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Derivative-based image
quality measure

for autofocus in electron

microscopy

M.E.Rudnaya

R.M.M.Mattheij

J.M.L.Maubach

Abstract Automatic focusing methods are based

on an image quality measure, which is a real-

valued estimation of an image’s sharpness. In

this paper we study L1− or L2−norm derivative-
based image quality measures. For a bench mark

case these measures turn out to be quadratic,

which implies that after obtaining of at least

three images one can find the position of the op-
timal defocus. The resulting autofocus method

is demonstrated for a reference scanning trans-

mission electron microscopy application.

Keywords Electron microscopy · Autofocus ·
Linear image formation · Image quality
measure

1 Introduction

Consider an optical device, such as photocam-
era, telescope, microscope. An image f depends

on a given specimen’s geometry f0 and optical

device parameters p

f0,p 7→ f.

The specimen’s geometry is generally unknown.

One of the optical device’s parameters is the de-

focus d. The method of automatic determining
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d, such that the image f has the highest possi-

ble quality (the image is in-focus), is known as

automated focusing or autofocus method.

The existing autofocus methods used for dif-

ferent types of optical devices are usually based
on an Image Quality Measure (IQM)

f 7→ r,

a real-valued estimation of an image’s sharp-

ness. For a through-focus series the ideal IQM
reaches a single optimum (maximum or mini-

mum depending on IQM definition) for the in-

focus image. Existing IQMs can be divided into

five groups, viz. based on the image derivatives
[1,13,27], variance [3,17], autocorrelation [6,14,

24,25], histogram [8,28] or Fourier transform

[2,19,23]. An overview of existing IQMs can be

found in [10,19,20,28]. An autofocus method

can be established in two different ways:

– An amount of images is taken within a wide
defocus range and the IQM optimum is de-

termined (course focusing). Next, the same

procedure is repeated within the smaller de-

focus range around the optimum, found on

the previous step (fine focusing).
– A search method is used (for example, Fib-

bonachi search [10,28], Nelder-Mead[17] or

Powell interpolation-based trust-region method

[18]).

The first approach requires recording of about

20-30 images, which can be time-consuming for
real-world applications. The goal of the second

approach is to minimize the amount of images

necessary to perform the autofocus. The dis-

advantage of this approach is that it requests
an almost perfect (convex) IQM’s shape, which

is often not the case in real-world applications.

The IQM can be noisy (have a lot of minima

and maxima). In this case a search method of-

ten ends up in one of the local maxima, which
can be far away from the actual in-focus posi-

tion.

A number of IQMs were considered and dis-

cussed for different optical devices, such as pho-
tographic and video cameras [4,8], telescopes

[12], different types of light microscopes [1,6,

10,20,22,27,28] and electron microscopes [2,3,

14,16,19,23]. In this paper we use electron mi-

croscopy as a reference application, in particu-
lar scanning transmission electron microscopy

(STEM).

We study derivative-based IQMs. The ad-

vantage of using these measures has been shown



2

experimentally for scanning electron microscopy

images [16,19]. Some of them are based on L1−
or L2−norm of an image derivative [1,8,28].

These measures used to be heuristic. Usually

they are based on the assumption that the in-
focus image has a larger difference between neigh-

boring pixels than the defocused one. In this

paper we show analytically how L1− or L2−norm

derivative-based IQM can be beneficial for a
bench mark case of a Gaussian point spread

function and a Gaussian object. Numerical com-

putations are performed for the case of a STEM

aberration-based point spread function and a

STEM experimental microscopic object. The
numerically obtained IQM is found to be easily

parameterized with a quadratic function just

as for the simple bench mark case of a Gaus-

sian object and a Gaussian point spread func-
tion. The proposed quadratic parametrization

leads to a new autofocus method that requires

recording of at least three images only. The

method is demonstrated for a real-world mi-

croscopy application.

Subsection 1.1 of this paper describes elec-

tron microscopy and its challenges for autofo-

cus methods. Subsection 1.2 explains notation

and conventions. Section 2 gives an introduc-
tion to the linear image formation model. It

describes two approximations of STEM point

spread function: a Gaussian approximation and

an approximation based on microscope’s aber-
rations. In Section 3 we define the L1− and

L2−norm derivative-based IQMs for one spa-

tial dimension and two spatial dimensions. Four

lemmas are introduced, which demonstrate IQM’s

shape for the simple case of a Gaussian object
and a Gaussian point spread function. Based

on these shapes the choice for L1−norm IQM

is made. Further discretization of this IQM is

presented. Section 4 gives details of numerical
computations. Section 5 presents a new autofo-

cus method based on shape-assumptions. Sec-

tion 6 describes an example of proposed method’s

work on a real microscope. Section 7 provides

discussion and conclusions.

