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Abstract

This report defines the syntax and formal semantics of the Chi 2.0 formalism. The Chi formalism
integrates concepts from dynamics and control theory with concepts from computer science, in
particular from process algebra and hybrid automata. It combines a high expressivity and ease of
modeling with a formal semantics.

The Chi language is defined by means of an abstract and a concrete syntax. The purpose of the
abstract syntax is to allow a straightforward definition of the structured operational semantics
(SOS), which associates a hybrid transition system with a Chi process. The Chi semantics is
compositional, and bisimulation is a congruence for all operators. The concrete syntax offers
modeling equivalents for the elements of the abstract syntax, and it introduces new syntax to
ensure better readability and easier modeling. The meaning of the concrete syntax is defined by
means of a mapping to the abstract syntax.

The Chi language provides among others discrete, continuous, and algebraic variables, and equa-
tion process terms for modeling differential algebraic equations (DAEs), including fully implicit
or switched DAEs. Steady state initialization can be specified, and higher index DAEs in Chi
are equivalent to the corresponding index 1 DAEs, obtained after differentiation of the hidden
constraints. The invariant process term in Chi corresponds to invariants in hybrid automata.

The following operators are provided (among others): the parallel composition, alternative com-
position (choice), and sequential composition operators; and the recursion scope operator for
modeling automata. The parallel composition operator allows shared variables, shared synchro-
nizing and non-synchronizing action labels, and shared CSP channels for synchronous commu-
nication.

Two main ways of expressing urgency are provided: First, action labels and channels can be
declared as urgent. Delaying is possible only if, and for as long as no urgent actions are enabled.
Synchronizing actions are enabled only when the guards of all participating actions in a parallel
composition are enabled. Second, urgency can be defined locally by means of the time can
progress (tcp) process term, which allows delays for as long as the tcp predicate is true.

Scope operators are available for hierarchical modeling. They are used to declare local variables,
local action labels, and local channels. Process definition and instantiation provide process re-use
and encapsulation. Hybrid automata and networks of hybrid automata can easily be expressed in
Chi. Since Chi is a process algebra, its operators can be arbitrarily combined, resulting in a high
modeling flexibility. 1

1Work partially done in the framework of the HYCON Network of Excellence, contract number FP6-IST-511368; as
part of the ITEA project Twins 05004; and as a part of the DARWIN project at Philips Healthcare under the responsibility
of the Embedded Systems Institute, partially supported by the Dutch Ministry of Economic Affairs under the BSIK
program.
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1 Introduction

This report defines the abstract and concrete syntax of the Chi 2.0 formalism, and its formal
semantics. The abstract syntax is used to define the semantics, and to enable formal reasoning
about properties of Chi specifications. The abstract syntax is defined in Section 2, along with
an informal description of the semantics. The formal semantics is defined in Section 3. The
concrete syntax offers modeling equivalents for the elements of the abstract syntax, and it extends
the syntax to ensure better readability and easier modeling. The meaning of the concrete syntax
is defined by means of a mapping to the abstract syntax. Section 4 defines the subset of the
concrete syntax for which the semantics is formally defined. For the complete concrete syntax
of Chi, including among others many additional data types, we refer to the Chi 2.0 reference
manual [11]. The syntax and the semantics are illustrated by means of small example models.
For additional examples, we refer to the Lecture Notes ‘Analysis of Hybrid Systems using Chi’
[4].

1.1 What is new

The are many changes in Chi 2.0 with respect to the previous version of Chi as defined in [3] and
[12]. This previous version of Chi is referred to as Chi 1.0. The major changes are:

Guards and conditional expressions In Chi 1.0, there was a guard operator b→ p, and there
were no conditional expressions. The semantics of this guard operator was quite complex.
Also, use of strict inequalities in the guard, such as in x < 1→ ẋ = 2 ‖ x ≥ 1→ ẋ = 3,
led to non-intuitive semantics.
In Chi 2.0, the guard is no longer an operator. The guard is now part of atomic action
process terms. This considerably simplifies use and semantics of the guard. It is also more
in line with the use of the guard in hybrid automata.
In Chi 2.0 conditional expressions have been introduced. Conditional expressions simplify
modeling of switched linear systems, such as piecewise affine systems [22]. E.g. ẋ = (x <
1→ 2 | x ≥ 1→ 3).

Synchronizing action labels In Chi 1.0, all basic action labels were non-synchronizing. As
a result, the transformation from networks of hybrid automata to Chi 1.0 was limited:
either the parallel composition needed to be eliminated before transformation, or action
synchronization was limited to 2-party synchronization (as in CSP channel synchronization
[10]).
In Chi 2.0, basic action labels are non-synchronizing by default. They can be defined as
synchronizing by means of the new synchronization operator. This means that a network
of hybrid automata can be translated in a straightforward manner to a ‘network’ of parallel
Chi 2.0 processes; thus preserving parallel composition.

Urgency In Chi 1.0, urgency was defined by means of the guard operator, the delay enabling
operator, and the urgent communication operator. Atomic actions could not delay. Delay
behavior could be added by means of the delay enabling operator. Delay behavior could
be restricted by means of the urgent communication operator. Even though the definition
of urgency in Chi 1.0 was already a step forward when compared to other languages, the
semantics of the urgent communication operator was not intuitive when combined with the
variable scope operator. Also, the urgent communication operator could not be eliminated,
using ‘process algebraic linearization’ [1, 2], in all cases.
In Chi 2.0, atomic actions can perform arbitrary delays. Delay behavior cannot be added
(the delay enabling operator has been removed); it can only be restricted. Local urgency is
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defined by means of the new ‘time can progress’ process term, and global urgency is de-
fined by declaring action labels and channels as either urgent or non-urgent. The semantics
is intuitive in all cases, and process algebraic linearization is no longer restricted due to
urgency.

Initialization In Chi 1.0, the signal emission operator was used, leading in some cases to un-
intuitive semantics. The behavior of this operator was different from the initial edges as
used in hybrid automata, leading to difficulties in the transformation between hybrid au-
tomata and Chi models. Also, process algebraic linearization of Chi models that combine
signal emission operators with variable scope operators was not always possible.

In Chi 2.0, the initialization operator is used instead of the signal emission operator. The
behavior of the initialization operator is analogous to the behavior of initial edges in hybrid
automata, and process algebraic linearization is no longer restricted due to modeling of
initialization.

Hybrid automata Chi 1.0 extended hybrid automata in several aspects, but it lacked synchro-
nizing actions and its primitives for modeling initialization were incompatible with hybrid
automata.

Chi 2.0 extends hybrid automata in many ways, without introducing incompatibilities.
Transformations from (networks of) hybrid automata to Chi 2.0 are trivial. Transforma-
tions from Chi 2.0 to hybrid automata are more difficult, due to the greater expressivity
of Chi. By means of process algebraic linearization, it should in principle be possible to
reduce Chi 2.0 models to a simplified form, allowing straightforward transformations to
hybrid automata.

Combining send and receives with updates In Chi 1.0, send and receive actions on channels
could not be atomically combined with assignments or other update expressions.

In Chi 2.0, send and receive actions on channels can be atomically combined with multi-
assignments or arbitrary update expressions, in a way similar to the combination of action
labels with assignments or update expressions.

Hidden constraints In Chi 1.0, systems of differential algebraic equations containing ‘hidden
constraints’ (see Section 2.6.1), were not bisimilar (see Section 3.8.2), to systems of equa-
tions where the hidden constraint are made explicit (obtained after differentiation).

In Chi 2.0, these systems of equations are indeed bisimilar. This means, among others,
that higher index systems (see Appendix A) can be transformed to lower index systems by
means of index reduction algorithms without changing the meaning of the models.

Concrete and abstract format In Chi 1.0, a model in the concrete syntax was defined in the
abstract syntax as a collection of abstract Chi processes: one process for each valuation.
For many abstract models, there was no transformation to a corresponding concrete model.
Note that in Chi 1.0, the concepts of a concrete and abstract syntax were not used. Instead,
Chi 1.0 was defined in terms of a syntax that combined the abstract format with the so
called ‘syntactic extensions’.

In Chi 2.0, apart from a very small number of contrived models, there is now a one to one
transformation from each Chi concrete model to a corresponding Chi abstract model, and
vice versa.

Variable types The declaration of the three types of variable (discrete, continuous and algebraic)
has been changed. In Chi 1.0 in the abstract format, three sets were needed to define the
three types. In the concrete format, there were three variable declaration keywords for the
three types.

In Chi 2.0 in the abstract format, the ‘dynamic’ type of a variable (discrete, continuous,
algebraic) is defined by means of one ‘dynamic type mapping’. In the concrete format, the
dynamic type is combined with the ‘static’ type (e.g. boolean, integer).
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Deduction rules In Chi 1.0, the negative premisses in some of the deduction rules in the seman-
tics lead to the need for some manual proofs to show that the Chi semantics is compositional
(stateless bisimilarity is a congruence with respect to all Chi operators, see Section 3.8.2).

In Chi 2.0, there are no longer any negative premisses in the deduction rules (see Section
3). Manual congruence proofs are no longer necessary, since all deduction rules satisfy the
process-tyft format (see Section 3.8.2). Also, although Chi 2.0 is more expressive than Chi
1.0, the total number of deduction rules has been decreased from 53 in Chi 1.0 to 44 in Chi
2.0.

1.2 Acknowledgements

The authors would like to thank Jos Baeten and Pieter Cuijpers for helpful comments and stimu-
lating discussions. Of the other people that have in one way or another helped in developing Chi
2.0, we would like to mention Pieter Collins, Dennis Hendriks, Asia van de Mortel-Fronczak,
Uzma Khadim, Erjen Lefeber, Jasen Markovski, Mihaly Petreczky, and Sasha Pogromsky.

2 Abstract syntax and informal semantics

This section presents a concise definition of the abstract syntax and informal semantics of the
Chi formalism. The syntax definition is incomplete in the sense that the syntax of predicates,
expressions, etc. is defined at a high level of abstraction. This is done because different imple-
mentations of Chi, such as tools for simulation, verification, or real-time control, may impose
different syntactical restrictions. The intention of this section is to define the Chi formalism that
encompasses a variety of (future) tools without posing unnecessary syntactical restrictions.

2.1 Notations and mathematical definitions

2.1.1 Functions

Notation f : M → G defines a total function with dom( f ) = M and codomain G. Notation
g : M ⇀ G defines a partial function g, with definition domain M and codomain G. The domain
dom(g) ⊆ M of the partial function g is the set of all elements x ∈ M such that g(x) is defined.
The range of f , denoted by range( f ), is the set of all values that the function takes when x takes
values in the domain.

We use the term mapping for those functions that are syntactically defined using the literal nota-
tion {x1 7→ f1(x1), . . . , xn 7→ fn(xn)}, as for example used in Section 2.2.

The following definitions of the operators � and ∪ applied on functions are used:

• If S is a set, f � S denotes the restriction of f to S, that is, the function g with dom(g) =
dom( f ) ∩ S, such that g(c) = f (c) for each c ∈ dom(g).

• If f and g are functions with dom( f )∩dom(g)=∅, then f ∪g denotes the unique function
h with dom(h) = dom( f ) ∪ dom(g) satisfying the condition: for each c ∈ dom(h), if
c ∈ dom( f ) then h(c) = f (c), and h(c) = g(c) otherwise.
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2.1.2 Sets and types

Values and variables

• B = {true, false} denotes the set of booleans.

• R denotes the set of all real values.

• 3 denotes the set of all values. It contains at least the booleans B and the reals R.

• V denotes the set of all variables, including the predefined variable time.

• V̇ = V ∪ {ẋ | x ∈ V} denotes the union of the set of all variables with the set of the dotted
versions of the variables.

• V̇− = V̇ ∪ {x− | x ∈ V̇} denotes the union of the set of all variables (including their dotted
versions) with the set of the minus superscripted versions of those variables.

• 6 = V ⇀ 3 denotes the set of all variable valuations. A variable valuation is a partial
function from variables to values. It captures the values of the variables (at some moment
in time).

• 6⊥ = V ⇀ 3⊥ denotes the set of all variable valuations, where variables may have the
undefined ‘value’ ⊥ (⊥ 6∈ 3). Here 3⊥ = 3 ∪ {⊥}.

In this report, we use the convention σ ∈ 6 and σ⊥ ∈ 6⊥.

• 6̇ = V̇ ⇀ 3 denotes the set of valuations for all variables and dotted variables. These
valuations are referred to as ‘extended valuations’.

• D = V ⇀ {disc, cont, alg} denotes the set of all dynamic type mappings: partial functions
from variables to dynamic types.

Here, {disc, cont, alg} denotes the set of dynamic types of the Chi variables.

Functions that derive the set of variables of a certain type from a dynamic type mapping
are defined in Section 2.1.4.

• Let V ⊆ V̇− denote a set of (possibly dotted or minus superscripted) variables. Then:

– Expr(V ) denotes the set of all expressions over the variables from V .

– Pred(V ) denotes the set of all predicates over the variables from V .

Action labels, channels, recursion, process terms and environments

• Lbasic denotes the set of all basic action labels.

• H denotes the set of all channels.

• Uah = (Lbasic ∪ {τ } ∪ H) ⇀ B denotes the set of all urgency mappings in the form of a
partial function from basic action labels, the internal action label τ (see Section 2.5), and
channels, to boolean values, indicating whether an action label or channel is urgent or not.

• Pabstract denotes the set of all process terms of the abstract Chi language as defined in
Section 2.5.

• M denotes the set of all recursion variables, also referred to as modes.
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• R =M ⇀ Pabstract denotes the set of all recursion mappings: partial functions from re-
cursion variables to (abstract) process terms.

• E = D × Uah × 2V ×R denotes the set of all environments of a Chi process (see Section
2.2).

2.1.3 Functions on sets

We use among others, the following operations on sets. Let S ⊆ S denote a set of items of type
S . Then:

• S = S \ S denotes the complement of S.

• 2S denotes the powerset of S.

2.1.4 Functions on dynamic type mappings

To derive the set of variables of a certain type from a dynamic type mapping, the following
notations are defined. Let D : D be a dynamic type mapping. Then:

• Ddisc, Dcont, Dalg denote the discrete, continuous, and algebraic variables, respectively;
they are defined as Dt = {x ∈ dom(D) | D(x) = t} for t ∈ {disc, cont, alg}.

• Dstate = Ddisc ∪ Dcont denotes the set of state variables.

E.g. Let D be syntactically defined as D = {k 7→ disc, n 7→ disc, x 7→ cont, y 7→ alg}. Then
Ddisc = {k, n}, Dcont = {x}, Dalg = {y}, and Dstate = {k, n, x}.

In this report, we use the convention that the variables used in valuations from 6 and 6⊥ are the
state variables: the declared discrete and continuous variables. Extended valuations 6̇ include all
declared variables and the dotted versions of the declared continuous variables in their domain,
but they do not include undefined variables.

2.2 Syntax of processes

A Chi process is a triple 〈p, σ⊥, E〉, where p ∈ Pabstract denotes a process term of the abstract Chi
language, σ⊥ :6⊥ denotes a variable valuation, and E ∈ E denotes an environment. Syntactically,
a variable valuation is denoted by a set of pairs {x0 7→ c0, . . . , xn 7→ cn}, where each xi denotes
a different variable and ci its corresponding value (possibly undefined: ⊥). A variable valuation
is also referred to simply as a valuation.

An environment E is a tuple (D,U, J, R). Here, D : D is a dynamic type mapping that defines
variables as either discrete, continuous or algebraic. Syntactically, a dynamic type mapping is
denoted by a set of pairs {x0 7→ t0, . . . , xn 7→ tn}, where each xi denotes a different variable
and ti its associated dynamic type. Furthermore, U : Uah is an urgency mapping, J ⊆ V denotes
the set of jumping variables, and R : R denotes a recursion mapping. Syntactically, an urgency
mapping for actions and channels is denoted by a set of pairs {ah0 7→ b0, . . . ,ahm 7→ bm}, where
each ahi denotes a different action label or channel, respectively, and bi its associated boolean
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value which is true if the action label or channel is urgent and false otherwise. Syntactically, a
recursion mapping is denoted by a set of pairs {X0 7→ p0, . . . , Xr 7→ pr }, where each X i denotes
a different recursion variable (see Section 2.5) and pi its associated process term.

To ensure that the variables, channels and recursion variables occurring in Chi processes are
consistently defined, each Chi process 〈p, σ⊥, (D,U, J, R)〉 is assumed to satisfy the following
requirements:

• All variables (possibly carrying an additional minus superscript, as in x−) occurring free
in p or in the range of R, meaning that they are not declared (in a variable scope process
term, see Section 2.5) in p or in the range of R, respectively, are in the domain of D, or in
case of dotted variables ẋ or ẋ−, their non-dotted counterparts x are in Dcont.

• All basic action labels and channels occurring free in p or in the range of R are in the
domain of U .

• All recursion variables occurring free in p or in the range of R are in the domain of R.

• Basic action labels (and the internal action), channels, and recursion variables are all dif-
ferent. Thus, the sets Lbasic ∪ {τ }, H, and M, are piecewise disjoint.

• Jumping variables are defined: J ⊆ dom(D).

• The predefined variable ‘time’ is included in the dynamic type mapping as a continuous
variable: time ∈ dom(D) and D(time) = cont.

• The valuation σ⊥ is defined precisely for the state variables defined by the dynamic type
mapping D: dom(σ⊥) = Dstate.

2.3 Informal semantics of processes

The valuation σ captures the values of those variables that are relevant for determining the future
behaviors of a process. The domain of the valuation σ in a Chi process 〈p, σ, E〉 consists of
the discrete variables and the continuous variables, including the predefined continuous variable
time. The dotted continuous variables and the algebraic variables are not included in the domain
of σ , because their values depend only on the process term p, possibly together with the values
of the other variables. The values of the dotted continuous variables and algebraic variables are
included in the trajectories that show the time dependent behavior of the values of the variables.
The trajectories represent externally visible (observable) information of a process. They are also
needed to ensure consistency of Chi processes, as further explained in Section 2.3.2.

The behavior of Chi processes is defined in terms of actions, delays, and consistency2. Actions
define instantaneous changes to the values of variables. Delays involve passage of time, where
for all variables their trajectory as a function of time is defined.

2.3.1 Variables

There are four classes of variables: discrete, continuous, dotted continuous, and algebraic vari-
ables; and there is the predefined continuous variable time, that denotes the current time.

2Formally, the behavior of Chi processes is defined in terms of action transitions, time transitions, and consistency
transitions, see Section 3. Informally, we use the term actions to refer to action transitions, the term delays to refer to
time transitions, and we use the terminology that a process is consistent to refer to the fact that the process can execute a
consistency transition.
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Note that the predefined variable time only behaves as the physical time if it does not change in
actions. Sufficient conditions for this are that time does not occur in the set of jumping variables
J , that it does not occur in a set W associated to an update predicate r , as in W : r , and that it
does not occur as a variable in a receive process term (such as ‘true→ h ? time : ∅ : true’, see
Section 2.5).

The differences with respect to the time dependent behavior of the four classes of variables (as
defined by the solution function for each variable, see Section 3.1.2) are as follows:

• The discrete variables remain constant while delaying.

• The continuous variables change according to an absolutely continuous function of time
while delaying (see Section 3.6.1).

• The dotted continuous variables change according to an integrable, possibly discontinuous,
function of time while delaying. This solution function is the derivative function (piece-
wise) of the solution function for the associated continuous variable, under the condition
that the latter function is (piecewise) differentiable. The relation between the dotted con-
tinuous variables and the continuous variables is explained in more detail in Section 3.6.1.

• The algebraic variables may change according to a discontinuous function of time while
delaying.

The differences with respect to the action behavior of the four classes of variables are as follows:

• The discrete and continuous variables are allowed to change only if they are in the set of
jumping variables J of the environment, if they are in the set W associated to an update
predicate r , as in W : r , see Section 2.5, or if they occur as a variable in a receive process
term, as in true→ h ? x : ∅ : true, see Section 2.5.

• The algebraic variables are in principle always allowed to change in action transitions, as
long as the update predicates r are satisfied, and the process remains consistent.

The differences with respect to the behavior in all transitions of the four classes of variables are
as follows:

• The resulting value of a discrete or continuous variable, including the predefined continu-
ous variable time, in a transition always equals its starting value in the next transition.

• For algebraic and dotted continuous variables there is no such relation. The reason for this
is that the discrete and continuous variables are the state variables, whereas the algebraic
and dotted continuous variables are not part of the state of a process.

Further explanation on the semantics of the behavior of the different classes of variables is found
in Section 3.6.1 on the equation process term, in Section 3.6.2 on the invariant, Section 3.6.4 on
the action update process term, in Section 3.6.5 on the send and receive update process terms,
and in Section 3.7.4 on parallel composition.
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2.3.2 Consistency

In Chi, only consistent processes have behavior. This is comparable to hybrid automata, where the
invariants of active locations must hold. Informally, in Chi, the ‘active’ equations and invariants
must hold.

