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Bayesian approach to the calculation of lateral interactions: NO/Rh(111)
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We show how Bayesian statistics and density-functional theory can be combined to compute reliable values
for the interactions in a cluster expansion for adsorbates on a surface. The method is an alternative to the
leave-one-out cross-validation method. We show that it easily selects which interactions can be determined
even if the total number of possible interactions is very large. We have applied the method to NO/Rh�111�.
Based on the interactions we have determined for this system we have predicted some structures, which have
been confirmed by scanning-tunneling microscopy.
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I. INTRODUCTION

Interactions between adsorbates, or lateral interactions, on
transition-metal surfaces have at least been known for as
long as diffraction techniques have revealed that adlayers can
form very well-defined structures at low temperatures. The
importance of these interactions for kinetics at higher tem-
peratures has only more recently been acknowledged but
forms now an active area of research. This is understandable
if one realizes that even small interactions between adsor-
bates can be of the same magnitude or larger than the ther-
mal energy and can therefore change rate constants by an
order of magnitude or more, especially at low temperatures.

There are various experimental techniques one can use to
determine lateral interactions. Using scanning-tunneling mi-
croscopy one can determine the statistical distribution of the
adsorbates over the surface. This distribution can be con-
verted into a radial distribution function, which in turn can
be converted into effective lateral interactions. One has to be
able to image the exact position of each adsorbate to obtain
the radial distribution function. This requires a low adsorbate
mobility, which means that it is mainly applied to atoms on
low-temperature surfaces.1–3

Low energy electron diffraction allows one to study the
ordered phases of an adsorbate. One usually compares the
different ordered phases found for an adsorbate and the tem-
perature ranges in which they appear. This experimental re-
sults can then be fitted using a lattice-gas model, thus yield-
ing values for the lateral interactions.4–6 Several ordered
phases are needed for this method to be of practical use.

Accurate estimates of �differences in� binding energies
can be obtained by analyzing temperature programmed de-
sorption traces.7–10 The differences in desorption tempera-
tures can be directly related to differences in binding ener-
gies. It is, however, in general difficult to relate these
differences in binding energies to lateral interactions, since
the local adsorbate configuration �the number of adsorbates
interacting with the desorbing molecule� is unknown. One
option is to fit desorption spectra using kinetic Monte Carlo
simulations.11

In single-crystal adsorption calorimetry binding energies
of adsorbates can be directly measured. The differences in
binding energies due to lateral interactions can therefore also

be accurately determined. The configuration of the adsorbate
adlayer is unknown, however, and relating these differences
in binding energies to lateral interactions is therefore—just
as for temperature programmed desorption—difficult. If the
local adsorbate configuration is known or can be guessed
using another technique, then lateral interactions can be
extracted.12–15

With computer hardware becoming faster it is possible to
do quantum chemical calculations on quite realistic models
of adsorbates on transition-metal surfaces especially using
density-functional theory �DFT�. Such calculations have the
advantage over experiments for the determination of lateral
interactions that one knows precisely the system one is deal-
ing with, and one does not have to worry about possible
effects of steps, impurities, shortcomings of apparatuses, etc.

When calculating lateral interactions they are most com-
monly described with the cluster expansion. The adsorption
energy Eads of an adsorbate in a particular adlayer structure is
then written as

Eads = �
m

cmVm, �1�

with Vm as the value of the interaction of type m and cm as
the number of interactions of type m per adsorbate. The in-
teractions Vm stand for the interaction of the adsorbate with
the substrate �adsorption energy of an isolated adsorbate�,
pair interactions between adsorbates at various distances, all
possible three-particle interactions, four-particle interactions,
etc. This expansion can be made to reproduce the calculated
adsorption energy as accurately as one wants.16 This gener-
ally takes however a large number of terms. Moreover, it
may lead to overfitting; i.e., the cluster expansion will not
only describe the interactions but also the errors one makes
in the calculations of the adsorption energies. To avoid this
one needs to truncate the cluster expansion.

The truncation of the cluster expansion for lateral interac-
tions between adsorbates has so far mainly been done based
on the desired accuracy with which the truncated expansion
reproduces the calculated results, the number of acceptable
terms in the expansion, the type of terms in the expansion
�pair, three particle, etc.�, the estimated accuracy of the cal-
culated results, and possibly other factors. Often these factors
involve a trade-off; e.g., one prefers a short expansion, but it
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should also be accurate. Researchers have usually dealt with
this using their personal experience and insight, but few ob-
jective criteria have been used.

