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Stokes-Dirichlet/Neuman Problems
and

Complex Analysis
J. de GRAAF

Abstract

On a bounded and simply connected open set G ⊂ R
2 ∼= C, with a sufficiently

smooth boundary ∂G, the following boundary value problem for a pair {ϕ, χ}
of analytic functions is studied:

ϕ , χ : G→ C , both analytic,[
zϕ′ ± ϕ+ χ′

]∣∣∣
∂G

= G ∈ L2(∂G),
(0.1)

Multiplication by i transforms the +version into the −version.
Necessary and sufficient conditions on G for solvability and also results on

the behaviour of the solution near ∂G are found.
The original motivation for this study is to provide a sound mathematical

link between 2D Stokes boundary value problems and 2D free boundary evolu-
tion equations of Hopper type, cf. [H], with ’arbitrary Hamiltonian’ , cf. [G].
During this, the interesting (and for the author unexpected) fact came up that
both the Dirichlet and the Neumann Problem for the 2D-Stokes equations can
be reduced to the problem (0.1). Full details of all this are in the underlying
note. A brief overview now follows.

On G ⊂ R
2 ∼= C, the stationary behaviour of a pressure-velocity flow pair

{p, v}, where p : G → R and v : G → R
2, can often be modelled by Stokes’

equations{ ∇ · T = 0

∇ · v = 0
, with stress matrix T = −p I +

[dv

dx

]
+
[dv

dx

]>
. (0.2)

Only Cartesian coordinates will be employed!
It is classical folklore, scattered in the litterature, that there exists a

bi-harmonic potential pair ψ, φ : G → R , (the stream function and Airy func-
tion, respectively), such that, cf. (1.3),

v = ∇× (ψ e3), , T = 2
[
(D2φ)− (∆φ)I

]
. (0.3)

Consistency in T requires that φ and ψ are related: For z = x + iy ∈ G one
necessarily has, cf. Appendix B,

φ(x) + iψ(x) = zϕ(z) + χ(z) , with analytic ϕ, χ : G→ C . (0.4)



Also this is classical folklore. For a strongly related approach in the field of
’elasticity’ cf. [E] and [M] Ch 4. In the Appendices to this note full details
are presented on ψ, φ, ϕ, χ and on the kinematic expressions derived from them.
For a full set of the latter see (1.5).

By means of the analytic potentials ϕ, χ we investigate boundary value
problems for Stokes’ equations with respective boundary conditions:

Stokes-Dirichlet: v
∣∣∣
∂G
∈ L2(∂G) , Stokes-Neumann: T n

∣∣∣
∂G
∈ H−1(∂G) .

(0.5)
As it turns out both problems can be reduced to (0.1). By means of a conformal
mapping the problem (0.1) is then transformed to an integral operator equation
on the unit circle.

Contents

1. Generalities on Stokes’ Equations in R
2: Gives an overview of solutions

of Stokes’ equations in terms of potentials. Without taking boundary
conditions into consideration.

2. Boundary Value Problems and their Uniqueness : Formulation of the
Dirichlet and Neumann problem for Stokes’ equations. The consistency
of the boundary conditions get a physical interpretation. Reformulation
as (0.1), together with uniqueness conditions.

3. A Basic Existence Result: By means of a conformal mapping (0.1) is trans-
formed to a problem on the unit disk. The previous uniqueness result
together wit a version of the ’Fredholm Alternative’ leads to unique solv-
ability. Some properties of the solution near the boundary are studied.

4. Results on Stokes Boundary Value Problems: The obtained results are
transformed back from the unit disk to the original domain. A special
class of solutions related to [H],[G] is introduced. Finally, some ’non-
physical’ boundary value problems are considered.

A. APPENDIX. Complex Analysis revisited: Contains all results on analytic
functions formulated in the way we need them.

B. APPENDIX. Details on Stokes’ equations: Contains full proofs of all re-
sults with potentials as presented in section 1.
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1 Generalities on Stokes’ Equations in R
2

On a bounded simply connected open domain G ⊂ R 2, 0 ∈ G , we consider the set of Stokes
equations

∂2v1

∂x2
+
∂2v1

∂y2
− ∂ p

∂x
= 0

∂2v2

∂x2
+
∂2v2

∂y2
− ∂ p

∂y
= 0

∂ v1

∂x
+
∂ v2

∂y
= 0

(1.1)

Alternative formulations are{
∆v −∇p = 0

∇ · v = 0

{ ∇ · T = 0

∇ · v = 0

{
∂iTij = 0

∂ivi = 0
, (1.2)

with
T = −p I +

[dv

dx

]
+
[dv

dx

]> and Tij = −p δij + ∂jvi + ∂ivj .

The boundary ∂G of G is supposed to admit a positively oriented arclength parametriza-
tion s 7→ x(s), 0 ≤ s < L with bounded (generalized) derivative s 7→ ẋ(s). Besides the
unit tangent vector s 7→ t(x(s)) = ẋ(s) = kol[ẋ(s), ẏ(s)] we also need the outside normal
s 7→ n(x(s)) = kol[ ẏ(s),−ẋ(s)].

The next theorem contains some classical results regarding the general solution of Stokes’
equations without regarding boundary conditions.

Theorem 1.1 (Classical results)
• If x 7→ p(x), v(x) solves (1.1), (1.2) on G, then there exist a ’stream function’ x 7→ ψ(x)
and an ’Airy function’ x 7→ φ(x) on G, with ∆∆φ = 0, ∆∆ψ = 0, such that

v =

[
∂yψ
−∂xψ

]
, p = ∆φ , T = 2

[
−∂y∂yφ ∂x∂yφ

∂x∂yφ −∂x∂xφ

]
, (1.3)

and the function z = x+ iy 7→ ∆φ(x) + i∆ψ(x) being analytic.
Here ψ is unique up to a constant and φ is unique up to a polynomial of 1st degree.
• The pair of biharmonic functions φ , ψ cannot be chosen arbitrarily. There has to exist
a pair of analytic functions z 7→ ϕ(z) , χ(z) on G, such that

φ(x) + iψ(x) = zϕ(z) + χ(z) , z = x+ iy ∈ G , (1.4)

• All solutions of Stokes’ equations have such holomorphic representation.
• Let s 7→ z(s) ∈ G be a curve with arclength parametrization s. Differentiation along

such a curve is denoted
d

ds
. We write

dz

ds
= ż. The ordered pair {n , ẋ} = {− iż , ż} is

3



meant to be a positively oriented orthonormal system in R 2. We have

v1 + iv2 = −ϕ+ zϕ′ + χ′ p = −1
2

(
T11 + T22

)
= 4 Reϕ′

v · n =
d

ds
Im (zϕ+ χ) rot v = ∂xv2 − ∂yv1 = −4 Imϕ′

v · ẋ =
d

ds
Re (zϕ+ χ)− 2 Re (ϕż) T22 − T11 + 2 iT12 = −4(zϕ′′ + χ′′)

T · n = 2 i
d

ds
(ϕ+ zϕ′ + χ′) T · ẋ = 2

d

ds
{zϕ′ + χ′ − 4 Reϕ}

(1.5)

• If the pair {ϕ , χ} is replaced by the pair {ϕ+α , χ+αz+ β}, with α , β ∈ C, the same
solution is represented.
The holomorphic representation of a solution by {ϕ , χ} is unique if one additionally re-
quires that for some fixed a ∈ G one has ϕ(a) = χ(a) = 0. We usually take a = 0
• In this way the ’Euclidean motion’ solution

p(x) = E , v(x) = A

[
1
0

]
+B

[
0
1

]
+ C

[
−y
x

]
, A ,B ,C ,E ∈ R . (1.6)

has the unique holomorphic representation

ϕ(z) =
1

4
(E − 2 iC)z χ(z) = (A− iB)z . (1.7)

Proof For a detailed mathematical proof of those classical results + some addenda see
Appendix B. �

2 Boundary Value Problems and their Uniqueness
The Stokes-Dirichlet problem is formulated as follows

∆v −∇p = 0 , x ∈ G
∇ · v(x) = 0 , x ∈ G
v(x) = g(x) , x ∈ ∂G
p(0) = B , B ∈ R .