Consider, for example, the process 〈 eqn y = n ‖ n := 1, {n 7→ 0, time 7→ 0}, ({n 7→ disc, time 7→
cont, y 7→ alg},∅,∅,∅) 〉 consisting of the discrete variable n, the predefined continuous variable
time, and the algebraic variable y. For the process terms used in the examples, and their informal
semantics, see Sections 2.5 and 2.6, respectively. Initially, the value of n equals 0, and thus the
value of y equals 0. After the assignment of 1 to n, the equation y = n should still hold, and thus
the value of y changes to 1.

Consistency also ensures that inconsistent processes cannot be reached. E.g, in inv x ≤ 0 ‖ x := 1,
the assignment to x cannot be executed. In fact, in Chi, only consistent processes can perform
action or delay transitions, and the result of an action or delay transition is always a consistent
process.

2.4 Syntax and informal semantics of expressions

An expression e in Chi is a combination of values, variables, operators, and functions that can in
principle be evaluated. Apart from the ‘normal’ mathematical expressions, the Chi language also
allows conditional expressions. Let e ∈ Expr(V̇ ) denote an arbitrary expression. Then the syntax
of conditional expressions is:

econd ::= (ec)
ec ::= u → e

| ec ‘|’ ec

The value of a conditional expression (u1 → e1 | · · · | un → en) is the value of an expression
ei for which the associated guard ui is true, assuming that such a guard exists. An example of
the use of a conditional expression is the equation process term eqn x = (y < 0→ 0 | 0 ≤ y ≤
1→ y | y > 1→ 1) that defines the value of variable x to be equal to the value of variable y,
unless the value of y is smaller than 0 or bigger than 1, in which case the value of x is limited to
0 or 1, respectively. The meaning of conditional expressions is more precisely defined in Section
3.5.

2.5 Syntax of process terms

The complete set of process terms Pabstract of the abstract syntax is defined below by the grammar
for the process terms p ∈ Pabstract. The process terms can be divided in two classes: the atomic
process terms patom, that represent the smallest process terms; and the compound process terms
p, that are constructed from one or more (atomic) process terms by means of operators.

Process term Operator name Id Id name
p ::= patom
| u � p initialization u predicate
| p; p sequential composition
| p 8 p alternative composition
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| p ‖ p parallel composition
| γA(p) synchronizing action A set of basic action labels
| ∂H (p) channel encapsulation H set of channels
| |[R R :: p ]| recursion scope R recursion mapping
| |[V D, σ⊥ :: p ]| variable scope D dynamic type mapping

σ⊥ valuation
| |[A UA :: p ]| action scope UA urgency mapping for action labels
| |[H UH :: p ]| channel scope UH urgency mapping for channels

Here, u ∈ Pred(V̇) is a predicate over variables and dotted continuous variables. In γA(p), the set
A ⊆ Lbasic is a set of synchronizing basic action labels (see Section 2.6.5), and in ∂H (p), the set
H is a set of channels for which synchronous communication is enforced.

The syntax of the recursion mapping R, and dynamic type mapping D with valuation σ⊥, occur-
ring in the recursion and variable scope operators |[R R :: p ]| and |[V D, σ⊥ :: p ]|, respectively, is
the same as the syntax for R, D, and σ⊥ occurring in a process 〈p, σ⊥, (D,U, J, R)〉 (see Section
2.2). The relation that is assumed to hold between the valuation σ and the dynamic type mapping
D of a process 〈p, σ, (D,U, J, R)〉 as defined in Section 2.2, is also assumed to hold between the
valuation σ⊥ and the dynamic type mapping D of a variable scope operator |[V D, σ⊥ :: p ]|: the
valuation σ⊥ is assumed to be defined precisely for the state variables defined by the associated
dynamic type mapping D: dom(σ⊥) = Dstate.

In the action scope operator, UA : Lbasic ⇀ B is an urgency mapping for basic action labels.
The domain of UA may not include the internal action label τ , since this action label may not be
redefined. In the channel scope operator, UH : H⇀ B is an urgency mapping for channels.

The initialization operator and the binary operators are listed in descending order of their binding
strength as follows� , ; , 8 , ‖.

The set of atomic process terms Patom is defined by the following grammar for the process terms
patom ∈ Patom:

Process term Process term name Id Description
patom ::= eqn u equation u predicate

| inv u invariant
| tcp u time can progress
| u → a : W : r guarded action update a action label

W set of variables
r update predicate

| u → h ! en : W : r guarded send update h channel
en expressions

| u → h ? xn : W : r guarded receive update xn variables
| u → h !? xn := en : W : r guarded communication

update
| X recursion variable
| pabbr

Here, u ∈ Pred(V̇) is a predicate over variables and dotted variables; the action label a is taken
from the set of basic action labels Lbasic, or it can be the special action label τ representing the
internal or silent step: a ∈ Lbasic ∪ {τ }; W ⊆ V̇ is a set of variables (algebraic and dotted variables
may be in W even though this has no effect); update predicate r ∈ Pred(V̇−) is a predicate
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over variables, dotted continuous variables, and ‘−’ superscripted variables (including the dotted
variables, e.g. ẋ and ẋ−); and h ∈ H is a channel. For n ≥ 1, en denotes the sequence of
expressions e1, . . . , en , where e1, . . . , en ∈ Expr(V̇), and xn denotes the sequence of variables
x1, . . . , xn , including the dotted continuous variables (x1, . . . , xn ∈ V̇). For n = 0, h ! en , h ? xn ,
and h !? xn := en denote h !, h ?, and h !?, respectively, where h is a channel. Finally, X ∈M is
a recursion variable, and pabbr represents abbreviations that are defined in the section below. As
is common practice in mathematics, the comma in predicates u and r denotes conjunction. E.g.
eqn u1, u2 denotes the equation process term eqn u1 ∧ u2.

2.5.1 Abbreviations

Process term pabbr represents the following abbreviations:

Process term Process term name
pabbr ::= δ deadlock

| ⊥ inconsistent
| xn := en multi-assignment
| psync

psync ::= a action label
| h ! en send
| h ? xn receive
| h !? xn := en communicate

The deadlock process term δ cannot perform actions or delays. It is however consistent. It is
defined as the tcp predicate false:

δ , tcp false

In Chi, only consistent processes can do action or delay transitions, and the result of an action
or delay transition is always a consistent process. Some process terms are consistent for certain
valuations and inconsistent for other valuations. E.g. the invariant inv x ≥ 0 is consistent for all
values of x greater or equal to zero, and inconsistent otherwise. The inconsistent process term ⊥
is inconsistent for all valuations and it cannot perform any transition. It is defined as an equation
that never holds:

⊥ , eqn false

The multi-assignment process term xn := en is defined as a guarded internal action update process
term that changes the values of the variables x1, . . . , xn to the values of the expressions e1, . . . ,en ,
respectively.

xn := en , true→ τ : {xn} : xn = e−n

Here e− denotes the result of replacing all variables (and dotted variables) in e by their ‘−’
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superscripted version, and xn = e−n denotes x1 = e−1 ∧ · · · ∧ xn := e−n . For example, process term
x := 2x + yz is defined as true→ τ : {x} : x = 2x− + y−z− (see also Section 4.3.2).

The action label, send, receive, and communicate process terms (represented by psync) are defined
as:

psync , true→ psync : ∅ : true

2.6 Informal semantics of process terms

Strictly speaking, a Chi process term p cannot perform actions nor delays. Only the Chi process
〈p, σ, E〉, that is obtained by adding a valuation and an environment to p, can, in principle,
perform actions and delays. Therefore, when we informally refer to a process term that performs
actions or delays, we refer to the process term together with a valuation and environment.

2.6.1 Manipulating the values of variables

In Chi, there are several classes of variables, and there are several means to change the value of
a variable, depending on the class of the variable. The main means for changing the value of a
variable are the equation process term, for changes over time, and the action update process term,
for instantaneous changes.

Equation process term In principle, continuous and algebraic variables change arbitrarily over
time when delaying, although, depending on the class of the variable, they may have to respect
some continuity requirements (see Section 3.6.1 for more details). An equation process term
eqn u, usually in the form of a differential algebraic equation, restricts the allowed behavior of
the continuous, dotted continuous, and algebraic variables in such a way that the value of the
predicate remains true over time.

Bisimilarity is an important concept to indicate equivalence of process terms. Process terms p
and q are bisimilar (see Section 3.8.2 for a formal definition), denoted as p↔ q, when their
external behavior is the same.

The semantics of equation process terms is defined in such a way that:

• Conjunction and parallel composition are equivalent for equations.

• Systems of equations that have hidden constraints3 are bisimilar to systems of equations in
which the hidden constraints are made explicit (obtained after differentiation).

Therefore, that for any continuous variable y:

eqn y = 1 ↔ eqn y = 1, ẏ = 0 ↔ eqn y = 1 ‖ eqn ẏ = 0 (1)

3For background information on hidden constraints and the associated higher index systems see Appendix A.
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This property obviously holds not only for y = 1, but for any equation y = c, where c is a value
(number) of type real. As a result of this property, the following property also holds

eqn y = 1 ‖ eqn z = ẏ ↔ eqn y = 1 ‖ eqn ẏ = 0 ‖ eqn z = 0

Although the process term y = 1 ‖ eqn z = ẏ appears to be consistent with initial conditions
{y 7→ 1, ẏ 7→ 1, z 7→ 1}, this is not the case. The process term eqn y = 1 ‖ eqn ẏ = 0 ‖ eqn z = 0
is obviously not consistent with these initial conditions. This means that there is no behavior
(no solutions) for this initial valuation. Both process terms are consistent with initial conditions
{y 7→ 1, ẏ 7→ 0, z 7→ 0}.

An essential (although not yet proven) property of the semantics is the substitution property (see
Property 3.12 in Section 3.8.3):

eqn y = e ‖ p ↔ eqn y = e ‖ p[e/y], (2)

where y is a variable, e an expression, and p a process term. The substitution property is the basis
of the so called ‘consistent equation semantics’ of Chi. The meaning of the substitution property
is that a variable which is defined to be equal to an expression can be replaced by its defining
expression in all parallel contexts. An example of this property is

eqn y = 1 ‖ x := y ↔ eqn y = 1 ‖ x := 1

As a result of the property defined in (1) in combination with the substitution property (2), the
following property holds:

eqn y = 1 ‖ z := ẏ ↔ eqn y = 1 ‖ z := 0

Invariant process term The invariant process term inv u, usually in the form of inv x ≥ e or
inv x ≤ e, is comparable to an invariant in a hybrid automaton. An invariant process term inv u
differs from an equation process term eqn u with respect to the consistency behavior. This is
explained in more detail below.

The initial conditions of an equation process term eqn u should satisfy the equation process term
and its hidden constraints (if any). The initial conditions of an invariant process term inv u need
to satisfy only the invariant itself. Therefore, the system of equations

inv y = 1, z = ẏ

is consistent with valuation {y 7→ 1, ẏ 7→ 1, z 7→ 1}, even though there is no subsequent delay
behavior. The difference between the equation and invariant process terms becomes more clear
when both systems are prefixed with a multi-assignment in a sequential composition. For the
process term

y, z := 1, 1; eqn y = 1, z = ẏ,

the multi-assignment cannot be executed, because {y 7→ 1, ẏ 7→ 1, z 7→ 1} are inconsistent initial
conditions for eqn y = 1, z = ẏ. The multi-assignment in the process term

y, z := 1, 0; eqn y = 1, z = ẏ

can be executed, because {y 7→ 1, ẏ 7→ 0, z 7→ 0} are consistent initial conditions for the equa-
tions.

For the process term
y, z := 1, 1; inv y = 1, z = ẏ,

the multi-assignment can be executed, because {y 7→ 1, ẏ 7→ 1, z 7→ 1} are consistent initial
conditions for inv y = 1, z = ẏ.
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A more representative combination of equations and invariants is as follows:

eqn ẋ = 1 ‖ inv x ≥ 1

Here the trajectory of variable x is determined by means of the equation process term, and the in-
variant process term restricts the initial value of x and the length of the trajectory (delay interval).

Guarded action update process term An instantaneous change of the value of a discrete or
continuous variable in Chi is always connected to the execution of an action. In action update
process terms, the action is represented by a label. Other types of action are related to commu-
nication, which is explained in the paragraph on parallelism in Section 2.6.5. Guarded action
update process term u → a : W : r denotes instantaneous changes to the variables from set W
(and to the variables from the set J of jumping variables from the environment), by means of an
action labeled a, such that predicate r and guard u are both satisfied. For non-urgent actions a, the
instantaneous changes can be preceded by arbitrary delays, and can thus take place at any point
in time. For urgent actions a, the instantaneous changes can be preceded by delays for as long
as the guard u remains false (assuming that action label a does not synchronize with other labels
in a parallel composition). The discrete and continuous variables that are not mentioned in W
and that are not in the set of jumping variables of the environment remain unchanged. The other
variables, including the algebraic and dotted continuous variables may obtain arbitrary values,
provided that the predicate r is satisfied and the process remains consistent.

A ‘−’ superscripted occurrence of a variable in r refers to the value of the variable in the extended
valuation prior to execution of the action update process term, and a normal (non-superscripted)
occurrence of a variable in r refers to the value of that variable in the extended valuation that
results from the execution of the action update process term. E.g. incrementing the value of vari-
able x by 1 is represented by the guarded update process term ‘true→ τ : {x} : x = x− + 1’.
The guard u is evaluated in the extended valuation prior to execution of the action update process
term. A predicate r is satisfied if evaluating the ‘−’ superscripted variables in the original ex-
tended valuation and evaluating the normal occurrences of the variables in the resulting extended
valuation means that the predicate is true. The reason to use an extended valuation for evaluating
update predicate r and guard u is that in such predicates also algebraic and dotted continuous
variables may be used. Note that it can be the case that different instantaneous changes satisfy
the predicate. This may result in non-determinism, as in ‘true→ τ : {x} : x2

= 1’.

Note that the (multi-)assignment is not a primitive in Chi, as for example in [5]. This is because
action update process terms are more expressive than assignments. An assignment can be ex-
pressed as an action update process term (see Section 4.3), but not the other way around. Consider
for example the action update process term ‘true→ τ : {x} : x ∈ [0,1]’, that changes the value of x
to a value in the interval [0,1]. Also, the predicate of an action update process term may consist of
a conjunction of implicit equations, e.g. ‘true→ τ : {x} : f1(x, x−) = 0 ∧ . . . ∧ fn(x, x−) = 0’.
The solution of such a system of equations, if present, is not always expressible in an explicit
form. The system may also have multiple solutions.

2.6.2 Initialization

The initialization operator process term u � p restricts the initial conditions of a process term p
to those initial conditions that satisfy predicate u.
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2.6.3 Sequential composition

The sequential composition of process terms p and q behaves as process term p until p terminates
(which can only happen if the state after termination of p represents consistent initial conditions
for q), and then continues to behave as process term q.

2.6.4 Choice

The alternative composition operator 8 allows a non-deterministic choice between the actions of
its operands. The participants in the alternative composition have to synchronize to obtain the
time behavior. This means that the passage of time cannot make a choice between the operands
of an alternative composition operator. Also, the trajectories of the variables have to be agreed
upon by both participants.

2.6.5 Parallelism

Parallelism can be specified by means of the parallel composition operator ‖. Parallel processes
interact by means of shared variables, by means of synchronous point-to-point communication /
synchronization via a channel, or by means of synchronizing action labels. The parallel compo-
sition p ‖ q synchronizes the time behavior of p and q , interleaves the non-synchronizing action
behavior (including the instantaneous changes of variables) of p and q, synchronizes matching
send and receive actions, and synchronizes synchronizing action labels. The synchronization of
time behavior means that only the time behaviors that are allowed by both p and q are allowed
by their parallel composition. The consistent equation semantics of Chi enforces that actions by
p (or q) are allowed only if the values of the variables before and after the actions represent con-
sistent initial conditions for the other process term q (or p). This means, among others, that the
active equations and invariants of q must hold before and after execution of an action by p. The
active part of a process term mainly changes as a result of execution of sequential process terms:
in a sequential composition p1; p2; . . . pn , where the active process term is p1, termination of p1
results in p2 becoming the active process term.

By means of the guarded send update process term u→ h !e1, . . . ,en :W : r , for n ≥ 1, the values
of expressions e1, . . . , en (evaluated w.r.t. the extended valuation) are sent via channel h, and the
update predicate r and the guard u need to be satisfied in the same way as for the action update
process term. For n = 0, this reduces to u → h ! : W : r and nothing is sent via the channel.
By means of the guarded receive update process term u → h ? x1, . . . , xn : W : r , for n ≥ 1,
values for x1, . . . , xn are received from channel h, and the update predicate and the guard need
to be satisfied in the same way as for the action update process term. For n = 0, this reduces to
u→ h ? : W : r , and nothing is received via the channel. Communication in Chi is the sending of
values by one parallel process via a channel to another parallel process, where the received values
(if any) are stored in variables. For communication, the acts of sending and receiving (values)
have to take place simultaneously in different parallel processes. In case no values are sent and
received, we refer to synchronization instead of communication.

Where actual synchronization and communication by means of channels always takes place be-
tween exactly two partners (a sending and a receiving process), synchronization by means of the
guarded action update process term u → a : W : r can involve any number of partners. In fact,
all partners of a parallel composition that share an action label a ∈ Lbasic in their set of syn-
chronizing actions must synchronize whenever any of these partners executes an action update
a : W : r . By means of the synchronizing action process term γA(p), the set of synchronizing
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action labels A ⊆ Lbasic is added to the set of synchronizing action labels of process term p, and
synchronization takes place on the basis of common synchronizing action labels. Note that most
automata synchronize on all action labels that are present on their edges. In such cases, the set of
synchronizing action labels is called the alphabet of the automaton. Their is no such requirement
in Chi: when the synchronizing action operator γA is not used in a process term p (or when the
operator is used only with empty sets A), the set of synchronizing action labels of p is empty.

In order to be able to model open systems (i.e. systems that interface with the environment), it is
necessary not to enforce communication via the external channels of the model (e.g. the channels
that send or receive from the environment). For communication via internal channels, however,
the communication of matching send and receive actions, in general is not only an option, but
an obligation. In such models, the separate occurrence of the send action and the receive action
via an internal channel is undesired. The encapsulation operator ∂H (p) is introduced to block
the send and receive actions via channels from the set H . This operator thus ensures that for all
channels from set H , only the synchronous execution of matching send and receive actions takes
place.

Action labels and channels can be declared as urgent or non-urgent in processes (see Section 2.2),
or in action scopes and channel scopes, respectively. Urgent action labels and urgent channels
may prevent delays from taking place, and/or they may restrict the length of a delay interval.
Delaying is possible only if, and for as long as no urgent actions are enabled (see Section 2.6.6).

An urgent action via an action label is enabled in a parallel composition if:

• the urgent action label is enabled (guard is true) and non-synchronizing in an operand of
the parallel composition, or

• the action label is enabled and synchronizing in both operands of the parallel composition.

An urgent (communication) action via an urgent channel is enabled in a parallel composition if:

• a send process term and a receive process term on the same urgent channel in the two
respective operands of the parallel composition are both enabled (guards are true).

2.6.6 Urgency

There are two main ways of expressing urgency:

• global action label urgency and global channel urgency by means of urgent action labels
and urgent channels, respectively. This kind of urgency is expressed in the environment of
a process by means of an urgency mapping.

• local urgency by means of the time can progress process term.

These concepts are explained in detail in the following sections. For more information on the use
of urgency, see Appendix B.
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Non-synchronizing urgent action labels Consider the following example process:

〈 time ≥ 1→ a : ∅ : true
, {time 7→ 0}
, ({time 7→ cont}, {a 7→ true},∅,∅)
〉

This process delays until time point 1 is reached. At that time point, the guard time ≥ 1 becomes
true, so that the action label a becomes enabled. This action label is declared as urgent by means
of the urgency mapping {a 7→ true} in the environment. Therefore, at time point 1, no further
delaying is possible, and the guarded action update statement ‘time ≥ 1 → a : ∅ : true’ must
execute the action, after which the process terminates. When the action label is declared as non-
urgent, as in the following process:

〈 time ≥ 1→ a : ∅ : true
, {time 7→ 0}
, ({time 7→ cont}, {a 7→ false},∅,∅)
〉,

initially, arbitrary delays are possible. When a time point has been reached for which time ≥ 1
holds (after a delay), the guard is enabled. From then on, the action update statement can execute
the action and terminate. The choice between delaying and executing the action is nondetermin-
istic.

