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Abstract

Motivated by real life, we introduce a new inventory model for spare parts where we
explicitly take delivery time requirements into account. In this single-echelon, multi-
location network, demand of a customer can be satisfied from multiple warehouses,
but only if the customer can be reached from a warehouse within a time limit that is
specified in the service contract of the customer. A delivery to a customer from a ware-
house other than the closest one is referred to as a lateral transshipment. We develop
a fast and accurate approximate algorithm to evaluate the performance of the network
under given base stock levels and propose a fast and effective heuristic to set base stock
levels. Numerical experiments show that planning with lateral transshipments can lead
to cost savings up to 47% when compared to planning without lateral transshipments.
Furthermore, we show the importance of taking lateral transshipments into account
when designing a spare parts network.
Keywords: inventory, spare parts, multiple locations, lateral transshipment, delivery
time constraint

1. Introduction

Consider the spare parts inventory control problem for distribution networks consisting of multiple

local warehouses and a central warehouse for an Original Equipment Manufacturer (OEM) of

advanced capital goods. Machines are installed at the customers of the OEM. Whenever a critical

part of a machine at a customer fails, it has to be replaced by a spare part. Customers have service
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contracts with the OEM to ensure that spare parts are delivered within a pre-specified time limit.

To meet this time limit a certain level of spare parts is kept on stock in the local warehouses.

A customer can often be reached within the time limit from multiple warehouses. Generally

the nearest warehouse is used to satisfy demand if it has stock on hand. When a demand occurs

and the nearest warehouse is out of stock, another warehouse might be considered to satisfy the

demand. This other warehouse should have stock on hand and it should be able to reach the

customer within the time limit. In case a demand is satisfied by a regional warehouse other than

the nearest warehouse, we refer to this as a lateral transshipment. If a spare part cannot be

delivered from stock from one of the regional warehouses within the time limit, then an emergency

shipment from the central warehouse takes place. This situation is illustrated by Figure 1. Figure

1 shows a map of Europe with 6 regional warehouses. From each of the warehouses, customers

that are situated within the time limit, can be reached by that warehouse. This is illustrated by

a circle drawn around each warehouse. As we can see, a customer in Lisbon can only be reached

within the time limit from the warehouse in Madrid. But a customer in Nuremberg can be reached

by 3 warehouses, namely Dortmund, Milan and Budapest. Dortmund is the closest warehouse for

a customer in Nuremberg. So, when a customer in Nuremberg requires a spare part, Dortmund is

first asked to deliver a spare part. In case Dortmund delivers the spare part, this delivery is called a

regular shipment. When Dortmund cannot deliver the spare part, then Milan is requested to send

the spare part, and if Milan can also not deliver, then Budapest is considered. If Milan or Budapest

delivers the spare part, this is called a lateral transshipment. If none of the three warehouses can

deliver, then an emergency shipment from the central warehouse satisfies the demand.

In this paper we focus on the inventory planning of the regional warehouses, and therefore

assume that the central warehouse has ample stock, but can never reach a customer within the

time limit. We note that a customer that can be reached within the time limit by the central

warehouse will always be delivered on time. Therefore, such customers can be left outside the

scope of our model. The above model is used in the rest of our paper to demonstrate our model.

For the sake of clarity, we assume that the central warehouse is located in another continent in this

situation.

The model we consider in this paper is motivated by the spare parts network we encountered

at an OEM of high-tech equipment. The OEM wants to determine stock levels such that the sum

of transportation, emergency shipment, and inventory holding costs is minimized under a given

service level constraint. In this case, the service measure is the fraction of demands that is satisfied

within the time constraint, which we refer to as the time-based fill rate. One typically requires that

this fraction is at least equal to 90% and is set per item.

The contribution of this paper is as follows:� We introduce a new model for spare parts networks with delivery time constraints. The
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Figure 1: Spare parts network Europe

service contract of a customer specifies a time limit on the delivery time of a spare part

in case of failure. The model considers for each customer whether a delivery within this

time limit is possible from each of the warehouses, which we refer to as the customer being

‘reachable’. A transshipment from a warehouse to a customer is possible only if the customer

is reachable from that warehouse. This results per customer in an ordered list of warehouses

for the delivery of a spare part. For example, customers in the area of Nuremberg have an

ordered list ‘Dortmund, Milan, Budapest’, while customers situated a bit more south can

have an ordered list of ‘Milan, Budapest, Dortmund’. Customers in the area of Lisbon have

an ordered list consisting of Madrid only. Hence, the ordered list can differ per group of

customers and can differ in length. To the best of our knowledge, such a flexible model for

lateral transshipments has not been considered before.� We develop a fast and accurate approximate evaluation algorithm that is applicable for real-

life instances. This algorithm evaluates the performance per Stock Keeping Unit (SKU)

under given stock levels at the warehouses to determine the total costs and the service levels.
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Exact evaluation is possible via Markovian analysis, but can handle only very small instances.

The approximate evaluation algorithm can evaluate real-life instances within 0.001 seconds.

By simulation we show that the algorithm estimates the time-based fill rates with an error

no more than 2%.� We provide an efficient and effective heuristic solution based on the approximate evaluation

algorithm to set the base stock levels. The algorithm is based on a greedy procedure and for

small instances we show that it finds solutions with corresponding costs that are on average

within 2 % of the optimal costs.� We provide new managerial insights. By numerical comparison we show the importance of

taking lateral transshipments into account in the planning phase. We conclude that the sav-

ings per SKU can go up to 47 %. Furthermore, we show that the total costs of inventory and

transportation costs decrease in the number of warehouses. This implies that when designing

a spare parts network under delivery time requirements, a larger number of warehouses is

likely to be optimal, instead of the more traditional model where the number of warehouses

is minimized.

The network model we consider is motivated by a time limit on the demand fulfillment. This

time limit on the demand fulfillment results in a general structure for the use of lateral trans-

shipments. In this structure, inventory is shared only partially among the warehouses, which is

often referred to as partial pooling. Different forms of partial pooling have been studied before in

the literature. We distinguish two types of partial pooling: (i) pooling is limited by the network

structure, and (ii) pooling is limited by holding back inventory. Pooling that is limited by hold-

ing back inventory is mainly considered in a game theoretical setting [18] or when lead times are

non-negligible [13]. Since this paper is concerned with pooling limited by the network structure,

we focus on papers in that area.

