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CHAPTER 1 
 
 
 
INTRODUCTION               
 

1.1 Structure in Nature 

 
Mother Nature gave to humankind a precious present: a complex brain that allowed it to be 
rational; but, as she is so wise, she gave together with the present a perpetual series of tasks: 
to observe, to explore, to understand and to create. So men and women started observing and 
the most straightforward feature that came into their eyes was the beauty of Nature 
represented by the huge amount of forms, structures and patterns present in it.  
 
The forms present in Nature can be as simple as a honeycomb (figure 1.1) or as diverse as the 
structures of a snowflake (figure 1.2) that inspired Kepler to write a short treatise about it.1 
Structure development for amorphous materials will be illustrated in this thesis. Whatever is 
the shape we observe there is always a physical reason behind it. For instance, in the case of a 
honeycomb, the hexagonal packing is the structure that contains the greatest amount of honey 
with the least amount of beeswax and therefore it requires the least energy for the bees to 
construct it.2 
 

 
Figure 1.1 Honeycombs.3 

 
Snowflakes on the other hand, present diverse crystalline structures that are formed depending 
of the temperature and the amount of water vapor present in the air4 (supersaturation), as 
illustrated in figure 1.2. The most common and simple shape of a snowflake is the hexagonal 
plate that forms at temperatures just below freezing (0 oC and –3 oC) and low levels of water 
vapor in the air. The reason is that at this temperature a straight edge of an ice crystal grows 
stably. 
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Figure1.2 Atmospheric conditions leading to different shaped ice crystals.5,4 

 
The amorphous structures are the main topic of this thesis and will be introduced in the next 
section for the case of polymers, which are large molecules formed from repeated units 
(Greek poly- ‘many’ meros ’share’). Also in the next section is explained the importance of 
studying the structure or morphology (Greek morphē ‘form’+ logy ‘study’) of these systems 
in a mesoscopic scale (Greek, mesos ‘middle’). 
 

1.2 Morphology development in polymer systems 

 
Polymers can present a broad range of morphologies ranging from crystallized systems and 
liquid crystalline mesophases to systems that phase separate macroscopically. Moreover, the 
fabrication, deformation and fracture of polymer systems can also modify the morphology 
and/or inducement morphology development.6 The prediction of the morphology on a 
mesoscopic scale is of great importance because it allows to bridge and to understand the 
relationship between microscopic parameters and macroscopic properties, which determine 
the final performance of a material. For example, the toughness of a polymer blend (figure 
1.3) depends on the particle size, the uniformity, the dispersion and the interfacial adhesion 
between the particles and the matrix.7 These properties can be controlled by modifying the 
chemical composition of the blend or by inducing phase separation under specific conditions 
that lead to the formation of a connected structure as the one shown in figure 1.4.  
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Figure 1.3 Tensile properties as a function of blend composition of PC / PMMA.7 

PC = polycarbonate, PMMA = polymethylmethacrylate, 
σb, σy = breaking stress (fracture strength) and yield strength. 

 
When a polymer blend is spread on a substrate (rigid wall) a film is formed, the presence of 
this new boundary has an effect on the morphology developed due to the loss of geometry at 
the wall compared to the bulk. In this thesis, we focus on the morphology development 
induced by (macroscopic) phase separation in amorphous thin films made of binary polymer 
blends. Phase separation occurs due to the weak attraction between the (mostly) nonpolar 
molecules in polymer systems. The high energy of mixing cannot be overcome by the 
increase of entropy or randomness of the system caused by the mixing of two species. The 
interest in studying morphology development in polymer blends is not limited to films though 
is the main interest in this thesis;8 the specific case of microphase separation present in 
polymer blends containing block copolymer has been explored widely9 and is not studied 
here.  
 
It is well known that phase separation can occur via two different mechanisms: nucleation and 
growth (binodal mechanism), where the system is metastable and spinodal decomposition, 
where the system is unstable and therefore quite sensitive to concentration fluctuations. Our 
study is carried out in the spinodal region around the critical point. The spinodal region is 
chosen because here is possible to get the co-continuous structure illustrated in figure 1.4, 
which optimizes the adhesion between two different phases and therefore good mechanical 
properties are expected. The region around the critical point is chosen because the local 
concentration has large fluctuations that can be detected with light scattering10 (figure 1.4) 
and because the square-gradient theory considered in the energy functional to include the 
effect of concentration gradients to enthalpy and entropy of the system, is a good 
approximation in the partial miscible region of the phase diagram.11,12 Additionally, we limit 
our study to the early-stage of the spinodal decomposition because we think that important 
effects such as wetting that determine the final properties of a material develop within this 
stage. 
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Figure 1.4 Optical micrographs and the corresponding scattering patterns of the 40/60 
PC/PMMA blend as a function of temperature.8 

 

1.3 Aim and outline of this thesis 

 
This work has three main objectives: 
 
� Establish a strategy to achieve and control stratification in thin films made of binary 

phase separating polymer blends. 
� Extend a numerical method available for the prediction of morphology development in 

the bulk of a regular solution to polymer blends in the bulk and / or in the presence of 
a rigid wall.  

� Understand the mechanism leading to a faster domain growth next to the wall for thin 
films of polymer blends, in the early-stage of the spinodal decomposition.  

 
If you ever saw the movie Before the rain of Milcho Manchevski13 it will be easier for you as 
a reader to find the links between the way as this work is presented and its real temporal 
development. Briefly, in this movie that is a collaboration of three countries, a story is told in 
three parts linked by characters and events that alternate London and the countryside of 
Macedonia. This thesis is also the result of a good collaboration between two Departments 
and persons of three different groups within this University. The presentation of this research 
story starts in the second part of my time as a Ph. D. student, goes through an intermediate 
stage where coherent results between theory and experiments carried out in the early-stage of 
this project meet and finalizes in appendix II, which is the starting phase of this work. As 
circle stories are rather difficult to tell, I will introduce you in my work in the way as it is 
written. 
 
In chapter 2 the coarse-grained model used in this thesis to describe a polymer chain is 
introduced; also a brief review on models used to study phase separation of incompressible 

[µm][µm]
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polymer blends at interfaces is presented. The justification of choosing a square-gradient or 
diffuse-interface model instead of a self-consistent field theory is made and the motivation 
that led us to investigate more in detail the early-stage of the spinodal decomposition is 
established.  
 
In chapter 3, the analysis necessary to formulate a suitable model to study morphology 
development in an incompressible, density-matched, isothermal binary blend undergoing 
phase separation in the presence of a wall is presented. In this model, thermodynamics and 
hydrodynamics of the system are coupled via the introduction of a chemical potential (derived 
from an appropriate energy functional for polymer blends) in the conservation equations of 
the system. The energy functional used contains the Flory-Huggins energy of mixing, the de 
Gennes terms that consider concentration gradients to enthalpy and entropy and a third 
contribution due to the interaction of the blend components with the wall. 
 
In chapter 4, the necessary re-scaling of the chemical potential and the conservation equations 
to dimensionless quantities that prevent from numerical instabilities is made, followed by the 
implementation of the model proposed into a finite element technique. 
  
In chapter 5, the variation of parameters such as the number of segments in a polymer chain, 
the quench (upwards or downwards) in temperature within the miscibility gap of the phase 
diagram and the initial concentration at which the system is quenched are varied 
systematically to study the effect of these parameters on the morphology development in bulk 
conditions. For systems where a co-continuous morphology is observed in the bulk the wall 
effect is introduced and studied as a function of quench in temperature and magnitude of the 
wall-polymer interaction potential. A partial quantification of the morphology observed in the 
presence of the wall is done. 
 
In chapter 6 the phase behavior of the binary system poly [methyl methacrylate-co-
1H,1H,-perfluoroheptylmethyl methacrylate] / bisphenol-A-diglycidylether (Epikote 828) as a 
function of the molar mass, fluorine content in the copolymer and chain length extension of 
the Epikote 828 is studied. For one binary system, preliminary studies of the morphology 
development around the critical point and around the intersection point of the glass transition 
curves are carried out. The experimental results for this last region are compared with 
numerical results for morphology development obtained with the model proposed in this 
thesis. 
 
In chapter 7, the conclusions of this work are presented followed by suggestions or future 
work. Appendix I is an extra support to the content of chapters 2 to 5 and in appendix II an 
experimental method is proposed to formulate homogeneous solutions of a polymer blend in 
one or more solvents.  
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CHAPTER 2 
 
 
 
REVIEW 
 

2.1 Introduction 

 
In this chapter we briefly review the theories dealing with inhomogeneous systems. First in 
section 2.2, necessarily (due to the lack of standardization in the terminology used in polymer 
physics) the nomenclature used in this work to describe a polymer chain is introduced. In 
section 2.3 we give a historical review of the theories developed to study the phase behavior 
of inhomogeneous systems in bulk and at interfaces. In section 2.4 we justify the selection of 
a continuous model to study the dynamics of the phase behavior of a polymer blend in the 
presence of a wall, often denoted as surface directed spinodal decomposition. Subsequently, 
in section 2.5, we present a summary on experimental and theoretical work that motivated our 
study on surface directed spinodal decomposition, followed by arguments that have been 
given to explain this phenomenon. Section 2.6 contains final remarks and conclusions to this 
chapter. 
 

2.2 Polymer chains  

 
In this section, the nomenclature used throughout this thesis to describe a polymer molecule is 
introduced, to avoid any confusion with the rather non-standardized terminology found in the 
literature on physics of polymers.1,2,3  
 
Polymer chains are complex molecules; a simplified model to describe them is the random 
walk approximation. In this model, no constraints on bond angles, bond rotations, valence 
angles, etc., are considered. This results in a coil-like conformation and the term random coil 
is used; nevertheless, in reality, there are constraints.  A further simplification to model a 
polymer chain is to create an effective, freely jointed random coil by combination of straight 
segments Nk (Nk ≤ N), having a statistical length σk (Kuhn length); such a representation 
considers implicitly the stiffness of the chain and is called coarse-grained. In this latter scaled 
representation illustrated in figure (2.1), the real chain of N bonds is modelled as an 
equivalent chain of Nk = N / b, with b number of backbone atoms in the segment, and the 
Kuhn length as σk = bl, with l the bond length between two backbone atoms. The chain size* 
< r2 > of this modelled chain reads: 2 

 
* (〈 r 2 〉)1/2 is the root-mean-square value of the end-to-end distance r 
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 222 bNlNr kk == σ  (2.1) 
 
On the other hand the chain size for a random coil is:4 
 

 22 NlCr ∞=  (2.2) 
 
where C∞ is the characteristic ratio, which is related to the stiffness of the chain, higher values 
of C∞ implies less flexibility. To ensure that the contour of both chain representations are 
equivalent the condition b = C∞ must be satisfied.  

 
Figure 2.1 Freely jointed chain,4 r is the end-to-end distance, with l the bond length, 

σk the Kuhn length and Nk the total amount of Kuhn segments. 
 
Another measure of the coil size is the radius of gyration Rg that provides information about 
diameter of a polymer chain is the defined by4 
 

 
66

22
2 kk
g

Nr
R σ

==  (2.3) 

 

2.3 Historical review on the development of mean field and self-consistent field 
theories 

Most of the theories on polymer physics developed to study the phase behavior of 
inhomogeneous systems in the bulk and at interfaces are an extension to the original lattice 
model of Flory5 and Huggins6 developed in 1941. The assumption of locality in the 
concentration and incompressibility in the system are the two main limitations of the 
Flory-Huggins lattice model that have motivated the development of different theories in the 
field of polymer physics. Below we present a brief historical review about the main 
contributions to the physics of polymers.  

r

l

Nk

k

r

l

Nk

k
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In 1957 more than one decade after the works of Flory and Huggins, Cahn and Hilliard,7 
based on the work of van der Waals,8 introduced the gradient contribution to the free energy 
and for the first time it was possible to study the dynamics of phase separation for 
incompressible regular solutions in the binodal9 (1959) and the spinodal region10 (1965). For 
this last case, the effect of thermal fluctuations was added later by Cook11 in 1969. 
 
In the middle of 1960, Edwards12 extended the classical work made earlier on mean field 
theories5,6,13 in his self-consistent field theory, where he found a direct analogy between the 
problem of interacting polymer chains and the classical problem of interacting electrons.  
 
We can conclude that both contributions originated from different fields of physical chemistry 
(polymer and inorganic chemistry) and quantum physics and are the pillars on which the 
development of polymer physics stands. Still, the problems associated to polymer systems, 
such as the loss of conformational entropy that a polymer molecule experiences in the 
proximity of an interface and the effect of compressibility, were still unexplored until this 
point. It is then from here until our time, that a vast number of theories combining the 
fundamental ideas of earlier work have developed to study in detail the behavior of polymers 
at interfaces. 
 
Early in the 70’s, Helfand and co-workers gave a solution based on self-consistent field 
theories to describe the interfacial thickness of symmetric14 and asymmetric15 systems. 
However, Helfand’s main contribution is not on the interfacial thickness determination, but on 
the extension of the lattice model to study the inhomogeneity of polymers at interfaces.16 In 
his model, he combines the original Flory lattice theory with anisotropy factors to account for 
the loss of the conformational freedom at an interface, resulting from molecules near the 
interface having to turn back from the opposite phase. Other contributions of Helfand and 
co-workers are the formalization of the Gaussian-random walk17 in terms of statistical 
mechanics and the application of his lattice model to the study of the behavior of a polymer 
melt against a rigid wall.18 
 
At the end of the 70’s, de Gennes19 developed the random phase approximation (RPA), a 
theory used to describe in a simple way the interaction between polymer chains. His method 
is based on the combination of the Flory lattice theory with the ideas of Edwards that allow 
computing all correlation functions in a dense mixture of strongly interacting polymer chains. 
In the next section, de Gennes work will be dealt within somewhat more detail. It should be 
mentioned that it has become clear20,21 that the square-gradient terms of de Gennes are 
appropriate to use in the limit of weak segregation. In the strong segregation limit this term is 
valid only for infinite molecular weights. 
 
Contemporary to de Gennes are the contributions of Poser and Sánchez,22 who combined 
Flory’s and the Cahn-Hilliard theory neglecting conformational effects in the entropy, and 
those of Scheutjens and Fleer23 self-consistent field theory. The last is a rather independent 
theory applied initially to the study of homopolymers at interfaces, based on counting 
conformations and interactions of polymer chains on a lattice. The flexibility of this theory 
has allowed for extensions and modifications to study different effects in polymer systems.24 
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Until this point, no compressibility effects are included. As in this thesis the same assumption 
is made, we stop here our review and refer the reader to other contributions that do include 
this effect.25,26,27 

2.4 Self-consistent field versus square-gradient theories 

 
Before selecting a model to study phase behavior of polymer blends in the presence of a wall, 
we have to ask ourselves about the scale, the degree of accuracy, the numerical methods and 
even the time available to tackle the problem. In this section, we justify the selection of a 
continuous model instead of a discrete one. 
 
If we want to know, for instance, the role of loops, trains and tails (illustrated in figure 2.2 (c)) 
on the properties of surfaces, or if we want to explain the effect of the orientation of a certain 
atom (see figure 2.2 (d)) within a molecule on the final properties of a material,28 then a 
discrete23 self-consistent field theory should be used; where the final equations for the energy 
are expressed in terms of the individual chain conformations. On the other hand, if we want to 
study the system from a mesoscopic to a macroscopic scale (figure 2.2 (b) and (a)), it is more 
convenient to use continuous models (Helfand16 and de Gennes19). 

Figure 2.2 From a macroscopic to an atomic scale. 
(a) Macroscopic phase separation, (b) mesoscopic scale, (c) coarse-grained scale (black 

spheres: loops and tails, white spheres: trains), (d) atomic scale. 
 
From the theories presented in the brief historical review, we chose a diffuse-interface or 
square-gradient theory, since this choice was more compatible with the aim of this thesis and 
with the numerical methods available. 
 
In the square-gradient approach initially developed for small molecules (Cahn-Hilliard), the 
free energy of a fluctuating system is assumed to depend not only on the local concentration, 
but also on derivatives of the free energy that give an excess energy. This fact is expressed by 
the Flory-Huggins-de Gennes equation. In the case of polymer molecules using the random 
phase approximation theory (RPA) and the linear response theory, there are two limiting 

(a)

(b) (c)

(d)(a)

(b) (c)

(d)
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forms of the square-gradient pre-factor κ (φ) to be considered.† The first limit corresponds to 
the partially miscible region in the miscibility gap of the phase diagram where large 
wavelength fluctuations in comparison with the chain length dimensions are observed (diffuse 
interface), whereas the second limit corresponds to the highly segregated region where short 
wavelength fluctuations occur (sharp interface). In both cases one can write 
 

 )
)1(

1
6

()( 2

φλφ
χφκ

−
+= kTa  (2.4) 

 
where φ  is the volume fraction of component one, χ is the Flory-Huggins5,6 interaction 
parameter, k is the Boltzmann constant, T the temperature, λ =  36 in the first limit and λ =  24 
in the second one, and a is the lattice spacing calculated for a binary system as:40 
 
 φσφσ 2

2,
2

1,
2 )1( kka +−=  (2.5) 

 
where σ k,1 and σ k,2 are the Kuhn lengths of components one and two, respectively. We focus 
our study on the partially miscible regime in the phase diagram of a binary polymer system 
(λ = 36) where the RPA has proved to give good predictions for phase behavior in polymers. 
The complete formulation of the Helmholtz free energy including the wall is given in chapter 
3. 
 

2.5 Surface-directed spinodal decomposition 

 
In the previous sections, it was sorted out which theory was appropriate to study phase 
behavior of a binary polymer blend considering the contributions of concentration fluctuations 
to enthalpy and entropy. In this section we give a brief overview of experimental 
evidence29,30,31,32,33,34,35,36,37,38 on surface-directed spinodal decomposition, as well as the 
different models used39,40,41,42 and the possible mechanisms given so far43,44,45,46,47,48 to explain 
this phenomena. 
 
Since the beginning of the 80’s the study of surface-directed self-assembly in macro and 
micro phase separated binary polymer blends and solutions has been carried out.49  For the 
first two cases, Krausch50 presented a review. 
 
Here, we focus on the study of surface effects in thin films of binary polymer blends within 
the spinodal region of the miscibility gap, the so-called surface-directed spinodal 
decomposition. The general features found experimentally on this subject are:  
 
� Influence of the film thickness and of a boundary on the phase separation behavior 

induced by the polymer-surface interactions29,34,35,38  
� Formation of an oscillatory concentration profile29-37 
� A modification of wetting induced by changing the wall29,32,36 
� Composition waves with wave vectors normal to the wall31,35 
� Difference in domain growth at the wall and in bulk30,37,46-48 

 
† See appendix I for the derivation of κ (φ). 
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The effect of film thickness on phase separation was rationalized by Cohen and Reich29 in 
terms of a corrected Flory-Huggins interaction parameter with a reduced coordination 
number. The influence of a boundary on phase separation was explained by Ball and Essery51 
in a theoretical approach modeling the phase behavior using a Ginzburg-Landau type of 
energy expression (4th expansion order of the Flory-Huggins mixing Gibbs energy). Their 
results showed formation of anisotropic domains instead of the usual isotropic order found in 
bulk. In addition, a correlation of a higher order in the domains formed with deeper quenches 
in temperature was established.  
 
