is given
in Figure B.1.

B.2 Rule type 2

This type of rule can be used to transform model elements to dot clusters. Clus-
ters can contain other nodes, and are used to represent a containment-type hi-
erarchical structures. This type of rule can be used to represent, for example, a
complete class diagram, or a complete state-machine. It can be applied only to
metamodel elements that contain other metamodel elements. It has the following
attributes:

192 APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . .

Figure B.1: Attributes representation formats

• Metamodel element ID

• Attribute name that will be used as a Node label

• The list of IDs of sub-metamodel elements that the selected metamodel
element contains

• The format of visualization of model element attributes

• Positioning attributes list

Metamodel element ID connects this rule to a specific metamodel element. The
attribute name is the name of the attribute that will be used as a label of the
resulting cluster. The list of IDs of sub-metamodel elements is used to select
which subobjects of the mapped model element will be visualized inside this
cluster. All the subobjects (of a model element mapped to a cluster) that conform
to the listed metamodel elements will be visualized inside the cluster. The format
of visualizations of metamodel element attributes can be one of the following:

• NONE

• RECORD

• HIDDEN RECORD

• TREE

APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . . 193

• INSIDE RECORD

The description of all of these formats is the same as in Rule type 1, except of the
INSIDE RECORD, which denotes that the attributes should be visualized inside
a cluster.

B.3 Rule type 3

This type of rule can be used to transform model elements to dot edges. It can be
used to represent associations in a class diagram, or transitions in a state machine.
It has the following attributes:

• Metamodel element ID

• From reference ID

• To reference ID

• From reference shape

• To reference shape

The rationale behind this element is the following: This type of rule should en-
able graphical representation of elements that have two or more references of
the maximal cardinality 1. Thus, these model elements are actually connections
between two or more model elements. For example, the transitions in a state
machine or associations in class diagrams should be visualized by a Rule type
3. Thus, this model element will be visualized as a set of edges between all
elements that are referenced by its reference having the same ID as the From ref-
erence ID, and between all elements that are referenced by its reference having
the same ID as the To reference ID. The From reference shape and To reference
shape, are shapes of the ends of created edges.

194 APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . .

B.4 Rule type 4

This type of rule can be used to transform references to dot edges. It can be used
to create tree-like structures, instead of cluster-like structures. For example, if
one does not want to create a cluster out of a node, he can specify rules that map
references of specific model elements to edges, thus creating a tree structure.
This type of rule has the following attributes:

• Metamodel element ID

• Reference ID

• From shape

• To shape

• Edge line type

Reference ID is the ID of a reference whose instances will be mapped to edges.
From and To shapes are the shapes of the edge begin and end. The Edge line
type is the type of the line of an edge, and should be one of the recognized dot
line types.

B.5 Rule type 5

This type of rule can be used to transform model elements to dot nexuses. Nexus
is a special node that is connected to all instances of all referenced elements
by the mapped model element. This node can be used to represent structures
like choice, junction or join pseudo states in UML state machines. Specifically,
this type of rules is good to represent the structures that connect more than two
elements. It has the following attributes:

• Metamodel element ID

• Node shape

• Attribute name that will be used as a Node label

APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . . 195

• The format of visualization of metamodel element attributes

• Positioning attributes list

The attributes of this rule type are the same as the ones in rule 1, and have the
same meaning.

B.6 Examples

In this section we provide several examples of rules, and their application to the
example model.

B.6.1 Example 1

In this example we specify rules that visualize a state machine model (and can
be used for other models having the same metamodel) presented in a tree form
in the middle of the Figure 5.4, to its appropriate graphical representation which
is presented in the lower part of that Figure.

We will assume that the State metamodel element has an ID S1, that the Transi-
tion metamodel element has an ID T1, that the From reference of the Transition
element has an ID T1R1 and that the To reference of the Transition element has
an ID T1R2.

