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Abstract We reflect on the convergence and termination
of optimization algorithms based on convex and separa-
ble approximations using two recently proposed strategies,
namely a trust region with filtered acceptance of the iterates,
and conservatism. We then propose a new strategy for con-
vergence and termination, denoted f iltered conservatism, in
which the acceptance or rejection of an iterate is determined
using the nonlinear acceptance filter. However, if an iterate
is rejected, we increase the conservatism of every unconser-
vative approximation, rather than reducing the trust region.
Filtered conservatism aims to combine the salient features
of trust region strategies with nonlinear acceptance filters on
the one hand, and conservatism on the other. In filtered con-
servatism, the nonlinear acceptance filter is used to decide if
an iterate is accepted or rejected. This allows for the accep-
tance of infeasible iterates, which would not be accepted in
a method based on conservatism. If however an iterate is
rejected, the trust region need not be decreased; it may be
kept constant. Convergence is than effected by increasing
the conservatism of only the unconservative approximations
in the (large, constant) trust region, until the iterate becomes
acceptable to the filter. Numerical results corroborate the
accuracy and robustness of the method.

Based on the paper entitled ‘Globally convergent SAO algorithms for
large scale simulation-based optimization’, presented at the 8th World
Congress on Structural and Multidisciplinary Optimization, 1–5 June
2009, Lisbon, Portugal.
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1 Introduction

Today, gradient-based sequential approximate optimization
(SAO) methods based on convex and separable approxima-
tions represent a class of recognized and viable methods for
solving large-scale optimization problems when the eval-
uation of the objective and/or the constraint functions are
computationally demanding.

Algorithms in this class are also known as sequential con-
vex programming (SCP) methods, e.g. see Fleury (1993),
Zillober et al. (2004), and Duysinx et al. (2009). Examples
of established algorithms within this class include CONLIN
by Fleury and Braibant (1986) and the method of moving
asymptotes (MMA) by Svanberg (1987). Algorithmic vari-
ants of MMA were presented by, for example, Borrvall and
Petersson (2001), Bruyneel et al. (2002), and Zillober et al.
(2004). Groenwold and Etman (2008b) presented tailorable
convex separable SAO algorithms, in which convexity and
separability of the approximations was used for the efficient
solution of the approximate optimization subproblems. A
dual approach was used in many of the references cited in
the foregoing, but different yet efficient methods have also
been proposed, e.g. see Zillober (2001).

SAO algorithms based on convex separable approxima-
tions often try to avoid the use of (off-diagonal) second
order Hession information, because the computational and
storage requirements associated with evaluating the Hessian
matrix becomes prohibitively high for large scale problems.
Instead, SAO algorithms typically use intervening variables



166 A.A. Groenwold, L.F.P. Etman

to arrive at nonlinear analytical approximations to the objec-
tive and constraint functions of (hopefully) high quality.
Refer to Haftka and Gürdal (1991) for an introduction into
SAO methods, and to Barthelemy and Haftka (1993) for a
review of various intervening variables proposed for SAO in
structural optimization applications.

Both the aforementioned CONLIN and MMA are for
example based on reciprocal-like intervening variables,
which have proven to be very effective in structural opti-
mization. Groenwold et al. (2010) developed an SAO algo-
rithm based on convex diagonal quadratic approximations
in which approximate second order terms are obtained by
constructing quadratic approximations to the original non-
linear intervening variables based approximations; thereby
creating ‘approximated-approximations’.

The aforementioned algorithms are in their rudimen-
tary forms not globally convergent. What is more, these
algorithms are not even guaranteed to terminate. To over-
come this, Zillober (1993) added a line search to MMA to
obtain a globally convergent optimization method. Gener-
ally this requires additional function evaluations, which is
less attractive for computationally demanding analysis func-
tions such as encountered in finite element applications. To
effect robust global behavior without a line search, the most
obvious strategy is to cast the algorithms in a trust-region
like framework, e.g. see Conn et al. (2000) and Alexandrov
et al. (1998). Trust region methods have widely been used in
sequential quadratic programming (SQP) algorithms, often
in combination with a merit function, to decide if an iter-
ate is accepted or rejected. Very recently, Fletcher, Leyffer
and co-workers have replaced the (problematic) merit func-
tion by a nonlinear acceptance filter, e.g. see Fletcher and
Leyffer (1998, 2002) and Fletcher et al. (1998, 2002b, a).

As an alternative to trust-region methods for effecting
robust global behavior, Svanberg (2002) has developed the
concept of conservative, convex and separable approxima-
tions (CCSA) (but only for inequality constrained prob-
lems).1 He has implemented and demonstrated this numer-
ically for the MMA algorithm; the resulting algorithm is
known as ‘a globally convergent version of MMA’.

However, enforcing termination in SAO algorithms may
sometimes be very expensive. Papalambros and Wilde
(2000) for example remark that ‘any remedy to make MMA
globally convergent makes the method arbitrarily slow’.
This does not only hold for MMA; for our own algorithms,
we have come to the same conclusion, e.g. see Groenwold
et al. (2009).

1Linear equality constraints may in principle be added to conserva-
tive convex primal SAO algorithms, and some conservative convex
dual SAO algorithms; the notion of conservatism does not exist for
nonlinear equality constraints.

Even so, proof of global convergence is highly desir-
able, in particular if the cost associated with the termination
mechanism can be kept small as compared to the uncon-
ditional acceptance of iterates. Herein, we aim to contribute
to the understanding and further development of conditional
acceptance mechanisms for SAO algorithms, and in partic-
ular algorithms based on convex separable approximations.

In doing so, we implement the filtered acceptance of iter-
ates for the dual SAO algorithm based on separable diagonal
quadratic approximations we have previously proposed, see
Groenwold and Etman (2008b). (We have previously also
cast a primal SAO algorithm in the filter framework, e.g.
see Etman et al. (2006).) We compare the performance
of the resulting algorithm with our conservative variant of
the algorithm, see Groenwold et al. (2009), and we show
that enforcing robust global behavior in both strategies may
indeed be hurtful from a computational point of view.

In an attempt to address the computational expense asso-
ciated with enforcing convergence, we then propose a new
strategy, which we denote f iltered conservatism. Filtered
conservatism aims to combine the salient features of trust
region strategies with nonlinear acceptance filters on the
one hand, and conservatism on the other. In filtered con-
servatism methods, the nonlinear acceptance filter is used
to decide if an iterate is accepted or rejected. However, if an
iterate is rejected, the trust region need not be decreased;
it may be kept constant. Convergence is than effected
by increasing the conservatism of only the unconservative
approximations in the (large, constant) trust region, until the
iterate becomes acceptable to the filter.

