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Abstract

We present our ongoing work to improve an existing syn-
chronization protocol SIRAP [4] for hierarchically sched-
uled real-time systems. A less pessimistic schedulability
analysis is presented which can make the SIRAP protocol
more efficient in terms of calculated CPU resource needs.
In addition and for the same reason, an extended version of
SIRAP is proposed, which decreases the interference from
lower priority tasks. The new version of SIRAP has the po-
tential to make the protocol more resource efficient than the
original one.

1 Introduction

The Hierarchical Scheduling Framework (HSF) has been
introduced to support hierarchical CPU sharing among ap-
plications under different scheduling services [17]. The
HSF can be generally represented as a tree of nodes, where
each node represents an application with its own sched-
uler for scheduling internal workloads (e.g., tasks), and re-
sources are allocated from a parent node to its children
nodes.

The HSF provides means for decomposing a com-
plex system into well-defined parts calledsubsystems.
In essence, the HSF provides a mechanism for timing-
predictablecompositionof course-grained subsystems. In
the HSF a subsystem provides an introspectiveinterface
that specifies the timing properties of the subsystem pre-
cisely [17]. This means that subsystems can be indepen-
dently developed and tested, and later assembled without in-
troducing unwanted temporal interference. Temporal isola-
tion between subsystems is provided through budgets which
are allocated to subsystems.

Motivation: Research on HSFs started with the assump-
tion that subsystems are independent, i.e., inter-subsystem
resource sharing other than the CPU fell outside their scope.
In some cases [1, 10], intra-subsystem resource sharing is
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addressed using existing synchronization protocols for re-
source sharing between tasks, e.g., the Stack Resource Pol-
icy (SRP) [2]. Recently, three SRP-based synchronization
protocols for inter-subsystem resource sharing have been
presented, i.e., HSRP [6], BROE [9], and SIRAP [4].

In this paper we focus on SIRAP, improving the associ-
ated schedulability analysis and making the protocol more
efficient in terms of CPU resource usage. The contribu-
tions of this paper are twofold. Firstly, it removes some
pessimism in the schedulability analysis of the SIRAP pro-
tocol. Secondly, this paper proposes a change in the original
SIRAP protocol to reduce the interference from lower pri-
ority tasks which may reduce the required CPU resources
that the subsystem needs to guarantee the schedulability of
all its internal tasks.

2 Related work

Over the years, there has been a growing attention to hi-
erarchical scheduling of real-time systems [1, 5, 7, 8, 10, 11,
12, 14, 16, 17]. Deng and Liu [7] proposed a two-level HSF
for open systems, where subsystems may be developed and
validated independently. Kuo and Li [10] presented schedu-
lability analysis techniques for such a two-level framework
with the Fixed-Priority Scheduling (FPS) global scheduler.
Mok et al. [15, 8] proposed the bounded-delay virtual pro-
cessor model to achieve a clean separation in a multi-level
HSF. In addition, Shin and Lee [17] introduced the peri-
odic virtual processor model (to characterize the periodic
CPU allocation behaviour), and many studies have been
proposed on schedulability analysis with this model under
FPS [1, 12, 5] and under EDF scheduling [17, 19]. How-
ever, a common assumption shared by all above studies is
that tasks are independent.

Recently, three SRP-based synchronization protocols for
inter-subsystem resource sharing have been presented, i.e.,
HSRP [6], BROE [9], and SIRAP [4]. An initial compara-
tive assessment of these three synchronization protocols [3]
revealed that none of them was superior to the others, how-
ever. In particular, the performance of the protocol turned
out to be heavily dependent on system parameters.



3 System model and background

This paper focuses on scheduling of a single node or
a single network link, where each node (or link) is mod-
eled as a systemS consisting of one or more subsystems
Ss ∈ S. The system is scheduled by a two-level HSF. Dur-
ing runtime, the system level scheduler (global scheduler)
selects, at all times, which subsystem will access the com-
mon (shared) CPU resource.