There are two rules required. The first rule is used to visualize states:

RULE:

Type: TYPE1

MetamodelElementID: S1

Shape: Circle

LabelAttribute: Name

AttributesVisualization: HIDDEN

This rule is of type 1, and it is thus related to the metamodel element with ID S1.
It represents instances of that metamodel element as circles, the label inside the

196 APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . .

circle is the value of the Name attribute of the element, and the element attributes
are not explicitly visualized.

The second rule is used to visualize transitions:

RULE:

Type: TYPE3

MetamodelElementID: T1

FromReferenceID: T1R1

ToReferenceID: T1R2

FromReferenceShape: none

ToReferenceShape: normal

This rule is of type 3, thus all transitions will be turned into edges.

In the example, there is one transition, for which the From reference (the one with
ID T1R1) references object with an ID 1, and the To reference (the one with ID
T1R2) references object with an ID 2. Thus, this transition will be visualized as
an edge between objects with ID 1, and ID 2, which are states in this example,
and are visualized as circles.

Thus, these two rules can be used to visualize the basic state machines.

B.6.2 Example 2

In this example we will extend the metamodel presented in Figure 5.4 by creating
a container for states and transitions (called StateMachine). The new metamodel,
tree-view of an example model and appropriate visualization of the example
model are presented in Figure B.2. In order to visualize the models conforming
to the metamodel presented in Figure B.2, two rules defined in example 1 will be
used, and one extra rule will be defined. We will assume that the StateMachine
metamodel element has an ID SM0, and that it contains metamodel elements
State and Transition. The extra rule is as following:

RULE:

Type: TYPE2

MetamodelElementID: SM0

APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . . 197

Tree representation of an example Model

Metamodel-specific representation of an example Model

document

object1::State object2::State

name="name"

value="A"

object3::Transition

reference1::From reference2::ToAO1::Attribute

name="name"

value="B"

AO2::Attribute

elementID=1 elementID=2 elementID=3

referencedID=1 referencedID=2

A B

Metamodel

State

name=String

Transition
1

1

From

To

StateMachine

0..* 0..*

name=String

object0::StateMachine

elementID=0
name="name"

value="Basic"

AO01::Attribute

Basic

SR TR

Figure B.2: Extended state-machine metamodel and an example model

SubelementsIDList: S1, S2

LabelAttribute: Name

AttributesVisualization: HIDDEN

This rule denotes that all state machines will be visualized as clusters, with their
belonging states and transitions visualized inside of them. The attribute Name
will be used as a name of the state machine, and no attributes will be visualized.

B.6.3 Example 3

In this example, we will further extend the metamodel presented in the example
2. We will extend this metamodel such that now a start state and an end state can
be visualized separately. The extended metamodel, together with a tree-view
of an example model, and an appropriate visual representation of an example
model are presented in Figure B.3. In order to visualize models conforming to

198 APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . .

Tree representation of an example Model

Metamodel-specific representation of an example Model

document

object1::StartState object2::EndState

name="name"

value="StartState"

object3::Transition

reference31::From

reference32::To

name="name"

value="EndState"

elementID=1 elementID=2

elementID=3

referencedID=1

ReferencedID=4

Metamodel

State

name=String

Transition
1

1

From

To

StateMachine

0..* 0..*

name=String

object0::StateMachine

elementID=0

name="name"

value="Basic"

AO01::Attribute

Basic

SR TRStartState

EndState

object4::State

name="name"

value="Normal"

AO::Attribute

elementID=4

AO::AttributeAO::Attribute

Normal

object5::Transition

reference51::From

reference52::To

elementID=5

referencedID=4

ReferencedID=2

Figure B.3: Further extended state-machine metamodel and an example model

this metamodel, we will take three already defined rules, change one of those,
and we will create two more rules. We will assume that the metamodel element
StartState has an ID SS, and the metamodel element EndState has an ID ES.
The first changed rule is the one for that is used for visualization of States, now
visualizing states as boxes:

RULE:

Type: TYPE1

MetamodelElementID: S1

Shape: Box

LabelAttribute: Name

AttributesVisualization: HIDDEN

APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . . 199

The new rules are as following:

RULE:

Type: TYPE1

MetamodelElementID: SS

Shape: Circle

LabelAttribute:

AttributesVisualization: HIDDEN

RULE:

Type: TYPE1

MetamodelElementID: ES

Shape: DoubleCircle

LabelAttribute:

AttributesVisualization: HIDDEN

Thus, an instance of a start state will be visualized as a circle, and an instance of
an end state will be visualized as a double circle.

