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SENSITIVITY ANALYSIS OF 3-D COMPOSITE STRUC-
TURES THROUGH LINEAR EMBEDDING VIA GREEN’S
OPERATORS

V. Lancellotti, B. P. De Hon, and A. G. Tijhuis

Department of Electrical Engineering
Eindhoven University of Technology
P. O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract—We propose a methodology — based on linear embedding
via Green’s operators (LEGO) and the eigencurrent expansion method
(EEM) — for solving electromagnetic problems involving large 3-D
structures comprised of ND À 1 bodies. In particular, we address
the circumstance when the electromagnetic properties or the shape of
one body differ from those of the others. In real-life structures such
a situation may be either the result of a thoughtful design process or
the unwanted outcome of fabrication tolerances. In order to assess
the sensitivity of physical observables to localized deviations from the
“ideal” structure, we follow a deterministic approach, i.e., we allow for
a finite number of different realizations of one of the bodies. Then, for
each realization we formulate the problem with LEGO and we employ
the EEM to determine the contribution of the ND − 1 “fixed” bodies.
Since the latter has to be computed only once, the overall procedure
is indeed efficient. As an example of application, we investigate the
sensitivity of a 2-layer array of split-ring resonators with respect to the
shape and the offset of one element in the array.

1. INTRODUCTION

Among the numerical techniques that over the past decades have
been devised for solving large electromagnetic (EM) problems, the
fast multipole method (FMM) [1] along with its multi-level (MLFMA)
extension [2] plays a prominent role. Both FMM and MLFMA provide
a recipe to perform fast matrix-vector multiplications: Thereby they
are intrinsically suited for an iterative solution of the algebraic systems
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arising from the application of the Method of Moments (MoM) [3, 4].
However, when multiple sources are contemplated — e.g., as in the
calculation of the monostatic radar cross section (RCS) [5] — iterative
methods do not seem to be the obvious choice, as the relevant system
needs to be solved for every source, possibly leading to long calculation
times. As a matter of fact, for a sweep of source positions (or angles
of incidence, frequency and the like) the number of right-hand sides
— and hence of systems to be solved — may be reduced drastically
with the aid of the marching-on techniques [6, 7]. Nevertheless iterative
methods may still suffer from slow convergence rates, when the system
matrix is poor- or ill-conditioned.

In this scenario, domain decomposition methods (DDM) [8–15]
perform far better, chiefly because, upon introducing ad hoc locally
entire domain basis functions to expand the unknowns, they effectively
compress the original system matrix. The latter can then be inverted
by direct methods, such as the LU factorization [16]; hence multiple
right hand sides (i.e., multiple sources) can be accounted for very
efficiently and convergence problems of the linear system are avoided.

Driven by these considerations, we have recently extended
the linear embedding via Green’s operators (LEGO) method [17]
for dealing with fully 3-D composite structures [18, 19], comprised
of ND À 1 disjoint bodies. LEGO is a DDM in which the
multiple scattering between adjacent objects is determined through
the interaction of simply-shaped building bricks (Fig. 1), whose EM

Figure 1. LEGO method: An aggregate of ND bodies is modelled
with as many bricks described via scattering operators Skk (1), whereas
the interactions among the bricks are expressed through transfer
operators Tkn (3). Possible local non-uniformities are included within
the NDth brick.
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behavior is accounted for by means of scattering operators.
Here we report on a further upgrade of LEGO to the instance

when one of the bodies forming the structure is different from the
other ND − 1. For such a problem, we have devised a methodology
hinging on the following three main steps:

(i) We embed the objects in ND bricks with identical shape; the brick
enclosing the different body is referred to as the “target”, whereas
the remaining ND − 1 bricks constitute the large “fixed” part of
the structure.

(ii) We solve for the large fixed part once for all by means of the
eigencurrent expansion method (EEM) [18–20].

(iii) We invert a comparatively small linear system for determining the
contribution of the target.

The idea of isolating a body with different properties within a
target brick was applied in the 2-D LEGO as well [17]. Yet, in [17], we
obtained the contribution of the large fixed part of the structure by a
cascade of successive embedding steps — which in general is not suited
for large 3-D EM problems. The very strategy outlined above was first
adopted in [21] to study the properties of an open 3-D electromagnetic
band-gap dielectric cavity as a function of the permittivity of the cavity
itself. We also followed a similar approach for solving an antenna
problem in [22]. Therefore, LEGO stands out as a useful design tool.