A similar problem was encountered for the calculation
between atoms forming an alloy. This has led to the devel-
opment of the leave-one-out cross-validation �LOO-CV�
method.17,18 This is a statistical technique that uses part of
the results of a set of calculations to determine values for the
interactions between atoms and the rest to test these values.
Because determination and testing of the interactions is done
on independent results of calculations, one obtains an esti-
mate of how well the values for interactions one calculates
will predict energies of unknown structures. This method has
recently also been applied to the determination of lateral
interactions.19–21

In the LOO-CV method one starts with a model with few
interaction parameters and determines the CV score. This is a
measure for how much a prediction of the energy of an ad-
layers based on the model will differ from the energy ob-
tained from a calculation. Adding parameters will initially
lower the CV score, which means that the model becomes
better. Adding too many parameters should however increase
the CV score because of overfitting. The minimum of the CV
score indicates a best set of interaction parameters. The prob-
lem with the method is that often the CV score becomes
almost constant when more parameters are added, and it is
very hard to determine the minimum of the CV score.22–24

This paper presents an alternative to the LOO-CV
method. It is based on Bayesian statistics. Instead of the CV
score, we assign a probability to each model of lateral inter-
actions or set of terms of the cluster expansion. The best
model is the one with the highest probability. We will show
that this approach does not have the drawback of the
LOO-CV method. The model with the maximum probability
is well defined. Moreover, it seems that the approach leads to
model with fewer interaction parameters. The method also
lends itself well to an analysis of the importance of param-
eters; it is easy to compute probabilities for individual pa-
rameters and correlation between parameters. We will show
as an illustrative example the interactions between NO mol-
ecules in adlayers on Rh�111�.

II. THEORY

We assume that we have done calculations on various
adlayer structures with the same substrate in all calculations
and only one type of adsorbate in all adlayer structures. The
calculations have resulted in the adsorption energy per adsor-
bate Eads

calc.�n� with n as an index to distinguish the adlayer
structures. We want to describe the energy Eads

calc.�n� using a
cluster expansion for the lateral interactions. This means we
write

Eads
fit �n� = �

m

cm�n�Vm, �2�

with Vm as the value of the interaction of type m and cm�n� as
the number of interactions of type m per adsorbate in struc-
ture n. The interactions Vm stand for the interaction of the
adsorbate with the substrate �adsorption energy of an isolated

adsorbate�, pair interactions between adsorbates at various
distances, all possible three-particle interactions, four-
particle interactions, etc. The expression Eads

fit �n� should ap-
proximate Eads

calc.�n�. Note that we treat the adsorption energy
of an isolated adsorbate in the same way as the lateral inter-
actions. It is possible to single out adlayer structures with
low coverage and therefore no lateral interactions to deter-
mine the adsorption energy of isolated molecules separately.
The errors that are made in such determination of adsorption
energies will however skew the subsequent fit of the lateral
interactions. We have shown that this increases the error in
the lateral interactions by a factor of �2.20 One also misses
the advantage that systematic errors in the Eads

calc.�n�’s do not
affect the lateral interactions as will be shown below.

The summation in the expression for Eads
fit �n� runs in prin-

ciple over an infinite number of interactions. The question is
which of the interactions can be determined from the adsorp-
tion energies Eads

calc.�n�. This is the important difference with a
straightforward multivariate linear regression. Each subset of
all interactions forms a model for the lateral interactions in
the system. We want to know which interaction model de-
scribes the calculated adsorption energies best. We use S for
a subset of all interaction parameters Vm. We use V as a
shorthand for the set of all values of the interaction param-
eters in S. For all calculated adsorption energies we use E.
We will determine which model of the interactions is best by
calculating P�S �E�, which stands for the probability that the
calculated adsorption energies E can be described by inter-
action parameters in S.

We can use Bayes’s theorem to relate the probability of S
given E �i.e., P�S �E�� to the probability of E given S �i.e.,
P�E �S��.25–27

P�S�E� � P�E�S�P�S� . �3�

The proportionality constant that is missing in this expres-
sion can be determined by normalizing P�S �E� as a function
of S. The probability P�E �S� is often called the likelihood of
S given E, the probability P�S� is called the prior �probabil-
ity� of S, and the probability P�S �E� is called the posterior
�probability�.