Urgency restricts the length of delays, independently of consistency. In the example below, the
action update statement ‘time ≥ 1→ a : ∅ : true’ can never do the action, because that would
mean enabling the invariant process term ‘inv false’, which can never be satisfied. Therefore,
when time point 1 is reached after delaying, no further delaying is possible due to the enabled
urgent action. Since the action cannot be executed, the process deadlocks at time point 1.

〈 time ≥ 1→ a : ∅ : true; inv false
, {time 7→ 0}
, ({time 7→ cont}, {a 7→ true},∅,∅)
〉

In a parallel composition of non-synchronizing action labels, such as:

〈 time ≥ c1 → a : ∅ : true ‖ time ≥ c2 → a : ∅ : true
, {time 7→ 0}
, ({time 7→ cont}, {a 7→ true},∅,∅)
〉,

where c1 and c2 represent constants (c1, c2 ≥ 0), the action label a is enabled when the guard
time ≥ c1 or the guard time ≥ c2 is true. Since a is an urgent action label, time can progress
until the first of the two time points c1 or c2 is reached. This is at time point min(c1, c2). At that
time point, the action a the guard of which is true may be executed. If c1 = c2, both actions are
executed at the same time point, one after the other (interleaving semantics).
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Synchronizing urgent action labels In a parallel composition of synchronizing action labels,
such as:

〈 γ{a}(time ≥ c1 → a : ∅ : true) ‖ γ{a}(time ≥ c2 → a : ∅ : true)
, {time 7→ 0}
, ({time 7→ cont}, {a 7→ true},∅,∅)
〉,

where γ{a}(p) is the synchronizing action process term, the action label a is enabled only if
both partners of the parallel composition have an enabled guard for action label a. Thus both
guards time ≥ c1 and time ≥ c2 must be true. Therefore, time can progress until the time point
max(c1, c2) is reached (assuming c1, c2 ≥ 0). Then both guarded action update process terms
simultaneously execute the action.

Urgent channels Urgent channels allow progress of time until a send and a receive process term
on matching channels are enabled in different operands of a parallel composition. Therefore, the
following process can perform arbitrary delays, even though the channel is declared as urgent:

〈 time ≥ 1→ h! : ∅ : true
, {time 7→ 0}
, ({time 7→ cont}, {h 7→ true},∅,∅)
〉

In the process below, time can progress until the time point max(c1, c2) is reached (assuming
c1, c2 ≥ 0), and both guards become true.

〈 ∂{h}(time ≥ c1 → h! : ∅ : true ‖ time ≥ c2 → h? : ∅ : true)
, {time 7→ 0}
, ({time 7→ cont}, {h 7→ true},∅,∅)
〉

The delay behavior of the process without the encapsulation operator is the same. The only
difference is that where in the process above, the only action that can be done is the simultaneous
execution of the send and receive actions, in the process below, the send and receive update
process terms can also execute their actions independently of each other.

〈 time ≥ c1 → h! : ∅ : true ‖ time ≥ c2 → h? : ∅ : true
, {time 7→ 0}
, ({time 7→ cont}, {h 7→ true},∅,∅)
〉

Time can progress process term Where the guards of urgent action labels and urgent channels
are used to simultaneously enable action execution and to restrict progress of time, the time can
progress predicate process term ‘tcp u’ only restricts the progress of time. Another difference is
that urgency by means of urgent action labels and urgent channels is a global concept that may
depend on the synchronization behavior of multiple partners of a parallel composition, whereas
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the time can progress process term is used to specify local urgency, independently of synchro-
nization behavior. The process term tcp u allows delays for as long as the predicate u is true.
Only at the end point of the delay, the predicate is allowed to be false.

A difference between the time can progress process term tcp u and the invariant process term
inv u is that invariants are required to hold for all points of the delay interval, including the
final point. Another difference is that the value of the time can progress predicate u in tcp u is
irrelevant for the action behavior of processes, whereas invariants are required to hold in actions.

To restrict the length of the delays of a process term p, a time can progress process term tcp u is
usually composed in an alternative composition, as in p 8 tcp u. In this way, the tcp process term
is removed after the first action of p. Consider for example the process:

〈 eqn ẋ = 1 ‖ (x ≥ 1→ a : ∅ : true 8 tcp x < 2)
, {x 7→ 0, time 7→ 0}
, ({x 7→ cont, time 7→ cont}, {a 7→ false},∅,∅)
〉

Here, action label a is non-urgent. Initially, only delays are possible. When the value of the guard
becomes true at time point 1, the action can be executed, but delays are also possible until time
point 2. At that time point, the tcp process term tcp x < 2 prevents further delaying. Therefore,
the action can be executed at any time point t between 1 and 2 (1 ≤ t ≤ 2). The same process can
also be executed starting from an initial valuation {x 7→ 10, time 7→ 0}:

〈 eqn ẋ = 1 ‖ (x ≥ 1→ a : ∅ : true 8 tcp x < 2)
, {x 7→ 10, time 7→ 0}
, ({x 7→ cont, time 7→ cont}, {a 7→ false},∅,∅)
〉

In this case, initially no delays are possible. Therefore, the action must be executed immediately.

When an invariant is used, as in:

〈 eqn ẋ = 1 ‖ (x ≥ 1→ a : ∅ : true 8 inv x ≤ 2)
, {x 7→ 10, time 7→ 0}
, ({x 7→ cont, time 7→ cont}, {a 7→ false},∅,∅)
〉,

then initially the process is inconsistent: no consistency transition is possible, and therefore no
behavior is possible.

When the tcp predicate is the negation of the guard, as in

〈 eqn ẋ = 1 ‖ (x ≥ 1→ a : ∅ : true 8 tcp x < 1)
, {x 7→ 0, time 7→ 0}
, ({x 7→ cont, time 7→ cont}, {a 7→ false},∅,∅)
〉,
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progress of time is possible until the exact time point that the guard becomes true. In this case,
changing the definition of the action label to urgent ({a 7→ true}) does not change the meaning of
the process.

2.6.7 Recursive definitions

Process term X denotes a recursion variable (identifier) that is defined either in the environment
of the process, or in a recursion scope operator process term |[R R :: p ]|, as discussed in Section
2.6.8. Among others, recursion is used to model repetition and to model automata. Recursion
variable X can do whatever the process term of its definition can do.

2.6.8 Hierarchical modeling

Thus far, it has been assumed that all variables that are allowed to occur in a Chi process term are
declared in the environment. To support hierarchical modeling of systems, it is convenient to also
allow local declarations of variables. For this purpose, the variable scope operator process term
|[V D, σ⊥ :: p ]| is introduced, where D denotes a mapping defining the local variables and their
dynamic types, and σ⊥ denotes a (possibly partially defined) valuation of the local state variables.
It is allowed that variables with the same name as local variables have been declared on a more
global level already. Any occurrence of a variable from dom(D) in process term p refers to the
local variable and not to any more global declaration of the same variable name.

For similar purposes, local recursive definitions are declared by means of a recursion scope pro-
cess term |[R R :: p ]|, local action labels are declared by means of an action scope process
term |[A UA :: p ]|, and local channels are declared by means of a channel scope process term
|[H UH :: p ]|. The domains of recursion mapping R, urgent action mapping UA, and urgent chan-
nel mapping UH are used to declare the recursion variables, the action labels and the channels,
respectively. The mapping R defines for each recursion variable its associated process term, and
the mappings UA and UH define for each action and channel, respectively whether it is urgent or
non-urgent. The action and channel scope operators abstract (replace by the internal action τ )
the actions via the local action labels and channels, respectively. Furthermore, the channel scope
operator blocks the separate send and receive actions via local channels.

3 Formal semantics

3.1 Notations and mathematical definitions

3.1.1 Sets and types

• Lcom = {h!cs, h?cs, h!?cs | h ∈ H, cs ∈ 3∗} denotes the set of all communication action
labels. Here cs ∈ 3∗ denotes a list [c1, . . . , cn] of values (ci ∈ 3, 1 ≤ i ≤ n).

• L = Lbasic ∪ Lcom denotes the set of all action labels apart from the internal action label
τ . To ensure that basic action labels do not synchronize with channels, the set of basic
action labels and the set of communication action labels Lcom are required to be disjoint:
Lbasic ∩ Lcom = ∅.
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• Lτ = L ∪ {τ } denotes the set of all action labels.

• T = R denotes the set of all time points.

• T≥0 = {t ∈ T | t ≥ 0} denotes the set of all non-negative time points.

• valah = (Lbasic ∪ {τ } ∪ H) ⇀ B denotes the set of all action/channel valuations. These
are mappings from a basic action label, a τ action label, or a channel, to a boolean value,
where the boolean value represents the value of a guard associated to the action label or
channel.

3.1.2 Trajectories and solution functions

Two kinds of trajectory exist:

• A variable trajectory, which is usually referred to simply as trajectory and denoted by ρ,
where ρ : T ⇀ 6̇ and 6̇ = V̇ ⇀ 3. A variable trajectory is a function from time to a
variable valuation. It can be defined more precisely as ρ : T ⇀ (V → 3), with V ⊆ V̇ ,
indicating that the domains of the valuations V → 3 are the same for all time points of the
trajectory.

• An action/channel guard trajectory, usually denoted by means of θx , x ∈ {y, n, s, r} and
usually referred to simply as guard trajectory, where θx : T≥0 ⇀ valah, is a function from
time to an action/channel valuation. It can be defined more precisely as θx : T≥0 ⇀ (L →
3), with L ⊆ (Lbasic ∪ {τ } ∪H), indicating that the domains of the valuations L → 3 are
the same for all time points of the guard trajectory.

The identifier θ is often used to denote a quadruple of guard trajectories (θy, θn, θs, θr).
Here, θy : T≥0 ⇀ (Lbasic ⇀ B) represents the guard trajectory for the synchronizing action
labels, θn : T≥0 ⇀ ((Lbasic ∪ {τ } ∪H) ⇀ B) represents the guard trajectory for the non-
synchronizing action labels and for the ‘communication channels’ (combination of send
and receive action on matching channel), and θs, θr : T≥0 ⇀ (H⇀ B) represent the guard
trajectories for the ‘send action’ and ‘receive action’ channels (no communication yet),
respectively.

The ↓ operator can be applied to any trajectory; the ∨ and ∧ operators can be applied to ac-
tion/channel guard trajectories only. The operators are defined below.

Let f : T ⇀ (Y ⇀3) denote a trajectory (with Y = V ∪Lbasic ∪ {τ } ∪H), t ∈ T denote a time
point, S ⊆ Y denote a set, and x ∈ Y denote a variable, action label or channel. Then:

• f ↓ S denotes the trajectory h with dom(h) = dom( f ) such that h(t) = f (t) � S for each
time point t ∈ dom(h).

• f ↓ x denotes the solution function v : T ⇀ 3 with dom(v) = dom( f ) such that v(t) =
f (t)(x) for each t ∈ dom(v).

Let f : T → (Y → B) and g : T → (Z → B) denote guard trajectories with arbitrary T ⊆ T ,
and arbitrary Y, Z ⊆ Lbasic ∪ {τ } ∪H, and let � ∈ {∨,∧} denote either the ‘logical and’ operator,
or the ‘logical or’ operator. Then:
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• f � g denotes the trajectory h : T → ((Y ∪ Z)→ B) such that

∀t∈T,x∈Y∪Z h(t)(x) =


f (t)(x) if x ∈ Y \ Z
g(t)(x) if x ∈ Z \ Y
f (t)(x) � g(t)(x) if x ∈ Y ∩ Z

Finally, some abbreviations for guard trajectories are defined. Let U : (Lbasic ∪ {τ } ∪ H) ⇀ B
denote an urgency mapping, t ∈ T≥0 denote a time point, x ∈ Lbasic ∪ {τ } ∪ H denote a basic
action label, τ label, or a channel, ρ : T ⇀ 6̇ denote a variable trajectory, and u ∈ Pred(V̇)
denote a predicate. Then the following notations denote trajectories:

• flstU : [0, t] → (dom(U )→ {false}) denotes a guard trajectory that is false for all basic
action labels and channels from the domain of U .

• flst∅ : [0, t] → (∅ → B) denotes a guard trajectory for [0, t] to a action valuation on an
empty domain.

• flst∅(tU )3 = (flst∅, flstU , flstU , flstU ) denotes a quadruple of guard trajectories, used in the
SOS rules that define the delay behavior for the equation, invariant, and tcp process terms.

• θt xρu : [0, t] → ({x} → B) denotes a guard trajectory for a single basic action label or
channel x . The value of the guard trajectory at each time point s ∈ [0, t] is the value of the
guard u when evaluated in the valuation ρ(s): ∀s∈[0,t] θt xρu(s)(x) = ρ(s)(u). The notation
ρ(s)(u) is defined in Section 3.4.

3.2 General description of the SOS

This section presents the structured operational semantics (SOS [18]) of Chi. It associates an
extended version of the hybrid transition system as defined in [6] with a Chi process. The main
purpose of the SOS is to define the behavior of Chi processes at a certain chosen level of abstrac-
tion. The SOS is chosen to represent the following:

1. Discrete behavior by means of action transitions:

(a) _
_
−→ _⊆ (Pabstract×6× E)× ((T ⇀ 6̇)×Lτ ×B× 2V × (T ⇀ 6̇))× (Pabstract×

6 × E). The intuition of an action transition 〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈p′, σ ′, E ′〉 is

that the process 〈p, σ, E〉 executes the discrete synchronizing (b is true) or non-
synchronizing (b is false) action ` ∈ Lτ with trajectories ρ and ρ′ and thereby trans-
forms into the process 〈p′, σ ′, E ′〉, where σ ′ and E ′ denote the accompanying valua-
tion and environment of the process term p′, respectively, after the discrete action ` is
executed. The initial valuations ρ(0) and ρ′(0) represent consistent initial conditions
for the processes 〈p, σ, E〉 and 〈p′, σ ′, E ′〉, respectively. The relation between the
valuations ρ(0) and ρ′(0) defines the externally visible changes in the values of the
variables in the action transition. The set W represents the externally visible continu-
ous and discrete variables that are allowed to change (jump) in this action transition.
They need to be visible to obtain the proper semantics for synchronization in parallel
composition.

(b) _
_
−→ 〈X, _, _〉 ⊆ (Pabstract × 6 × E) × ((T ⇀ 6̇) × Lτ × B × 2V × (T ⇀ 6̇)) ×

(6 × E). The intuition of a (termination) transition 〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈X, σ ′, E ′〉

is that the process 〈p, σ, E〉 executes the discrete synchronizing/non-synchronizing
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(b is true/false) action ` with trajectories ρ and ρ′, set of jumping variables W , and
thereby transforms into the terminated process 〈X, σ ′, E ′〉.

2. Continuous behavior by means of time transitions: _
_
7−→ _⊆ (Pabstract×6×E)× (T≥0×

(T ⇀ 6̇) × (T ⇀ valah)
4) × (Pabstract × 6 × E). The intuition of a time transition

〈p, σ, E〉
t,ρ,(θy,θn,θs,θr)
7−→ 〈p′, σ ′, E ′〉 is that during the time transition, the extended valua-

tion defining the values of the visible variables at each time-point s ∈ [0, t] is given by
ρ(s). At the end-point t , the resulting process is 〈p′, σ ′, E ′〉. Furthermore, the quadruple
(θy(s), θn(s), θs(s), θr(s)) represents four valuations, mapping action labels and/or chan-
nels to the values of the associated guards during the delay (s ∈ [0, t]). The first trajectory,
θy, is defined for synchronizing action labels. It defines for each synchronizing action label
the conjunction of the guards of all partners involved in the synchronization. The second
trajectory, θn is defined for non-synchronizing action labels and for matching send and re-
ceive actions on channels. It defines for each non-synchronizing action label the trajectory
of the guard, and for each matching send and receive action on a channel the conjunction
of the send and receive guards. The third and forth components, θs and θr, define the values
of the guards of send and receive actions on channels, respectively.

3. Consistency by means of consistency transitions: _ _
 _ ⊆ (Pabstract ×6⊥ × E)× ((T ⇀

6̇)× 2Lbasic)× (Pabstract×6× E). The intuition of a consistency transition 〈p, σ⊥, E〉
ρ,A
 

〈p′, σ, E ′〉, is that the initial valuation ρ(0) of trajectory ρ represents consistent initial
conditions for process term p in environment E ; the elements from valuation σ⊥ that have
defined values represent the state part (valuation for the discrete and continuous variables)
of the consistent initial conditions; and the process has synchronizing actions A. The initial
conditions satisfy the active (see explanation below) equations, active invariants, and active
initialization predicates (see Sections 3.6.1, 3.6.2 and 3.7.1).

Informally, the active part of a sequential process term p1; . . . ; pn is p1, the active part of
recursion scope process term |[R {X1 7→ p1, . . . , Xr 7→ pr } :: pr+1 ]| is pr+1, the active
part distributes over the other operators, and for atomic process terms, the active part is the
atomic process term itself.

The reason for specifying the set of synchronizing actions on a consistency transition is
that in this way, the inconsistent process term is a zero element for the synchronizing action
operator (see Section 3.7.5 and Property 3.15).

The reason for specifying the trajectories ρ and ρ′ on action and consistency transitions instead
of (extended) valuations is that values of dotted variables ẋ and consistent initial conditions are
relevant only in the context of trajectories (on non-empty and non-singleton time intervals). The
differential or integral relation between a variable x and its dotted version ẋ can be defined only by
means of trajectories on a time interval. The trajectories on the action and consistency transitions
are also required for properties such as ‘eqn x = c ↔ eqn x = c ‖ eqn ẋ = 0’ and ‘eqn y =
e ‖ p ↔ eqn y = e ‖ p[e/y]’, as discussed in Section 2.6.1 and as defined in Section 3.8.3, to
hold.

The signatures of the action and time transitions are such that the original valuations are com-
pletely defined (σ ∈6). This means that a process 〈p, σ⊥, E〉 cannot do action or time transitions
if σ⊥ contains one or more variables the value of which is undefined.

Several properties of the semantics are presented in Section 3.8.1. Note that for consistency

transitions 〈p,σ⊥, E〉
ρ,A
 〈p′,σ, E〉, the new process term p′ is different from the original process

term p only in case that the active part of process term p contains an initialization operator u� p
(Section 3.7.1), a recursion variable X (Section 3.6.6), or a scope operator (Sections 3.7.7, 3.7.8,
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3.7.9, 3.7.10). The resulting valuation σ is different from σ⊥ only when the original valuation σ⊥
contains variables the value of which is undefined.

The relations and predicates mentioned above are defined through so-called deduction rules. A
deduction rule is of the form H

r , where H is a number of hypotheses separated by commas and
r is the result (transition) of the rule. The result of a deduction rule can be derived if all of its
hypotheses can be derived. In case the set of hypotheses is empty, the deduction rule is called an
axiom.

3.3 Abbreviations for deduction rules

To increase the readability of the Chi deduction rules, some additional abbreviations are used:

• E  〈p, σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈q, σ ′〉, where q ∈ Pabstract ∪ {X}, is an abbreviation for

〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈q, σ ′, E〉.

• E  〈p, σ 〉
t,ρ,θ
7−→ 〈q, σ ′〉 is an abbreviation for 〈p, σ, E〉

t,ρ,θ
7−→ 〈q, σ ′, E〉.

• E  〈p, σ 〉
ρ,A
 〈q, σ ′〉 is an abbreviation for 〈p, σ, E〉

ρ,A
 〈q, σ ′, E〉.

• E  f1, . . . , fn , where fi represents one of the previously defined transition relations (of

the forms 〈p, σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈q, σ ′〉 or 〈p, σ 〉

t,ρ,θ
7−→ 〈q, σ ′〉 or 〈p, σ 〉

ρ,A
 〈q, σ ′〉), is an

abbreviation for E  f1, . . . , E  fn .