200 APPENDIX B. TYPES OF MAPPING RULES AND EXAMPLE . . .

Appendix C

Possible metamodel differences

In this Appendix we describe all the possible types of atomic metamodel differences and
(separated by a → symbol) the possible impact of those differences to the co-evolving
models. This set of atomic differences is sound and complete. Notice that each type
of metamodel difference is related to one group of metamodel differences introduced in
Section 6.1. This relation is denoted by an abbreviation of a differences group (BRD,
NBD, BSRD or BHRD).

1. In the new metamodel, an element was deleted (BRD)→ The conforming model
elements should be deleted from all the models.

2. In the new metamodel, an element was added (NBD)→ Nothing should change
in co-evolving models.

3. In the new metamodel, the name of an element was changed (NBD)→ This does
not have any influence on the conforming models, since the model elements are
not related to the metamodel elements by name.

4. In the new metamodel, an attribute of an element was deleted (BRD)→ The in-
stance of that attribute should also be deleted from all model elements conforming

201

202 APPENDIX C. POSSIBLE METAMODEL DIFFERENCES

to that metamodel element.
5. In the new metamodel, an attribute was added to an element (BSRD) → The

instance of added attribute should be added to all the model elements conforming to
the changed metamodel element. However, a default value should be provided for
all attributes added to a metamodel in order to obtain syntactic correctness of the
resulting models. This default value can be provided in a static (per-metamodel)
configuration file, thus this difference is Breaking and semi-resolvable difference.

6. In the new metamodel, an attribute of an element was changed; the following
options are possible:

(a) In the new metamodel, the name of the attribute was changed (NBD) →
Nothing should be changed in the models, because models do not reference
attributes by name.

(b) In the new metamodel, the type of the attribute was changed (BSRD) →
The values of that attribute in models might not be valid anymore. Thus, a
transformation function that transforms the old values of the attributes to the
new values of the new type should be provided in a pre-defined configuration
file.

7. In the new metamodel, a reference of an element was deleted (BRD) → All in-
stances of it should also be deleted from all of the model elements conforming to
the changed metamodel element.

8. In the new metamodel, a reference was added to an element (BHRD) → The
changes to model elements depend on the lower bound of the added reference. If
the lower bound of the reference is zero (0), then, syntactically, the models are
correct without any change. If the lower bound on the reference is not zero, then
the appropriate instances of the reference should be added by a user, i.e. it is not
possible to automatically infer a correct model.

9. In the new metamodel, a reference of an element was changed:

(a) In the new metamodel, the label of the reference was changed (NBD) →
Nothing should change in models.

(b) In the new metamodel, the bounds of the reference were changed (BHRD)
→ A syntactic check should be invoked in the target model and appropriate
warnings/errors should be issued in case the new bounds of the references are
not respected in the model elements conforming to the changed metamodel
element.

(c) In the new metamodel, the reference was changed to refer to a different
element (BHRD)→ The reference instances do not point to the right type of
elements, and a user should resolve the conflict.

APPENDIX C. POSSIBLE METAMODEL DIFFERENCES 203

10. In the new metamodel, a contained element was deleted (BRD)→ All instances
of the deleted subelement should be deleted from the instances of the model ele-
ments conforming to the changed metamodel element.

11. In the new metamodel, a contained element was added (NBD)→ Nothing should
change in models.

If in the new metamodel the contained element has been changed, then for each changed
subelement the defined differences should be processed recursively.