Bayes’s theorem is used as follows in the selection of
models for the lateral interactions. We want to calculate
P�S �E�. How good a model is will also depend on whether
we can find good values for the lateral interactions. It is
important to distinguish between S �the parameters in the
model� and V �the values of these parameters�. We can intro-
duce the values by regarding P�E �S� as a marginal distribu-
tion of P�E ,V �S� via27

P�E�S� =� dVP�E,V�S� . �4�

The integrand can be written as

P�E,V�S� = P�E�S,V�P�V�S� . �5�

Substitution in the Bayes’s expression for P�S �E� then gives
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P�S�E� � P�S�� dVP�E�S,V�P�V�S� . �6�

This allows us to compute P�S �E� because we can make a
good guess of what the calculated adsorption energies should
be given the lateral interactions �i.e., P�E �S ,V��, and it
should be possible to think of reasonable priors P�V �S� and
P�S�.

Suppose we have a set of interaction parameters S with
values V. A normal way to obtain such a set is via a least-
squares procedure to fit Eads

fit �n� to Eads
calc.�n�. Suppose that the

set has all interaction parameters to describe the system and
that they have the correct values. The most likely values for
Eads

calc.�n� should then be equal to Eads
fit �n�. Due to errors in the

calculations the calculated adsorption energies will not be
exactly equal. Instead it seems reasonable to assume that the
difference can be described by a Gaussian probability distri-
bution; i.e.,

P�E�S,V� = exp	−
1

2
�1

2
�
n=1

Nstr 1

�2��n
2

, �7�

with

�1
2 � �

n=1

Nstr 	Eads
fit �n� − Eads

calc.�n�
�n


2

, �8�

with Nstr as the number of adlayer structures for which we
have calculated adsorption energies and �n as an error esti-
mate of the calculated adsorption energies Eads

calc.�n�. Note that
P�E �S ,V� is a function of the adsorption energies Eads

calc.�n�,
but the integration in Eq. �6� is over V. This means that we
should regard �1

2 as a function of the interaction parameters
V.

Usually one does not know much about the interaction
parameters before one starts with the calculations of the ad-
sorption energies nor about which interaction parameters to
include in the model. In Eq. �6� ideas on which model S is
appropriate are split from ideas on which values V seem
reasonable. The former have a prior P�S�, the latter a prior
P�V �S�. A reasonable expression for P�V �S�, which is also
computationally convenient, is a Gaussian distribution,

P�V�S� = exp	−
1

2
�2

2
�
m=1

Npar 1

�2�sm
2

, �9�

with

�2
2 � �

m=1

Npar 	−
�Vm − Vm

�0��2

sm
2 
 , �10�

with Npar as the number of parameters in the interaction
model, Vm

�0� as the most likely prior value for parameter m,
and sm as the standard deviation. The lack of prior knowl-
edge of the values of the interactions can be implemented by
choosing large values for these deviations. We find it harder
to give a general expression for S. If a model contains a pair
interaction for adsorbates at a certain distance, then pair in-
teractions at shorter distances should be included as well.
Also, if there is a three-particle interaction in a model, then

all pair interactions between these three particles having such
three-particle interaction should be included too. One also
want to cut off the summation in Eq. �2�. Apart from these
considerations it seems natural to take all interaction models
equally likely.

The integration in Eq. �6� can be done easily because the
integrand is a Gaussian expression in the integration vari-
ables. We define a column vector c via cn�Eads

calc.�n�, a col-
umn vector e via en�Eads

fit �n�, and a matrix A via Anm
��n

−2�nm. With these we can write �1
2= �e−c�TA�e−c�. The

fitted adsorption energies e can be written as e=Mv, with v
as a column vector with the interaction parameters �vm
=Vm� and the matrix M contains the coefficients of the in-
teraction parameters in Eq. �2�. Similarly we write �2

2= �v
−v�TB�v−v�, with vn�Vn

�0� and Bnm�sm
−2�nm. We can com-

bine �1
2 and �2

2 and write the result as a quadratic function of
the interaction parameters. This gives us

�1
2 + �2

2 = �v − ṽ�T�MTAM + B��v − ṽ� + � , �11�

with

ṽ = �MTAM + B�−1�MTAc + Bv� �12�

and

� = cTAc + vTBv − ṽT�MTAM + B�ṽ . �13�

With this expression the integration in Eq. �6� then becomes

P�S�E� =
P�S�
P�E�

1

��n
�2��n

2�
�
m=1

Npar 	 s̃m

sm

e−�/2, �14�

with 1 / s̃m
2 being an eigenvalue of the matrix MTAM+B.