. (2.1)

On the prescribed boundary velocity field s 7→ g(x(s)) = V1(s)n(x(s)) + V2(s)t(x(s)) ∈ R 2

we put

Condition on g : •
∫ L

0

V1(s) ds = 0 (2.2)

This condition is necessary in order to be consistent with ∇ · v(x) = 0, x ∈ G.
Keep in mind that V1 , V2 are not the cartesian components of g.

4



Theorem 2.1 (Uniqueness of the Stokes-Dirichlet problem)
Consider the Stokes-Dirichlet problem (2.1). Suppose 0 ∈ G.
• If g = 0, B = 0, then v(x) = 0, p(x) = 0, x ∈ G.
• For given g ∈ L2(∂G;R 2), B ∈ R there is at most one solution pair {v, p} with (unique)
holomorphic representation {ϕ, χ}, if one, in addition to ϕ(0) = χ(0) = 0, requires.

Reϕ′(0) =
1

4
B ∈ R . (2.3)

Proof
• On ∂G we suppose

v =

[
∂yψ
−∂xψ

]
=

[
0
0

]
.

So we have to investigate the set of solutions of

∆∆ψ(x) = 0 , x ∈ G, ∇ψ(x) = 0, x ∈ ∂G.

It follows that
∂

∂n
ψ =

∂

∂t
ψ = 0 at ∂G. So ψ = C ∈ R is constant at ∂G. We take ψ = 0

at ∂G.
With Green II

0 =

∫
G

ψ(x)∆∆ψ(x) dx =

∫
∂G

ψ
∂

∂n
∆ψ ds−

∫
∂G

(
∂

∂n
ψ)∆ψ ds+

∫
G

|∆ψ|2 dx =

= C

∫
G

∆∆ψ dx+

∫
G

|∆ψ|2 dx .

it now follows that ∆ψ = 0. Hence, the stream function ψ = C. So the velocity v = 0. The
’consistency conditions’ (B.2) tell us that the Airy function φ has to satisfy ∂x∂yφ = 0 and
∂x∂xφ − ∂y∂yφ = 0. Therefore it has the form φ(x) = 1

2
Bx>x + b>x + c. So the pressure

p = ∆φ can only be a constant. The condition p(0) = 0 forces this constant to be 0.
• If there are 2 solutions they differ by the zero solution just found. �

Now we come to the Stokes-Neumann problem, which is formulated as follows
∇ · T (x) = 0 , x ∈ G
∇ · v(x) = 0 , x ∈ G
T (x) · n(x) = f(x) , x ∈ ∂G

. (2.4)

On the prescribed boundary stress field x 7→ f(x) ∈ R 2 we put

Conditions on f :
• f(x(s)) =

d

ds
{K1(s)n(x(s)) +K2(s)t(x(s))} ,

•
∫
∂G
K1(s) ds = 0 ,

(2.5)
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These nicely correspond to equilibrium of forces and momenta, respectively,∫
∂G

f(x(s)) ds = 0 ,

∫
∂G

x(s)× f(x(s)) ds = 0.

Indeed, if we denote the force at x(s) ∈ ∂G by α(s)n(x(s)) + β(s)t(x(s)), the condition of
equilibrium of forces says

∫
∂G
αn+ βt ds = 0. Therefore we can write

α(s)n(x(s)) + β(s)t(x(s)) =
d

ds
{K1(s)n(x(s)) +K2(s)t(x(s))}.

Further, the condition of equilibrium of momenta says
∫
∂G
x× d

ds
{K1n+K2t} ds = 0.

This means

0 =

∫
∂G

d

ds
{x× (K1n+K2t)} ds =

∫
∂G

t× {K1n+K2t} ds.

Which says e3

∫
∂G
K1 ds = 0. 1

To (2.5) we could add the optional condition

•
∫
∂G

{K1(s)n(s) +K2(s)t(s)} ds = 0 , (2.6)

because adding a constant vectorfield to K1n + K2t does not alter f . We don’t. For
subtleties regarding this possibility, see the end of this section.
Example: The special choice K1 = 0 , K2 = κ = constant, models surface tension at the
boundary. Then f = −κn. Keep in mind that n is the outside normal!

Theorem 2.2 (Uniqueness of the Stokes-Neumann problem)
Consider the Stokes-Neumann problem (2.4). Suppose 0 ∈ G.
• If f = 0 , the set of solutions is given by the Euclidean motions (1.6) with p = E = 0.
• For any given f ∈ L2(∂G;R 2) and any given v(0) = v0 ∈ R 2, there is at most one solution
with (unique) holomorphic representation {ϕ , χ} if one, in addition to ϕ(0) = χ(0) = 0,
requires

Imϕ′(0) = µ ∈ R , χ′(0) = v0 ∈ C. (2.7)

Proof
• On ∂G we suppose

T · n = −2
d

ds

[
∂yφ
−∂xφ

]
=

[
0
0

]
.

So we have to investigate the set of solutions of

∆∆φ(x) = 0 , x ∈ G, ∇φ(x) = a = constant, x ∈ ∂G.
1JdG thanks Dr. A.A.F. van de Ven for clearing up this point
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Consider φ̃(x) = φ(x)− a>x, which satisfies

∆∆φ̃(x) = 0 , x ∈ G, ∇φ̃(x) = 0, x ∈ ∂G.

This implies
d

ds
φ̃(x(s)) = 0 , at x(s) ∈ ∂G. Hence φ̃(x) = α = constant , at x(s) ∈ ∂G.

Introduce φ̂(x) = φ(x)− a>x− α, which satisfies

∆∆φ̂(x) = 0 , x ∈ G, ∂

∂n
φ̂(x) = 0, φ̂(x) = 0, x ∈ ∂G.

From 0 =
∫
G
φ̂(x)∆∆φ̂(x) dx and Green II it now follows that φ̂ = 0 and therefore the Airy

function is of the form φ(x) = a>x+α. The ’consistency conditions’ (B.2) tell us that the
stream function ψ has to satisfy ∂x∂yψ = 0 and ∂x∂xψ − ∂y∂yψ = 0. Therefore it has the
form ψ(x) = 1

2
Cx>x+ b>x+ c.

As a consequence the homogeneous Stokes-Neumann problem is solved by all Euclidean
motion solutions (1.6), represented by (1.7) with E = 0.
• If there are 2 solutions they differ by a solution represented by (2.7) which is reduced
to 0 because of Imϕ′(0) = 0 , χ′(0) = 0. �

Lemma 2.3
Let ϕ, χ : G→ C be analytic with ϕ(0) = χ(0) = 0.
Suppose that z 7→ ϕ(z) and z 7→ zϕ′(z) +χ′(z) both extend to a continuous function on G.
• If Reϕ′(0) = 0 and for all s

z(s)ϕ′(z(s))− ϕ(z(s)) + χ′(z(s)) = C, z(s) ∈ ∂G , (2.8)

with C ∈ C a constant.
Then ϕ(z) = 0, identically on G and χ(z) = Cz.
• If Imϕ′(0) = 0 and for all s

z(s)ϕ′(z(s)) + ϕ(z(s)) + χ′(z(s)) = D, z(s) ∈ ∂G , (2.9)

with D ∈ C a constant.
Then ϕ(z) = 0, identically on G, and χ(z) = Dz.

Proof
• First suppose C=0 and consider the pair {ϕ, χ} as a holomorphic representation of
the solution of Stokes’ equations. Then, according to Theorem 2.1, v1 + iv2 and p vanish

identically on G. Therefore zϕ′ − ϕ + χ′ = 0, identically on G. Taking the derivative
∂

∂z
leads to Imϕ′ = 0 on G. So ϕ(z) = Az, with A ∈ R . Because Reϕ′(0) = 0 we necessarily
have A = 0. Then from (2.8) also χ′ has to be 0. Hence χ is constant. With the condition
χ(0) = 0 it follows that χ = 0 on G.
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Finally, if C 6= 0, the only solution pair can be ϕ(z) = 0, χ(z) = Cz on G.
• Two proofs are presented.
First take C = iD in (2.8) and multiply both sides by − i. We get back (2.9), with ϕ, χ
replaced by iϕ, iχ. Now the first result can be applied.
For the second proof consider the pair {ϕ, χ} as a holomorphic representation of the
solution of Stokes’ equations. We find at ∂G

T n(s) = 2 i
d

ds

(
z(s)ϕ′(z(s)) + ϕ(z(s)) + χ′(z(s))

)
= 2 i

d

ds
D = 0.