Our paper is arranged as follows: In Section 2, we give
the inequality constrained problem under consideration. In
Section 3, we introduce sequential approximate optimiza-
tion, and we present the algorithms developed herein in
Section 4, without prescribing the approximations used at
this stage. Numerical experiments are then presented in
Section 5 using a specific approximation function, and
some concluding remarks are offered in Section 6. For the
sake of completeness, the test functions used are given in
Appendix A, and the approximation function used in the
examples (a convex spherical quadratic approximation) is
given in Appendix B, but many other possibilities exist.

2 Problem statement

We consider a nonlinear inequality constrained optimization
problem PNLP of the form

min f0(x)

subject to f j (x) ≤ 0, j = 1, 2, · · · , m, (1)

x̌i ≤ xi ≤ x̂i , i = 1, 2, · · · , n,



Conditional acceptance of iterates in SAO 167

where f0(x) is a real valued scalar objective function,
and f j (x), j = 1, 2, · · · , m are m inequality constraint
functions. f0(x) and f j (x) depend on the n real (design)
variables x = {x1, x2, · · · , xn}T ∈ Rn . x̌i and x̂i respec-
tively indicate lower and upper bounds on variable xi . The
functions f j (x), j = 0, 1, 2, · · · , m are assumed to be (at
least) once continuously differentiable.

Nonlinear problem PNLP may be solved using any num-
ber of techniques; many of which rely on SAO when
the objective and/or constraint functions require computa-
tionally demanding simulations. Examples include finite
element (FE) and computational fluid dynamics (CFD)
analyses. In structural optimization, SAO algorithms based
on convex separable approximations are often used. For
large-scale applications with many design variables it is
important that the required gradients ∂ f0/∂xi and ∂ f j/∂xi

can efficiently and accurately be calculated; see the review
paper by van Keulen et al. (2005) for a fairly recent perspec-
tive on this issue.

3 Sequential approximate optimization

Sequential approximate optimization as a solution strategy
for problem PNLP seeks to construct successive approximate
analytical subproblems P[k], k = 1, 2, 3, · · · at succes-
sive approximations x{k} to the solution x∗. The solution
of subproblem P[k] is x{k∗} ∈ Rn , to be obtained using
any suitable continuous programming method. Thereafter,
x{k+1} = x{k∗}, the minimizer of subproblem P[k]. This is
repeatedly done, until either the sequence of iterates x{k∗},
k = 1, 2, ... converges, or until some maximum number of
iterations k̂ have passed. Herein, we will restrict ourselves
to gradient-based SAO methods using convex, separable
approximations.

3.1 The approximate primal subproblem for problem PNLP

A suitable approximate continuous primal subproblem
PP [k], constructed at x{k}, is

Primal approximate subproblem PP [k]

min f̃0(x)

subject to f̃ j (x) ≤ 0, j = 1, 2, · · · , m, (2)

x̌i ≤ xi ≤ x̂i , i = 1, 2, · · · , n,

where the f̃ j , j = 0, 1, 2, · · · , m are convex separable ana-
lytical approximation functions to the original functions f j .

This primal problem has n unknowns, m constraints, and
2n side or bound constraints (when no slack or relaxation
variables are introduced). Note that the bounds x̌, x̂ may
trivially be replaced by some move limit or trust region
expressed in terms of the infinity norm.

3.2 An approximate dual subproblem for problem PNLP

Convex separable approximations provide opportunities for
the use of efficient solvers for primal approximate subprob-
lem PP [k]. Very well-known are the dual approaches (see
the references mentioned in Section 1), but alternatives have
certainly been proposed (again see Zillober 2001). In the
dual approach, PP [k] is replaced by some dual approxi-
mate subproblem PD[k], which is particularly attractive if
the Falk dual (Falk 1967) can be invoked2 and the approx-
imations also have a relatively simple structure; the latter
condition allows for analytical relationships between the
primal and the dual variables, while the simple bounds on
the primal variables x in the Falk dual become part of the
dual. We start by defining the approximate dual function
γ̃ (λ) = minx L(x, λ), where λ ∈ Rm represents the
dual variables, and L(x, λ) the Lagrangian. Then, γ̃ (λ) =
minx { f̃0(x) + ∑m

j=1 λ j f̃ j (x)}. The minimizer of L(x, λ)

for λ given will be denoted by x(λ), which allows for the
formulation of the dual approximate subproblem as

Dual approximate subproblem PD[k]

max
λ

⎧
⎨

⎩
γ̃ (λ) = f̃0(x(λ)) +

m∑

j=1

λ j f̃ j (x(λ))

⎫
⎬

⎭
,

subject to λ j ≥ 0, j = 1, 2, · · · , m.

(3)

The saddle point (x∗, λ∗) is then found by maximizing dual
problem (3) with respect to λ; as said, the primal variables
x are obtained via analytical relationships from the dual
variables λ. This bound constrained problem requires the
determination of the m unknowns λ j only, subject to m very
simple non-negativity constraints. For details, the reader is
referred to Falk (1967), Fleury (1979) and Groenwold and
Etman (2008b). Suffice it to say that strict convexity of the
subproblems is sufficient—but not necessary, e.g. see Wood
and Groenwold (2009)—to ensure that the solutions of dual

2Strict convexity of the subproblems is a sufficient, but not a necessary
requirement, for invoking the Falk dual.
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approximate subproblems PD[k] coincide with the solutions
of primal approximate subproblems PP [k]. Note that the
bound constraints on x̌ and x̂ are accounted for as part of the
dual problem and do not introduce additional dual variables.

3.3 Practical considerations

We will herein not prescribe whether the primal or the dual
subproblems (or even both, for that matter) are used. If
the primal approximate subproblems are strictly convex,
the primal and dual statements are identical. (In presenting
numerical results, we will however use the dual approach,
for no particular reason.)

Neither will we be prescriptive regarding the treatment
of infeasible subproblems, for neither the primal nor the
dual approach. Among others, suitable methods include
relaxation, e.g. see Svanberg (2002), and normal-tangential
approaches, e.g. see Pérez et al. (2004). These approaches
are of particular importance in the primal approach. In the-
ory, dual solvers are not affected by infeasible subproblems
at all; they merely require the solution of a simple non-
negativity constrained subproblem. For feasible constraints,
the associated dual variables will either be zero, or relate
to a turning point of the dual (if the constraint is active).
For infeasible subproblems, the principle of monotonicity
(Papalambros and Wilde 2000) may be invoked to show that
the associated dual variables will go to infinity. Whereas this
is not necessarily problematic from the primal-dual relation-
ship point of view, it is nevertheless customary to relax the
dual subproblems. As an alternative, a bounded form of dual
problem (3) may be constructed, e.g. see Wood et al. (2009).

