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Abstract

For a continuous transformation f of a compact metric space �X� d� and
any continuous function � on X we consider sets of the form

K� �
n
x � X � lim

n��

�

n

n��X
i��

��f i�x�� � �
o
� � � R�

For transformations satisfying the speci�cation property we prove the
following Variational Principle

htop�f�K�� � sup
�
h��f� � � is invariant and

Z
�d� � �

�
�

where htop�f� �� is the topological entropy of non�compact sets	 Using this
result we are able to obtain a complete decription of the multifractal spectrum
for Lyapunov exponents of the so�called Manneville
Pomeau map� which is
an interval map with an indi�erent �xed point	

� Introduction

Often the problems of multifractal analysis of local �or pointwise� dimensions and

entropies are reduced to consideration of the sets of the following form

K� 	
n
x � X 
 lim

n��

�

n

n��X
i��

��f i�x�� 	 �
o
� � � R�

where f 
 X � X is some transformation� and � 
 X � R is a function� sometimes

called observable� Typically� f is a continuous transformation of some compact

metric space �X� d� and � is su�ciently smooth�

�



In particular� one is interested in the 
size� of these sets K�� The following

characteristics of the sets K� have been studied in the literature


D���� 	 dimH�K��� E���� 	 htop�f�K���

where dimH�K�� and htop�f�K�� are the Hausdor� dimension and the topological

entropy of K�� respectively� The precise de�nition of the topological entropy of non�

compact sets will be given in section �� but for now the topological entropy should

be viewed as a dimension�like characteristic� similar to the Hausdor� dimension�

The functions D����� E���� will be called the dimension and entropy multifractal

spectra of ��

Recently similar problems were considered in the relation with a de�nition of a

rotational entropy ��� ����

Multifractal analysis studies various properties of the multifractal spectra D�����

E���� as functions of �� e�g�� smoothness and convexity� and relates these spectra to

other characteristics of a dynamical system� In order to obtain non�trivial results

one typically has to make � types of assumptions
 �rstly� on the dynamical system

�X� f�� and secondly� on the properties of the observable function �� For example�

� ������ see also ����� if f is a su�ciently smooth expanding conformal map� and

� is a H�older continuous function� then E���� is real�analytic and convex�

� ������ if f is an expansive homeomorphism with speci�cation� and � has

bounded variation� then E���� is C� and convex�

In both cases� E���� is a Legendre transform of a pressure function P��q� 	 P �q���

where P ��� is the topological pressure�

Conditions on � in the examples above are ment to ensure the absense of phase

transition� i�e�� existence and uniqueness of equilibrium state for potential q� for

every q � R� The main goal of this paper is to relax such conditions and to obtain

results for systems exhibiting phase transitions�

A natural class of observable functions � would be the set of all continuous

function� Moreoveor� the set of all continuous functions is quite rich in the sense

of possible phase tranitions� For example ���� p����� for any set f��� � � � � �kg of

ergodic shift�invariant measures on AZ� where A is a �nite set� one can �nd a

continuous function � such that all these measures �i� i 	 �� � � � � k are equilibrium

states for �� Nevertheless� A��H� Fan� D��J� Feng in ���� and E� Olivier in �����

in the case of symbolic dynamics� obtained results on the spectrum E���� for

arbitrary continuous functions �� similar to those mentioned above� In fact� they

were studying the dimension spectrum D����� but in symbolic case for every � one

has E���� 	 ��A�D����� where ��A� is the number of elements in A�

In this paper we study the entropy spectum E���� for a continuous

transformation f on a compact metric space �X� d� and arbitrary continuous

function �� The main result of this paper �Theorem ���� states that if f is a

continuous transformations with speci�cation property� then for any � with K� �	 �

one has

E���� 	 H���� 	 ������

�



where

H���� 
	 sup
n
h��f� 
 � is invariant and

Z
�d� 	 �

o
�

and ����� is a special 
ball��counting dimension of K�� similar to one introduced

in ����

Readers� familiar with Large Deviations� will recognize in H���� the so�called

rate function� And indeed� we use the Large Deviation results for dynamical systems

with speci�cation obtained by L��S�Young in �����

The most intricate part of our proof is the equality E���� 	 ������ To show it

we use a Moran fractal structure� inspired by one constructed in ��� for the symbolic

case�

The Manneville�Pomeau map is a piecewise continuous map of a unit interval

given by

fs�x� 	 x � x��s mod �� � � s � ��

This map has a unique indi�erent �xed point x 	 �� and is probably the simplest

example of a non�uniformly hyperbolic dynamical system� Thermodynamic

properties of this transformation are quite well understood� see ���� ��� ��� ����

In ����� M� Pollicott and H� Weiss studied the multifractal spectrum for � 	

log f �s� i�e�� the spectrum of Lyapunov exponents� They were able to obtain a partial

description of this spectrum� Using our results we able to complete the picture� see

section � for details�

A straightforward modi�cation of our proofs shows that the results are valid in

more general settings as well� Suppose f 
 X � X is a continuous transformation

with speci�cation property and � 	 ���� � � � � �d� 
 X � R
d is a continuous

function� For � � Rd consider the set

K� 	
n
x � X 
 lim

n��

�

n

n��X
i��

�j�f
i�x�� 	 �j � j 	 �� � � � � d

o
�

Then

E���� 	 htop�f�K�� 	 sup
n
h��f� 
 � is invariant and

Z
�d� 	 �

o
� ���

In fact� even more is true� Suppose again that � 
 X � R
d is a continuous function

and � 
 Im��� � R
m is a continuous map de�ned on Im��� 	 f��x� 
 x � Xg � R

d �

De�ne

K���
� 	

n
x � X 
 lim

n��
�
� �

n

n��X
i��

��f i�x��
�

	 �
o
�

Then for any � such that K���
� �	 � one has

E������ 	 htop�f�K���
� � 	 sup

n
h��f� 
 � is invariant and �

�Z
�d�

�
	 �

o
� ���

�



As an imediate consequence of ��� and ��� we obtain the following result� which

we call the Contraction Principle for Multifractal Spectra� due to the clear analogy

with the well�knwon Contraction Principle in Large Deviations


E������ 	 sup
�� ������

E�����

For more detailed discussion and some examples see section ��

Everywhere in the present paper ��C� denotes a cardinality of a set C� Proofs

of all lemmas are collected in section ��

� Multifractal spectrum of continuous functions

Let f 
 X � X be a continuous transformation of a compact metric space �X� d��

Throughout this paper we will assume that f has �nite topological entropy� Suppose

� 
 X � R is a continuous function� For � � R de�ne


K� 	
n
x � X 
 lim

n��

�

n

n��X
i��

��f i�x�� 	 �
o
� ���

We introduce the following notation

L� 	 f� � R 
 K� �	 �g�

Lemma ���� The set L� is a non	empty bounded subset of R�

De�nition ���� A continuous transformation f 
 X � X satis�es speci�cation

if for any 	 
 � there exists an integer m 	 m�	� such that for arbitrary �nite

intervals Ij 	 �aj � bj � � N� j 	 �� � � � � k� such that

dist�Ii� Ij� � m�	�� i �	 j�

and any x�� � � � � xk in X there exists a point x � X such that

d�fp�ajx� fpxj� � 	 for all p 	 �� � � � � bj 	 aj � and every j 	 �� � � � � k�

Following the present day tradition we do not require that x is periodic�

Speci�cation implies topological mixing� Moreover� by the Blokh theorem ����

for continuous transformations of the interval these two conditions are equivalent�

Using this equivalence and the results of Jakobson ���� we conclude that for the

logistic family fr�x� 	 rx�� 	 x� the speci�cation property holds for a set of

parameters of positive Lebesgue measure�

The speci�cation property allows us to connect together arbitrary pieces of orbits�

Suppose now that for two values ��� �	 the corresponding sets K�� �K�� are not

empty� Using the speci�cation property we are able to construct points with ergodic

averages� converging to any number � � ���� �	�� Hence� L� is a convex set� This

implies the following


�



Lemma ���� If f 
 X � X satis�es speci�cation� then L� is an interval�

We recall that the entropy spectrum E���� of � is the map assigning to each

� � L� the value

E���� 	 htop�f�K��� ���

The de�nition and some fundamental facts about the topological entropy of non�

compact sets are collected in the following section�

� Topological entropy of non�compact sets

The generalization of the topological entropy to non�compact or non�invariant sets

goes back to Bowen ���� Later Pesin and Pitskel ���� generalized the notion of

the topological pressure to the case of non�compact sets� In this paper we use an

equivalent de�nition of the topological entropy� which can be found in �����

��� De�nition of the topological entropy�

Once again� let �X� d� be a compact metric space� and f 
 X � X be a continuous

transformation� For any n � N we de�ne a new metric dn on X as follows


dn�x� y� 	 maxfd�fk�x�� fk�y�� 
 k 	 �� � � � � n	 �g�

and for every 	 
 � we denote by Bn�x� 	� an open ball of radius 	 in the metric dn
around x� i�e��

Bn�x� 	� 	 fy � X 
 dn�x� y� � 	g�

Suppose we are given some set Z � X � Fix 	 
 �� We say that an at most

countable collection of balls � 	 fBni�xi� 	�gi covers Z if Z � 
iBni�xi� 	�� For

� 	 fBni�xi� 	�gi� put n��� 	 mini ni� Let s � � and de�ne

m�Z� s�N� 	� 	 inf



X
i

exp�	sni��

where the in�num is taken over all collections � 	 fBni�xi� 	�g covering Z and such

that n��� � N � The quantity m�Z� s�N� 	� does not decrease with N � hence the

following limit exists

m�Z� s� 	� 	 lim
N��

m�Z� s�N� 	� 	 sup
N��

m�Z� s�N� 	��

It is easy to show that there exists a critical value of the parameter s� which we

will denote by htop�f� Z� 	�� where m�Z� s� 	� jumps from �� to �� i�e��

m�Z� s� 	� 	

�
��� s � htop�f� Z� 	��

�� s 
 htop�f� Z� 	��

�



There are no restriction on the value m�Z� s� 	� for s 	 htop�f� Z� 	�� It can be

in�nite� zero� or positive and �nite� One can show ���� that the following limit

exists

htop�f� Z� 	 lim
���

htop�f� Z� 	��

We will call htop�f� Z� the topological entropy of f restricted to Z� or� simply� the

topological entropy of Z� when there is no confusion about f �

��� Properties of the topological entropy

Here we recall some of the basic properties and important results on the topological

entropy of non�compact or non�invariant sets�

Theorem ��� ������� The topological entropy as de�ned above satis�es the

following


�� htop�f� Z�� � htop�f� Z	� for any Z� � Z	 � X�

�� htop�f� Z� 	 sup
i

htop�f� Zi�� where Z 	 
�i�� Zi � X�

The next theorem establishes a relation between topological entropy of a set and

the measure�theoretic entropies of measures� concentrated on this set� generalizing

the classical result for compact sets�

Theorem ��� �R� Bowen ����� Let f 
 X � X be a continuous transformation of

a compact metric space� Suppose � is an invariant measure� and Z � X is such

that ��Z� 	 �� then

htop�f� Z� � h��f��

where h��f� is the measure	theoretic entropy�

Suppose we are given an invariant measure �� A point x is called generic for �

if the sequence of probability measures

�x�n 	
�

n

n��X
k��

�fk�x��

where �y is the Dirac measure at y� converges to � in the weak topology� Denote by

G� the set of all generic points for �� If � is an ergodic invariant measure� then by

the Ergodic Theorem ��G�� 	 �� Applying the previous theorem we immediately

conclude that htop�f�G�� � h��f�� In fact� the opposite inequality is valid as well


Theorem ��� �R� Bowen ����� Let � be an ergodic invariant measure� then

htop�f�G�� 	 h��f��

Ya� Pesin and B� Pitskel in ���� have proved the following variational principle

for non�compact sets�

�



Theorem ���� Suppose f 
 X � X is a continuous transformation of a compact

metric space �X� d�� and Z � X is an invariant set� Denote by Mf �Z� the set of

all invariant measures � such that ��Z� 	 �� For any x � X denote by V �x� the

set of all limit points of the sequence f�x�ng� Assume that for every x � Z one has

V �x� 
Mf �Z� �	 ��

Then htop�f� Z� 	 sup
��Mf �Z�

h��f��

The conditions of this theorem are very di�cult to check in any speci�c situation�

However� there is no hope for improving the above result for general sets Z� There

are examples ���� ��� of sets� for which the condition V �x� 
Mf �Z� �	 � does not

hold for all x � Z� and one has a strict inequality

htop�f� Z� 
 supfh��f� 
 � � Mf �X� and ��Z� 	 �g�

In this paper we restrict our attention to the sets of a special form
 namely� the

sets K� given by ���� For these particular sets we prove a variational priciple for

the topological entropy� provided the transformation f satis�es speci�cation


Theorem ��	� Suppose f 
 X � X is a continuous transformation with the

speci�cation porperty� Let � � C�X�R� and assume that for some � � R

K� 	
n
x � X 
 lim

n��

�

n

n��X
i��

��f i�x�� 	 �
o
�	 ��

then

htop�f�K�� 	 sup
n
h��f� 
 � is invariant and

Z
�d� 	 �

o
�

Remark ���� Under the conditions of the above theorem� it is possible that for a

certain parameter value �� there exists a unique invariant probability measure ��
with

R
�d� 	 �� such that

htop�f�K�� 	 h���f��

Hence� �� is a measure of maximal entropy among all invariant measures � withR
�d� 	 �� However� it is also possible� that ���K�� 	 �� This situation� for

example� occurs in the family of Manneville	Pomeau maps� see Remark 

 for more

details�

��� Entropy distribution principle�

The following statement will allow us to estimate the topological entropies of the

sets from bellow� without constructing probability measures� which are invariant

and concentrated on a given set� It is su�cient to consider only probability

measures� which need not be invariant� but which satisfy some speci�c  uniformity

condition � We call this result the Entropy Distribution Principle� by the clear

analogy with a well�known Mass Distribution Principle ����

�



Theorem ��� �Entropy distribution principle�� Let f 
 X � X be a

continuous transformation� Suppose a set Z � X and a constant s � � are such

that for any 	 
 � one can �nd a Borel probability measure � 	 �� satisfying

�� ���Z� 
 ��

�� ���Bn�x� 	�� � C�	�e�ns for some constant C�	� 
 � and every ball Bn�x� 	�

such that Bn�x� 	� 
 Z �	 ��

Then htop�f� Z� � s�

Proof� We are going to show that htop�f� Z� 	� � s for every su�ciently small 	 
 ��

Indeed� choose such 	 
 � and consider the corresponding probability measure ���

Let � 	 fBni�xi� 	�gi be some cover of Z� Without loss of generality we may

assume that Bni�xi� 	� 
 Z �	 � for every i� ThenX
i

exp�	sni� � C�	���
X
i

���Bni�xi� 	��

� C�	�����

�

i Bni�xi� 	�

�
� C�	������Z� 
 ��

Therefore m�Z� s� 	� 
 �� and hence htop�f� Z� 	� � s� �

� Upper estimates of E�����

In this section we are going to de�ne two auxiliary quantities H���� and ������

These quantities will be used to give an upper estimate on the multifractal spectrum

E�����

��� De�nition of H����

Let us introduce some notation

M�X� 
 the set of all Borel probability measures on X�

Mf �X� 
 the set of all f �invariant Borel probability measures on X�

Me
f �X� 
 the set of all ergodic f �invariant Borel probability measures on X�

Mf �X��� �� 
 the set of all f �invariant Borel probability measures� such thatZ
�d� 	 ��

We consider the weak topology on M�X� and also on its subsets Mf �X�� Me
f �X��

etc�! as it is well known� M�X� is compact metrizable space in the weak topology�

Lemma ���� For any � � L� the set Mf �X��� �� is a non	empty� convex and

closed �in the weak topology� subset of Mf �X��

This result allows us to de�ne the following quantity
 for any � � L� put

H���� 	 sup
n
h��f� 
 � � Mf �X��� ��

o
� ���

�



Lemma ���� For any � � C�X�R�� H���� is a concave function on the convex

hull of L��

��� De�nition of �����

Here� following the approach of ���� we introduce another dimension�like

characteristic ����� of the set K�� We use a word 
dimension� in association with

������ because ����� is de�ned in terms similar to the de�nition of Hausdor� or

box counting dimensions�

For � � L� and any � 
 � and n � N put

P ��� �� n� 	
n
x � X 


��� �
n

n��X
i��

��f i�x�� 	 �
��� � �

o
�

Clearly� for � � L� and any � 
 � the set P ��� �� n� is not empty for su�ciently

large n�

Fix some 	 
 � and let N��� �� n� 	� be the minimal number of balls Bn�x� 	��

which is necessary for covering the set P ��� �� n�� �If P ��� �� n� is empty we let

N��� �� n� 	� 	 ���

Obviously� N��� �� n� 	� does not increase if � decreases� and N��� �� n� 	� does

not decrease if 	 decreases� This observation guarantees that the following limit

exists

����� 	 lim
���

lim
���

lim
n��

�

n
logN��� �� n� 	�� ���

One can give another equivalent de�nition of ������ The equivalence of these

de�nitions will be useful for subsequent arguments� Let us recall a notion of �n� 	��

separated sets
 a set E is called �n� 	��separated if for any x� y � E� x �	 y�

dn�x� y� 
 	�

By de�nition� we let M��� �� n� 	� be the cardinality of a maximal �n� 	��separated

set in P ��� �� n�� Again� we put M��� �� n� 	� 	 � if P ��� �� n� is empty� A standard

argument shows that

N��� �� n� 	� �M��� �� n� 	� � N��� �� n� 	��� ���

for every n � N and all 	� � 
 ��

Moreover� if f satis�es speci�cation� then taking an upper limit instead of the

lower limit with respect to n in the de�nition of ����� will give the same number�

Lemma ���� If f satis�es speci�cation� then

����� 	 lim
���

lim
���

lim
n��

�

n
logN��� �� n� 	�� 	 lim

���
lim
���

lim
n��

�

n
logM��� �� n� 	��

We will not use this result� and therefore� will not give a proof� which is based

on establishing some sort of subadditivity of N��� �� n� 	�


�N��� �� n� �	��k � N��� ��� nk � km�	�� 	�

for all integers k � � and all su�ciently large n� where m is taken from the de�nition

of the speci�cation property�

�



��� Upper estimate for E���� in terms of H���� via ������

Theorem ���� For any � � L� one has

E���� � ����� � H�����

Proof� The �rst inequality E���� � ����� is quite easy� Its proof is based on a

standard 
box�counting� argument� Following ���� for � � L�� � 
 � and k � N

consider sets

G��� �� k� 	

��
n�k

P ��� �� n� 	

��
n�k

n
x � X 


��� �
n

n��X
i��

��f i�x�� 	 �
��� � �

o
�

It is clear� that for any � 
 �

K� 	
n
x � X 
 lim

n��

�

n

n��X
i��

��f i�x�� 	 �
o
�

��
k��

G��� �� k�� ���

We are going to show that htop�f�G��� �� k�� 	� � ����� holds for any k � ��

implying htop�f�K�� 	� � ����� as well�

Fix arbitrary k � �� then G��� �� k� �as a subset of P ��� �� n� for n � k� can be

covered by N��� �� n� 	� balls Bn�x� 	� for all n � k� Therefore for every s � � and

all n � k we have

m�G��� �� k�� s� 	� � N��� �� n� 	� exp�	ns�� ���

Suppose now that s 
 ������ and put 
 	 �s	 �������� 
 �� Since

����� 	 lim
���

lim
���

lim
n��

�

n
logN��� �� n� 	��

for all su�ciently small 	 
 � and � 
 �� there exists a monotonic sequence of

integers nl �� such that

N��� �� nl� 	� � exp
�
nl������ � 
�

	
for all l � ��Without loss of generality we may assume that n� � k� Then� from

��� we obtain

m�G��� �� k�� s� 	� � exp�	nl
��

and hence m�G��� �� k�� s� 	� 	 �� Therefore htop�f�G��� �� k�� 	� � s� and

htop�f�K�� 	� � sup
k

htop�f�G��� �� k�� 	� � s

due to ���� Thererefore� htop�f�K�� 	 lim��� htop�f�K�� 	� � s as well� Finally�

since s 
 ����� was chosen arbitrary� we conclude that E���� 
	 htop�f�K�� �

������

The second inequality ����� � H���� is closely related to the second statement

of Theorem � by L��S�Young in ����� and is in fact a large deviation result� In the

��



last stage of our proof� similar to ����� we will rely on one fact� which is established

in a standard proof of the variational principle for the classical topological entropy

�����

In order to show the inequaity ����� � H����� it is su�cient� for any 
 
 ��

to present a measure � � Mf �X��� �� �i�e�� an invariant measure with
R
�d� 	 ��

such that

h��f� � ����� 	 
�

Fix arbitrary 
 
 �� By the de�nition of ������ there exists a su�ciently small

	� 
 � such that for all 	 � ��� 	�� one has

����� 	� 	 lim
���

lim
n��

�

n
logN��� �� n� 	� 
 ����� 	

�

�

�

Put 	k 	
	�
�k

� k � �� For any k � � one can �nd a su�ciently small �k� �k � ��

such that

lim
n��

�

n
logN��� �k � n� 	k� 
 ����� 	

�

�

�

Also� for any k � � we choose some nk � N� nk ��� such that

Nk 
	 N��� �k� nk� 	k� 
 exp
�
nk������	 
�

	
�

Let Ck be the centers of some minimal covering of P ��� �k � nk� by balls Bnk �x� 	k��

Note� that ��Ck� 	 Nk� and Bnk�x� 	k� 
 P ��� �k� nk� �	 � for every x � Ck�

Otherwise� the covering� would not be minimal� For any k � � de�ne a probability

measure

�k 	
�

Nk

X
x�Ck

�x�

and let

�k 	
�

nk

nk��X
i��

�f�i���k 	
�

Nk

X
x�Ck

�

nk

nk��X
i��

�f i�x��

Let � be some limit point for the sequence �k� By Theorem ��� in ����� � is an

invariant measure� and we claim thatZ
�d� 	 �� ����

i�e�� � �Mf �X��� ��� Indeed� for every k � �� one has

���Z �d�k 	 �
��� � �

Nk

X
x�Ck

��� �

nk

nk��X
i��

��f i�x�� 	 �
����

However� for every x � Ck there exists y 	 y�x� � P ��� �k� nk� such that

dnk�x� y� � 	k� Therefore

��� �

nk

nk��X
i��

��f i�x�� 	 �
��� � �

nk

nk��X
i��

����f i�x��	 ��f i�y��
��� �k � Var��� 	k� � �k�

��



where Var��� 	k� 	 sup
�
j��x� 	 ��y�j 
 d�x� y� � 	k

	
� � as k � �� since � is

continuous� Hence� we conclude thatZ
�d�k � �� k ���

The above invariant measure � is a limit point for the sequence �k� Hence� there

exists a sequence kj �� such that �kj � � weakly� This in particular means thatZ
�d�kj �

Z
�d��

Therefore we obtain ����� Finally� repeating the second half of the proof of the

classical variational principle ���� Theorem ���� p� �������� we conclude that

h��f� � lim
k��

�

nk
logNk � lim

k��

�

nk
logNk � ����� 	 
�

This �nishes the proof� �

� Lower estimate on E�����

The main result of this section is the following theorem�

Theorem 	��� Let f 
 X � X be a continuous transformation with the

speci�cation property and � � C�X�R�� Then for any � � L� one has

E���� 	 ����� 	 H����� ����

Proof� In Theorem ��� we proved that for any continuous transformation f one has

E���� � ����� � H���� for all � � L�� Hence� it is su�cient for the proof of

���� to show the opposite inequalities E���� � ����� � H����� We start with the

inequality ����� � H����� Our proof relies on the proof of statement � of Theorem

� in ����� but let us �rst recall one result of A� Katok �����

Theorem 	��� Let f 
 X � X be a continuous transformation on a compact

metric space� and � be an ergodic invariant measure� For 	 
 �� � 
 � denote

by N	
f ��� 	� n� the minimal number of 		balls in the dn	metric which cover a set of

measure at least �	 �� Then� for each � � ��� ��� we have

h	�f� 	 lim
���

lim
n��

�

n
logN	

f ��� 	� n� 	 lim
���

lim
n��

�

n
logN	

f ��� 	� n��

Remark 	��� Suppose � is ergodic and Y � X is such� that ��Y � � �	 �� Denote

by S�Y� 	� n� the maximal cardinality of an �n� 	�	separated set in Y � Similar to ���

we conclude that S�Y� 	� n� � N	
f ��� 	� n��

To prove the inequality ����� � H����� it is su�cient to show that for any


 
 � and every � �Mf �X��� �� one has

����� � h��f�	 �
�

Choose arbitrary 
 
 �� and let 	 
 �� � 
 � be so small� that the following holds

��



�� 
 
 �!

�� d�x� y� � 	 � j��x� 	 ��y�j � �!

�� lim
n��

�

n
logN��� ��� n� 	� � ����� � 
�

We can approximate � by an invariant measure � with the following properties �see

���� p������


a� � 	

kX
i��

�i�i� where �i 
 ��
P

i �i 	 �� and �i is an ergodic invariant measure

for every i 	 �� � � � � k!

b� h	�f� � h��f�	 
!

c�
���Z �d� 	

Z
�d�

��� � ��

Since �i is ergodic for every i� there exists a su�ciently large N such that the

set of points

Yi�N� 	
n
x � X 


��� �
n

n��X
j��

��f j�x�� 	

Z
�d�i

��� � 
 for all n 
 N
o

has a �i�measure at least �	 
 for every i 	 �� � � � � k�

Therefore� according to Theorem ���� there exist integers Ni such that for all

ni 
 Ni the minimal number of �	�balls in dni �metric� which is necessary to cover

Yi�N� is greater than or equal to exp�ni�h	i�f� 	 
��� This implies� according to

the remark ���� that the cardinality of a maximal �ni� �	��separated set in Yi�N�

is greater than or equal to exp�ni�h	i�f� 	 
��� Finally� choose a su�ceintly large

integer N� such that for every n 
 N� one has

ni 
	 ��in� 
 max�Ni� N�

for all i 	 �� � � � � k� also denote by C�ni� �	� some maximal �ni� �	��separated

set in Yi�N�� For every k�tuple �x�� � � � � xk�� where xi � C�ni� �	�� �nd a point

y 	 y�x�� � � � � xk� � X such that it shadows pieces of orbits fxi� � � � � f
ni��xiji 	

�� � � � � kg within the distance 	 and the gap m 	 m�	�� Put "n 	 m�k	 �� �
P

i ni�

Firstly� we observe that to di�erent �x�� � � � � xk� � Cn� � � � � � Cnk correspond

di�erent points y 	 y�x�� � � � � xk�� This is indeed the case� because for y 	

y�x�� � � � � xk� and y� 	 y�x��� � � � � x
�
k� one has

d�n�y� y�� 
 �	� ����

Secondly� for every y 	 y�x�� � � � � xk� one has

��� �
"n

�n��X
p��

��fp�y��	 �
��� � �� �

km

"n
jj�jjC� �

��



Hence� for su�ciently large "n �i�e�� large n� every point y 	 y�x�� � � � � xk� is in

P ��� ��� "n��

On the other hand� due to ����� one would need at least

��Cn� �� � � ����Cnk � � exp
�

���n��h	��f�	 
� � � � � � ��kn��h	k �f�	 
�
�

� exp
�
n�h	�f�	 �
�

	
� exp

�
n�h��f�	 �
�

	
	�balls in the d�n�metric to cover P ��� ��� "n�� Therefore

lim
n��

�

"n
logN��� ��� "n� 	� � h��f�	 �
�

Hence� due to the choice of 	� � 
 �� we have ����� � 
 
 h��f�	 �
� This �nishes

the proof of our �rst inequality ����� � H�����

A much more di�cult inequality to prove is the the remaining one
 E���� �

������ In order to show it we will construct a Moran fractal� suitable for the

purposes of computation of topological entropy� Roughly speaking Moran fractal

is a limit set of a following geometric construction
 consider a monotonic sequence

of compact sets fFkg� Fk�� � Fk� such that Fk is a union of Nk closed sets #
�k�
i �

i 	 �� � � � � Nk� of approximately the same size� Moreover� the sets #
�k���
i forming

the �k � ���level of the construction are somewhat similar to the sets #
�k�
i of the

k�th level� The Moran fractal associated to this consturction is the set F

F 	
�
k

Fk �

One could think of a Moran fractal as a generalization of a standard middle�third

Cantor set� A particular choice of Fk will ensure that the limit set F will be a closed

subset of K�� but also will allow us to construct a probability measure � on F �

satisfying the conditions of the Entropy Distribution Principle with s 	 �����	 


for any 
 
 �� Thus the topological entropy of F will be larger or equal than s�

Since F � K�� the same will be true for the topological entropy of K��

Fix some 
 
 �� and choose a su�ciently small 	 
 � such that

lim
���

lim
n��

�

n
logM��� �� n� �	� � ����� 	 
���

We assumed that f satis�es speci�cation� let m 	 m�	� be as in the de�nition of

the speci�cation property� and let

mk 	 m�	��k�� k � ��

Choose also some sequence �k � � and a sequence nk � �� such that

Mk 
	 M��� �k� nk� �	� 
 exp
�
nk������	 
�

	
� and nk � �mk �

To shorten the notation we put s 	 ����� 	 
�

��



By de�nition Mk is the cardinality of a maximal �nk� �	��separated set in

P ��� �k� nk�� Denote by Ck 	 fxki j i 	 �� � � � �Mkg one of these maximal �nk� �	��

separated sets�

Step �� Construction of intermidiate sets Dk� We start by choosing

some sequence of integers fNkg such that N� 	 � and two following conditions are

satis�ed


�� Nk � �nk���mk�� for k � �!