204 APPENDIX C. POSSIBLE METAMODEL DIFFERENCES

Curriculum Vitae

Zvezdan Protić was born on 01.08.1978 in Novi Sad (Serbia). He finished pri-
mary school in the village of Tovariševo (Serbia) in 1993. He attended high
school “Jovan Jovanović Zmaj” in Novi Sad (Serbia) from 1993 until 1997.
Thereafter, he attended five-year graduate studies at Faculty of Technical Sci-
ences in Novi Sad. He graduated in 2002, and the title of his graduation thesis
was “Web-based system for knowledge assessment”. His graduation title “Grad-
uate Engineer of Computer Science”, was equalized in 2007, according to the
Bologna Declaration, to the title: “Graduate Engineer - Master”. From 2002 un-
til 2004 he was employed as an assistant helper at Faculty of Technical Sciences
in Novi Sad. From 2004 until 2007 he was employed as a teaching and research
assistant at Faculty of Technical Sciences in Novi Sad. From 2007 until 2011 he
was employed as a Ph.D. candidate at Eindhoven University of Technology in
Eindhoven.

205

206 CURRICULUM VITAE

Nederlandse samenvatting

Het traditionele software engineering paradigma is niet in staat om te gaan met
de toenemende vraag naar software van hoge kwaliteit. Daarom is een nieuw
paradigma, namelijk model-gedreven softwareontwikkeling (MDSE), snel om
zich heen aan het grijpen.

MDSE belooft enkele van de problemen die traditionele softwareontwikkeling
met zich meebrengt op te lossen door verhoging van het abstractieniveau. Daarom
worden in MDSE modellen en modeltransformaties gebruikt om software te pro-
duceren in plaats van tekstuele programmacode, zoals dat in traditionele soft-
wareontwikkeling het geval is. De modellen zijn veelal gebaseerd op grafen en
worden ontwikkeld gebruikmakend van een grafische notatiewijze, met andere
woorden, de modellen worden gerepresenteerd als diagrammen. Modeltrans-
formaties kunnen worden gebruikt om verschillende soorten artefacten te pro-
duceren van modellen in allerlei stadia van een softwareontwikkelingsproces.
Bijvoorbeeld, artefacten die gebruikt kunnen worden voor model checkers of
simulatieprogrammas kunnen worden geproduceerd. Hierdoor kunnen software
producten in een vroeg ontwikkelingsstadium geverifieerd of gesimuleerd wor-
den, wat leidt tot een verdere reductie van de kans op fouten in het uiteindelijke

207

208 NEDERLANDSE SAMENVATTING

softwareproduct.

Echter, methoden en technieken ter ondersteuning van MDSE zijn nog steeds niet
voldoende volwassen. Met name methoden en technieken voor configuratiebe-
heer van modellen zijn nog steeds in ontwikkeling, bovendien bestaat er nog geen
generiek systeem hiervoor. In deze dissertatie, beschrijf ik mijn onderzoek dat
gericht was op het ontwikkelen van methoden en technieken ter ondersteuning
van configuratiebeheer voor modellen. Tijdens mijn onderzoek heb ik me met
name gericht op het ontwikkelen van methoden en technieken voor het vergelij-
ken van modellen en ter ondersteuning van model co-evolutie. De beschreven
methoden en technieken zijn generiek en geschikt voor een toestandsgebaseerde
aanpak voor configuratiebeheer van modellen.

Met betrekking tot het vergelijken van modellen heb ik methoden ontwikkeld
voor het representeren, berekenen en visualiseren van toestandsgebaseerde model
verschillen. In tegenstelling tot eerder gepubliceerd onderzoek, waar deze drie
aspecten van modelverschillen in isolatie behandeld worden, zijn in mijn onder-
zoek al deze drie aspecten geı̈ntegreerd.