Puri and Binder52 reproduced theoretically the formation of an oscillatory concentration 
profile, found initially by Jones and co-workers31 experimentally. In their model, they used a 
phenomenological theory based on the work of Cahn and Hilliard, using two special boundary 
conditions that account for the preference of the wall for one of the blend components. So, by 
choosing certain boundary conditions, the preference for one or the other component for the 
wall is determined. 
 
What are still not completely clear are the growth rate of the domains at the wall and in bulk 
and the mechanisms of formation of these domains. Different experimental and theoretical 
work on this field found contradicting results. Experimentally, Jones et al.31 found that the 
growth rate of phase separation close to the wall was slower than the growth rate in bulk. On 
the other hand Cumming and co-workers46,47,48 found the opposite, a high growth rate next to 
the wall and a smaller one in the bulk. 
  
The theoretical work is also controversial; we have the following theoretical contributions 
supporting partially Jones and co-workers31 experiments: Brown and Chakrabarti,42 using the 
Ginzburg-Landau approximation for the energy plus terms including long-range effects found 
a power law proportional to t1/3 for the domains growing parallel and perpendicular to the 
wall. The work of Marko53 using the Cahn-Hilliard-Cook equation, also with a 4th order 
expansion in the energy, including surface interactions and non-linearities, agreed with the 
previous mentioned results. Other authors that also find only one length scale characterizing 
the composition waves are Keblinsky et al.44 In their molecular dynamics simulations they 
integrate the equations of motion for an Ising spin system on a discrete lattice employing 
Kawasaki spin-exchange dynamics. Their equations reduce to the mean field approach of Puri 
and Binder52 on turning-off the noise or hydrodynamic effects. 
 
The only theoretical work supporting the fast growth of the domains close to the wall was 
proposed by Troian.43 She finds two length scales, one developing at early time with a scaling 
exponent t between 1 and 1.5, depending of the quenching in temperature and a second one 
developing later with a t1/3 growth. Her argument to explain this accelerating growth of the 
domains at the surface is based on the analysis of domain coalescence with a 
Lifschitz-Slyozov type of growth, that is modified to include the geometrical constraints of 
growth introduced by the wall. Although the work of Troian is consistent with the 
experiments of Cumming et al.,46,47,48 it has received a severe criticism by Keblinski et al.44 
due to the assumption of a higher radius of curvature for the domains growing deeper in the 
bulk than at the surface. 
 
The general features in which all the mentioned work on surface directed spinodal 
decomposition agree are:  



Review 
 
 

 13 

 
� The oscillatory behavior of the concentration profile caused by the wall 
� The development of a wave vector q normal to the wall and therefore formation of 

anisotropic domains at the wall, compared to the formation of isotropic domains in the 
bulk. 

 
The disagreements remaining, both in experiments and theory, motivated our study on 
surface-directed spinodal decomposition. Another motivation for our work was the rather low 
resolution of the morphology in the few publications where it is shown.42,34 Most of literature 
on surface-directed spinodal decomposition only show the concentration profiles for the early 
or late-stages of phase separation, but details of the order parameter or morphology that might 
give a better idea concerning the mechanism of surface-directed spinodal decomposition are 
omitted. 
 

2.6 Conclusions 

 
In this chapter, it was briefly presented the coarse-grained model used in the remainder of this 
thesis. We also outlined a historical review on mean field and self-consistent field theories 
developed to study polymers in bulk and at interfaces. Further, we gave the motivation to 
select a continuous square-gradient model instead of a discrete self-consistent field theory.  
Finally, we presented an overview on surface-directed spinodal decomposition, where we 
found that there is still a lot to do in this field to clarify contradictions and controversies given 
by different experimental results and theoretical approaches. 
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CHAPTER 3 
 
 
 
SPINODAL DECOMPOSITION IN A THIN POLYMER FILM 
INTERACTING WITH A RIGID WALL 
 

3.1 Introduction 

 
We study the morphology development of a binary polymer thin film on a substrate that 
undergoes phase separation within the spinodal region. Within this region, a homogeneous 
system is in non-equilibrium and is unstable to any infinitesimal concentration fluctuations. 
The fundamental balance equation in non-equilibrium or irreversible thermodynamics deals 
with entropy because there is always an entropy source present that is variable with time, 
given that as a basic rule in Nature entropy is always created and never destroyed. To relate 
the entropy source to the phenomena of our interest, that is the transport or diffusion of mass, 
we give in section 3.2 a brief description of the macroscopic conservation laws of mass, 
momentum and energy in a local or differential form.1 
 
In section 3.3, we formulate the total energy functional that is used in the remainder of this 
work. Three contributions are considered: the homogeneous part, the gradient contribution 
and the wall-polymer interaction. For the homogeneous part of the free energy, in section 
3.3.1 we introduce the Gibbs mixing energy given by Flory2 and Huggins3 in their mean field 
theory, plus terms allowing for non-mixing of the pure components. In section 3.3.2 
equilibrium, spinodal and critical conditions are calculated. For the gradient contribution of 
the energy, in section 3.3.3 the additional terms proposed by de Gennes4 that consider the 
contribution of concentration gradients to enthalpy and entropy are taken into account. The 
minimization of the energy, considering only the homogeneous and the square-gradient term, 
is done in section 3.3.4 to obtain the bulk concentration profile and the interfacial thickness. 
This last physical property is of crucial importance in the scaling of the system discussed in 
chapter 4. The last, but not least important term to be introduced in the total free energy is the 
interaction of the blend components with the substrate, seen as a rigid wall. In section 3.3.5, 
we give a formulation of the total wall-polymer interaction potential. In the wall-polymer 
potential proposed in this thesis the short-range contribution is included as a hard-core 
potential. To finalize this chapter we give some conclusions in section 3.4. 
 

3.2 Conservation equations 

 
In this section we adhere to the so-called local approximation to obtain the differential form 
of the balance equations. This approximation implies that the laws governing macroscopic 
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systems remain valid for infinitesimally small parts of it followed along its center of gravity 
motion. These balance equations for mass, mass fraction, momentum, and energy in its local 
or differential form* for a binary system where no reactions take place read:1,5,6 
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Equation (3.1) is the law of mass conservation where ρ is the total density, ci the mass fraction 
defined by ci = ρi / ρ, t the time, and v the center of mass velocity. In the composition equation 
(3.2), as the mass of the system is conserved, the diffusion flow ji is the only contribution 
giving a temporal change in mass fraction within a volume element in the system. Equation 
(3.3) is the momentum or equation of motion, where F contains all the external forces on the 
system or long-range interactions within the system and P is the stress tensor deriving from 
short-range interactions between particles. Equation (3.4) is the first law of thermodynamics 
in its temporal form, where u is the specific internal energy and jq stands for the heat flux. The 
last two terms are derived by splitting the stress tensor in an isotropic part pI and a deviatoric 
part ΠΠΠΠ, p is the equilibrium pressure and ΠΠΠΠ is the extra stress tensor (P  = −pI + ΠΠΠΠ). The 
equality I:∇v = ∇·v is used as well.† 
 
Equations (3.1) to (3.4) in combination with the second law of thermodynamics or entropy 
law provide a set of equations that allows the study of non-equilibrium transformations. The 
balance equation for the entropy in its local form is given by: 
 

 σρ +⋅−∇= st
s j

d
d  (3.5) 

 
where s is the specific entropy, js is the entropy flow given by the difference of the total 
entropy flux and a convective term ρsv, and σ is the entropy production which is always 
positive according to the second law of thermodynamics. 
 
To find expressions for the entropy production it is necessary to introduce a thermodynamic 
relation for the specific entropy s. In equilibrium the total differential for s = s (u,v,ci) is given 
by: 

 
* For the interested reader details can be found in De Groot and Mazur,1 Verschueren5 and van de Vosse.6 

 
† The operator : is the trace defined by P : Q = PijQji  
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where p is the equilibrium pressure, v is the specific volume v = 1/ρ, dv = −(1/ρ2) dρ, µi is the 
specific chemical potential of the component i and ci its mass fraction.Using once more the 
local approximation, it is possible to write the temporal form of equation (3.6) as: 
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where the substitution of the volume by the density was done. For the second term in (3.7) the 
following identity is used 
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Substitution of (3.2), (3.4) and (3.8) into (3.7) results after some algebra in the following 
expression for the temporal change of the specific entropy 
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Under isothermal conditions, the term ∇T -1 vanishes. By comparing equation (3.9) with 
equation (3.5) the entropy flux  js and the entropy production σ are identified with: 
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ij , that is j1 = −j2, the entropy production for a binary system 

simplifies to: 
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Still all the balance equations (3.1) to (3.4) and (3.12) are in terms of irreversible fluxes, 
which are unknown parameters. Therefore, it is necessary to introduce phenomenological 
equations which are linear relations of thermodynamic forces and irreversible fluxes, having 
the general form: 
 
 ∑=
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where Ji and Xi are any of the Cartesian components of the independent fluxes and 
thermodynamic forces, Λik are phenomenological coefficients, obeying the Onsager reciprocal 
relations. To write the entropy production in the form of equation (3.13), it is necessary to use 
a series of tensorial identities1 that allow writing the dissipative term in equation (3.12) as 
 

 vvv ⋅∇+∇=∇ π)( soo
:: ΠΠΠΠΠΠΠΠ  (3.14) 

 

where the deviators 
o
ΠΠΠΠ  and v

o
∇  have zero trace and the quantity π = 1/3 Π Π Π Π : Ι Ι Ι Ι. After 

substitution of (3.14) the entropy production is written as: 
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Assuming Newtonian behavior, the corresponding Onsager relations for the fluxes in (3.15) 
are: 
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where η is the shear viscosity, η’ is the bulk viscosity, Λ11 is the diffusivity and D is the 
diffusion coefficient.  
 
The local balance equations (3.1) to (3.4) together with the phenomenological equations 
(3.16) and the equations of state for pressure and internal energy, give a set of equations that 
describe the time behavior of an isotropic binary system, with specified boundary conditions. 
In our case, we will study the temporal evolution of an inhomogeneous, incompressible, 
density-matched, isothermal binary system. According to Verschueren5 the balance equations 
for this type of systems read for the mass conservation: 
 
 0=⋅∇− vρ  (3.17) 
 
This result comes from the fact that the difference in density in polymer systems is usually 
small, such that the Boussinesq approximation,7 where the difference in density between the 
two components is neglected (ρ = ρ2 = ρ1), can be used. The meaning of equation (3.17) is that 
the balance of outflow and inflow for a given element is zero any time. 
 
For the mass fraction one obtains: 
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where c is the concentration of component one. The non-homogeneity of the system is 
introduced via the chemical potential, which is by definition 
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For the momentum equation we have: 
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where p is the pressure and η the shear viscosity. 
 

3.3 Energy functional 

 
For the formulation of the Helmholtz free energy, we follow the line of diffuse-interface 
theories.5,8,9,10 The main characteristic of these theories is that the interface has a non-zero 
thickness, allowing a continuous change in the properties of the system. In a previous study 
on morphology development in non-homogeneous systems, based on a diffuse-interface 
model,5 only the effect of concentration gradients to enthalpy was considered. Here, we also 
consider concentration gradients in the entropy, which are important in polymer systems.4,11 
The Helmholtz energy functional used in this work to study the thermodynamics of a binary 
polymer thin film on a substrate, undergoing phase separation is:  
 
 )]())(()([d 2
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The first term of the integrand f0 (φ), represents the homogeneous contribution to the total 
Helmholtz energy functional. The square-gradient term κ (φ) (∇φ) 2 takes into account the 
effects of concentration gradients on enthalpy and entropy and the third term considers the 
interaction between the blend components and the substrate. Once having an expression for 
the total Helmholtz free energy of the system it is possible to obtain the chemical potential, 
which is by definition the functional derivative of the functional (3.21), considering the 
approximation done for F in equation (3.19).  
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where f is the integrand of equation (3.21). The first term of this differentiation includes the 
contributions from the homogeneous part of the Helmholtz energy f0 (φ) and the wall-polymer 
interaction potential. These contributions will be treated in detail in sections 3.3.1 and 3.3.5. 
The second term in equation (3.22) accounts for the concentration variations in entropy and 
enthalpy of the system (section 3.3.3). 
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3.3.1 Homogeneous contribution to the energy functional 

 
The total Gibbs free energy for a binary system at constant temperature and pressure is given 
by: 

 ∑
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where ni is the mole number of species i, ),(

0
pTiµ is the molar chemical potential of pure 

species i and ∆G is the excess Gibbs free energy. 
 
Dividing equation (3.23) by its total number of moles n, gives the molar Gibbs free energy  
(g = G / n), the molar excess Gibbs free energy (∆g = ∆G / n) and the mole fractions xi = ni / n, 
with the mole fraction of component one x1 = x and the mole fraction of component two 
x2 = (1 − x). Considering that the system is incompressible, there are no changes in volume 
and g the total molar Gibbs free energy is equivalent to the total molar Helmholtz free energy 
f0, yielding 
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Instead of the molar excess Gibbs energy, we consider the expression proposed by Flory2 and 
Huggins3 in their mean field lattice model for the free energy density ∆gm (φ) 
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with k the Boltzmann constant, T the temperature, φ = N1n1  / nl the volume fraction of 
component 1,  (1 − φ) = N2n2  / nl the volume fraction of component 2, nl = N1n1 + N2n2 is the 
number of lattice sites, with n1 molecules of type 1 and n2 molecules of type 2, having N1 and 
N2 Kuhn segments respectively‡, these last quantities are calculated as Ni = Mi / Vlρi, here Mi 
and ρi are the molar mass and the density of component i and Vl is the volume of one mole of 
lattice sites. χ the Flory-Huggins interaction parameter is given by χ = z∆w / kT, where z is 
the number of nearest neighbors or coordination number of the lattice, and 
∆w = ε12  − (ε11 + ε22)  / 2 is the difference in contact interaction energy ε of pairs 1-2, 1-1 and 
2-2. High values of Flory’s interaction parameter lead to phase separation while sufficiently 
small positive values or negative values of χ indicate miscibility. 
 
After re-writing molar fraction as volume fraction in equation (3.24), using φi = xi iV  / Σxi iV , 

with iV is the molar volume of the species i, the homogeneous free energy takes the form: 
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‡ For simplicity in the notation for the number of Kuhn segments Ni, only the component under consideration is 
explicitly written in the sub-index of this quantity, the label k used in chapter 2 is omitted. 
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where 0
iµ  is the chemical potential in kT units. For convenience in the literature and in this 

work the free energy of mixing instead of the total one is used,4 to get rid of linear φ terms. Ιn 
appendix I it is shown that either quantity, total or mixing, leads to the same result for 
equilibrium concentrations and spinodal points.  
 

3.3.2 Equilibrium, spinodal and critical conditions 

 
Once having an expression for the homogeneous part of the free energy it is possible to 
calculate equilibrium, spinodal and critical conditions. These quantities are used in chapter 5 
as an input for the numerical simulations. 
 
According to Gibbs, the equilibrium conditions for a closed system at a fixed pressure and 
temperature correspond to a minimal free energy defined by: 
 

 
0d

0d

,
2

,

≥∆

=∆

pT

pT

G

G
 (3.27)  

 
The first condition establishes the existence of an extremum and the second one makes clear 
that this extremum is a minimum. The excess Gibbs energy for a binary blend separating in 
two phases α and β, respectively, is sketched in figure 3.1.  
 

 
Figure 3.1 Behavior of the excess free energy ∆G in a phase-separated system and common 

tangent method. φ α and φ β are binodal points, φ α, spin and φ β, spin are spinodal concentrations, 
∆µ1 and ∆µ2 are chemical potentials of component 1 and 2, respectively.  

 
The compositions of the coexisting phases φ α and φ β are called binodal points and can be 
determined by the common tangent method, as shown in the same figure. This method 
requires the solution of the following set of equations: 
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where ∆µ is the difference between the chemical potential in the mixture and the pure state. 
The intersections of the common tangent with the pure component axes yield the values of the 
chemical potentials ∆µ1 and ∆µ2. These quantities are related to the excess Gibbs energy 
according to:12 
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where 
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After substitution of the free energy density ∆gm (equation (3.25)) in (3.30) is possible to write 
the following expressions for the chemical potentials of component 1 and 2 as a function of 
concentration: 
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From the set of equations in (3.31) in combination with the Gibbs-Duhem relation 
(n1dµ1 + n2dµ2 = 0) is derived: 
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which gives the homogeneous contribution to the chemical potential in equation (3.22) and is 
introduced in the implementation of chapter 4 as: 
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where the coefficients c0, c1, c2, c3 and c4 are functions of χ (T), Ni  and satisfy the conservation 
law explained in appendix I.  
 
Back to figure 3.1 we can see that the Gibbs energy presents two inflection points with 
compositions φ α, spin and φ β, spin (the super-index denotes the phase α or β in the spinodal 
points) that are calculated from 
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in this region the free energy is convex and is called spinodal region. In the spinodal region 
the system is unstable and phase separation occurs spontaneously due to the negative 
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contribution to the free energy of the second derivative of the compositions in the range 
φ α,spin < φ < φ β,spin. 
 
As our study of time dependence of morphology development is precisely in the spinodal 
region at different temperatures, it is necessary to construct the spinodal curve, which delimits 
the spinodal region in a representation T versus φ as it will be shown below. 
  
Applying the spinodal condition (equation (3.34)) to equation (3.25), gives the following 
expression for the spinodal curve:  
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Substitution of the interaction parameter§,13 χ = A + B / T  (A and B are constants determined 
by e.g. scattering experiments or other measurement) in equation (3.35) leads to: 
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A plot of T = T (φ, Ni) results in the spinodal curve as sketched in figure 3.2 

Figure 3.2 Spinodal curve for an asymmetric system. 
  Spinodal curve, Tc is the critical temperature. 

 
Morphological studies are carried out usually near the critical point, because it is in this 
region where the local concentration has large fluctuations that can be detected with light 
scattering.4 For this reason we calculate critical conditions. 
 
The calculation of the critical concentration φc, the critical interaction parameter χc and the 
critical solution temperature Tc of a monodisperse system goes as follows. Differentiation of 
equation (3.35) with respect to φ and equalizing the result to zero, gives an extremum for the 
concentration in the spinodal curve, which is a maximum when the system presents an upper 
 
§ χ might have a more complicated form dependent on concentration and equation (3.21) changes. 
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critical solution temperature (UCST) and a minimum if the system has a lower critical 
solution temperature (LCST). One obtains that the critical concentration is 
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Substitution of equation (3.37) into (3.35) gives the value of the critical interaction parameter 
and implicitly the critical temperature. 
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For systems where the constants A and B are unknown, we calculate the spinodal curve using 
the critical conditions. The interaction parameter χ is expressed as χ = χ1 / T, with χ1 = χc Tc. χc 
calculated with equation (3.38) and the critical temperature Tc is interpolated from 
experimental light scattering data at the critical temperature φc, obtained with equation (3.37). 
 