Equation �14� can be interpreted as follows. The probabil-
ity of an interaction model is higher when � is smaller. If we
assume that the prior distribution P�V �S� is very broad, so
that we can set B=0, then �2

2=0, ṽ minimizes �1
2, and � is

the least-squares sum of the difference between the calcu-
lated and fitted adsorption energies. This means that the
probability P�S �E� becomes higher if the fit becomes better,
as expected.

The probability P�S �E� also becomes higher when the
prior errors sm become smaller. This is to be expected too
because it more or less means that we know a parameter
already in advance. Less easy to interpret is the dependence
on the s̃m

2 ’s. It seems that a high value for s̃m would improve
the model. This however would be incorrect and also coun-
terintuitive. As will be shown below the s̃m’s are error esti-
mates for a set of statistically independent interaction param-
eters. So a high value for s̃m would mean a parameter that is
ill-defined, which one would not expect to improve an inter-
action model. The solution of this paradox is hidden in �
which also depends on the s̃m’s. To see this let us compare
two interaction models S�1� and S�2� with the difference that
S�2� has one additional parameter compared to S�1�. Let us
also assume, for simplicity, they have the same prior
P�S�2��= P�S�1���, that B=0, and that this additional param-
eter is independent from the others. This means that each s̃m
of S�1� is also found for S�2�, but S�2� has an additional factor
in the product of Eq. �14� which we call s̃N. We then get
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P�S�2��E�
P�S�1��E�

=
s̃N

sN
e−���2�−��1��/2, �15�

with ��n� as the least-squares sum for S�n�. When the addi-
tional parameter in S�2� is independent from the others, the
matrix MTAM blocks and ��2�−��1�=−�MTAM�NN�ṽN�2

holds. This leads to

P�S�2��E�
P�S�1��E�

=
s̃N

sN
e�ṽN/s̃N�2/2. �16�

This function is for small values of s̃N a decreasing function.
Consequently, if the interaction parameters are defined better
�i.e., smaller s̃m�, then the probability P�S �E� becomes
higher, again as expected. Equation �16� shows also how
adding a parameter can reduce the probability of an interac-
tion model because the ratio s̃N /sN will usually be smaller
than one and because the error estimates in the prior P�V �S�
will be large.

The results above depend on the error estimates �n. This
means that the posterior really has these estimates as a pa-
rameter and should be written as P�S �E ,��. Because we
need to know the �n’s but have no good information on
them, they are often called nuisance parameters. There are
various ways to deal with this.26,27 We find it the most con-
venient to set �n=� for all n and to get a value for � by
determining the maximum of its probability distribution
P�� �E�. This probability can be related to probability distri-
butions that we have dealt with before.

P���E� � P����
S
� dVP�E�S,V,��P�S,V��� . �17�

P�E �S ,V ,�� is given by Eq. �7� and P�S ,V ��� by Eq. �9�.
The proportionality constant can be determined by normal-
ization. Only P��� is new. However, if we assume that it is a
uniform distribution then we only need to do the integral and
sum over all models. The integral has already been done
before, so we only need to add all results for the different
models.

The parameters Vm
�0� and sm can also be regarded as nui-

sance parameters, but we handle them differently. We do not
want to use any prior information for the interaction param-
eters, so we take large values for the error estimates sm. As a
consequence the values that we take for the Vm

�0�’s have then
only a negligible effect on the final results �see Sec. III�.

Once we have determined S we also need the parameters
V. For this we can used P�S ,V �E�, which equals
P�E �S ,V�P�S ,V�. We have already seen the two factors in
this product; the only difference with what we have done
before is that we do not need to integrate out the interaction
parameters. The interaction parameters themselves can be
obtained from P�S ,V �E� by computing the expectation val-
ues of V. The derivation above shows that the parameters
should be chosen equal to components of the vector ṽ.
P�S ,V �E� can give us also error estimates for the parameters:
the covariance matrix is given by �MTAM+B�−1.

We compare the Bayesian approach with the LOO-CV
method.17,18,28 This method works as follows. We take all

structures except structure k. We then do a multivariate linear
regression for a particular interaction model. This gives us a
set of interaction parameters that we can use to predict the
adsorption energy for structure k. We then compare this en-
ergy Eads

pred�k� with the calculated energy Eads
calc.�k�. We do this

not just for one structure k but for all structures and define
the cross-validation score or leave-one-out error,

RCV
2 =

1

Nstr
�

k

�Eads
pred�k� − Eads

calc.�k��2. �18�

This error indicates how well an interaction model predicts
the energy. Adding parameters will not necessarily decrease
this error. An increase indicates overfitting.