Subsystem model A subsystemSs consists of a task set
Ts and a local scheduler. Once a subsystem is assigned the
processor (CPU), its scheduler will select which of its tasks
will be executed. Each subsystemSs is associated with a
subsystem timing interfaceSs(Ps, Qs, Xs), whereQs is the
subsystem budget that the subsystemSs will receive every
subsystem periodPs, andXs is the maximum time that a
subsystem internal task may lock a shared resource. Finally,
both the local scheduler of a subsystemSs as well as the
global scheduler of the systemS is assumed to implement
the FPS scheduling policy. LetRs be the set of global
shared resources accessed bySs.

Task model The task model considered in this paper is
the deadline-constrained sporadic hard real-time task model
τi(Ti, Ci, Di, {ci,j}), whereTi is a minimum separation
time between arrival of successive jobs ofτi, Ci is their
worst-case execution-time, andDi is an arrival-relative
deadline (0 < Ci ≤ Di ≤ Ti) before which the execu-
tion of a job must be completed. Each task is allowed to
access one or more shared logical resources, and each ele-
mentci,j ∈ {ci,j} is a critical section execution timethat
represents a worst-case execution-time requirement within
a critical section of a global shared resourceRj (for sim-
plicity of presentation, we assume that each task accesses
a shared resource at most one time). It is assumed that all
tasks belonging to the same subsystem are assigned unique
static priorities and are sorted according to their priorities in
the order of increasing priority. Without loss of generality,
it is assumed that the priority of a task is equal to the task
ID number after sorting, and the greater a task ID number
is, the higher its priority is. The same assumption is made
for the subsystems. The set of shared resources accessed by
τi is denoted{Ri}. Let hp(i) return the set of tasks with
priorities higher than that ofτi andlp(i) return the set of
tasks with priorities lower than that of taskτi. For each
subsystem, we assume that the subsystem period is selected
such that2Ps ≤ Tm, whereτm is the task with the shortest
period. The motivation for this assumption is that higherPs

will require more CPU resources [18].

Shared resources The presented HSF allows for sharing
of logical resources between arbitrary tasks, located in arbi-
trary subsystems, in a mutually exclusive manner. To access
a resourceRj , a task must first lock the resource, and when
the task no longer needs the resource it is unlocked. The
time during which a task holds a lock is called a critical

section. For each logical resource, at any time, only a sin-
gle task may hold its lock. A resource that is used by tasks
in more than one subsystem is denoted aglobal shared re-
source.

To be able to use SRP in a HSF for synchronizing global
shared resources, its associated terms resource, system and
subsystem ceilings are extended as follows:

Resource ceiling: Each global shared resourceRj is as-
sociated with two types of resource ceilings; aninternal
resource ceiling (rcj ) for local scheduling and anexter-
nal resource ceiling (RXj) for global scheduling. They
are defined asrcj = max{i|τi ∈ Ts accessesRj} and
RXj = max{s|Ss accessesRj}.

System/subsystem ceiling: The system/subsystem ceil-
ings are dynamic parameters that change during execution.
The system/subsystem ceiling is equal to the highest exter-
nal/internal resource ceiling of a currently locked resource
in the system/subsystem.

Under SRP, a taskτk can preempt the currently execut-
ing taskτi (even inside a critical section) within the same
subsystem, only if the priority ofτk is greater than its cor-
responding subsystem ceiling. The same reasoning applies
for subsystems from a global scheduling point of view.

4 SIRAP

SIRAP is based on theskipping mechanism. The pro-
tocol can be used for independent development of subsys-
tems and supports subsystem integration in the presence of
globally shared logical resources.It uses a periodic resource
model [17] to abstract the timing requirements of each sub-
system. SIRAP uses the SRP protocol to synchronize the
access to global shared resources in both local and global
scheduling. SIRAP applies a skipping approach to prevent
the budget expiration inside critical section problem. The
mechanism works as follows; when a job wants to enter a
critical section, it enters the critical section at the earliest in-
stant such that it can complete the critical section execution
before the subsystem budget expires. This can be achieved
by checking the remaining budget before granting the ac-
cess to globally shared resources; if there is sufficient re-
maining budget then the job enters the critical section, and
otherwise the local scheduler delays the critical section en-
tering of the job (i.e., the job blocks itself) until the next
subsystem budget replenishment. In addition, it sets the
subsystem ceiling equal to the internal resource ceiling of
the resource that the self blocked job wanted to access, to
prevent the execution of all tasks that have priorities less
than or equal to the ceiling of the resource until the job re-
leases the resource.