Once having the spinodal curve and the critical conditions, we will consider in chapter 5 
different reduced quench depths in temperature ε, defined by 
 
 cc χχχε /)( −=  (3.39) 
 

3.3.3 Gradient contribution 

 
In this section the interfacial thickness of a binary system having, either equal or different 
chain lengths of component one and two (symmetric and asymmetric system) is calculated. 
This quantity is of crucial importance in the scaling of our system in chapter 4 and therefore is 
an input parameter in the numerical simulations carried out in chapter 5.  
 
To calculate the interfacial thickness in binary systems at a fixed temperature, we need an 
expression for the square-gradient term in equation (3.21). From the different theories that 
include the gradient contribution to the Gibbs energy,14,15 we considered the extension to the 
Flory-Huggins theory obtained by de Gennes the most convenient to use. In this formulation, 
a square-gradient term κ (φ)(∇φ) 2 is obtained using the random phase approximation theory4 
(see appendix I). The parameter κ (φ) describes the free energy cost of concentration 
fluctuations and it has two sources: an enthalpic term relating to the effective range of 
interaction r0 and a term whose origin is the configurational entropy of the Gaussian coils.17,16 
The pre-factor of the square-gradient term is  
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In polymer systems, usually the first term in κ (φ) is neglected; nevertheless, in this work we 
consider both contributions to make our model applicable to either polymer and/or monomer 
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systems. According to Cahn and Hilliard,8 and Binder,16 r0 is of the same order as the lattice 
spacing a calculated with equation (2.5) and χeff is well represented by the critical interaction 
parameter χc; therefore κ (φ) simplifies to 
 

 





−

+=
)1(

1
6
1)( 2

φλφ
χφκ ckTa  (3.41) 

 
where λ = 36 when a partially miscible system is considered. In these kinds of systems, the 
wavelength of the concentration fluctuations is large. On the other hand λ = 24 holds for 
segregated systems where the wavelength of the concentration fluctuations is short. 
 
By applying the second term of the functional differentiation in equation (3.22) one obtains 
the following gradient contribution to the chemical potential 
 

 ])
)1(

2
3
1(

)1(
21[ 22

22
2 φ

φλφ
χφ

φλφ
φµ ∇

−
+−∇

−
−= cgrad kTa  (3.42) 

 
Before introducing the wall interaction contribution, we discuss in the next section the 
minimization of the Helmholtz free energy considering only the homogeneous and the 
square-gradient term, to obtain the concentration profile and interfacial thickness.  
 

3.3.4 Concentration profile and interfacial thickness 

 
In equilibrium, there are three main important solutions for the concentration: the 
concentrations of the coexisting phases, obtained in section 3.3.2, and the concentration 
profile between these coexisting phases. To find the solution for the concentration profile, 
µ = 0 must be solved in the one-dimensional case, which yields the following conservation 
law (see appendix I): 
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with ω (φ) = ½ κ (φ); κ (φ) and  f0 (φ) are given by equations (3.41) and (3.26) respectively; k0 
is a constant determined by the values for φ and dφ/dy at the boundary. The solution of the 
conservation law in equation (3.43) is not trivial using the exact forms of ω (φ) and  f0 (φ). For 
this reason we use a Taylor expansion around φ = ½ in f0 (φ) and ω (φ) . Τhis method has the 
advantage of giving an analytic solution for the concentration profile, but it is limited to 
symmetric systems in the critical region as shown below.  
 
A Taylor expansion of the Flory-Huggins-de Gennes expression (equation (3.25) plus 
equation (3.41)) expanded around the concentration φ = ½ (which corresponds to the critical 
concentration for symmetric systems) and truncated after the first order term in κ (φ) gives: 
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where ϕ  = φ  − ½  is the order parameter. The coefficients α, β and κ have the form  
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with N = N1 = N2 and λ  equals 36 in equation (3.41). The solution of the inverse of (3.43) 
using (3.44) to (3.47) is 
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The definition of the interfacial thickness ξ is only valid if α > 0, i. e. if χ > χc = 2 / N. It must 
be kept in mind that equation (3.48) is obtained if κ is expanded to a first order, any other 
form of κ does not give the tangent hyperbolic function defining the profile shown in 
figure 3.3, which is that of our interest.  
 

Figure 3.3 Interfacial thickness ξ. 
ϕ = φ  − ½, ± (α /β)½ are the equilibrium concentrations. 

 
The interfacial thickness in equation (3.49) corresponds to a thickness going from one 
equilibrium concentration to the interface situated at y = 0. The total thickness for y  ± ∞, 
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dϕ / dy = 0, and the equilibrium concentrations ϕ = ± (α /β)½  is given by  two times the value 
of ξ. 
 
To obtain the interfacial thickness in terms of the chain length and thermodynamic quantities, 
substitution of κ and α into equation (3.49) gives: 
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After identifying χc = 2/N and multiplying by (χc

-1/2 / χc
-1/2) one obtains 
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Equation (3.51) represents the form for the interfacial thickness considering both, enthalpy 
and entropy gradient contributions; depending on the polymer chain length and concentration 
either one or the other term dominates (see figure 3.4). For N = 1, we can neglect the gradient 
entropy contribution and consider equation (3.51) in the form: 
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for the case χ / χc >> 1, i. e. 
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one obtains after substitution of χc = 2/N = 2 
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which corresponds to the definition of interfacial thickness for small molecules in the highly 
segregated limit.9,17 Nevertheless, we have to make clear that equation (3.54) cannot be 
applied if the fourth order expansion of the energy density is used (equation (3.44)). Instead, 
the exact form of the Flory-Huggins-de Gennes equation must be considered; the reason is 
that when χ / χc  >> 1 (i.e. Nχ >> 2), the equilibrium values for the order parameter ϕ, where 
ϕ = φ − ½ deviate from those obtained with the exact form of the Flory-Huggins equation, as 
shown in figure 3.4. An alternative method to obtain the interfacial thickness if the exact form 
of the Flory-Huggins equation is used is proposed in appendix I, section I.4.3. 
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Figure 3.4 Binodal curve in terms of the order parameter ϕ for a symmetric system. 

__ Exact form of the Flory-Huggins equation. 
 Taylor expansion. 

 
If we now assume that the gradient entropy contribution dominates the interfacial thickness, 
equation (3.51) is expressed as 
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partial substitution of χc = 2 / N gives the expression  
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In the literature28,18 equation (3.56) is proposed to be valid around the critical point for 
systems with N  ∞. To illustrate the effect of the concentration fluctuations in enthalpy and 
entropy on the pre-factor of the square gradient term, we considered a series of hypothetical 
systems with increasing N and a constant ratio χ / χc, with an arbitrary χ = 2.248 for N = 1.  
For these systems, the following cases for κ were considered and substituted in the inverse of 
equation (3.43). 
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The results obtained are shown in figure 3.5 for N = 1, 10, 100 and 1000, respectively. 
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Figure 3.5 Interfacial thickness for different chain lengths. 

 Enthalpic contribution, ++ entropic contribution, __ enthalpic plus entropic contributions. 
ϕ  = φ  − ½, y represents the interfacial thickness. 

 
It is clear that only for the case N = 1 the entropic contribution can be neglected; for any other 
situation the entropic term determines the thickness of the interface. In conclusion, the 
expressions for the interfacial thickness of a system of small molecules or large molecules, 
given by equations (3.54) and (3.56) respectively, are applicable to symmetric systems around 
their critical point or to partially miscible systems where the interfacial thickness becomes of 
the order of magnitude of the gyration radius Rg or larger. 
 
In the case of immiscible or highly segregated systems with finite chain lengths equation 
(3.56) should not be used, because it predicts values for the interfacial thickness that deviate 
considerably from the ones known experimentally under this conditions.19,20,21 Instead the 
following analytical expression (Broseta et al.22) obtained by considering λ = 24 in equation 
(3.40) should be used 
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Here χNi has typical values between 5 and 15 and ξ∞ is corrected for entropic effects and 
given by21 
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where σi is the statistical Kuhn length, 0

iρ  is the monomer density of component i and χ is the  
interaction parameter.  
 
So far, we were able to determine the concentration profile in the bulk when a Taylor 
expansion of the energy is done around the critical point for a symmetric system; 
nevertheless, it is known from experiments that this profile is no longer described with a 
tangent hyperbolic function when a wall is present; instead, a more complex behavior is 
obtained.23 The concentration profile including the wall has no analytical solution, for this 
reason we use a numerical method explained in chapter 4. Before going to the numerical 
technique used to predict the concentration profile and morphology development in the 
presence of a wall, we formulate in the next section an expression for the wall-polymer 
potential used in this thesis.  
 

3.3.5 Interaction potential of a polymer blend with a rigid wall 

 
Intermolecular forces have different effects at short and long-range; short-range interactions 
have an effect in the order of magnitude below 1 nm, while long-range forces have a range to 
about 100 nm. It is known that the surface energy of nonpolar liquids including polymers 
arises from intermolecular van der Waals forces, rather than short-range surface interactions.24 
Because of this, we focus in formulating a wall potential in terms of the long-range forces and 
we include the short-range repulsion as a hard-core potential. 
 
Although scientist have always looked for general laws to explain and to predict the behavior 
of Nature, intermolecular forces are too complex to summarize in a universal law the distance 
dependence of the interactions for any system. Instead, the use of semi-empirical expressions 
to explain the behavior of specific systems has been an alternative. Within the semi-empirical 
models, the first pair potential including attractive and repulsive interactions was proposed by 
Mie (1903) and has the form 

 mn y
D

y
Cyw +−=)(  (3.59) 

 
where y is the intermolecular distance, C, D and the exponents n and m are parameters chosen 
according to the system considered. The repulsive part of this potential derives from 
electronic repulsions also known as steric repulsion. The range of these interactions for small 
atoms and molecules is the van der Waals diameter i. e. around 0.2 to 0.4 nm. The attractive 
part corresponds to the van der Waals forces;** this term considers the long-range 
intermolecular interactions. 

 
** The name comes from the fact that Van der Waals was the first scientist in establishing the existence of 
attractive forces between molecules in 1874. 
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The Lennard-Jones potential is a good example of a Mie-type potential where the exponents 
m and n equal 6 and 12 respectively and the constants C and D are related to the molecular 
radii and potential depth. A sketch of this potential it is shown in figure 3.6.  

 
Figure 3.6 Lennard-Jones potential for a system25 with C = 10-23 [J nm6], D =10-26 [J nm12]. 

 

The success of this kind of potentials is that this mathematical form is rather simple and the 
energy of interaction can be adjusted well to experimental data. 
 
Back to our problem, the system we want to study consists of molecules of type 1 and 2 
undergoing phase separation and interacting with a wall at the same time. To approach this 
situation in the most simplified way, we consider initially the interaction of a molecule with a 
rigid wall, as depicted in the figure 3.7: 
 

 
Figure 3.7 Surface-molecule interaction, 

 ρw is the number density and d0 the interfacial contact separation. 
 
For this situation the interaction energy w (y) for the attractive part of the total potential is 
calculated using pair wise additivity (Hamaker summation method) and according to 
Israelachvili25 given by:  
 
 3
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where C is an interaction constant, y is the distance to the wall and ρw is the number density 
or atoms per unit volume in the wall. It is possible to relate the van der Waals interaction 
potential to the interfacial tension by recalling that the energy of two flat interfaces in terms of 
interfacial tension is given by: 
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at d = d0 (two surfaces in contact), w = 0, and at d = ∞ (two isolated surfaces) we have  
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In this last equation γ1w is the interfacial tension between component one and the wall, A is the 
Hamaker constant defined as A= π2Cρ2 and d0 is the interfacial contact separation between the 
atoms of the two materials present at the interface; with a universal value of 0.165 nm.25 At 
this point, we have to consider that we do not have only one component present interacting 
with the wall, but there is also a second component. For this reason we use the difference in 
interfacial tension of each component with the wall ∆γi = (γ2w − γ1w), instead of γ1w   in equation 
(3.63). This new expression for ∆γi  indicates the preferential adsorption of one component 
over the other (see appendix I, section I.5); therefore, when both components have the same 
interfacial energy with the wall no preferential adsorption is considered. After the previous 
considerations, we have for the attractive part of the wall-polymer potential the following 
expression 
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The repulsive part or short-range interaction potential could be similar in form to the 
attractive part. However, differently to other authors,26,27,28,29 we use a hard-core potential 
radius d0 that corresponds to the distance from the origin to the minimum of the total 
potential, as shown in figure 3.8. It is clear that for distances below d0 the total potential goes 
to infinity, whilst for distances above d0 it follows equation (3.64) and decays smoothly to 
zero. 

Figure 3.8 Total wall-polymer interaction potential,  
y is the distance to the wall, d0 the interfacial contact separation. 
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Since the numerical technique used to solve our whole problem requires the same integration 
domain for each contribution; it is necessary to choose for the wall-polymer potential a range 
of integration that fairly represents the physical problem to describe and that does not give 
any singularity at or close to the wall. An approximation is used that avoids the blow-up of 
the potential to infinity at y = 0 and the vanishing of the interfacial tension at d = d0 (equation 
(3.61)). This approximation, illustrated in figure 3.9, consists in shifting the origin of the 
potential to the position of the hard-core diameter d0; after this shifting, the attractive term, y3, 
is replaced in the denominator of equation (3.64) by (y + d0);3 the only condition to be 
satisfied is that d0 must be much smaller than the long-range interaction contribution. The area 
below d0, neglected by shifting the potential to d0, is compensated by the area in between the 
dashed-line and the original solid line of the potential, in this way the total value of the 
original potential is only slightly modified.  

 
Figure 3.9 Shifting of the wall-polymer potential to the position of the hard-core diameter. 

 
We thus conclude that the wall-polymer interaction potential takes the form 
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With this final expression for the wall-polymer interaction potential, and the terms obtained in 
the previous sections for the homogeneous and the gradient contribution (equations (3.33) and 
(3.42)), the total chemical potential takes the form 
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where w(y*) was made dimensionless by introducing the following dimensionless variables: 
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where L† is a numerical length defined by L† = L / a1 with L the size of the system where the 
process takes place, and a1 = 100 is a constant introduced for convenience to properly 
represent the wall-polymer potential in the numerical method used in the next chapter. 
Explicitly the dimensionless potential w (y*) is now:  
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Below, we give the estimation we used for the interfacial energy as an input of this parameter 
in chapter 5. For simplicity, we omit the asterisk in the notation on each of the variables 
mentioned in equation (3.68). 
 
Experimentally ∆γi = γ2w – γ1w is known only for a few systems30,31 and therefore we estimate 
this parameter using the Young equation and the concentration profile obtained in section 
3.3.4. According to Young the interfacial tension of two liquids in contact with a wall are 
related by: 
 θγγγ cos1212 += ww  (3.69) 
 
where θ  is the contact angle defined in the way shown in figure 3.10 and γ12 is the bulk 
interfacial tension that is straightforwardly calculated from the concentration profile given by 
equation (3.48), with18 
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Figure 3.10 Definition of interfacial tensions for partial wetting 0 < θ  < 180 o. 
γ12, γ1w and γ2w, are the interfacial tensions between components 1 and 2,  

component 1 and wall (w) and component 2 and wall, respectively.   
 
Integration of equation (3.70) yields 

 
2

3

212 19






−=

χ
χγ c

Na
 (3.71) 

 
which is the interfacial tension for a symmetric system, where the Taylor expansion in f0 and 
κ (φ) was used. For systems in which the exact form of the free Gibbs energy and κ (φ) is 
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used, the interfacial tension is obtained using the maximum slope method mentioned in 
appendix I, section I.4.3. 
 
In our case, we assume total wetting therefore, θ = 0 and one obtains that ∆γi = γ12. For contact 
angles different from zero, a different way to calculate ∆γi must be followed, see appendix I, 
section I.5.1. 
 
Until here, we analyzed the different contributions to the energy functional that describes 
phase behavior of our system either in bulk or in the presence of a wall. As a remark in 
equation (3.18) and (3.20), we have to fill in mass fraction instead of volume fraction and 
specific chemical potential instead of the molar property. The transformation from volume 
fraction to mass fraction is easily done using 
 

 
ρ
ρφ ii

ic =  (3.72) 

 
Nevertheless, the assumption done in this work on incompressibility implies a 
density-matched system and a non-distinction between mass and volume fraction. In that case 
the total expression for the specific chemical potential reads 
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where µ  is the molar chemical potential, M is the molar mass of the polymer blend, obtained 
from M = M1M2 / ( M1(1−c) + M2c), with M1 and M2 the molar masses of component one and 
two, respectively. 
 

3.4 Conclusions 

 
In this chapter, the local conservation equations for a binary isothermal, incompressible, 
density-matched polymer systems were obtained; these equations couple the dynamics and 
thermodynamics of the system allowing to follow any temporal transformation taking place. 
The introduction of phenomenological equations allowed the replacement of unknown 
irreversible fluxes by phenomenological coefficients which are physical properties 
characterizing the system. Further, to calculate the chemical potential the Helmholtz energy 
functional was introduced; formed by a homogeneous contribution, a square-gradient 
contribution giving the influence of concentration fluctuations in enthalpy and entropy, and 
the wall-polymer interaction contribution. Each of these contributions plays a different role: 
the homogeneous contribution determines the final bulk equilibrium conditions, the 
homogeneous plus the square-gradient terms determine the bulk concentration profile and the 
interfacial thickness, and it is expected that the wall has an influence on the morphology 
development, according to experimental observations. The analysis carried out in this chapter 
makes our model applicable to symmetric and asymmetric, having polymer chains with a 
large or a small number of segments. 
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CHAPTER 4 
 
 
 
MODEL IMPLEMENTATION 

 

4.1 Introduction  

 
In this chapter it is described how the numerical implementation of the extended 
diffuse-interface model proceeds; this extension includes the concentration gradient 
contribution of the concentration to entropy and the wall-polymer interaction potential. 
 
In section 4.2, we consider a quasi-incompressible binary polymer blend undergoing phase 
separation in the presence of a rigid wall. A chemical potential derived from the 
Flory-Huggins-de Gennes mean field model is used, linking the thermodynamics and the 
kinetics, and allowing the study of transient morphology development. Since it is necessary to 
re-scale the system of equations to avoid numerical instabilities, in section 4.3 the chemical 
potential and the conservation equations are re-expressed in terms of non-dimensional 
quantities. 
 
A finite element method is used and the temporal and spatial discretizations are presented in 
section 4.4. To finalize this chapter in section 4.5 the temporal and spatial validation of the 
model proposed is shown followed by a brief discussion and concluding remarks. 
 

4.2 System definition 

 
We consider a quasi-incompressible binary polymer blend in contact with a rigid wall; the 
total Helmholtz energy functional F for this system reads: 
 
 ∫ +∇+=

V

ywfVF )]())(()([d 2
0 φφφκφ  (4.1) 

 
where φ  is the volume fraction of polymer one,  f0 (φ )  is the homogeneous part of the 
energy, κ (φ ) the pre-factor of the concentration gradient in energy and entropy, and w(y) the 
wall-polymer interaction potential, with y the distance to the wall. These three contributions 
were analysed and explained in detail in chapter 3. 
 