4 Algorithms

We will now develop variants of an SAO algorithm that use
different termination criteria. We will do so by presenting
a basic algorithmic framework, denoted algorithm SAO-θ ,
whereafter four variants will be developed which fit into the
framework; this approach rather nicely illustrates how the
various algorithmic variants are interrelated. (In presenting
the four strategies, we are not trying to be exhaustive.)

1. The first variant is unconditional acceptance of each
iterate. This is done in many popular SAO algorithms,
such as CONLIN (Fleury and Braibant 1986) and MMA
(Svanberg 1987), but also in many optimality crite-
ria based optimization algorithms (see Groenwold and
Etman 2008a, and the references mentioned therein).

2. The second variant only conditionally accepts new iter-
ates; conservatism of the objective and all the constraint
function approximations is employed to enforce global

convergence. Conservative convex separable approxi-
mations (CCSA) were proposed by Svanberg (2002),
and shown to render algorithms globally convergent.

3. The third variant is conditional acceptance based on a
nonlinear acceptance filter. The filter was developed by
Fletcher and co-workers, e.g. see Fletcher and Leyffer
(1998, 2002), Fletcher et al. (2002a, b, 2005).

Fletcher et al. (1998) present a proof of global con-
vergence for a trust-region filter-SLP method, whereas
Fletcher et al. (2005) present the same for a filter-SQP
method. Herein, we replace the QP subproblem by a
nonlinear but strictly convex separable subproblem for
which an effective subproblem based on the dual of Falk
can be derived. We then investigate whether the filter
mechanism provides an efficient mechanism for condi-
tional acceptance of iterates in sequential convex sepa-
rable optimization, even though we depart slightly from
the algorithm for which proof of global convergence
was developed by Fletcher and his co-workers.

4. The final variant combines conditional acceptance on
the basis of conservatism and the filter, in the hope of
exploiting the salient features of both.

We assume convex and separable approximations (although
the filter-acceptance termination concept does not require
such an assumption). We specialize the approximations used
in this paper by restricting ourselves to diagonal quadratic
approximation (7) given in Appendix B, for which the
conservatism can be increased by simply increasing the
approximate curvatures c{k}

2i j
.

What is more, we restrict ourselves to a spherical
quadratic instance of (7); we do so merely for the sake
of brevity. It may be advantageous to the accuracy of the
approximation if diagonal quadratic approximation (7) pre-
sented in Appendix B is generalized to provide for problem-
specific behavior, e.g. see Groenwold et al. (2010). This is
very easily done, and merely requires that the approximate
curvatures c{k}

2i j
are estimated using a different strategy. The

approximation itself remains unchanged.
However, many other convex separable approximations

may be used in the general framework we develop in the
following, like MMA type approximations, etc.

4.1 Algorithm SAO-θ

Let k represent an outer iteration counter, l an inner iteration
counter, and T some termination strategy that will generate
a sequence of iterates x{k}, k = 1, 2, · · · . We will elaborate
on the four aforementioned possible strategies T in sections
to come.

Now assume that suitable approximation functions
f̃ j (x), j = 0, 1, 2, · · · , m, and a suitable termination
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strategy T have indeed been selected. Then, given an ini-
tial point x{k} = x{0}, an SAO algorithm may proceed as
follows (using a FORTRAN-like pseudo-language):

1. Initialization: Set k := 0, l := 0. Select positive
constant εx , and any other constants and parameters
required for the approximations f̃ j (x) and the selected
termination strategy T .

2. Simulation and sensitivity analysis: Compute
f j (x{0}), ∇ f j (x{0}), j = 0, 1, 2, · · · , m.

3. Construct the approximations: Reinitialize
outer-loop specific parameters, and then construct
the approximate functions f̃ j (x) at x{k}, j =
0, 1, 2, · · · m.

4. Approximate optimization: Construct local approxi-
mate subproblem PP [k] or PD[k]. Solve the subprob-
lem to arrive at (x{k∗}, λ{k∗}).

5. Simulation analysis: Compute f j (x{k∗}), j =
0, 1, 2, · · · , m.

6. (Optionally), test if x{k∗} is acceptable. GOTO Step 8
if x{k∗} is indeed acceptable.

7. (Optionally), effect an inner loop if x{k∗} is not
acceptable:

(a) Apply termination strategy T .
(b) Set l := l + 1 and GOTO Step 4.

8. Move to the new iterate: Set x{k+1} := x{k∗}.
9. Convergence test: IF ‖x{k+1} − x{k}‖ ≤ εx , STOP.

10. Simulation sensitivity analysis: Compute
∇ f j (x{k+1}), j = 0, 1, 2, · · · , m.

11. Initiate an additional outer loop: Set k := k + 1 and
GOTO Step 3.

It is more precise to use the notation x{k,l} rather than x{k}.
The latter however is retained for the sake of brevity, and
the meaning, at least, is clear. In addition, the move limit
strategy mentioned in the foregoing is easily included in the
algorithm outlined above.

Next, we present the different SAO implementations
considered or developed herein in the following subsections.

4.2 Algorithm SAO-A (rudimentary; non-terminating)

We start with the most basic SAO sequence possible, in
which each iterate is accepted unconditionally.

Accordingly, Steps 6 and 7 in algorithm SAO-θ are
ignored. Viz., we have:

6. Void.
7. Void.

The resulting algorithm is not guaranteed to converge or
even terminate. Nevertheless, it should be acknowledged

that algorithm SAO-θ is representative of most SAO algo-
rithms used in practice, since

1. there is no (potential) cost associated with enforcing
convergence, and

2. the approximation functions f̃ j (x) are normally
selected to be representative of the true functions f j (x),
to the extent that termination strategies are not even
required.

Nevertheless, the use of algorithm SAO-A remains risky.
The SAO algorithms we present in the following subsec-

tions are all based on conditional acceptance of iterates with
the aim to (ultimately) provide a framework for global con-
vergence. At this stage only algorithm SAO-B has a proof
of convergence; algorithms SAO-C and SAO-D are new
variants which are investigated in an effort to seek for condi-
tional acceptance mechanisms with minimal computational
overhead associated with enforcing global convergence.

4.3 Algorithm SAO-B (conservative; terminating)

Before we present the conservative variant of algorithm
SAO-θ , we briefly reiterate the machinery of a conserva-
tive SAO algorithm. However, the interested reader should
also read the paper of Svanberg (2002).