1.1 Electron microscopy

Electron microscopy is a powerful tool in semi-
conductor industry, life and material sciences.

The electron microscope uses electrons instead

of photons used in light microscopy. The wave-

length of electrons is much smaller than the

wavelength of photons, which makes it possible

to achieve much higher magnifications.

The simplest Transmission Electron Micro-

scope (TEM) is an analogue of a light micro-

scope. Illumination coming from an electron gun

is concentrated on a specimen with a condenser
lens. The electrons transmitted through a spec-

imen are focused by an objective lens into a

magnified intermediate image, which is enlarged

by a projector lenses [5]. In a Scanning Elec-
tron Microscope (SEM) a fine probe of elec-

trons is focused at the surface of a specimen and

scanned across it. A current of emitted elec-

trons is collected, amplified and used to modu-
late the brightness of a cathode-ray tube [26]. A

Scanning Transmission Electron Microscope is

a combination of SEM and TEM. A fine probe

of electrons is scanned over a specimen and

transmitted electrons are being collected to form
an image signal. The resolution in electron mi-

croscopy is limited by aberrations of the mag-

netic lens, but not by the wavelength, as in light

microscopy.

The defocus has to be adjusted regularly
during the image recording process in the elec-

tron microscope. It has to do with regular oper-

ations such as inserting a new specimen, chang-

ing the stage position or magnification. Other

possible reasons are for instance instabilities
of the electron microscope or environment and

magnetic nature of some specimens. Electron

microscopy is a challenging case for an auto-

focus method. A signal-to-noise ratio in elec-
tron microscopy imagery is much worse than in

light microscopy. A recording of a single image

can be time consuming (especially in STEM),

which makes the method much slower. Due to

instabilities of environment the image geome-
try changes in time. Specimen drift and con-

tamination might take place, which makes the

method’s work more difficult.

1.2 Notation and Conventions

Convolution of two functions f1, f2 ∈ L2(Ω) is

(f1 ∗ f2)(x) :=

∫

Ω

f1(x
′)f2(x − x′)dx′.

We say f ∈ L2(Ω) is normalized if

∫

Ω

f(x)dx = 1.
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The L1− and L2− norms are

||x → f(x)||Ln
:= n

√
∫

Ω

|f(x)|ndx, n = 1, 2.

The spatial coordinates are written as

x ∈ R,

for one-dimensional case (1-d) and as

x := [x, y]T ∈ R2

for two-dimensional case (2-d). In 1-d the nor-

malized Gaussian function with standard devi-
ation |σ| is

g(x, σ, µ) :=
1√

2π|σ|
e−

(x−µ)2

2σ2 , σ 6= 0.

The 2-d analogous is

G(x, σ, µ) := g(x, σx, µx)g(y, σy, µy), (1)

where σ := [σx, σy]T , µ := [µx, µy]T .

2 Modelling

Let

f0(x) ∈ L2(R), f0(x) ≥ 0. (2)

be the 1-d object function that describes a spec-

imen’s geometry image. Due to the linear image

formation model [3,7] the microscope’s image is

a function

f(x,p) = (f0(x) ∗ h(x,p))(x) + ǫ(x), (3)

where p ∈ Rm is a vector of microscope’s pa-

rameters, h is a normalized Point Spread Func-

tion (PSF) that describes electron or light beam,

ǫ is additive noise. The function h is generally
unknown. In 2-d the object function that de-

scribes a specimen’s geometry image is

F0(x) ∈ L2(R2), F0(x) ≥ 0. (4)

Due to the linear image formation model [3,7]
the microscope’s image is a function

F (x,p) = (F0(x) ∗ H(x,p))(x) + ǫ(x), (5)

where H is a PSF.

In microscopy PSF is often approximated

with a Gaussian function [3,13]. Gaussian stan-
dard deviation |σ| is proportional to microscope’s

defocus d. The smaller |σ| is the better the im-

age f describes the object f0. Ideally, if we as-

sume σ = 0, Gaussian PSF becomes a delta

function and f = f0. However, in the real-

world situation the PSF standard deviation is

bounded by microscopes physical limits σ =

σmin > 0. In electron microscopy σx 6= σy

in (1) if astigmatism aberration is present [3];
σx = σy = σ corresponds to astigmatism-free

situation, which is usually the case in light mi-

croscopy [13].

A Gaussian PSF is a rough approximation
of a microscope’s PSF, which is, however, easier

to use for analytical computations. Further we

give an overview of a classical alternative, more

accurate model [7]. In Section 4 this model is

used for numerical computations.
The wave function that enters the specimen

is given in a frequency space by assuming a

fully coherent point source of electrons in the

far field

B(u,p) = A(u)e−iχ(u,p), (6)

where u = [u, v]T are frequency coordinates.

