

Refinement of synchronizable places with multi-workflow nets
: weak termination preserved!
Citation for published version (APA):
Hee, van, K. M., Sidorova, N., & Werf, van der, J. M. E. M. (2011). Refinement of synchronizable places with
multi-workflow nets : weak termination preserved! (Computer science reports; Vol. 1101). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/f4a8ddd8-80d8-4ab8-83e7-e1c00a03d272

Refinement of Synchronizable Places
with Multi-workflow Nets

Weak termination preserved!

Kees M. van Hee, Natalia Sidorova, and Jan Martijn van der Werf⋆

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{ k.m.v.hee, n.sidorova, j.m.e.m.v.d.werf }@tue.nl

Abstract. Stepwise refinement is a well-known strategy in system mod-
eling. The refinement rules should preserve essential behavioral proper-
ties, such as deadlock freedom, boundedness and weak termination. A
well-known example is the refinement rule that replaces a safe place of a
Petri net with a sound workflow net. In this case a token on the refined
place undergoes a procedure that is modeled in detail by the refining
workflow net.
We generalize this rule to component-based systems, where in the first,
high-level, refinement iterations we often encounter in different compo-
nents places that represent in fact the counterparts of the same procedure
“simultaneously” executed by the components. The procedure involves
communication between these components.
We model such a procedure as a multi-workflow net, which is actually
a composition of communicating workflows. Behaviorally correct multi-
workflow nets have the weak termination property. The weak termination
requirement is also applied to the system being refined. We want to
refine selected places in different components with a multi-workflow net
in such a way that the weak termination property is preserved through
refinements. We introduce the notion of synchronizable places and show
that a sufficient condition for preserving weak termination is that the
places to be refined are synchronizable. We give a method to decide if a
given set of places is synchronizable.

1 Introduction

Complex systems are often build from components, each component having its
own dedicated set of functionality. At runtime, components communicate with
each other to accomplish their tasks. Every separate component can still be
very complex. Therefore, an important principle in modeling component-based
systems is refinement. In several iterations a model is refined from an abstract

⋆ PoSecCo project (project no. 257129) is partially supported/co-funded by the Euro-
pean Community/ European Union/EU under the Information and Communication
Technologies (ICT) theme of the 7th Framework Programme for R&D (FP7)

N N

M

Fig. 1. Refinement of (synchronizable) places

model to a more precise model. When modeling the behavior of a system using
Petri nets, one can, e.g., represent some procedure by a place in a Petri net,
assuming that a token undergoes this procedure when being in this place, and
later on, refine this place with the actual procedure, modelled by a workflow net.

When working with component-based systems, different components can con-
tain places that together represent a single procedure. To refine the system with
the actual procedure, we need to refine these places simultaneously by the proce-
dure, as shown in Fig. 1. The same scheme can be used in the context of Service-
Oriented architectures (SOA), where communicating services might make use of
other services. The model of the procedure is then a composition of communi-
cating workflow nets modeling the component procedures.

Consider a simple example of a procedure for booking a trip, with the system
divided into three components: a travel agency, an airline and a hotel chain. The
component of the agency contains place “booking a trip”. In the component of
the airline there is a place called “booking a seat”, and in the hotel component
some place “booking a room” exists. These places are related by an underlying
booking procedure. In the procedure, a seat is selected at the airline, which may
involve several cycles and communication with the client at the agency. Next, a
reservation is made for a hotel room, which again may involve several iterations.
Finally, the agency confirms the reservation at the airline. When refining the
system design, we would like to refine these three places by three communicating
workflow nets.

To model such a partitioned procedure, we introduce multi-workflow nets,
being a generalization of workflow nets. Then we define the refinement of a set of
places by a multi-workflow net, which is a generalization of the place refinement
with a workflow net from [8]. A natural question that arises then is under which
conditions properties of interest are preserved through refinements.

The property we focus on in this paper is weak termination, meaning that
from every reachable state of a system some final state can be reached. Given
a weakly terminating system with a set of places to be refined and a weakly
terminating multi-workflow, we want to guarantee that the refined system is
weakly terminating as well. By means of examples we motivate the requirements
of “synchronizability” for the set of places to be refined, formalize this require-
ment and prove that if the requirement holds, refinement of synchronizable places
preserves weak termination.

The paper is organizes as follows. In Sec. 2 we introduce basic concepts. In
Sec. 3 we define the notion of multi-workflow nets and the refinement of a set
of places with a multi-workflow. In Sec. 4 we give the intuition for the notion of

2

synchronizable places and in Sec. 5 we formalize this notion. In Sec. 6 we prove
that weak termination is preserved through refinements of sets of synchronizable
places. In Sec. 7 we discuss the place of our work among related works and in
Sec. 8 we draw conclusions and discuss directions for future work.