Local schedulability analysis The local schedulability
analysis under FPS is as follows [2, 17]:

∀τi ∃t : 0 < t ≤ Di, rbfFP(i, t) ≤ sbfs(t), (1)



wheresbfs(t) is the supply bound functionbased on the
periodic resource model presented in [17] that computes
the minimum possible CPU supply toSs for every interval
lengtht, andrbfFP(i, t) denotes therequest bound function
of a taskτi. sbfs(t) can be calculated as follows:

sbfs(t) =

{

t − (k + 1)(Ps − Qs) if t ∈ V (k)

(k − 1)Qs otherwise,
(2)

wherek = max
(

⌈(

t − (Ps − Qs)
)

/Ps

⌉

, 1
)

andV (k) de-

notes an interval[(k + 1)Ps − 2Qs, (k + 1)Ps − Qs].
Note that, for Eq. (1),t can be selected within a finite

set of scheduling points [13]. The request bound function
rbfFP(i, t) of a taskτi is given by:

rbfFP(i, t) = Ci + IS(i) + IH(i, t) + IL(i), (3)

IS(i) =
∑

Rk∈{Ri}

Xi,k, (4)

IH(i, t) =
∑

τj∈hp(i)

⌈ t

Tj

⌉

(Cj +
∑

Rk∈{Ri}

Xj,k), (5)

IL(i) = max
τf∈lp(i)

(2 · max
∀Rj |rcj≥i

(Xf,j)). (6)

whereIS(i) is the self blocking of taskτi, IH(i, t) is the in-
terference from tasks with higher priority thanτi, andIL(i)
is the interference from tasks, with lower priority thanτi,
that access shared resources.

Subsystem budget In this paper, it is assumed that the
subsystem period is given while the minimum subsystem
budget should be computed so that the system will require
lower CPU resources. Given a subsystemSs, andPs, let
calculateBudget(Ss, Ps) denote a function that calculates
the smallest subsystem budgetQs that satisfies Eq. (1).
Hence,Qs = calculateBudget(Ss, Ps) (the function is sim-
ilar to the one presented in [17]).

Calculating Xs Any taskτi accessing a resourceRj can
be preempted by tasks with priority higher thanrcj . Note
that SIRAP prevents subsystem budget expiration inside a
critical section of a global shared resource. This is achieved
using the following equation;

Qs ≥ Xs. (7)

From Eq. (7),Xs ≤ Qs < Ps and since we assume that
2Ps ≤ Tm then all tasks that are allowed to preempt while
τi accessesRj will be activated at most one time from the
time that self blocking happens until the end of the next
subsystem period. ThenXi,j can be computed as follows,

Xi,j = ci,j +

n
∑

k=rcj+1

Ck, (8)

wheren is the number of tasks within the subsystem. Let
Xj = max{Xi,j| for all τi ∈ Ts accessing resourceRj},
thenXs = max{Xj| for all Rj ∈ Rs}.

5 Improved SIRAP analysis

In this section we will show that Eq. (6) is pessimistic
and can be improved such that the subsystem budget may
decrease. Each taskτi that shares a global resourceRj with
a lower priority taskτf can be blocked byτf due to (i) self
blocking of τf and in addition due to (ii) access ofRj by
τf . The maximum blocking times of (i) and (ii) are given
by the self blocking timeXf,j, and the maximum execution
time cf,j of τf inside a critical section ofRj , respectively.
The worst-case blocking is the summation of the blocking
from these two scenarios, as shown in Eq. (9).

IL(i) = max
τf∈lp(i)

( max
∀Rj|rcj≥i

(Xf,j + cf,j)). (9)

Sincecf,j ≤ Xf,j , the interferenceIL(i) of tasks with a
priority lower than that of taskτi, based on (8), is at most
equal to that of (6). As a result,rbfFP(i, t) may decrease,
and the corresponding subsystem budgetQs may therefore
decrease as well.