Here the aperture function A is

A(u) :=

{
1, if |u| ≤ q0

0, elswise,
(7)

and the wave aberration function χ is defined

as in [7]

χ(u,p) := πλ|u|2× (8)

(d +
1

2
λ2|u|2Cs + Ca cos(2(φ − φa))),

where λ, d, Cs, Ca, φa represent the wavelength,

the defocus, the spherical aberration, the two-
fold astigmatism amplitude and the two-fold

astigmatism rotation angle respectively. The elec-

tron wavelength λ is related to the electron en-

ergy E, the speed of light c and the electron’s

rest mass m0 [7]

λ =
hc

√

E(2mc2 + E)
. (9)

The aperture radius q0 in (7) controls the con-

vergence semi angle α0 of the beam by

q0 :=
α0

λ
. (10)

The PSF is the intensity of a scanning probe,

that is the inverse Fourier transform of the wave

function (6)

h(x,p) = C
∣
∣F

−1[B]
∣
∣
2
, (11)

where C is a normalization constant (h is nor-

malized). The conditions when the image reaches
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its highest quality are known as Scherzer condi-

tions [21]. For incoherent image formation they

are given in [7] as

qSh :=
1

λ
(
6λ

Cs
)

1
4 , (12)

dSh := −(1.5Csλ)1/2. (13)

The tolerable defocus error is defined as in [2]

de :=

√

(
w

2
)2 + (

t

2
)2,

where t is the specimen’s thickness and w is the

depth of field defined in [5] as

w :=
δ

α

for the pixel width δ. We consider the tolera-
ble defocus error as the lower bound set by the

depth of field

de =
δ

2α
. (14)

3 Image Quality Measure

In this section we provide four lemmas, that

correspond to 1-d or 2-d and L1− or L2−norm

derivative-based IQMs. While in real life the

image is always a function in 2-d we provide
definitions and lemmas for 1-d, in order to achieve

a better understanding of IQM’s behavior. The

proofs of all lemmas in this section are given in

the appendix. The lemmas assume noise-free

image formation, i.e. ǫ = 0 in (3) and (5).
In 1-d we define the L1−norm derivative-

based IQM

r1(p) :=
1

s2
1(p)

, (15)

where

s1(p) := ||x → ∂xf(x,p)||L1
.

Lemma 1 In 1-d for a Gaussian object func-

tion

f0(x) = g(x, σs, µs)

and for a Gaussian PSF for p = σ

h(x, σ) = g(x, σ, 0)

the IQM (15) is

r1(σ) =
π

2
(σ2 + σ2

s). (16)

In Lemma 1 we show that the IQM is pro-

portional to the PSF standard deviations. It

means that for the fixed object geometry (σs =

const) IQM reaches its minimum for the in-

focus image (image obtained for σ = σmin).
Also, it changes monotonically according to |σ|.
Thus, it satisfies properties of ideal IQM for

the bench mark case of a Gaussian PSF and

a Gaussian object. It is important to note that
IQM also depends on σs. It shows that IQM val-

ues are always comparative but not absolute,

i.e. if we shift the microscope stage without

changing microscopic parameters p and investi-

gate a Gaussian particle with a different width
σ′

s 6= σs the IQM values will be different. This

is one of the reasons why in real-world applica-

tions one obtains a number of images in order to

find IQM optimum for a given specimen’s area,
instead of using the knowledge about IQM op-

timal values from the different specimen areas.

In 1-d we define L2−norm derivative-based

IQM

r2(p) :=
1

s
3/2
2 (p)

, (17)

where

s2(p) := ||x → ∂xf(x,p)||2L2
.

Lemma 2 In 1-d for a Gaussian object func-

tion

f0(x) = g(x, σs, µs)

and for a Gaussian PSF for p = σ

h(x, σ) = g(x, σ, 0)

the IQM (17) is

r2(σ) = 2(2π)
1
3 (σ2 + σ2

s).

In 2-d we define L1−norm derivative-based
IQM

R1(p) :=
1

S2
x,1(p)

+
1

S2
y,1(p)

. (18)

where

Sx,1(p) := ||x → ∂xF (x,p)||L1
, (19)

Sy,1(p) := ||x → ∂yF (x,p)||L1
. (20)
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Lemma 3 In 2-d for a Gaussian object func-

tion with σs := [σx,s, σy,s]
T and µs := [µx,s, µy,s]

T

F0(x) = G(x, σs, µs)

and for a Gaussian PSF for p = σ := [σx, σy]T

H(x, σ) = G(x, σ, 0)

the derivative-based IQM (18) is

R1(σ) =
π

2
(σ2

x + σ2
y + σ2

s,x + σ2
s,y).