On the other hand, one may as well be interested in assessing the
performance of an otherwise regular arrangement of objects (e.g., an
antenna array) when one of the constitutive elements is “defective”.
To carry out the sensitivity analysis in such a case, we propose a
deterministic approach, namely, we allow for a finite number of possible
defective configurations (with respect to the expected one) of one
object in the structure. Then, for each configuration we solve the
EM problem with LEGO, as outlined above. The procedure turns
out convenient, in that, to cope with the defects, we just need to re-
compute a relatively small matrix (i.e., the scattering operator of the
target brick) and invert a system of the same size. Therefore, direct
methods may be used, even when ND À 1. In contrast, if we were
to solve the same problem with MoM and, say, the FMM, then for
each realization of the defective object we would have to recompute a
substantive part of the whole system matrix. What’s more, we would
have to repeat the whole iterative solution, as no intermediate result
could be reused to save time.

The rest of the paper is organized as follows. We formulate the EM
problem in Fig. 1 with LEGO and we solve it by the EEM in Sections 2
and 3, respectively. Then in Section 4, we provide validation of the
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numerical code against the baseline MoM and we discuss the sensitivity
of the transmission efficiency of a 2-layer array of split-ring resonators
(SRR) versus the shape and offset of one defective element in the array.
A time dependence in the form exp(jωt) for EM fields and sources is
implied and suppressed throughout.

2. FORMULATION WITH LEGO

We consider the scattering from an aggregate of ND distinct bodies
immersed in a (homogeneous) host medium, as depicted in Fig. 1.
To formulate this problem with LEGO, we embed the objects in 3-
D (arbitrarily shaped) bounded domains Dk, k = 1, . . . , ND, which
we dub bricks: We assume that all of the bricks possess the same
shape. Besides, we allow one of the bodies to be different (either in
shape or in composition) and we enclose it in the NDth brick. This is
no limitation, since bricks’ numbering is irrelevant. Then, we invoke
Love’s Equivalence Principle [23] to characterize the EM behavior of
the bricks — independently of one another and the external sources —
by means of scattering operators Skk [18], namely,

qs
k = Skkq

i
k, (1)

where qs,i are defined in [18, Equation (2)]. In words, Skk maps
equivalent incident currents qi

k on ∂D+
k (reproducing the incident field

inside Dk) to equivalent scattered currents qs
k on ∂D−k (radiating the

scattered field outside Dk). We obtain Skk by posing proper boundary
integral equations (BIEs) on ∂Dk and the object surface [18]. In
accordance with the scenario above, SNDND

will be different from Skk,
k < ND.

We now observe that (1) holds true for a solitary brick in the host
medium. When a structure is modelled by means of ND interacting
bricks, (1) generalizes to [18]

qs
k = Skk


qi

k +
ND∑

n6=k

qi
k(n)


 = Skkq

i
k,tot, ∀k, (2)

where we have introduced the total incident currents qi
k,tot. The latter

are the sum of two terms. The first, qi
k, is the contribution of the

external independent sources, i.e., the same as in (1). The second
is the sum of additional incident currents, qi

k(n), which are due to
the scattered currents qs

n, n 6= k, existing on the boundaries of the
remaining ND − 1 bricks (see Fig. 1). Symbolically,

qi
k(n) = Tknqs

n, n 6= k, (3)
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where Tkn denotes the transfer operator from ∂D−n to ∂D+
k [18]. To

proceed, we recast (2) and (3) as:

S−1
LL qs

L = qi
L + TLND

SNDND
qi
ND,tot, (4)

qi
ND,tot = qi

ND
+ TNDL qs

L, (5)

where qs,i
L are column vectors with entries (qs,i

L )k = qs,i
k , k < ND, and

we have made use of the total inverse scattering operator of the large
fixed part, S−1

LL , the total transfer operators from the target to the fixed
part, TLND

, and vice versa, TNDL. Furthermore, S−1
LL , TLND

, TNDL are
a square matrix, a column vector and a row vector, respectively, with
entries that are operators given by:

(S−1
LL )kn =

{
S−1

kk k = n,

−Tkn k 6= n,
k, n < ND, (6)

(TLND
)k = Tk ND

, k < ND, (7)
(TNDL)n = TND n, n < ND. (8)

In the next section we describe how to perform the numerical
solution of (4), (5) efficiently by means of the EEM.