The most common form of this type of partial pooling is to use pooling groups, where the local

warehouses are divided into groups and complete pooling is applied within a pooling group while

no lateral transshipments are allowed between groups. Lee [10] considers a two-echelon, single-

item, multi-location, continuous review model with a base stock policy. The model is concerned

with a network where the regional warehouses are grouped into pooling groups. In case a regional

warehouse is out of stock, a lateral transshipment can take place from a randomly chosen other

warehouse with on-hand stock that is within the pooling group. If all warehouses in the pooling

group are out of stock, then the request is sent to the central warehouse. In case the central

warehouse is also out of stock, then the demand is backlogged. Axsäter [2] considers the same

model. An important contribution of Axsäter [2] is that he provides a method to estimate the

demand rates observed by each regional warehouse, taking the lateral transshipments into account.
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If the geographical area where the customers are situated is small compared to the time limit,

so that each customer can be reached by each warehouse, then our situation is equivalent to the

special case of complete pooling. Complete pooling has been studied by e.g. Kukreja et al. [6],

Alfredsson and Verrijdt [1], and Wong et al. [16]. Kukreja et al. [6] use a fixed order for the

choice of the warehouse to provide a lateral transshipment, which could be based on distances as in

our case. Alfredsson and Verrijdt [1] choose randomly among the warehouses with available stock.

Wong et al. [16] consider complete pooling and allow for delayed lateral transshipments. Delayed

lateral transshipments occur when a part is backordered at a warehouse while another warehouse

receives a replenishment.

Another structure for lateral transshipments is, for example, unidirectional lateral transship-

ments as considered by Axsäter [3], Liu and Lee [11], and Olsson [12] in a single-echelon, multi-

location system. Unidirectional lateral transshipments are relevant when shortage costs differ

strongly per warehouse, and are very similar to demand substitution. Kranenburg and van Houtum

[5] study a partial pooling structure for lateral transshipments where complete pooling is applied

among main local warehouses and regular local warehouses can only receive lateral transshipments.

All the models mentioned here can be formulated as special cases of our model. We refer the reader

to Wong et al. [17] for a more extensive review on lateral transshipments. To the best of our

knowledge, a structure for lateral transshipments that is based on time limits has not been studied

before.

The time-based fill rate as a service measure has been studied before by Kutanoglu [8], Ku-

tanoglu and Mahajan [9] and Caggiano et al. [4]. In the models of Kutanoglu [8] and Kutanoglu

and Mahajan [9] complete pooling is applied, and base stock levels are optimized under time-based

service level constraints. The main difference between their models and our model is the partial

pooling structure that we use for lateral transshipments. Caggiano et al. [4] study time-based fill

rates in a distribution setting where lateral transshipments are not considered at all.

The approximate evaluation algorithm we develop, follows the line of reasoning of Axsäter [2].

Axsäter approximates the demand rates observed by each warehouse by assuming that all demand

streams are Poisson. Based on the resulting set of equations Axsäter [2] provides an iterative

algorithm to obtain steady state probabilities. Similar algorithms for different models have been

developed by Alfredsson and Verrijdt [1], Kukreja et al [6], Kutangolu [8], and Kranenburg and van

Houtum [5]. The approximate evaluation algorithm we develop provides a different set of equations

for the iterative algorithm such that it is applicable for a network with delivery time requirements.

This paper is organized as follows. In Section 2 we describe our model. In Section 3 we describe

how the model can be evaluated in an exact way and show how the optimal base stock levels

can be found. In Section 4.1 we introduce our approximate evaluation method. Next, in Section

4.2, we describe the greedy algorithm to determine order-up to levels. In Section 5 we present
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computational results on the sensitivity of the model to the choice of exponential or deterministic

replenishment lead times, the performance of the evaluation method, and the performance of the

greedy algorithm. In Section 6, based on case data of the OEM of high-tech equipment, we provide

managerial insights. In Section 7, we propose some possible extensions. We conclude in Section 8.

2. Model description

The installed machines at a customer consist of multiple critical parts which can be replaced by

a spare part in case of failure. For each spare part a stock keeping unit (SKU) is defined for

which stock is kept at several warehouses. The customers have service contracts with the OEM

where the OEM promises to deliver a demanded spare part within a certain time limit. In case

all warehouses that can reach a customer are out of stock, the OEM sends an emergency shipment

against extra costs. The OEM works with a constraint on the time-based fill rate per SKU, the

fraction of demand that is fulfilled within the time limit of a customer. This time-based fill rate

is set to be at least γ0 by the management of the OEM and reflects both the extra costs that are

made for an emergency shipment and the loss of goodwill at the customer. Since the constraint on

the time-based fill rate is set per SKU, we can analyze the system with a single item model and we

consider one specific critical component. Let N be the set of all (groups of) customers. Customers

are spread over a geographical area, for example Europe. In case customers are located very close

to each other, then we can decide to combine the customers into a group of customers to reduce

the number of customers in the model. So a customer in the model might represent a group of

customers in reality. The demand for the item at customer n is assumed to follow a Poisson process

with constant rate µn.

Let J = {1, 2, .., |J |} be the set of regional warehouses. The central warehouse is assumed to

have ample stock. Each regional warehouse j ∈ J uses a base stock policy for the replenishment of

the SKUs. The replenishment lead time for warehouse j ∈ J is denoted by treg
j and the base stock

level of the SKU by Sj, where S denotes the vector of all base stock levels. The replenishment

lead times are assumed to be i.i.d. and the distribution is assumed to be exponential with mean

treg
j . In practice we observed that the lead time follows a deterministic distribution. However, we

assume exponential replenishment lead times to facilitate exact evaluation via Markov processes. In

Section 5, we show that the performance of the model is not sensitive for the choice of exponential

lead times or deterministic lead times, and thus all our insights for the case with exponential lead

times hold also under deterministic lead times.

For each customer n we define an array υn of warehouses that can reach customer n within

the time limit, where υn(i) denotes the ith warehouse in the array (i = 1, 2..., pn), with pn ≥ 0 the

length of υn. The array can be ordered such that you have increasing transportation times, but
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other orderings are possible as well. The array can also be empty. When customer n needs a spare

part it will first submit its request to warehouse υn(1). In case that warehouse is out of stock, it

will turn to warehouse next in the array (υn(2)), and so on until the demand is satisfied, or there

are no more warehouses in the array. A shipment from warehouse υn(i) with i ≥ 2 is called a lateral

transshipment. In case the demand is not satisfied an emergency shipment will take place.