In addition, in chapter 3 also the specific chemical potential, derived from the functional 
equation (4.1), and the simplified two-dimensional conservation equations (equations (4.3) 
and (4.4)) were obtained. It was shown that the phenomenological equations couple the 
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hydrodynamics and thermodynamics of the system. Therefore, the model introduced is 
general to study any system where hydrodynamic effects could play an important role. 
However, in this work, we study the early-stage of the spinodal decomposition, where 
hydrodynamic effects are minimal.1 
 
The chemical potential obtained in the previous chapter (see equation (3.73)) reads: 
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where µ  is the molar chemical potential, R is the gas constant, T the temperature, the 
coefficients c0, c1, c2, c3 and c4 contain implicitly the chain length Ni and the value of 
χ = χ(T), a is the lattice spacing, χc is the critical interaction parameter, M is the molar mass 
of the polymer blend (M = M1M2 / ( M1(1−c) + M2c), with M1 and M2 the molar masses of 
component one and two respectively) and c is the mass fraction of component one. 
 
After applying a Boussinesq approximation,2 the local mass equation was reduced to:3 

 
 0=⋅∇ v  (4.3) 
 
Substitution of the irreversible fluxes by phenomenological quantities allowed writing the 
mass fraction conservation equation as: 
 

 µ
ρ

2

1d
d ∇Λ=

Tt
c  (4.4) 

 
where ρ1 is the density of component one, t the time, µ the specific chemical potential, given 
by equation (4.2). Λ is a phenomenological coefficient related to the diffusion coefficient D, 
according to4  
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Since we assumed incompressibility, it is convenient to eliminate the pressure term in 
equation (3.20). This can be done by writing the momentum equation in terms of a stream 
function ψ, defined by v = (∂ψ / ∂y, −∂ψ / ∂x), followed by application of the curl (∇×). This 
operation yields the following momentum equation for ψ 

 

 c∇×∇=∇ µ
η
ρψ4  (4.6) 
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Using the full dimensional equations is possible in the finite element technique, but when 
numerical instabilities occur it is necessary to scale equations (4.2), (4.4) and (4.6), by 
introducing dimensionless variables. The next section is devoted to the scaling of the system. 
 

4.3  Scaling chemical potential, mass balance and momentum equations 

 
In the re-scaling of the chemical potential, mass balance and momentum equations two 
different lengths are used: the interfacial thickness (ξ) and the length of the domain in which 
the diffusion process is taking place (L). As a rule, quantities involving time such as diffusion 
and velocity, are scaled with the interfacial thickness, and quantities considering spatial 
coordinates, such as the wall potential, the stream function ψ, the gradient operator and the 
distance to the wall are scaled with a numerical length 1

† / aLL = . The definition of this 
numerical length is necessary to properly represent the wall-polymer potential with the 
number of elements* used. A value of a1 = 100 proved to be convenient to use. 
 
The following set of dimensionless variables is introduced 
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After re-writing equations (4.2), (4.4) and (4.6) in terms of the previous set of dimensionless 
variables one obtains for the chemical potential 
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with w (y*) given by equation (3.68). Omitting the asterisk notation, the dimensionless 
equation for the diffusion reads 
 

 µξ 2
2

†d
d ∇





=

Lt
c  (4.9) 

 
and for the rotation of the momentum equation the final result is 
 

 c
MD

LRT ∇×∇=∇  
 

 †
14 µ

η
ξρψ  (4.10) 

 

 
*The small domains obtained after discretization of the system are called elements. 
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4.4 Spatial and temporal discretization of the conservation equations 

 
In this section, we present the spatial and temporal discretization of the conservation 
equations. To discretize the governing equations we use a spectral element method,5 which is 
a combination of spectral and finite element methods resulting in a high order of accuracy of 
the spectral method combined with geometrical flexibility of the finite element method.6  The 
system under consideration is an inhomogeneous fluid in a closed area A, with a boundary S. 
From this area A we take an arbitrary area Ω, that has a boundary ∂Ω ∂Ω = (∂Ωd + ∂Ωn) and 
an outer normal n, as shown in figure 4.1. 

Figure 4.1 Domain to discretize. 
∂Ωd, Dirichlet boundary conditions. 
∂Ωn, Neumann boundary conditions. 

∂Ω = (∂Ωd + ∂Ωn). 
 

This arbitrary area Ω represents our computational domain that is divided into Nel 
non-overlapping sub-domains Ωe and a spectral approximation is applied on each element; the 
division of Ω into elements is called spatial discretization. The basis functions ϕ, which are 
used for the spatial discretization, are high-order Lagrange interpolation polynomials defined 
through the Gauss-Lobatto integration points per element.7,8,9 
 
The curl of the momentum equation (4.10) is a fourth-order differential equation in ψ, that we 
split into two-second order differential equations 
 
 hQ =∇− 2  (4.11) 

 
 Q=∇− ψ2  (4.12) 
 

where c
MD

LRTh ∇×∇−=  
 

 †
1 µ

η
ξρ . Since the basis functions ϕ are elements of H 1, that is 

 
 )}()( ),(|{)( 2221 Ω×Ω∈∇Ω∈=Ω LLLH ϕϕϕ  (4.13) 
 
The boundary conditions for Q and ψ are either homogeneous Neumann at  ∂Ωn or Dirichlet 
at ∂Ωd. The Galerkin weighted residual representation of the differential equation is 
 
 ΩΩ =∇− ),(),( 2 ωω hQ  (4.14) 
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 ΩΩ =∇− ),(),( 2 ωωψ Q  (4.15) 
 
where the usual inner product Ω= ∫ΩΩ d),( ωω aa  is defined and ω is the standard Galerkin test 

function with the following property for the Dirichlet part of ∂Ω (∂Ωd). 
 
 }0||)({)(

d

11
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ϕϕω HH  (4.16) 

 
A partial integration of the integrals on the left-hand side of equations (4.14) and (4.15) yields 
the weak or variational form 
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where the boundary integrals vanished because of the homogeneous boundary conditions. A 
next step is to decompose the total domain Ω in Nel non-overlapping sub-domains Ωe and 
apply the spectral discretization on each element. 
 

 ∑
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N

ml
lmlmQ

1,
e ϕQ  (4.19) 

 
where ϕlm is the two-dimensional Lagrange interpolation through the Legendre-Gauss-Lobato 
integration points (l,m = 1…N), which is the tensor product of the one-dimensional 
interpolation functions: ϕlm = ϕlϕm. The values in the matrix Qlm correspond to the value of Q 
at the point lm giving after multiplication by ϕlm a vector Qe per element. Using similar 
discretizations for ψ, ω, h and assembling the elements we obtain the following discrete set of 
equations 
 
 hQ MS =  (4.20) 

 
 QMS =ψψψψ  (4.21) 

 
where S is the diffusion matrix, M is the mass matrix and Q, h and ψψψψ are the discrete vector 
representations of Q, h and ψ, respectively. 
 
Further, mass balance and chemical potential compose a set of two second-order differential 
equations that are solved in a coupled way. Here it is necessary to apply besides spatial 
discretization also a temporal discretization. Prior to the temporal and spatial discretization of 
this set of equations, some algebraic manipulations of the chemical potential µ, given in 
equation (4.8), make it reduce to a polynomial in terms of c that simplifies the 
implementation. 
 
If we multiply equation (4.8) by F -1, the inverse of the Laplacian, given by 
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and the non-linear terms are put on the right hand side, one obtains 
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Once having this simplification of µ we carry out an Euler-backward temporal discretization. 
To do so we make use of d / dt = ∂ / ∂t + v ·∇ and re-write the mass fraction balance equation 
(4.9) as 
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Here µ is the chemical potential re-written in the form of equation (4.23) and 
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n indicates the concentration at time t and n + 1 is equivalent to t + ∆t. The subscript i 
corresponds to a Picard iteration step and is used to deal with the non-linear terms: the 
iteration starts using nn cc

0
1

1
=+  and as stopping criterion, is used 41
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applying this iteration also to µ, and discretizing spatially (4.23) and (4.24) we obtain the 
Laplacian stiffness matrix S and the convection matrix N in the following system of equations 
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Assembling of equations (4.26) and (4.27) give the following global stiffness matrix: 
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where 
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After convergence, 1

1
+

+
n
iµ  and 1

1
+

+
n
ic  are used to compute a new h and move to the next time 

step. 
 

4.5  Temporal and spatial validation of the model 

 
Implementation of the model was checked in the first time step, and an arbitrary test function 
was introduced for the concentration 
 
 )sin()sin(),( yxyxc =  (4.30) 
 
With this function, we calculated separately f2, the right hand side of the global stiffness 
matrix (4.29) using a Maple script. The results obtained were equivalent to those from the 
finite element model. 
 
In the absence of a wall potential a direct comparison between the chemical potential obtained 
at the first time step in the finite element model and that given by the homogeneous 
contribution to this property is possible and convenient, to check whether both methods give 
the same output. 
 
For the spatial validation of the model, we modified the order of the polynomial np used in 
the interpolation basis functions, in a finite element sub-routine that gives as output the 
residual or absolute value of the error between the real concentration and the calculated one 
|cr − cc|. This residual decreases monotonically as the finite element mesh is refined, due to the 
Galerkin assumption used. The results obtained are listed below in table 4.1. This matching of 
increase in polynomial order of the interpolation basis functions and the decrease of the error 
clearly shows the spatial consistency of our model. 
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Table 4.1 Error |cr − cc| as a function of np, 
the polynomial order in the interpolation functions. 

 
np |cr − cc| 
2 0.1358 
4 9.739 x 10-4 
6 6.974 x 10-14 
8 3.560 x 10-14 

 
In addition, in the calculation of the global stiffness matrix (4.29), the mesh, as well as the 
polynomial order in the interpolation functions were modified, giving the following results: 
 

Figure 4.2 Concentration profile using different polynomial order np and mesh refinement 
(∆t = 1 x 10 -5). 

 
From figure 4.2 we see that increasing the polynomial order in the interpolation functions has 
the same effect as refining the mesh; nevertheless, the calculations are more time consuming 
when the polynomial order is higher. Figure 4.3 illustrates that the more refined the mesh, the 
better the definition in morphology.  
 

 
Figure 4.3 Morphologies obtained for different polynomial order (np) and mesh refinement 

(∆t = 1 x 10 -5, computational time equal to 0.016). 
 

np = 2, mesh = 72x72 np = 2, mesh = 96x96 np = 4, mesh = 36x36np = 2, mesh = 72x72 np = 2, mesh = 96x96 np = 4, mesh = 36x36
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As always, a compromise between accuracy and computation time must be made. We chose 
for a mesh of 72 per 72 elements and a polynomial order of two for the interpolation 
functions. 
 
To check temporal consistency of the model we tried three different time steps, a decrease in 
time step, implies an increase in accuracy of the calculation of the unknowns c and µ.  

 
Figure 4.4 Concentration versus time for three different time steps. 

 
Figure 4.4 shows the temporal consistency of our model, from the trend of the plots in this 
figure at different time steps we can conclude that a time step ∆t = 1 x 10-5 is a good 
compromise between sufficient accuracy and acceptable computation time. 
 

4.6 Conclusions 

 
In this chapter, we presented the implementation of the extension to the diffuse-interface 
model that includes the gradient contribution to entropy and the wall-polymer interaction 
potential. In the re-scaling of the governing equations, it is necessary to introduce a numerical 
length L† to tune the effect of the wall potential. For the numerical implementation of the 
conservation equations, a Galerkin type spectral discretization, which ensures that the error of 
the residual is minimal, was used. Due to the dimensionality of the problem, the 
Gauss-Lobatto numerical integration or quadrature was also employed. Finally, we 
demonstrated the spatial and temporal consistency of the model.  
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CHAPTER 5 
 
 
 
NUMERICAL RESULTS 

 

5.1 Introduction 

 
In chapter 3, we introduced a continuous diffuse-interface model to study morphology 
development of a polymer binary film undergoing phase separation in the presence of a rigid 
wall and in chapter 4 the implementation and validation of the model into a finite element 
technique was carried out. In this chapter, we apply the model to a series of polymer blends in 
bulk and in the presence of a rigid wall in the early-stage of spinodal decomposition. In 
section 5.2 the effect on morphology development of number of segments Ni, symmetry (or 
asymmetry) of the system, quench depth in temperature ε and initial concentration before 
quenching the system are investigated for the bulk. In section 5.3, we choose two symmetric 
and two asymmetric systems to study the wall effect for the conditions where co-continuous 
structures in bulk were observed. The effect of the magnitude of the wall-polymer potential 
and the quench depth in temperature is studied for one symmetric system. Further, in section 
5.3.1 a quantitative analysis based on the root-mean-square deviation from the average 
concentration, the power spectral density function and the autocorrelation function of the 
wavelengths present in concentration profiles at different positions from the wall is carried 
out. To finalize this chapter, in section 5.4 we give some conclusions. 
 

5.2 Morphology development in bulk 

  
As a first application of the diffuse-interface model proposed in the previous chapters, we 
consider the series of binary polymer blends listed in table 5.1 without including the wall 
effect yet. The purpose of these simulations is to study the effect on the morphology 
development of initial concentration, reduced quenching gap in temperature ε, chain length 
Ni, and difference in chain lengths of the two components in the blend (symmetry or 
asymmetry).  
 
For all systems shown in table 5.1, the necessary thermodynamic data to calculate 
equilibrium, spinodal and critical conditions (as explained in chapter 3, section 3.3.2) are 
known from the literature. Except for the system PMMA-d8 / PTFPMA1 that shows a lower 
critical solution temperature (LCST), the rest of the systems included show an upper critical 
solution temperature (UCST).  
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Table 5.1 Systems where bulk morphology is studied. 
Mw, molar mass, N1 and N2, number of Kuhn segments,  χc, critical interaction parameter, 

φc, critical concentration, Tc, critical temperature, χ1, a constant (see section 3.3.2), 
χ, Flory-Huggins interaction parameter. 

  
Blend Mw 

[kg/mol] 
N1 / N2 χc φc Tc [K] χ1 χ = χ  (T,φ) 

dPS/PαMS2 49 / 50 443 / 377 0.0049 0.48 418 -- 51 / T (0.0626 − 
0.0018φ −  

5.16 x 10-5T) 
dPS / PBrxS3 

x = 0.119 
123.2 / 162 1098 / 1285 0.0017 0.52 569.8 0.96  

PS / dPS4 903.6/1290 8700/11500 0.0002 0.47 407.4 -- −0.00029 + 0.2/T 
xMMA-(1-x)FHMA / 
Epikote 828, x = 0.9128 

32 / 0.67 47 / 1 0.656 0.13 403.2 264 --- 

PMMA-d8 / PTFPMA1 570 / 100 4009 / 737 0.0014 0.30 487.7 --- 0.14398 
− 69.54576 / T 

 
 
For each system, the conditions listed in table 5.2 are investigated. When the initial 
concentration φ 0 equals the critical concentration φc three different reduced quenches in 
temperature, ε (equation (3.39)), are tried, whilst for initial concentrations φ0  = φc ± ∆φ only 
two. Equation (3.51) is used to calculate the interfacial thickness ξ in symmetric systems, 
whilst the method of the maximum slope presented in appendix I (section I.4.3) is used for 
asymmetric systems. The value for η, the viscosity, is an estimation calculated according to 
van Krevelen5 for a polymer melt. 
 

Table 5.2 Summary of the parameters used as input for the simulations. 
 

System φ0 ε T [K] ξ [nm] η 

[kg/nm s] 
0.48 0.05 404.8 16.9 1.1 x 10-7 

0.33,0.48,0.63 0.25 359.5 7.6 7.0 x 10-7 
dPS / PαMS2 

0.33,0.48,0.63 0.45 323.3 5.7 7.0 x 10-7 
0.52 0.05 542.6 34.5 1.6 x 10-6 

0.37,0.52,0.67 0.25 453.2 15.2 1.8 x 10-6 
dPS / PBrxS3 

x = 0.119 
0.37,0.52,0.67 0.45 393.0 11.5 6.4 x 10-6 

0.53 0.05 399.2 95.4 2.5 x 10-4 
0.38,0.53,0.68 0.25 369.6 44.2 1.4 x 10-3 

PS / dPS4 

0.38,0.53,0.68 0.45 344.0 33.0 1.4 x 10-3 
0.127 0.05 384.0 2.3 1.1 x 10-8 

0.08,0.127,0.32 0.25 322.6 1.0 1.7 x 10-8 
xMMA-(1-x)FHMA / 
Epikote 828, x = 0.9128 

0.08,0.127,0.32 0.45 278.1 0.8 1.7 x 10-8 
0.2,0.3,0.45 0.25 488.9 10.9 3.2 x 10-5 PMMA-d8 / PTFPMA1 
0.2,0.3,0.45 0.45 489.9 7.9 3.2 x 10-5 
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In figure 5.1, the results for the system dPS / PαMS2 are shown. It should be mentioned that 
this binary polymer blend was chosen to modify systematically Ni in symmetric systems; 
nevertheless, an experimental morphological study for this system is not possible, because the 
miscibility gap lies below the glass transition temperature. In the captions of figures 5.1 to 5.5 
a is the lattice spacing, calculated with equation (2.5). 
 

 
 

Figure 5.1 System dPS / PαMS,2 L = 3500 nm, a = 0.561nm. 
   Spinodal curve. 

 
 
From figure 5.1, we observe that the concentration at which the system is quenched has an 
effect on the structure developed. For quenches departing from φ0 = φc, co-continuous 
domains are formed. On the other hand, for quenches departing from φ0 = φc ± 0.15 the 
co-continuous or lamellar structure is lost. As anticipated, from the interfacial thickness 
values obtained in table 5.2, deeper quenches in temperature give smaller domain sizes in the 
morphology; this is due to the increase of the bulk interfacial tension.  
  
For the systems dPS / PBrxS and PS / dPS similar results in morphology were found and are 
shown in figures 5.2 and 5.3. Only the domain size increases by increasing the chain length of 
the polymers, as expected from the interfacial thickness values. 
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Figure 5.2 System dPS / PBrxS,3 x = 0.119, L = 3000 nm, a = 0.67 nm. 
   Spinodal curve. 

 

 
Figure 5.3 System PS / dPS,4 L = 5000 nm, a = 0.67 nm. 

   Spinodal curve. 
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To study effect of symmetry of the system on morphology development, two highly 
asymmetric systems were chosen, one presenting an upper critical solution temperature 
(UCST) and a second one presenting a lower critical solution temperature (LCST). 
 
The system with the UCST shown in figure 5.4 is of particular interest to us, because we 
carried out experimental work on the phase behavior (see chapter 6). Therefore, the 
predictions obtained with the model are useful in understanding more of the kinetic and 
thermodynamic behavior of this system.  

 
 

Figure 5.4 xMMA-(1-x)FHMA / Epikote 828, x =  0.9128, L = 1000 nm, a = 0.67 nm. 
   Spinodal curve. 

 
 
The results obtained in figure 5.4 show that the symmetry of the blend has definitely an effect 
on morphology development. In this case, the temperature and the concentration at which the 
system is quenched are important factors to obtain a co-continuous structure in the bulk 
morphology.  Once more, chain length is not an important parameter in the connectivity of the 
morphology developed, as shown for the second asymmetric system in figure 5.5. 
 