According to the uniqueness result in Theorem (2.2) we necessarily have ϕ(z) = − i

2
Cz, χ(z) =

(A − iB)z, A,B,C ∈ R . Then Imϕ′(0) = 0 implies C = 0. Finally, with (2.9),
A− iB = E. �

Concluding this section we look at the Stokes-Neumann problem in terms of ϕ, χ.
So we want to find analytic ϕ, χ : G → C, such that at the boundary ∂G

T n(s) = 2 i
d

ds

(
z(s)ϕ′(z(s)) + ϕ(z(s)) + χ′(z(s))

)
= − i

d

ds
{K(s)ż(s)}. (2.10)

Here K(s) = K1(s) + iK2(s), cf. (2.5).
Note that (2.10) does not alter if ϕ is replaced by ϕ− i

2
Cz+C1 and χ by χ+(A− iB)z+C2,

with constants A,B,C ∈ R and C1, C2 ∈ C.
Now in identity (2.10) we ’cancel’ the i

d

ds
and with Lemma 2.10 we acquire uniqueness

for the system z(s)ϕ′(z(s)) + ϕ(z(s)) + χ′(z(s)) = −1

2
K(s)ż(s), z(s) ∈ ∂G,

ϕ(0) = χ(0) = 0, Imϕ′(0) = 0.
(2.11)

There is a subtlety here! 2 If we add a constant E ∈ C to the right hand side in (2.11)
the (unique if it exists) solution χ(z) becomes χ(z) + Ez, a uniform rectilinear motion is
added to the solution of Stokes’ equations. It we kept to the ’optional’ condition (2.6),
it would forbid adding such E and leads us into consistency troubles. A requirement
of type χ′(a) = 0 at a suitable point a ∈ G could possibly ’save’ the optional condition.
At this point however we are quite content with the achieved uniqueness for problem (2.11).

2This sublety arose and was cleared up in a ’discussion on the constants’ with Nasrin Arab.
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3 A Basic Existence Result
On a simply connected open domain G, 0 ∈ G with ’sufficiently smooth’ boundary ∂G and
prescribed F = F1+ iF2 : ∂G→ C we want to show the existence of analytic ϕ, χ : G→ C{

z(s)ϕ′(z(s)) + ϕ(z(s)) + χ′(z(s)) = F (s)ż(s), z(s) ∈ ∂G,
ϕ(0) = χ(0) = 0, Imϕ′(0) = 0.

(3.1)

In this equation, instead of +ϕ(z(s)) also −ϕ(z(s)) can be taken. As we have seen, this is
just a matter of redefining the unknown functions by a factor i. We keep to the +sign in
this section.
Multiply both sides of (3.1) by ż, then

d

ds

(
z(s)ϕ(z(s)) + χ(z(s))

)
+ 2 i Im {(ϕ(z(s))ż(s)} = F (s). (3.2)

Integration along ∂G of the real part of this identity leads to the necessary condition∫
∂G
F1(s) ds = 0, for solvability. This nicely corresponds to the conditions (2.5), casu quo

(2.2).

At this point the unique conformal bijection

Ω : D → G, ζ 7→ Ω(ζ), Ω(0) = 0, Ω′(0) > 0, (3.3)

is introduced from the open unit disk D in the ζ−plane into the complex z = x+ iy−plane.
Note that, if ∂G happens to be a Jordan curve with a Hölder continuous derivative, then
Ω extends to a bijective C 1;α-map Ω : D → G, cf. [P] Thm 3.6, p49.
Corresponding to the usual parametrisation θ → e iθ, 0 ≤ θ < 2π of ∂D = S

1 we define
θ 7→ s(θ) by z(s(θ)) = Ω(e iθ).
Finally the new unknown functions

Φ(ζ) = ϕ(Ω(ζ)), X (ζ) = χ(Ω(ζ)), (3.4)

are introduced. Then, with

∂θ Φ(e iθ) = Φ′(e iθ) ie iθ = ϕ′(Ω(e iθ))∂θΩ(e iθ) = ϕ′(Ω(e iθ))Ω′(e iθ) ie iθ,

(3.1) can be rewritten, along ∂D, as{
Ω(ζ)(∂θΦ(ζ) + (∂θΩ(ζ)Φ(ζ) + ∂θX (ζ) =

∣∣∂θΩ(ζ)
∣∣F (s(θ)) , ζ = e iθ,

Φ(0) = X (0) = 0, Im Φ′(0) = 0.
(3.5)

The first line can be rewritten

∂θ
[

Ω(ζ)Φ(ζ) + X (ζ)
]

+ 2 i Im
[

(∂θΩ(ζ))Φ(ζ)
]

=
∣∣∂θΩ(ζ)

∣∣F (s(θ)) , ζ = e iθ. (3.6)

Integration of the real part of this identity leads once more to the necessary condition∫ 2π

0
F1(s(θ))

ds(θ)

dθ
dθ = 0, for solvability.

We start the investigation of (3.5) with a Lemma

9



Lemma 3.1
Let f : D→ C be analytic with f(0) = 0.
Split in real and imaginary parts f(ζ) = f1(ζ) + if2(ζ).
We have
1. θ 7→ f1(e iθ) ∈ L2

(
S

1;R
)

if and only if θ 7→ f2(e iθ) ∈ L2

(
S

1;R
)
.

2. The mapping J : L2

(
S

1;R ;{1}⊥
)
→ L2

(
S

1;R ;{1}⊥
)
, f1 7→ Jf1 = f2 , is orthogonal

and JJ? = −J = J−1 , J2 = −I , J cosnθ = sinnθ , J sinnθ = − cosnθ, n ∈ IN.
3. The operator J is represented by the principal value integral

Jf1(θ) = f2(θ) =
1

2π
−
∫ π

−π
cot
(1

2
(θ − θ1)

)
f1(θ1) dθ1. (3.7)

4. ∂θJ = J∂θ, ∂θf1(e iθ) + i∂θf2(e iθ) = i(ζ∂ζf)(e iθ).
5. Product formula for f, g : D→ C, both C-analytic

J(f1g1) = J
(
(Jf1)(Jg1)

)
+ (Jf1)g1 + f1(Jg1).

Proof See Appendix A sub 11. �

We now come to the main theorem of this section

Theorem 3.2 (Basic Existence Result)
Let F1 , F2 : ∂G→ R be given.
Suppose the conformal mapping Ω : D→ G ⊂ C to be such that

a. θ 7→
∣∣∂θΩ(e iθ)

∣∣F1(s(θ)) ∈ L2

(
S

1;R ;{1}⊥
)
.

b. θ 7→
∣∣∂θΩ(e iθ)

∣∣F2(s(θ)) ∈ L2

(
S

1;R
)
.

c. θ 7→
∣∣∂θΩ(e iθ)

∣∣ and θ 7→
∣∣∂θΩ(e iθ)

∣∣−1 are bounded on S1.

d. θ 7→
∣∣∂θ∂θΩ(e iθ)

∣∣ is bounded on S1.

Then there exist unique Φ,X : ∂D→ C, with properties

• θ 7→ Φ(e iθ) ∈ L2(S;C), θ 7→ X (e iθ) ∈ L2(S;C) ,

• Φ , X extend to Φ , X : D→ C , which are analytic on D .
(3.8)

and which satisfy{
Ω(ζ)(∂θΦ(ζ) + (∂θΩ(ζ)Φ(ζ) + ∂θX (ζ) =

∣∣∂θΩ(ζ)
∣∣F (s(θ)) , ζ = e iθ,

Φ(0) = X (0) = 0, Im Φ′(0) = 0.
(3.9)

If, instead of condition d., we require the Hölder condition
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e. θ 7→ Ω(e iθ) ∈ C 1;α
(
S

1
)
, for some 0 < α < 1,

the theorem holds as well.