The costs we deal with are (lateral) transshipment, emergency shipment and inventory holding

costs. We assume that replenishment costs are equal for all warehouses. Then for each demand we

have at least the costs for a regular replenishment. Emergency shipment costs are denoted by cn,0

and we define them as the extra costs for a fast shipment from the central warehouse to customer

n compared to a regular replenishment to a warehouse and delivery to the customer. Under these

assumptions, the yearly regular replenishment costs have to be accounted for all demands. They

then form a constant factor, and therefore we can and do exclude them from our cost accounting.

Transshipment costs cn,j are the costs incurred to transport a spare part from warehouse j to

customer n. Inventory holding costs hj are incurred per time unit for each item on stock at

warehouse j and in the replenishment pipeline per time unit. Since a base stock policy is applied,

the sum of the items on stock and in the pipeline for warehouse j is always equal to Sj, and thus

the inventory holding costs are equal to
∑

j∈J hjSj.

With respect to the demand fulfillment we introduce the following notation:� αn,j, for the fraction of demand of customer n that is fulfilled by warehouse j;� αn =
∑

j∈J αn,j, for the fraction of demand of customer n that is fulfilled by the regional

warehouses;� θn for the fraction of demand of customer n that is satisfied by an emergency shipment.

Note that, since each demand is fulfilled from either a warehouse j ∈ J or an emergency shipment,

at each customer n ∈ N , it holds that θn +αn = 1. The expected total costs incurred per time unit

for the shipments equals
∑

n∈N

(∑
j∈J µnαn,jcn,j

)
. The expected total costs incurred per time

unit for emergency shipments equals
∑

n∈N µnθncn,0. Therefore the expected total costs per time

unit C(S) is

C(S) =
∑

j∈J

Sjhj +
∑

n∈N



µnθncn,0 +
∑

j∈J

µnαn,jcn,j



 . (1)

The fraction of demand that is delivered within the time limit for the SKU is equal to:

γ(S) =

∑
n∈N µnαn∑

n∈N µn
. (2)
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We refer to γ(S) as the time-based fill rate. To fulfill the time-based fill rate constraint, the

fraction γ0 of the total demand should be fulfilled by a regional warehouse. This can be expressed

by the inequality γ(S) ≥ γ0.

The objective is to minimize the total expected costs per time unit under the time-based fill

rate constraint. This problem can be formulated mathematically as follows:

min C(S)

s.t. γ(S) ≥ γ0.

3. Exact evaluation and optimization

For small instances of the model, we can evaluate the total costs and the time-based fill rate exactly.

We can use this evaluation to optimize the base stock levels, but only for very small instances. In

this section we describe the exact evaluation and optimization.

3.1 Exact evaluation

The model described in Section 2 can be evaluated exactly with Markovian analysis for a given

choice of base stock levels. In this subsection we describe how this can be done. In the evaluation

we determine values for αn,j, n ∈ N , j ∈ J and θn, n ∈ N . From these values we can immediately

determine the costs and the time-based fill rate from Equations 1 and 2.

For the exact evaluation we define a |J |-dimensional Markov process, with x = (x1, x2, ..., x|J |),

where xj , j ∈ J denotes the on-hand inventory at local warehouse j, with 0 ≤ xj ≤ Sj, j ∈ J .

Furthermore, define ej as the row vector with the j-th element equal to 1 and all other elements

equal to 0.

When the system is in state x, then two types of events can occur. Either a replenishment

arrives at a warehouse j ∈ J , or a customer generates a demand. By considering all events for each

state x, we can identify all transitions.

When the system is in state x with xj < Sj for a regional warehouse j ∈ J , then a replenishment

can arrive at warehouse j. When a replenishment arrives, we observe a state transition x → x+ ej .

In state x there are Sj − xj items in replenishment, so the transition rate for the state transition

x → x + ej is (Sj − xj)/t
reg
j .

When the system is in state x and customer n generates a demand, then either a reachable

regional warehouse will fulfill the demand, or an emergency shipment takes place. In case there is at

least one reachable warehouse with stock on hand, then let warehouse j ∈ J be the first warehouse

in the array υn with stock on hand, so xj > 0. In this case, the state transition is x → x − ej ,
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and the transition rate is µn. In case none of the reachable warehouses has stock on hand, then an

emergency shipment will take place and no state transition will occur.

The number of states equals
∏|J |

j=1(Sj + 1) and therefore computation time is exponential in

the number of local warehouses. This implies that exact evaluation can only be done for a limited

number of regional warehouses.

When all transitions are determined, we can can find the steady-state probabilities of the

Markov process by the power method. The power method uses successive approximation and

theoretically converges to the exact steady-state probabilities. However, we will stop when steady-

state probabilities do not change more then ǫ, with ǫ small, to avoid extreme long computation

times.

Let π(x) be the steady-state probability of state x.From the steady-state probabilities we can

determine the values for αn,j and θn as follows:

αn,υn(j) =
∑

x|xυn(k)=0 k<j, xυn(j)>0

π(x)

θn =
∑

x|xi=0∀i=1...|υn|

π(x).

3.2 Optimization

The base stock levels can be optimized by “smart enumeration”. We start the enumeration with a

total base stock level ST =
∑

j∈J Sj of 0 and then we increment ST . In order to avoid evaluation

of all possible combinations, we introduce two upper bounds on the time-based fill rate and two

lower bounds on the total costs. The first upper bound on the time-based fill rate is γu
1 (ST ).

This upper bound is obtained by assuming that all customers are reachable by all warehouses and

therefore only requires the information of the total stock ST =
∑

j∈J Sj at the warehouses; thus the

precise location of the stock is not important. Consider a single demand stream with demand rate

µ =
∑

n∈N µn and a single virtual warehouse with replenishment lead time tmax = maxj∈J treg
j .

To determine the fill rate of this warehouse we can use known results from the Erlang loss system

(also denoted as an M—G—c—c queueing system), since the steady state behavior of the stock is

identical to the steady state behavior of idle servers in an Erlang loss system with arrival rate µ, ST

servers, and the mean replenishment lead time tmax as mean service time. Thus, we can determine

the probability of having stock on hand via the Erlang loss probability. The Erlang loss probability

L(c, ρ), where c represents the number of servers and ρ the offered load (obtained as the product

of the arrival rate and the mean service time), is given by (see e.g. Tijms [14]).