3. SOLUTION WITH EEM

The practical implementation of the EEM reflects the one we described
in [18, Section 4]. Yet, since we have to tailor the EEM to the system of
coupled Equations (4), (5), we provide a short review of the procedure.

3.1. Overview

The EEM [18, 20] consists of applying the MoM [4] with a set of basis
and test functions E which are “approximations” to the eigenfunctions
of the operator to be inverted, viz., S−1

LL . Thereby, we choose the entries
of E to be:

e(k)
m =

[
0, . . . , 0, u

(k)
m , 0, . . .

]t
, k < ND, m ∈ N, (9)

where u
(k)
m denotes the mth eigenfunction of Skk. We call e

(k)
m

eigencurrents. Since the eigencurrent e
(k)
m coincides with u

(k)
m on ∂Dk

and vanishes on ∂Dn, n 6= k, evidently, {e(k)
m } would constitute the

exact eigencurrents of S−1
LL , if we had neglected the multiple scattering

occurring among the bricks.
When we do take into account the EM interactions among the

bricks, {e(k)
m } are nevertheless well suited to represent the unknown
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scattered currents qs
L. In fact, {e(k)

m } can be separated into two sub-
sets:
• coupled eigencurrents: They are associated with the largest

eigenvalues of Skk, and substantially depart from the true
eigencurrents of S−1

LL , say s
(k)
m .

• uncoupled eigencurrents: They correspond to the higher-order
eigenvalues of Skk, and they do not interact with one another,
in that they are increasingly better approximations to s

(k)
m .

In [18, 19, 21], we demonstrated that the entries of the MoM
matrices obtained using the eigencurrents as basis and test functions
are not equally meaningful. More precisely, we can neglect (i.e., nullify)
the entries that arise from the interaction of pairs of coupled and
uncoupled eigencurrents or two distinct uncoupled eigencurrents. In
Section 3.3, we exploit this property to drastically reduce the size of
the matrix [SLL]−1, i.e., the algebraic counterpart of S−1

LL .

3.2. Numerical Setup

To build the set E in (9) we need the eigencurrents {u(k)
m }. As in

general the latter are not known in closed form, we determine E
numerically through the MoM. To this purpose, we model ∂Dk with a
3-D triangular-facet mesh, on which we define a set Bk of 2NF Rao-
Wilton-Glisson (RWG) functions [24] to expand the current densities
qs,i
k [18, Equation (20)]. Similarly, we represent each object’s boundary,
So, by a triangular mesh, to which we associate a set Ck of NOk RWG
functions to expand the currents induced on So. As argued in [18], the
exact structure of Ck depends on the nature of the BIE posed on the
object. In addition, we allow CND

to be different from Ck, k < ND,
as the object embedded in the target brick may also have a different
shape (see Fig. 1).

To proceed, we apply the MoM (in Galerkin’s form) to compute
the algebraic counterparts of Skk and Tkn, i.e., the scattering and
transfer matrices [Skk], [Tkn], whose size is 2NF × 2NF (we refer the
reader to [18] for the details.) Hence, we can write the algebraic (weak)
form of (4), (5): The resulting expressions are quite straightforward,
so we omit them for the sake of brevity. Instead, we give the algebraic
counterpart of the relevant operators, viz.,

([SLL]−1)kn =
{

[Skk]
−1 k = n,

− [Tkn] k 6= n,
k, n < ND, (10)

([TLND
])k = [Tk ND

] , k < ND, (11)
([TNDL])n = [TND n] , n < ND. (12)
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because these matrices will be compressed by the EEM. The total
inverse scattering matrix (10) is of size 2NF (ND − 1)× 2NF (ND − 1),
whereas the sizes of [TLND

] and [TNDL] are 2NF (ND − 1) × 2NF and
2NF × 2NF (ND − 1), respectively. We emphasize that in (10) the
diagonal blocks of [SLL]−1 have to be interpreted formally, as [Skk]
is rank-deficient whenever 2NF > NOk. Nonetheless, we are not in
trouble, because we never compute [Skk]

−1 in practice: We will clarify
this point in Section 3.3.

As a third step, we determine the 2NF eigenvectors [v(k)
p ]

and eigenvalues λpk, p = 1, . . . , 2NF , of [Skk]. This spectral
decomposition [16, 25] has to be effected only once. Then, out of [v(k)

p ]
we form a larger basis U for spanning the space of [qs,i

L ], namely,

[V ] = diag{[Vkk]}, k < ND, (13)

where [Vkk] stores the eigenvectors [v(k)
p ] columnwise. Apparently, U

represents the algebraic (finite) counterpart of the basis E defined in
Section 3.1.