In STEM astigmatism aberration of magnetic

lens leads to σx 6= σy . For astigmatism-free case

σx = σy = σ, thus

R1(σ) =
π

2
(2σ2 + σ2

x,s + σ2
y,s). (21)

In 2-d we define L2−norm derivative-based

IQM

R2(p) :=
1

S2
x,2(p)

+
1

S2
y,2(p)

. (22)

where

Sx,2(p) := ||x → ∂xF (x,p)||2L2
,

Sy,2(p) := ||x → ∂yF (x,p)||2L2
.

Lemma 4 In 2-d for a Gaussian object func-

tion with σs := [σs,x, σs,y]T and µs := [µs,x, µs,y]T

F0(x) = G(x, σs, µs)

and for a Gaussian PSF for p = σ := [σx, σy]T

H(x, σ) = G(x, σ, 0)

the derivative-based image quality measure (22)
is

R2(σ) = 64π2(σx + σs,x)(σy + σs,y) ×
((σx + σs,x)2 + (σy + σs,y)2).

For astigmatism-free case σx = σy = σ, thus

R2(σ) = 64π2(σ + σs,x)(σ + σs,y) ×
((σ + σs,x)2 + (σ + σs,y)2). (23)

In numerical computations of Section 4 we fo-

cus at the L1−norm derivative-based IQM (21),

because it can be represented as a quadratic

function of PSF standard deviation. This sim-

plifies the situation in comparison with L2−norm
IQM, which is shown to be the fourth order

polynomial of PSF standard deviation (23). In

the following subsection we explain discretiza-

tion of L1−norm derivative-based IQM (18).

3.1 IQM discretization

In real-world applications the recorded images
are always discrete. In this subsection we dis-

cuss how to compute L1-norm derivative-based

IQM for discrete images. In the remain we ne-

glect the vector of microscope’s parameters in
the notation of the image, i.e. we use x → F (x)

instead of (x,p) → F (x,p) in (5). Also, we use

Sx, Sy, R instead of Sx,1, Sy,1, R1 in (18)-(20).

Let image domain be given as

X := [xmin, xmax] × [ymin, ymax],

which means

F (x) = 0, ∀x /∈ X.

We consider an N×M piecewise constant equi-
sized pixel discretization of X with pixel dimen-

sions

δx :=
xmax − xmin

N
, δy :=

ymax − ymin

M
.

For most real-world applications the pixel di-

mensions are equal δ = δx = δy. The discretiza-

tion of the image domain for xi−xi−1 = δx, yi−
yi−1 = δy is

xmin +
δ

2
= x1 < . . . < xn = xmax − δ

2
, (24)

ymin +
δ

2
= y1 < . . . < yn = ymax − δ

2
. (25)

For i ∈ {1, . . . , N}, j ∈ {1, . . . , M} we define

Fi,j := F (xi, yj). (26)

The microscopy images are discrete images that

can be represented by a matrix

F = ((Fi,j)
N
i=1)

M
j=1. (27)

We approximate the image derivative
∣
∣
∣
∣

∂F

∂x
(x, y)

∣
∣
∣
∣

.
=

∣
∣
∣
∣

F (x + ∆x, y) − F (x, y)

∆x

∣
∣
∣
∣
.

Let ∆x = kδx, k ∈ N , then
∣
∣
∣
∣

∂F

∂x
(xi, yj)

∣
∣
∣
∣

.
=

1

(kδx)
|Fi+k,j − Fi,j |.

We approximate IQM with the Riemann sum

Sx
.
=

∑

i,j

δxδy
1

kδx
|Fi+k,j − Fi,j |,

or the discrete IQM is defined

S̄x :=
δ

k

∑

i,j

|Fi+k,j − Fi,j |, (28)
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Table 1 Summarization of numerical computations
with a Gaussian object and a Gaussian PSF.

Computation Pixel difference Noise amplitude
N k ǫmax

1. 1 0
2. 1 0.001
3. 3 0.001
4. 30 0.001

S̄y :=
δ

k

∑

i,j

|Fi,j+k − Fi,j |, (29)

R̄ :=
1

S̄2
x

+
1

S̄2
y

. (30)

Analogically in 1-d

s̄ :=
1

k

∑

i

|fi+k − fi|, (31)

r̄ :=
1

s̄2
. (32)

If we ignore δ
k in front of the sum and set

pixel difference parameter k = 1, the formula
(28) coincides with derivative-based IQM def-

inition in [8,28], known as Absolute gradient

sharpness measure. In this paper we use (30) in-

stead in order to obtain quadratic parametriza-

tion of IQM. Parameter k in (28) can be ad-
justed to make the IQM less noise-sensitive.

In the case of very noisy imaginary it can be

used in combination with image denoising tech-

niques, such as [11,15] or [9].