2 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use |S|
for the number of elements in S. Two sets U and V are disjoint if U ∩V = ∅. We
denote the cartesian product of two sets S and T by S×T . On a cartesian product
we define two projection functions π1 : S × T → S and π2 : S × T → T such
that π1((s, t)) = s and π2((s, t)) = t for all (s, t) ∈ S × T . We lift the projection
function to sets in the standard way, i.e. πi(U) = {πi((s, t) | (s, t) ∈ U} for
U ⊆ A×B and i ∈ {1, 2}.

A bag m over S is a function m : S → IN , where IN = {0, 1, . . .} denotes the
set of natural numbers. We denote e.g. the bag m with an element a occurring
once, b occurring three times and c occurring twice by m = [a, b3, c2]. The set
of all bags over S is denoted by INS . Sets can be seen as a special kind of bag
where all elements occur only once; we interpret sets in this way whenever we
use them in operations on bags. We use + and − for the sum and difference of
two bags, and =, <, >, ≤, ≥ for the comparison of two bags, which are defined in
a standard way. The projection of a bag m ∈ INS on elements of a set U ⊆ S, is
denoted by m|U , and is defined by m|U (u) = m(u) for all u ∈ U and m|U (u) = 0
for all u ∈ S \ U .

A sequence over S of length n ∈ IN is a function σ : {1, . . . , n} → S. If
n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = ⟨a1, . . . , an⟩. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ϵ. The set of all finite sequences over S is denoted
by S∗. Let ν, γ ∈ S∗ be two sequences. Concatenation, denoted by σ = ν; γ is
defined as σ : {1, . . . , |ν|+ |γ|} → S, such that for 1 ≤ i ≤ |ν|: σ(i) = ν(i), and
for |ν|+ 1 ≤ i ≤ |ν|+ |γ|: σ(i) = γ(i− |ν|). Projection of a sequence σ ∈ S∗ on
elements of a set U ⊆ S, denoted by σ|U , is inductively defined by ϵ|U = ϵ and
(⟨a⟩;σ)|U = ⟨a⟩;σ|U if a ∈ U and (⟨a⟩;σ)|U = σ|U otherwise.

Labeled transition system A labeled transition system (LTS) is a 5-tuple
(S,A,−→, s0, Ω) where (1) S is a set of states; (2) A is a set of actions; (3)
−→ ⊆ S× (A∪{τ})×S is a transition relation, where τ ̸∈ A is the silent action
[1]; (4) s0 ∈ S is the initial state; and (5) Ω ⊆ S is the set of final states.

Let L = (S,A,−→, s0, Ω) be an LTS. For s, s′ ∈ S and a ∈ A ∪ {τ}, we
write (L : s

a−→ s′) iff (s, a, s′) ∈−→. If (L : s
a−→ s′), we say that state s′

is reachable from s by an action labeled a. A state s ∈ S is called a deadlock
if no action a ∈ A ∪ {τ} and state s′ ∈ S exist such that (L : s

a−→ s′).
We define =⇒ as the smallest relation such that (L : s =⇒ s′) if s = s′ or

∃s′′ ∈ S : (L : s =⇒ s′′
τ−→ s′). As a notational convention, we may write

τ
=⇒

for =⇒. For a ∈ A we define
a

=⇒ as the smallest relation such that (L : s
a

=⇒ s′)

3

if ∃s1, s2 ∈ S : (L : s =⇒ s1
a−→ s2 =⇒ s′). We lift the notations of actions to

sequences. For the empty sequence ϵ, we have (L : s
ϵ−→ s′) iff (L : s =⇒ s′). A

sequence σ ∈ A∗ of length n > 0 is a firing sequence from s0, sn ∈ S, denoted

by (L : s0
σ−→ sn) if states si−1, si ∈ S exist such that (L : si−1

σ(i)
=⇒ si) for all

1 ≤ i ≤ n. If a firing sequence σ exists such that (L : s
σ−→ s′) we say that s′ is

reachable from s. The set of all reachable states from s are the states from the
set R(L, s) = {s′ | ∃σ ∈ A∗ : (L : s

σ−→ s′)}.
The correctness notion we focus on in this paper is weak termination. An

LTS L = (S,A,−→, s0, Ω) is weakly terminating if Ω ∩R(L, s) ̸= ∅ for all states
s ∈ R(L, s0), i.e. from every state reachable from the initial state some final
marking can be reached.