Notation

E ′  〈p1, σ1〉
ρ1,`1,b1,W1,ρ

′

1
−−−−−−−−−→

〈 q11
...

q1n

, σ ′1

〉
, . . . , 〈pm, σm〉

ρm ,`m ,bm ,Wm ,ρ
′
m

−−−−−−−−−−→

〈 qm1
...

qmn

, σ ′m

〉
, C

E  〈r, σ 〉
ρ,`,b,W,ρ′
−−−−−−→

〈 s1
...

sn

, σ ′

〉 n

where qj i , si ∈ Pabstract ∪ {X}, pi , r ∈ Pabstract, and C denotes an optional hypothesis that must
be satisfied in the deduction rule, is an abbreviation for the following rules (one for each i):

E ′  〈p1, σ1〉
ρ1,`1,b1,W1,ρ

′

1
−−−−−−−−−→ 〈q1i , σ

′

1〉, . . . , 〈pm, σm〉
ρm ,`m ,bm ,Wm ,ρ

′
m

−−−−−−−−−−→ 〈qmi , σ
′
m〉, C

E  〈r, σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈si , σ ′〉

n.i

Notation

E ′  〈p1, σ1〉

t,ρ1,θ1
7−→

ρ1,A1 
〈q1, σ

′

1〉, . . . , 〈pi , σi 〉

t,ρi ,θi
7−→

ρi ,Ai 
〈qi , σ

′

i 〉

E  〈r, σ 〉
t,ρ,θ
7−→

ρ,A
 
〈s, σ ′〉

n
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where n denotes the number of the rule, is an abbreviation for the two rules presented below. A
rule for the delay part of Rule n:

E ′  〈p1, σ1〉
t,ρ1
7−→ 〈q1, σ

′

1〉, . . . , 〈pi , σi 〉
t,ρi ,θ
7−→ 〈qi , σ

′

i 〉

E  〈r, σ 〉
t,ρ,θ
7−→ 〈s, σ ′〉

n.a

and a rule for the consistency part of Rule n:

E ′  〈p1, σ⊥1〉
ρ1,A1 〈q1, σ

′

1〉, . . . , 〈pi , σ⊥i 〉
ρi ,Ai 〈qi , σ

′

i 〉

E  〈r, σ⊥〉
ρ,A
 〈s, σ ′〉

n.b,

where σ⊥, σ⊥1 . . . σ⊥i are syntactically equal to σ , σ1 . . . σi , respectively. The only difference is
that the valuations σ , σ1 . . . σi of the action transitions are element of 6, whereas the valuations
σ⊥, σ⊥1 . . . σ⊥i of the consistency transitions are element of 6⊥.

Furthermore, the following abbreviations are used:

•
H
R , where R is a number of results separated by commas, is an abbreviation for a set of
deduction rules of the form H

r ; one for each r ∈ R, and notation E  H
r is an abbreviation

for E H
E  r .

• 〈p, σ, E〉
λ
−→ 〈p′, σ ′, E ′〉 is an abbreviation for 〈p, σ, E〉

ρ,`,b,W,ρ′
−−−−−−→ 〈p′, σ ′, E ′〉.

• 〈p, σ⊥, E〉
ρ
 is an abbreviation for ∃A,p′,σ,E ′ 〈p, σ⊥, E〉

ρ,A
 〈p′, σ, E ′〉.

3.4 Additional notations

Let x ∈ V̇ be a, possibly dotted, variable, D :D be a dynamic type mapping, σ :6 be a valuation,
ξ : 6̇ be an extended valuation, e ∈ Expr(V̇) be an expression, t ∈ T be a time-point, ρ : T ⇀ 6̇

be a trajectory, u ∈ Pred(V̇) be a predicate, and U : (Lbasic ∪ {τ } ∪H) ⇀ B be partial function
from basic action labels, the τ label, or channels to boolean values. Then the following notations
are defined:

• σ(x) and ξ(x) denote the value of variable x in valuation σ and in extended valuation ξ ,
respectively, which corresponds to the usual syntax for function application.

• σ(e), ξ(e), and ρ(t)(e) denote the value of expression e evaluated in valuation σ , and in
extended valuations ξ and ρ(t), respectively. In these notations, the domains of σ , ξ , and
ρ(t) are assumed to include at least the variables occurring in e.

• Notation ξ |H u, where the domain of ξ includes at least the variables occurring in predicate
u, denotes the truth value of predicate u evaluated in valuation ξ . Thus ξ |H u if and only
if ξ(u), where the meaning of ξ(u) is as defined in the previous item.

• Ḋcont = {ẋ | x ∈ Dcont} denotes the set of dotted versions of the continuous variables.

• ξσ is an abbreviation for ξ � dom(σ ).

• ρσ is an abbreviation for ρ ↓ dom(σ ).

• ξ− denotes the extended valuation defined by dom(ξ−) = {x− | x ∈ dom(ξ)}, and
ξ−(x−) = ξ(x).
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• def : 6 → 26 maps a valuation to set of valuations with the same domain. For each valu-
ation in the set, the defined variable-value pairs in σ remain unchanged, and the undefined
pairs get arbitrary values. Formally: def(σ ) = {σ ′ | σ ′ : dom(σ )→ 3, ∀x∈dom(σ ) σ(x) 6=
⊥ ⇒ σ ′(x) = σ(x)}. The condition σ ∈ def(σ⊥) in the hypothesis of the consistency tran-
sition for each atomic process term ensures that all variables that are initially undefined in
σ⊥ are defined after the first consistency transition.

• �(D, σ, t) denotes the set of allowed trajectories for a time transition of duration t (or a
consistency transition if t = 0) as allowed by the solution concept function �FG (which is
defined in Section 3.6.1), such that the initial valuation ρ(0) of each trajectory restricted
to the variables in the current valuation σ equals σ . Dynamic type mapping D defines the
dynamic types (continuous, discrete or algebraic) of the variables. Formally:

� : (D ×6 × T )→ 2T⇀6̇

�(D, σ, t) = {ρ | ρ ∈ �FG(D, t), ρσ (0) = σ }

The parameters F and G of the solution concept function are in fact also parameters of the
function �. We use the sloppy notation �, without the parameters, to avoid cluttering a
large number of SOS rules with F and G.

• �4(D, σ ) denotes the set of all tuples (ρ, ρ′, ξ, ξ ′) such that ρ and ρ′ are trajectories for
duration zero as allowed by the solution concept function �FG. The initial valuation ρ(0)
restricted to the variables in σ equals σ , and the valuations ξ and ξ ′ are the initial valuations
of the trajectories ρ and ρ′, respectively:

�4 : (D ×6)→ 2(T⇀6̇)×(T⇀6̇)×6̇×6̇

�4(D, σ ) = { (ρ, ρ′, ξ, ξ ′)
| ρ ∈ �FG(D, 0), ρ′ ∈ �FG(D, 0),
ξ = ρ(0), ξ ′ = ρ′(0), ρσ (0) = σ
}

In the same way as in the definition of the previous function �, the parameters F and G
have been omitted in the definition of function �4.

• urg : ((Lbasic ∪ {τ } ∪H) ⇀ B)→ 2(Lbasic∪{τ }∪H) is a function on an urgency mapping. The
function application urg(U ) returns the set of urgent actions and urgent channels from U .
Formally: urg(U ) = {x | x ∈ dom(U ) ∧U (x)}.

3.5 Conditional expressions

Let ξ denote an extended valuation, e denote an expression, and ξ(e) denote the value of expres-
sion e when evaluated for extended valuation ξ . Then:

ξ((u1 → e1 | · · · | un → en)) =


ξ(e1) if ξ(u1)
...

ξ(en) if ξ(un)

It is assumed that at least one of the conditions evaluates to true: ξ |H (u1∨· · ·∨un). In case more
than one of the conditions are true, it is assumed that the values of the associated expressions are
the same. Formally, for all conditional expressions (u1 → e1 | · · · | un → en) we assume that
∀ξ∈6̇, i, j∈{1,...,n} ξ |H (ui ∧ u j ⇒ ei = ej ). Here, 6̇ denotes the set of extended valuations the
domain of which contains at least the (dotted) variables used in ui , u j , ei , and ej .
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3.6 Deduction rules for atomic process terms

The discussion of the atomic process terms starts with the equation process term, the semantics
of which is defined in terms of the solution function �, which in turn is defined in terms of the
solution concept function �FG. This solution concept function is essential for the delay behavior
of the other atomic process terms.

3.6.1 Equation process term

An equation process terms eqn u, where u is a predicate over variables and dotted continuous
variables, restricts the allowed behavior of the (dotted) continuous and algebraic variables in
such a way that the value of the predicate remains true over time.

ρ ∈ �(D, σ, t), ∀s∈dom(ρ) ρ(s) |H u

(D,U, J, R)  〈eqn u, σ 〉
t,ρ,flst∅(tU )3
7−→ 〈eqn u, ρσ (t)〉

1

ρ ∈ �(D, σ, 0), ∀s∈dom(ρ) ρ(s) |H u , σ ∈ def(σ⊥)

(D,U, J, R)  〈eqn u, σ⊥〉
ρ,∅
 〈eqn u, σ 〉

2

The function application �(D, σ, t) is defined as {ρ | ρ ∈ �FG(D, t), ρσ (0) = σ } in Section
3.4. This function ensures that the initial valuation ρσ (0) for the state variables of the trajectory
equals the starting valuation σ in Rule 1, and the final valuation σ in Rule 2. This final valuation
σ equals the starting valuation σ⊥ for all defined variables in σ⊥.

The parameter F ⊆ T ⇀ 3 of the solution concept function �FG defines the type of solution
functions that are allowed for the algebraic variables. The parameter G ⊆ (T ⇀3)× (T ⇀3)

defines the type of solution functions allowed for the continuous variables and for the dotted
continuous variables, and also the relation between the solution function of a continuous variable
and the solution function of its associated dotted continuous variable (the ‘derivative’). For a
given F and G, the solution concept function �FG : (2T⇀3 × 2(T⇀3)×(T⇀3) × D × T ) →
2T⇀6̇ is formally defined as:

�FG(D, t) =
{ ρ

| t ≥ 0
, ∃ε1,ε2>0 ( ρ : [−ε1, t + ε2] → ((dom(D) ∪ Ḋcont)→ 3)

, ∀x∈Ddisc ρ ↓ x is a constant function
, ∀x∈Dalg ρ ↓ x ∈ F
, ∀x∈Dcont (ρ ↓ x, ρ ↓ ẋ) ∈ G ∩ G0
, ∀s∈dom(ρ) ρ(s)(time) = σ(time)+ s
)

}

The duration t of the time transition t is nonnegative (t ≥ 0). The reason for introducing ε is
discussed below. The trajectory ρ is a function from the time interval [−ε1, t + ε2] to valuations,
where the domain of each valuation consists of the variables and dotted continuous variables
defined by dynamic type mapping D, and the codomain is 3.
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The solution function for each discrete variable is restricted to a constant function. The solution
function for each algebraic variable (ρ ↓ x for x ∈ Dalg) is required to be a function of type
F . The definition of the trajectory as ρ : [−ε1, t + ε2] → ((dom(D) ∪ Ḋcont) → 3) ensures
that for all algebraic variables x ∈ Dalg, the type of the solution function for x is defined by
(ρ ↓ x) : [−ε1, t + ε2] → 3, which are arbitrary functions of [−ε1, t + ε2] to values (from the
set of all values3). Having the set F as a parameter of the solution concept function allows us to
restrict the trajectories of the algebraic variables to, for instance, the set of piecewise continuous
functions, if this would be required for certain properties to hold.

The set G in the requirement ∀x∈Dcont (ρ ↓ x,ρ ↓ ẋ) ∈ G ∩G0 defines the additional requirements
for the solution functions for the continuous variables and their associated dotted versions (the
‘derivatives’). The set G0 represents the predefined (minimal) requirements. It is defined as:

G0 = { ( f, ḟ )
| ∃t0,t1∈T ,t0<0<t1 f, ḟ : [t0, t1] → R, ḟ is L1 on [t0, t1]
, ∀t∈dom( f ) f is differentiable in t ⇒ ḟ (t) = d

dt f (t)
, ∀t∈dom( f ) f (t) = f (0)+

∫ t
0 ḟ (s)ds

}

This definition of G0 requires the solution function ρ ↓ ẋ for the dotted variable ẋ to be indeed
the derivative function of the solution function ρ ↓ x for the continuous variable x , for time points
where ρ ↓ x is differentiable ( ḟ (t)= d

dt f (t)). Furthermore, the relation between f and ḟ satisfies
the Caratheodory solution concept [8] ( f (t) = f (0)+

∫ s
0 ḟ (s)ds). This ensures that the relation

between f and ḟ is also defined for the points (if any) where function f is not differentiable.
The function ḟ is required to be of class L1, so that the integral relation (in the Lebesgue sense)
is defined [19].

The existence of the integral relation implies that ρ ↓ x is an absolutely continuous function (for
all continuous variables), and that ρ ↓ x is differentiable almost everywhere (for all continuous
variables) [19]. Thus the solution concept function�FG restricts the trajectory ρ ↓ x of every con-
tinuous variable x to an absolutely continuous function, but it does allow a non-smooth trajectory
for a continuous variable in the case that the trajectory of its ‘derivative’ ρ ↓ ẋ is discontinuous.

The use of the values ε1, ε2, and the set G0 in the solution concept function �FG, together
wit the use of trajectories on action transitions, delay transitions, and consistency transitions are
necessary to ensure four main properties of the semantics:

• The relation between the solution function ρ ↓ x for a continuous variable x and the solu-
tion function ρ ↓ ẋ for its dotted version ẋ is a derivative relation where possible, and an
integral relation otherwise. In this way, unnecessary spurious discontinuities in the solution
function for a dotted continuous variable are prevented. The ε1, ε2 extensions of the delay
interval [0, t] ensure that differentiation at the beginning and end of the time interval is
defined in the same way as differentiation at other points in the interval.

• Conjunction and parallel composition are equivalent for equations (see Property 3.12 in
Section 3.8.3)

• A variable which is defined to be equal to an expression, can be replaced by its defining
expression in all parallel contexts (substitution property, see Property 3.12 in Section 3.8.3).

• Systems of equations that have hidden constraints are bisimilar to systems of equations in
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which the hidden constraints are made explicit (obtained after differentiation), as explained
in Section 2.6.1.

For instance, eqn x = c, with c ∈ R denoting an arbitrary real valued constant, is bisimilar
to eqn x = c ‖ eqn ẋ = 0. Therefore, when the solution function for a continuous variable
is constant, as is enforced by eqn x = c, the solution function for the associated dotted
continuous variable is zero. The integral relation f (t) = f (0)+

∫ s
0 f ′(s)ds is not enough

to enforce this, because it allows the solution function for ẋ to be a function that is zero
almost everywhere, thus allowing spurious discontinuities in the solution function for ẋ .

Consider, for example, the process

〈x = time, {x 7→ ⊥, time 7→ 0}, E〉,

that defines the value of x to be equal to the value of predefined variable time.

The environment E defines the continuous variable x and the predefined continuous variable
time: E = ({x 7→ cont, time 7→ cont}, ∅, ∅, ∅). The same environment E is used in the two
processes below.

The solution function for the derivative ẋ is the constant function 1, also at time point 0, without
any spurious discontinuities.

Consider on the other hand, the process

〈x = (time ≤ 2→ 0 | time > 2→ (time− 2)), {x 7→ ⊥, time 7→ 0}, E〉,

where (time≤ 2→ 0 | time> 2→ (time− 2)) is a conditional expression as defined in Sections
2.4 and 3.5. The process defines the value of x to be equal to 0 until time point 2. The value of
x increases with a derivative of 1 after time point 2. In this case, the solution function for the
derivative ẋ is the constant function 0, until time point 2, where it changes discontinuously to 1.
At time point 2, ẋ can have any value (non-determinism).

Consider, as a third example, the process

〈ẋ = (time ≤ 2→ 0 | time > 2→ 1), {x 7→ 0, time 7→ 0}, E〉.

This process defines the value of the dotted variable ẋ to be changing discontinuously from 0 to
1 at time point 2. The solution function for the continuous variable x is the continuous function

(ρ ↓ x)(t) =

{
0 if t ≤ 2
t − 2 if t ≥ 2.

Other examples illustrating the properties of the semantics can be found in Section 2.6.1. The
properties derived in Section 3.8 are valid for all parameters F and G. For the translation of
hybrid automata to Chi, differentiable functions would be required for the solution functions of
the continuous variables: G = {( f, ḟ ) | f is differentiable, and ḟ is the derivative function of
f }. In this way, the semantics of the Chi translation corresponds to the semantics of the hybrid
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automaton. In other cases, differentiability can be too strong a restriction, so that piecewise
continuous functions for the trajectories of the algebraic and dotted variables are assumed: F =
{ f | f is a piecewise continuous function}, G = {( f, ḟ ) | ḟ is a piecewise continuous function}.
It is also possible not to define additional restrictions: F = { f | true}, G = {( f, ḟ ) | true}. For a
process with for each variable just one solution function such as: 〈 eqn ẋ = y, y= (time< 1→ 0 |
time ≥ 1→ 1), {x 7→ 0, time 7→ 0}, ({x 7→ cont, time 7→ cont, y 7→ alg},∅,∅) 〉, the different
choices for F and G as proposed above have no effect. For a process that allows infinitely many
solutions, such as 〈 eqn true, {x 7→ 0, time 7→ 0}, ({x 7→ cont, time 7→ cont, y 7→ alg},∅,∅) 〉,
the different choices for F and G would obviously result in differences in the solution functions.

3.6.2 Invariant process term

An invariant process term inv u, where u is a predicate over variables and dotted continuous
variables, restricts the allowed behavior of the (dotted) continuous and algebraic variables in
such a way that the value of the predicate remains true over the interval [0, t] in the case of a
delay transition, or at time point 0 in the case of a consistency transition. The only difference
between the equation process term eqn u (see Section 3.6.1) and the invariant process term inv u
is that the predicate u of the equation process term should be satisfied for all time points of the
domain of the trajectory ρ ([−ε, t + ε] for some ε > 0), whereas the predicate u of the invariant
process term needs to be satisfied only for the time points in the interval [0, t]. More information
relating invariant process terms to equation process terms can be found in Section 2.6.1.

ρ ∈ �(D, σ, t), ∀s∈[0,t] ρ(s) |H u

(D,U, J, R)  〈inv u, σ 〉
t,ρ,flst∅(tU )3
7−→ 〈inv u, ρσ (t)〉

3

ρ ∈ �(D, σ, 0), ρ(0) |H u , σ ∈ def(σ⊥)

(D,U, J, R)  〈inv u, σ⊥〉
ρ,∅
 〈inv u, σ 〉

4

3.6.3 Time can progress process term

The predicate u in the time can progress process term tcp u is a predicate over variables and
dotted continuous variables. It allows delays for as long as the predicate u is true, or in other
words, until the time-point when the tcp predicate is false. Unlike the equation and invariant
process terms eqn u and inv u, which are also required to hold in actions to ensure consistency,
the time can progress process terms are irrelevant for the action behavior of processes (see the end
of Section 2.6.6 for more information). The set consisting of the time point zero {0} is included
in condition s ∈ [0, t) ∪ {0} in Rule 5, because the interval [0, t) equals the empty set for t = 0.

ρ ∈ �(D, σ, t), ∀s∈[0,t)∪{0} ρ(s) |H u

(D,U, J, R)  〈tcp u, σ 〉
t,ρ,flst∅(tU )3
7−→ 〈tcp u, ρσ (t)〉

5

ρ ∈ �(D, σ, 0), σ ∈ def(σ⊥)

(D,U, J, R)  〈tcp u, σ⊥〉
ρ,∅
 〈tcp u, σ 〉

6

29



3.6.4 Guarded action update process term

Guarded action update process term u → a : W : r denotes delayable (Rule 8) instantaneous
changes to the variables from set W and to the globally defined jumping variables J , by means of
an action labeled a ∈ Lbasic ∪ {τ }, such that the guard u and predicate r are satisfied, see Rule 7.

The values of the variables from dom(σ ) in ξ are given by σ , and the dotted variables Ḋcont and
the algebraic variables Dalg in ξ can in principle take any value ((ρ,ρ′, ξ, ξ ′) ∈�4(D, σ ) in Rule
7) as long as the guard and update predicate r are satisfied (ξ |H u , ξ− ∪ ξ ′ |H r ). Variables
occurring with a ‘−’ superscript in r are evaluated in ξ−, which denotes the extended valuation
with the values of variables before the discrete change. The guard u is also evaluated using the
values for variables before the discrete change (in extended valuation ξ ). The other (‘normal’)
variables in r are evaluated in ξ ′, using the values for the variables after the discrete change. The
valuation σs represents the values for the non-jumping state variables, that is the variables in σ
other than the jumping variables J ∪W (σs = σ � J ∪W ). The values of these variables remain
unchanged in the action transition.

The guarded action update process term u → a : W : r allows arbitrary time transitions for non-
urgent action labels a (U (a) is false). These time transitions need to satisfy only the general
solution function requirements (ρ ∈ �(D, σ, t), see Rule 8). These requirements ensure, among
others, that trajectories of discrete variables are constant and that the trajectory of each continuous
variable is an absolutely continuous function that starts with the value of the continuous variable
in σ .

For urgent action labels a (U (a) holds), the guard trajectory θtaρu (defined in Section 3.1.2)
should be false at all time points (possibly excluding the last time point) of the delay, (see Rule
8). This behavior is analogous to the delay behavior of the tcp process term as defined in Section
3.6.3. The three guard trajectories flstU are trajectories over the interval [0, t] to valuations from
the set of all basic action labels and channels (the domain U from the environment) to false. The
guard trajectory flst∅ is a trajectory over [0, t] to a valuation on an empty domain.