In conservative methods, an outer iteration starts from
the current iterate x{k} and yields a new iterate x{k∗}. If the
approximate objective and constraint functions f̃ j (x{k∗}),
j = 0, 1, 2, · · · , m are all greater than, or equal to, the
original functions f j (x{k∗}), the approximating functions
are denoted conservative. (Conservatism does not imply that
the feasible set of the subproblem is completely contained
in the original feasible set, but it does imply that the optimal
solution of the subproblem is a feasible solution of the orig-
inal problem, with lower objective value than the previous
iterate.)

However, rather than enforcing conservatism uncondi-
tionally as done by Svanberg, we enforce conservatism only
if a feasible descent step cannot be made; we denoted this
strategy ‘relaxed conservatism’, e.g. see Groenwold et al.
(2009). (A similar strategy may be used when an algorithm
is not in the feasible regime.)

If an iterate x{k∗} does not result in a feasible descent
step, a sequence of inner iterations is initiated, until either
a feasible descent step is indeed obtained, or if conser-
vatism is obtained for all the approximating functions f̃ j (x),
j = 0, 1, 2, · · · , m. Clearly, this is always possible if the
original functions f j (x) are well behaved (and assuming
that the conservatism of the approximating functions f̃ j (x)

is indeed variable).
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Accordingly, in conservative algorithm SAO-B, Steps 6
and 7 in algorithm SAO-θ are replaced by the following
steps:

6. Test if x{k∗} is acceptable:

(a) test if x{k∗} represents a feasible descent step:
IF f0(x{k∗}) < f0(x{(k−1)∗}) for k > 0, AND
max{ f j (x{k∗})} ≤ 0, j = 1, 2, · · · , m, GOTO
Step 8,

(b) test if x{k∗} represents a feasible and conserva-
tive step: IF f̃0(x{k∗}) ≥ ( f0(x{k∗}) − ε1), AND
f̃ j (x{k∗}) ≥ ( f j (x{k∗}) − ε2), j = 1, 2, · · · , m,
GOTO Step 8.

7. Effect an inner loop if x{k∗} is not acceptable:

(a) Set l := l + 1.
(b) IF f̃0(x{k∗}) < ( f0(x{k∗}) − ε1), set c{k}

2i0
:= χ1c{k}

2i0
.

(c) IF f̃ j (x{k∗}) < ( f j (x{k∗}) − ε2), set c{k}
2i j

:= χ2c{k}
2i j

,
j = 1, 2, · · · , m.

(d) GOTO Step 4.

In addition, it is required to specify the constants ε1, ε2 ≥ 0,
and χ1, χ2 > 1 in Step 1 in algorithm SAO-θ .

Svanberg (2002) has demonstrated that algorithms based
on conservative convex separable approximations (CCSA)
are globally convergent, but the conservatism requirements
may sometimes actually be relaxed, e.g. see Groenwold
et al. (2009).

4.4 Algorithm SAO-C (filtered trust-region; terminating)

Before we present SAO-C, it is necessary to briefly intro-
duce the notion of a filter; we will do so following closely
the presentation of Fletcher et al. (2002b). The interested
reader should however also read the cited literature. In
essence, the flter constructs a Pareto front of the compet-
ing objectives of minimizing the objective function and the
infeasibility.

For the sake of brevity and consistency with the litera-
ture, let f = f0, and g j = f j , j = 1, 2, · · · , m. Then, a
nonlinear acceptance filter consists of a list of pairs {(h, f )},
evaluated for a list of points {x}, with h = max(0, g j ) being
the maximum constraint violation, and f the objective func-
tion value for each point. The pair (h{i}, f {i}), obtained for
iteration i , is said to dominate another pair (h{ j}, f { j}), if
and only if, both h{i} ≤ h{ j} and f {i} ≤ f { j}. Fletcher et
al. then define the NLP filter as a list of pairs {(h{i}, f {i})},
such that no pair dominates any other. The list of pairs is
sorted such that the f {i} are monotonically decreasing.

A point x is said to be ‘acceptable for inclusion in the
filter’ if its pair (h, f ) is not dominated by any entry in the
filter, implying that either h < h{ j} or f < f { j} for all
elements j in the filter list. If we wish to ‘include point x
in the filter’ it is understood that its pair (h, f ) is added to
the list of pairs in the filter, and all pairs in the filter that are
dominated by the new pair, are removed.

To prove convergence, Fletcher et al. (2002b) define a
small envelope around the current filter, which provides a
mechanism to force the sequence of iterates towards feasi-
bility. The resulting ‘slanting envelope test’ then becomes:
a pair (h, f ) is acceptable if

either h ≤ βh{ j} or f + γ h ≤ f { j}, (4)

for all j , where β and γ are preset parameters such that 1 >

β > γ > 0, with β close to 1 and γ close to zero. Typical
values used by Fletcher, Leyffer, and Toint are γ = 10−5

and β = 1 − γ .
Now, let 	 f = f (x(k))− f (x(k∗)), and 	q = f̃ (x(k))−

f̃ (x(k∗)). The solution to the subproblem yields a trial step
from x{k} to point x(k∗), denoted d. Fletcher et al. (2002b)
regard a step d that satisfies 	q > 0 to be an f -type step.
If the trial step is accepted then an f -type iteration is said to
have occurred. An h-type iteration is said to have occurred if
the current subproblem is incompatible (the subproblem has
no feasible solution) or if a step is taken for which 	q ≤ 0
holds. f -type iterations have the primary aim to reduce the
objective function, possibly following an increase in h. h-
type iterations have the primary aim to reduce h, possibly
allowing an increase in f . The filter defines what increase
in either f or h is actually allowed in the current iteration
stage.

The filter builds up a list of pairs corresponding to iter-
ates from which the algorithm had to ‘retreat’. We therefore
include point x{k} in the filter at the end of the iteration if,
and only if, that iteration is an h-type iteration. This implies
that, at the start of iteration k, the pair (h{k}, f {k}) is not
in the current filter F {k}, but the pair (h{k}, f {k}) must be
acceptable to the current filter F {k}. For this reason, we test
whether x(k∗) is acceptable to the current filter F {k} and
xk , so that if (h{k}, f {k}) is subsequently entered into the
filter, then (h(k+1), f (k+1)) (which corresponded to x(k∗))
will still be acceptable to the new filter.