Proof We proceed in 6 steps.
I. Split (3.5), (3.6) in real and imaginary parts at ∂G{

∂θ Re
[

Ω Φ
]

+ ∂θX1 = |Ω′|F1

−∂θ Im
[

Ω Φ
]

+ 2 Im
[

(∂θΩ) Φ
]
− ∂θX2 = |Ω′|F2

(3.10)

By the way, note that the pair X = 0, Φ = − iΩ satisfies this set of equations if F1 = F2 = 0.
However it does NOT satisfy our condition Im Φ′(0) = 0.
We now eliminate X2 by applying J to the 1st line and add it to the 2nd.{

∂θ Re
[

Ω Φ
]

+ ∂θX1 = |Ω′|F1

∂θ
{
J Re

[
Ω Φ

]
− Im

[
Ω Φ

]}
+ 2 Im

[
(∂θΩ) Φ

]
=

{
J
(
|Ω′|F1

)
+ |Ω′|F2

} (3.11)

From now on the factors Ω1, Ω2, ∂θΩ1 =
·
Ω1, ∂θΩ2 =

·
Ω2, are to be considered as multipli-

cation operators. Because of the analyticic extendibility requirement we put, cf. Lemma
3.1, Φ = Φ1 + iJΦ1, etc. Thus the 2nd equation becomes an operator equation for Φ1 only.
Using the product formula of Lemma 3.1, which gives us

J
(
(JΩ1)(JΦ1)

)
= J(Ω1Φ1)− (JΩ1)Φ1 − Ω1(JΦ1), (3.12)

combined with the 2nd line of (3.11), we find the operator equation

∂θ

([
JΩ1 − Ω1J

]
Φ1

)
+
[ ·
Ω1J−

·
Ω2

]
Φ1 =

1

2

[
J
(
|Ω′|F1

)
+ |Ω′|F2

]
. (3.13)

So we have to study the operators on the left hand side of (3.13).
II. First notice that the operator

L : L2

(
S

1;R ;{1, sin θ}⊥
)
→ L2

(
S

1;R
)

: Φ1 7→ LΦ1 =
[ ·
Ω1J−

·
Ω2

]
Φ1 ,

is a bijection. Indeed, on S1 investigate[ ·
Ω1J−

·
Ω2

]
Φ1 = Im {Ω̇Φ} = Re {− iΩ̇Φ} = R ∈ L2(S1).

Divide by |
·
Ω|2, then on S1,

Re
Φ

i
·
Ω

=
R

|
·
Ω|2

= S(θ) + S(θ),

where S is uniquely written as the complex Fourier expansion (of a R -valued function)

S(θ) =
∞∑
`=0

s` e
i`θ , with s` ∈ C , s0 ∈ R .

11



After analytic extension into D we write

−Re
Φ(ζ)

ζΩ′(ζ)
= S(ζ) + S†(ζ) , for ζ = e iθ,

from which Φ(ζ) = −2ζΩ′(ζ)S(ζ) + iαζΩ′(ζ) for |ζ| < 1 and α ∈ R , follows.
Since Φ′(0) ∈ R is required, only α = 0 is acceptible. The L2-properties follow from the
(supposed) boundedness of Ω′ and ( Ω′ )−1 on S1.

III. Together with (3.7) the operator

K : L2

(
S

1;R ;{1, sin θ}⊥
)
→ L2

(
S

1;R
)

: Φ1 7→ KΦ1 = ∂θ

([
JΩ1 − Ω1J

]
Φ1

)
,

can be written, with some trigonometry,

KΦ1(θ) = − 1

2π
∂θ

∫ π

−π
cot
(θ − θ1

2

){
Ω1(e iθ)− Ω1(e iθ1)

}
Φ1(θ1) dθ1 =

=
1

2π

∫ π

−π

sin(θ − θ1)

1− cos(θ − θ1)

[Ω1(e iθ)− Ω1(e iθ1)

sin(θ − θ1)
− ∂θΩ1(e iθ)

]
Φ1(θ1) dθ1 (3.14)

Then condition d., together with L’Hôpital’s rule, imply that K is Hilbert-Schmidt.
If there were Φ1 ∈ L2

(
S

1;R ;{1, sin θ}⊥
)
, Φ1 6= 0 , with (K + L)Φ1 = 0, we could introduce

X1 = −Re
[

Ω Φ
]

+ γ, with constant γ = Re
∫ π
−π

[
Ω(e iθ) Φ(e iθ)

]
dθ. Note that such Φ1 is

necessarily continuous !!
The nonzero pair {Φ1 + iJΦ1, X1 + iJX1 } then leads to a non-zero solution pair {ϕ, χ} of
(2.11), with K = 0 , which contradicts the uniqueness result of Lemma 2.3 . So K + L is
injective.
Since K + L is a compact perturbation of the bijection L, which has index 0, the problem
(K + L)Φ1 = R is uniquely solvable for any R ∈ L2

(
S

1;R
)
. For the ’index theory’ see, e.g.,

[GGK].

IV. Substitute the found Φ1 with JΦ1 in the first equation of (3.11). Its righthand side
−1

2
|∂θΩ|K1 can be written as a derivative. With the requirement X (0) = 0, it leads to a

unique X .

V. Split the operator K = Kε + Kπ−ε , 0 < ε < π. On the square [−π, π] × [−π, π], and
inside the strip |θ − θ1| < ε, the kernel of Kε takes the values of the kernel of K. Outside
this strip it is taken to be 0. So

KεΦ1(θ) =
1

2π

∫ min{π,θ+ε}

max{−π,θ−ε}
K(θ , θ1) Φ1(θ1) dθ1 ,

with K the kernel of (3.14).
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Note that the ’remains’ Kπ−ε is Hilbert-Schmidt.
We now show that for some C > 0 we have ‖Kε‖ ≤ Cεmin{α 1

2
}.

The Mean Value Theorem applied to

x 7→ Ω1(e ix) +
Ω1(e iθ1)− Ω1(e iθ)

sin(θ − θ1)
sin(x− θ1), on interval [θ1, θ] or [θ, θ1],

provides us with

Ω1(e iθ)− Ω1(e iθ1)

sin(θ − θ1)
=

∂θΩ1(e iξ)

cos(ξ − θ1)
, for some ξ in between θ , θ1 .

We now split Kε in a ’bounded kernel part’ and a ’singular kernel part’

Kε = Kε,B + Kε,S.

For some ξ in between θ , θ1,

Kε,BΦ1(θ) =

∫ min{π,θ+ε}

max{−π,θ−ε}

sin(θ − θ1)

1− cos(θ − θ1)

1− cos(ξ − θ1)

cos(ξ − θ1)
∂θΩ1(e iξ) Φ1(θ1) dθ1 .

and

Kε,SΦ1(θ) =

∫ min{π,θ+ε}

max{−π,θ−ε}

sin(θ − θ1)

1− cos(θ − θ1)

[
∂θΩ1(e iξ)− ∂θΩ1(e iθ)

]
Φ1(θ1) dθ1 .

Since the kernel of Kε,B is bounded we find ‖Kε,B‖ < C1

√
ε, for some C1 > 0.

Next, by means of the required Hölder condition the kernel of Kε,S is estimated

| sin(θ − θ1)|
1− cos(θ − θ1)

∣∣∣∂θΩ1(e iξ)− ∂θΩ1(e iθ)
∣∣∣ ≤ C2

|ξ − θ|α

|θ1 − θ|
≤ C2|θ1 − θ|α−1,

on [−π, π]. It now follows

|Kε,SΦ1(θ)|2 ≤ C3

∫ min{π,θ+ε}

max{−π,θ−ε}
|θ − θ2|α−1dθ2 ·

∫ min{π,θ+ε}

max{−π,θ−ε}
|θ − θ1|α−1|Φ1(θ1)|2dθ1 .

The first integral is is a function of θ bounded by ≤ 2
α
εα.

Finally, after a change of variables,∫ π

−π
|Kε,SΦ1(θ)|2 dθ ≤ C3(

2

α
εα)2

∫ π

−π
|Φ1(θ)|2 dθ ,

which says

‖Kε,S‖ ≤
√
C3

2

α
εα .
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VI. (3.13) can now be written

Kπ−εΦ1 +
(
Kε + L

)
Φ1 =

1

2

[
J
(
|Ω′|F1

)
+ |Ω′|F2

]
. (3.15)

For ε sufficiently small the second operator is still a bijection. The operator K + L is a
compact perturbation of this bijection. Therefore the argument of III. applies again. �

Notation
• For given Θ : D→ C we introduce the restriction to a circle

Θ
∣∣∣
r

: ∂D→ C : θ 7→ Θ(re iθ) , 0 < r ≤ 1.