L(c, ρ) =
ρc/c!∑c

x=0 ρx/x!
(3)
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The upper bound γu
1 (ST ) is the fill rate of the virtual warehouse and is given by:

γu
1 (ST ) = 1 − L(ST , tmaxµ).

The second upper bound on the time-based fill rate is γu
2 (S), and for this upper bound the

exact distribution of the stock over the warehouses is important. The upper bound is obtained by

first isolating the customers that cannot be reached by any of the warehouses with Sj > 0. For

those customers we know that αn = 0. For the other customers we determine an upper bound α̃n

on αn by assuming that they are reachable by all warehouses with a replenishment lead time of

tmax,2 = maxj∈J |Sj>0 treg
j . Let Ñ be the set of these customers and define µ̃ =

∑
n∈Ñ µn. Then,

α̃n = 1−L(ST , tmax,2µ̃) ∀n ∈ Ñ and α̃n = 0 ∀n ∈ N \ Ñ , yielding γu
2 (S) =

∑
n∈N µnα̃n/

∑
n∈N µn.

The first straightforward lower bound on the total costs is C l
1(ST ) = ST ∗minj∈Jhj . Note that

C l
1(ST ) only depends on ST and is increasing in ST . The second lower bound on the total costs is

based on γu
2 (S), and defined as C l

2(S) =
∑

j∈J hjSj +
∑

n∈N\Ñ µncn,0 + (1 − γu
2 (S))µ̃ minn∈Ñ cn,0.

The smart enumeration procedure then works as follows as described in Algorithm 1.

Smart enumeration

Initialization

Determine the lowest ST such for which γu
1 (ST ) ≥ γ0,

Cbest = +∞.

Repeat while C l
1(ST ) < Cbest

For all solutions S with a total stock ST :

If γu
2 (S) ≥ γ0 and C l

2(S) < Cbest then

evaluate the solution with the exact procedure of Section 3.1.

If C(S) < Cbest and γ(S) ≥ γ0 then Cbest = C(S) and Sbest = S.

ST = ST + 1.

End

4. Approximate analysis

For large (real-life) instances, exact evaluation and optimization is not possible because of com-

putational complexity. In this section we propose an approximate evaluation algorithm for the

evaluation of the network under given base stock levels and a heuristic to set base stock levels.

4.1 Approximate evaluation

In this subsection we propose an approximate evaluation algorithm for the evaluation of the network

under given base stock levels.
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In the approximate evaluation algorithm we are interested in approximating values for αn,j

and θn under a given policy S. The costs C(S) and the time-based fill rate γ(S) then follow from

Equations (1) and (2).

The method is based on two approximate steps: (i) overflow demand streams are assumed to

be Poisson distributed, and (ii) stock levels at the warehouses are assumed to be independent of

each other, such that the warehouses can be analyzed as single stock points. For the algorithm we

introduce the following notation.� Mn,j, for the demand rate that warehouses j faces from customer n;� Mj =
∑

n∈N Mn,j, for the total demand warehouses j faces;� βj , for the fraction of the total demand rate that warehouse j can deliver from stock.

For the first step of the algorithm we assume that the fill rates of the warehouses are known, and

we estimate the total demand a warehouse faces. We note that the demand at warehouse j from

customer n includes requests for lateral transshipments. The same request might go to multiple

warehouses until one has stock on hand, so in general
∑

j∈J Mn,j ≥ µn. For warehouse j = υn(1)

the total demand warehouse j faces from customer n, Mn,j, is precisely the total demand customer

n generates: Mn,j = µn. Suppose we know the fill rates βj , j ∈ J , of the regional warehouses. If

we assume that the stock levels at the local warehouses are independent, then we know that the

demand rate warehouse j̃ = υn(2) faces from customer n is on average (1 − βj̃)Mn,j . Or more

general, for 2 ≤ i ≤ |υn|:

Mn,υn(i) = (1 − βυn(i−1))Mn,υn(i−1) 2 ≤ i ≤ pn. (4)

This is illustrated in Figure 2. Warehouse 1 faces Poisson demand from a certain customer with

rate Mn,υn(1) = µ. If we know that warehouse 1 has a fill rate of β1, then the demand that warehouse

2 faces from this customer is on average Mn,υn(2) = (1 − β1)Mn,υn(1). Warehouse 2 can only fulfill

part of this demand, namely β2, so warehouse 3 faces Mn,υn(3) = (1−β2)Mn,υn(2) = (1−β1)(1−β2)µ.

If we assume that the demand warehouse j faces from customer n is a Poisson process with rate

Mn,j, then the total demand warehouse j faces is a Poisson process with rate Mj . This assumption

does not hold in general, but is reasonable for high fill rates. This follows from the observation

that the probability of having more than 1 demand during a stock-out period is rather small.

For the second step of the algorithm we assume that the demand at a warehouse is known and

estimate the fill rates. To determine the fill rates of the warehouses we can use known results from

the Erlang loss system, as in Section 3.2. The fraction βj corresponds to the probability of having

stock on hand at warehouse j. Thus, we can determine βj(Sj) by

βj(Sj) = 1 − L(Sj, t
reg
j Mj)
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Figure 2: Illustration of overflow demand

The fraction of demand of customer n satisfied by warehouse j ∈ J now follows from βj(Sj) and

Mn,j.

αn,j :=
βjMn,j

µn
. (5)

θn = 1 −

pn∑

i=1

αn,υn(i). (6)

We use an iterative procedure to determine Mj , Mn,j, and βj(S) from which we derive αn,j(S)

and θn(S). Initially, we assume that no lateral transshipments take place, therefore we can set

Mn,υn(1) = µn, and Mn,υn(i) = 0 for 2 ≤ i ≤ |υn|. From these values we can determine Mj =
∑

n∈N Mn,j and βj((S) = 1 −L(Sj , t
reg
j Mj). Given the fill rates βj(Sj) for the warehouses, we can

obtain a better estimate for the demand flows M̂n,j from Equation 4. We iterate until Mj does not

change more than ǫ, with ǫ small. We observed that this iterative procedure converges in all tested

cases, but there is no formal proof for the convergence. After the iterative procedure, we determine

from the demand flows Mn,j the values for αn,j(S) and θn(S).

The approximate evaluation algorithm can be formally described as follows:

Approximate Evaluation Algorithm

Initialization

∀ j ∈ J , βj := 1 − L(Sj, t
reg
j

∑
n∈N |υn(1)=j µn).