4 Numerical computations

In this section we describe three numerical com-

putations: 1) Numerically computed IQMs for

the bench mark case of a Gaussian object and a
Gaussian PSF are compared with analytical ob-

servations of Section 3 with and without adding

noise; 2) Numerically computed IQMs of real

microscopic object image and aberration-based

PSF described in Section 2 are accurately pa-
rameterized with quadratic curve; 3) IQMs of

experimental STEM focus series with different

pixel difference parameter k are computed and

discussed.

4.1 Numerical computations for a Gaussian

object and a Gaussian PSF

We consider a Gaussian object in 1-d with stan-

dard deviation σs = 0.5. The image domain

−2 −1 0 1 2
0
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IQ
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PSF standard deviation

Noise amplitude = 0
Pixel difference k=1
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(b)
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(c)
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(d)

Fig. 1 Numerical computations of IQMs for a Gaussian
object and a Gaussian PSF in 1-d.
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Fig. 2 Numerically computed STEM PSFs for different defocus values.

Table 2 Parameter values used for numerical compu-
tations.

Notation Parameter Physical Value

Cs Spherical aberration 1.07 mm
E Electron energy 300 keV
λ Electron wavelength 1.9× 10−2 nm
qSh Scherzer aperture 5.3 nm
dSh Scherzer defocus -55.2 nm
α0 Semi angle 10.2 mrad
de Tolerable error 9.2 nm

−800 −600 −400 −200 0 200 400 600 800
6.45

6.5

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9
x 10

−15

Defocus

IQ
M

 

 

Numerical computations
Quadratic fitting

Fig. 3 IQM for STEM image of carbon cross grating
and aberration-based PSF is fitted with quadratic func-
tion.

X = [−10, 10] is discretized for N = 10000

data points. We consider Gaussian PSF stan-
dard deviation σ ∈ [−2; 2]. Totally 100 1-d im-

ages are computed numerically according to the

linear image formation model (3) for σ chang-

ing within the given interval. For every image

IQM is computed according to (32).

We consider a white additive noise in linear
image formation (3) with an amplitude ǫmax.

Totally four numerical computations are per-

formed for different values of pixel difference

parameter k and ǫmax. The values are summa-

rized in Table 1. The results of four computa-
tions are shown in Figure 1.

In the first computation IQM is estimated

via (16) as well. Figure 1(a) shows IQM com-

puted numerically and analytically. Numerical

and analytical values coincide with the least

squares difference of only 2.62×10−8. The noise

amplitude ǫmax = 0, and IQM has a perfect

quadratic shape.

In the second computation the noise ampli-
tude ǫmax = 0.001. The resulting IQM is shown

in Figure 1(b). As a consequence of the noise

presence in the images the IQM function be-

comes noisy as well (it has a lot of local minima
and maxima). A local optimum search method,

such as Fibbonachi search [10,28], Nelder-Mead

[17] or Powell interpolation-based trust-region

method [18], might have difficulties in finding

the global optimum of such a function. Also,
the IQM function changes its shape: It does

not look like quadratic, but like a Gaussian.

Increasing the value of k in the third computa-

tion reduces the noise amplitude in IQM. How-
ever, that Gaussian shape is still present. In the

last computation k is increased further, and the

IQM has a perfect quadratic shape.

4.2 Numerical computations for a microscopic

object image and an aberration-based PSF

In the second computation experimental in-focus

STEM image of carbon cross grating is used as

an object function. The carbon cross-grating
specimen is designed for microscope calibra-

tion. The example of carbon cross grating STEM

image is shown in Figure 4. The computed PSF

is based on the aberration model described in

Section 2. For the computation the realistic phys-
ical values listed in Table 2 are used. We con-

sider astigmatism-free situation Ca = 0. A few

numerically computed PSFs for different defo-

cus values are shown in Figure 2. The IQM is
computed for images obtained according to lin-

ear image formation model (5) for the noise-free

situation ǫ = 0. In order to speed up the com-

putations the convolution is carried out in the

Fourier space

F = F−1[F[F0]F[H ]]. (33)

In (33) F denotes fourier transform and F−1 de-

notes inverse fourier transform. Figure 3 shows
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(a) Defocus = -16 µm

(b) Defocus = -14 µm

(c) Defocus = -12 µm

(d) Defocus = -4 µm

(e) Defocus = 0 µm

Fig. 4 Images from experimental focus series obtained
at magnification 10000×.

(a) Defocus = -2.35 µm

(b) Defocus = -1.45 µm

(c) Defocus = -0.45 µm

(d) Defocus = -0.05 µm

Fig. 5 Images from experimental focus series obtained
at magnification 100000×.

computed IQM. IQM reaches its minimum at

the position of Scherzer defocus (13). The nu-
merically obtained IQM can be accurately fit-

ted with the quadratic function, though the ob-

ject function deviates from a Gaussian object

and the PSF deviates from a Gaussian PSF.
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Fig. 6 IQMs for experimental microscopic focus series fitted with quadratic curves.
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Fig. 7 IQMs for experimental microscopic focus series for pixel difference k = 2 and k = 20 fitted with quadratic
curves for.