For the LCST system, the behavior of the interfacial thickness with temperature is inverted, as 
expected. At higher temperatures, the interfacial thickness decreases and therefore the domain 
size as shown in figure 5.5. These results clearly show that our model is not limited to UCST 
systems, but can be applied within the spinodal region of any type of phase diagram. 
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Figure 5.5 System PMMA-d8 / PTFPMA,1 L = 1500 nm, a = 0.584 nm. 

   Spinodal curve. 
 
In the next section, we focus on systems with a co-continuous morphology to study the wall 
effect. Experimentally this structure would be easily detected with light scattering and the 
connectivity observed in co-continuous structure has a direct effect on the mechanical 
properties of a film, which is an important property in a practical application. 
 

5.3 Morphology development in the presence of a rigid wall 

 
The investigation carried out in the previous section allowed us to refine the selection of 
systems where the study of the wall effect on morphology development is of interest. All the 
selected systems present co-continuous morphology in bulk; the conditions chosen are 
summarized in table 5.3.  
 
We warn beforehand that the time in which the morphology develops, must be taken as a 
qualitative indication, because of the assumptions made for some parameters that are 
characteristic for each system such as the viscosity5 and the diffusion coefficient 
(D = 0.1 nm2 / s). 
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Table 5.3 Systems considered in the study of wall effect. 
γ12 is the interfacial tension between component 1 and component 2. 

 
System φ0 ε T [K] ξ [nm] γ12 

[J / nm2] 
0.53 0.05 399.2 95.4 1.3 x 10 -23 PS/dPS4 
0.53 0.25 369.6 44.2 9.4 x 10 -23 

dPS/PBrxS3, x = 0.119  0.52 0.25 453.2 15.2 3.4 x 10 -22 
xMMA-(1-x)FHMA / 
Epikote 828, x = 0.9128 

0.32 0.45 278.1 0.8 2.7 x 10 -21  

PMMA-d8 / PTFPMA1 0.45 0.45 489.9 7.9 3.5 x 10 –22 
 
For the first symmetric listed in table 5.3, we obtained the results as shown in figure 5.6 for 
the morphology development in the presence of a rigid wall. 

 
Figure 5.6 Morphology development for the system PS / dPS,4 ε = 0.05, L = 5000 nm. 

(Lower picture: Typical concentration profile perpendicular to the wall). 
 
The morphology as shown in figure 5.6 presents the following striking features: 
 
� The formation of a macroscopic layer at the wall, as earlier observed.2-4,6,7,8,9,10,11  
� An oscillatory concentration profile with oscillations decreasing in amplitude with 

increasing distance from the wall. The values for the concentration at the wall are 
determined by the equilibrium conditions; this fact is consistent with other 
theoretical12,13 and experimental3,4,9,10 results on surface-directed spinodal 
decomposition.  

� An anisotropic domain growth close to the wall. Guenoun has observed also this 
experimentally at critical compositions14 in binary fluids and Cumming15 in polymer 
blends.  
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� Two different domain sizes, parallel and perpendicular to the wall are clearly 
observed, and this feature was also found in the work of Brown and Chakrabarti.16 

� A faster domain growth close to the wall compared to the bulk consistent with the 
experimental work of Cumming et al.15,17,18 and the theoretical predictions of Troian. 19 

 
Especially this last feature is of relevance because it contributes to clarify which is indeed the 
domain growth at the early-stage of the spinodal decomposition in the presence of a wall, a 
problem that has been controversial for one decade. This controversy originated from the 
contradictions in the experimental evidence found on one hand by Jones and coworkers10 and 
on the other hand by Cumming et al.15 Theoretically, besides the work of Troian, there is no 
explanation of the fast domain growth at the early-stage of the spinodal decomposition, 
because either the focus is on the late-stage regime of the spinodal decomposition (which is 
not investigated in this work) or the wetting effects are simply sub-estimated. 
 
The two main arguments given in the literature to explain the fast domain growth are a 
hydrodynamic process with geometric limitations due to the presence of the wall, and van der 
Waals forces leading to wetting effects and therefore to an earlier coalescence at the wall. Our 
results are in agreement with the last argument, since our model includes hydrodynamic 
effects but they are minimal due to the large viscosity of polymer blends and besides we are in 
the early-stage of the spinodal decomposition where it is known that hydrodynamic effects do 
not have a large contribution. The only extra contribution we introduced in the Helmholtz 
energy functional compared to the bulk one, is precisely the interaction of the wall with the 
blend components, which is defined in terms of van der Waals forces (see chapter 3). The 
coalescence mechanisms near the wall could be compared to the growth mechanism of a drop 
on a solid surface explained by Rogers et al.20 with the difference that in our case the 
adsorbed layer on the wall acts as a diffusion sink for the flux of monomers close to it. 
 
Continuing further with our investigation, to check the effect of the magnitude of the 
wall-polymer potential at constant temperature, we decreased systematically this parameter by 
one and two orders of magnitude. The results obtained are shown in figure 5.7. The formation 
of a macroscopic layer at the wall is not observed for smaller interactions of the wall with the 
blend components. This feature and the corresponding wall potentials shown in figure 5.8 for 
the morphologies of figures 5.6 and 5.7, show that the magnitude of the wall potential is a 
factor that determines the formation of a macroscopic wetting layer at the wall.  
 

Figure 5.7 Effect of the wall-polymer interaction potential at constant temperature,  
ε = 0.05, L = 5000 nm. 
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Figure 5.8 Wall-polymer potentials for the morphologies shown in figures 5.6 and 5.7. 

System PS / dPS,4 ε = 0.05. 
 
The extension of the wetting layer into the bulk seems to have another reason, due not only to 
long-range interaction of the wall with the blend components. To find out which is the second 
factor playing a role in the extension of this layers into the bulk, we considered the same 
system of figure 5.6 (PS / dPS4) at a deeper quench in temperature (ε = 0.25) to obtain the 
morphologies as shown in figure 5.9.  
 
 

Figure 5.9 Morphology development for the system PS / dPS,4 ε = 0.25, L = 5000 nm. 
(Lower picture: Typical concentration profile perpendicular to the wall). 
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The slight decrease in amount of layers next to the wall in figure 5.9, can be explained in 
terms of the ratio r = µ / w(0), where µ = (∆µ1 – ∆µ2)| φ 

α,spin − (∆µ1 – ∆µ2)| φ 
β,spin ,  and w(0) is 

the wall-polymer potential evaluated at the wall (y = 0 where the maximum contribution of 
this property occurs). From the values obtained in table 5.4, we can see that a quench in 
temperature increases the order of magnitude of the chemical potential; therefore, the relative 
contribution of the wall to the bulk morphology is smaller. This speculation is confirmed by 
the results obtained in figures 5.10 to 5.12 for the rest of the systems tabulated in table 5.4. 
The larger the value of r (or contribution of the bulk chemical potential), the smaller the layer 
formation at the wall. 
 

Table 5.4 Difference in chemical potential, wall potential at y = 0, 
and their ratio r, at a quench depth ε. 

 
System ε w (0) µ r 

0.05 -1.77 x 10-5 0.0300 1695 PS/dPS4 
0.25 -1.38 x 10-4 0.3178 2303 

dPS/PBrxS3, x = 0.119  0.25 -4.09 x 10-4 0.3262 816 
xMMA-(1-x)FHMA / 
Epikote 828, x = 0.9128 

0.45 -5.29 x 10-3 6.562 1241 

PMMA-d8 / PTFPMA1 0.45 -3.89x10-4 1.341 3477 
 
 
 

Figure 5.10 Morphology development for the system dPS / dPBrxS,3  ε = 0.25, L = 3000 nm. 
(Lower picture: Typical concentration profile perpendicular to the wall). 
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Figure 5.11 xMMA-(1-x)FHMA / Epikote 828, x =  0.9128, ε = 0.45, L = 1000 nm. 
(Lower picture: Typical concentration profile perpendicular to the wall). 

 

Figure 5.12 System PMMA-d8 / PTFPMA,1 ε = 0.45, L = 1500 nm. 
(Lower picture: Typical concentration profile perpendicular to the wall). 

 
The results obtained in this section show that when the wall effect is switched on, a striking 
change in morphology is observed. The impact of this effect farther from the wall depends on 
two factors: the magnitude and extension into the bulk of the wall-polymer interaction 
potential and the magnitude of the difference in chemical potentials of the blend components. 
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5.3.1 Quantification of the morphology 

 
In this section our intention is to quantify mainly two features relevant in the morphology 
found in the presence of a wall: the fast growth of the domains at the wall and the difference 
in domain size at the wall and in the bulk. To do so, we took, for one symmetric and one 
asymmetric system, a series of concentration profiles parallel to the wall at different time 
steps. With these data we performed an analysis in one dimension on the morphology of one 
symmetric and one asymmetric system in terms of the following parameters: Rq, the 
root-mean-square deviation from the average, G (ω), the power spectral density function and 
ρ (x), the correlation function. Each of these parameters is explained in more detail below.  
 
First, we start with the analysis of the symmetric system PS / dPS at ε = 0.05 and t = 1092.1 s; 
at this time the system has phase separated (see figure 5.6.). In figure 5.13, for clarity, we 
show only the sampling done for the concentration profile at two distances y, close to 
(y = 0.125) and far away from the wall (y = 0.875), x corresponds to the position of the 
concentration running in a line parallel to the wall and z is φy < φ >. 
 

Figure 5.13 Sampled concentration profile for the system PS/ dPS at ε = 0.05 and t = 1092.1 s, 
for two fixed distances to the wall. Left plot y = 0.125, right plot y = 0.875. 

 
The first main feature we see in figure 5.13 is that close to the wall the difference of the 
concentration from the mean value is very small, and further in the bulk is around 25 times 
larger. This is consistent with the fact that close to the wall there are flat layers which 
concentration from an average value fluctuates very little, whilst further from the wall there is 
a co-continuous morphology with high concentration fluctuations. 
 
With the sampled concentration profile it is possible to calculate the root-mean-square 
deviation, defined by21 
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Physically, Rq is the standard deviation of the sampled concentration profile. The behavior of 
Rq as a function of time, from the moment when oscillations in the concentration profile are 
visible (see figure 5.6) is shown in figure 5.14. It can be concluded that until the time when 
the concentration fluctuations in the bulk are small, Rq remains practically constant at any 
distance from the wall. As soon as the concentration fluctuations grow considerably and the 
system starts to coarsen or phase separate, Rq stays around the same value close to the wall 
and jumps to a higher value deeper in the bulk. This is consistent with the temporal change in 
morphology observed in figure 5.6.  
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Figure 5.14 Root-mean-square deviation for sampled concentration profiles at increasing 
distances y from the wall. 

 
To determine the different wavelengths present in the concentration profiles of figure 5.13 we 
plot the power spectral density function or power spectrum, which is proportionally the 
one-dimensional version of the structure factor S (q) used in light scattering. This parameter is 
obtained from the surface profile after a Fourier transform of z (x), and is defined by 
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where ω is a radial frequency (cycles / distance) 2π / λ with λ the wavelength. The power 
spectrum of the profiles shown in figure 5.13 is sketched in figure 5.15. For the profile close 
to the wall, a single frequency band results while for the sample farther from the wall at least 
two bands with different amplitude are involved.  
 

 
Figure 5.15 Power spectrum for the two different concentration profiles of figure 5.13. 

Left picture y = 0.125 and right picture y = 0.875. 
 
It is clear from figure 5.15 that the discrimination between a peak or band and the noise in the 
spectrum is not always evident and for this reason (and for extracting extra information about 
the correlation of the present wavelengths), it is convenient to calculate the autocovariance 
R (x), this function is related to the power spectrum according to 
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where the Euler formula exp(iωx) = cosωx + isinωx has been used, and only the real part of 
the function has been considered. A plot of the autocovariance function of the concentration 
profiles of figure 5.13 is shown in figure 5.16. The high degree of correlation shows that a 
rather limited number of wavelengths are involved for both profiles. The slightly lower 
correlation for the profile farther from the wall indicates that a somewhat wider frequency 
range is involved; this is consistent with the presence of a second and a third tiny frequency 
(band) as observed in the power spectrum in figure 5.15. 

 

Figure 5.16 Autocovariance function for the two different concentration 
profiles of figure 5.13. Left picture y = 0.125 and right picture y = 0.875. 

 
With the support obtained from the autocovariance function, we distinguish the presence of 
three bands of different amplitude in the power spectrum, one at 1/x = 1, the second one at 
1/x = 4 and a third one at 1/x = 7. If we now plot the amplitude of these three different bands 
as a function of time, we obtain the result as shown in figure 5.17. The trend observed 
indicates that the mentioned bands in the power spectrum are associated to the bulk phase 
separation. All the different frequencies are present at any time both close and further from 
the wall, but only one dominant frequency grows in amplitude at a distance farther from the 
wall. This frequency would be associated to the characteristic wavelength of the domains in 
the bulk.  

Figure 5.17 Amplitude of the different bands in the power spectrum of figure 5.15. 
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q/)()( RxRx =ρ  (5.4) 

 
If we look at the temporal behavior of the autocorrelation function for the frequencies at 
1/x = 4 and 1/x = 7 we find in figure 5.18 a trend that is coherent with the results extracted 
from figure 5.17. Close to the wall, the correlation is higher before phase separation takes 
place whilst far from the wall the correlation is higher after the bulk phase separation. 

Figure 5.18 Maxima heights in the correlation function versus time for the concentration 
profiles of figure 5.13. Left picture y = 0.125 and right picture y = 0.875. 

The first maximum equals 2
q

R . 

 
For the asymmetric system figure 5.19 show the same trend as for the symmetric system 
previously analyzed. 

Figure 5.19 Root-mean-square deviation for sampled concentration profiles at increasing 
distances y from the wall. 

 
From this analysis, we conclude that for the bulk morphology it was possible to determine the 
presence of three different frequencies. Only one dominant frequency at 1/x = 7 is associated 
to the characteristic wavelength of spinodal morphology in the bulk. The smaller frequency(s) 
we expected to find, corresponding to the wall domains was not observed. 
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5.4 Conclusions 

 
We can conclude that the model proposed is applicable to binary polymer blends having a 
phase diagram with either upper critical solution temperature or lower critical solution 
temperature. The results provided by the diffuse-interface model implemented in this thesis 
are qualitatively in good agreement with experimental evidence on surface-directed spinodal 
decomposition. From the parameter variation, it was found that the symmetry of the system is 
what mainly affects the connectivity of the bulk morphology. When the wall is included, we 
find the formation of a macroscopic wetting layer and a faster domain growth at the wall; 
these findings contribute to clarify the early-stage of the spinodal decomposition. The extent 
of the development of layers deeper in the bulk is determined by two factors: the range of the 
interaction of the wall with the blend components and the ratio between the difference in 
chemical potential of the blend components and the magnitude of the wall-polymer 
interaction potential. The analysis carried out in the last section allowed a partial 
quantification of the morphology developed deep in the bulk. 
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CHAPTER 6 
 
 
 

PHASE BEHAVIOR OF THE BINARY SYSTEM POLY 
[METHYL METHACRYLATE-CO-1H,1H- 
PERFLUOROHEPTYLMETHYL METHACRYLATE] / 
BISPHENOL-A-DIGLYCIDYLETHER  
 

6.1 Introduction 

 
In this chapter we investigate the fundamental aspects of fluoro-modified epoxy-based 
coatings for metals. The polymers used are a thermosetting epoxy resin and a thermoplastic 
hybrid fluorinated copolymer; this combination seems to be ideal in a formulation for 
coatings. On the one hand, epoxy resins have a good adhesion on different substrates and 
good mechanical properties, they shrink slightly during curing, their curing kinetics can be 
controlled easily and they are easily processed.1 On the other hand, the fluorinated 
thermoplastic polymers have a chemical and mechanical stability over a wide range of 
temperatures, a high outdoor durability, but with the disadvantage of having low solubility in 
most of the common organic solvents.2 
 
The first problem to face when two polymers of different chemical nature are mixed is the 
miscibility between them. Therefore in section 6.2 the phase behavior is studied of the binary 
systems poly [methyl methacrylate-co-1H,1H-perfluoroheptylmethyl methacrylate] and 
bisphenol-A-diglycidylether abbreviated as xMMA-(1-x)FHMA and Epikote 828, 
respectively, as a function of: 1) molar mass and fluorine content in the copolymer, 
xMMA-(1-x)FHMA and 2) chain length extension of the epoxy resin. 
 
In section 6.3 studies on morphology development of a film and a drop (bulk) are carried out 
for the binary system xMMA-(1-x)FHMA / Epikote 828, (1-x) = 0.0872 in two regions: 
1) around the critical point and 2) around the intersection point of the glass transition and the 
cloud-point curves. The results experimentally observed are compared with numerical 
simulations using the model presented in this thesis. In section 6.4 we give final conclusions 
to this chapter. 
 

6.2 Phase behavior 

 
In this section we present the results obtained on phase behaviour of the binary systems poly 
[methyl methacrylate-co-1H,1H-perfluoroheptylmethyl methacrylate] and   
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bisphenol-A-diglycidylether, by modifying the molar mass, the fluorine content in the 
copolymer xMMA-(1-x)FHMA and for one binary system also the effect of the chain length 
extension of the epoxy resin. 
 

6.2.1 Materials 

 
The fluorinated copolymers poly [methyl methacrylate-co-1H,1H-perfluoroheptylmethyl 
methacrylate], with a different ratio of each monomer, were synthesized in our laboratories.3 
For simplicity the short notation xMMA-(1-x)FHMA will be used, to refer to these 
compounds; x is the molar ratio of monomer MMA and (1-x) of monomer FHMA. A 
bisphenol-A-diglycidylether (DGEBA, Epikote 828) abbreviated as Epikote 828 was obtained 
from Shell Chemicals (Amsterdam, the Netherlands) and used without further purification. To 
prepare oligomers of Epikote 828 a polyoxipropylenediamine (Jeffamine D-230) obtained 
from Huntsman (Everberg, Belgium) was used. The chemical formulas of the compounds and 
the fluorinated copolymers used are shown in figure 6.1 and table 6.1, respectively.  
 

 
Figure 6.1 Chemical formulations of the compounds used. 

 
Table 6.1 Copolymers used. 

  
[xMMA / (1−x)FHMA] Mw [kg/mol] 

0.9000 / 0.1000 7.7 
0.8760 / 0.1240 32 
0.9128 / 0.0872 32 
0.9320 / 0.0680 32 
0.9467 / 0.0533 32 

6.2.2 Methods 

 
The cloud-point curves were determined experimentally by a hot-stage light scattering 
technique, using a heating rate of 10 degrees per minute. Following the procedure as 
explained in chapter 3, the Flory-Huggins theory4,5 was fitted to the experimental data, to 
obtain the spinodal curves, as well as critical parameters for each system. 
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Oligomers of Epikote 828 were obtained by reacting in a round bottom flask the Jeffamine 
with the epoxy compound for one hour, using magnetic stirring at two different temperatures, 
373.15 and 393.15 K. The amount of Jeffamine necessary to obtain a certain degree of 
polymerization was calculated according to Gordon.6  Matrix Assisted Laser Desorption 
Ionization-Time off Flight (MALDI-TOF) gave a qualitative identification of the reaction 
products. 
 