Petri nets A Petri net N is a 3-tuple (P, T, F) where (1) P and T are two
disjoint sets of places and transitions respectively; (2) F ⊆ (P × T) ∪ (T × P)
is a flow relation. The elements from the set P ∪ T are called the nodes of
N . Elements of F are called arcs. Places are depicted as circles, transitions
as squares. For each element (n1, n2) ∈ F , an arc is drawn from n1 to n2.
Two Petri nets N = (P, T, F) and N ′ = (P ′, T ′, F ′) are disjoint if and only
if (P ∪ T) ∩ (P ′ ∪ T ′) = ∅. Let N = (P, T, F) be a Petri net. Given a node
n ∈ (P ∪ T), we define its preset •

N n = {n′ | (n′, n) ∈ F}, and its postset
n•N = {n′ | (n, n′) ∈ F}. We lift the notation of preset and postset to sets and
sequences. Given a set U ⊆ (P ∪ T), •

N U =
∪

n∈U
•

N n and U•
N =

∪
n∈U n

•
N .

The preset of a sequence σ ∈ T ∗ is the set of all places that occur in a preset
of a transition in σ, i.e., •

N σ = {p | ∃1 ≤ i ≤ |σ| : p ∈ •
N σ(i)}. Likewise, the

postset of σ is the set of all places that occur in a postset of a transition in σ,
i.e., σ•

N = {p | ∃1 ≤ i ≤ |σ| : p ∈ σ(i)
•
N}. If the context is clear, we omit the N

in the subscript.

Let N = (P, T, F) be a Petri net. A marking of N is a bag m ∈ INP , where
m(p) denotes the number of tokens in place p ∈ P . If m(p) > 0, place p ∈ P
is called marked in marking m. A Petri net N with corresponding marking m
is written as (N,m) and is called a marked Petri net. A system S is a 3-tuple
((P, T, F),m0, Ω) where ((P, T, F),m0) is a marked Petri net and Ω ⊆ INP is a
set of final markings.

The semantics of a system N = ((P, T, F),m0, Ω) is defined by an LTS
S(N) = (INP , T,→ ,m0, Ω) where (m, t,m′) ∈−→ iff •t ≤ m and m′ + •t =

m + t• for m,m′ ∈ INP and t ∈ T . We write (N : m
t−→ m′) as a shorthand

notation for (S(N) : m
t−→ m′) and R(N ,m) for R(S(N),m). We say that a

place p is safe, if m(p) ≤ 1 for any marking m ∈ R(N ,m0). Weak termination
of a system corresponds to weak termination of the corresponding transition
system.

A workflow net W is a 5-tuple (P, T, F, i, f) is a Petri net such that (P, T, F)
is a Petri net, i ∈ P is the initial place and f ∈ P is the final place such that
•i = f• = ∅ and all nodes (P ∪ T) of N are on a path from i to f . We say that
a workflow net is weakly terminating if the system ((P, T, F), [i], [f]) is weakly
terminating.

4

M
p

p’

q

q’

f

Fig. 2. Soundness skeleton for re-
fining component

M

p

p’

q

q’

(a) Passing

p

p’

q

q’

M

(b) Synchroniza-
tion

Fig. 3. Simple nets to refine with

3 Refinement of Sets of Places

Many refinement/reduction rules exist for Petri nets, like the rules of Murata
[13] and Berthelot [2]. Many of those rules guarantee the preservation of weak
termination: applying them to a weakly terminating system results again in a
weakly terminating system.

Single place refinement In [8], the authors show that a place in a workflow
net may be refined with a generalized sound workflow net, while preserving the
weak termination property. In this refinement, any place p can be replaced by a
generalized sound workflow net (generalized soundness is weak termination of a
workflow for all initial markings [in], n ∈ IN). All input arcs of p become input
arcs of the initial place of the workflow net, and all output arcs of p become
output arcs of the final place of the workflow net. For a safe place p, it is enough
to require that both the system being refined and the refining workflow are
weakly terminating, as proven in Theorem 9 from [8].

Place refinement with a weakly terminating workflow net is very useful
in correctness-by-construction approaches based on stepwise refinement (see
e.g. [10,14,19]).

When working with component-based information system, we often need
more involved refinements: Consider e.g. a component N (modeled as a system)
being an asynchronous composition of two components A and B. Suppose that
place p in component A and place q in component B model at a high level
counterparts of the same procedure in A and B, e.g. the payment procedure.
Then p and q get refined by applying some standard workflow subcomponents
C and D, possibly communicating to each other. All incoming arcs to place p
are connected to the initial place of C, and all outgoing arcs from place p are
connected to its final place; likewise for place q. This approach is depicted in
Fig. 1; M stands there for the composition of C and D.