4.3 Numerical computations for STEM

through-focus series

For numerical computations in this subsection

we use three experimental STEM focus series of
carbon cross-grating images. The first two se-

ries are obtained at the magnification of 10000×.

The series are recorded for two different defocus

intervals of [−5; 5] µm (fine focus series) and
[−20; 20] µm (course focus series). Each series

consists of 21 images. Some examples of these

images are shown in Figure 4.

The computed IQMs for the two series are

shown in Figure 6(a) and Figure 6(b). The pixel
difference parameter k = 1. The IQM of the fine

series is accurately fitted with a quadratic curve

(Figure 6(a)), while the IQM of the course se-

ries behaves differently than a quadratic curve
outside the interval of [−5; 5] µm (Figure 6(b)).

It has a Gaussian behavior similar to one ob-

served in numerical computations of Subsection

4.1 (Figure 1). Because the images are obtained

from a real-world machine they are definitely
effected by noise, which could be one of the

reasons for such a behavior. Further we com-

pute IQM for the course series with k = 10.

The result is shown in Figure 6(c). The shape

is closer to quadratic curve, but still single data

points have unstable behavior. This behavior

deals with the nature of the images in the series.
For instance, observing three images obtained

at −16,−14,−12 µm (Figure 4) we see that the

image at −14 µm has less details then images

at −16 and −12 µm, i.e. it looks less sharp. As
a consequence IQM has a local maximum at

−14 µm (Figure 6(c)). This phenomenon could

be explained by the fact that far away from

ideal defocus some other details of the specimen

(probably, from different specimen heights) be-
come visible. For example, the image at −16

µm has some details that the other images in

the figure do not have: We can observe small

spots in the crosses of the grids and some varia-
tions at the surface levels. This type of phenom-

ena can also deal with specimen, environment

or machine instabilities, such as instabilities of

electron beam.

Further the IQM is computed for experi-

mental cross-grating focus series obtained at

magnification 100000×. The images examples
are shown in Figure 5. According to (14) at the

higher magnifications the image quality is more

sensitive to the change of defocus parameter.

We can see that the image at only -2.35 µm
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defocus is totally out of focus. The IQMs for

different pixel difference parameter values are

shown in Figure 7. Behavior similar to one in

the previous computation takes place. We ob-

serve that increasing pixel difference parameter
k leads to quadratic shape of IQM.

5 Autofocus method

In Section 2, Lemma 3 we have shown that for

certain assumptions the derivative-base IQM

can be expressed as

R(σ) =
π

2
(2σ2 + σ2

s,x + σ2
s,y).

In general, the standard deviation σ of a PSF
can be expressed as a linear function of the ma-

chine defocus d. This means that the derivative-

base IQM can be parameterized as a quadratic

curve with three unknown parameters [ã, b̃, c̃]T

R(d) = ã(d − c̃)2 + b̃. (34)

The numerical computations of Section 4 show

that this observation might also hold for real-
world microscopic objects and PSFs different

from Gaussians. Assume, we have obtained three

microscopic images with defocus values d1, d2, d3.

The values of IQMs computed for the three im-

ages are R1, R2, R3 correspondingly. Parametriza-
tion (34) leads to attempt to estimate the ideal

defocus position d = c̃ from the three data

points







R1 = ã(d1 − c̃)2 + b̃

R2 = ã(d2 − c̃)2 + b̃

R3 = ã(d3 − c̃)2 + b̃

⇒

c̃ =
1

2

d2
2−d2

1

R2−R1
− d2

3−d2
2

R3−R2

d2−d1

R2−R1
− d3−d2

R3−R2

. (35)

The above observation leads to an algorithm

for a new autofocus method:

1. Choose ∆d ≫ de.
2. Compute

R1 := R(d1)

for the current microscope state d1 and for
two other microscope states d2 = d1−∆d <

d1 < d1 + ∆d = d3

3. We estimate a new point d = c̃ according to

(35).

4. For d4 = d we compute

R4 := R(d4).

We set n = 4.

5. We fit n given points with a curve of three

parameters (34). For this purpose the linear

regression can be used. For

R(d) = β0 + β1d + β2d
2

we consider





1 d1 d2
1

. . . . . . . . .

1 dn d2
n





︸ ︷︷ ︸

P





β0

β1

β2





︸ ︷︷ ︸

β

=





R1

. . .

Rn





︸ ︷︷ ︸

R

.

By means of projection

PTPβ = PT R

we obtain a linear system of three equations

with three unknowns, compute β and ob-
tain dn+1 = c̃n+1.