III. LATERAL INTERACTIONS BETWEEN NO
MOLECULES ON Rh(111)

In a previous paper we have used the LOO-CV method to
determine the lateral interactions in O/Pt�111�.19 The results
obtained with the Bayesian approach are essentially the
same. The lateral interactions to be included in the cluster
expansion are the same, and also the values of these interac-
tions are the same if we assume that the prior errors of the
interactions are large. This is because B in Eq. �12� can then
be ignored and the expression reduces to the same expression
we would obtain in the case of LOO-CV or a multivariate
linear regression. The only difference between the Bayesian
approach and LOO-CV is that they give slightly different
values for the error estimates of the interactions, and the
former also gives probabilities for the inclusion of param-
eters in the interaction model. The advantages of the Baye-
sian approach are better demonstrated for NO/Rh�111�,
which is a system with many more parameters. In O/Pt�111�
the oxygen atoms only occupy threefold fcc sites. The NO
molecules on Rh�111� prefer the threefold hcp site, but the
difference in energy with an NO on the fcc site is small.29,30

Moreover, at coverages above 0.5 ML the repulsion between
the NO molecules becomes so large that even top sites be-
come occupied.31,32 This means that compared to O/Pt�111�
there are three times the number of interaction parameters
between adsorbates on like sites plus parameters for the in-
teraction parameters for adsorbates on different types of
sites.

We have done DFT calculations of various adlayer struc-
tures of NO/Rh�111� with the VASP code,33 which uses a
plane-wave basis set and the �relativistic� ultrasoft pseudo-
potentials introduced by Vanderbilt34 and generated by
Kresse and Hafner.35 The generalize gradient approximation
of Perdew and Wang �PW-91� has been used.36 All calcula-
tions on NO/Rh�111� were done with a surface model con-
sisting of a supercell with a slab of five metal layers sepa-
rated by five metal layers replaced by vacuum. Grids of size
3�3�1−9�9�1 �depending on the unit cell of the ad-
layer� for Brillouin-zone sampling obtained via the
Monckhorst-package were used and a cutoff of 400 eV. This
yielded in all cases adsorption energies per NO molecule
converged to within 5 kJ/mol with respect to k-point sam-
pling, energy cutoff, number of slab and vacuum layers, and
cell size.
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The adsorption energy per NO molecule was computed
for 74 different structures of the adlayer. Of these structures
19 contained adsorbates only on hcp sites, 18 adsorbates
only on fcc sites, 14 adsorbates only on top sites, and 23
adsorbates on different sites. An initial set of about 65 struc-
tures was created to have a good representation of all inter-
actions that might possibly be present in the system. It also
contained all experimentally observed structures. The struc-
tures not in this initial set were added because these struc-
tures were observed in kinetic Monte Carlo simulations with
interactions obtained from using a limited set of structures or
related to these structures by shifting the whole adlayer so
that the adsorbates became adsorbed at different sites.37–39

For each adsorption site �hcp, fcc, and top� we have one
interaction parameter, the adsorption energy, for an isolated
NO molecule at such site. Figure 1 shows the lateral interac-
tions that we have considered as well. In all there are 91
candidate parameters for the interaction model. The pair in-
teractions between NO molecules on different types of sites,
a distance a /�3 apart, with a as the nearest distance between
two Rh atoms, were not included. The reason is that at this
distance there is such a strong repulsion between the NO
molecules that the molecules in the geometry optimization of
the DFT calculations are pushed to other sites. In the kinetic
Monte Carlo simulations we used somewhat arbitrarily a
value for this interaction of 100 kJ/mol, which prevented the
molecules getting so close. In the real system this approach
is also avoided.

To get some idea what to choose for the priors P�V �S� we
did some linear regressions using only a small number of

interaction parameters. These showed that the most impor-
tant interactions were the adsorption energies and the
nearest-neighbor interaction for NO molecules at like sites.
Based on these calculations we chose for Vm

�0� in the prior
−250 kJ /mol for all three adsorption energies and 15 kJ/mol
for the interaction between nearest neighbors on like sites
and next-nearest neighbors on different types of sites. For the
other lateral interactions we chose 2.5 kJ/mol. As these esti-
mates are rather crude, and we did not want the prior to
affect the final values of the interaction parameters, we used
a value of 100 kJ/mol for all error estimates sm.