(ρ, ρ′, ξ, ξ ′) ∈ �4(D, σ ), σs = σ � J ∪W , ξ ′σs
= σs , ξ |H u , ξ− ∪ ξ ′ |H r

(D,U, J, R)  〈u → a : W : r , σ 〉
ρ,a,false,W∩dom(σ ),ρ′
−−−−−−−−−−−−−→ 〈X, ξ ′σ 〉

7

ρ ∈ �(D, σ, t), U (a)⇒ ∀s∈[0,t)∪{0} ¬θtaρu(s)(a)

(D,U, J, R)  〈u → a : W : r , σ 〉
t,ρ,(flst∅,flstU∨θtaρu ,flstU ,flstU )

7−→ 〈u → a : W : r , ρσ (t)〉
8

ρ ∈ �(D, σ, 0), σ ∈ def(σ⊥)

(D,U, J, R)  〈u → a : W : r , σ⊥〉
ρ,∅
 〈u → a : W : r, σ 〉

9

3.6.5 Guarded send and receive update process term

Guarded send and receive update process terms (u → h ! en : W : r) and (u → h ? xn : W : r)
denote delayable sending (Rule 13.a) of expression(s) en via channel h, and delayable receiving
(Rule 13.b) of information via channel h into variable(s) xn , respectively, in such a way that guard
u and predicate r are satisfied, allowing the variables from the sets W and J (and in case of the
send process term the variables xn) to change. Evaluation of the guard u and update part W : r
occurs in the same way as in Rule 7.
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The values of expressions e1, . . . , en which are sent via channel h are evaluated in extended
valuation ξ , see Rule 10, where en denotes e1, . . . , en , [ξ(en)] denotes the list of values
[ξ(e1), . . . , ξ(en)] for n ≥ 1, and ξ(e) denotes the value of expression e for extended valua-
tion ξ . The case that n equals 0, represents the case where nothing is sent via the channel, and
e0 and [ξ(e0)] denote an empty expression and an empty list, respectively. For n ≥ 1, the receive
process term h ? xn can receive the list of values [cn], see Rule 11, where xn denotes x1, . . . , xn ,
{xn} denotes the set {x1, . . . , xn} , [cn] denotes the list of values [c1, . . . , cn], and ξ ′(xn) = cn is
an abbreviation for ξ ′(x1) = c1, . . . , ξ

′(xn) = cn . For n = 0, nothing is received, so that x0 and
c0 are empty, and ξ ′(x0) = c0 always holds.

The only use of the guarded communication update process term u → h !? xn := en : W : r
is to enable the elimination of parallel composition. For example, it allows rewriting of the
parallel composition h ! en ‖ h ? xn as the alternative composition h ! en ; h ? xn 8 h ? xn ; h ! en 8
h !? xn := en .

The meaning of the update part W : r in the rules 10, 11, and 12 is analogous to the meaning of
the update part W : r in Rule 7. The delay behavior of the communication update process term
as specified in Rule 14 is analogous to the delay behavior of the action update process term as
specified in Rule 8. The delay behavior of the send and receive update process terms, as specified
in Rule 13, is not restricted in the case of urgent channels, because separate send and receive
actions cannot be urgent. Only the communication action, that is a result of the simultaneous
execution of a send and receive action, can be urgent (see Rule 14). To understand the difference
between the four guard trajectories in the delay transitions, see the explanation of Rule 27 in
Section 3.7.4 on the semantics of the parallel composition operator.

(ρ, ρ′, ξ, ξ ′) ∈ �4(D, σ ), σs = σ � J ∪W , ξ ′σs
= σs , ξ |H u , ξ− ∪ ξ ′ |H r

(D,U, J, R)  〈u → h ! en : W : r , σ 〉
ρ , h![ξ(en)], false, W∩dom(σ ), ρ′
−−−−−−−−−−−−−−−−−−−−−→ 〈X, ξ ′σ 〉

10

(ρ, ρ′, ξ, ξ ′) ∈ �4(D, σ ), σs = σ � J ∪ {xn} ∪W , ξ ′σs
= σs ,

ξ ′(xn) = cn , ξ |H u , ξ− ∪ ξ ′ |H r

(D,U, J, R)  〈u → h ? xn : W : r , σ 〉
ρ , h?[cn ], false, ({xn}∪W )∩dom(σ ), ρ′
−−−−−−−−−−−−−−−−−−−−−−−−→ 〈X, ξ ′σ 〉

11

(ρ, ρ′, ξ, ξ ′) ∈ �4(D, σ ), σs = σ � J ∪ {xn} ∪W , ξ ′σs
= σs ,

ξ ′(xn) = ξ(en) = cn , ξ |H u , ξ− ∪ ξ ′ |H r

(D,U, J, R)  〈u → h !? xn := en : W : r , σ 〉
ρ , h!?[cn ], false, ({xn}∪W )∩dom(σ ), ρ′
−−−−−−−−−−−−−−−−−−−−−−−−→ 〈X, ξ ′σ 〉

12

ρ ∈ �(D, σ, t)

E  〈u → h ! en : W : r , σ 〉
t,ρ,(flst∅,flstU ,flstU∨θthρu ,flstU )

7−→ 〈u → h ! en : W : r , ρσ (t)〉,

〈u → h ? xn : W : r , σ 〉
t,ρ,(flst∅,flstU ,flstU ,flstU∨θthρu)

7−→ 〈u → h ? xn : W : r , ρσ (t)〉

13

ρ ∈ �(D, σ, t), U (h)⇒ ∀s∈[0,t)∪{0} ¬θthρu(s)(h)

(D,U, J, R)  〈u → h !? xn := en : W : r , σ 〉
t,ρ,(flst∅,flstU∨θthρu ,flstU ,flstU )

7−→

〈u → h !? xn := en : W : r , ρσ (t)〉

14
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ρ ∈ �(D, σ, 0), σ ∈ def(σ⊥)

(D,U, J, R)  〈u → h ! en : W : r , σ⊥〉
ρ,∅
 〈u → h ! en : W : r, σ 〉,

〈u → h ? xn : W : r , σ⊥〉
ρ,∅
 〈u → h ? xn : W : r, σ 〉,

〈u → h !? xn := en : W : r , σ⊥〉
ρ,∅
 〈u → h !? xn := en : W : r, σ 〉

15

3.6.6 Recursion variable process term

A recursion variable process term X behaves as the process term given by R(X). Here R(X) is the
process term that is defined for recursion variable X in recursion mapping R. This is equivalent
to syntactically replacing recursion variable X by its defining process term R(X). Recursion
mapping R can be defined in the environment of the Chi process directly, or by means of the
recursion scope operator, see Section 3.7.7.

(D,U, J, R) 
〈R(X), σ 〉

λ
−→ 〈
X
p′ , σ

′
〉

〈X, σ 〉
λ
−→ 〈
X
p′ , σ

′〉

16

(D,U, J, R) 

〈R(X), σ 〉
t,ρ,θ
7−→

ρ,A
 
〈p′, σ ′〉

〈X, σ 〉
t,ρ,θ
7−→

ρ,A
 
〈p′, σ ′〉

17

3.7 Deduction rules for operators

3.7.1 Initialization operator

The initialization process term u � p restricts the consistent initial conditions of process term
p to those initial conditions that satisfy predicate u. The initialization predicate u in u � p is
similar to the initial condition of a hybrid automaton: actions or delays in a hybrid automaton can
take place only from an initial state that satisfies the initial condition and invariant of the initial
location. In case multiple automata are composed in a parallel composition, the initial conditions
of the parallel automata are taken into consideration simultaneously. This behavior is reflected in
Chi by the property (u � p ‖ u′ � q ↔ u ∧ u′ � (p ‖ q), see Property 3.9 in Section 3.8.3).
The initial state specified by the initialization predicate u is obtained by means of a consistency
transition. There is no other behavior for the initialization process term.

E 
〈p, σ⊥〉

ρ,A
 〈p′, σ 〉, ρ(0) |H u

〈u � p, σ⊥〉
ρ,A
 〈p′, σ 〉

18

Consider for example the process

〈 ẋ = 0� eqn ẋ = −x + 1
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, {x 7→ ⊥, time 7→ 0}
, ({x 7→ cont, time 7→ cont},∅,∅,∅})
〉

This process can do a consistency transition to the process

〈 eqn ẋ = −x + 1
, {x 7→ 1, time 7→ 0}
, ({x 7→ cont, time 7→ cont},∅,∅,∅})
〉

The initialization predicate ẋ = 0 defines steady state initialization (derivatives are zero). Note
that restrictions on algebraic or on dotted continuous variables specified in the initialization pred-
icate u of process term u � p have effect only if the algebraic or dotted continuous variable is
related to a state variable (continuous or discrete variable) by means of an equation, invariant or
initialization predicate. Consider as a second example the process

〈 y = 2� eqn ẋ = 3, y = 2x
, {x 7→ ⊥, time 7→ 0}
, ({x 7→ cont, time 7→ cont, y 7→ alg},∅,∅,∅})
〉,

Here, the algebraic variable y is related to the state variable x by means of the equation y = 2x .
The process can do a consistency transition to the process

〈 eqn ẋ = 3, y = 2x
, {x 7→ 1, time 7→ 0}
, ({x 7→ cont, time 7→ cont, y 7→ alg},∅,∅,∅})
〉,

In the example process below, however, initialization of the algebraic variable (y = 2� . . . ) has
no effect.

〈 y = 2� n := y
, {n 7→ ⊥, time 7→ 0}
, ({n 7→ disc, time 7→ cont, y 7→ alg},∅,∅,∅})
〉

The process can de a consistency transition to the process

〈 n := y
, {n 7→ c, time 7→ 0}
, ({n 7→ disc, time 7→ cont, y 7→ alg},∅,∅,∅})
〉,
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where c can be any value. The value of the discrete variable n after execution of the assignment
n := y can be any value, since the value of algebraic variable y is not restricted by any predicate.
For an example of the initialization operator in combination with the variable scope operator, see
Section 4.3.9 on the definition of the delay process term.

3.7.2 Sequential composition operator

The sequential composition of process terms p and q behaves as process term p until p termi-
nates, and then continues to behave as process term q . When p terminates, the extended valuation
ρ′(0) represents consistent initial conditions for q (see Rule 19).

E 
〈p, σ 〉

ρ,`,b,W,ρ′
−−−−−−→ 〈X, σ ′〉, 〈q, σ ′〉

ρ′,A
 〈q ′, σ ′′〉

〈p; q, σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈q ′, σ ′〉

19 E 
〈p, σ 〉

λ
−→ 〈p′, σ ′〉

〈p; q, σ 〉
λ
−→ 〈p′; q, σ ′〉

20

E 

〈p, σ 〉
t,ρ,θ
7−→

ρ,A
 
〈p′, σ ′〉

〈p; q, σ 〉
t,ρ,θ
7−→

ρ,A
 
〈p′; q, σ ′〉

21

3.7.3 Alternative composition operator

Applying the alternative composition operator to process terms p and q models a non-
deterministic choice between p and q for action transitions. Process term p can perform action
transitions only if the initial extended valuation ρ(0) represents consistent initial conditions for
process term q , as specified in Rule 22.

Consider for example the following process term: inv y = 1 8 x := y. This corresponds to
a hybrid automaton with one location, invariant y = 1, and an outgoing edge with assignment
x := y. The invariant y = 1 ensures that the value of y equals 1 when the outgoing edge is taken.

The passage of time cannot result in making a choice between p and q , since the time transi-
tions of the process terms p and q have to synchronize to obtain the time transition (with the
same time step t and trajectory ρ) of their alternative composition as defined by the delay part of
Rule 23. The resulting expression θp ∨ θq denotes the disjunction of the individual guard trajec-
tories for p and q. Here θp denotes the quadruple (θy p, θn p, θs p, θr p), θq denotes the quadruple
(θyq , θnq , θsq , θrq), and θp ∨ θq denotes the quadruple (θy p ∨ θyq , θn p ∨ θnq , θs p ∨ θsq , θr p ∨ θrq).
The disjunction of the guard trajectories is taken because the alternative composition p 8 q can
delay until p or q has an enabled urgent action. The consistency part of this rule defines that the
set of synchronizing actions of an alternative composition of process terms is the union of the set
of synchronizing actions of the elements.

E 
〈p, σ 〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, 〈q, σ 〉

ρ
 

〈p 8 q, σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, 〈q 8 p, σ 〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉
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E 

〈p, σ 〉
t,ρ,θp
7−→

ρ,A
 
〈p′, σ ′〉, 〈q, σ 〉

t,ρ,θq
7−→

ρ,B
 
〈q ′, σ ′〉

〈p 8 q, σ 〉
t,ρ,θp∨θq
7−→

ρ,A∪B
 

〈p′ 8 q ′, σ ′〉
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3.7.4 Parallel composition operator

The parallel composition allows the synchronization of matching send and receive actions as
defined by Rule 24. A send action h!cs and a receive action h′?cs′ match iff h = h′ and cs = cs′;
i.e. the channels used for sending and receiving are the same, and also the values sent and the
values received are identical. Furthermore, the resulting trajectories ρ′ of the send action and
the receive action have to be the same. To allow the values of shared variables to change in the
sending process term due to changes in their values caused by the receiving process term, and
vice versa, the process term that causes the changes adds the set of changed variables to the set
of jumping variables of the environment of the parallel process term. This is achieved by means
of the sets W1 and W2 (see Rule 24 and also Rule 25). The result of the synchronization is a
communication action that is represented by h!?cs.

The parallel composition requires synchronization of equal basic action labels in the case that the
action label is synchronizing in both operands of the parallel composition (third parameter of the
action transition label is true, see Rule 25).

The parallel composition of process terms p and q has as its behavior with respect to non-
synchronizing action transitions the interleaving of the behaviors of p and q (see Rule 26).
Action transitions are non-synchronizing if the action label ` of the action transition is non-
synchronizing (accompanying parameter b is false), or if the action label ` is non-synchronizing
in the other operand of the parallel composition (` 6∈ A). The purpose of the consistency transition

〈q, σ 〉
ρ,A
 〈q ′, σ ′′〉 is to ensure consistency and to obtain the set of synchronizing action labels A.

The only purpose of the consistency transition 〈q ′, σ ′〉
ρ′

 is to ensure consistency.

(D,U, J ∪W2, R)  〈p, σ 〉
ρ,h!cs,b1,W1,ρ

′

−−−−−−−−−→

〈X
p′

X
p′
, σ ′

〉
,

(D,U, J ∪W1, R)  〈q, σ 〉
ρ,h?cs,b2,W2,ρ

′

−−−−−−−−−→

〈X
X
q ′

q ′
, σ ′

〉

(D,U, J, R)  〈p ‖ q, σ 〉
ρ,h!?cs,false,W1∪W2,ρ

′

−−−−−−−−−−−−−→

〈 X
p′

q ′

p′ ‖ q ′
, σ ′

〉
,

〈q ‖ p, σ 〉
ρ,h!?cs,false,W1∪W2,ρ

′

−−−−−−−−−−−−−→

〈 X
p′

q ′

q ′ ‖ p′
, σ ′

〉
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(D,U, J ∪W2, R)  〈p, σ 〉
ρ,`,true,W1,ρ

′

−−−−−−−−→

〈X
p′

X
p′
, σ ′

〉

(D,U, J ∪W1, R)  〈q, σ 〉
ρ,`,true,W2,ρ

′

−−−−−−−−→

〈X
X
q ′

q ′
, σ ′

〉

(D,U, J, R)  〈p ‖ q, σ 〉
ρ,`,true,W1∪W2,ρ

′

−−−−−−−−−−−→

〈 X
p′

q ′

p′ ‖ q ′
, σ ′

〉 25

E 
〈p, σ 〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, 〈q, σ 〉

ρ,A
 〈q ′, σ ′′〉, ¬b ∨ ` 6∈ A, 〈q ′, σ ′〉

ρ′

 

〈p ‖ q, σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

q ′

p′ ‖ q ′ , σ
′
〉, 〈q ‖ p, σ 〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

q ′

q ′ ‖ p′ , σ
′
〉
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Rule 27 specifies that the time transitions of the process terms that are put in parallel synchronize
on the time, and on the variable trajectory. The resulting quadruple of guard trajectories

(θy pq , θn pq , θs p ∨ θsq , θr p ∨ θrq)

consists of the following elements:

• θy pq = θy p ∧ θyq : the conjunction of the two guard trajectories for the synchronizing action
labels.

• θn pq = (θn p ∨ θnq) ∨ (θs p ∧ θrq) ∨ (θr p ∧ θsq): the disjunction of

– θn p ∨ θnq : the disjunction of the guard trajectories for the non-synchronizing action
labels from p and q ,

– θs p ∧ θrq : the conjunction of the guard trajectories for the send actions from p and
matching receive actions from q, and

– θr p ∧ θsq : the conjunction of the guard trajectories for the receive actions from p and
matching send actions from q.

• θs p ∨ θsq : the disjunction of the send actions from p and q .

• θr p ∨ θrq : the disjunction of the receive actions from p and q.

The resulting time transition is possible only for as long as the disjunction of the resulting guard
trajectories θy pq and θn pq is false. Note that θn p(s), θnq(s), and θn pq(s) are complete functions
on dom(U ) for all s ∈ [0, t] (whereas θy pq(s) is a partial function on dom(U )). Therefore,
the disjunction (θy pq ∨ θn pq)(s) is also a complete function on dom(U ) for all s ∈ [0, t]. The
resulting guard trajectories for the send and receive actions θs p ∨ θsq and θr p ∨ θrq , respectively,
do not affect the duration of time transitions, since channels are assumed to allow synchronous
communication only.

The notation U0 denotes an urgency mapping with the same domain as U , where all action la-
bels and channels are defined as non-urgent. Formally, U0 : (Lbasic ∪ {τ } ∪ H) ⇀ B, such that
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dom(U0) = dom(U ), and ∀x∈dom(U0)¬U0(x). By replacing the urgency mapping U of the result
by the non-urgent urgency mapping U0 in the hypothesis, the time transitions for the operands of
the parallel composition are constructed based on non-urgent actions and channels.

(D,U0, J, R)  〈p, σ 〉
t,ρ,(θy p,θn p,θs p,θr p)

7−→ 〈p′, σ ′〉, 〈q, σ 〉
t,ρ,(θyq ,θnq ,θsq ,θrq )

7−→ 〈q ′, σ ′〉,
∀s∈[0,t)∪{0},x∈urg(U ) ¬(θy pq ∨ θn pq)(s)(x)

(D,U, J, R)  〈p ‖ q, σ 〉
t,ρ,(θy pq ,θn pq ,θs p∨θsq ,θr p∨θrq )

7−→ 〈p′ ‖ q ′, σ ′〉
27

The consistency transitions of the process terms that are put in parallel synchronize, and take the
union of the sets of synchronizing actions, in the same way as for alternative composition, see
Rules 23.b and 28.

E 
〈p, σ⊥〉

ρ,A
 〈p′, σ 〉, 〈q, σ⊥〉

ρ,B
 〈q ′, σ 〉

〈p ‖ q, σ⊥〉
ρ,A∪B
 〈p′ ‖ q ′, σ 〉
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3.7.5 Synchronizing action operator

The synchronizing action operator process term γA(p) defines the action labels of set A to be
synchronizing for process term p. It achieves this by setting the boolean value b on action transi-
tions to true if the action ` is defined as synchronizing (` ∈ A, see Rule 29). The operator has no
effect if the action is not defined as synchronizing (` 6∈ A, see Rule 30).

Time transitions are defined by Rule 31. The action labels from set A, that are defined as syn-
chronizing, are moved from the guard trajectory for the non-synchronizing action labels θn, to
the guard trajectory for the synchronizing action labels θy. The disjunction of the new guard
trajectory θn ↓ A with the guard trajectory flstA : [0, t] → (A → {false}) ensures that the non-
synchronizing guard trajectories for the action labels in A are reset to false.

E 
〈p, σ 〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, ` ∈ A

〈γA(p), σ 〉
ρ,`,true,W,ρ′
−−−−−−−→ 〈

X
γA(p′)

, σ ′〉

29 E 
〈p, σ 〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, ` 6∈ A

〈γA(p), σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
γA(p′)

, σ ′〉
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E 
〈p, σ 〉

t,ρ,(θy,θn,θs,θr)
7−→ 〈p′, σ ′〉

〈γA(p), σ 〉
t,ρ,(θy∨(θn↓A),θn↓A∨flstA,θs,θr)

7−→ 〈γA(p′), σ ′〉
31

The synchronizing action operator adds its set of synchronizing action labels to the consistency
transition (see Rule 32), making them visible to process terms operating in a parallel context (see
Section 3.7.4).