∀ n ∈ N , Mn,υn(1) := µn.

∀ n ∈ N , j 6= υn(1) ∈ J , Mn,j := 0.

Repeat until Mj does not change more than ǫ for each j ∈ J:
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Step 1 ∀ n ∈ N and for 2 ≤ i ≤ pn: Mn,υn(i) :=
(
1 − βυn(i−1)

)
Mn,υn(i−1).

Step 2 ∀ j ∈ J Mj :=
∑

n∈N Mn,j, βj := 1 − L(Sj, t
reg
j Mj)

Finalization ∀ n ∈ N and ∀ j ∈ J , αn,j(S) :=
βj(S)Mn,j

µn
.

∀ n ∈ N , θn = 1 −
∑pn

i=1 αn,υn(i).

End

4.2 Determining Base Stock Levels

In the previous section, we have described an approximate method for the evaluation of a given

policy, i.e., a choice for all base stock levels Sj, j ∈ J . We propose a heuristic solution to determine

base stock levels for this problem.

Kranenburg and van Houtum[5] and Wong et al. [15] showed that for their problem and

approximate evaluation algorithms greedy algorithms perform very well. Since our problem is

closely related to theirs, we suggest a greedy algorithm as well.

The greedy algorithm consists of three phases, an initialization phase, a costs phase, and a

time-based fill rate phase. In the initialization phase all inventory levels Sj, j ∈ J are set to 0.

In the costs phase, the greedy algorithm places inventory one by one such that the system costs

are minimized each time an extra item is put on stock. It will continuously place an extra unit

of inventory until no cost reduction can be achieved in this way. This is done by determining

the costs difference for each warehouse when an extra unit of stock is placed. Therefore we define

∆C(S, j) = C(S+ej)−C(S). In case the resulting stock levels are such that the γ(S) ≥ γ0, then the

algorithm terminates. Otherwise we continue with the last phase. In this phase the greedy algorithm

continues with placing stock at the warehouses where the biggest improvement in service level is

achieved compared to the extra total costs. Therefore we define the ratio R(S, j) =
γ(S+ej)−γ(S)

∆C(S,j) .

As long as γ(S) < γ0, we have not yet met the time-based fill rate constraint and we will place an

extra unit of stock at the warehouse with the smallest ratio R(S, j). In the following, we formally

state the algorithm.

Greedy Algorithm

Initialization

Set Sj := 0, j ∈ J

Calculate ∆C(S, j), j ∈ J .

Repeat while min{∆C(S, j)} ≤ 0:

1. Find ĵ = argminj∈J{∆C(S, j))}.

2. Set Sĵ := Sĵ + 1;

13



3. Calculate ∆C(S, j), j ∈ J .

Calculate R(S, j), j ∈ J .

Repeat while γ(S) < γ0:

1. Find ĵ = argminj∈J{R(S, ĵ)}.

2. Set Sĵ := Sĵ + 1;

3. Calculate R(S, j), j ∈ J .

End

In the greedy algorithm it is possible to use either the exact evaluation or the approximate

evaluation procedure to determine ∆C(S, j) and R(S, j). However, since computational times of

the exact evaluation are too large for practical applications, we use the approximate evaluation

procedure in the greedy heuristic throughout the rest of this paper.

5. Computational results

We have three objectives in conducting numerical experiments. First we show that the model is

rather insensitive to the assumption of exponential replenishment lead times. Second, we test the

performance of the evaluation algorithm. Third, we test the performance of the greedy algorithm

by comparing the results to the optimal solution.

5.1 Test bed

To address these three objectives, we use a test bed that is based on real-life data of an OEM of high-

tech equipment. The OEM currently has to plan inventory for 30,000 SKUs from which we selected

20 based on their price, demand rates, geographical spread, such that we obtained a representative

selection of all SKUs. We clustered the customers into groups based on their geographical locations,

such that each customer group can be seen as a single customer. The clustering of customers resulted

in 400 customers. The selected SKUs and their main characteristics are shown in Table 1, where

µ = 1
n

∑
n∈N µn, and the set of customers N only contains customers with µn > 0 (|N | varies per

SKU). All prices are normalized such that the cheapest SKU is 1.00 unit.

The costs parameters are based on the parameters used by the OEM. For the shipment costs we

distinguish three distance categories. For each category a different fee fi, i = 1, 2, 3, is charged per

kilogram, where the minimum weight is rounded up to 2 kg. The fee f1 is applied for shipments up

to a given threshold distance d1, f2 is applied for shipments over the interval [d1, d2] and f3 is applied
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for shipments over a distance larger than d2; it holds that 0 < f1 < f2 < f3 and 0 < d1 < d2. The

values for the fees and the threshold distances are given by the Logistic Service Provider as follows:

f1 = 0.79, f2 = 0.99, f3 = 1.04, d1 = 200 km, and d2 = 400 km. Let w represent the weight of an

SKU. Let dn,j represent the distance from customer n to a warehouse j. The fee f(n, j) that is paid

for the distance dn,j is f1 if dn,j ≤ d1, f2 if d1 < dn,j ≤ d2, and f3 if dn,j > d2. The costs are then

defined as cn,υn(1) = f(n, υn(1))max{2, w}. For a lateral transshipment the costs are multiplied

with a factor of 1.2, since this is not the standard procedure and requires some extra labor. The costs

for a lateral transshipment are hence defined as cn,υn(j) = 1.2f(n, υn(j))max{2, w}, 1 < j ≤ pn.

An emergency shipment always comes from a distance that falls into category 3, and since the

shipment has to be fast, the costs are higher than for a normal shipment, which is translated into

an extra factor of 2.5. The costs for an emergency shipment are taken as cn,0 = 2.5f3 max{2, w}.

The inventory holding cost per year is estimated by the OEM as 20% of the price of an SKU.

nr. price w (kg) µ |N |

1 1.00 0.01 13.64 193

2 17.59 0.80 15.48 156

3 25.22 0.92 8.84 120

4 26.50 1.05 6.43 119

5 26.79 0.45 9.45 111

6 31.38 0.55 12.78 143

7 33.58 1.39 7.08 106

8 38.44 0.50 11.28 121

9 39.33 1.98 10.04 109

10 44.99 0.91 5.88 88

11 76.55 2.00 2.48 42

12 86.01 0.30 3.68 73

13 101.71 0.55 5.02 65

14 133.80 0.54 4.83 65

15 165.61 8.40 1.60 42

16 169.35 1.75 2.36 44

17 177.65 0.15 3.00 34

18 209.48 1.75 1.07 27

19 230.93 0.20 2.71 35

20 264.11 4.50 1.09 22

Table 1: Item characteristics

For the network we tested 5 choices of number (6, 8, 10, 12, 14) and locations of local warehouses.