• For g ∈ L2(S;C) the (complex) Fourier expansion g(θ) =
∑∞

`=−∞ g`e
i`θ is split in a

positive and negative part, respectively,

g+(θ) =
∞∑
`=1

g`e
i`θ and g−(θ) =

∞∑
k=0

g−ke
− ikθ.

The previous Theorem implies Φ
∣∣∣
r
→ Φ

∣∣∣
1
, X

∣∣∣
r
→ X

∣∣∣
1
in L2(S;C) as r ↑ 1.

It follows, since θ 7→ Ω(e iθ) is supposed to be continuously differentiable,

•
[
ΩΦ + X

]∣∣∣
r
−→

[
ΩΦ + X

]∣∣∣
1
, in L2(S;C), as r ↑ 1,

• ∂θ
[
ΩΦ + X

]∣∣∣
r
−→ ∂θ

[
ΩΦ + X

]∣∣∣
1
, in H

−1(S;C), as r ↑ 1,
(3.16)

However, since ∂θ
[

ΩΦ + X
]∣∣∣

1
∈ L2(S;C) , cf. (3.10), we expect the latter convergence

also to be in L2(S;C). There is a simple proof for this if we assume some extra smoothness
on Ω.

Theorem 3.3 (Behaviour near the Boundary 1)

a. Assume that the sequence of Fourier coefficients {n 7→ 2nΩn} ∈ `1(IN) , then the
solution Φ,X of Theorem 3.2 enjoys the properties

∂θ
[
ΩΦ + X

]∣∣∣
r
−→ ∂θ

[
ΩΦ + X

]∣∣∣
1
, in L2(S;C), as r ↑ 1, (3.17)

∂θ
[
ΩΦ
]−∣∣∣

r
−→ ∂θ

[
ΩΦ
]−∣∣∣

1
, in L2(S;C), as r ↑ 1. (3.18)

b. Condition a. is satisfied if {θ 7→ Ω(e iθ)} ∈ H 3
2

+α(S;C) ∩ C 1;α
(
S

1
)
, with α > 0 .

E.g. if {θ 7→ Ω(e iθ)} ∈ C 2
(
S

1
)
.
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Proof
• The Fourier expansion of − i∂θ

[
ΩΦ + X

]∣∣∣
r

0 < r ≤ 1 , reads

− i∂θ

[( ∞∑
n=1

rnΩn e− inθ
)( ∞∑

m=1

rmΦm e imθ
)

+
( ∞∑
k=1

rkXk e ikθ
) ]

=

=
∞∑
k=1

k
{
rkXk+

∑
m−n=k, n≥1,m≥1

rn+mΩnΦm

}
e ikθ−

∞∑
`=0

`
{ ∑
n−m=`, n≥1,m≥1

rn+mΩnΦm

}
e− i`θ =

=
∞∑
k=1

k
{
rkXk +

∞∑
n=1

r2n+k ΩnΦn+k

}
e ikθ −

∞∑
`=0

`
{ ∞∑
m=1

r2m+` Ωm+`Φm

}
e− i`θ .

From the previous we know that, for r = 1, the coefficient sequences k{·} and `{·} are
both in `2(IN). Because of analyticity this is also true for 0 < r < 1. We have to show that
no ’discontinuity’ occurs at r = 1.
The positive and negative parts of the coefficient sequences of

− i∂θ

{ [
ΩΦ + X

]∣∣∣
1
−
[
ΩΦ + X

]∣∣∣
r

}
are, respectively,

k 7→ k
{

(1− rk)Xk +
∞∑
n=1

(1− r2n+k)ΩnΦn+k

}
, ` 7→ − `

{ ∞∑
m=1

(1− r2m+`)Ωm+`Φm

}
.

We have to show that both tend to 0 in `2(IN), as r ↑ 1.
We use the identity

(1− rk)1− r2n+k

1− rk
= (1− rk)

{
1 +

rk

1 + r + · · ·+ rk−1
(1 + r + · · ·+ r2n−1)

}
,

and the fact that
rk

1 + r + · · ·+ rk−1
↑ 1

k
as r ↑ 1.

• The ’positive’ sequence can be split

k 7→ (1−rk)
{
k
{
Xk+

∞∑
n=1

ΩnΦn+k

}
+k

rk

1 + r + · · ·+ rk−1

∞∑
n=1

(1+r+ · · ·+r2n−1)ΩnΦn+k

}
.

(3.19)
The sequence k 7→ k

{
Xk +

∑∞
n=1 ΩnΦn+k

}
is `2 because of (3.10). We are ready if we

can show that the operators

{Φk } 7→ {
∞∑
n=1

(1 + r + · · ·+ r2n−1)ΩnΦn+k} , (3.20)
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are uniformly bounded (as `2-operators) on the interval 0 < r ≤ 1.
If it happens that {n 7→ 2nΩn} ∈ `1(IN) we estimate

∞∑
k=1

∣∣ ∞∑
n=1

2nΩnΦn+k

∣∣2 ≤ ∞∑
k=1

{∣∣ ∞∑
m=1

2m|Ωm|
}{ ∞∑

n=1

2n|Ωn| |Φn+k|2} ≤
( ∞∑
m=1

2m|Ωm|
)2

∞∑
k=1

|Φk|2 .

It follows that the ’positive’ sequence tends to 0 if r ↑ 1.

• The ’negative’ sequence ` 7→ −`
{∑∞

m=1(1− r2m+`)Ωm+`Φm

}
can be written

` 7→ − (1− r`)
{
`{
∞∑
m=1

Ωm+`Φm}+ `
r`

1 + r + · · ·+ r`−1

∞∑
m=1

(1 + r+ · · ·+ r2m−1)Ωm+`Φm

}
.

(3.21)
With a similar estimate as before it turns out that also this `2(IN) sequence tends to 0 if
r ↑ 1.
• For the last statement in the theorem note that the coefficients Xk do not occur in the
’negative’ sequence. �

The natural question arises whether the results of the previous theorem could also be
obtained if only {θ 7→ Ω(e iθ)} ∈ C 1;α

(
S

1
)
, with α > 0 , is assumed. I got half

way by invoking a theorem on Fourier multipliers which map periodic Hölder spaces into
themselves. 3

Theorem 3.4 (Behaviour near the Boundary 2)
Assume that {θ 7→ Ω(e iθ)} ∈ C 1;α

(
S

1
)
, with α > 0 , then

∂θ
[
ΩΦ + X

]+∣∣∣
r
−→ ∂θ

[
ΩΦ + X

]+∣∣∣
1
, in L2(S;C), as r ↑ 1, (3.22)

Proof
We ’only’ have to show that the the operators (3.20) are still uniformly bounded (as `2-
operators) on the interval 0 < r ≤ 1 under the weaker condition.
Consider the ’multiplication operator expression’

( ∞∑
n=1

(1+r+· · ·+r2n−1)Ωn e− inθ
) ( ∞∑

m=1

Φm e imθ
)

=

=
∞∑
k=1

{ ∑
m−n=k, n≥1,m≥1

(1 + r + · · ·+ r2n−1)ΩnΦm

}
e ikθ +

3JdG thanks Dr. G. Prokert for advice and references.
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+
∞∑
`=0

{ ∑
n−m=`, n≥1,m≥1

(1 + r + · · ·+ r2n−1)ΩnΦm

}
e− i`θ =

=
∞∑
k=1

{ ∞∑
n=1

(1+r+· · ·+r2n−1) ΩnΦn+k

}
e ikθ+

∞∑
`=0

{ ∞∑
m=1

(1+r+· · ·+r2(m+`)−1) Ωm+`Φm

}
e− i`θ .

If the very first sum in this expression represents a bounded function, uniformly in 0 <
r ≤ 1, we are ready. According to our assumption, the function

{
θ 7→

∞∑
n=1

nΩn e− inθ
}
∈ C α

(
S

1
)
.