E 
〈p, σ⊥〉

ρ,B
 〈p′, σ 〉

〈γA(p), σ⊥〉
ρ,A∪B
 〈γA(p′), σ 〉
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Consider, for example, the process term

γ{a,b,c}(a 8 b 8 c) ‖ γ{b,c}(a 8 b 8 c) ‖ γ{c}(c 8 d),

where a, b, c, d ∈ Lbasic are basic action labels. This process term is equivalent to:

( γ{a}(a); (γ{b,c}(a 8 b 8 c) ‖ γ{c}(c 8 d))
8 γ{b}(b); γ{c}(c 8 d)
8 γ{c}(c)
8 a; (γ{a,b,c}(a 8 b 8 c) ‖ γ{c}(c 8 d))
8 d ; (γ{a,b,c}(a 8 b 8 c) ‖ γ{b,c}(a 8 b 8 c))
)

The example illustrates that process terms in a parallel composition participate in basic action la-
bel based synchronization only via shared, synchronizing action labels. In the example, the three
parallel process terms synchronize via action label c, and the first two process terms synchronize
via action label b. None of the process terms synchronize via action label a or d.

The previous example illustrates that the set of synchronizing action labels can be smaller than
the set of action labels that is actually used, as in γ{c}(c 8 d). The set of synchronizing action
labels can also be bigger than the set of action labels that is actually used. The process term:

γ{a,b}(a 8 b) ‖ γ{a,b}(a),

is equivalent to:

γ{a,b}(a),

because process term γ{a,b}(a) blocks the execution of the action label process term b in any
parallel context that defines action label b as synchronizing.

Note that there are many different equivalent notations of synchronizing action operators in an
alternative composition. For example, γ{a,b,c}(a) 8 γ{a,b,c}(b) is equivalent to γ{a,c}(a) 8 γ{b}(b),
which is equivalent to γ{a}(a) 8 γ{b}(b) 8 γ{c}(false→ τ : ∅ : true).

3.7.6 Channel encapsulation operator

The behavior of the channel encapsulation operator applied to a process term, ∂H (p), is the same
as the behavior of its argument with the restriction that send and receive actions via channels from
the set H (H ⊆ H) cannot propagate beyond the channel encapsulation operator, as specified in
Rule 33. In this rule, srH is an abbreviation of the set {h!cs, h?cs | h ∈ H, cs ∈ 3∗}. Channel
encapsulation has no effect on time transitions and consistency transitions, as defined by Rule 34.
In this way, the channel encapsulation operator enforces the synchronous execution of matching
send and receive actions.
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E 
〈p, σ 〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, ` 6∈ srH

〈∂H (p), σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
∂H (p′)

, σ ′〉

33

E 

〈p, σ 〉
t,ρ,θ
7−→

ρ,A
 
〈p′, σ ′〉

〈∂H (p), σ 〉
t,ρ,θ
7−→

ρ,A
 
〈∂H (p′), σ ′〉

34

3.7.7 Recursion scope operator

By means of the recursion scope operator, local recursion definitions are introduced in a Chi
process. The application of the recursion scope operator to a process term p with a ‘global’
valuation σ and a ‘global’ environment (D,U, J, R) behaves as p after taking the union of the
local and global recursion mappings. In the rules below, {X 7→ q} denotes the recursion mapping
{X1 7→ q1, . . . , Xr 7→ qr }. To prevent conflicts with recursion variables already existing in the
environment, the local recursion variables X are renamed to fresh variables X′ with respect to the
variables from the domain of R.

Notation p[X′/X] denotes the process term that is obtained by substitution of the (free) variables
X (an abbreviation of X1, . . . , Xr ) in p by the fresh variables X′ (X ′1, . . . , X ′r ), respectively;
choosing the fresh variables X′ in such a way that they remain free in p. Note that if the local
recursion variables are all different from the global recursion variables (dom(R) ∩ {X} = ∅),
no renaming is necessary. Notation {X′ 7→ q[X′/X]} denotes the recursion mapping {X ′1 7→
q1[X′/X] . . . X ′r 7→ qr [X′/X]}.

(D,U, J, R ∪ {X′ 7→ q[X′/X]})  〈p[X′/X], σ 〉 λ−→ 〈Xp′ , σ
′
〉

(D,U, J, R)  〈|[R {X 7→ q} :: p ]|, σ 〉
λ
−→ 〈

X
|[R {X′ 7→ q[X′/X]} :: p′ ]| , σ

′〉
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(D,U, J, R ∪ {X′ 7→ q[X′/X]})  〈p[X′/X], σ 〉
t,ρ,θ
7−→

ρ,A
 
〈p′, σ ′〉

(D,U, J, R)  〈|[R {X 7→ q} :: p ]|, σ 〉
t,ρ,θ
7−→

ρ,A
 
〈|[R {X′ 7→ q[X′/X]} :: p′ ]|, σ ′〉
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Consider, for example, the process term |[R {X 7→ Y, Y 7→ x := 0} :: |[R {Y 7→ x := 1} :: X ]|]|.
Local recursion variable Y with definition Y 7→ x := 1 has the same name as the recursion
variable Y in the recursion definition Y 7→ x := 0 from the outer scope. The renaming of the
local variable in the rules of the recursion scope operator ensures that the process term behaves
as |[R {X 7→ Y,Y 7→ x := 0} :: |[R {Z 7→ x := 1} :: X ]|]|. Thus, the value of variable x becomes
0.
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3.7.8 Variable scope operator

By means of the variable scope operator, local variables are introduced in a Chi process. A
variable scope operator process term

|[V dx, σ⊥xst :: p ]|,

that is used in an environment (D,U, J, R), with valuation σ , and where dx denotes a dynamic
type mapping with domain dom(dx)= {x} = {x1, . . . , xn}, and σ⊥xst denotes a local valuation that
has as domain the state variables of the domain of dx (dom(σ⊥xst) = dxstate, see Section 2.1.4),
behaves as p after taking the union of the global and local dynamic type mappings, and taking
the union of the local and global valuations.

To ensure that all local variables are fresh with respect to the global variables, the local variables
are first renamed. Thus x′, in the rules below, denotes fresh variables x ′1, . . . , x ′n with respect to
the variables from the domain of dynamic type mapping D. Notation p[x′/x] denotes the process
term that is obtained by substitution of the (free) variables x (an abbreviation of x1, . . . , xn)
in p by the fresh variables x′, respectively; choosing the fresh variables x′ in such a way that
they remain free in p. Note that if the local variables are all different from the global variables
(dom(dx) ∩ dom(D) = ∅), no renaming is necessary.

Also note that the variables used in the recursion mapping R are not renamed to ensure that the
bindings of these variables remain unchanged. In this way, the variables occurring in recursion
mappings are bound statically, as is illustrated by the following example Chi process:

〈 |[R {X 7→ n := 1; y := n}
:: |[V {n 7→ disc}, {n 7→ 2} :: X ; z := n ]|
]|

, {n 7→ 0, y 7→ 0, z 7→ 0, time 7→ 0}
, ({n 7→ disc, y 7→ disc, z 7→ disc, time 7→ cont}, ∅, ∅, ∅)
〉

The process defines the discrete variables n, y, z that are initially 0, a recursion definition X 7→
n := 1; y := n in a recursion scope, and a variable scope operator that (re)defines n as a local
variable that is initialized to 2. After performing the first transition, which is execution of the
assignment n := 1, the process transforms into:

〈 |[R {X 7→ n := 1; y := n}
:: |[V {n′ 7→ disc}, {n′ 7→ 2} :: y := n; z := n′ ]|
]|

, {n 7→ 1, y 7→ 0, z 7→ 0, time 7→ 0}
, ({n 7→ disc, y 7→ disc, z 7→ disc, time 7→ cont}, ∅, ∅, ∅)
〉

The local variable n has been renamed to a fresh variable, according to Rule 37. In this way, the
assignment y := n, as defined in the recursion scope, refers to the global variable n, and not to
the local variable n of the variable scope. When the process term terminates (after execution of
y := n; z := n′), the value of y equals 1, and the value of z equals 2. Thus, the variables used
in the recursion definition are bound statically. The example also shows that the local variables
that have been renamed to fresh variables cannot be renamed back to their original names after an
action transition, since then a conflict with the globally defined variables of the same name could
occur.
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The variable scope operator is the only operator that affects the dynamic type mapping from
the environment. However, it does not change any existing definitions of D, it only adds new
definitions. In this way, it is ensured that the discrete, continuous, or algebraic variables in any
Chi process 〈p, σ, E〉 remain discrete, continuous, or algebraic, respectively.

The local variables are invisible outside of the scope operator. This is done by means of data
abstraction. For action transitions, data abstraction takes place by restricting the trajectories ρ
and ρ′, and the valuation σ ′, to the global variables, and by keeping only the global state variables
in the set W . For time transitions, data abstraction takes place by restricting the trajectory to the
global variables. In this way, all changes to local variables are removed.

In the rules below, the following abbreviations are used: trajectories ρD and ρ′D denote ρ � Ḋvar

and ρ′ � Ḋvar, respectively, where Ḋvar is an abbreviation for dom(D) ∪ {ẋ | x ∈ dom(D)}; and
valuation σ ′σ denotes σ ′ � dom(σ ).

(D ∪ dx[x′/x],U, J, R)  〈p[x′/x], σ ∪ σ⊥xst [x
′/x]〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉

(D,U, J, R)  〈|[V dx, σ⊥xst :: p ]|, σ 〉
ρD,`,b,W∩Dstate,ρ

′
D

−−−−−−−−−−−−→ 〈
X

|[V dx[x′/x], σ ′ � {x′} :: p′ ]| , σ
′
σ 〉
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(D ∪ dx[x′/x],U, J, R)  〈p[x′/x], σ ∪ σ⊥xst [x
′/x]〉

t,ρ,θ
7−→

ρ,A
 
〈p′, σ ′〉

(D,U, J, R)  〈|[V dx, σ⊥xst :: p ]|, σ 〉
t,ρD,θ
7−→

ρD,A 
〈|[V dx[x′/x], σ ′ � {x′} :: p′ ]|, σ ′σ 〉
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3.7.9 Action scope operator

By means of the action scope operator, local basic action labels are introduced in a Chi process by
means of a local urgency mapping for action labels. The local urgency mapping is added to the
global urgency mapping, after renaming the local action labels to fresh action labels with respect
to the action labels and channels of the domain of urgency mapping U . Note that if the local
action labels are all different from the global action labels and channels ({a} ∩ dom(U ) = ∅),
no renaming is necessary. As in the variable scope operator of Section 3.7.8, renaming does not
take place in the recursion mapping R to ensure that the bindings of action labels in R remain
unchanged. In the rules below, {a 7→ b} denotes the urgency mapping {a1 7→ b1, . . . ,am 7→ bm}.

The local basic actions are made invisible outside of the scope operator by replacing them by the
internal τ action (see Rule 39). Note that no renaming is applied to action ` in Rule 40, because
this action cannot refer to local action labels.

The action scope operator removes the local actions from the time transitions and consistency
transitions, as defined by Rule 41. In the time transitions, the action scope operator restricts
the guard trajectories to the set of globally defined action labels (and channels), as defined by
Rule 41.a, where θ is used as an abbreviation of (θy, θn, θs, θr), and θ � dom(U ) is used as an
abbreviation for (θy � dom(U ), θn � dom(U ), θs � dom(U ), θr � dom(U )).
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(D,U ∪ {a′ 7→ b}, J, R)  〈p[a′/a], σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, ` ∈ {a′}

(D,U, J, R)  〈|[A {a 7→ b} :: p ]|, σ 〉
ρ,τ,false,W,ρ′
−−−−−−−−→ 〈

X
|[A {a′ 7→ b} :: p′ ]| , σ

′〉
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(D,U ∪ {a′ 7→ b}, J, R)  〈p[a′/a], σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, ` 6∈ {a′}

(D,U, J, R)  〈|[A {a 7→ b} :: p ]|, σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
|[A {a′ 7→ b} :: p′ ]| , σ

′〉

40

(D,U ∪ {a′ 7→ b}, J, R)  〈p[a′/a], σ 〉
t,ρ,θ
7−→

ρ,A
 
〈p′, σ ′〉

(D,U, J, R)  〈|[A {a 7→ b} :: p ]|, σ 〉
t,ρ,θ�dom(U )
7−→

ρ,A∩dom(U )}
 

〈|[A {a′ 7→ b} :: p′ ]|, σ ′〉
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3.7.10 Channel scope operator

By means of the channel scope operator, local channels are introduced in a Chi process by means
of a local urgency mapping for channels. The local urgency mapping is added to the global
urgency mapping, after renaming the local channels to fresh channels with respect to the action
labels and channels of the domain of urgency mapping U . Note that if the local channels are
all different from the global action labels and channels ({h} ∩ dom(U ) = ∅), no renaming is
necessary. Renaming does not take place in the recursion mapping R to ensure that the bindings
of action labels in R remain unchanged. In the rules below, {h 7→ b} denotes the urgency mapping
{h1 7→ b1, . . . , hm 7→ bm}.

By means of action abstraction, the channel scope operator makes communication actions on
local channels invisible outside of the scope operator. Action abstraction takes place by substi-
tuting communication actions (h!?cs) via a local channel by the internal τ action (see Rule 42).
The internal send and receive actions (h!cs and h?cs), see Rules 10 and 11, via a local channel
h are blocked, because there are no rules that apply for these actions; Rule 42 only specifies
behavior for communication actions. Function ch : Lτ → H ∪ {⊥} extracts the channel label
from an action. It is defined as ch(h!cs) = h, ch(h?cs) = h, ch(h!?cs) = h, and ch(a) = ⊥ for
a ∈ Lbasic ∪ {τ }. Note that no renaming is applied to action ` in Rule 43, because this action
cannot refer to local channels.

In the time transitions, the channel scope operator restricts the guard trajectories to the set of
globally defined action labels and channels, as defined by Rule 44 (where θ and θ � dom(U ) are
abbreviations as defined in Section 3.7.9). In this way, the local channels are removed from the
time transitions. The channel scope operator has no effect on consistency transitions.

(D,U ∪ {h′ 7→ b}, J, R)  〈p[h′/h], σ 〉
ρ,h!?cs,b,W,ρ′
−−−−−−−−→ 〈

X
p′ , σ

′
〉, h ∈ {h′}

(D,U, J, R)  〈|[H {h 7→ b} :: p ]|, σ 〉
ρ,τ,false,W,ρ′
−−−−−−−−→ 〈

X
|[H {h′ 7→ b} :: p′ ]| , σ

′〉
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(D,U ∪ {h′ 7→ b}, J, R)  〈p[h′/h], σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′
〉, ch(`) 6∈ {h′}

(D,U, J, R)  〈|[H {h 7→ b} :: p ]|, σ 〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
|[H {h′ 7→ b} :: p′ ]| , σ

′〉

43

(D,U ∪ {h′ 7→ b}, J, R)  〈p[h′/h], σ 〉
t,ρ,θ
7−→

ρ,A
 
〈p′, σ ′〉

(D,U, J, R)  〈|[H {h 7→ b} :: p ]|, σ 〉
t,ρ,θ�dom(U )
7−→

ρ,A
 

〈|[H {h′ 7→ b} :: p′ ]|, σ ′〉
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3.8 Validation of the semantics

In Section 3.8.1, some properties of the Chi semantics are given. In Section 3.8.2, a notion of
equivalence is defined, called stateless bisimilarity [15], which is similar to the well-known notion
of bisimilarity [17, 13]. It is also shown that this relation is an equivalence and a congruence for
all Chi operators. Some useful properties of closed Chi process terms are given in Section 3.8.3.
Many of these properties express intuitions about the meaning of the Chi operators such as the
commutativity and associativity of the alternative composition and the parallel composition oper-
ators. Other properties are introduced for the purpose of simplifying Chi models. The properties
treated in this section add to the level of confidence one has with respect to the ‘correctness’ of
the semantics. Since formal proofs are not yet available, all properties treated in this section must
be considered as conjectures.

3.8.1 Properties of the semantics

In this section, some useful properties about the semantics of Chi are introduced. The properties
are required for the remainder of the section, especially for the proofs of the properties defined in
Section 3.8.3.

The following abbreviations are used in this section:

• 〈p, σ⊥, E〉
ρ
 is defined in Section 3.3.

• 〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ is an abbreviation for ∃p′,σ ′,E ′ 〈p, σ, E〉

ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′, E ′〉

• 〈p, σ, E〉
t,ρ,θ
7−→ is an abbreviation for ∃p′,σ ′,E ′ 〈p, σ, E〉

t,ρ,θ
7−→ 〈p′, σ ′, E ′〉

With the current set of deduction rules for the semantics of Chi the following properties of the
semantics can be defined:

• The domain of the initial valuation σ equals the domain of the resulting valuation σ ′, and
environment E equals environment E ′, i.e. the valuation domain and the environment are
never changed in a transition.
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• The left-hand (ρ) and right-hand (ρ′) trajectories restricted to the domain of σ for time
point zero are always the same as the initial (σ ) and resulting (σ ′) valuation of an action
transition, respectively. A similar reasoning applies to the first and last valuation of a
trajectory on a time transition and the initial and resulting valuation, respectively.

• For each variable for which value σ⊥(x) is defined in a consistency transition, the value of
that variable in a) the initial valuation σ⊥, in b) the trajectory at time point zero, and in c)
the resulting valuation σ are all the same.

The following lemma captures these facts.

Lemma 3.1. Let p and p′ be closed process terms, σ⊥,σ ,σ ′ be valuations, ρ, ρ′ be trajectories,
θ be a quadruple of guard trajectories, E and E ′ be environments, ` be an action, b be a boolean
value, W be a set of variables, t be a time point, and A be a set of basic action labels. Then

〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈

X
p′ , σ

′, E ′〉 ⇒ dom(σ ) = dom(σ ′) ∧ ρσ (0) = σ ∧ ρ′σ (0) = σ
′

∧ E = E ′,

〈p, σ, E〉
t,ρ,θ
7−→ 〈p′, σ ′, E ′〉 ⇒ dom(σ ) = dom(σ ′) ∧ ρσ (0) = σ ∧ ρσ (t) = σ ′

∧ E = E ′,

〈p, σ⊥, E〉
ρ,A
 〈p′, σ, E ′〉 ⇒ dom(σ⊥) = dom(σ )

∧ (∀x∈dom(σ⊥),σ⊥(x)∈3 ρ(0)(x) = σ⊥(x) ∧ σ(x) = σ⊥(x))
∧ E = E ′.

The Chi processes that can perform action or time transitions are consistent, and the processes re-
sulting from the action or time transitions are consistent (the processes can perform a consistency
transition).

Lemma 3.2. Let p be a closed process term, σ be a valuation, E be an environment, ρ and ρ′

be trajectories, ` be an action, b be a boolean value, and W be a set of variables. Then

〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ ⇒ 〈p, σ, E〉

ρ
 .

Lemma 3.3. Let p be a closed process term, σ be a valuation, E be an environment, t be a time
point, ρ be a trajectory, and θ be a quadruple of guard trajectories. Then

〈p, σ, E〉
t,ρ,θ
7−→ ⇒ 〈p, σ, E〉

ρ
 .

Lemma 3.4. Let p and p′ be closed process terms, σ and σ ′ be valuations, E and E ′ be environ-
ments, ρ and ρ′ be trajectories, ` be an action, b be a boolean value, and W be a set of variables.
Then

〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈p′, σ ′, E ′〉 ⇒ 〈p′, σ ′, E ′〉

ρ′

 .

Lemma 3.5. Let p and p′ be closed process terms, σ and σ ′ be valuations, E and E ′ be en-
vironments, t be a time point, ρ be a trajectory, and θ be a quadruple of guard trajectories.
Then

〈p, σ, E〉
t,ρ,θ
7−→ 〈p′, σ ′, E ′〉 ⇒ 〈p′, σ ′, E ′〉

ρ
 .

The following lemma shows that any variation in the set of jumping variables in the environment
of a consistent Chi process has no effect on its consistency.

Lemma 3.6. Let p and p′ be closed process terms, σ⊥ and σ be valuations, E be an environment,
D be a dynamic type mapping, U be an urgency mapping, J,W be sets of Chi variables such that
J,W ⊆ dom(D), R be a recursion mapping, ρ be a trajectory, and A be a set of basic action
labels. Then

〈p, σ⊥, (D,U, J, R)〉
ρ,A
 〈p′, σ, E〉 ⇔ 〈p, σ⊥, (D,U, J ∪W, R)〉

ρ,A
 〈p′, σ, E〉.
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3.8.2 Stateless bisimilarity

Two closed Chi process terms are considered equivalent if they have the same behavior (in the
bisimulation sense) in case both are considered from the same valuation of model variables and
the same environment. We also assume that this valuation has in its domain the free occurrences
of variables in the two closed Chi process terms being equivalent.