These numbers are based on the fact that at least 6 local warehouses are required to cover the area

of the customers sufficiently and 14 is a rather high number of warehouses for the OEM. The choice
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of the locations of the warehouses is such that most demand from the customers is covered by at

least one warehouse and for the areas with high demand, the travel times are small.

All tests are performed with 3 different choices of base stock levels resulting in a γ(S) of

approximately 0.8, 0.9 and 0.95. In total we have a testbed of 20 ∗ 5 ∗ 3 = 300 instances.

5.2 Sensitivity with respect to the lead time distribution

For our model we assumed that the lead times are exponentially distributed, though in practice

we observed approximately constant replenishment lead times. To test the sensitivity of the per-

formance of the model to this assumption, we simulated γ(S) with both exponential (γexp(S)) and

deterministic lead times (γdet(S)). We simulated the difference between the model with exponen-

tial lead times and the model with deterministic lead times for all 300 instances. The simulation

results are summarized in Table 2. The table shows the average difference ∆ = |γexp(S) − γdet(S)|

averaged over all SKUs, and ∆max = max(|γexp(S) − γdet(S)|) over all SKUs. From the simulation

results we can conclude that, under our form of partial pooling, the performance of the model is

rather insensitive to the choice of exponential or deterministic lead times especially under higher

service targets. Alfredsson and Verrijdt [1] found a similar level of insensitivity for a complete

pooling situation. Hence, our results extend their findings to partial pooling.

γ(S) ∼ 0.8 γ(S) ∼ 0.9 γ(S) ∼ 0.95

scenario ∆ ∆max ∆ ∆max ∆ ∆max

6 warehouses 0.0006 0.0025 0.0004 0.0018 0.0003 0.0011

8 warehouses 0.0006 0.0025 0.0004 0.0019 0.0003 0.0016

10 warehouses 0.0006 0.0021 0.0005 0.0021 0.0003 0.0014

12 warehouses 0.0006 0.0019 0.0004 0.0019 0.0003 0.0013

14 warehouses 0.0005 0.0021 0.0005 0.0018 0.0003 0.0015

Table 2: Sensitivity of the lead time distribution

5.3 Performance of the evaluation algorithm

The performance of the evaluation algorithm is tested via simulation, where we compare the eval-

uated values for γ(S) = γalg(S) to the simulated values for γ(S) = γsim(S) for all 300 instances.

The results are presented in Table 3, where they are summarized over the SKUs. The table

shows the average ∆e = γalg(S) − γsim(S) averaged over all SKUs and the maximum value ∆e
max =

γalg(S)− γsim(S) over all SKUs. From the results we observed that γalg(S) > γsim(S) for all tested

cases, so the algorithm always overestimates the aggregate fill rate. This can be explained by the

algorithm being too optimistic by assuming that overflow demand is Poisson distributed; specially
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in the case that the fill rate is approximately 80%. Furthermore, we observe that the algorithm

is more accurate when the number of warehouses is lower. This can be explained by the fact

that in this scenario, there are less lateral transshipments, and in the extreme case that no lateral

transshipments can occur, the algorithm is exact. The accuracy of the algorithm is not perfect,

however, for practical purposes the performance is good enough. The computational times for the

approximate evaluation algorithm are less than 0.001 seconds for each instance and therefore the

algorithm is very suitable for using it in an optimization procedure.

We note that the accuracy of the approximate evaluation algorithm is less then the accuracy

of the approximate evaluation procedure of Kranenburg and van Houtum [5]. Kranenburg and van

Houtum study a special case of our model and for their main local warehouses they can evaluate

the fraction of demand that is satisfied by an emergency shipment exactly, since complete pooling

is applied. Our model is more general and therefore more difficult to evaluate.

γ(S) ∼ 0.8 γ(S) ∼ 0.9 γ(S) ∼ 0.95

scenario ∆e ∆e
max

∆e ∆e
max

∆e ∆e
max

6 warehouses 0.009 0.015 0.006 0.010 0.003 0.007

8 warehouses 0.013 0.019 0.010 0.020 0.007 0.014

10 warehouses 0.016 0.023 0.013 0.021 0.009 0.016

12 warehouses 0.020 0.030 0.016 0.028 0.011 0.022

14 warehouses 0.018 0.027 0.016 0.027 0.011 0.020

Table 3: Performance of the evaluation algorithm

5.4 Performance of the greedy algorithm

The performance of the greedy algorithm is compared with the optimal choice of base stock levels.

Since determining the optimal base stock levels is computationally intensive, we have used two

smaller test beds to evaluate the performance. The first test bed is based on Germany and the

second test bed is based on France, where we isolated the demand for each country. In both

countries we have selected 2, 3 and 4 local warehouses. We have omitted SKUs that have too high

demand, for they require high base stock levels which is computationally expensive. For Germany

we excluded SKUs 1,..,4 and 6,..,10, for France we excluded SKUs 1,2,3,5,6,8,9,16.

Since the evaluation algorithm always seems to overestimate γ(S), it is possible that the greedy

algorithm finds base stock levels that lead to a γ(S) < γ0. This makes it impossible to make a fair

comparison with the optimal choice of base stock levels. We deal with this in the following way: we

first set base stock levels with the greedy algorithm in which we used the approximate evaluation

algorithm. Next we perform the exact evaluation procedure to check whether this choice of base
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stock levels is feasible. If not, then we continue with the greedy algorithm, but then with the exact

evaluation procedure to ensure a feasible solution.

Table 4 summarizes the results for Germany and Table 5 for France, where δ = (C(S)greedy −

C(S)exact)/C(S)exact represent the relative cost difference, δ, σδ, δmax correspond to the average,

standard deviation and maximum of δ, respectively. The values are presented in percentages.