6.2.3 Results 

 
Using equations (3.35) to (3.38) the spinodal curve, the critical concentration and critical 
temperature were calculated. The constant χ1 = χcTc was estimated, as explained in see section 
3.3.2 for each system. This makes possible to predict, at least qualitatively, the phase behavior 
for any other binary system with fluorine content between 0.0872 and 0.1240. These data are 
listed in table 6.2. 
 
 

Table 6.2 Critical conditions and maximum experimental solution temperature for systems 
xMMA-(1-x)FHMA / Epikote 828. 

 
x/(1-x) Mw 

[kg/mol] 
φ max Tmax  [K] χ1  φc Tc [K] 

0.9000 / 0.1000 7 0.07 495.2 357.6 0.23 423.7 
0.8760 / 0.1240 32 0.10 524.2 335.3 0.13 520.8 
0.9128 / 0.0872 32 0.04 415.2 264.4 0.13 403.2 
0.9320 / 0.0680 32 - Miscible - - - 
0.9467 / 0.0533 32 - Miscible - - - 

 
 
From figure 6.2 it is clear that the calculated critical points appear on the right-hand branches 
of the cloud-point curves. This feature has been observed earlier7 and is attributed to the 
polydispersity (Mw/Mn) of the blend. Epikote 828 is a mixture of monomers and dimmers, as 
the number n =1.2 indicates, and the fluorinated copolymers have a ratio Mw / Mn = 1.8.  
 
In addition, in figure 6.2 it can be seen that fluorine content in the copolymer is the main 
contribution to the blend immiscibility; at higher fluorine concentration the miscibility gap 
becomes broader, shifting to more elevated temperatures and higher copolymer composition. 
No phase separation is observed at room temperature when fluorine content in the copolymer 
is equal to or below 0.068. The copolymer molar mass is a secondary effect in the shift of the 
miscibility gap. 

 
 
 
 
 
 



Chapter 6 
 
 

66 

Figure 6.2 Phase diagrams of the binary systems 
 xMMA-(1-x) FHMA / Epikote 828. 

 
To complete the study on phase behavior of the binary systems xMMA-(1-x)FHMA / Epikote 
828, the chain length extension of the epoxy resin was modified by reacting this component 
with Jeffamine-D230. The only phase diagram measured was for the polymer blend 
xMMA-(1-x)FHMA / (n-mer)Epikote 828, with a fluorine content in the copolymer (1-x) = 
0.0872, because of experimental limitations. 
 
Dimers and trimers were identified in the MALDI-TOF spectra illustrated in figure 6.3. Due 
to the high polydispersity of the system, no further quantification of the monomers 
synthesized or calculations of the χ Flory-Huggins interaction parameter were done. For this 
last point extended theories in thermodynamics,7,8 where χ depends not only on composition 
but also on polymer size, should be applied and it is not within the scope of this work to go 
into detail of this extension of the Flory-Huggins lattice theory. 

Figure 6.3 MALDI-TOF spectra of Epikote 828 oligomers prepared at T = 373.15 K. 
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The phase diagram was determined to study the influence of the chain length extension of the 
epoxy resin on the miscibility gap (figure 6.4). Reliable results for the cloud-point curves are 
obtained only at diluted conditions, since the low diffusion and high viscosity made 
experimental data at higher concentrations inaccurate. Miscibility is highly reduced by 
increasing chain length of the epoxy resin, having even a more drastic effect than the 
modification of fluorine content in the copolymer.  
 
Summarizing, in this section we established that the main contributions to the broadening of 
the miscibility gap in the binary systems xMMA-(1-x)FHMA / Epikote 828 are: the chain 
length extension of the epoxy resin and fluorine content in the copolymer, whilst the 
increment in molar mass of the fluorinated copolymer is a secondary effect.  

 
Figure 6.4 Phase diagrams of systems xMMA-(1-x)FHMA / (n-mer) Epikote 828, (1-x) = 0.0872. 

   Monomer, • • oligomer prepared at T = 373.15 K, ∆∆ oligomer prepared at T = 393.15 K. 
(Lines drawn to guide the eye). 

 

6.3 Morphology development 

 
Preliminary studies in a drop and in a film were performed to elucidate the relationship 
between copolymer composition and morphology development. The regions of interest are 
around the critical point, where concentration fluctuations are large, and around the 
intersection point of the glass transition and the cloud-point curves, where due to the 
proximity to the vitrification region of the system, the morphology developed by the polymer 
blend can be frozen-in and easier to identify  (figure 6.5). Because these regions were more 
easily accessed in the binary system containing xMMA-(1-x)FHMA / Epikote 828, 
(1-x) = 0.0872, this system was chosen. 
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The glass transition curve plotted in figure 6.5 was estimated using the Fox equation.9  
 

 
g2g1g

)1(1
T

c
T
c

T
−+=  (6.1) 

 
with Tg, the glass transition of an ideal homogeneous system, c, the mass fraction of 
component one (c ≈ φ), Tg1 and Tg2, the glass transition of component 1 and 2, respectively. In 
this work the measured glass transition temperatures are for the copolymer 
xMMA-(1-x)FHMA, (1-x) = 0.0872, Tg1 = 370.5 K and for the Epikote 828, Tg2 = 257.85 K. 

Figure 6.5 Phase diagram of the binary system 
xMMA-(1-x)FHMA / Epikote 828, (1-x) = 0.0872. 

− −  Cloud-point curve, __ glass transition temperature curve. 
 
E-SEM, AFM, SALS and SAXS techniques were tried around the critical conditions of the 
system in region (1) but no experimental features on the morphology were discerned. To 
check whether the size of the domains formed was a factor not allowing spotting the 
morphology in this region, a solution in toluene of the binary blend was casted at 393.15 K on 
a clean silicon wafer and spin-coated to obtain a layer 1 µm thick. This thin layer was cured at 
373.15 K for one hour with the Jeffamine D-230 in order to produce larger domain sizes. The 
results of this treatment are shown in figure 6.6 and 6.7. Even after this chemical 
modification, it was not possible to identify clearly the spinodal decomposition; instead, it 
was obtained a kind of honeycomb structures that have been observed previously in systems 
where precipitation of water vapor drops on a polymer layer was done.10 Therefore, another 
factor must be linked to the difficulty of observing the morphology of this binary blend 
around the critical point.  
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Figure 6.6 AFM pictures, tapping mode. 
Binary system xMMA-(1-x)FHMA / Epikote 828, (1-x) = 0.0872. 

Blend composition 0.1 / 0.9 in volume fraction. 
 

 
 

Figure 6.7 AFM picture, contact mode. 
Binary system xMMA-(1-x)FHMA / Epikote 828, (1-x)  = 0.0872. 

Blend composition 0.1 / 0.9 in volume fraction. 
 

For region (2), the phase transition process is very slow, due to the high viscosity of the 
system. E-SEM experiments carried out after one week on two semi-transparent samples a 
drop (bulk) and a film around 0.5 mm thick with the same blend composition show that 
nucleation takes place. The aggregate size depends of the sample thickness, for the drop the 
aggregate size was around 0.5 µm and more homogeneously distributed (figure 6.8 (a)), while 
for the film the aggregate size is between 0.1-1 µm (figure 6.8 (b)). 
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Figure 6.8 E-SEM pictures at T = 293.15 K. 
Binary system xMMA-(1-x)FHMA / Epikote 828, (1-x) = 0.0872. 

Blend composition 0.4 / 0.6 in volume fraction. 
 
The morphology developed in region (2) is neat and it raised one more question: why are the 
sizes of the domains in the drop (bulk) and in the film different?  
 
Motivated by the results obtained in the simulations presented in the previous chapter, we 
decided to use the model introduced in this thesis to study morphology development and to 
apply it to this specific case to find the answers to the questions raised from experimental 
results in region (1) and (2) of figure 6.5.  
 
Figure 6.9 presents the phase diagram and morphology obtained from numerical simulations 
for the binary system xMMA-(1-x)FHMA / Epikote 828, (1-x) = 0.0872. The simulations 
suggest that a larger content of fluorinated copolymer in the blend (equal to 0.32 in volume 
fraction) was needed to experimentally observe the co-continuous morphology. 
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Figure 6.9 Simulations results for the binary system 
xMMA-(1-x)FHMA / Epikote 828, (1-x) = 0.0872. 

 
To find out why the domain sizes in region (2) are different in a drop (bulk) and in a film with 
the same concentration, we did a couple of numerical simulations quenching the system to a 
temperature of 293.15 K, using an initial blend composition equal to the experimental one 
(c ≈ φ0 = 0.4); the results are shown in figure 6.10. The morphologies obtained in the 
numerical simulations match qualitatively with the experimental ones. We can see that in the 
bulk larger and more homogeneously distributed aggregates are formed. On the other hand, in 
the presence of the wall, the size of the droplets formed decreases as a function of the distance 
to the wall, due to the lower amount of copolymer available deeper in the bulk of the system, 
as illustrated by the concentration profile in figure 6.10. This feature is consistent with 
E-SEM picture in figure 6.8 (b). 

Figure 6.10 Numerical simulations for bulk and film morphologies. 
System xMMA-(1-x)FHMA / Epikote 828, (1-x) = 0.0872.  

Blend composition 0.4 / 0.6 in volume fraction, T = 293.15 K, L = 1000 nm. 
Right figure: concentration profile corresponding to (b) Wall effect. 
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6.4 Conclusions 

 
In this chapter we established that fluorine content in the copolymer and chain length 
extension of the epoxy resin mainly determines the phase behavior in the binary blends; molar 
mass of the fluorinated copolymer is a secondary effect in the shift of the miscibility gap. 
With the χ1 parameters obtained, qualitative predictions of the miscibility gap for binary 
systems with fluorine content between 0.0872 and 0.1240 are possible. 
 
The numerical simulations allowed a better understanding of experimental results. No 
co-continuous spinodal morphology around the critical point was found due to the small 
amount of copolymer present in the binary polymer blend. The smaller sizes of the domains in 
the presence of the wall are explained in terms of the lower amount of fluorinated copolymer 
available in the bulk as the distance to the wall increases. 
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CHAPTER 7 
 
 
 
EPILOGUE 
 

7.1 Facts 

 
The study of stratification in a thin film requires an understanding of thermodynamics and 
kinetics or diffusion of mass of the components in the system. It is not enough to choose a 
polymer blend where we know beforehand that stratification will occur due to difference in 
surface energy of the components (as is described in appendix II). Therefore, if we aim to 
control the final morphology and to achieve certain final macroscopic properties in a material, 
we have to know the temporal evolution of the thermodynamic properties, and to count with 
information on physical parameters of the system, such as diffusion coefficient, interfacial 
tension, viscosity, etc., as a function of temperature, and pressure if necessary.  
 
The investigation of the diffusion process of any specific system is achieved by solving the 
balance equations of the system, which is a problem involving the solution of 
thermodynamics and hydrodynamics in a coupled way. The property linking these two fields 
is the chemical potential and therefore it is important for this quantity to consider in detail the 
thermodynamics and physics involved. Here, to derive the chemical potential of a thin film of 
a binary blend undergoing phase separation in the spinodal region, a Helmholtz free energy 
functional is used containing local contributions to the energy (Flory-Huggins lattice model), 
gradient concentrations in enthalpy and entropy  (RPA, de Gennes), and the interactions of the 
blend components with the wall. In this last term, the short-range interactions are included as 
a hard-core potential and the long-range ones as attractive van der Waals interactions 
(Israelachvili).  
 
The analysis of the Helmholtz energy functional carried out shows that the magnitude of the 
interfacial thickness is determined by the entropic contribution in the square-gradient term for 
polymer systems. This quantity is of importance not only because it is needed in the re-scaling 
of the balance equations, but also because it determines the interfacial tension, which plays an 
important role in the domain size of the system. 
 
The results obtained with the model proposed, show that the connectivity of the co-continuous 
spinodal morphology is mainly determined by the symmetry or ratio of number of segments 
of the chains contained in the polymer blend. The initial concentration of the blend before 
quenching the system within the miscibility gap is another important factor to obtain a 
co-continuous structure. When the wall effect is switched on, a striking change in the 
morphology is observed. The impact of this effect farther from the wall depends on two 
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factors: the magnitude and extension into the bulk of the wall-polymer interaction potential 
and the magnitude of the chemical potential. 
 
It was possible to clarify the early-stage of the spinodal decomposition when a boundary or 
rigid wall is present. Two processes are involved in this stage: wetting and phase separation. 
We found, as Cumming and co-workers reported experimentally,1,2 that for a system where 
one of the components prefers the substrate, there are indeed two different growth rates for 
the domains close and farther from the wall. The domains at the wall form faster and have a 
larger magnitude than those forming deeper in the bulk. The fast growth at the wall is 
associated to wetting effects; this fact closes the open question posed by Troian.3 In the case 
of non-preference for any of the blend components towards the wall, is expected that the fast 
domain growth is inhibited and the surface domains present only an anisotropic growth due to 
the geometric constraint introduced by the wall. 
 
The model implemented in this thesis, allowed also explaining morphological results 
observed here experimentally. Consequently, it was possible to obtain a better understanding 
of the relationship between phase and morphological behaviors of a system difficult to resolve 
experimentally.  
 
We conclude that the extension of the diffuse-interface model (Verschueren) as presented in 
this thesis resulted in a useful tool to predict morphology development of a polymer (or 
monomer) blend in a mesoscopic scale both in bulk and in the presence of a rigid wall. In 
addition, the model proposed can be applied to the temporal study of morphology of 
symmetric and asymmetric systems, having either an upper or a lower critical solution 
temperature.  
 

7.2 Constraints of the model used 

 
When a model is proposed it is important to indicate its range of applicability. The model 
proposed here is limited to the study of morphology development in partially miscible 
systems where the RPA approximation gives good predictions for the phase behavior of 
polymers. Other assumptions done in the models are: incompressibility and isothermal 
conditions. The introduction of compressibility would require a reformulation of the balance 
equations (see chapter 3) and the Helmholtz energy functional (Sánchez and Lacombe, 
Lifschitz and Freed) whilst the effect produced by thermal fluctuations has already been 
studied in other work (Verschueren).  
 
A feature present commonly in polymer systems is polydispersity. This fact is not a basic 
limitation but it was not studied here and therefore if a polydisperse system is considered, it 
must explicitly expressed in the formulation of the free energy functional (Koningsveld). 
 
Polymer blends are very viscous systems and therefore hydrodynamic effects do not play a 
main role in their morphology development, as it can be deduced by inspection of the 
momentum equation. Nevertheless, if the diffuse-interface model proposed here is applied to 
monomer systems having large diffusion coefficients, hydrodynamic effects are relevant and 
their effect should be studied in more detail. 
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7.3 Suggestions 

 
Once something is achieved, we can propose ideas for future work. In fact, a series of 
extensions can be done. It is necessary to develop a method of analysis for small values of the 
wave vector q in the early-stage of the spinodal decomposition. This would allow the 
quantification of the domain growth at the wall and a direct comparison with experiments. In 
addition, to determine and to quantify the domain growth due to bulk phase separation it is 
necessary to extend this study to the late-stage of the spinodal decomposition. 
 
It is know from the literature (Reich and Cohen) that the film thickness plays a role in the 
phase separation and final shape of the concentration profile of the system. To be able to 
study this effect, it would be necessary to introduce in the model the interaction of the blend 
components with a second interface vapor-polymer blend (free interface). 
 
A very attractive application of the spinodal phase separation in thin films has been the 
creation of lateral order on patterned substrates, proposed by Kraush et al.4 and re-taken by 
Böltau et al..5 The modeling of this phenomenon is of interest because it allows tailoring the 
morphology in a very small scale at a very low cost, which has a large technological impact. 
In principle, the model proposed here could be extended to study patterned surfaces. To do so 
is necessary to introduce a wall-polymer interaction potential that is different for each domain 
in the pattern and software that implements this differentiation. 
 
As mentioned in the introduction of this thesis, chemical treatment is another way of inducing 
development of structure in a system. In the coatings field a frequent practice is curing, which 
means drying and cross-linking of the system. The model proposed could be extended to 
study this kind of process by keeping the reactive terms in the balance equations (de Groot 
and Mazur). 
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APPENDIX I 
 

I.1 Helfand’s self-consistent field model 

 
In the self-consistent model of Helfand an incompressible lattice is fully occupied by polymer 
molecules of infinite molecular weight, consisting of identical segments. Segment contacts 
1-1 and 2-2 are chosen to be sufficiently more favorable, and non-double occupancy of a cell 
is allowed. There is an effective repulsion between a segment of 1 and 2, causing phase 
separation. Across the interface both phases coexist, and each layer has a fractional occupancy 

lKφ  of species K= 1 or 2 in layer l. The free energy of the inhomogeneous system is defined 
by 
 inhinhinh TSUF −=  (I.1) 
where 
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ns is the total number of sites in the lattice, each site has a fraction m of neighbors in an 
adjoining layer and (1−2m) a fraction in the same layer, v

lKg  is a variable called anisotropy 
factor that accounts for the loss in conformational entropy, where l is the layer from which a 
bond emanates, K the component 1 or 2 and ν is the direction followed by the emerging bond, 
this direction can be 0, + or – according to: 
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The anisotropy factor reduces to zero if a rigid wall is present, one in the bulk, and a value 
above one indicates a greater than random tendency for bonds of K with an end on layer l and 
pointing in the ν direction. 
 
To determine the polymer density profiles and the anisotropy factors the energy has to be 
minimized subject to a number of constraints mentioned below, using the technique of 
Lagrange multipliers. 
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After the introduction of Lagrange multipliers, the free energy takes the form: 
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this equation is to be minimized with respect to the ν

lKg  and lKφ . The result after 
minimization and partial substitution of the constraints is 
 

 

0)]2([
],exp[

],exp[

],exp[

,',1'',1'

.1

0

=−+−+−
+−=

−−=

−=

−+

−
−

+

lKllKKllKlK

KllKlK

lKlKlK

lKlK

wm
g
g
g

ζφφφφχξ
λξ
λξ

ξ

 (I.5) 

 
Inserting this set of equations into the constraints conditions we get: 
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The set of equations (I.4) to (I.6) are solved numerically, giving the following solution, which 
corresponds to the lowest free energy 
 
 1,12 ll −= φφ  (I.7) 

 νν −
−= 1,12 ll gg  (I.8) 

 
There is no doubt that this procedure might lead to a more accurate calculation of the 
equilibrium conditions including the effect of loss of entropy at an interface than the random 
phase approximation, but definitely is more time consuming. 
 

I.2 Derivation of the pre-factor of the square-gradient term 

 
The pre-factor κ (φ) (equation (2.4)) of the square-gradient term in equation (3.41) is obtained 
by following a formulation based on the random phase approximation (RPA) combined with 
the Flory-Huggins lattice model. According to de Gennes,1 the inverse structure factor for the 
interacting system is defined by: 
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with q is the amplitude of the scattering wave vector (equal to 4πλ-1 sin θ / 2 where λ is the 
wavelength and θ is the scattering angle), the first term in the right hand side is the non-
interacting part of the structure factor and the second is the interacting contribution. By 
considering interactions between closest neighbors in a cubic lattice, the interacting term 
takes the form: 
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6
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0
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where χ is the Flory-Huggins pair interaction parameter and r0 is a measure of the range of 
intersegment forces, with an order of magnitude of the segment size.  
 