Because the number of interaction parameters is so large
the total number of subsets S is enormous �291−1�. It is
therefore not possible to generate all terms in summations
over S as in Eq. �17�. It is also not possible to consider each
interaction model of course. To deal with this problem we
did the following. We started with a guess for the accuracy of
the DFT calculations �. We used �=10 kJ /mol. Then we
took as a first set of interaction parameters only the three
adsorption energies of the isolated NO molecules. Next we
added in turn each of the other interaction parameters and
determined which one gave the largest increase in P�S �E�.
This one was then added to the set. With this extended set
this procedure of adding each interaction parameter in turn
and determining the change in P�S �E� was repeated. This led
to an iterative procedure of adding again and again one pa-
rameter to the set until a maximum for P�S �E� was obtained.
To check that the model of the interaction parameters did not
correspond to a local maximum of P�S �E�, we also looked
how the probability changed when two interaction param-
eters instead of one were added, and we looked at the
changes in P�S �E� upon removing interaction parameters.
Because we never considered an interaction model with
more than about 25 parameters, we never had the problem
that we did not have sufficient structures to determine the
parameters.

This procedure gave us a smaller set of parameters for
which we could generate all subsets S. We used this subset to
determine � by maximizing P�� �E� in Eq. �17�. This implies
that we assumed that for interaction models with other pa-
rameters P�S �E�=0. With this value for � the procedure in
the previous paragraph was repeated. Occasionally this led to
the inclusion of new interaction parameters. In that case the
whole procedure had to be repeated. We also repeated the
whole procedure when new interaction parameters had to be
included because we added new adlayer structures.

The final results gave us an error estimate for the DFT
calculations of �=3.5 kJ /mol. This is about the same as the
root-mean-square deviation of the fitted adsorption energies
with respect to the calculated ones. In fact, it seems that this
root-mean-square deviation can be used as an error estimate
for � that is somewhat easier to obtain. The value of � is
rather small. We have noted before that this is in part due to
the fact that there is probably a systematic component in the
error of the DFT adsorption energies.20 Such a systematic
component does not affect � or the root-mean-square devia-
tion. This can be seen best when we have only one type of
site. In Eq. �2� the adsorption energy of that site then has
cm�n�=1 for all structures n. Consequently, a systematic er-
ror then only shifts the adsorption energy but does not affect

(a)

(b)

FIG. 1. Definition of all lateral interactions. The large circles are
Rh atoms. Only the first two layers of the substrate are shown. �a�
shows the interactions between NO molecules on hcp sites. There is
a similar set of interactions for fcc and top sites. �b� shows the
interactions between NO molecules on different types of sites. Only
a selection of all of these interactions is shown. The others have the
same distances between the molecules and angles between the in-
termolecular vectors but have molecules at different sites.
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the other interaction parameters. Because we have three ad-
sorption sites in NO/Rh�111�, the situation is a bit more com-
plicated, but a systematic error will again only cause a shift
of the adsorption energies, which moreover is the same for
all sites. This is because the sum of the coefficients of the
adsorption energies in Eq. �2� is equal to 1 for all structures.
Note that by systematic error we mean a contribution to Eads

calc.

that is numerically the same for all structures. This may, but
need not, be related to some particular physical mechanism
of an interaction that DFT does not properly take into ac-
count.

Figure 2 shows how the probabilities P�S �E� change
when parameters are added to and removed from the inter-
action model. Adding parameters initially increases a mod-
el’s probability, but there is a well-defined maximum after
which adding parameters only decreases the probability. The
fact that there is such a clear maximum is an important ad-
vantage of the Bayesian approach over the LOO-CV method.

The results of that method are shown in the figure too. The
CV score is shown to decrease initially, but then it becomes
almost constant when more parameters are added. It is very
hard to determine the minimum of the CV score. Moreover,
we found that the interaction model corresponding to the
minimum depends quite sensitively on adding or removing
structures in the fit. So it is difficult to determine the inter-
action model with the LOO-CV method. This problem has
been observed before for the determination of interactions in
alloys.22–24

Figure 2 shows that the model with the maximum prob-
ability has 13 parameters. It is also seen that the CV score is
still clearly decreasing for that model. The Bayesian ap-
proach thus gives a cluster expansion with fewer terms than
LOO-CV. The smallest CV score is 2.7 kJ/mol, which is only
a bit smaller than the 3.5 kJ/mol for the root-mean-square
deviation for the 13 parameter models. As this score is
achieved at the cost of almost doubling the number of inter-
action parameters, one may wonder if LOO-CV really pre-
vents overfitting.