2 warehouses 3 warehouses 4 warehouses

γ0 δ σδ δmax δ σδ δmax δ σδ δmax

0.8 1.42 2.67 8.69 0.55 0.92 2.42 0.92 0.99 3.07

0.9 0.67 0.90 2.22 1.00 1.37 3.48 0.76 1.22 3.18

0.95 1.39 2.31 8.00 0.69 1.12 3.11 0.97 1.32 3.18

Table 4: Performance of the greedy algorithm: Germany

2 warehouses 3 warehouses 4 warehouses

γ0 δ σδ δmax δ σδ δmax δ σδ δmax

0.8 0.03 0.11 0.40 0.86 1.19 3.47 0.47 0.96 3.26

0.9 0.14 0.36 1.24 0.90 1.17 3.47 0.57 1.07 3.26

0.95 0.14 0.36 1.24 0.50 0.79 2.35 0.21 0.40 1.18

Table 5: Performance of the greedy algorithm: France

As we see from the tables, the costs related to the greedy algorithm are on average within 1.5%

of the optimal costs for the case of Germany and 1% for France. The fact that the greedy algorithm

performs worse in Germany can be explained by the fact that more lateral transshipments can take

place, which make the approximate evaluation algorithm less accurate. Furthermore, we note that

the performance of the algorithm does not deteriorate with the number of warehouses.

6. Managerial insights based on case study

In this section, we consider the situation of an OEM of high-tech equipment with the same data

as used in Section 5. The aim of the experiments is to investigate the effect of taking lateral

transshipments into account when setting base stock levels. We use 4 methods for setting base

stock levels and compare them by simulation. In the simulation we simulate the network in steady

state and compare the four methods under the same conditions. Regardless of the method used

for determining the base stock levels, lateral transshipments take place in the execution of all

simulation studies. The four methods are characterized as follows.

1) single-location planning without lateral transshipments;
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2) single-location planning with lateral transshipments;

3) multi-location planning (with lateral transshipments);

4) multi-location planning with an adjusted time-based fill rate (and lateral transshipments).

Method 1 ignores lateral transshipments. In the optimization it is assumed that customers

can be reached by at most one warehouse, so p̃n = min{pn, 1} ∀n ∈ N . Under this assumption,

the base stock level can be optimized separately for each warehouse. The approximate evaluation

procedure given for the general case is exact in the special case that no lateral transshipments take

place and the greedy method provides optimal base stock levels. Note that even though lateral

transshipments are ignored while setting base stock levels, in the execution of the simulation study

lateral transshipments can take place. Since Method 1 ignores the fact that lateral transshipments

are possible in the network, the time-based fill rate γ(S) is higher (in the soft sense) in the execution

than it was planned while setting the base stock levels. Method 2 incorporates lateral transship-

ments by using an adjusted constraint on the time-based fill rate γ̃0. We find γ̃0 such that it is the

lowest target that ensures a time-based fill rate γ(S) ≥ γ0 in the execution. In order to find γ̃0 we

perform a bisection search using simulation to evaluate γ(S), where we set base stock levels with

the greedy algorithm using γ̃0 for the time-based fill rate constraint.

Method 3 is the greedy algorithm as proposed in Section 4.2. Since we use the approximate

evaluation method in the greedy algorithm, we cannot ensure that the time-based fill rate constraint

is met. For a fair comparison we therefore introduce Method 4 that uses an adjusted time-based

fill rate constraint. This adjusted time-based fill rate is the lowest adjusted constraint on the time-

based fill rate γ̃0 such that in execution γ(S) ≥ γ0. We tune γ̃0 by using simulation. We note that

Method 2 and 4 use simulation and can require long computational times. Therefore, Methods 1

and 3 can be more attractive in practice.

We tested 11 scenarios for the number of warehouses, varying from 6 to 16. The scenarios are

illustrated in Figure 3, where warehouses 1 through 6 are used in the first scenario, 1 through 7 in

the second scenario, etc. For each scenario-SKU combination we evaluate each of the 4 methods

by simulation. The time-based fill rate constraint is set equal to γ0 = 0.90.

The results are summarized in Figures 4 to 7. Figure 4 shows the total cost over all SKUs and

the overall time-based fill rates for all methods, where the overall time-based fill rate is defined as

the demand weighted average of the fill rates over the SKUs. Figures 5, 6, and 7 show the costs and

time-based fill rates for a cheap SKU (SKU 1), a medium-priced SKU (SKU 12), and an expensive

SKU (SKU 20). From the overall data we conclude that Method 3 finds an infeasible solution in

less than 7% of the cases, with a minimum time-based fill rate of γ(S) = 0.8855. For the rest of

this section we will only take Method 4 into account to ensure a fair comparison. Overall we see

from the figures that Method 4 always outperform Methods 1 and 2, and Method 2 outperforms

19



1

2

16

7

3

9

8

4

15

13

5

11

14

6

10

12

Figure 3: Europe with 16 warehouses

Method 1.

SKU 1 is a cheap item and we observe in Figure 5 that all methods have the same performance.

SKUs that are very cheap (like SKU 1) are expensive to deliver per emergency or lateral trans-

shipment shipment compared to the inventory holding costs. Therefore, a high base stock level is

desirable for this item at all warehouses and lateral transshipments will hardly ever occur. This is

also obtained when we set base stock levels while lateral transshipments are not taken into account,

and therefore the benefits of Method 4 are zero. SKU 12 is a medium-priced SKU and Figure 6

shows a large difference between Method 1 and Methods 2, 3, and 4. For a more expensive item,

lateral transshipments are more important, since inventory holding costs are higher compared to

the transportation costs. The time-based fill rate constraint in Method 1 forces the time-based fill

rate to be much higher than required for the execution, which leads to high base stock levels and

thus an expensive solution. When we cover this high time-based fill rate by tuning the constraint

as in Method 2, we already see a big improvement. The base stock levels are not too high anymore,

but we see that when lateral transshipments are explicitly taken into account as in Method 4, the

improvements are even bigger. This is due to a better allocation of the stock over the warehouses.
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We see the same effect for the very expensive SKU 20 in Figure 7. For SKU 20 the savings of

Method 4 compared to the most simple Method 1 go up to 47%, and savings up to 19% can be

gained when using Method 4 instead of Method 2. For SKU 20 the holding costs are dominant

over the transportation costs, therefore it pays off to transport more, while sharing more inventory

among the warehouses. The savings increase when the number of warehouses increase, because

customers then have more options for delivery of an item, so a larger amount of inventory can be

shared and the total inventory level can be decreased.