A condition for a step d to give rise to an f -type iter-
ation is that both 	 f ≥ σ	q and 	q > 0 are satisfied,
see Fletcher et al. (2002b). This means that besides the
required predicted decrease in the objective function, there
is an additional requirement on a sufficient reduction of the
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actual objective function value. This condition gives rise to
the following test: if

	 f < σ	q and 	q > 0, (5)

then the predicted improvement by x(k∗) is not satisfactory.
Note that the ‘and’ statement implies that the test is passed
if 	q ≤ 0. Then, if x(k∗) passed the filter acceptance test,
an h-type iteration is recognized and x{k} is included in the
filter.

An inner loop iteration arises if x{k∗} is not acceptable to
the current filter F {k} and xk , or if sufficient reduction cri-
terion (5) is not met (a typical value for σ = 0.1). Then the
approximate subproblem is re-solved with a reduced trust
region.

Once accepted, we move to the new iterate, and the trust
region 	∞ is updated. In principle, any strategy to reset the
trust region 	

{k+1}∞ is allowed, as long as 	∞ > 	∞0 , with
	∞0 > 0 a preset parameter. Hence any (heuristic) move
limit strategy may be included here.

Indeed, it may be stated that if an infinite sequence of
pairs (h, f ) is accepted by the filter, then h → 0, that is,
convergence to a feasible point results. This is the result
of Lemma 1 and its Corollary presented by Fletcher et al.
(2005). Thereafter, the sufficient descent trust region condi-
tion present in the filter may be used to enforce descent and
eventually, termination.

We explicitly point out that the subproblems considered
in this paper differ (slightly) from the QP subproblems
studied by Fletcher et al. (2005). (Since we use spheri-
cal quadratic approximations, our constraints are quadratic
rather than linear, and we use only approximate Hessian
information. In addition, we use a dual statement, although
QP-like subproblems are also possible, e.g. see Etman et al.
(2009).) Although this does not affect Lemma 1 and the
Corollary of Fletcher et al. (2005)—which guarantees con-
vergence to a feasible point—a formal proof for algorithm
SAO-C is still to be developed. Nevertheless, algorithm
SAO-C is very closely related to the filter-SQP algorithm of
Fletcher et al. (2005). Indeed, given Lemma 1 and its Corol-
lary, it merely remains to demonstrate convergence given
some feasible starting point using a trust-region strategy (or
conservatism, for that matter).

Accordingly, in filtered trust-region algorithm SAO-C,
Steps 6 and 7 in algorithm SAO-θ are replaced by the
following steps:

6. Test if x{k∗} is acceptable:

(a) test if x{k∗} is acceptable to the current filter
F {k} and x{k}: IF no, GOTO Step 7,

(b) test if 	 f < σ	q AND 	q > 0: IF yes, GOTO
Step 7,

(c) conditionally update the filter and reinitialize
the outer loop: Set 	

{k}∞ > 	
{k}∞0 , and GOTO

Step 8.

7. Effect an inner loop if x{k∗} is not acceptable:

(a) set 	
{k}∞ = 	

{k}∞ /χ3

(b) GOTO Step 4.

In addition, it is required to specify 	∞0 , γ, σ, β > 0, and
χ3 > 1 in Step 1 in algorithm SAO-θ .

4.5 Algorithm SAO-D (filtered conservatism; terminating)

In algorithm SAO-D, we combined the salient features of
algorithms SAO-B and SAO-C: the filter is used to decide if
an iterate is acceptable (since the filter is more tolerant than
enforcing conservatism). Then, if an iterate is unaccept-
able, we enforce conservatism of only those approximations
that are non-conservative (since reduction of the trust region
would unnecessarily hurt the conservative approximations).

Accordingly, in algorithm SAO-D, Steps 6 and 7 in
algorithm SAO-θ are replaced by the following steps:

6. Test if x{k∗} is acceptable:

(a) test if x{k∗} is acceptable to the current filter
F {k} and x{k}: IF no, GOTO Step 7,

(b) test if 	 f < σ	q AND 	q > 0: IF yes, GOTO
Step 7,

(c) conditionally update the filter and reinitialize
the outer loop: Set 	∞ > 	∞0 , and GOTO
Step 8.

7. Effect an inner loop if x{k∗} is not acceptable:

(a) Set l := l + 1.
(b) IF f̃0(x{k∗}) < ( f0(x{k∗}) − ε1), set c{k}

2i0
:= χ1c{k}

2i0
.

(c) IF f̃ j (x{k∗}) < ( f j (x{k∗}) − ε2), set c{k}
2i j

:= χ2c{k}
2i j

,
j = 1, 2, · · · , m.

(d) GOTO Step 4.

In addition, it is required to specify 	∞0 , γ, σ, β, χ3,
ε1, ε2 > 0, and χ1, χ2 > 1 in Step 1 in algorithm SAO-θ .

Termination based on filtered-conservatism assumes that
convergence follows from the (non-related) Lemma 1 and
its Corollary in Fletcher et al. (2005), and conservatism as
presented by Svanberg (2002). It is required to show that
conservatism has the same effect as a trust region in gen-
erating points that are acceptable to the filter, which seems
like a reasonable proposition.
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5 Numerical experiments

We now present numerical results for the four algorithms we
have implemented.

Again, we note that Algorithms SAO-C and SAO-D lack
a rigorous, formal proof of convergence, and it may even
be considered unfair by some to compare the computational
performance of algorithms with and without proof of global
convergence.

In our numerical studies (including many not reported
herein), we have never encountered unpleasant surprises
with Algorithms SAO-C and SAO-D (barring cases when
the subproblem solvers themselves failed). In the follow-
ing results, there is one instance for which unconditional
acceptance of the iterates (Algorithm SAO-A) fails. The
numerical results for Algorithm SAO-A are merely pre-
sented to give an impression of the expense associated with
enforcing global convergence using the three conditional
acceptance mechanisms.

Let k∗ and l∗ respectively represent the number of outer
and inner iterations required for convergence, and we intro-
duce h̄ = max( f j ), j = 1, 2, ...m (not to be confused with
h = max(0, f j ) in the filter).

Unless otherwise stated, we have set the move limit
(respectively the initial trust region ‘diameter’) δ

{k}
i∞ ←

	
{k}∞ (x̂i − x̌i ), with 	

{k}∞ = 1.0. This is far from optimal
for algorithms A, B and D, but it does reveal the (lack of)
robustness of these algorithms. (In practice, a far better
choice would be to use say 	

{k}∞ = 0.2 ∀ k.) Throughout,
we have used ε1 = ε2 = 10−7, and χ1 = χ2 = 2 in the
conservative variants of the algorithms. (We have not exper-
imented with these values to see if they are even close to
being optimal.) In the trust region variants, we have used
	∞0 =1×10−8, γ =1×10−7, σ =1×10−6, β =1−γ , and
χ3 =2. (Again, we have not experimented with these values
to see if they are optimal.)