Because of the difficulty of determining the minimum in
the CV score the LOO-CV method takes also somewhat
more time to do. Compared to a single calculation of a prob-
ability of an interaction model a calculation of a single CV
score takes more time. This is because for the Bayesian ap-
proach Eqs. �12�–�14� have to be calculated only once,
whereas for the CV score such a calculation has to be done
for each calculation of Eads

pred�k� in Eq. �18�. On the other hand
the determination of the error estimate � in Eq. �8� means
that the whole procedure in the Bayesian approach has to be
repeated several times. The time to do any of these methods
is negligible however compared to the time it takes to do the
DFT calculations.

The interaction model with the maximum probability has
a probability of 0.15. This may seem low, but one should
realize that there are many interaction models that also have
a relatively high probability �but still much lower than the
one with the maximum probability� and that differ in only a
few parameters from the interaction model with the highest
probability. There are three interaction models that can be
obtained from the most likely model by leaving out one of
the next-nearest pair interaction for NO molecules on differ-
ent types of sites with probabilities of 0.06, 0.06, and 0.04.
Adding a next-next-nearest pair interaction for one NO on an
hcp and one NO on an fcc site gives a model with probability
of 0.06. All other models have lower probabilities, but there
are 17 models with probabilities of 0.01 or higher.

It is more insightful to look at the probabilities of the
individual parameters. We can calculate these probabilities
by summing the probabilities of all interaction models that
contain a particular parameter. The results are shown in
Table I. From that table we see that there is a clear distinc-
tion between parameters that should be included in the inter-
action model and those that can be left out. There are only a
few exceptions: the next- and next-next-nearest pair interac-
tions for NO’s on hcp sites and the next-next-nearest pair
interaction for one NO on hcp and one NO on fcc. In the
most likely model the first two are included, but the last one
is not.

From Eq. �15� it seems that adding an interaction param-
eter can be made to lead to a lower probability P�S �E� by
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FIG. 2. The probabilities of the �a� interaction models and �b�
CV score �in kJ/mol� as a function of the number of parameters in
the model. The lines are guides for the eyes and show what happens
when a parameter is added. Models not connected by a line were
obtained by removing a parameter. The fat lines indicate that adding
a parameter improves the model.
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simply taking a large value of the prior error estimate sN.
This is indeed the case. However, the probability P�S �E�
varies by many orders of magnitude as can be seen in Fig. 2.
To change the ordering of the probabilities of the interaction
models appreciably, the prior error estimates would have to
be increased by an order of magnitude or more as well, giv-
ing exaggerated values for them. Reducing the values of
these error estimates can lead to the acceptance of more in-
teraction parameters, but then one is effectively saying that
one already knows the value of a parameter in advance. We
have found that there is a large range for the prior error
estimates that hardly fixes the values of the interaction pa-
rameters in advance, yet always leads to the same preferred
interaction model.

Table II shows the values of the interaction parameters for
the most likely interaction model. All the lateral interactions
are repulsive. Note that some parameters have values close to
the value Vm

�0� of the prior, but some differ quite substantially.
In particular the adsorption energy of the top site differs
about 60 kJ/mol. The error estimates in the table are obtained
from the diagonal elements of the matrix MTAM+B, which
is the inverse of the covariance matrix for the interaction
parameters. The relative error can be quite large for the
weaker interactions, but this is only because these interac-
tions are so weak. The covariances are generally in absolute
value smaller than 1 kJ2 /mol2 except the one for the nearest-
neighbor pair interaction and the linear three-particle inter-
action which are −2.2 kJ2 /mol2 for NO’s on hcp and
−2.5 kJ2 /mol2 for NO’s on fcc sites. This means that if we

would leave out the three-particle interactions, we would find
a too high nearest-neighbor pair interaction for NO’s on hcp
and fcc sites. This was indeed found in a fit without these
three-particle interactions.