This remains so if the respective Fourier coefficients are multiplied by
1 + r + · · ·+ r2n−1

n
,

because they satisfy the conditions (1.2)-(1.3) in [AB]. �

Additional Remark As for the ’negative’ part ∂θ
[
ΩΦ +X

]−∣∣∣
r

= ∂θ
[
ΩΦ
]−∣∣∣

r
, we should

be able to prove, cf. (3.21), that from
{
` →

∑∞
m=1 Ωm+`mΦm

}
∈ `2 it follows that also{

` →
∑∞

m=1 Ωm+` (1+r+ · · ·+r2m−1)Φm

}
∈ `2 , and uniformly bounded, for 0 < r ≤ 1.

Let us see how far we get. The second sum in (3.21) can be split

∞∑
m=1

(1 + r + · · ·+ r2(m+`)−1)Ωm+`Φm − (1 + r + · · ·+ r2`−1)
∞∑
m=1

Ωm+` r
2mΦm . (3.23)

The first term presents no trouble. It is ’multiplication by a bounded function’, as in the
previous proof. For the second term we would like to show uniform boundedness for

`
∞∑
m=1

Ωm+` r
2mΦm =

∞∑
m=1

(m+ `)Ωm+` r
2mΦm −

∞∑
m=1

Ωm+` r
2mmΦm .

Here the first term comes from multiplication by Ω′, which is supposed to be continuous
on D. The second term finally confronts us with the question whether from{
` →

∑∞
m=1 Ωm+`mΦm

}
∈ `2 it follows that

∀ ε > 0 ∃N ∈ IN ∀ 0 < r ≤ 1 :
∞∑
`=N

∣∣ ∞∑
m=1

Ωm+` r
2mmΦm

∣∣2 < ε . (3.24)

I could not prove this!
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4 Results on Stokes Boundary Value Problems
In this section we formulate our results for simply connected domains G ⊂ R

2 ∼ C with
boundary ∂G and 0 ∈ G. The boundary is supposed to be an arclength parametrized Jordan
curve with a Hölder continuous and positively oriented tangent vector s 7→ ẋ(s) = ż(s).
Let, as before, Ω : D → G denote the unique conformal mapping with Ω(0) = 0 and
Ω′(0) > 0. Again θ 7→ s(θ) is defined by Ω(e iθ) = s(θ) , 0 ≤ θ < 2π.
The following two theorems are immediate consequences of the preceding sections. Looking
at the smoothness assumptions of the preceding theorems, it is clear that the H2-condition
on the boundary ∂G in the next theorem can be somewhat relaxed.

Theorem 4.1 (Stokes-Dirichlet)
Consider the Stokes-Dirichlet problem (2.1) with boundary {s 7→ x(s)} ∈ H2(∂G).
The prescribed boundary velocity field is given by

s 7→ g(x(s)) = V1(s)n(x(s))+V2(s)t(x(s)) = − i
(
V1(s)+ iV2(s)

)
ż(s) = − iV (s)ż(s) ∈ L2(∂G),

where
∫
∂G
V1(s) ds = 0 .

There exist unique analytic ϕ , χ : G → C, with ϕ(0) = χ(0) = Reϕ′(0) = 0, and
ϕ
∣∣
∂G
, χ
∣∣
∂G
∈ L2(∂G), such that

z(s)ϕ′(z(s))− ϕ(z(s)) + χ′(z(s)) = − iV (s)ż(s), z(s) ∈ ∂G .

We have

• ϕ(Ω(re iθ)) → ϕ
∣∣
∂G

(s(θ)) and χ(Ω(re iθ)) → χ
∣∣
∂G

(s(θ)) ,
in L2(S)-sense, as r ↑ 1.

•
[
v1(z) + iv2(z)

]∣∣∣
z=Ω(re iθ)

=
[
zϕ′(z)− ϕ(z) + χ′(z)

] ∣∣∣
z=Ω(re iθ)

→ g(x(s(θ))),

in L2(S)-sense, as r ↑ 1.

• The normal stress at ∂G is well defined (as a H−1 -limit) and given by(
T · n

)
(x(s)) = 2 i

d

ds
g(x(s) + 4 i

d

ds
ϕ(z(s)) ∈ H

−1(∂G).

�
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Theorem 4.2 (Stokes-Neumann)
Consider the Stokes-Neumann problem (2.4) with boundary {s 7→ x(s)} ∈ H2(∂G).
The prescribed boundary stress field

s 7→ f(x(s)) = T (x(s)) · n(x(s)) = 2 i
d

ds

(
z(s)ϕ′(z(s)) + ϕ(z(s)) + χ′(z(s))

)
=

= − i
d

ds
{K(s)ż(s)} ∈ H−1(∂G),

whith s 7→ K(s) = K1(s) + iK2(s) ∈ L2(∂G), and
∫
∂G
K1(s) ds = 0 .

There exist unique analytic ϕ , χ : G → C, with ϕ(0) = χ(0) = Imϕ′(0) = 0, and
ϕ
∣∣
∂G
, χ
∣∣
∂G
∈ L2(∂G), such that

z(s)ϕ′(z(s)) + ϕ(z(s)) + χ′(z(s)) = −1

2
K(s)ż(s), z(s) ∈ ∂G .

We have

• ϕ(Ω(re iθ)) → ϕ
∣∣
∂G

(s(θ)) and χ(Ω(re iθ)) → χ
∣∣
∂G

(s(θ)) ,
in L2(S)-sense, as r ↑ 1.

•
[
zϕ′(z) + ϕ(z) + χ′(z)

] ∣∣∣
z=Ω(re iθ)

→ g(x(s(θ))), in L2(S)-sense, as r ↑ 1.

•
(
T · n(z)

)∣∣∣
z=Ω(re iθ)

→ − i
d

ds
{K(s)ż(s)}

∣∣∣
s=s(θ)

in H−1(S)-sense, as r ↑ 1.

• The velocity field at ∂G is well defined (as a L2 -limit) and given by
v1(z(s)) + iv2(z(s)) = −1

2
K(s)ż(s)− 2ϕ(z(s)) ∈ L2(∂G).

�

Of special interest in the context of free boundary value problems are solutions of the
Stokes-Neumann problems with K1 = 0. In [H], taking K1 = 0 , K2 = κ = constant,
(surface tension), Hopper derives an ingenious equation for the time evolution of the domain
G. This Hopper equation is a non-linear time evolution equation for the conformal map
Ω( · t) : D → G. In a series of papers, following [H], Hopper shows that his equation has
several classes of exact solutions ζ 7→ Ω(ζ, t), which are polynomial or rational in ζ. For
more of those see also [K].
In [G] it has been shown that already K1 = 0 , K2 = K2(Ω, t) is enough for this phe-
nomenon to happen. Reason enough for looking at the structure of the solution if K1 = 0.
Then the analytic ϕ and χ are in a special relation to each other:

19



• Suppose
d

ds
Re
(
z(s)ϕ(z(s)) + χ(z(s))

∣∣∣
z(s)∈∂G

= 0 and χ : G → C being given, then

Re {ϕ
z
}
∣∣∣
∂G

=
C − Reχ

zz

∣∣∣
∂G

, with C ∈ R any constant. Hence, cf. (A.9),

ϕ(Ω(ζ)) =
Ω(ζ)

2π

∫ 2π

0

C − Reχ(Ω(e iθ))

|Ω(e iθ)|2
e iθ + ζ

e iθ − ζ
dθ , |ζ| < 1. (4.1)

It is straightforward that ϕ(0) = 0 , Imϕ′(0) = 0, in this case.

• Suppose
d

ds
Re
(
z(s)ϕ(z(s)) + χ(z(s))

∣∣∣
z(s)∈∂G

= 0 and ϕ : G → C being given, then

Re {χ}
∣∣∣
∂G

= C − Re
[
zϕ
]∣∣∣
∂G

, with C ∈ R . Hence, cf. (A.9),

χ(Ω(ζ)) =
1

2π

∫ 2π

0

Re
[
C − Ω(e iθ)ϕ(Ω(e iθ))

] e iθ + ζ

e iθ − ζ
dθ , |ζ| < 1. (4.2)

Take C = 1
2π

∫ 2π

0

[
Ω(e iθ)ϕ(Ω(e iθ))

]
dθ , then χ(0) = 0.