The test problems used are tabulated in Table 1, and
numerical results are presented in Table 2. The test problems

are also given explicitly in Appendix A, while the spher-
ical quadratic approximation used is given in Appendix B.
Unless otherwise stated, the algorithms are all stopped when
‖x{(k−1)∗} − x{k∗}‖ ≤ εx , with εx given in Table 1.

Even though we have used a small set of (fairly demand-
ing) test problems, the results corroborate the potential
computational expense associated with the enforcement of
convergence via conservatism and a trust region strategy
(when compared to our non-terminating algorithm SAO-
A). For obvious reasons, this explains the popularity of
algorithm SAO-A in simulation-based optimization: rather
than using a costly convergence strategy, it is hoped that
‘the approximations themselves will do the work’, and
effect termination. Nevertheless, the results presented for
Problem 6 (Fleury’s weight-minimization-like problem) do
illustrate how dangerous this may sometimes be. What
is more: for some problems, not enforcing convergence
may actually be more expensive than enforcing conver-
gence using filtered conservatism, see Problem 8 (Vander-
plaats’ cantilever beam), although this is not expected if the
approximations used are reasonably accurate. (The spher-
ical quadratic approximation we use does not exploit any
advantage whatsoever that may derive from the use of inter-
vening variables, while for Vanderplaats’ cantilever beam
this would be particularly advantageous. For an elaboration,
see Groenwold and Etman (2009).)

It is interesting to note that the trust region strategy is
superior to the conservative strategy for some problems
(Problems 3, 7b and 8), and vice versa for some others
(Problems 1, 4, 5, and 7a). For Problem 8 (Vanderplaats’
cantilever beam) and the approximations used, conservatism
is not even a viable method for termination; it is sim-
ply too expensive. For the remaining problems, there is
little difference between the two methods. The filtered con-
servative algorithm however is on average superior to the
aforementioned strategies, and in particular so for Prob-
lems 4 and 8. What is more: the computational overhead
of filtered conservatism compared to the non-terminating
variant (algorithm SAO-A) is very small.

Table 1 The test problems; see
Appendix A for details No. Problem n m εx 	

{0}∞

1 Rosenbrock’s banana valley 2 0 1 × 10−5 1.0

2 2-Bar shape and size design problem 2 2 1 × 10−5 1.0

3 Convex 10-bar truss 10 25 1 × 10−5 1.0

4 12-Corner polytope 21 1 5 × 10−4 1.0

5 Snake problem 30 41 1 × 10−5 1.0

6 Fleury’s weight-minimization-like problem 1,000 2 1 × 10−5 0.01

7a First large nonconvex problem 1,000 2 5 × 10−4 1.0

7b Second large nonconvex problem 1,000 2 5 × 10−4 1.0

8 Vanderplaats’ cantilever beam 20 and 200 21 resp. 201 1 × 10−5 1.0
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Table 2 Numerical results for
the test problems—see
Section 4 for a description of the
algorithms

aDid not converge; all the vari-
ables ended up on the lower
bounds after 11 iterations

Problem no. Algorithm k∗ l∗ f ∗
0 h̄∗

1 Rudimentary (SAO-A) 4, 076 – 3.597 × 10−05 –

Conservatism (SAO-B) 45 53 2.573 × 10−06 –

Filtered trust region (SAO-C) 174 810 2.584 × 10−05 –

Filtered conservatism (SAO-D) 45 53 2.573 × 10−06 –

2 Rudimentary (SAO-A) 9 – 1.508652 1.978 × 10−12

Conservatism (SAO-B) 6 5 1.508652 1.157 × 10−10

Filtered trust region (SAO-C) 9 0 1.508652 1.978 × 10−12

Filtered conservatism (SAO-D) 9 0 1.508652 1.978 × 10−12

3 Rudimentary (SAO-A) 35 – 4,193.194 −1.165 × 10−06

Conservatism (SAO-B) 35 12 4,193.192 −2.044 × 10−07

Filtered trust region (SAO-C) 35 0 4,193.190 −1.165 × 10−06

Filtered conservatism (SAO-D) 35 0 4,193.189 −1.165 × 10−06

4 Rudimentary (SAO-A) 225 – −279.9038 1.157 × 10−07

Conservatism (SAO-B) 328 176 −279.9038 2.651 × 10−07

Filtered trust region (SAO-C) 413 642 −279.9038 −4.025 × 10−07

Filtered conservatism (SAO-D) 169 19 −279.9038 4.712 × 10−07

5 Rudimentary (SAO-A) 183 – −10.02298 2.294 × 10−06

Conservatism (SAO-B) 51 352 −10.02298 2.298 × 10−06

Filtered trust region (SAO-C) 183 0 −10.02298 2.294 × 10−06

Filtered conservatism (SAO-D) 183 0 −10.02298 2.294 × 10−06

6 Rudimentary (SAO-A) ∗a – 0.001000 9.500 × 10+09

Conservatism (SAO-B) 40 51 950.0001 −3.85 × 10−06

Filtered trust region (SAO-C) 25 39 950.0001 6.821 × 10−11

Filtered conservatism (SAO-D) 35 23 950.0001 6.544 × 10−08

7a Rudimentary (SAO-A) 176 – 260.8520 −3.145 × 10−08

Conservatism (SAO-B) 173 14 260.8520 −1.033 × 10−07

Filtered trust region (SAO-C) 191 208 260.8520 −2.694 × 10−07

Filtered conservatism (SAO-D) 173 14 260.8520 −1.033 × 10−07

7b Rudimentary (SAO-A) 305 – −739.1479 −3.928 × 10−07

Conservatism (SAO-B) 361 102 −739.1479 −3.241 × 10−07

Filtered trust region (SAO-C) 305 0 −739.1479 −3.928 × 10−07

Filtered conservatism (SAO-D) 305 0 −739.1479 −3.928 × 10−07

8 (n = 20) Rudimentary (SAO-A) 38 – 64,244.83 1.680 × 10−06

Conservatism (SAO-B) 101 261 64,244.83 1.111 × 10−06

Filtered trust region (SAO-C) 40 94 64,244.83 3.208 × 10−06

Filtered conservatism (SAO-D) 29 2 64,244.83 2.414 × 10−05

8 (n = 200) Rudimentary (SAO-A) 34 – 63,678.10 1.783 × 10−06

Conservatism (SAO-B) 457 2, 535 63,678.10 4.896 × 10−06

Filtered trust region (SAO-C) 30 25 63,678.10 2.983 × 10−07

Filtered conservatism (SAO-D) 29 1 63,678.10 4.058 × 10−05

Finally, we reiterate that we have merely for the sake of
brevity restricted ourselves to using the spherical quadratic
instance of (7), again see Appendix B. In practice, we
suggest that diagonal quadratic approximation (7) is gen-
eralized to provide for problem-specific behavior, e.g. see
Groenwold et al. (2010); this may be expected to result in

notably reduced computational effort (in that the required
number of iterations is decreased). As said, this is very
easily done, and merely requires that the approximate cur-
vatures c{k}

2i j
are estimated using a different strategy. We

emphasize that the diagonal quadratic approximation itself
remains unchanged.
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6 Conclusions

We have studied the convergence and termination of sequen-
tial approximate optimization (SAO) algorithms using a
trust region with filtered acceptance of the iterates, and
conservatism for inequality constrained simulation-based
optimization.