�� Nk�� � �N�n��


�Nk�nk�mk� for k � ��

Then this sequence Nk is growing very fast� and in particular

lim
k��

nk�� � mk��

Nk

	 � and lim
k��

N�n� � � � � � Nk�nk � mk�

Nk��
	 �� ����

For any Nk�tuple �i�� � � � � iNk
� � f�� � � � �Mkg

Nk let y�i�� � � � � iNk
� be some point

which shadows pieces of orbits fxkij � fx
k
ij
� � � � � fnk��xkijg� j 	 �� � � � � Nk� with a gap

mk� i�e��

dnk�xij � f
ajy�i�� � � � � iNk

�� �
	

�k
�

where aj 	 �nk � mk��j 	 ��� j 	 �� � � � � Nk� Such point y�i�� � � � � iNk
� exists�

because f satis�es speci�cation� Collect all such points into the set

Dk 	


y�i�� � � � � iNk

�j i�� � � � � iNk
� f�� � � � �Mkg

�
� ����

We claim that di�erent tuples �i�� � � � � iNk
� produce di�erent points

y�i�� � � � � iNk
�� and that these points are su�cienly separated in the metric dtk �

where

tk 	 Nknk � �Nk 	 ��mk�

This is the content of the following lemma�

Lemma 	��� If �i�� � � � � iNk
� �	 �j�� � � � � jNk

�� then

dtk �y�i�� � � � � iNk
�� y�j�� � � � � jNk

�� 
 �	� ����

Hence� ��Dk� 	 MNk

k �

Since N� 	 �� without loss of generality we may assume that D� 	 C��

Step �� Construction of Lk� Here we construct inductively a sequence of

�nite sets Lk� Points of Lk will be the centers of a balls forming the k�th level of

our Moran construction�

Let L� 	 D� and put l� 	 n�� Suppose we have already de�ned a set Lk� now

we present a construction of Lk��� We let

lk�� 	 lk � mk�� � tk�� 	 N�n� � N	�n	 � m	� � � � � � Nk���nk�� � mk����

����

��



For every x � Lk and y � Dk�� let z 	 z�x� y� be some point such that

dlk�x� z� �
	

�k��
� and dtk���y� f lk�mk��z� �

	

�k��
� ����

Such a point exists due to the speci�cation property of f � Collect all these points

into the set

Lk�� 	
n
z 	 z�x� y�j x � Lk� y � Dk��

o
� ����

Similar to the proof of Lemma ��� we can show that di�erent pairs �x� y�� x � Lk�

y � Dk��� produce di�erent points z 	 z�x� y�� Hence� ��Lk��� 	 ��Lk���Dk����

Therefore� by induction

��Lk� 	 ��D�� � � ���Dk� 	 MN�

� � � �MNk

k �

It immediately follows from ���� and ����� that for every x � Lk and any

y� y� � Dk��� y �	 y�� one has

dlk�z�x� y�� z�x� y��� �
	

�k
� and dlk���z�x� y�� z�x� y��� 
 �	� ����

There is an obvious tree structure in the construction of the sets Lk� We will

say that a point z � Lk�� descends from x � Lk if there exists y � Dk�� such that

z 	 z�x� y�� We also say that a point z � Lk�p descends from x � Lk if there exists

a sequence of points �zk� � � � � zk�p�� zk 	 x� zk�p 	 z� and zt � Lt� such that zl��
descends from zl in the above sense for every l 	 k� � � � � k � p	 ��

Step �� The Moran fractal F � For every k put

Fk 	
�
x�Lk

Blk

�
x�

	

�k��

�
�

where Bl�x� �� is the closed ball around x of radius � in the metric dl� i�e��

Bl�x� �� 	 fy � X 
 dl�x� y� � �g�

Lemma 	��� For every k the following is satis�ed


� � for any x� x� � Lk� x �	 x�� the sets Blk

�
x�

	

�k��

�
� Blk

�
x��

	

�k��

�
are disjoint�

� � if z � Lk�� descends from x � Lk� then

Blk��

�
z�

	

�k

�
� Blk

�
x�

	

�k��

�
�

Hence� Fk�� � Fk�

Finally� we put

F 	
�
k��

Fk�

It is clear that F is a non�empty closed subset of X �

��



Lemma 	��� For every x � F one has

lim
n��

�

n

n��X
k��

��f i�x�� 	 ��

Therefore F � K��

Step �� A special probability measure �� For every k � � de�ne an atomic

probability measure �k as follows

�k�fzg� 	
�

��Lk�
for every z � Lk�

Obviously� �k�Fk� 	 ��

Lemma 	��� A sequence of probability measures f�kg converges in a weak topology�

Denote the limiting measure by �� then ��F � 	 ��

An important property of the limiting measure � is formulated in the next lemma�

Lemma 	�	� For every su�ciently large n and every point x � X such that

Bn�x� 	��� 
 F �	 �

one has

��Bn�x� 	���� � e�n�s���� ����

Summarizing all from above we see that for every positive 
 and every su�ciently

small 	 
 �� we have constructed a compact set F � F � K�� and a measure � such

that ���� holds� $From the Entropy Distribution Principle and the fact that � K��

we conclude

����� 	 �
 	 s	 
 � htop�f� F� 	��� � htop�f�K�� 	����

and hence

E���� 	 htop�f�K�� 	 lim
���

htop�f�K�� 	� � ����� 	 �
�

Since 
 
 � is arbitrary� we �nally conclude that E���� � ������ which �nishes

the proof of Theorem ���� �

	 Manneville�Pomeau map

Before we start we the detailed discussion of the multifractal spectrum for Lyapunov

exponents of the Manneville�Pomeau maps� let us establish a general relation

between the multifractal spectra in general and the Legendre transform of the

pressure function�

��



For a continuous function � 
 X � R� and q � R let P��q� 	 P �q��� where P ���

is the topological pressure� By the classical Variational Principle one has

P ��� 	 sup
n
h��f� �

Z
�d� 
 � �Mf �X�

o
�

Since we have assumed that the topological entropy of f is �nite� P ��� is �nite for

every continuous �� Moreover� P ��� is convex� Lipschitz continuous� increasing and

P �c � � � � 	 � � f� 	 c � P ���� whenever c � R� and �� � � C�X�R��

For any � � R de�ne the Legendre transform P ����� by

P ����� 	 inf
q�R

�
P��q�	 q�

�
�

Note� that P ����� � �� for all � � R� however� it is possible that P ����� 	 	��

Theorem ���� Let f 
 X � X be a continuous transformation with speci�cation�

and � 
 X � R be a continuous function� Then

�i� for any � � L�� one has

H���� � P �����!

�ii� if� moreover� f is such that the entropy map � � h��f� is upper semi	

continuous� then for any � from the interior of L� one has

H���� 	 P ������

Remark ���� Transformations f 
 X � X with an upper semi	continuous entropy

map

H��� 
 Mf �X� � ������ 
 �� h��f�

play a special role in the theory of equilibrium states� This class of transformations

includes� for example� all expansive maps ����� A useful property of such

transfomations is that every continuous function � has a least one equilibrium state�

Proof of Theorem ���� �i� For any � � L� and any q � R one has

H���� 	 sup
n
h��f� 
 � �Mf �X��

Z
�d� 	 �

o
	 sup

n
h��f� � q

Z
�d� 
 � � Mf �X��

Z
�d� 	 �

o
	 q�

� sup
n
h��f� � q

Z
�d� 
 � � Mf �X�

o
	 q� 	 P �q��	 q��

where the last equality follows to the Variational Principle for topological pressure�

Hence� H���� � infq
�
P �q��	 q�

�
	 P ������

�ii� It was shown by O� Jenkinson ����� that if the entropy map is upper semi�

continuous� then for any � from the interior of L�� there exists q� � R and an

invariant measure �� which is an equilibrium state for q�� such thatZ
�d� 	 ��

��



Hence

H���� 	 sup
n
h��f� 
 � � Mf �X��

Z
�d� 	 �

o
� h	�f� 	 P �q���	 q���

Therefore H���� � P ����� and the result follows� �

The following theorem is an immediate corollary of Theorems ��� and ����

Theorem ���� Suppose f 
 X � X is a continuous transformation with

speci�cation property such that the entropy map is upper semi	continuous� Then

for any � � �inf L�� supL�� one has

E���� 	 P ������

Remark ���� Note that for transformations with the speci�cation property� L� is

an interval�

Let us consider in greater detail an application of the above theorem to the

multifractal analysis of the Manneville�Pomeau maps�

For a given number s� � � s � �� a corresponding Manneville�Pomeau map is

given by

f 
 ��� �� � ��� �� 
 x� x � x��s mod ��

The map f is topologically conjugated to a one�sided shift on two symbols� and

thus satis�es the speci�cation property� Morevoer� f is expansive� and hence the

entropy map is upper semi�continuous� Let ��x� 	 log f ��x�� With such choice the

level sets K� are preciesly the level sets of pointwise Lyapunov exponents� which

are de�ned �provided the limit exists� of course� as

��x� 	 lim
n��

�

n
log j�fn���x�j� and K� 	



x 
 ��x� 	 �

�
�

Due to the fact that x 	 � is an indi�erent �xed point for the Manneville�Pomeau

map� there exist points x with ��x� arbitrary close to �� and hence inf L� 	 ��

Let us discuss some thermodynamic properties of the Manneville�Pomeau maps�

First of all� there exists a unique absolutely continuous f �invariant measure ��

Moreover� � is an equilibrium state for the potential 	� and � is ergodic� However�

there exists another equilibrium state for 	�� namely� the Dirac masure at �� ���

The coexistence of two equilibrium states results in a non�analytic behaviour of the

pressure function P��q� 
	 P �q��� Namely� it was shown in ���� ��� that P��q� is

positive and strictly convex for q 
 	�� and P��q� � � for q � 	�� see Figure ��

Since f satis�es speci�cation and is expansive� Theorem ��� is applicable and

hence E���� 	 P ������ The graph of P ����� is shown in Figure ��

The entropy spectrum E���� is concave� but not strictly concave� The graph of

E���� contains a piece of a straight line�

We represent the interval �inf L�� supL�� 	 ��� %�� as the union of two intervals

��� ��� and ���� %��� where �� is the largest � such that P ���� 	 �� i�e�� P ���� is

linear on ��� ���� In fact�

�� 	 h��f� 	

Z
log f �d��

��



P(q)

 q=-1 q

α)

α0 α

P*(

Figure �
 The pressure function P��q� and its Legendre transform P ���� 	 E�����

where � is an absolutely continuous invariant measure�

Additional considerations show that


� For each � � ��� ��� there exists a unique invariant measure �� �

Mf ���� ��� �� �� such that

h���f� 	 sup
n
h	�f� 
 � is invariant and

Z
�d� 	 �

o
�

i�e�� �� is a measure of maximal entropy in Mf ���� ��� �� ��� and hence

htop�f�K�� 	 h���f�!

� Moreover� for any � � ��� ��� one has

�� 	 �� � ��	 �����

where � is the absolutely continuous invariant measure mentioned above�

Since �� �� are ergodic� and K� are invariant sets� we conclude that

���K�� 	 �

for all � � ��� ���� This is a new phenomenon� because until a typical situation in

multifractal analysis would be ���K�� 	 � for the 
maximal� measure ��� And

indeed� for all � � ���� ���� the measures �� of maximal entropy in Mf ���� ��� �� ��

exist as well� but

���K�� 	 ��

The explanation of this phenomenon lies in fact that the pressure function has a

phase transition of the �rst order at q 	 	��

��




 Multidimensional spectra and Contraction Principle

Suppose f 
 X � X is a continuous transformation of a compact metric space

�X� d� satisfying speci�cation property� and � 
 X � R
d is a continuous function�

Suppose also that we are given a continuous map

� 
 U � R
m �

where U � R
d is such that Im��� 	



��x� 
 x � X

�
� U � For any � � Rm de�ne

a set

K������ 	
n
x � X 
 lim

n��
�
� �

n
�Sn��

�
	 �

o
�

We are interested in the entropy spectrum of � � �� i�e�� the function

E������ 	 htop
�
f�K������

	
�

de�ned on a set L��� 	 f� 
 K������ �	 �g� Our claim is

Theorem 
��� Let f be a continuous transformation satisfying the speci�cation

property� and � 
 X � R
d �� 
 Rd � R

m be continuous map such that & �� is well

de�ned� Then that for every � � L��� one has

E������ 	 sup
n
h��f� 
 � is invariant and �

�Z
�d�

�
	 �

o
� ����

The proof of this fact is a generalization of the ��dimensional proof presented in

the previous sections�

We would like to discuss now some corollaries of Theorem ���� First of all� by

taking � to be identity we immediately conclude that

E���� 	 htop�f�K�
� � 	 sup

n
h��f� 
 � is invariant and

Z
�d� 	 �

o
� ����

A second corollary is the following theorem� which we call the Contraction

Principle for entropy spectra due to a clear analogy to a well�known Contraction

Principle from the theory of Large Deviations� see e�q� ����

Theorem 
��� Under conditions of Theorem ���� for any � � L��� one has

E������ 	 sup
�� ������

E����� ����

Proof� The statement follows from the variational descriptions ����� ���� of the

entropy spectra E������ and E����� Indeed� to prove the claim we have to show

that

sup
n
h��f� 
 � � Mf �X� and �

�Z
�d�

�
	 �

o

	 sup
��������

sup
n
h��f� 
 � �Mf �X� and

Z
�d� 	 �

o
� ����

��



A proof of ���� is straightforward� �

In our opinion� it is an interesting question whether the contraction principle

���� is valid for systems without speci�cation�

For transformations f with the speci�cation property the domain L� is a convex

set� and E���� is a concave function� Theorems ���� ��� can be used to produce

multifractal spectra E��� which are not concave� or de�ned on a non�convex

domains L���� For another setup which also leads to a non�concave multifractal

spectra see ��� Proposition ����

� Proofs

Proof of Lemma ���� Any continuous transformation of a compact metric space

admits an invariant probability measure� Moreover� there exist ergodic invariant

measures� Suppose � is ergodic� then by Ergodic Theorem

�

n

n��X
i��

��f i�x�� �

Z
�d�� as n��

for ��a�e� x � X � Hence� L� �	 �� Clearly� L� �
�
	jj�jjC� � jj�jjC�



� where

jj�jjC� 	 maxx j��x�j ��� �

Proof of Lemma ���� Suppose K�i
�	 �� i 	 �� �� let t � ��� �� and put � 	

t�� � �� 	 t��	� Choose some xi � K�i
and take any �i � V �xi�� i 	 �� �� where

V �x� is the set of limit points for the sequence of probability measure

�x�n 	
�

n

n��X
k��

�fk�x��

Then �i is an invariant measure with
R
�d�i 	 �i� i 	 �� � �see the proof of Lemma

��� below�� Put � 	 t�� � �� 	 ���	� Obviously�
R
�d� 	 �� Now� we apply

��� Proposition ������� which says that for a transformation with the speci�cation

property every invariant measure �not� necessarily ergodic'� has a generic point�

i�e�� there exists a point x � X such that �x�n � � as n��� Hence� for the same

point x one has

Z
�d�x�n 	

�

n

n��X
i��

��f i�x�� �

Z
�d� 	 ��

and therefore� K� �	 �� �

Proof of Lemma ���� We start by showing that Mf �X��� �� is not empty for any

� � L�� Take any x � K�� and denote by V �x� the set of all limit points of the

sequence f�x�ngn��� Due to compactness of M�X� the set V �x� is not empty�

Moreover� V �x� � Mf �X� ���� Theorem ����� Consider an arbitrary measure

��



� � V �x�� By the construction of V �x�� there exists a sequence nk � � such

that �x�nk � � weakly� Hence

�

nk

nk��X
i��

��f i�x�� �

Z
�d�� k ���

Since x � K�� we obtain that
R
�d� 	 �� and hence� � � Mf �X��� ��� Convexity

and closedness of Mf �X��� �� are trivial� �

Proof of Lemma ���� Convexity of H���� is an obvious consequence of the a�nity

of the entropy map h��f� 
 Mf �X� � ������� ���� �

Proof of Lemma 
��� If �i�� � � � � iNk
� �	 �j�� � � � � jNk

�� there exist l such that il �	 jl�

By the construction of y�i�� � � � � iNk
� and y�j�� � � � � jNk

� we have

dnk �xkil � f
aly�i�� � � � � iNk

�� � 	� and dnk �xkjl � f
aly�j�� � � � � jNk

�� � 	�

Since xkil � x
k
jl

are di�erent points in the �nk� �	��separated set� one has

dnk�faly�i�� � � � � iNk
�� faly�j�� � � � � jNk

��

� dnk �xkil � x
k
jl

�	 dnk �xkil � f
aly�i�� � � � � iNk

��	 dnk �xkjl � f
aly�j�� � � � � jNk

��


 �		 		 	 	 �	�

Since

dtk �y�i�� � � � � iNk
�� y�j�� � � � � jNk

�� � dnk �faly�i�� � � � � iNk
�� faly�j�� � � � � jNk

���

the proof is �nished� �

Proof of Lemma 
��� �� By ���� for x� x� � Lk� x �	 x�� one has dlk �x� x�� 
 �	�

Hence

Blk

�
x�

	

�k��

��
Blk

�
x��

	

�k��

�
	 ��

�� For x � Lk and z � Lk�� such that z descends from x� by ���� one has

dlk�x� z� � 	��k� Hence� Blk�z� 	��k� � Blk �x� 	��k���� Finally� since lk�� 
 lk�

one has

Blk���z� 	��k� � Blk�z� 	��k��

�

Proof of Lemma 
���

Estimate on Dk� Let us introduce some notation
 for any c 
 � put

Var��� c� 	 supfj��x�	 ��y�j 
 d�x� y� � cg�

Note� that due to compactness of X � Var��� c� � � as c � � for any continuous

function �� Also� if dn�x� y� � c� then

���n��X
i��

��f i�x��	

n��X
i��

��f i�y��
��� � n��X

i��

�����f i�x��	 ��f i�y��
��� � nVar��� c��

��



Suppose now that y � Dk� let us estimate
��Ptk��

p�� ��fp�y�� 	 tk�
��� By the

de�nition of Dk� there exist a Nk�tuple �i�� � � � � iNk
�� and points xkij � Ck for

j 	 �� � � �Nk� such that

dnk �xkij � f
ajy� �

	

�k

where aj 	 �nk � mk��j 	 ��� Hence�

���nk��X
p��

��fpxkij �	

nk��X
p��

��faj�py�
��� � nkVar

�
��

	

�k
	
�

Since xkij � Ck � P ��� �k� nk� we have

���nk��X
p��

��faj�py�	 nk�
��� � nk

�
Var

�
��

	

�k
	

� �k

�
� ����

To estimate
��Ptk��

p�� ��fp�y��	 tk�
�� we represent the interval ��� tk	�� as the union

Nk���
j��

�aj � aj � nk 	 ��
�Nk�	�

j��

�aj � nk� aj � nk � mk 	 ���

On the intervals �aj � aj �nk	 �� we will use the estimate ����� and on the intervals

�aj � nk� aj � nk � mk 	 �� we use that

���mk��X
p��

��faj�nk�py�	mk�
��� � mk�jj�jjC� � j�j� � �mkjj�jjC� �

since � � L� �
�
	jj�jjC� � jj�jjC�



� Therefore

���tk��X
p��

��fp�y��	 tk�
��� � Nknk

�
Var���

	

�k
� � �k

�
� ��Nk 	 ��mkjj�jjC� � ����

Estimate on Lk� Introduce

Rk 	 max
z�Lk

���lk��X
p��

��fp�z��	 lk�
����

Let us obtain by induction an upper estimate on Rk�

If k 	 �� then L� 	 D� 	 C� � P ��� ��� n�� �note� that l� 	 n��� therefore we

have

R� � l����

By the de�ntion of Lk�� every z � Lk�� is obtained by shadowing of some points

x � Lk and y � Dk��


dlk �x� z� �
	

�k��
� dtk���y� f lk�mk��z� �

	

�k��
�

��



Hence�

���lk����X
p��

��fp�z��	 lk���
��� � ���lk��X

p��

��fp�z��	

lk��X
p��

��fp�x��
��� �

���lk��X
p��

��fp�x�� 	 lk�
���

�
���lk�mk��X

p�lk

��fp�z��	mk���
���

�
���tk����X

p��

��f lk�mk���p�z��	

tk����X
p��

��fp�y��
����

���tk����X
p��

��fp�y��	 tk���
���

�lkVar
�
��

	

�k��
	

� Rk � �mk��jj�jjC� � tk��Var
�
��

	

�k��
	

�Nk��nk��

�
Var���

	

�k��
� � �k��

�
� ��Nk�� 	 ��mk��jj�jjC� �

where we have used the estimate ���� for
��Ptk����

p�� ��fp�y��	 tk���
��� Hence

Rk�� � Rk � �lk��Var���
	

�k��
� � lk���k�� � �Nk��mk��jj�jjC� �

and by induction

Rk � �

kX
p��

lp

�
Var

�
��

	

�p
	

� �p �
Npmp

lp
jj�jjC�

�
� ����

Let us analyse the obtained expression for Rk� We claim that Rk�lk � � as

k � �� We start by observing that� Var
�
�� �

	k

	
� � since � is continuous�

By the choice of the sequence f�kg one has �k � � as well� Moreover� since

lk � Nk�nk � mk� and the sequence fnkg is such that nk � � as k � �� and

nk � �mk � we conclude that mk�nk � � as well� Therefore� we can rewrite ���� as

Rk �

kX
p��

lpcp�

where ck � � as k � �� By the choice of Nk ����� we have lk � �lk�� � hence for

su�ently large k one has

Rk

lk
� ck �

�

k

k��X
p��

cp�

and hence Rk�lk � � as k ���

Estimate on F � Now� suppose x � F � n � N and n 
 l�� Then there exists a

unique k � � such that

lk � n � lk���

Also� there exist a unique j� � � j � Nk�� 	 � such that

lk � j�nk�� � mk��� � n � lk � �j � ���nk�� � mk���

��



Since x � F there exists z � Lk�� such that

dlk���x� z� �
	

�k
�

On the other hand since z � Lk�� there exist %x � Lk and y � Dk�� such that

dlk �%x� z� �
	

�k��
� dtk���y� f lk�mk��z� �

	

�k��
�

Therefore

dlk �x� %x� �
	

�k��
� dtk���f lk�mk��x� y� �

	

�k��
�

Moreover� if j 
 �� then by the de�nition of Dk�� there exist points

xk��i�
� � � � � xk��ij

� Ck�� such that

dnk���x
k��
it

� faty� �
	

�k��
�

where at 	 �nk�� � mk����t	 ��� t 	 �� � � � � j� and hence

dnk���x
k��
it

� f lk�mk���atx� �
	

�k�	
� ����

We represent ��� n	 �� as the union

��� lk 	 ��
� j�

t��

�lk � �t	 ���mk�� � nk���� lk � t�mk�� � nk���	 ��

�
�lk � j�mk�� � nk���� n	 ���

One has

���lk��X
p��

��fpx�	 lk�
��� � ���lk��X

p��

��fpx�	

lk��X
p��

��fp%x�
����

���lk��X
p��

��fp%x�	 lk�
���

� lkVar
�
��

	

�k��
	

� Rk

On each of the intervals �at� at ��mk�� �nk���	��� where at 	 lk ��t	���mk���

nk���� we estimate

���at�mk���nk����X
p�at

��fpx� 	 �mk�� � nk����
���

� �mk��jj�jjC� � nk���k�� � nk��Var��� 	��k�	��

because of ���� and the fact that xk��ij
� Ck�� � P ��� �k��� nk����

Finally� on �lk � j�mk�� � nk���� n	 �� we have

��� n��X
p�lk�j�mk���nk���

��fpx�	
�
n	 lk 	 j�mk�� � nk���

	
�
���

� ��n	 lk 	 j�mk�� � nk����jj�jjC� � ��nk�� � mk���jj�jjC� �

��



Collecting all estimates together one has

���n��X
p��

��fpx�	 n�
��� � Rk � �lk � jnk���Var

�
��

	

�k�	
	

� �
�
nk�� � �j � ��mk��

�
jj�jjC� � jnk���k���

Now� since n 
 lk � j�nk�� � mk���� and lk 
 Nk� we obtain

��� �
n

n��X
p��

��fpx�	�
��� � Rk

lk
�Var

�
��

	