We conclude with a theorem on some unusual (non physical?) boundary value problems
for Stokes’ equations. The proof is based on the fact that an analytic function om G is,
up to a constant, fixed by its real (or imaginary) part at the boundary ∂G, on the simple
connectedness assumption on G and on table (1.5).

Theorem 4.3
Let G ⊂ R 2 be bounded and simply connected.
Suppose ∂G has a H1 arclength parametrization.
For any of the function pairs { p , v · n } , { p , v · ẋ } , { rot v , v · n } , { rot v , v · ẋ } ,
prescribed at the boundary and all in L2(∂G), there is a unique pressure-velocity flow pair
{p, v} , which solves Stokes’ equations. From within, the boundary values are approached
in L2-sense in the way described before.

�
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A APPENDIX: Complex Analysis revisited
1. We identify R 2 and C by means of the bijection

x =

[
x
y

]
7→ z = x+ iy.

2. Multiplication by i, or by any fixed complex number, complex conjugation, taking real
or imaginary parts

z 7→ iz, z 7→ z, , z 7→ Re z, z 7→ Im z,

will often be considered as R -linear mappings in R 2.

3. Functions

F : C→ C : z = x+ iy 7→ F (z) = F (x+ iy) = ReF (z) + i ImF (z),

possibly local and not necessarily analytic, are identified with, or correspond to

F : R
2 → R

2 :

[
x
y

]
7→
[
F1(x, y)
F2(x, y)

]
=

[
ReF (x+ iy)
ImF (x+ iy)

]
,

and vice versa. Such functions will sometimes be considered as vector fields. In a context
of cartesian coordinates no confusion arises.

4. We have the usual (commuting) vector partial differentiation operators

∂z =
1

2
(∂x − i∂y), ∂z =

1

2
(∂x + i∂y), hence ∂x = ∂z + ∂z, ∂y = i(∂z − ∂z) (A.1)

Note that for the componentwise Laplacian acting on F , we have

∆F = 4∂z ∂z F . (A.2)

It follows that if one has ∂z F = 0 or/and ∂z F = 0, then, componentwise, ∆F = 0.
Which says that F is a stack of 2 harmonic functions.
Of importance is also the complex representation of Euler operator

x
∂

∂x
+ y

∂

∂y
= z

∂

∂z
+ z

∂

∂z
. (A.3)

5. If ∂z F = 0 we say that F (= F ) is analytic. If ∂z F = 0 we say that F (= F ) is
anti-analytic.
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This nicely corresponds to the respective Cauchy-Riemann and anti-Cauchy-Riemann re-
lations

C.R. :
{
∂x ReF − ∂y ImF = 0
∂y ReF + ∂x ImF = 0

, a.C.R. :
{
∂x ReF + ∂y ImF = 0
∂y ReF − ∂x ImF = 0

. (A.4)

Note that analyticity of z 7→ F (z) implies anti-analyticity of z 7→ F (z) and vice versa.

6. If a stack
[
x
y

]
7→
[
F1(x, y)
F2(x, y)

]
of two harmonic functions corresponds to an analytic

function z 7→ F (z), we say that F2 is a harmonic conjugate of F1. From (A.4) it is clear
that a harmonic conjugate is unique up to a constant.
If on a simply connected domain G ⊂ R 2, with 0 ∈ G, a harmonic function x 7→ F1(x) ∈ R
is given, a harmonic conjugate is constructed by

x 7→ F2(x) =

∫ x

0

{−∂yF1(x(s))ẋ+ ∂xF1(x(s))ẏ} ds. (A.5)

The result does not depend on the path of integration s 7→ x(s), since the vectorfield

x 7→
[
−∂yF1(x)
∂xF1(x)

]
is obviously conservative.

7. If on a connected domain G ⊂ R 2, with 0 ∈ G, a stack x 7→
[
F1(x)
F2(x)

]
is harmonic, i.e.

∆F = 0, it corresponds to an analytic function z 7→ F (z) on G if one of the C.R.-relations
is satisfied all over G and the other C.R.-relation is satisfied at one point, say z = 0. Indeed,
suppose the second C.R.-relation is satisfied all over G. Then
∂x(∂xF1 − ∂yF2) = −∂y(∂yF1 + ∂xF2) = 0 and ∂y(∂xF1 − ∂yF2) = ∂x(∂yF1 + ∂xF2) = 0.
Therefore ∂xF1 − ∂yF2 = constant = 0.

8. Next we gather some useful expressions for the commutation relations between ∂x, ∂y, ∆
and the projections Re , Im . All to be applied to smooth C-valued functions on domains
in C.

∂x Re = Re ∂x = Re (∂z + ∂z) ∂x Im = Im ∂x = Im (∂z + ∂z)

∂y Re = Re ∂y = − Im (∂z − ∂z) ∂y Im = Im ∂y = Re (∂z − ∂z)
∆ Re = Re ∆ = 4 Re ∂z ∂z ∆ Im = Im ∆ = 4 Im ∂z ∂z

(A.6)

9. On a simply connected domain G ⊂ R 2, with 0 ∈ G we consider a biharmonic function
x 7→ φ(x). This means ∆∆φ = 0. The claim is that there exist analytic ϕ, χ : G → C,
such that

φ(x) = Re
(
zϕ(z) + χ(z)

)
, z = x+ iy. (A.7)

To show this, note first that ∆φ is harmonic on G. So there is an analytic ψ on G such that
∆φ = Reψ. Introduce the analytic function z 7→ ϕ(z) = 1

4

∫ z
0
ψ(ζ)dζ. Then 4ϕ′(z) = ψ(z).
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We now have ∆
(
φ(x)− Re (zϕ(z))

)
= 0. So φ− Re (zϕ) is harmonic on G and there exists

analytic χ on G such that

φ(x)− Re (zϕ(z)) = Reχ(z), z = x+ iy.

This proves the claim.

11. Let L2(S1) denote the standard real Hilbert space on the unit circle S1 ⊂ C. Let
f̃1 ∈ L2(S1). For f̃1 we will employ the Fourier expansion convention

f̃1(θ) = a0 +
∞∑
n=1

{an cos(nθ)− bn sin(nθ)}.

Extend f̃1 to a harmonic function f1 on the unit disk D ⊂ C by solving the Dirichlet
problem. Let f2, the harmonic conjugate of f1, be fixed by taking f2(0) = 0. Let f̃2 denote
the limit to the boundary S1 of D. Then

f̃2(θ) =
∞∑
n=1

{bn cos(nθ) + an sin(nθ)}.

All this can be seen by taking real and imaginary parts from the power series expansion of
f1 + if2 up to the boundary S1

f̃1(θ) + if̃2(θ) = f1(e iθ) + if2(e iθ) =
∞∑
n=0

(an + ibn)e inθ, b0 = 0.

Let further L2

(
S

1;R ;⊥{1}
)
denote the linear subspace of all g̃ ∈ L2(S1) with

∫ 2π

0
g̃(θ) dθ =

0.
The operator

J : L2

(
S

1;R ;⊥{1}
)

: f̃1 7→ Jf̃1 = f̃2,

is orthogonal and skew-symmetric:

J? = −J = J−1 , J2 = −I. (A.8)

Note that J{Re (an + ibn)e inθ} = Re {− i(an + ibn)e inθ}.
• The operator N : L2

(
S

1;R ;⊥{1}
)
→ L2

(
S

1;R ;⊥{1}
)
is defined by

Nf1 =
∞∑
n=1

n{bn cos(nθ) + an sin(nθ)}.

We have N? = N , J∂θ = ∂θJ = N and therefore ∂θ = −NJ.
• For analytic functions z 7→ f(z) on the unit disk D we will consider a splitting in real
Fourier series on S1. We put

f(e iθ) =
∞∑
n=1

(an + ibn)e inθ = f1(e iθ) + if2(e iθ) = f1(e iθ) + iJf1(e iθ).
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• Proof of Lemma 1.4
The operator J defined by

J{an cos(nθ)− bn sin(nθ)} = bn cos(nθ) + an sin(nθ), n = 1, 2, 3, . . . ,

can be represented as

Jf1(θ) = lim
r↑1

1

π

∫ π

−π

∞∑
n=1

rn sin
(
n(θ − θ1)

)
f(θ1) dθ1,

as can easily be checked term by term. Calculate
∞∑
n=1

rn sin(nα) = Im
∞∑
n=1

(re iα)n =
r sin(α)

1 + r2 − 2r cos(α)
=

2r sin(1
2
α) cos(1

2
α)

(1− r)2 + 4r sin2(1
2
α)
−→
r↑1

1

2
cot(

1

2
α).