We have also proposed a new strategy for convergence
and termination, denoted f iltered conservatism, in which
the acceptance or rejection of an iterate is determined using
a nonlinear acceptance filter. If an iterate is rejected, the
conservatism of all the unconservative approximations are
increased, rather than reducing the trust region. Although
we have performed only limited testing, the numerical
results corroborate the accuracy and robustness of the pro-
posed method. Apparently, the advantages of the filtered
conservative strategy above classical conservatism may be
attributed to the fact that the former strategy requires nei-
ther strict conservatism, nor descent before an iterate may
be accepted. The iterate need merely be acceptable to the
filter.

In turn, the advantages of the filtered conservative strat-
egy above the classical trust region method with nonlinear
acceptance filter apparently are that the reduced trust region
in the latter is hurtful not only for unconservative approx-
imations, but also for conservative approximations, which
were perfectly acceptable at the large trust region to start
with.

At the same time, we have demonstrated that enforc-
ing convergence may sometimes imply a computational
penalty if classical trust-regions or conservatism are used,
which possibly explains why people in structural optimiza-
tion often do not bother to enforce convergence in the first
place, since the function and gradient evaluations are so
expensive. (Although we have not found any test problems
for which filtered-conservatism was notably more expensive
than the unconditional acceptance of iterates, we certainly
expect that this will be true for some problems, in the spirit
of a ‘weak’ no-free-lunch theorem.)

A note on the approximations used: the frameworks
we have developed do not prescribe the approximations
to be used. For generating the numerical results, we have
restricted ourselves to using a spherical quadratic approx-
imation, merely because this approximation is so simple.
However, this approximation may be far from optimal; it is
possible to obtain notably better results (faster convergence)
using different approximations.

Finally: we have assumed that convergence follows
from the (non-related) contributions in trust-region meth-
ods on the one hand, and conservatism as proposed by
Svanberg on the other. The development of a unified proof
of convergence, possibly requiring a modification in the
implementation of filtered conservatism, seems of interest.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: The test problems

A.1 Rosenbrock’s unconstrained 2-D banana valley
problem

Consider the well-known unconstrained 2-dimensional
problem

min f (x1, x2) = 100
(

x2 − x2
1

)2 + (1 − x1)
2. (6)

The global minimizer is x∗
1 = x∗

2 = 1.0, with f (x∗) = 0.

The starting point is x {0}
1 = x {0}

2 = 0. We use x̌1 = x̌2 =
−2.0 and x̂1 = x̂2 = 2.0. This problem is highly coupled,
and the problem is notoriously difficult for optimization
methods based on separable approximations.

A.2 Simultaneous shape and sizing design of a 2-bar truss

This is a problem proposed by Svanberg (1995). It is an
interesting problem in that shape and sizing design are per-
formed simultaneously. The problem may analytically be
expressed as

min
x

f0(x) = c1x1

√
1 + x2

2 ,

subject to f1(x) = c2

√
1 + x2

2

(
8

x1
+ 1

x1x2

)

− 1 ≤ 0,

f2(x) = c2

√
1 + x2

2

(
8

x1
− 1

x1x2

)

− 1 ≤ 0,

0.2 ≤ x1 ≤ 4.0,

0.1 ≤ x2 ≤ 1.6,

with c1 = 1.0 and c2 = 0.124.

A.3 The convex 10-bar truss

The reader is referred to Ringertz (1988) and many others.

A.4 The 12-corner polytope

Consider the now well-known 12-corner polytope prob-
lem in the 21 variables (r1, · · · , r11, v1, · · · , v10) proposed
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by Svanberg (1995). It is required to maximize the area f0,
subject to a single constraint f1 on the circumference. The
problem was formulated by Svanberg as

min
ri ,vi

f0(r, v)= − 1

2

10∑

i=1

[
riri+1 sin(vi )

]
,

subject to f1 =r1 + r11

+
10∑

i=1

[
r2

i +r2
i+1−2riri+1 cos(vi )

]1/2− 60≤0,

1 ≤ ri ≤ 30, i = 1, 2, · · · , 11,

1 ≤ vi ≤ 45, i = 12, 13, · · · , 21.

The starting point is taken as r0
i = 11 and v0

i = 18 for all
i . The optimal solution is f ∗

0 = 75(2 + √
3), with r∗

i =
5 sin(15i)/ sin(15) and v∗

i = 15.

A.5 The snake problem

Next, consider the so-called ‘snake problem’, proposed
by Svanberg (2007) for ‘anyone who wants to test a new
method for nonlinear optimization’.

Let d be a given positive integer, and let δs be a given
‘small’ positive real number. For i = 1, 2, · · · , d , let

ψi = (3i − 2d)π

6d
, gi (x) = x2

i + x2
d+i − 1

δs
,

and

hi (x) = x2d+i − 2xi xd+i

δs
.

Then consider the following problem in the variables x =
(x1, · · · , x3d)T :

min
x

f0(x) =
d∑

i=1

(xi cos ψi + xd+i sin ψi − 0.1x2d+1),

subject to
d∑

i=1

(
x2

i + x2
2d+i

)
≤ d,

− 2 ≤ gi (x) + gi (x)7 ≤ 2, i = 1, 2, · · · , d,

− 2 ≤ hi (x) + hi (x)7 ≤ 2, i = 1, 2, · · · , d,

− 2 ≤ x j ≤ 2, j = 1, 2, · · · , 3d.

For a short discussion of the problem, see Svanberg (2007),
who considers the problem ‘rather difficult to solve’ if the

following feasible, but far from optimal, starting point x{0}
is chosen:

x {0}
i = cos

(
ψi + π

12

)
, x {0}

d+i = sin
(
ψi + π

12

)
,

and

x {0}
2d+i = sin

(
2ψi + π

6

)
, i = 1, 2, · · · , d.