Finally, we expand the matrices (10)–(12) in the basis U by means
of the eigencurrent matrix (13), namely,

([S̃LL]−1)kn =

{
diag{λ−1

pk }, k = n,

−[T̃kn], k 6= n,
k, n < ND, (14)

[T̃LND
] = [V ]−1 [TLND

] , [T̃NDL] = [TNDL] [V ] , (15)

where [T̃kn] = [Vkk]
−1 [Tkn] [Vnn].

3.3. Matrix Compression

As anticipated in Section 3.1, we now nullify the entries of the matrices
in (14), (15), when they involve either a pair of coupled and uncoupled
eigencurrents or two distinct uncoupled eigencurrents. To be specific,
upon introducing a permutation matrix [P ] ([P ]−1) [16], whose action
consists of swapping columns (rows) of the matrix by which it is right
(left) multiplied, we have:

[ŜLL]−1 =[P ]−1[S̃LL]−1[P ]=

[
[S̃CC]−1 [S̃CU]−1

[S̃UC]−1 [S̃UU]−1

]
≈

[
[S̃CC]−1 [0]

[0] [ΛUU]−1

]
, (16)

[T̂NDL] = [T̃NDL] [P ] =
[

[T̃NDC] [T̃NDU]
] ≈ [

[T̃NDC] [0]
]
, (17)

[T̂LND
] = [P ]−1 [T̃LND

] =

[
[T̃CND

]

[T̃UND
]

]
≈

[
[T̃CND

]

[0]

]
, (18)
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where [ΛUU] is diagonal and stores the eigenvalues of the uncoupled
eigencurrents in U. The subscript C (U) stands for coupled
(uncoupled). Thanks to (16)–(18), the algebraic equations to be solved
take on the final (reduced) form:

([INDND
]−[ΣNDND

][SNDND
])[qi

ND,tot]=([qi
ND

]+[T̃CND
][S̃CC][q̃i

LC]),(19)

[qs
ND

] = [SNDND
] [qi

ND,tot], (20)

[q̃s
LC] = [S̃CC]([q̃i

LC] + [T̃CND
][qs

ND
]), (21)

[q̃s
LU] = [ΛUU][q̃i

LU], (22)
where [INDND

] is the identity matrix over the target brick, [ΣNDND
] =

[T̃NDC][S̃CC][T̃CND
], and [q̃s,i

LC] ([q̃s,i
LU]) is a column vector containing the

coefficients of all the coupled (uncoupled) eigencurrents. Furthermore,
we interpret [ΣNDND

] as the scattering operator of the fixed part as
“seen” from ∂DND

. Notice that (22) can be solved independently,
whereas we can go on to determine [qs

ND
] and [q̃s

LC] only after
solving (19). As a last step, we obtain the expansion coefficients in
the original RWG basis from (21) and (22) through:

[qs
L] = [V ] [P ]

[
[q̃s

LC]
[q̃s

LU]

]
. (23)

Equations (19)–(22) show that only the coupled eigencurrents
participate in the multiple scattering that takes place among the bricks
of the fixed part as well as between them and the target.

In addition to the advantages of LEGO/EEM [18, 19], the
extension we have described has its own benefits:
(i) The determination of [S̃CC][q̃i

LC], [ΣNDND
], [S̃CC][T̃CND

] requires
formally inverting [S̃CC]−1 of size NC(ND − 1) × NC(ND − 1).
Since, normally, NC ¿ 2NF , [S̃CC]−1 can be easily stored and
the calculations can be carried out through LU decomposition and
backward substitution [16, 25] only once.

(ii) The system matrix in (19) is the same size as the [Skk] (i.e.,
comparatively small), thereby the solution can be tackled by
means of LU decomposition as well. More importantly, to deal
with various realizations of the target brick we only have to re-
compute [SNDND

] as many times as necessary, while leaving the
rest unchanged.

(iii) The calculation of [q̃s
LU] in (22) entails just multiplication by the

eigenvalues of the uncoupled eigencurrents. These eigenvalues may
be null when [Skk] is rank-deficient (2NF > NOk) [19], but, since
we need not evaluate [ΛUU]−1 explicitly in (16), the stability of
the EEM is not endangered, as anticipated.
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Table 1. Breakdown of computational cost of (19), (21).