�k�	
	

��
�nk�� � mk��

Nk

�
mk��

nk��

�
jj�jjC� ��k���

Since the right hand side tends to � as k � �� and k � � for n��� we �nally

conclude that

lim
n��

�

n

n��X
p��

��fpx� 	 �

for all x � F � and hence� F � K�� �

Proof of Lemma 
��� We are going to show that for every continuous function �

there exist a limit

I��� 	 lim
k��

Z
� d�k� ����

Obviously� if I��� is well de�ned� then I is a positive linear functional on C�X�R��

Hence by the Riesz theorem there exist a unique probability measure � on X such

that

I��� 	

Z
� d� for every � � C�X�R��

and thus� �k � � weakly�

Let us prove ����� It is su�cient to show that for every � 
 � there exists

K 	 K��� 
 � such that for all k�� k	 
 K one has���Z � d�k� 	

Z
� d�k�

��� 	
��� �

��Lk��

X
x�Lk�

��x� 	
�

��Lk��

X
y�Lk�

��y�
��� � ��

Without loss of generality we may assume that k� 
 k	� Then��� �

��Lk��

X
x�Lk�

��x�	
�

��Lk��

X
y�Lk�

��y�
��� � �

��Lk��

X
x�Lk�

�����x� 	 ��y�x��
����

where y�x� � Lk� is a uniqie point in Lk� such that x descends from y�x�� Taking

into account the way the sets Lk were constructed� we conclude that

d�x� y�x�� �
	

�k�
�

Hence� for k�� k	 
 K one has���Z � d�k� 	

Z
� d�k�

��� � sup
�
j��x� 	 ��y�j 
 d�x� y� �

	

�K

�
� � as K ���

��



Now� we have to show that ��F � 	 �� Note� that �k�p�Fk� 	 � for all p � ��

since Fk�p � Fk and �k�p�Fk�p� 	 � by construction� Since � is the weak limit of

f�kg� and Fk are closed� using the properties of weak convergence of measures we

obtain

��Fk� � lim
p��

�k�p�Fk� 	 ��

and hence ��Fk� 	 �� Finally� since F 	
T
k Fk � one has ��F � 	 �� �

Proof of Lemma 
�
� By the de�nition� Bn�x� 	� is an open set� thus� since �k � ��

we have

��Bn�x� 	�� � lim
k��

�k�Bn�x� 	�� 	 lim
k��

�

��Lk�
��fz � Lk 
 z � Bn�x� 	�g��

Suppose n � l� 	 n�� then there exists k � � such that

lk � n � lk���

As in the proof of Lemma ���� let j � f�� � � � � Nk�� 	 �g be such that

lk � �nk�� � mk���j � n � lk � �nk�� � mk����j � ���

We start by showing that ��Bn�x� 	�
Lk� � �� and thus �k�Bn�x� 	�� � ��Lk����

Indeed� suppose there two points z�� z	 � Lk such that z�� z	 � Bn�x� 	� as

well� This means that dn�z�� z	� � �	� However� from ���� we know that

dlk�z�� z	� 
 �	� Hence� we have arrived at contradiction� since n 
 lk and thus

dn�z�� z	� � dlk �z�� z	��

We continue by showing that �k���Bn�x� 	�� does not exceed ���Lk��M j��
k������

Suppose� two points z�� z	 � Lk�� are in Bn�x� 	� as well� Therefore� there exist

points x�� x	 � Lk and y�� y	 � Dk�� such that

z� 	 z�x�� y��� z	 	 z�x	� y	��

All the points in Dk�� are obtained by shadowing certain combinatations of points

from Ck�� �see ������ i�e��

y� 	 y�i�� � � � � iNk��
�� y	 	 y�i��� � � � � i

�
Nk��

��

where �i�� � � � � iNk��
�� �i��� � � � � i

�
Nk��

� � f�� � � � �Mk��g
Nk�� �

We claim that necessarily x� 	 x	 and �i�� � � � � ij� 	 �i��� � � � � i
�
j�� Indeed� if

x� �	 x	 then

dlk�x�� x	� � dlk �x�� z�� � dlk �z�� x� � dlk �x� z	� � dlk�z	� x	�

�
	

�k
� 	 � 	 �

	

�k
� �	�

and thus we have a contradiction with ����� Similary we proceed with our second

claim� If j 	 � there is nothing to prove� Suppose j 
 � and there exists t�

��



� � t � j� such that it �	 i�t� Since y� 	 y�i�� � � � � iNk��
�� and y	 	 y�i��� � � � � i

�
Nk��

��

one has

dnk���xk��it
� faty�� �

	

�k��
� dnk���x

k��
i�t

� faty	� �
	

�k��
�

Moreover�

dtk���z�� y�� �
	

�k��
� dtk���z	� y	� �

	

�k��
�

and hence

dnk���xk��it
� xk��

i�t
� �dnk���x

k��
it

� faty�� � dtk���y�� f
lk�mk��z�� �

dn�z�� z	� � dtk���f
lk�mk��z	� y	� � dnk���faty	� x

k
i�t

�

�
	

�k��
�

	

�k��
� �	 �

	

�k��
�

	

�k��
� �	�

which contradicts the fact that dnk���x
k��
it

� xk��
i�t

� 
 �	� since xk��it
� xk��

i�t
are

di�erent points in a �nk��� �	��separated set Ck���

Since �i�� � � � � ij� is the same for all points z 	 z�x� y�i�� � � � � ij � � � � � iNk��
��

which can lie in Bn�x� 	�� we easily conclude that there are at most M
Nk���j

k�� such

points� Hence

�k���Bn�x� 	�� �
�

��Lk�M
Nk��

k��

M
Nk���j

k�� 	
�

��Lk�M j
k��

For any p 
 � one has

�k�p�Bn�x� 	���� �
�

��Lk�M j
k��

as well� This is indeed the case� because the points of Lk�p� which lie in Bn�x� 	����

can only descend from the points of Lk��� which are in Bn�x� 	�� We provethis

�nally by contradiction� Suppose we can �nd points z� � Lk�� and z	 � Lk�p� z	
descends from z� such that

dn�z	� x� � 	�� and dn�z�� x� 
 	�

This implies that dn�z�� z	� � dn�z�� x� 	 dn�x� z	� 
 	��� The latter however is

not possible� since

dn�z�� z	� � dlk���z�� z	� �
	

�k�	
�

	

�k��
� � � � 	

	

�k��
�

Hence there are exactly ��Dk�	� � � ���Dk�p� points in Lk�p� p � �� which descend

from a given point in Lk��� Hence

�k�p�Bn�x� 	���� �
M

Nk���j

k�� ��Dk�	� � � ���Dk�p�

��Lk�M
Nk��

k�� ��Dk�	� � � ���Dk�p�
	

�

��Lk�M j
k��

�

And therefore

��Bn�x� 	���� � lim
p��

�k�p�Bn�x� 	���� �
�

��Lk�M j
k��

�

��



Now� by the choice of k and j we have

n	 lk 	 j�nk�� � mk��� � nk�� � mk���

where lk 	 N�n� � N	�n	 � m	� � � � � � Nk�nk � mk�� Therefore

n	 lk 	 j�nk�� � mk���

lk � j�nk�� � mk���
�
nk�� � mk��

Nk

� � as k ��

because of the choice of Nk� Since Mk has been chosen in a such way that

Mk � exp�snk�� and mk are much smaller than nk� for large k we obtain

��Lk�M j
k�� 	 MN�

� � � �MNk

k M j
k�� � exp

�
s�N�n� � N	n	 � � � � � Nknk � jnk���

�
� exp

�
�s	 
����N�n� � � � � � Nk�nk � mk� � j�nk�� � mk���

�
� exp

�
�s	 
�n

	
Therefore� since k �� as n��� for all su�ciently large n one has

��Bn�x� 	���� � exp�	n�s	 
��

for every x such that Bn�x� 	��� 
 F �	 �� �
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