Definition 3.7 (Stateless bisimilarity). A symmetric relation R ⊆ Pabstract × Pabstract on closed
process terms is a stateless bisimulation relation if and only if for all (p, q) ∈ R, the following
holds:

1. ∀σ,E,ρ,`,b,W,ρ′,σ ′,E ′ 〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈X, σ ′, E ′〉

⇒ 〈q, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈X, σ ′, E ′〉,

2. ∀σ,E,ρ,`,b,W,ρ′,p′,σ ′,E ′ 〈p, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈p′, σ ′, E ′〉

⇒ ∃q ′ 〈q, σ, E〉
ρ,`,b,W,ρ′
−−−−−−→ 〈q ′, σ ′, E ′〉 ∧ (p′, q ′) ∈ R,

3. ∀σ,E,t,ρ,θ,p′,σ ′,E ′ 〈p, σ, E〉
t,ρ,θ
7−→ 〈p′, σ ′, E ′〉

⇒ ∃q ′ 〈q, σ, E〉
t,ρ,θ
7−→ 〈q ′, σ ′, E ′〉 ∧ (p′, q ′) ∈ R,

4. ∀σ⊥,E,ρ,A,p′,σ,E ′ 〈p, σ⊥, E〉
ρ,A
 〈p′, σ, E ′〉

⇒ ∃q ′ 〈q, σ⊥, E〉
ρ,A
 〈q ′, σ, E ′〉 ∧ (p′, q ′) ∈ R,

Two closed process terms p and q are stateless bisimilar, denoted by p↔ q , if there exists a
stateless bisimulation relation R such that (p, q) ∈ R.

As a consequence of Lemma 3.1, the definition of stateless bisimilarity can be simplified consid-
erably. Yet, with in mind future extensions of the Chi formalism, it might well be the case that
these properties of the semantics are lost. Since we would prefer not to redo all the coming proofs
(in such a future), this presentation was chosen.

Stateless bisimilarity is proved to be a congruence with respect to all Chi operators. As a conse-
quence, algebraic reasoning is facilitated, since it is allowed to replace equals by equals in any
context.

Theorem 3.1 (Congruence). Stateless bisimilarity is a congruence with respect to all Chi oper-
ators.

Proof. The deduction rules of the Chi formalism satisfy the process-tyft format of [15]. There-
fore, stateless bisimilarity is a congruence.

3.8.3 Properties of the Chi operators

In this section, some properties of the operators of Chi that hold with respect to stateless bisim-
ilarity are discussed. Most of these correspond well with our intuitions, and hence this can be
considered as an additional validation of the semantics. It is not our intention to provide a com-
plete list of such properties (complete in the sense that every equivalence between closed process
terms is derivable from those properties).
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Property 3.8 (Equation, invariant and tcp process terms). The following properties hold for all
predicates u ∈ Pred(V̇), continuous variables y ∈ V , real valued constants c ∈R, and action labels
a ∈ Lbasic:

eqn true ↔ inv true
inv true ↔ tcp true
eqn y = c ↔ eqn y = c ∧ ẏ = 0
tcp u ↔ |[A {a 7→ true} :: ¬u → a : ∅ : true; inv false ]|

Equation / invariant / tcp process terms with predicate true are bisimilar: all are consistent and
allow arbitrary delays. An equation defining a continuous variable to be equal to a constant value
also defines the dotted version of the variable to be equal to zero. Finally, the tcp process term is
not a primitive concept, since it can be expressed in terms of an action scope with a local, urgent
action a, and a guarded action update process term using the negation of the tcp predicate as the
guard of action label a, followed by an invariant false that prevents execution of the action a.

Property 3.9 (Initialization operator). The following properties hold for all closed process terms
p, q ∈ Pabstract and predicates u, u′ ∈ Pred(V̇):

false� p ↔ ⊥

u � (u′ � p) ↔ u ∧ u′ � p
u � p 8 u′ � q ↔ u ∧ u′ � (p 8 q)
u � p ‖ u′ � q ↔ u ∧ u′ � (p ‖ q)

Initialization with predicate false gives an inconsistent process term. A concatenation of initial-
izations leads to an initialization with the conjunction of the predicates. Individual initialization
predicates of two process terms in alternative or parallel composition can be conjoined into a
single initialization predicate operating on the alternative or parallel composition, respectively, of
the two process terms.

Property 3.10 (Alternative composition). The following properties hold for all closed process
terms p, q, r ∈ Pabstract:

p 8 eqn true ↔ p
p 8 p ↔ p

p 8 q ↔ q 8 p
(p 8 q) 8 r ↔ p 8 (q 8 r)

The equation process term with predicate true is a zero element for alternative composition. The
alternative composition is idempotent, commutative, and associative. The property p 8 δ↔ p
does not hold. Consider, for example p = eqn true. Then p 8 δ cannot perform any time tran-
sitions, while p can perform arbitrary time transitions. Property p 8 δ↔ δ does not hold either
(but p 8 ⊥↔⊥ does hold, see Property 3.15). Consider, for example p = true→ τ : ∅ : true.
Then p 8 δ can perform a τ transition, while δ cannot.

Property 3.11 (Sequential composition). The following properties hold for all closed process
terms p, q, r ∈ Pabstract, and predicates u ∈ Pred(V̇):

δ; p ↔ δ

eqn u ; p ↔ eqn u
inv u ; p ↔ inv u
tcp u ; p ↔ tcp u

(p; q); r ↔ p; (q ; r)
(p 8 q); r ↔ p; r 8 q ; r

A deadlock process term followed by some other process terms is equivalent to the deadlock
process term itself since the deadlock process term does not terminate successfully, i.e., deadlock
is a left-zero element for sequential composition. The same holds for equation, invariant and tcp
process terms. Sequential composition is associative. Alternative composition distributes over
sequential composition from the left, but not from the right.

Property 3.12 (Parallel composition). The following properties hold for all closed process terms
p, q, r ∈ Pabstract, variables y ∈ V , expressions e ∈ Expr(V̇), and predicates u, u′ ∈ Pred(V̇):

p ‖ q ↔ q ‖ p
(p ‖ q) ‖ r ↔ p ‖ (q ‖ r)
eqn y = e ‖ p ↔ eqn y = e ‖ p[e/y]

eqn u ‖ eqn u′ ↔ eqn u ∧ u′

inv u ‖ inv u′ ↔ inv u ∧ u′

tcp u ‖ tcp u′ ↔ tcp u ∧ u′
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Parallel composition is commutative and associative. A variable which is defined to be equal
to an expression, can be replaced by its defining expression in all parallel contexts (substitution
property). The parallel composition of two equation (invariant / tcp) process terms is the same as
the conjunction of the equations (invariants / tcp predicates).

Note that p[e/y] denotes the process term obtained by replacing in process term p all free (non-
bound) expression occurrences of variable y by expression e. An expression occurrence of y is
an occurrence of the variable y in a place where also a general expression could have occurred.
For example, in y ≥ 1 → a : {y} : y = 1, the occurrences of y in y ≥ 1 and in y = 1 are
expression occurrences. The occurrence of y in {y} is, however, not an expression occurrence,
since between the braces {}, only a list of variables is allowed, and not general expressions.
Therefore, eqn y = e ‖ y ≥ 1→ a : {y} : y = 1 ↔ eqn y = e ‖ e ≥ 1→ a : {y} : e = 1

Property 3.13 (Synchronizing action operator). The following properties hold for all closed
process terms p, q ∈ Pabstract and sets of basic actions A, B ⊆ Lbasic:

γ∅(p) ↔ p
γA(γB(p)) ↔ γA∪B(p)

γA(p); γA(q) ↔ γA(p; q)
γA(p) 8 γA(q) ↔ γA(p 8 q)

If there are no synchronizing actions, the synchronization operator has no effect. Nesting syn-
chronization operators is equivalent to a single synchronization operator that synchronizes on the
union of the sets of synchronizing actions. Assuming constancy of synchronizing actions, as in
[10] where constancy of alphabets is assumed, the synchronization operator can be lifted to the
top level of sequential composition and alternative composition. In other words: the synchroniz-
ing action operator distributes over sequential and alternative composition.

Property 3.14 (Channel encapsulation operator). The following properties hold for all closed
process terms p, q ∈ Pabstract, predicates u ∈ Pred(V̇) and sets of channels H, H ′ ⊆ H:

∂H (δ) ↔ δ

∂H (eqn u) ↔ eqn u
∂H (inv u) ↔ inv u
∂H (tcp u) ↔ tcp u

∂∅(p) ↔ p
∂H (p; q) ↔ ∂H (p); ∂H (q)
∂H (p 8 q) ↔ ∂H (p) 8 ∂H (q)
∂H (∂H ′(p)) ↔ ∂H∪H ′(p)

The process terms δ, eqn u, inv u, and tcp u are zero elements for the channel encapsulation
operator. If there are no channels to be encapsulated, the application of the channel encapsulation
operator to a process term p has no effect. Encapsulation of channels distributes over the alterna-
tive composition operator and the sequential composition operator. Multiple applications of the
channel encapsulation operator are equivalent to a single application where all the channels to be
encapsulated are combined using union of sets of channels.

Property 3.15 (Inconsistent process term). The following properties hold for all closed process
terms p ∈ Pabstract, predicates u ∈ Pred(V̇), sets of action labels A ⊆ Lbasic, sets of channels
H ⊆ H, guards g ∈ Pred(V̇), basic action labels a ∈ Lbasic ∪ {τ }, sets of variables W ⊆ V̇ , and
update predicates r ∈ Pred(V̇−):

u � ⊥ ↔ ⊥

p 8 ⊥ ↔ ⊥

p ‖ ⊥ ↔ ⊥

γA(⊥) ↔ ⊥

∂H (⊥) ↔ ⊥

⊥; p ↔ ⊥

The inconsistent process term is a zero element for the initialization operator, alternative composi-
tion, parallel composition, synchronizing action operator, and the channel encapsulation operator.
It is also a left-zero element for sequential composition.
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4 Concrete syntax

This section presents a concise definition of the concrete syntax of Chi. The concrete syntax
offers modeling equivalents for the elements of the abstract syntax, and it introduces new syntax
to ensure better readability and easier modeling. The section is not meant as a precise syntax
definition of the concrete syntax. For this we refer to the Chi language reference manual [11].
The main purpose of this section is to formally define the meaning of the concrete syntax by
means of a mapping to the abstract syntax.

4.1 Data types

The Chi formalism is statically strongly typed. Besides the ‘dynamic’ type, as defined in Section
2.1.2, all variables have a ‘static’ type. Where the dynamic type of a variable defines the allowed
trajectories for the variable (its values as a function of time), the static type defines the allowed
values of the variable and the allowed operations on the variable (at any time point). The atomic
types are bool (booleans), nat (natural numbers, including zero), int (integers), real (real-valued
numbers), string (strings), and enum (enumerations). Type constructors operate on existing types
to create structured types. The Chi formalism defines type constructors to create sets, lists, ar-
rays, record tuples, dictionaries, functions, and distributions (for stochastic models). Channels
also have a type that indicates the type of data that is communicated via the channel. Pure syn-
chronization channels, that do not communicate data, are of the predefined type void. The Chi
type system is strictly enforced in the Chi tools [20]. The type system is not formalized. Data
types can be used only in the concrete syntax of Chi specifications. See for example the definition
of a Chi model in Section 4.2.

4.2 Models

Below, a Chi model M is defined using the concrete syntax. In the model, s1, . . . , sk denote
the discrete variables, t...... denote data types, c...... denote (initial) values, x1, . . . , xn denote the
continuous variables, z1, . . . , zg denote the algebraic variables, ip denotes an initialization pred-
icate that restricts the allowed values of the (dotted) variables initially (e.g. init ẋ = 0 denotes
steady state initialization for x), a1, . . . , al and a′1, . . . , a′l ′ denote the urgent and non-urgent ac-
tion labels, respectively, h1, . . . , hm and h′1, . . . , h′m′ denote the urgent and non-urgent channels,
respectively, mode X1 = p1 , . . . ,mode Xn = pr denote the recursion definitions, and pr+1 is a
process term.

model M() =
|[ var s1 : disc ts1 = cs1 , . . . , sk : disc tsk = csk

, x1 : cont tx1 = cx1 , . . . , xn : cont txn = cxn
, z1 : alg tz1 , . . . , zg : alg tzg

, time = ct
, init ip
, action a1, . . . , al
, action nonurg a′1, . . . , a′l ′
, chan h1 : th1 , . . . , hm : thm
, chan nonurg h′1 : th′1 , . . . , h′m′ : th′m′
, mode X1 = p1 , . . . ,mode Xr = pr
:: pr+1
]|
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The meaning of model M is defined as the following Chi process in the abstract language:

〈 ∂{h1,...,hm , h′1,...,h
′

m′ }
(ip� pr+1)

, {s1 7→ cs1 , . . . , sk 7→ csk , x1 7→ cx1 , . . . , xn 7→ cxn , time 7→ ct}
, ( { s1 7→ disc, . . . , sk 7→ disc

, x1 7→ cont, . . . , xn 7→ cont, time 7→ cont
, z1 7→ alg, . . . , zg 7→ alg
}

, { a1 7→ true, . . . , al 7→ true, a′1 7→ false, . . . , a′l ′ 7→ false, τ 7→ true
, h1 7→ true, . . . , hm 7→ true, h′1 7→ false, . . . , h′m′ 7→ false
}

, ∅

, {X1 7→ p1, . . . , Xr 7→ pr }

)

〉

If one or more initial values from cs1 , . . . , csk , cx1 , . . . , cxn are missing, the corresponding values
in the valuation {s1 7→ cs1 , . . . , sk 7→ csk , x1 7→ cx1 , . . . , xn 7→ cxn , time 7→ ct} are replaced
by ⊥. If the initial value for the time, ct, is missing, it is replaced by zero in the valuation, and
if the initialization declaration init ip is missing, the initialization predicate ip is taken to be the
predicate true.

4.2.1 Additional assumptions and abbreviations

In the notations defined above, it is assumed that the discrete, continuous, and algebraic vari-
ables are all different. Besides the declared variables, the existence of the predefined reserved
global variable time which denotes the model time is assumed. This variable cannot be declared,
but its initial value can be defined. Its value can be used in expressions in the process terms
p, p1, p2, . . . , pr+1. Further restrictions follow directly from the requirements that are assumed
to hold for Chi processes as defined in Section 2.2.

As a shorthand, the keywords var, act, or chan are omitted when there are no variable, action,
or channel declarations, respectively. In a similar way, the time, init, and mode keywords can
be omitted. A declaration s1 : t = c1, . . . , sk : t = ck of a number of variables that have the
same type can be abbreviated as s1, . . . , sk : t = (c1, . . . , ck). The brackets are needed to prevent
parsing problems in declarations such as var x, y : disc nat = 1, 2, z : disc nat, which should
be interpreted as var x, y : disc nat = (1, 2), z : disc nat. Initial values can be omitted as
in var s : disc real. The keyword disc is optional, as in var s : real, which declares a discrete
variable of type real; and the declaration var x : cont real = c of a continuous variable of type
real with initial value c can be abbreviated as var x : cont = c. In the definition of the notation
model M() = |[ . . . ]|, keywords such as var, action, chan occur in a specific order. There are
however no such restrictions. Keywords can also occur multiple times. For example: model M =
|[ action a, b, var k, n : disc real, x : cont = 1, chan h : nat, var z : alg real :: . . . ]|, is allowed.

4.3 Process terms

The complete set of process terms Pconcrete of the concrete syntax is defined below by the gram-
mar for the process terms p ∈ Pconcrete.

Process term Process term name

49



p ::= patom atomic
| p; p sequential composition
| p 8 p alternative composition
| p ‖ p parallel composition
| γA(p) synchronizing action
| ∗p loop
| u

∗
→ p while

| |[ declarations :: p ]| scope
| lp(xk,hm, en) process instantiation

Process term Process term name
patom ::= eqn u equation

| inv u invariant
| tcp u time can progress
| pact action
| u → pact guarded action
| now pact nondelayable action
| u → now pact guarded nondelayable action
| 1d delay
| X recursion variable

Process term Process term name
pact ::= skip internal action

| xn := en (multi-)assignment
| W : r update
| psync synchronization
| psync : xn := en synchronization assignment
| psync : W : r synchronization update

Process term Process term name
psync ::= a action label

| h ! en send
| h ? xn receive
| h !? xn := en communicate

Note that the communicate process term h !? xn := en is not used for modeling. Its only use is to
enable the elimination of parallel composition.

The operators are listed in descending order of their binding strength as follows {∗,
∗
→ }, ; , 8 ,

‖, where the operators in the set {∗,
∗
→ } have the same priority.

In the definitions below, omitting a guard defaults to a guard that is true, and omitting a syn-
chronization part (action label a, send h ! en or receive h ? xn) defaults to the internal action label
τ .

4.3.1 Skip process term

The skip process term is defined as an internal action with an update part consisting of an empty
set of jumping variables and a predicate true.
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skip , true→ τ : ∅ : true

4.3.2 Multi-assignment process term

The multi-assignment process term xn := en is defined as an internal action update process term
that changes the values of the variables x1, . . . , xn to the values of the expressions e1, . . . , en ,
respectively.

xn := en , true→ τ : {xn} : xn = e−n

Here e− denotes the result of replacing all variables (and dotted variables) in e by their ‘−’
superscripted version, and xn = e−n denotes x1 = e−1 ∧ · · · ∧ xn := e−n . For example, process term
x := 2x+ yz is defined as true→ τ : {x} : x = 2x−+ y−z−, and process term x, y := x+ y, x− y
is defined as true→ τ : {x, y} : (x = x−+ y−)∧ (y = x−− y−). Note that this rewriting rule may
not be applied to a part of another atomic process term, because the process terms psync : yn := en
are rewritten in a different way (see Section 4.3.5).

4.3.3 Update process term

The update process term W : r is prefixed with the internal action label τ and the guard ‘true’.

W : r , true→ τ : W : r

4.3.4 Synchronization process terms

Omitting the update part in the action label update process term, or in the send / receive update
process terms defaults to an update part with an empty set of jumping variables and a predicate
true.

a , true→ a : ∅ : true
u → a , u → a : ∅ : true

h ! en , true→ h ! en : ∅ : true
u → h ! en , u → h ! en : ∅ : true

h ? xn , true→ h ? xn : ∅ : true
u → h ? xn , u → h ? xn : ∅ : true

4.3.5 Synchronization process terms with multi-assignment

The multi-assignment that is atomically combined with a synchronization process term is defined
as a synchronization with an update part.
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a : yn := en , true→ a : {yn} : yn = e−n
u → a : yn := en , u → a : {yn} : yn = e−n

h ! ek : yn := en , true→ h ! ek : {yn} : yn = e−n
u → h ! ek : yn := en , u → h ! ek : {yn} : yn = e−n

h ? xk : yn := en , true→ h ? xk : {yn} : yn = e−n [xk/x−k ]
u → h ? xk : yn := en , u → h ? xk : {yn} : yn = e−n [xk/x−k ]

Here e−n [xk/x−k ] denotes the result of substituting in each of the expressions e−1 , . . . , e−n all oc-
currences of x−1 , . . . , x−k by x1, . . . , xk , respectively. For example h ? x : xs := xs++[x] is defined
as h ? x : {xs} : xs = (xs−++[x−])[x/x−], which is defined as h ? x : {xs} : xs = xs−++[x].

4.3.6 Synchronization update process term

Omitting the guard defaults to the guard true.

psync : W : r , true→ psync : W : r

4.3.7 Nondelayable action process term

Prefixing an action process term with the now keyword corresponds to making the process term
nondelayable by adding the tcp predicate false in an alternative composition.

now pact , pact 8 tcp false

The action process term pact is rewritten in terms of the abstract syntax as defined above in
Sections 4.3.1 until 4.3.6.

4.3.8 Guarded nondelayable action process term

A guarded nondelayable action process term is defined as an alternative composition of the
guarded action process term with a tcp predicate consisting of the negated guard, to allow de-
laying only for as long as the guard is false.

u → now pact , u → pact 8 tcp ¬u

The guarded action process term pact is rewritten in terms of the abstract syntax as defined above
in Sections 4.3.1 until 4.3.6.
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4.3.9 Delay process term

By means of the delay process term 1d , a process term is forced to delay for the amount of
time units specified by the value of numerical expression d , and then terminates by means of an
action τ . The fact that process term 1d terminates by means of an action ensures that time-outs
enforce a choice in alternative composition. The value of expression d is evaluated when the
delay process term 1d is activated.

1d , |[V {t 7→ cont}, {t 7→ ⊥}
:: t = d � (ṫ = −1 8 t ≤ 0→ τ : ∅ : true 8 tcp t > 0)
]|

In the definition of 1d , t ∈ V denotes a fresh variable, not occurring free in p and not occurring
in d.