Model co-evolutie is een term die het probleem beschrijft van het aanpassen van
modellen in geval hun metamodel verandert. Mijn oplossing voor dit probleem
bestaat uit drie stappen. In de eerste stap wordt een speciaal metamodel geı̈ntro-
duceerd, namelijk een metamodel voor metamodellen. In tegenstelling tot tra-
ditionele aanpakken waar metamodellen als instanties van een meta-metamodel
gerepresenteerd worden, worden metamodellen in mijn aanpak gerepresenteerd
als modellen die instanties zijn van het metamodel voor metamodellen. In de
tweede stap worden de eerdergenoemde methoden en technieken voor het ver-
gelijken van modellen hergebruikt om metamodel verschillen te berekenen en te
representeren. Dit is mogelijk omdat metamodellen gerepresenteerd worden als
modellen. In de laatste stap definieer ik een algoritme that de berekende meta-
modelverschillen gebruikt om modellen aan te passen zodat ze voldoen aan het
geëvolueerde metamodel.

Titles in the IPA Dissertation Series since 2005

E. Ábrahám. An Assertional Proof
System for Multithreaded Java -
Theory and Tool Support- . Faculty
of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and
Remodeling in Bone Tissue. Fac-
ulty of Biomedical Engineering,
TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applications.
Faculty of Mathematics and Com-
puter Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based Sys-
tem Architecting - A Systematic Ap-
proach to Developing Future-Proof
System Architectures. Faculty of
Mathematics and Computing Sci-
ences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Proce-
dures for Equality Logic with Un-
interpreted Functions. Faculty of
Mathematics and Computer Science,
TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engi-
neering, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classification
and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science,
UU. 2005-13

G.F. Frehse. Compositional Verifica-
tion of Hybrid Systems using Simu-
lation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Pro-
cesses with Replication. Faculty of
Mathematics and Natural Sciences,
UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transforma-
tion of Source Code by Parsing and
Rewriting. Faculty of Natural Sci-
ences, Mathematics, and Computer

Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes
with Data. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science,
UU. 2005-21

Y.W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of

Hybrid Systems. Faculty of Math-
ematics and Computer Science and
Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of
JML programs. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-08

B. Markvoort. Towards Hy-
brid Molecular Simulations. Fac-
ulty of Biomedical Engineering,
TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeter-
ministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic.
Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2006-13

A.J. Mooij. Constructive formal
methods and protocol standardiza-
tion. Faculty of Mathematics and
Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Pro-
tocols. Faculty of Mathematics and
Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of
Distributed Systems: Semantics, Im-
plementation and Composition. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time re-
configurable Network-on-Chip for
streaming DSP applications. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on

Modeling for Early Detection of Ab-
normalities in Locally Autonomous
Distributed Systems. Faculty of
Mathematics and Computing Sci-
ences, RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-
bra. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical

Engineering, Mathematics & Com-
puter Science, UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Pro-
cesses. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing
Systems. Faculty of Mechanical En-
gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Se-
ries of Empirical Studies about the
UML. Faculty of Mathematics and
Computer Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer

Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolu-
tion of Software Architectures. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data.
Faculty of Mathematics and Com-
puter Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-

iomatic Crosscutting Concerns in
Embedded Systems. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of
High-tech Multi-disciplinary Sys-
tems. Faculty of Mechanical Engi-
neering, TU/e. 2008-05

M. Bravenboer. Exercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Con-
glomerates. Faculty of Science,
UU. 2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verifica-
tion of Optimistic Fair Exchange Pro-
tocols. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufactur-
ing Machines. Faculty of Mechanical
Engineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algo-
rithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-11

M. Farshi. A Theoretical and Ex-
perimental Study of Geometric Net-
works. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behav-
ior Specifications Using Context-
Sensitive Wildcards. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Dürr. Resource-based Verifi-
cation for Robust Composition of As-

pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Meth-
ods in Support of SMC Design.
Faculty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive
Systems with Data - Enumerative
Methods and Constraint Solving.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty

of Mathematics and Computer Sci-
ence, TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Ex-
perimental Aspects of Pattern Eval-
uation. Faculty of Mathematics and
Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural
Computation: Gene Assembly and
Membrane Systems. Faculty of
Mathematics and Natural Sciences,
UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-24