6 The new approach

Looking at Eq. (1), one way to reduce the subsystem
budgetQs is by decreasingrbfFP(i, t) for tasks that require
highest subsystem budget. In Section 5, we have described
one way to decreaserbfFP(i, t) for higher priority tasks that
share resources by decreasingIL(i). In this section we pro-
pose a method that allows for a further reduction ofIL(i).
According to SIRAP, when a task wants to enter a critical
section it first checks if the remaining budget is enough to
release the shared resource before the budget expiration. If
there is not enough budget remaining, then the task blocks
itself and changes only the subsystem ceiling to be equal to
the ceiling of that resource. This prevents all higher priority
tasks that will be released after the self blocking instance,
and have priority less than or equal to the subsystem ceiling,
from executing.

The new method is based on allowing all tasks with pri-
ority higher than that of the task that is in self blocking
state to execute during the self blocking time. This can be
achieved by setting the subsystem ceiling equal to the pri-
ority of the task that is in self blocking state (only in case
of self blocking, and follow SRP otherwise). The main dif-
ference between SIRAP and the new approach is the setting
of subsystem ceiling during self blocking. In SIRAP sub-
system ceiling equals to the resource ceiling of the resource
that cause the self blocking while using the new approach it
will equal to the priority of the task that tried to access that
resource. When using the new approach, the maximum in-
terference from lower priority tasksIL(i) will be decreased
compared to Eq. (9), and can be calculated as;

IL(i) = max
τf∈lp(i)

( max
∀Rj |rcj≥i

(cf,j)). (10)



According to the original SIRAP approach, ifτi blocks
itself, it should enter the critical section at the next sub-
system budget replenishment. However, using the new ap-
proach there is no guarantee thatτi will enter the critical
section at the next subsystem activation, since tasks with
priority higher thanτi and less than the ceiling ofRj are
allowed to execute even in the next subsystem activation.
To guarantee thatτi will enter its critical sections at the
next subsystem budget replenishment, the subsystem bud-
get should be big enough to include the execution of those
tasks. The following equation shows a sufficient condition
to guarantee that there will be enough budget in the next
subsystem activation to lock and releaseRj by τi;

Qs ≥ Xi,j +
∑

k∈{i+1,...,rcj}

Ck. (11)

Since we assume that2Ps ≤ Tm then all higher priority
tasks will be activated at most one time during the timet ∈
[trep, trep + Ps] wheretrep is the subsystem replenishment
time after self blocking of taskτi.

Note that to evaluateXi,j , Eq. (8) can be used without
modification since the new approach changes SIRAP only
within the self blocking time, and during the self blocking
the task that cause self blocking is not allowed to access the
shared resource.

Comparing Eq. (10) with Eq. (9),IL(i) may decrease
significantly and that may decrease the subsystem budget.
However, Eq. (11) adds a constraint which may require a
higher subsystem budget. Given these opposite forces, we
conclude that the new approach will not always decrease the
minimum subsystem budget and therefore will not always
give better results than the original SIRAP. We will illustrate
this by the following example.

Example: Consider a subsystemSs that has three tasks
and two of them share resourceR1 as shown in Table 1.

T Ci Ti Rj ci,j

τ3 2 30 - 0
τ2 1 32 R1 1
τ1 4 80 R1 4

Table 1. Example task set parameters

Let the subsystem period be equal toPs = 15. Using the
original SIRAP, we deriveXs = X1,1 = 6 andQs = 9.34.
Using the new approach, we deriveXs = X1,1 = 6
and Qs = 7. This latter value satisfies Eq. (11), i.e.,
Qs ≥ X1,1 + C2 = 7. In this case, the new approach
decreases the subsystem budget, hence requires less CPU
resources. Conversely, forC2 = 5, we deriveQs = 10.67
for the original SIRAP and deriveQs ≥ X1,1 + C2 = 11
by applying Eq. (11) for the new approach . In this case, the
original SIRAP outperforms the new approach.

7 Summary

In this paper, we have presented improved schedulabil-
ity analysis for the synchronization protocol SIRAP and

we have proposed a new approach which extends SIRAP.
The improved analysis may decrease the minimum subsys-
tem budget while still guaranteeing the schedulability of all
tasks in a subsystem. The new approach has the same objec-
tive. The relative performance of the two versions of SIRAP
strongly depends on the subsystem parameters as illustrated
by means of an example. Hence, the original SIRAP is not
superior to the new approach nor vice versa. Currently, we
are developing an algorithm that selects for each task which
approach (SIRAP or the new approach) that should be used
to reduce the subsystem budget to a minimum.
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