We will present results for d = 10 (and hence, n = 30 and
m = 41) using δs = 0.1.

A.6 Fleury’s weight-minimization-like problem

Consider the following test problem by Fleury (1979):

min
x

f0(x) =
1,000∑

i=1

xi ,

subject to
950∑

i=1

1

xi
+ 10−6

1,000∑

i=951

1

xi
− 1, 000 ≤ 0,

950∑

i=1

1

xi
− 10−6

1,000∑

i=951

1

xi
− 900 ≤ 0,

10−6 ≤ xi ≤ 106.

The starting point is x {0}
i = 10−5. The optimum is given

by x∗
i = 1 for i = 1, 2, · · · , 950 and x∗

i = 10−6 for i =
951, 952, · · · , 1, 000, with f0(x∗) = 950.0005. Since the
design domain is so huge, we use 	

{0}∞ = 0.01.

A.7 Two nonconvex programming problems of high
dimensionality

Now consider two non-convex problems, again proposed
by Svanberg (2002). Both are expressed in terms of the sym-
metric, fully populated n × n matrices S, P and Q, with
elements given by

si j = 2 + sin(4πϑi j )

(1 + |i − j |) ln(n)
, pi j = 1 + 2ϑi j

(1 + |i − j |) ln(n)

and

qi j = 3 − 2ϑi j

(1 + |i − j |) ln(n)
,

where

ϑi j = i + j − 2

2n − 2
∈ [0, 1] ∀ i, j,

and n > 1.
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The first nonconvex problem is formulated as

min
x

f0(x) = xT Sx,

subject to f1(x) = n

2
− xT P x ≤ 0,

f2(x) = n

2
− xT Qx ≤ 0,

− 1 ≤ xi ≤ 1,

with starting point x0 = (0.5, 0.5, · · · , 0.5)T . The objec-
tive function f0(x) is strictly convex, but the nonlinear
constraint functions f1(x), f2(x) are strictly concave.

The second nonconvex problem is formulated as

min
x

f0(x) = − xT Sx,

subject to f1(x) = xT P x − n

2
≤ 0,

f2(x) = xT Qx − n

2
≤ 0,

− 1 ≤ xi ≤ 1,

with starting point x0 = (0.25, 0.25, · · · , 0.25)T . This
time, the objective function f0(x) is strictly concave, while
the nonlinear constraint functions f1(x), f2(x) are strictly
convex.

A.8 Vanderplaats’ cantilever beam

We consider the optimal sizing design of the tip-loaded
multi-segmented cantilever beam proposed by Vanderplaats
(2001)—see Example 5-1 on page 185 therein. The beam is
of fixed length l, is divided into k segments, and is subject to
geometric, stress and a single displacement constraint. The
geometry has been chosen such that a very large number of
the constraints are active or ‘near-active’ at the optimum.
The objective function is formulated in terms of the design
variables bi and hi as

min f0(b, h) =
k∑

i=1

bi hi li ,

with li constant for given k. We enforce the bound con-
straints 1.0 ≤ bi ≤ 80, and 5.0 ≤ hi ≤ 80. The stress
constraints are

σ(b, h)

σ̄
− 1 ≤ 0, i = 1, 2, . . . k,

while the linear geometric constraints are written as

hi − 20bi ≤ 0, i = 1, 2, . . . k.

The tip displacement constraint is

utip(b, h)

ū
− 1 ≤ 0.

The constraints are rather easily written in terms of the
design variables b and h, e.g. see Vanderplaats (2001).
Using consistent units, the geometric and problem data are
as follows: we use a tip load of P = 50, 000, a modulus
of elasticity E = 2 × 107, a beam length l = 500, while
σ̄ = 14, 000, and ū = 2.5. The starting point is bi = 5.0
and hi = 60 forall i . The problem is expressed in terms of
n = 2k design variables, and m = 2k + 1 constraints.

Appendix B: The approximations used
in the numerical experiments

In principle, any (strictly) convex approximation may be
used in (2), (3). Herein, we will restrict ourselves to
the diagonal quadratic approximation that derives from the
incomplete series expansion we have previously presented,
see Groenwold et al. (2007).

What is more: we will herein restrict ourselves to a spher-
ical variant of the diagonal quadratic approximation. Note
that this is far from optimal for, in particular, the struc-
tural optimization examples, which are known to exhibit
strong monotonicities. However, the reciprocal-like diago-
nal quadratic approximations we have proposed elsewhere,
see Groenwold et al. (2010), Groenwold and Etman (2009),
may be expected to result in a notably reduced number
of outer and inner iterations (since the accuracy of the
approximations used are higher).

We choose to use the approximations in dual approx-
imate subproblem PD[k], rather than primal approximate
subproblem PP [k]. The reader may refer to our previous
efforts, see Groenwold and Etman (2008b), Etman et al.
(2009), for details.

B.1 The diagonal quadratic approximation

The approximation is given as

f̃ j (x) = f j (x{k}) +
n∑

i=1

(
∂ f j

∂xi

){k} (
xi − x {k}

i

)

+ 1

2

n∑

i=1

c{k}
2i j

(
xi − x {k}

i

)2
. (7)

For the sake of notational brevity, it is understood that

(
∂ f

∂xi

){k}
= ∂ f

∂xi
(x{k}),
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being the partial derivative of f with respect to xi at the
point x{k}. Approximation (7) is convex if c{k}

2i j
≥ 0 ∀ i ,

while the approximation is strictly convex if the inequality
holds for all i .

Some strategies for estimating the c{k}
2i j

may be found
in Groenwold et al. (2007). Herein, we will for the sake
of brevity consider only the simplest, which results in the
spherical quadratic approximations used by Snyman and
Hay (2002): Select c{k}

2i j
≡ c{k}

2 j
∀ i , which requires the deter-

mination of the single unknown c{k}
2 j

, to be obtained by
enforcing the condition

f̃ j

(
x{k−1}) = f j

(
x{k−1}) . (8)

This implies that

c{k}
2 j

= 2[ f j (x{k−1})− f j (x{k})−∇T f j (x{k})(x{k−1}−x{k})]
‖x{k−1}−x{k}‖2

2

.

(9)

To obtain strictly convex dual subproblems, we enforce
c{k}

2 j
= max(εn > 0, c{k}

2 j
) ∀ i if j = 0, and c{k}

2 j
=

max(0, c{k}
2 j

) ∀ i if j > 0, with εn selected rather arbitrarily

as 10−6.
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