6. If |c̃n − c̃n+1| < de, stop. Elsewise Rn+1 =

R(c̃n+1) and go to the previous step.

The last three steps of the algorithm are op-
tional. They are required mainly if very accu-

rate focusing is needed. The main goal of this

paper is to try to estimate the in-focus image

position from three preliminary obtained im-
ages (steps 1-3). Experiments with the method

are presented in the following section.

6 Real-world application

The method is implemented in a prototype FEI

Tecnai F20 STEM. One example of an appli-
cation run is shown in Figure 8. The initial

position of the machine defocus is d1 = −3

µm, which corresponds to the left lower im-

age in Figure 8. The defocus step ∆d = 5 µm
is chosen. The two intermediate images with

d2 = d1 − ∆d = −8 µm and d3 = d1 + ∆d = 2

µm are obtained (upper raw of Figure 8). The

position of the in-focus image is computed from

the given three images with (35) and corre-
sponds to d4 = 0.3 µm, which is within the de-

focus error for the given machine settings. The

improvements of the image quality are visible

in Figure 8.
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Fig. 8 Image improvement by a test application implemented in a prototype FEI Tecnai F20 STEM.

7 Discussion and conclusions

This paper proposes IQM-based autofocus method

that requires recording of only at least three

images, while standard autofocus technique re-

quires recording of about 10-15 images. The
method is applied to a STEM reference case.

The method is based on a specific but general

enough assumption on the shape of IQM, so

that it can be used for other types of optical de-
vices. The work of the method depends on the

choice of input parameters, such as initial defo-

cus value d1, defocus shift ∆d and pixel differ-

ence k. Considering σx 6= σy and a parameter-

ized quadratic function in two-parameter space
the method could be extended for the purpose

of simultaneous autofocus and two-fold astig-

matism correction in electron microscopy.

Appendix - proofs of lemmas

Derivatives of a Gaussian function in 1-d

∂g(x, σ, µ) = − (x − µ)

σ2
g(x, σ, µ). (36)

and in 2-d

∂xG(x, σ, µ) = − (x − µx)

σ2
x

G(x, σ, µ),

∂yG(y, σ, µ) = − (y − µy)

σ2
y

G(y, σ, µ). (37)

The convolution of two Gaussian function is a

Gaussian again:

(g(x, σ1, µ1) ∗ g(x, σ2, µ2))(x) =

g(x,
√

σ2
1 + σ2

2 , µ1 + µ2). (38)

The integrals similar to a Gaussian integral are
∫

∞

0

x2ne−
x
2

a2 dx =
√

π
2n!

n!
(
a

2
)2n+1,

∫ ∞

0

x2n+1e−
x
2

a2 dx =
n!

2
a2n+2, n ∈ N. (39)

Lemma 1 In 1-d for a Gaussian object func-

tion

f0(x) = g(x, σs, µs)

and for a Gaussian PSF for p = σ

h(x, σ) = g(x, σ, 0)
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the IQM (15) is

r1(σ) =
π

2
(σ2 + σ2

s).

Proof According to linear image formation model
(3) and (38) we obtain

f = g(x,
√

σ2 + σ2
s , µs).

Then the absolute value of the image derivative
is

|∂xf | =
|x − µs|
σ2 + σ2

s

g(x,
√

σ2 + σ2
s , µs).

Further the L1−norm of the image derivative

is

s1(σ) =

∫ +∞

−∞

|∂xf |dx =

∫ +∞

−∞

|x − µs|
√

σ2 + σ2
s

g(x,
√

σ2 + σ2
s , µs)dx =

1√
2π(σ2 + σ2

s)
3
2

(−
∫ µs

−∞

(x − µs)e
−

(x−µs)2

2(σ2+σ2
s
) dx+

∫ +∞

µs

(x − µs)e
−

(x−µs)2

2(σ2+σ2
s
) dx).

Substitute x′ = (x−µs)
2

2(σ2+σ2
s
) ⇒ dx′ = (x−mu1)

σ2+σ2
s

dx,
then

s1(σ) =
1√

2π(σ2 + σ2
s)

3
2

(σ2 + σ2
s)×

(−
∫ 0

+∞

e−x′

dx′ +

∫ +∞

0

e−x′

dx′)

or

s1(σ) =

√
2

√

π(σ2 + σ2
s)

,

and as a consequence

r1(σ) :=
1

s2
1(σ)

=
π

2
(σ2 + σ2

s).

Lemma 2 In 1-d for a Gaussian object func-

tion

f0(x) = g(x, σs, µs)

and for a Gaussian PSF for p = σ

h(x, σ) = g(x, σ, 0)

the IQM (17) is

r2(σ) = 2(2π)
1
3 (σ2 + σ2

s).