Furthermore we conclude from Figures 4 through 7 that the total costs decrease when the

number of warehouses increase. For cheap items this is the case for both planning with and without

lateral transshipments, but for expensive items, this is only the case when lateral transshipments

are taken into account. For a network with both cheap and expensive items, the total costs decrease

when the number of warehouses increases. When designing a network, fixed warehouse costs play

a role as well. And when we plan with Method 1, the optimal number of warehouses is the

minimal number required to cover the area such that the time-based service constraint can be met.

However, when lateral transshipments are taken into account as in Method 4, then a higher number

of warehouses might be optimal, depending on the costs of opening and operating warehouses. As

in the case of the OEM we consider, fixed warehouse costs are very small compared to the inventory

holding costs due to the fact that they work with logistic service providers, and for the design of

their network, a larger number of warehouses is optimal. This is an important insight for the design

of a spare parts network. For the design of spare parts network Candas and Kutanoglu [7] already

showed that it is important to take inventory holding costs into account, we conclude that also

lateral transshipments costs and emergency costs should be taken into account.
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Figure 4: Performance over all SKUs
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Figure 5: Performance for SKU 1

Time-based fill rate SKU 12
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Figure 6: Performance for SKU 12

7. Extensions

The network model we proposed in Section 2 is a very flexible model that can handle time-based

fill rate constraints. This model can be easily extended, adjusted to fit different networks (Section

7.1 and 7.2) or reformulated (Section 7.3) such that it fits different models as well. In this section

we describe how the model can be extended, adjusted or reformulated such that it fits different

models as well. Furthermore, we show how the approximate evaluation algorithm and the greedy

algorithm work in these extensions.
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Figure 7: Performance for SKU 20

7.1 Random selection of warehouses for lateral transshipments

In the model presented we consider a fixed order for the delivery of lateral transshipments. However,

in practice there can be situations that a random selection of warehouses for a lateral transshipment

is more suitable. Random selection of warehouses for lateral transshipments has also been studied

by e.g. Alfredsson and Verrijdt [1] and Axsäter [2]. The approximate evaluation algorithm can

be easily adjusted for the situation that the warehouse to deliver the spare part via a lateral

transshipment is randomly chosen amongst the set of reachable warehouses.

Assume that the first warehouse υn(1) for a customer is fixed, but there is no fixed order for

lateral transshipments. So if a demand is generated at customer n then it will be delivered by

warehouse υn(1), unless it is out of stock. In case it is out of stock, then an other warehouse is

randomly chosen from the array, until there is a warehouse that can deliver, or all warehouses have

been checked and none of them can deliver.

We describe by an example how the approximate evaluation algorithm can be adjusted to deal

with the random selection of warehouses for the use of lateral transshipments. Consider a customer

n with 3 warehouses that can reach the customer within the time limit, where υn(1) = 1, υn(2) = 2,

and υn(3) = 3. The demand that warehouse 1 faces from customer n is Poisson distributed with

mean µn, just as before. Demand that warehouse 2 faces from customer n is now a bit more

complex, since there are now two different ways that demand can end up at warehouse 2. When

warehouse 1 is out of stock, there is a probability 1/2 that warehouse 2 is asked for a lateral

transshipment directly. The same holds for warehouse 3. When warehouse 3 is asked for a lateral

transshipment and it is out of stock, the demand is redirected to warehouse 2. So the average total

demand warehouse 2 faces from customer n equals:
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Mn,2 =
1

2
(1 − β1)µn + (1 − β1)(1 − β3)µn

Similar formulas can be derived for warehouse 3. By using the corrected formulas for Mn,υn(i),

the same approximate evaluation algorithm can be used to determine αn,j(S) and θn(S). This

approximation can be implemented in the greedy heuristic.

We expect similar results for the performance of the adjusted approximate evaluation algo-

rithm and the greedy heuristic, since the approximate evaluation algorithm is based on the same

assumptions, namely that the overflow demand is Poisson distributed and the base stock levels of

the warehouses are independent of each other.

7.2 Multi-item model

For the case of the OEM we consider, we are faced with a service requirement that is set per SKU,

however, in practice we often encounter a service requirement over all SKUs. In that case a multi-

item model would be more suitable. For the evaluation algorithm this does not make a difference,

one can evaluate the performance of the different items separately, but for the determination of

the base stock levels, small adjustments have to be made. First of all, an aggregated time-based

fill rate has to be defined that measures the fraction of all demand that is satisfied within the time

limit. Next, in the greedy heuristic, one has to replace the time-based fill rate by the aggregated

time-based fill rate, and the costs per item by the costs for all items. Finally, in both loops of

the greedy algorithm, the SKU-warehouse combination should be find that minimizes the (relative)

additional costs.

7.3 Car stock

The network model as we described is motivated by the network of an OEM of high-tech equipment.

At another OEM we encountered a different network that can be reformulated such that our

methods are applicable as well. At this OEM spare parts are kept on stock in several warehouses

spread over the geographical area where the customers are situated. In addition, service engineers,

who drive around in cars to visit the customers for both preventive and corrective maintenance,

carry some so-called “car stock” in their cars. In case a customer requires a spare part and

the engineer is out of stock for that part, then an emergency transshipment is requested from a

warehouse close by. Depending on the location of the customer, the engineer will request a spare

part at nearby warehouses in a fixed order. So, each customer has a fixed order in which it asks for

a lateral transshipment as in the model we described. Note that the delivery time of the spare part

is measured from the moment that the service engineer diagnosed the a certain part has failed, so
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the travel time of the service engineer is not included in the delivery time. For this network we can

apply our methods as well.

8. Conclusion

In this paper, we consider a spare parts inventory network consisting of multiple local warehouses

and a central warehouse under delivery time requirements. In this network lateral transshipments

are allowed, but only if the lateral transshipment can reach the customer within a pre-specified time

limit. The problem is to set base stock levels for the spare parts at the local warehouses and gain

insight in the savings that can be gained when lateral transshipments are taken into account in the

planning phase. We develop an approximate evaluation algorithm that can evaluate the network

under given base stock levels. This approximate evaluation method is used in a greedy algorithm

to set base stock levels at the local warehouses.

The results indicate that taking lateral transshipments into account can lead to significant cost

reductions for expensive spare parts. Furthermore, the results indicate that higher savings can

be gained with a higher number of warehouses. Costs decrease when the number of warehouses

increases, while this is not the case when lateral transshipments are not taken into account in

the planning. The model we introduced is applicable in many real-life cases and the methods we

proposed can be easily extended or adjusted.
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