The non-interacting term is defined by 
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where φ  and (1− φ) are the volume fractions of segments of component one and two, 
respectively and gD (Ni, q) is the Debye function,  which considers single chains and indicates 
the number density of other monomers at a distance r from the first segment,  Ni  (i = 1 or 2) 
refers to the number of segments in component 1 or 2. Substitution of (I.10) and (I.11) into 
(I.9), gives: 
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In the short-range limit (when qRg << 1), by considering only pair interactions between 
molecules of type 1 and 2, and recalling that in the critical point and along the spinodal curve, 
the Debye function simplifies to Ni, the structure factor form at the spinodal for the simple 
Flory-Huggins lattice model is recovered and given by  
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When q approaches zero, q → 0, the Debye function takes the form  
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with Rg the radius of gyration given by 
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and the parameter a refers to the lattice spacing. Substitution of equations (I.14) and (I.15) 
into (I.12), gives 
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this yields a simplification of (I.16) in the form 
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This form of the structure factor corresponds to an extended Flory-Huggins model called in 
this work the Flory-Huggins-de Gennes energy of mixing, given by: 
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where ∆gm is the Flory-Huggins energy of mixing2 and κ (φ) is: 
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with λ = 36.  On the other hand λ = 24, is obtained for a long-range limit, where the Debye 
function has the form 
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I.3 Common tangent construction 

 
If 0

iµ (T, p) denotes the molar chemical potential of the pure species i and ∆Gm the mixing 
Gibbs energy is3 

 ∑
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Setting x = n1 / n, (1−x) = n2 / n, with n = n1  + n2 and g = G / n one finds 
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In the common tangent construction  (figure I.1) one looks for concentrations x = X and x = Y 
such that  
 0)(')(' =− YgXg  (I.24) 
and that 
 )(')()()( XgXYXgYg −=−  (I.25) 
Differentiating g gives  

 )()()(')(' '' YgXgYgXg mm ∆−∆=−  (I.26) 
 
so that equation (I.24) is equivalent to 
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Figure I.1 Gibbs free energy and common tangent construction. 

 
From the definition for g one finds at first 
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For every concentration one has 
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Taking x = X in particular, then gives 
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Finally, using equation (I.29) to eliminate ( 0

2
0
1 µµ − ) from equation (I.28) leads to 
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Therefore, if equation (I.25) is met it follows that also 
 
 )()()()( ' XgXYXgYg mmm ∆−+∆=∆  (I.32) 
 
It can be concluded that the common tangent construction applied to the total Gibbs energy 
leads to the same result as the common tangent construction applied to a plot of the Gibbs 
energy of mixing. Moreover, because g′′= ∆gm′′ we see that the spinodal points and the critical 
point can also be determined by using the Gibbs energy of mixing instead of the total Gibbs 
energy. 
 

I.4 Conservation law3 

 
Let the volume density f of the Helmholtz energy F depend on the concentration φ and its 
gradient ∇φ. The first variation of the total Helmholtz energy  
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is given by 
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Expanding (I.34) and using the Gauss theorem gives 
 

 ∫∫ +
∂∇
∂⋅+

∂∇
∂⋅∇−

∂
∂=

SV

SfVffF ....d δ)(d δ)(δ φ
φ

φ
φφ

n  (I.35) 

 
where S indicates the surface of V and n the outwardly directed normal on S. The first 
variation of F vanishes if 
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and if the surface term is also zero for arbitrary variations δφ. When the concentration is 
prescribed on the surface S the variation is zero and the surface term vanishes. Alternatively, 
the surface term can be made to disappear if on the surface 
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I.4.1 Conserved quantities in the one-dimensional case 

 
Consider equation (I.36) for the one-dimensional case: 
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where φ ′= dφ / dy. Multiplying both sides of this equation by φ ′ leads to 
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Integrating this equation over y leads to 
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Since the right-hand side of this equation is constant, we say that f − φ ′(df /dφ ′ ) is a 
conserved quantity. Note that: 
 

• The conservation law given by equation (I.40) is true provided one takes for the 
concentration φ any solution of the equilibrium equation µ = 0. 

• The value for k0 is determined by the values for φ and / or φ ′at the boundary. 
 
A special but practically important case is when  
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in this case we find for the conservation law 
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If we next consider y as a function of φ instead of the other way around, we can use this 
equation to find a solution for y (φ) using 
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I.4.2 Calculation of k0 for an asymmetric system 

 
For symmetric systems the calculation of the constant k0 that shifts the energy given by 
equation (3.25) to µ = 0 is straightforward. However, for asymmetric systems the shifting of 
the Gibbs energy to µ = 0 requires of two different values for k0  (k1 and k2) one at each 
minimum, as illustrated in figure I.2.  

 
Figure I.2 Gibbs energy of mixing, k0, k1 and k2 are constants 

shifting the Gibbs energy to µ = 0. 
__Symmetric system, asymmetric system. 

 
To shift both minima of the energy to µ = 0 in the case of an asymmetric system we do the 
following mathematical transformation that keeps unmodified the physics of the system and 
lead to a unique value of k0. The evaluation of the set of equations (3.31) for ∆µ1 and ∆µ2 at 
the equilibrium concentration of the phase α or the β, respectively, gives a couple of 
“artificially” symmetric chemical potentials c

1µ∆ and c
2µ∆ . 

 

 
)|(1

)|(1

22
2

2

11
1

1

β

α

φφ

φφ

µµµ

µµµ

=

=

∆−∆=∆

∆−∆=∆

N

N
c

c

 (I.45) 

 
By integrating c

1µ∆ and c
2µ∆ with respect to φ, followed by addition of the integrals results 

(equation I.45) one obtains an “artificially” symmetric mixing energy from where it is 
possible to derive the unique value of k0 we were looking for. 
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I.4.3 Maximum slope method 

 
For systems where it is not allowed to use the Taylor expansion for the free energy, we follow 
the method of the maximum slope sketched in figure I.3 to calculate the interfacial thickness 
of the profile starting at φ = φ α at y = −∞ and changing to φ = φ β at y = + ∞. This profile is 
governed by equation (I.44). 

 

Figure I.3 Method of the maximum slope, 
∆y corresponds to twice the interfacial thickness. 

 
This method requires the evaluation of the inverse of (I.23) in the point φc where the slope is a 
maximum, giving  
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In the right-hand side of equation (I.24), k0 as before is a constant determined by the values 
for φ and dφ/dy at the boundary, f0 is given by equation (3.26) for symmetric systems, for non-
symmetric systems we calculate k0 as explained in the previous section, ω (φ) equals ½ κ (φ) 
with κ (φ) calculated with equation (3.41). The concentration φc corresponds to the critical 
point concentration. Considering the boundary conditions we obtain that the interfacial 
thickness is given by: 
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I.5 Interaction parameter of a binary polymer blend in contact with a rigid wall 

 
As a wall acts as an adsorbing boundary, it is important to consider adsorption. In a polymer 
blend, when the chain segments of one of the polymers have no affinity for the surface, 
depletion takes place. On the other hand if the polymer chain has affinity for the surface 
adsorption occurs. The way of predicting adsorption is by means of the adsorption interaction 
parameter χs, which is defined by4:  
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where a

iu  is the adsorption energy of each component. When χs is positive, the component 
labeled as two is adsorbed at the interface, if χs is negative, component one is adsorbed and 
when χs equals zero, preferential adsorption doesn’t take place. 
 
The adsorption energy of a component taking only into account nearest neighbors interactions 
in a lattice is expressed as iw

a
i zu χ'= , where z' is the coordination number of the surface and 

χiw is the interaction parameter of component i with the wall, given by χiw = εiw – ½ εii, the 
difference in energy contact interaction of pairs i-w and i-i. Considering these last definitions 
one obtains for the adsorption energy 
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Substitution of (I.50) into (I.49) yields for the interaction parameter χs  
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It is possible and convenient to find a relationship between the interaction parameter χs and a 
property of easy experimental access. This property turns out to be the surface energy or 
interfacial tension, which is present at every interface. According to Jones,5 the interfacial 
energy for a component i in contact with a wall is given by 
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here a is the lattice spacing and the number two in the denominator avoids double counting of 
interactions. With equation (I.52) we can re-write χs as: 
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I.5.1 Calculation of ∆∆∆∆γγγγi for θθθθ ≠≠≠≠ 0 

 
As an example in this section is used silicon as a rigid wall. To calculate γ1w, the interfacial 
tension between the wall and component one is used6  
 
 d

w
d
111

2 γγγγγ −+=
ww

 (I.54) 

 
The disperse contribution to the surface energy of the wall d

w
γ , is obtained with 
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where A = πr2 is the area and w(r) is the dispersion interaction potential 
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a0 = 0.53 nm is the Bohr radius, I = 14 J/C is the first ionization potential for the silicon atom,7 
r = 0.084 nm is the interatomic distance for Si4+ and e = 1.602x10-19 C is the electron charge. 
The surface tension of semi-conductor silicon is known to be8 1100 mJ/m2. 
 
The dispersion contribution to the interfacial tension of component one d

1
γ , can be estimated 
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when the polarity xp is known9. When there is not information available for xp, a longer way10 
must be taken to calculate d

1
γ .  Further, the surface tension of the pure component one γ1, at a 

temperature at which the system is quenched can be estimated using11 
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 (I.58) 

 
γ0 is the surface tension at T = 0 K, (dγ / dT) is known for some polymer systems from tables,9 
Tcr is the imaginary critical temperature (do not confuse with the critical solution temperature 
Tc) that has a value around 1000 K for most of polymers according to Wu.12 With the surface 
tension of the pure component 1 and the bulk interfacial tension at a temperature T, is possible 
to calculate the interfacial tension of the second component in the blend with6 

 
 1212 γγγ −=  (I.59) 
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APPENDIX II 
 
 
 
SOLUBILITY REGION OF THE BINARY SYSTEM 
BISPHENOL-A-DIGLYCIDYLETHER / COPOLYMER POLY 
[CF3(CF2)6SO2NCH2CH3BA-CO-MMA] 
 

II.1 Introduction 

 
In this appendix we propose an alternative method to make homogeneous solutions of any 
binary of multicomponent polymer blend. The polymers used are a thermosetting epoxy resin 
and a thermoplastic hybrid fluorinated copolymer. To get a homogeneous solution of the 
polymers mentioned, which have a different miscibility behavior, we make use of two 
different approaches; the one of Nelson, Hemwall and Edwards1 and that of Hansen.2,3,4 With 
the approach of Nelson and colleagues, the miscibility region of each polymer in solution is 
obtained; once locating the line limiting the two miscibility regions, we apply partially the 
method of Hansen to define the miscibility of a binary polymer blend in a common solvent, at 
constant temperature (similar to a polymer map). The advantage of the combined approach 
proposed in this appendix is that with a far lower amount of solubility tests we are able to 
predict correctly the solubility region of two polymers in one solvent. We focus on the 
solubility behavior of the blended polymers at diluted concentrations ranging from 0.04 to 
0.24 in volume fraction. This range covers the concentration values used typically in coating 
formulations.5 Details about the method followed are explained in the theoretical part of this 
appendix. 
 
A possible practical application of the polymer solutions studied is the preparation of coatings 
that would stratify due to the difference in surface tension of the two mixed polymers. To 
check whether this is possible, solutions of the polymer blend are applied on a metallic 
substrate and brought to the inhomogeneous region by evaporating the solvent, with 
subsequently cross-linking of the thermosetting polymer. The stratification achieved is 
investigated with microscopic techniques such as scanning electron microscopy with energy 
dispersive X-ray analysis. 
 

II.2 Theory 

 
The Hildebrand and Scott solubility parameter theory6 has been widely used to determine 
solubility regions at a constant temperature for a huge amount of polymer solutions. This 
theory has two main limitations it cannot be applied directly to polymers, because 
experimentally the determination of latent heats of vaporization of a polymer is difficult and 
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the solubility parameter was designed for hydrocarbon solvents, where only dispersion forces 
play a major role. At this point the work of Nelson, Hemwall and Edwards is relevant.1 These 
authors state that the solubility of a polymer in a solvent or solvent mixture can be 
extrapolated if two parameters: the Hildebrand solubility parameter and the hydrogen bonding 
accepting ability (also known as hydrogen bonding index) of the solvent in which the polymer 
is dissolved are known. Fortunately, these parameters can be obtained easily; first the 
Hildebrand solubility parameter of a solvent or solvent mixture in the presence of a polymer is 
calculated from:7 
 ∑

=

=
1

*
m

i
ii

δφδ  (II.1) 

 
where φi

* is the volume fraction of the component i at the cloud-point and δi is the 
correspondent solubility parameter or square root of the cohesion energy8 (δ i = [∆Eevap /Vm]1/2). 
These values were taken from an available database. 9 The sub-index m refers to the mixture 
of solvents. 
 
Further, the hydrogen bonding accepting ability θ A of the solvent mixture1,10 indicates the 
ability of a solvent or solvent mixture to form hydrogen bonds. Systems with large, positive 
values are better solvents for polymers. This parameter is given by 
 
 ∑=

i
iii

γφκθ *
A

 (II.2) 

 
where γi is the hydrogen bonding parameter, obtained from IR experiments11,12 and κi is a 
weighting factor taken as –1 for simple alcohols, 0 for ether-alcohols, and +1 for all other 
compounds. The values of θ A were calculated by introducing the volume fraction of the 
components present in the solvent mixture using an available program.13 
 
By plotting θ A as a function of δm

 for a polymer in a solution mixture of variable 
composition, a solubility envelope for that polymer is obtained, giving the location of the 
solubility and non-solubility regions of the polymer in a solvent or a solvent mixture. 
However, to find the region where a polymer blend is soluble in a common solvent or solvent 
mixture, we found it convenient to make partially use of Hansen’s partial solubility parameter 
approximation.3 

 
In Hansen’s method the Hildebrand solubility parameter is divided in its three contributions: 
polarisation, hydrogen bonding and dispersion, the addition of these three components give 
back the total Hildebrand solubility parameter 
 
 2

h
2
p

2
d

2
t

δδδδ ++=  (II.3) 

 
with δ t, the total Hildebrand parameter, δ d, the dispersion component, δ p, the polar 
component and δ h  the hydrogen bonding component. 
 
For a mixture of solvents the partial solubility parameters are defined by: 
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i
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*
mk,

δφδ  (II.4) 
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where φ i* is the volume fraction of the ith component in the solvent mixture at the cloud-point 
and δ k,i is the dispersion (k = d), polarization (k = p), or hydrogen bonding (k = h) partial 
solubility parameter of the pure ith component. The partial solubility parameters of the 
solvents used are known from literature10 and electronic databases.13 

 
In our approach to find the solubility and non-solubility regions, we make use of the curve 
limiting the solubility and non-solubility regions in a traditional Hildebrand polymer map, 
then the partial polarisation and hydrogen bonding Hansen solubility parameters for the 
solvent volume fractions corresponding to this curve are calculated, and plotted versus the 
volume fraction of the polymer. The projection of the points obtained on the x-y plane 
corresponding to the partial solubility parameters gives a very good definition of the solubility 
and non-solubility regions of interest. 
 

II.3 Experimental 

 
A polymer epoxy resin (diglycidylether of bisphenol A, Epikote 1001) was acquired from 
Shell chemicals (Amsterdam, the Netherlands). The copolymer poly 
[CF3(CF2)6SO2NCH2CH3BA-co-MMA], with a molar mass of 32 kg/mol and a molar 
composition 90% MMA to 10% of CF3(CF2)6SO2NCH2CH3BA, abbreviated as 
PMMA:FX14, was synthesized in our laboratory.14 Polyoxypropylenediamine (Jeffamine 
D-230) from Huntsman (Everberg, Belgium) was used as cross-linking agent. For each 
polymer separately, a 30% w/w solution in methyl isobutyl ketone was prepared. Titrations of 
10 g of such a solution were carried out at 298.15 K until cloudiness, using different volume 
fractions of cyclohexane and isopropanol. This solvent mixture φCyC6:(1-φ)IPA with variable 
volume fraction φ, has the advantage of covering a wide range in the solubility parameter δ m 
and hydrogen bonding accepting ability θ A, here are the necessary parameters to determine 
the solubility and insolubility regions of the polymers in study (solubility map). The volume 
fractions φ i* for each component at the cloud-point were obtained according to: 
 

 
∑

=

i
ii

ii
i m

m
ρ

ρ
φ

/
/*  (II.5) 

 
where mi and ρi are the mass and the density, respectively, of the i th component in the solvent 
mixture. 
 
Calculations of the solubility parameter for a mixture of a specific polymer and a solvent 
mixture at the cloud point, δm, were done using equation II.1. The way of getting the polymer 
solubility map was explained in section II.2. 
 

II.4 Results 

 
In figure II.1 the miscibility map of the Epikote 1001 is shown. This map is in good 
agreement with the one reported in the literature.7 It can be concluded from these results that 
this polymer is dissolved more easily in solvents with high hydrogen bonding accepting 
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ability θ A. The abbreviations φCyC6:φIPA correspond to solvent mixtures of cyclohexane and 
isopropyl alcohol containing variable volume fraction.  
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Figure II.1. Solubility map of the Epikote 1001, 30% w/w solids at T = 298.15 K. 

(Line drawn to guide the eye) 
 

The solubility map for the fluorinated copolymer MMA:FX14 is shown in figure II.2, this 
copolymer was completely soluble in mixtures of φCyC6:φIPA, when φ IPA is above 0.4. This 
fact indicates that this polymer is rather soluble in solvents with a low θ A. 
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Figure II.2 Solubility map for MMA:FX14; 30% w/w solids at T = 298.15 K. 

 
From figures II.1 and II.2, it can be concluded that both the epoxy resin and the fluorinated 
copolymer can be dissolved in a solvent or solvent blend with high θA. 
 
To have a better outline of the solubility region of both polymers in solution, we calculated 
first with equation II.4 the partial solubility parameters corresponding to the cloud-point line 
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or line separating the solubility and non-solubility regions. A plot of these parameters and the 
total Hildebrand parameter (equation (II.3)) versus the volume fraction of the polymer allows 
us to visualise which parameters could contribute to a large extent to the solubility of the 
polymer; these plots are shown below in figure II.3 for each polymer.  

Figure II.3 Total Hildebrand solubility parameter and partial Hansen solubility parameters. 
Left plot: Epikote 1001, right plot: MMA:FX14 at T = 298.15 K. 

(Lines drawn to guide the eye). 
 

It is clear from figure II.3 that, although the dispersion contribution to the total Hildebrand 
solubility parameter gives the highest contribution to the total value of this property, it doesn’t 
change drastically with the modification of the volume fraction of the polymer. This fact 
made us think that the solubility region is defined mainly by the polarisation and the hydrogen 
bonding contributions, together with the variation of the concentration of the polymer. When 
these three variables are plotted a quite interesting result is obtained, shown in figures II.4 and 
II.5.  

 
Figure II.4 Polarization and hydrogen bonding Hansen solubility parameters,  
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Figure II.5 Polarization and hydrogen bonding Hansen solubility parameter, 
copolymer MMA:FX14. 