Initially we did not use all the 74 structures. We started
with a somewhat smaller set. We used this set to determine
the lateral interactions and then did kinetic Monte Carlo
simulations. These simulations showed some structures that
were not in our initial set. So we did DFT calculations for
these structures as well and calculated the lateral interactions
again. This caused however only very small changes in the
interaction parameters, which indicates that the method is
robust; i.e., the results do not depend on details of the calcu-
lations. Because these structures show up in simulations, it
should be possible to observe them in experiments as well.
Indeed, this has been done in the meantime with scanning-
tunneling microscopy.40

Figure 3 shows the calculated and fitted adsorption ener-
gies as a function of coverages. The figure confirms that the
difference between the calculated and fitted results is small.
The exceptions can be mainly found among the less relevant
structures with a high energy. These are structures that con-
tain structures with NO molecules on top sites at low cover-
age. Stable structures with adsorbates on top site can only be
found above 0.5 ML, but then the fit is good. The tangent
construct shows the stable phases at 0 K. The calculated and
the fitted results show that there are phase transitions at 0.5
and 0.778 ML. The structures at which the transition takes
place are the c�4�2�−2NO �Refs. 31 and 41� and the 3

TABLE I. Probabilities for the some important interactions. Interaction parameters that are not shown
have a small probability; the largest being 0.03 for the linear four-particle interactions for hcp and fcc sites.
Note that the nearest pair interaction between NO molecules on different types of site has not been deter-
mined �see text�.

hcp fcc top hcp-fcc hcp-top fcc-top

Adsorption energy 1.00 1.00 1.00

Nearest pair interaction 1.00 1.00 1.00

Next-nearest pair interaction 0.67 0.01 0.01 0.87 0.90 0.91

Next-next-nearest pair interaction 0.59 0.00 0.00 0.30 0.02 0.02

Linear three-particle interaction 0.99 1.00 0.02

Triangular three-particle interaction 0.04 0.06 0.04

Bent three-particle interaction 0.01 0.01 0.01

TABLE II. Values for the interaction parameters with standard deviations in parentheses �in kJ/mol� for
the most likely interaction model. The parameter with the largest probability �0.30� that has not been included
in this model is the next-next-nearest pair interaction between one NO molecule on an hcp and one NO on an
fcc site.

hcp Fcc top hcp-fcc hcp-top fcc-top

Adsorption energy −254.4 �1.4� −245.6 �1.1� −190.4 �1.2�
Nearest pair interaction 15.6�1.8� 17.1�1.6� 19.1�1.0�
Next-nearest pair interaction 3.0�1.0� 4.1 �1.4� 5.7 �2.0� 5.8 �1.9�
Next-next-nearest pair interaction 3.1�0.9�
Linear three-particle interaction 6.7�1.9� 8.5�1.8�
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�3−7NO structures.32 Both have been observed experimen-
tally before. Other structures have been observed as well, but
they can be shown to be entropy stabilized.40

IV. SUMMARY AND CONCLUSIONS

We have presented an alternative to the LOO-CV method
for the truncation problem of the cluster expansion for lateral
interactions when using DFT calculations. The method uses
Bayesian statistics. The main advantage seems to be that the
method clearly shows which parameters include in the inter-
action model even if the set of all candidate parameters be-
comes large. The Bayesian approach seems to yield a more
compact interaction model with fewer terms in the cluster

expansion. The resulting model fits the DFT results only
slightly worse than the model obtained with LOO-CV. As the
latter yields many more terms of the expansion, it might be
that we still get overfitting with LOO-CV. The Bayesian
method also has the advantage that the results are easier to
analyze. Apart from the values of the parameters we get
probabilities that they should be included in an interaction
model and correlations between these parameters. A draw-
back of the Bayesian approach is that the theory is more
complicated than that of LOO-CV, and it requires the deter-
mination of some parameters �prior probabilities and error
estimates of the data to be fitted� that is not needed in LOO-
CV.

We used the Bayesian approach to compute the interac-
tions for NO/Rh�111�. This is a complicated system because
the NO molecules adsorb at three different sites depending
on coverage. The approach yields an interaction model with
13 parameters out of a total of 91 possible parameters. Com-
parison of the resulting structures using these parameters in
kinetic Monte Carlo simulations shows good agreements
with established experimental results. We also found struc-
tures that we could later confirm using scanning-tunneling
microscopy.40

We have taken a system from surface science as an illus-
trative example because we are working in that field. How-
ever, the Bayesian approach should also be useful for the
study of alloys. In fact, it might even be more useful there
because the number of terms in the cluster expansion for
alloys increases more rapidly than for layers of adsorbates.
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