U. Khadim. Process Algebras for
Hybrid Systems: Comparison and
Development. Faculty of Math-
ematics and Computer Science,
TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for Per-
formance Evaluation. Faculty of
Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2008-27

I.R. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-28

R.S. Marin-Perianu. Wireless Sen-
sor Networks in Motion: Clustering
Algorithms for Service Discovery and
Provisioning. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Val-
idating Distributed Embedded Real-
Time Control Systems. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Evolution. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-

tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata The-
ory and Modal Logic. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Trans-
formation. Faculty of Science,
UU. 2009-10

J.A.G.M. van den Berg. Reason-
ing about Java programs in PVS
using JML. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-12

S.G.M. Cornelissen. Evaluating
Dynamic Analysis Techniques for
Program Comprehension. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Dig-
ital Exchange. Faculty of Math-
ematics and Computer Science,
TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Elec-
trical Engineering, Mathematics &

Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and Avail-
ability: Building Computer Alge-
bra on top of Proof Assistants and
making Proof Assistants available
over the Web. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-18

R.S.S. O’Connor. Incompleteness
& Completeness: Formalizing Logic
and Analysis in Type Theory. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2009-19

B. Ploeger. Improved Verifica-
tion Methods for Concurrent Systems.
Faculty of Mathematics and Com-
puter Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and
Analysis of Probabilistic Models.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-21

R. Li. Mixed-Integer Evolution
Strategies for Parameter Optimiza-
tion and Their Applications to Med-

ical Image Analysis. Faculty of
Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Compu-
tational Complexity of Probabilis-
tic Networks. Faculty of Science,
UU. 2009-23

T.K. Cocx. Algorithmic Tools
for Data-Oriented Law Enforcement.
Faculty of Mathematics and Natural
Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative
Environments. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2009-26

J.F.J. Laros. Metrics and Visuali-
sation for Crime Analysis and Ge-
nomics. Faculty of Mathematics and
Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Check-
ing Nondeterministic and Randomly

Timed Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2010-03

T. Staijen. Graph-Based Specifi-
cation and Verification for Aspect-
Oriented Languages. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Sci-
ence, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2010-08

J.S. de Bruin. Service-Oriented

Discovery of Knowledge - Founda-
tions, Implementations and Applica-
tions. Faculty of Mathematics and
Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Com-
ponent Connectors. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2010-11

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols.
Faculty of Sciences, Department of
Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refine-

ment. Faculty of Mathematics and
Natural Sciences, UL. 2011-04

J. Proença. Synchronous coordina-
tion of distributed components. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-05

A. Moralı. IT Architecture-Based
Confidentiality Risk Assessment in
Networks of Organizations. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models
in Model-Based Testing. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-07

C. Krause. Reconfigurable Com-
ponent Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilis-
tic and Nondeterministic Systems.
Faculty of Science, Mathematics and
Computer Science, RU. 2011-09

M. Atif. Formal Modeling and Ver-
ification of Distributed Failure De-
tectors. Faculty of Mathematics and
Computer Science, TU/e. 2011-10

P.J.A. van Tilburg. From Com-
putability to Executability – A
process-theoretic view on automata
theory. Faculty of Mathematics and
Computer Science, TU/e. 2011-11

Z. Protic. Configuration manage-
ment for models: Generic methods
for model comparison and model
co-evolution. Faculty of Math-
ematics and Computer Science,
TU/e. 2011-12

	Preface
	Summary
	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. An Alternative Modeling Framework
	3. Model Differences Representation and Calculation
	4. Assessing the Quality of Tools for Model Comparison
	5. Model Differences Visualization
	6. A Generic Solution for Syntax-driven Model Co-evolution
	7. Conclusions
	Bibliography
	Appendices

	Curriculum Vitae
	Nederlandse samenvatting