In the example below, the process term time ≥ 2→ tnext := 5; 1tnext − time is executed in a
process:

model M() = |[ var tnext : real :: time ≥ 2→ tnext := 5; 1tnext − time ]|

Rewriting the model in terms of the abstract syntax leads to:

〈 time ≥ 2→ τ : {tnext} : tnext = 5
; |[V {t 7→ cont}, {t 7→ ⊥}
:: t = tnext − time� (ṫ = −1 8 t ≤ 0→ τ : ∅ : true 8 tcp t > 0)
]|

, {tnext 7→ ⊥, time 7→ 0}
, ({tnext 7→ disc, time 7→ cont},∅,∅,∅)
〉

After execution of the guarded action update process term (assignment) at time point 2, the con-
sistency transition defined by Rule 19 of the sequential composition operator (in combination
with Rules 18 of the initialization operator and Rule 38.b of the variable scope operator) restricts
the initial value of local variable t to a value that satisfies t = tnext − time. The process specified
above then transforms into:

〈 |[V {t 7→ cont}, {t 7→ 3} :: (ṫ = −1 8 t ≤ 0→ τ : ∅ : true 8 tcp t > 0) ]|
, {tnext 7→ 5, time 7→ 2}
, ({tnext 7→ disc, time 7→ cont},∅,∅,∅)
〉

4.3.10 Repetition operator process terms

Process term ∗p represents the infinite repetition of process term p. Guarded repetition u
∗
→ p

can be interpreted as ‘while u do p’.
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∗p , |[R {X 7→ p; X} :: X ]|
u
∗
→ p , |[R {X 7→ ( u → τ : ∅ : true; p; X

8 ¬u → τ : ∅ : true
8 tcp false
)

}

:: X
]|

In the definition of ∗p and u
∗
→ p, recursion variable X denotes a fresh recursion variable not

occurring free in p.

4.3.11 Scope operator process term

The scope operator process term

|[ var s1 : disc ts1 = cs1 , . . . , sk : disc tsk = csk
, x1 : cont tx1 = cx1 , . . . , xn : cont txn = cxn
, z1 : alg tz1 , . . . , zg : alg tzg

, init ip
, action a1, . . . , al
, action nonurg a′1, . . . , a′l ′
, chan h1 : th1 , . . . , hm : thm
, chan nonurg h′1 : th′1 , . . . , h′m′ : th′m′
, mode X1 = p1 , . . . ,mode Xr = pr
:: pr+1
]|,

in the concrete language is defined as the following process term in the abstract language:

|[V {s1 7→ disc, . . . , sk 7→ disc
, x1 7→ cont, . . . , xn 7→ cont
, z1 7→ alg, . . . , zg 7→ alg
}

, {s1 7→ cs1 , . . . , sk 7→ csk , x1 7→ cx1 , . . . , xn 7→ cxn }

:: ip� |[A {a1 7→ true, . . . , al 7→ true, a′1 7→ false, . . . , a′l ′ 7→ false}
:: |[H {h1 7→ true, . . . , hm 7→ true, h′1 7→ false, . . . , h′m′ 7→ false}
:: |[R {X1 7→ p1, . . . , Xr 7→ pr } :: pr+1 ]|
]|

]|

]|

The scope operator is used to declare a scope consisting of local discrete variables s1, . . . , sk ;
local continuous variables x1, . . . , xn ; local algebraic variables z1, . . . , zg; local urgent and
non-urgent action labels a1, . . . , al and b1, . . . , bl ′ , respectively; local urgent and non-urgent
channels h1, . . . , hm and h′1, . . . , h′m′ , respectively; and local recursion definitions mode X1 =
p1 , . . . ,mode Xr = pr . The variables are assumed to be all different, and action labels are
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assumed to be different from recursion variables. Furthermore, the same assumptions hold, and
the same abbreviations can be used, as those defined for models in Section 4.2.1.

4.3.12 Process instantiation process term

Process instantiation process term lp(xk, al , hm, en), where lp denotes a process label, enables
(re)-use of a process definition. A process definition is specified once, but it can be instantiated
many times, possibly with different parameters: external variables xk , external action labels al ,
external channels hm , and expressions en .

Chi specifications in which process instantiations lp(xk, al , hm, en) are used have the following
structure:

pd1
...

pd j

model · · · =
|[ var . . . , action . . . , chan . . . , mode . . . :: q ]|,

where for each process instantiation lp(xk, al , hm, en) occurring in process term q, a matching
process definition pdi (1 ≤ i ≤ j) of the form

proc lp(var x′k : txk , action a′l , chan h′m : thm , val vn : tvn ) = p

must be present among the j process definitions pd1 . . . pd j . Here lp denotes a process label, xk
denotes the ‘actual external’ variables x1, . . . , xk , al denotes the ‘actual external’ action labels
a1, . . . , al , hm denotes the ‘actual external’ channels h1, . . . , hm , en denotes the expressions
e1, . . . , en , x′k : txk denotes the ‘formal external’ variable definitions x ′1 : tx1 , . . . , x ′k : txk , a′l
denotes the ‘formal external’ action definitions a′1, . . . , a′l , h′m : thm denotes the ‘formal external’
channel definitions h′1 : th1 , . . . , h′m : thm , and vn : tvn denotes the ‘value parameter definitions’
v1 : tv1 , . . . , vn : tvn .

The only free variables, free action labels, and free channels that are allowed in process term p
are the formal external variables x′k and the value parameters vn , the formal external actions a′l ,
and the formal external channels h′m , respectively. We assume that the formal external variables
x′k and the value parameters vn are different.

Formally, the syntactic translation of process instantiation

lp(xk, al ,hm, en)

with corresponding process definition

proc lp(var x′k : txk , action a′l , chan h′m : thm , val vn : tvn ) = p
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is given by

|[V {v1 7→ disc, . . . , vn 7→ disc}, {v1 7→ ⊥, . . . , vn 7→ ⊥}

:: vn = wn � Tabstract(p)
]| [xk, al ,hm, en/x′k, a′l ,h′m,wn],

where Tabstract(p) denotes the abstract equivalent of concrete process term p, as defined in Section
4.3.

Notation q[xk, al ,hm, en/x′k, a′l ,h′m,wn] denotes the process term obtained from q ∈ Pabstract by
substitution of the (free) variables x′k by xk , of the (free) actions a′l by al , of the (free) channels
h′m by hm , and of the (free) variables wn by expressions en .

The variables wn are assumed to be fresh with respect to x′k and vn . The substitution is defined in
such a way that no variables from xk or en , and no actions or channels from al or hm , respectively,
become bound. If substitution would cause new bindings, the local variable, local action or local
channel that a variable, action or channel from xk , en , al or hm would become bound to, is
renamed into a fresh variable, fresh action or fresh channel, respectively, before the substitution
takes place.

The translation declares the value parameters vn as local discrete variables with initial values en .
By convention, however, process term p normally does not change the values of these variables.
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A Introduction to higher index systems

Most languages for hybrid system simulation or verification cannot deal with higher index sys-
tems. Unfortunately, many models of physical systems are of a higher index. In this section, the
higher index problem is explained.

The higher the index of a system of differential algebraic equations (DAEs), the more difficult it
is to numerically solve the equations for the continuous variables as functions of time. Ordinary
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differential equations (ODEs), which are of the form ẋ = f(x, t) have index 0. Adding algebraic
constraints means increasing the index by at least 1. The general form of a system of DAEs is

f(ẋ, x, y, t) = 0, (A.1)

where x denotes a (vector of) continuous variables, y denotes a (vector of) continuous variables
that are used algebraically (the dotted version ẏ does not occur in the equations), and t denotes the
time. Note that in Chi, DAEs are prefixed with the eqn keyword by means of the equation process
term eqn u, and the identifier time is used instead of t . For the solution of the implicit system
of equations (A.1), also the initial conditions are required. We denote the initial conditions as
a valuation. For lower index systems, an initial condition {ẋ 7→ c0, x 7→ c1, y 7→ c2, t 7→ c3}
(where c0, c1, c2 and c3 denote (vectors of) values), needs to satisfy only the system of equations
A.1, so that f(c0, c1, c2, c3) = 0. Higher index systems on the other hand are characterized by
the fact that they have hidden constraints, which are obtained by differentiation of the system of
equations.

An example of an index 0 system, with, for example, initial conditions {x 7→ 1, ẋ0 7→ 0, ẋ1 7→ 2},
is:

ẋ0 = −x1 + 1 (A.2a)
ẋ1 = 2 (A.2b)

An example of an index 1 system, with, for example, initial conditions {x 7→ 1, ẋ 7→ 0, y 7→ 2},
is:

ẋ = −x + 1 (A.3a)
y = 2x (A.3b)

An example of an index 2 system is:

x = 1 (A.4a)
y = ẋ (A.4b)

Initial conditions for this system of equations appear to be {x 7→ 1, ẋ 7→ 1, y 7→ 1}, for example.
However, the solution function for this set of equations is for x the constant function 1 (x : T →R,
where T and R are the sets of time points and real valued numbers, respectively, and x(t) = 1
for all t ∈ T ), and for ẋ , and thus also for y, the constant function 0. Since the constant function
for x is differentiable, resulting in a constant derivative function of zero, no solution exists for
initial conditions {x 7→ 1, ẋ 7→ 1, y 7→ 1}. In fact, a solution of this set of equations exists only
for consistent initial conditions, where consistent initial conditions satisfy not only the system of
equations themselves, but also the hidden constraints. In the example, equation x = 1 implies
the hidden constraint ẋ = 0, which is obtained after differentiation. Therefore, consistent initial
conditions satisfy:

x = 1 (A.5a)
y = ẋ (A.5b)
ẋ = 0 (A.5c)

which is equivalent to:

x = 1 (A.6a)
y = 0 (A.6b)
ẋ = 0 (A.6c)

with (consistent) initial conditions {x 7→ 1, ẋ 7→ 0, y 7→ 0}.

The need to differentiate (a subset of) the system of equations in order to obtain the hidden con-
straints and define the consistent initial conditions is related to the index of the system of equa-
tions. Several index definitions exist. In most cases, the differential index [9] is used. This index
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is rather straightforward to determine, due to its constructive definition. Consider the system of
equations

f(ẋ, x, y, t) = 0 (A.7a)
d
dt

f(ẋ, x, y, t) = 0 (A.7b)

...

d j

dt j f(ẋ, x, y, t) = 0, (A.7c)

This system can be written as

f0(ẋ, x, y, t) = 0 (A.8a)
f1(ẍ, ẏ, ẋ, x, y, t) = 0 (A.8b)

...

fj (x( j+1), y( j), . . . ẍ, ẏ, ẋ, x, y, t) = 0 (A.8c)

To derive the differential index of (A.7a), the variables x( j+1), y( j), . . . ẍ, ẏ, ẋ are treated as purely
algebraic variables, depending on x, y, and t . The differential index is then defined as the smallest
value of j for which System (A.8) uniquely defines [ẋ ẏ] as a function of x, y, and t .

Systems of equations that have an index greater than one are called higher index systems. Con-
sider again the system of equations (A.4) with differential index 2. A first differentiation leads to
Systems (A.5) and (A.6). A second differentiation leads to ẏ = 0, so that the ODE ẋ = 0, ẏ = 0
is obtained. Even DAEs of (differential) index one may require differentiation in order to reveal
hidden constraints, and to allow consistent initialization. Consider

ẋ0 = ẋ1 (A.9a)
x0 = 1 (A.9b)

Initial conditions that satisfy Equations (A.9) are {ẋ0 7→ 1, ẋ1 7→ 1, x0 7→ 1, x1 7→ 1}. These
initial conditions, however, do not satisfy the hidden constraint ẋ0 = 0, which is obtained after
differentiation. Consistent initial conditions need to satisfy

ẋ0 = ẋ1 (A.10a)
x0 = 1 (A.10b)
ẋ0 = 0, (A.10c)

and are, for example, {ẋ0 7→ 0, ẋ1 7→ 0, x0 7→ 1, x1 7→ 1}. The differential index, however, is
one since System (A.10) can be rewritten by algebraic manipulation as the ODE ẋ0 = 0, ẋ1 = 0.

Another example of a higher index system is:

y2
= 0 (A.11)

Differentiation leads to 2y ẏ = 0, which together with (A.11) does not uniquely define ẏ. A sec-
ond differentiation leads to y ÿ + ẏ2

= 0, which together with (A.11) leads to ẏ = 0. Although
for differential equation solvers Equation (A.11) may be difficult to solve, for algebraic equa-
tion solvers, solving Equation (A.11) is not particularly difficult. Also, finding consistent initial
conditions for Equation (A.11) is easy: {y 7→ 0}.

For the determination of consistent initial conditions it is therefore more relevant to consider the
smallest value of j for which System (A.8) uniquely (at least locally) defines [ẋ y] as a function
of x, and t . This value of j is the number of times that the original DAE (A.7a) needs to be
differentiated in order to be able to determine the consistent initial conditions. If a DAE

f(ẋ, x, y, t) = 0
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uniquely (at least locally) defines [ẋ y] as a function of x and t , the DAE does not contain hidden
constraints. This is the case if and only if ∂f/∂z is nonsingular, where z = [ẋ y]. The initial
value c1 for variable x of such a DAE can be arbitrarily chosen; consistent initial conditions
{ẋ 7→ c0, x 7→ c1, y 7→ c2, t 7→ c3} need only satisfy the original equations. This can be seen as
follows: differentiation of the function that uniquely defines [ẋ y] as a function of x and t , yields
a function g that defines [ẍ ẏ] as a function of ẋ, x, and t : [ẍ ẏ] = g(ẋ, x, t). Therefore, for every
initial condition {ẋ 7→ c0,x 7→ c1,y 7→ c2, t 7→ c3} that satisfies the original equation, a valuation
{ẍ 7→ c4, ẏ 7→ c5, ẋ 7→ c0, x 7→ c1, t 7→ c3} can be chosen that satisfies the additional equations.
Namely [c4 c5] = g(c0, c1, c3).

A.1 Structural analysis

Another way of analyzing the properties of systems of equations is by means of structural anal-
ysis. Structural analysis distinguishes only zero and non-zero values [21]; only the presence of
variables in equations is taken into account, not the numerical value of the corresponding coeffi-
cients in the Jacobian matrix. Structural analysis of equations is, in general, a more efficient way
to detect higher index systems than numerical analysis of the Jacobian matrix. The Pantelides
algorithm [16], that is based on structural analysis, identifies the minimal subset of equations that
must be differentiated to be able to define consistent initial conditions. Pantelides shows that
DAEs that are structurally singular with respect to [ẋ y] require differentiation of the equations
in order to reveal the hidden constraints. A system of equations is defined as structurally singular
with respect to a certain set of variables if it contains a subset of equations that is structurally
singular with respect to the same set of variables. A subset of equations is called structurally
singular with respect to a set of variables if the number of these variables that occur in the equa-
tion subset is smaller than the number of equations in the subset. The Pantelides algorithm tries
to assign each of the variables of [ẋ y] to a different equation. If this is possible, the system of
equations is structurally regular. If this is not possible, the algorithm finds the equations that need
to be differentiated in order to enable consistent initialization. Structural regularity of equations
with respect to [ẋ y] is a necessary, but not sufficient, requirement to allow consistent initializa-
tion without differentiation. The reason for this is that a system that is structurally regular may
still have a singular Jacobian matrix. Only a few simulators actually provide structural analysis
and automatic index reduction by means of differentiation in order to reduce the index and allow
consistent initialization. The Dymola [7] simulator is one of them. For the many simulators that
do not provide automatic index reduction, the modeler needs to do structural analysis and index
reduction him/herself, and/or use systematic modeling techniques that keep the index low. Such
a technique is described in [14]. A key element of this technique is the assignment of the vari-
ables of [ẋ y] to the equations. The chosen assignment of variables to equations is essentially a
bookkeeping method; it is not part of the model. The chosen assignments could be informally
indicated by means of comments to the model.

B Use of urgency

B.1 Multiple solutions for delay behavior

In the examples of Section 2.6.6, there was always exactly one solution for the delay behavior of
the variables, given the length of the delay interval. In the process below, there are two solutions
for the variable x : it can delay according to x =

√
time or x =−

√
time. Since action labels a and

b are both urgent, time can progress until time point 16 when x delays according to x =
√

time,
and time can progress until time point 1 when x delays according to −

√
time:
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〈 x2
= time ‖ x ≥ 4→ a : ∅ : true ‖ − 2 ≤ x ∧ x ≤ −1→ b : ∅ : true

, {x 7→ ⊥, time 7→ 0}
, ({x 7→ cont , time 7→ cont}, {a 7→ true, b 7→ true},∅,∅)
〉

When x is an algebraic variable instead of a continuous variable, as shown below, the trajectory
for x can be discontinuous. Therefore, x can delay according to +

√
time for the first 9 time

units, until the value of x equals 3. Subsequently, x can delay according to −
√

time by making
a discontinuous jump to −3. In this way, the process can perform arbitrary long delays. The
trajectory of a continuous variable cannot make such a discontinuous jump.

〈 x2
= time ‖ x ≥ 4→ a : ∅ : true ‖ − 2 ≤ x ∧ x ≤ −1→ b : ∅ : true

, {x 7→ ⊥, time 7→ 0}
, ({x 7→ alg , time 7→ cont}, {a 7→ true, b 7→ true},∅,∅)
〉

B.2 Urgency and variable scoping

In the process below, an urgent channel h is declared at the process level. Two local variables x
are declared by means of variable scope operators.

〈 |[V {x 7→ cont}, {x 7→ ⊥} :: x2
= time ‖ x ≥ 1→ h! ]|

‖ |[V {x 7→ cont}, {x 7→ ⊥} :: x2
= time ‖ x ≥ 2→ h? ]|

, {time 7→ 0}
, ({time 7→ cont}, {h 7→ true},∅,∅)
〉

The behavior of the two local variables x is not visible at the process level, outside of the variable
scopes. A variable scope can be thought of a ‘black box’ that hides all locally declared variables.
The channel h and the value of its associated guard, however, are visible at the process level.
This is because the channel h is declared globally, at the process level, and because the value of
the guard defines whether or not the send or receive action via the channel is enabled, and can
thus result in communication. This can be observed at the process level.

There are four solutions for the delay behavior of the process: the local variable x of the first
block can delay according to

√
time or −

√
time, and for each possibility, the local variable x of

the second block can delay according to
√

time or−
√

time. When both variables delay according
to −
√

time, the process can perform arbitrary delays. When both variables delay according to
√

time, the process can delay until time point 4, when both guards are true. Then the synchronous
execution of the send and receive actions must take place, and the process terminates.

Although the local variables x are not visible outside of the variable scopes, their effect can be
observed by observing the enabledness of the send and receive actions via the global channel h.
Another way of observing the behavior of the local variables is via two additional global variables
y and z, which can be continuous or algebraic. For example:

〈 |[V {x 7→ cont}, {x 7→ ⊥} :: x2
= time, y = x ‖ x ≥ 1→ h! ]|
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‖ |[V {x 7→ cont}, {x 7→ ⊥} :: x2
= time, z = x ‖ x ≥ 2→ h? ]|

, {time 7→ 0}
, ({time 7→ cont, y 7→ alg , z 7→ alg }, {h 7→ true},∅,∅)
〉

B.3 Explicit and implicit guards

Apart from the explicit guards u in process terms such as u → a : W : r and u → h ! e : W : r ,
there can also be implicit guards in the update predicate r . Such guards are specified by means
of conditions involving variables with a ‘−’ superscript. The values of such variables, and the
values of the guards, are evaluated just before the action is executed.

Implicit guards associated to urgent actions or urgent channels are either superfluous, or they can
lead to deadlock. Consider for example:

〈 eqn ẋ = 1 ‖ x ≥ 2→ a : ∅ : x− ≥ 1
, {x 7→ 0, time 7→ 0}
, ({x 7→ cont, time 7→ cont}, {a 7→ true},∅,∅)
〉

Here, the implicit guard x− ≥ 1 is superfluous since x ≥ 2⇒ x ≥ 1. In process

〈 eqn ẋ = 1 ‖ x ≥ 2→ a : ∅ : x− ≥ 3
, {x 7→ 0, time 7→ 0}
, ({x 7→ cont, time 7→ cont}, {a 7→ true},∅,∅)
〉,

the implicit guard leads to deadlock, because at time point 2, the value of the explicit guard
becomes true, preventing further delaying. Actions cannot be executed then either, because the
value of the implicit guard is false.

Changing the implicit guard to an explicit one leads to:

〈 eqn ẋ = 1 ‖ x ≥ 2 ∧ x ≥ 3→ a : ∅ : true
, {x 7→ 0, time 7→ 0}
, ({x 7→ cont, time 7→ cont}, {a 7→ true},∅,∅)
〉

In this process, the guard becomes true when x ≥ 2 ∧ x ≥ 3. Thus at time point 3, the value of
the guard becomes true, preventing further delaying. The action can now be executed.

In the case of non-urgent actions and non-urgent channels, explicit and implicit guards have the
same effect: the action can take place when the conjunction of the explicit and implicit guards is
true. The delay behavior is not affected by the guards.
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