Proof Analogically to Lemma 1

(∂xf)2 =
(x − µs)

2

(σ2 + σ2
s)2

g2(x,
√

σ2 + σ2
s , µs),

which leads to

s2(σ) :=

∫ +∞

−∞

(∂xf)2dx =

∫ +∞

−∞

(x − µs)
2

(σ2 + σ2
s)2

g2(x,
√

σ2 + σ2
s , µs)dx =

1

2π(σ2 + σ2
s)3

∫
∞

−∞

(x − µs)
2e

−
(x−µs)2

σ2+σ2
s dx =

1

π(σ2 + σ2
s)3

∫ ∞

0

x2e
−

x
2

σ2+σ2
s dx.

Then according to (39)

s2(σ) =
1

4
√

π(σ2 + σ2
s)

3
2

,

thus

r2(σ) :=
1

s
2/3
2 (p)

= 2(2π)
1
3 (σ2 + σ2

s).

Lemma 3 In 2-d for a Gaussian object func-

tion with σs := [σx,s, σy,s]
T and µs := [µx,s, µy,s]

T

F0(x) = G(x, σs, µs)

and for a Gaussian PSF for p = σ := [σx, σy ]T

H(x, σ) = G(x, σ, 0)

the derivative-based IQM (18) is

R1(σ) =
π

2
(σ2

x + σ2
y + σ2

s,x + σ2
s,y).

Proof According to the linear image formation
model

F (x, σ) =

∫∫

R2

G(x′, σ)G(x − x′, σ, µ)dx′ =

(

g(x, σx, 0) ∗ g(x, σs,x, µs,x)
)

(x)×
(

g(y, σy, 0) ∗ g(y, σs,y, µs,y)
)

(y) =

g(x,
√

σ2
x + σ2

s,x, µs,x)g(y,
√

σ2
y + σ2

s,y , µs,y).

Then the absolute values of 2-d image deriva-
tives

|∂xF | =
|x − µs,x|
σ2

x + σ2
s,x

g(x,
√

σ2
x + σ2

s,x, µs,x)×

g(y,
√

σ2
y + σ2

s,y, µs,y),
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|∂yF | =
|y − µs,y|
σ2

y + σ2
s,y

g(x,
√

σ2
x + σ2

s,x, µs,x)×

g(y,
√

σ2
y + σ2

s,y, µs,y),

and as a consequence from Lemma 1

Sx,1(σx, σy) = s(σx)

∫

R

g(y,
√

σ2
y + σ2

s,y, µs,y)dy

Sy,1(σx, σy) = s(σy)

∫

R

g(x,
√

σ2
x + σ2

s,x, µs,x)dx

or

Sx,1(σ) = s(σx) =

√
2

√

π(σ2
x + σ2

s,x)
,

Sy,1(σ) = s(σy) =

√
2

√

π(σ2
y + σ2

s,y)
,

then

R(σ) :=
1

S2
x,1(σ)

+
1

S2
y,1(σ)

=

=
π

2
(σ2

x + σ2
y + σ2

s,x + σ2
s,y).

Lemma 4 In 2-d for a Gaussian object func-

tion with σs := [σs,x, σs,y]T and µs := [µs,x, µs,y]T

F0(x) = G(x, σs, µs)

and for a Gaussian PSF for p = σ := [σx, σy]T

H(x, σ) = G(x, σ, 0)

the derivative-based image quality measure (22)

is

R2(σ) = 64π2(σx + σs,x)(σy + σs,y) ×
((σx + σs,x)2 + (σy + σs,y)2).

Proof Analogically to Lemma 3

(∂xF )2 =
(x − µs,x)2

(σ2
x + σ2

s,x)2
g2(x,

√

σ2
x + σ2

s,x, µs,x)×

g2(y,
√

σ2
y + σ2

s,y, µs,y),

(∂yF )2 =
(y − µs,y)

2

(σ2
y + σ2

s,y)2
g2(x,

√

σ2
x + σ2

s,x, µs,x)×

g2(y,
√

σ2
y + σ2

s,y, µs,y),

and as a consequence from Lemma 2

Sx,2(σx, σy) =

s2(σx)

∫

R

g2(y,
√

σ2
y + σ2

s,y, µs,y)dy =

1

4
√

π(σ2
x + σ2

s,x)(3/2)
· 1

2
√

π
√

σ2
y + σ2

s,y

,

Sy,2(σx, σy) =

s2(σy)

∫

R

g2(x,
√

σ2
x + σ2

s,x, µs,x)dx =

1

4
√

π(σ2
y + σ2

s,y)(3/2)
· 1

2
√

π
√

σ2
x + σ2

s,x

,

then

R(σ) =
1

S2
x,2

+
1

S2
y,2

=

64π2(σx + σs,x)(σy + σs,y)×
((σx + σs,x)2 + (σy + σs,y)2).
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