Matrix # operations required

[S̃CC] N3
C(ND − 1)3

[S̃CC][T̃CND
] 2NF N2

C(ND − 1)2

[T̃NDC][S̃CC] 2NF N2
C(ND − 1)2

[T̃NDC]([S̃CC][T̃CND
]) (2NF )2NC(ND − 1)

[ΣNDND
][SNDND

] (2NF )3

([INDND
]− [ΣNDND

][SNDND
])−1 (2NF )3

As for the complexity of the present LEGO/EEM extension, in
Table 1 we list the computational cost relevant to some of the matrix
inversions and multiplications involved in (19)–(22). The order of
magnitude of the overall cost for solving one realization of the target
(at a given frequency) can be estimated on summing the various
contributions.

4. VALIDATION AND RESULTS

We have upgraded our numerical code to solve (19)–(22). In [18],
we validated LEGO/EEM against the bare MoM by comparing the
scattered fields in the Fraunhofer region, whereas in [19] we provided
near-field validation and a criterion for choosing the number of coupled
eigencurrents. Here we briefly focus on assessing the EEM applied
to (4), (5).

To this purpose, we consider the plane wave scattering [Ei =
1ŷ exp(−jk · r) V/m, k = 2πẑ/λ0] off ND = 2 z-aligned (either PEC
or dielectric) spheres with radii a1, a2, a1 > a2, [Fig. 2(a)]; then,
in Fig. 2(b) we show the LEGO model involving as many cubic bricks
(edge d). We embed the smaller sphere within the target brick, i.e., the
upper one in Fig. 2(b). In these numerical tests, 2NF = 1152, NO1 =
684, NO2 = 276, when the spheres are PEC, whereas NO1 = 1368,
NO2 = 552, when they are penetrable. We employed NC(ND−1) = 50
coupled eigencurrents. This number has to be contrasted to the size of
[SLL]−1, namely, 2NF (ND − 1) = 1152, and to the size of the system
that arises from the baseline MoM, NO1 + NO2 ∈ {960, 1920}, when
applied to an EFIE and a PMCHWT equation [4], respectively. The
latter also constitute our reference solutions.
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Figure 2. For LEGO/EEM validation: (a) A composite structure
consisting of ND = 2 different spheres and (b) the corresponding
LEGO model with as many cubic bricks; the top (pink) brick plays
the role of the “target”.

Figure 3. LEGO/EEM valida-
tion: bistatic RCS of the struc-
ture in Fig. 2 comprised of two
PEC spheres. The LEGO/EEM
solution (•) with a target brick
(and NC = 50) is compared to
the MoM solution (–/– –). In-
sets: sketches of the spheres and
the LEGO bricks along with geo-
metrical and physical quantities.

Figure 4. Same as Fig. 3 but for
two dielectric spheres.
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In Figs. 3 and 4, we report the RCS for the PEC and the dielectric
cases, respectively, as well as the relevant geometrical and physical
data. The comparisons turn out excellent, thus supporting the validity
of the reduced formulation (19)–(22).

As an example of application we consider an array of ND =
14 × 7 × 2 = 196 SRRs [13, 26, 27] shown in Fig. 5. The array is
immersed in free-space and illuminated by an elemental electric dipole
(moment 1ŷ Am) placed at rS = (−1.2, 1.7, 1.35)mm. Now, suppose
that one of the SRRs is “defective” as per either its size or its position
with respect to the otherwise regular 3-D rectangular arrangement.
The intended SRR and the five defective realizations we considered are
shown in Fig. 6. We also allowed (in successive simulation campaigns)
for two positions of the defective SRR in the array: These locations are
highlighted in Fig. 5 as well. We applied LEGO/EMM with 2NF = 504
(see inset of Fig. 5), NOk = NOND

= 446, NC = 30. Accordingly, the
ranks of [SLL]−1 and [S̃CC]−1 are 98280 and 5850, respectively, whereas
the rank of the system matrix in (19) is just 504.

We carried out simulations for 29 frequency samples evenly
distributed in the range [90, 104]GHz. Computing qs

k for one frequency
and five realizations of the target roughly required 445 s on a Linux-
based x86 64 workstation endowed with an Intel Xeon 2.66-GHz
processor and 8-GB RAM. Subsequent calculation of near fields on

Figure 5. 2-layer array of ND = 196 SRRs illuminated by an electric
dipole. Also indicated are the positions of the defective SRRs detailed
in Fig. 6. Inset: triangular-facet patching of a LEGO brick enclosing
an SRR.
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Figure 6. Top view of a SRR and triangular-facet model: (a)
Intended size and position, (b) positive x̂-offset, (c) negative x̂-offset,
(d) negative ŷ-offset, (e) down scaling, (f) up scaling. The axes of the
plots coincide with the (xOy trace of the) surrounding LEGO brick
(see inset of Fig. 5).