 
In first sight, it looks like the points define an enclosed solubility region. To make this picture 
simpler and to check our assumption, the projection on the δp and δh axis of the previous 
figures II.4 and II.5 were plotted together (figure II.6). Additionally tests were done with 30% 
of solids of the two different polymers in pure solvents. The results of these tests are included 
and indicated in open symbols in figure II.6. 
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Figure II.6 Solubility region for Epikote 1001 and for MMA:FX14,  

polymer/copolymer ratio: 1/1, 30 % w/w solids at T = 298.15 K. 
 
This picture illustrates clearly that our assumption was correct and that following this 
procedure it is possible to formulate and predict which solvent or solvent mixture will 
dissolve the polymer blend Epikote 1001 / MMA:FX14 without performing so many 
solubility tests. Another advantage of this way of finding the solubility region is that it is not 
necessary to know the exact value of the Hildebrand or Hansen parameters of the polymers, 
which requires also a huge amount of experimental work.  
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It is clear that the method outlined is a quite useful tool to formulate solutions of polymers 
with a different chemical and physical nature. This seems interesting in any application 
requiring a mixture of polymers in a homogeneous phase. 
 

II.5 A possible application 

 
It is our interest to achieve stratification in a coating prepared from an initially homogeneous 
solution of the system studied that is formed by two polymers with a remarkably difference in 
surface tension. Once the solvent is evaporated, the blend undergoes phase separation. 
Therefore, we expect to obtain a stratified system where the driving forces are both the phase 
separation and the difference in surface tension between the two polymers. We investigated 
by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with 
energy dispersive X-ray analysis (SEM-EDX) whether stratification is achieved. 
 

II.5.1 Coating preparation 

 
For the coating preparation, the amount of solids was gradually increased to 40% w/w, 
keeping the ratio Epikote 1001/PMMA:FX14 1/1. Methoxy propyl acetate (MPA) was used 
as a solvent because of its high boiling point, which allows having a low viscous medium for 
a longer time, that would favor the diffusion of the components during the chemical reaction. 
To this polymer solution an amount of cross-linking agent was added, according to: 
 

 
E

xHy =  (II.6) 

 
where y is the amount in grams of cross-linking agent, x is the amount in grams of epoxy 
resin, H is the ratio between molar mass of cross-linking agent and the total number of active 
hydrogen atoms in it and E is the ratio between the molar mass of epoxy resin and the amount 
of epoxy groups present in this molecule. These values are 57.3 and 473.9 for the Epikote 
1001 and the Jeffamine D-230, respectively. This final solution was applied on a clean 
aluminium surface at 298.15 K using a roller applicator. The resulting film was cured in an 
oven at 373.15 K for one hour; the thickness of the dried coating was 75 µm. This film was 
released from the panel and characterized by SEM-EDX and XPS. The former technique 
permits to have not only a topological analysis, but also allows the determination of chemical 
composition on a scale of about 5 to 10 nm, by analyzing the emitted X-rays which are 
characteristic for each element.15 The latter analysis technique gives also information on the 
elemental composition within a depth of 1.5 to 6 nm. 
 

II.5.2 Results 

 
Figure II.7 illustrates the elemental composition of the coating surface; the higher proportion 
of fluorine compared to the other elements present in the sample, suggests surface enrichment 
with the fluorinated copolymer. 
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Figure II.7. XPS spectrum for a coating made of Epikote 1001/0.9MMA:0.1FX14 (50/50) 

showing the composition of the coating surface. 
 
This surface enrichment of the coating/air interface and coating/substrate interface with one of 
the polymers contained in the polymer blend is observed quite nicely in the normalised 
spectrum shown in figure II.8, where a comparison of the spectrum of the pure components 
Epikote 1001 and 0.9MMA / 0.1FX14 and those from both interfaces are shown. As can be 
observed, the spectrum corresponding to the interface coating/air matches quite good with that 
of the pure fluoro-acrylate compound, and the spectrum corresponding to the interface 
coating/substrate is quite similar to that of the pure Epikote 1001, presenting also a small 
shoulder at the -CF2- and -CF3 bonding energy region, indicating also traces of fluoro-acrylate 
in this interface. 
 
When a scan on the cross-section of the coating was carried out by SEM-EDX (figure II.9), it 
was observed that the concentration profile of fluorine in the films exhibited a gradient, with a 
clear enrichment of this element on the interface coating/air. 
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Figure II.8 Normalized XPS spectrum of C1S for DGEBA trimer (), PMMA:FX14 (), 
interface coating/air (), interface coating/substrate (). 

 

Figure II.9 Chemical composition of the coating cross-section, measured by SEM-EDX. 
Fluorine (π), oxygen (•) and sulfur (t) are shown. 

(Lines drawn to guide the eye). 
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II.6 Conclusions 

 
It was possible to determine the solubility region at 298.15 K for the binary polymer blend 
Epikote 1001 and the copolymer poly [CF3(CF2)6C7F15SO2NCH2CH3BA-co-MMA] following 
an alternative method. 
 
The coating characterization done by SEM-EDX and XPS shows that self-stratification takes 
place partially in the system. 
 
To understand how the stratification process would occur under isothermal conditions read 
this thesis. 
 

II.7 References 

 
1 Nelson, R.C.; Hemwall, R.W. and Edwards, G.D. J. Paint Techn. 42, no. 550 (1970) 636 
2 Hansen, C. J. Paint Techn. 39, no. 505 (1967) 104 
3 Hansen, C. J. Paint Techn, 39, no. 511 (1967) 505 
4 Hansen, C. and Skaarup, K. J. Paint Techn. 39, no. 511 (1967) 511 
5 Carr, C. and Wallstöm, E. Prog. Org. Coat. 28 (1996) 161 
6 Hildebrand, J. and Scott, R.  The solubility of Non-electrolytes 3rd ed. Reinhold Publishing 
  Corp., New York (1949) 
7 Paul, S. Surface coatings. Science and technology 2nd ed., John Wiley & Sons, England 
  (1985) 
8 Hansen, M. J. Paint Technology 39, no. 505 (1967) 104 
9 Shellblendpro database 
10 Barton, A. CRC Handbook of solubility parameters and other cohesion parameters CRC 
    Press. Inc. Florida (1985) 
11 ASTM, ANSI/ASTM D3132-72, American society for testing and materials, Philadelphia, 
    American Standards Institute, New York (1976) 
12 Cosaert, E. Chim. Peint., 34 (1971) 169 
13 BPsolve database 
14 van de Grampel, R.D.; van Geldrop, J.; Laven, J. and van der Linde, R.. J. Appl. Polm. Sci. 
    79 (2001) 159 
15 Niemansverdriet, J.W. Spectroscopy in catalysis VCH Verlagsgesellschaft, Germany 
    (1995) 
 



 
 

 

99 

 
 
 

SUMMARY 
 
 
Polymers are widely used because they offer many advantages: they are relatively cheap, it is 
possible to tailor their chemical structure, the processing temperatures are accessible and they 
can be deposited easily on different substrates. Most polymer blends phase separate at room 
temperature when the components interact via dispersion forces or at higher temperatures 
when specific interactions such as hydrogen bonds are present. Phase separation induces 
formation of structure(s) on a mesoscopic scale, which determines the final performance of a 
material. Therefore, the prediction of morphology development at this scale is of great 
importance because it allows to bridge and to understand the relationship between 
microscopic parameters and macroscopic properties, consequently it is possible to control and 
to optimize the desired properties in a material. 
 
Experimentally, it is possible to study, to determine and to characterize the morphology 
developed in a polymer blend; nevertheless, it is necessary to have a theoretical model to 
rationalize experimental evidence and to have a tool to predict the morphology behavior of an 
unknown and/or a complicated system. The prediction of morphology development implies 
the coupling of hydrodynamics and thermodynamics via the chemical potential; this task has 
been done in phenomenological models where the chemical potential used is derived from a 
Helmholtz energy functional expanded and truncated to a fourth order, and only contributions 
of concentration gradients to enthalpy are considered. Nevertheless, for polymer systems at 
interfaces, there is a loss of conformational entropy and therefore concentration gradient 
contributions to entropy must be considered as well.  
 
As here is our interest to study the morphology development in thin films made of binary 
polymer blends, the modification of an available numerical model to predict structure 
development for regular solutions was necessary. The extensions done are: the use of a 
chemical potential derived from the exact form of the Flory-Huggins lattice model, the 
consideration of concentration gradients to entropy (de Gennes), the formulation and 
introduction of a wall-polymer interaction potential, based on short and long-range 
interactions. The implementation of the modified model into a finite element numerical 
method required re-scaling of the balance equations that avoids numerical instabilities. 
 
The extended square-gradient model is applied to the study of the early-stage of the spinodal 
decomposition. The selection of this early-stage was not only because of the controversy 
found in experimental and theoretical work reported on the literature, but also because of the 
processes developing such as wetting and coarsening that define the final morphology and 
therefore the properties. The effect on morphology development of number of segments, 
quench (upwards or downwards) in temperature within the miscibility gap of the phase 
diagram, and initial concentration at which the system is quenched is studied. Additionally, 
for systems where a co-continuous structure in bulk is observed, the wall effect is switched on 
and investigated as a function of quench in temperature and magnitude of the wall-polymer 
interaction potential. 
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The results obtained show that the connectivity of the morphology depends on the symmetry 
or ratio of segments conforming the chain polymers present in the blend. Symmetric systems 
present a more interconnected co-continuous structure. Subsequently, the introduction of the 
wall-polymer interacion potential influences the development of the spinodal decomposition, 
resulting in a morphology with different growth rates of the concentration fluctuations close 
and far away from the wall. The net change of the morphology due to the wall depends on two 
factors: the magnitude and extension into the bulk of the wall-polymer interaction potential 
and the magnitude of the chemical potential. The results presented in this thesis clarify the 
early-stage of the spinodal decomposition. 
 
Additionally, the model proposed was also applied to experimental results obtained in this 
thesis; the simulation results gave an appropriate answer to questions raised from the 
experiments and allowed a better understanding of the relationship between phase behavior 
and morphology development in the system. 
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SAMENVATTING 
 
 
Polymere materialen worden op grote schaal gebruikt omdat ze vele voordelen kennen: ze zijn 
relatief goedkoop, het is mogelijk de chemische structuur te beïnvloeden, de 
procestemperaturen zijn goed toegankelijk en ze kunnen gemakkelijk worden aangebracht op 
verschillende substraten. De meeste polymere blends ondergaan fasescheiding bij 
kamertemperatuur wanneer de componenten interactie ondervinden via dispersie-krachten, of 
bij hogere temperaturen wanneer specifieke interacties zoals waterstofbrugvorming aanwezig 
zijn. Fasescheiding induceert de vorming van een structuur op een mesoscopische schaal, die 
de uiteindelijke eigenschappen van het materiaal mede bepalen. Daarom is het belangrijk de 
meso-structuurontwikkeling te kunnen voorspellen. Het stelt de gebruiker in staat de relatie 
tussen microscopische parameters en macroscopische eigenschappen beter te begrijpen. 
Vervolgens is het dan mogelijk de eigenschappen van het materiaal te sturen en te 
optimaliseren. 
 
Het is experimenteel mogelijk gebleken de meso-structuurontwikkeling, ook wel 
morfologieontwikkeling genoemd, in polymere blends te volgen en te karakteriseren. Echter, 
het is noodzakelijk een theoretisch model te ontwikkelen om de experimentele resultaten mee 
te vergelijken en de structuurontwikkeling van complexe en onbekende systemen te kunnen 
voorspellen. Het voorspellen van morfologie ontwikkeling wordt mogelijk door de 
hydrodynamica te koppelen aan de thermodynamica via de chemische potentiaal. Dit is reeds 
gedaan in phenomenologische modellen waarbij de chemische potentiaal is afgeleid van een 
energiefunctionaal, die ontwikkeld is rond een kritisch punt, waarbij slechts de termen tot en 
met de vierde orde worden gebruikt. Alleen de bijdragen van de concentratiegradient aan de 
enthalpie worden hierbij in beschouwing genomen. Echter, voor polymere systemen in de 
buurt van grensvlakken of substraten treedt verlies van entropie op, en dus moeten ook 
bijdragen van de concentratiegradient aan de entropie meegenomen worden. 
 
Om de morfologieontwikkeling in dunne films van polymere blends te kunnen bestuderen, 
was het nodig een beschikbaar numeriek model, dat de structuur ontwikkeling van gewone 
oplossingen beschrijft, te veranderen. De aangebrachte veranderingen bestaan uit een 
chemische potentiaal, afgeleid van de exacte vorm van de Flory-Huggins vergelijking. Verder 
is de entropie bijdrage aan de concentratiegradient term meegenomen (de Gennes) en tenslotte 
is een substraat-interactie-potentiaal geïntroduceerd, voor zowel korte- als lange- afstands 
interacties. De implementatie van het aangepaste model in een eindige elementen context 
vereist een herschaling van de evenwichtsvergelijkingen en wordt eveneens beschreven in dit 
proefschrift. 
 
Het uitgebreide, zo genaamde kwadratische gradient-model is toegepast om het vroege 
stadium van spinodale decompositie te bestuderen. De keuze voor dit vroege stadium was niet 
alleen vanwege de controverse in de experimentele en theoretische literatuur, maar ook 
vanwege processen zoals ‘wetting’ en groei, die de uiteindelijke morfologie van een materiaal 
en dus de eigenschappen mede bepalen. Het effect op de morfologie ontwikkeling van het 
aantal segmenten, de grootte van de temperatuursprong in het inhomogene gebied  van het 
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fasediagram (zowel omhoog als omlaag) alsmede de initiële concentratie op de 
morfologieontwikkeling zijn bestudeerd. 
De verkregen resultaten laten zien dat de co-continuïteit van de morfologie sterk afhankelijk 
is van de symmetrie of verhouding van de segmenten in de polymere keten. Symmetrische 
systemen vertonen een meer verbonden of co-continue structuur. De introductie van een 
substraat-potentiaal beïnvloedt de ontwikkeling van de spinodale decompositie met als gevolg 
dat de morfologie verschillende groeisnelheden dichtbij en ver van het substraat vertoont. De 
netto verandering van de morfologie als gevolg van de substraat-potentieel hangt af van twee 
factoren. Het bereik van de potentiaal in de bulk en de grootte relatief ten opzichte van de 
chemische potentiaal. De resultaten in dit proefschrift verduidelijken de processen die plaats 
vinden in het vroege stadium van spinodale decompositie. 
 
Tenslotte, het model is ook getoetst aan uitgevoerde experimenten die zijn beschreven in dit 
proefschrift. De simulatieresultaten gaven een duidelijk antwoord op diverse vragen die 
ontstonden bij de experimenten en verhoogden het inzicht in de relatie tussen fasegedrag en 
morfologieontwikkeling in het systeem. 
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RESUMEN 
 
 
Los polímeros son materiales ampliamente utilizados debido a que ofrecen muchas ventajas: 
son relativamente baratos, es posible diseñar su estructura químicamente, se procesan a 
temperaturas accesibles y pueden ser fácilmente depositados sobre diferentes substratos. La 
mayor parte de mezclas de polímeros se separan en diferentes fases, a temperatura ambiente 
cuando sus componentes interactúan vía fuerzas de dispersión ó a temperaturas más elevadas 
en la presencia de interacciones específicas, tales como puentes de hidrógeno. La separación 
de fases induce la formación de estructura(s) a escala mesoscópica, la cual determina el 
desempeño final de un material. Por lo tanto, la predicción de la morfología a esta escala es de 
gran importancia, porque permite unir y entender la relación entre parámetros microscópicos 
y propiedades macroscópicas, consecuentemente es posible controlar y optimizar las 
propiedades deseadas en un material. 
 
Experimentalmente, es posible estudiar, determinar y caracterizar la morfología desarrollada 
en una mezcla de polímeros; sin embargo, es necesario tener un modelo teórico tanto para 
racionalizar la evidencia experimental, como para tener una herramienta que permita predecir 
la morfología en un sistema no explorado ó en uno complicado. La predicción temporal de 
morfología implica el acoplamiento de la hidrodinámica y la termodinámica vía el potencial 
químico; esta tarea ha sido realizada en modelos fenomenológicos donde el potencial químico 
usado es derivado de un funcional de energía de Helmholtz expandido y truncado en el cuarto 
orden y donde sólo contribuciones de gradientes de concentración en entalpía son 
consideradas. Sin embargo, para sistemas poliméricos en presencia de interfaces, hay una 
pérdida de entropía conformacional  y por lo tanto la contribución de gradientes de 
concentración en entropía debe también ser considerada. 
 
Como es de nuestro interés estudiar el desarrollo de la morfología de películas finas, hechas 
de mezclas binarias de polímeros; la modificación de un modelo numérico existente que 
predice el desarrollo de estructura en soluciones regulares fue necesaria.  Las extensiones 
hechas son: el uso de un potencial químico derivado de la forma exacta del modelo de malla 
de Flory-Huggins, la consideración de gradientes de concentración en la entropía (de Gennes), 
la formulación e introducción del potencial de interacción de la pared, basado en interacciones 
de corto y largo alcance. La implementación del modelo modificado en un método numérico 
requiere el re-escalamiento de las ecuaciones que definen el equilibrio del sistema, para evitar 
inestabilidades numéricas. 
 
El modelo extendido del gradiente al cuadrado se aplica al estudio de la etapa temprana de 
descomposición espinodal - intervalo escogido no sólo por la controversia encontrada en 
trabajo experimental y teórico en la literatura, sino también porque procesos como el mojado 
y la iniciación de la separación de fases que definen la morfología final de un material, se 
desarrollan en esta etapa -. El efecto sobre el desarrollo de la morfología,  del número de 
segmentos, el abatimiento ó la elevación de la temperatura dentro del domo de inmiscibilidad 
del diagrama de fases y la concentración  inicial a la cual el sistema es introducido a la región 
de dos fases, es estudiado. Adicionalmente, para sistemas donde se observa una estructura de 
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bulto bi-continua, el efecto de la pared es activado e investigado como función del 
abatimiento ó elevación de la temperatura y la magnitud del potencial de interacción de la 
pared. 
 
Los resultados obtenidos muestran que la conectividad de la morfología depende de la 
simetría o relación del tamaño de las cadenas de los polímeros presentes en la mezcla. Los 
sistemas simétricos presentan una estructura bi-continua más interconectada que los sistemas 
asimétricos. Subsecuentemente, la introducción del potencial de la pared influencia el 
desarrollo de la descomposición espinodal, resultando en una morfología con fluctuaciones en 
concentración que crecen a diferentes velocidades cerca y lejos de la pared. El cambio neto de 
la morfología debido a la pared depende de dos factores: la magnitud y extensión del 
potencial de la pared hacia el bulto y la magnitud del potencial químico. Los resultados 
presentados en esta tesis clarifican la etapa temprana de la descomposición espinodal. 
 
Adicionalmente, el modelo propuesto fue aplicado también a resultados experimentales 
obtenidos en esta tesis; los resultados de las simulaciones dieron una respuesta apropiada a 
preguntas planteadas durante los experimentos y permitieron un mejor entendimiento de la 
relación entre el comportamiento del diagrama de fases y la morfología del sistema. 
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