Therefore

Jf1(θ) = lim
r↑1

1

π

∫ π

−π

2r sin
(

1
2
(θ − θ1)

)
cos
(

1
2
(θ − θ1)

)
(1− r)2 + 4r sin2

(
1
2
(θ − θ1)

) f1(θ1) dθ1.

Since the kernel is 2π-periodic and odd in (θ − θ1), the result follows. �

12. Corollary For analytic F : D→ C , ImF ′(0) = 0 , we have the presentation

F (ζ) =
1

2π

∫ π

−π
ReF (e iθ)

e iθ + ζ

e iθ − ζ
dθ , |ζ| < 1. (A.9)

Note that taking the real part leads to the Poisson formula.

B APPENDIX: Details on Stokes’ equations
Proof of Theorem 1.1
• Suppose that the pair v , p is a solution on some domain G. Since ∇ · v = 0, there exists

a ’stream function’ ψ such that v =

[
∂yψ
−∂xψ

]
, where ψ is fixed up to a constant.

Similarly, since ∇ · T = 0, it follow that, for suitable functions f, g we are allowed to write

T = 2

[
∂yf ∂yg

−∂xf −∂xg

]
. Because of symmetry ∂xf + ∂yg = 0. Hence

[
f
g

]
=

[
−∂yφ
∂xφ

]
,

for suitable φ, the ’Airy function’. It follows that we are allowed to write

T = 2

[
−∂y∂yφ ∂x∂yφ

∂x∂yφ −∂x∂xφ

]
.

Note that φ is fixed up to a polynomial of 1st degree.
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In order to show analyticity of x+ iy 7→ ∆φ(x) + i∆ψ(x) calculate and find equal to 0

(∂x+ i∂y)(∆φ+ i∆ψ) = {∂x(∆φ)−∂y∆ψ}+ i{∂y(∆φ)+∂x∆ψ} = {∂xp−∆v1}+ i{∂yp−∆v2} = 0,

because of Stokes’ equations. As a consequence φ, ψ are bi-harmonic.
• Because of bi-harmonicity there are analytic functions f1, f2, g1, g2 on G such that, cf.
(A.7),

φ = Re (zf1 + g1) ψ = Im (zf2 + g2),

From the C.R.-relations and (A.6) we get

∂x∆φ = ∂y∆ψ ⇒ Re f ′′1 = Re f ′′2 ,
∂y∆φ = −∂x∆ψ ⇒ − Im f ′′1 = − Im f ′′2

}
⇒ f ′′1 = f ′′2 . (B.1)

Next, consistency of the stress matrix requires

T = 2

[
−∂y∂yφ ∂x∂yφ

∂x∂yφ −∂x∂xφ

]
=

[
−∆φ+ 2∂x∂yψ −∂x∂xψ + ∂y∂yψ

−∂x∂xψ + ∂y∂yψ −∆φ− 2∂x∂yψ

]
.

This requires

∂x∂xφ− ∂y∂yφ = 2∂x∂yψ , 2∂x∂yφ = −∂x∂xψ + ∂y∂yψ . (B.2)

Calculate, cf. (A.6),

∂xφ = Re (zf ′1 + g′1 + f1) ∂xψ = Im (zf ′2 + g′2 + f2)
∂yφ = − Im (zf ′1 + g′1 − f1) ∂yψ = Re (zf ′2 + g′2 − f2)
∂x∂yφ = − Im (zf ′′1 + g′′1 − f ′1 + f ′1) ∂x∂yψ = Re (zf ′′2 + g′′2 + f ′2 − f ′2)
∂x∂xφ = Re (zf ′′1 + g′′1 + f ′1 + f ′1) ∂x∂xψ = Im (zf ′′2 + g′′2 + f ′2 + f ′2)
∂y∂yφ = −Re (zf ′′1 + g′′1 − f ′1 − f ′1) ∂y∂yψ = − Im (zf ′′2 + g′′2 − f ′2 − f ′2)

(B.3)
Substitution of (B.3) in (B.2) leads, together with (B.1) to g′′1 = g′′2 .
We find

ψ(x, y) = Im {zf2(z)+g2(z)}, φ(x, y) = Re {z
(
f2(z)+αz+β

)
+g2(z)+γz+δ}, α, β, γ, δ ∈ C.

Define ϕ(z) = f2(z) + ( Reα)z and χ(z) = g2(z), then

ψ(x, y) = Im {zϕ(z) + χ(z)}, φ(x, y) = Re {zϕ(z) + χ(z)}+ Re {βz + γz + δ}.

• If we just throw away the second term in the expression for φ, the stress matrix T is
not altered. The only freedom left is a constant added to ϕ. We are left with

ψ(x, y) = Im {zϕ(z) + χ(z)}, φ(x, y) = Re {zϕ(z) + χ(z)}. (B.4)
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• Finally we check the formulae for the kinematic and dynamic quantities, cf. (B.3),

v1 + iv2 = ∂yψ − i∂xψ = ∂y Im (zϕ+ χ)− i∂x Im (zϕ+ χ) =
= Re (∂z − ∂z)zϕ+ χ)− i Im (∂z + ∂z)zϕ+ χ) =
= Re (zϕ′ + χ′ − ϕ)− i Im (zϕ′ + χ′ + ϕ) =

= zϕ′ + χ′ − ϕ = −ϕ+ zϕ′ + χ′.

∂xv2 − ∂yv1 = Im (∂x − i∂y)(v1 + iv2) = 2 Im ∂z(−ϕ+ zϕ′ + χ′) = −4 Imϕ′.

T11 + T22 = −2p = −2∆φ = −2∆ Re (zϕ+ χ) =
= −8 Re ∂z∂z(zϕ+ χ) = −8 Reϕ′ .

T22 − T11 + 2 iT12 = −2∂x∂xφ+ 2∂y∂yφ+ 4 i2∂x∂yφ =
= −2 Re (zϕ′′ + χ′′ + 2ϕ′)− 2 Re (zϕ′′ + χ′′ − 2ϕ′)− 4 i Im (zϕ′′ + χ′′) =
= −4 Re (zϕ′′ + χ′′)− 4 i Im (zϕ′′ + χ′′) = −4(zϕ′′ + χ′′).

v · n = Re {(v1 − iv2) · − iż} = Im {(v1 − iv2)ż} =

= Im {(−ϕ+ zϕ′ + χ′)ż} = Im { d

ds
(zϕ+ χ)− ϕż − ϕż} =

=
d

ds
Im (zϕ+ χ) .

T · n = 2

[
−∂y∂yφ ∂x∂yφ

∂x∂yφ −∂x∂xφ

] [
ẏ
−ẋ

]
= −2

d

ds

[
∂yφ
−∂xφ

]
=

= −2
d

ds

[
∂y Re (zϕ+ χ)
−∂x Re (zϕ+ χ)

]
=

= 2
d

ds
{ Im (zϕ′ + χ′ − ϕ) + i Re (zϕ′ + χ′ + ϕ)} =

= 2 i
d

ds
{zϕ′ + χ′ + ϕ} .

T · ẋ = 2
d

ds
{zϕ′ + χ′ − 4 Reϕ} .

• If we put ϕ1(z) = ϕ(z) + A and χ
1(z) = χ(z) + Az + C, with A , C ∈ C we still

find the same expressions for v1 , v2 , p. Note also that the corresponding altered stream
function ψ1(x) = ψ(x) + Im (zA+Az +B) = ψ(x) + ImB and the Airy function φ1(x) =
φ(x) + Re (zA + Az + B) show, respectively, an added constant and an added 1st degree
polynomial which don’t alter the velocity and the stress tensor.
Conclusion If for some fixed a in the fluid domain we additionally require
ϕ(a) = χ(a) = 0 , there is precisely one pair {ϕ , χ} that describes a solution of the Stokes
equations. �
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