Figure 7. Transmission efficiency (24) of the regular array in Fig. 5
through a planar square surface set in x = 0.3mm at f = 100 GHz.
The markers (•, ¥) denote the projection of the defective SRRs as well
as the points where T was computed in Figs. 8 and 9. The continuous
(dashed) white straight lines denote the cuts of T shown in Fig. 10
(Fig. 11).
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a square grid of 90 × 90 observation points in x = 0.3mm (for one
frequency and one configuration of the target) took about 741 s. For a
more detailed discussion of timing issues in LEGO/EEM, see [18, 21].

Lastly, we computed the transmission efficiency [27], viz.,

T (r) =
P tot

av (r)
P i

av(r)
, P i,tot

av =
1
2
<{Ei,tot×(Hi,tot)∗}·x̂, (24)

and investigated its sensitivity to the shape and offset of the defective
SRR as well as to its position in the array.

For the sake of reference, Fig. 7 displays T (r) through a square
surface placed in x = 0.3mm at f = 100 GHz, in the case when
no defects are present in the array. Then, Figs. 8 and 9 show
T (r) as a function of frequency in r = (0.3, 1.5, 1.8)mm and r =
(0.3, 2.3, 2.5) mm, respectively, i.e., right in front of the corresponding
defective SRRs. Finally, Figs. 10 and 11 show cuts of T (r) along the
straight lines highlighted in Fig. 7. In Figs. 8–11, the parameter of
the lines is the label assigned to the regular and the defective SRRs in
Fig. 6.

On comparing the plots, we see, for instance, that the transmission
efficiency is most affected when the defective SRR possesses a different
size [cases (e) and (f)] — which is more apparent when the defect occurs
closer to the source (Fig. 8). On the other hand, the transmission
efficiency appears more sensitive to the offset of one SRR [cases (b)–
(d)] when the defect is located farther away from the source (Fig. 9).
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Figure 8. Transmission effi-
ciency (24) of the array in Fig. 5
at r = (0.3, 1.5, 1.8) mm as a func-
tion of frequency and relevant to
position #1 of the defective SRR.
The labels of the lines point to the
SRRs displayed in Fig. 6.

90 92 94 96 98 100 102 104

0.44

0.46

0.48

0.5

0.52

f [GHz]

T
ra

n
sm

is
si

o
n
 e

ff
ic

ie
n
cy

 [
d
B

] (a)
(b)
(c)
(d)
(e)
(f)

Figure 9. Same as Fig. 8 for
r = (0.3, 2.3, 2.5) mm and relevant
to position #2 of the defective
SRR.
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Figure 10. Transmission effi-
ciency (24) of the array in Fig. 5
at f = 100 GHz and relevant
to position #1 of the defective
SRR: (left) along the line r =
(0.3, y, 1.8)mm, (right) along the
line r = (0.3, 1.5, z)mm. The la-
bels of the lines point to the SRRs
displayed in Fig. 6.
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Figure 11. Same as Fig. 10
but relevant to position #2 of
the defective SRR: (left) along the
line r = (0.3, y, 2.5)mm, (right)
along the line r = (0.3, 2.3, z)mm.

5. CONCLUSIONS AND PERSPECTIVES

We have discussed a methodology (based on LEGO and the EEM)
for efficiently dealing with large structures comprised of many bodies.
We have demonstrated that LEGO/EEM can perform much better
than the baseline MoM for a specific class of EM problems — i.e.,
arrangements of identical bodies plus a different (or defective) one
— in that the resulting reduced algebraic system (19) can be solved
with direct methods (and multiple right hand sides) rather than with
iterative methods. Even though we have used LEGO/EEM to assess
the sensitivity of a structure, our approach applies as well for designing
or optimizing localized geometry details or EM properties of a large
structure, as we did in [21].

Finally, so far LEGO has been applied to aggregates of distinct
objects. Nonetheless we are convinced that LEGO has the potential
of reducing the complexity of EM problems which involve large
homogeneous (e.g., similarly to [14]) and inhomogeneous dielectric
bodies: Extension in this direction is ongoing and will be the subject
of other papers.
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