5

Multi-workflow nets To model a procedure distributed over multiple compo-
nents (like net M in Fig. 1), we introduce the notion of a multi-workflow net
(MWF net), which is a generalization of the notion used in [7]. A multi-workflow
net has for each component an i/o pair consisting of an input place and an out-
put place. Note that the definition of a MWF net with a single i/o pair coincides
with the definition of a classical workflow net where the initial place is the input
place and the final place the output place.

Definition 1 (Multi-workflow net). A multi-workflow net (MWF net) N is
a 4-tuple (P, T, F,E) where (P, T, F) is a Petri net and E ⊆ P × P is a set
of i/o pairs, such that |E| = |π1(E)| = |π2(E)|and •π1(E) = π2(E)

•
= ∅. The

places in π1(E) are called the input places of N , the places in π2(E) are called
the output places of N . Furthermore, each node n ∈ P ∪T is on a path from an
input place to an output place.

The initial marking of an MWF net is the marking containing one token on
every input place, and the final marking is the marking containing one token
on every output place. We enforce the notion of weak termination for multi-
workflows with an additional requirement related to the i/o feature of multi-
workflows, namely, the two places of every i/o pair should be causally connected,
and thus whenever the output place gets marked the corresponding input place
does not contain tokens anymore.

Definition 2 (Weak termination of an MWF net). An MWF net N =
(P, T, F,E) is weakly terminating if (1) the system N = ((P, T, F), π1(E),
{π2(E)}) is weakly terminating and (2) m(p)+m(q) ≤ 1 for all pairs (p, q) ∈ E
and markings m ∈ R(N , π1(E)).

Similar to the case of classical workflow nets (see Lemma 11 in [9]), it is easy
to prove that the only marking reachable in a weakly terminating MWF net that
contains the final marking is the final marking itself.

Lemma 3 (Proper completion of an MWF net). Let N = (P, T, F,E) be
a weakly terminating MWF net and m ∈ R(N , π1(E)) such that π2(E) ≤ m.
Then m = π2(E).

Refinement of a set of places The refinement we are interested in is the
refinement of n places of a system N with an MWF net M . Like in place re-
finement, each place p belonging to the n selected places is substituted by an
i/o pair: the preset of p becomes the preset of the input place of the i/o pair,
the postset of p becomes the postset of the output place of the i/o pair. Fig. 4
shows an example of such a refinement. The initial marking of the refined net
contains the initial marking of N , with the tokens of the refined places being
transferred to the corresponding input places of the MWF net M . Similarly, the
set of final markings contains all the final markings of N , with the tokens of the
refined places being transferred to the corresponding output places of M .

6

t1 t2 t3 t4

p q

(a) Net N

a b

c d

(b) Net M

a b

c d

t1 t2 t3 t4

(c) Refinement N ⊙ M

Fig. 4. Example of a refinement of a set of places

qpi f

Fig. 5. Linear net N

Definition 4 (Refinement of a set of places). Let N = (N,m0N , ΩN) be a
system with N = (PN , TN , FN) and R ⊆ PN be a set of places to be refined and
M = (PM , TM , FM , EM) be a MWF net, such that N and M are disjoint. Let
α : R → EM be a total, bijective function. The refinement N ⊙α M is a system
((P, T, F),m0, Ω) where

– P = (PN \R) ∪ PM ;

– T = TN ∪ TM ;

– F = (FN \
∪

r∈R((
•

N r × {r}) ∪ ({r} × r•N))) ∪ FM

∪
∪

r∈R((
•

N r × π1(α(r))) ∪ (π2(α(r))× r•N));
– m0 = m0N |P +

∑
r∈Rm0N ((π1 ◦ α)(r));

– Ω = {m | ∃mN ∈ ΩN : m = mN |P +
∑

r∈RmN ((π2 ◦ α)(r))}.

4 Intuition for the Notion of Synchronizable Places

We want to guarantee that the refinement of a set of places in a weakly ter-
minating system by an arbitrary weakly terminating MWF net preserves weak
termination. In general, this is not the case. In this section, we consider the
refinement of a pair of places, in the next section we generalize the requirements
to sets of places.

First of all, the refined places should be safe, i.e., in any marking reachable in
the system, the place is marked with at most one token. This is needed already
for the refinements of single places (see [8]). The reason lies in the definition of

7

c1

qc2

t

p

ux

y

(a) Net N

c1

qc2p
u

t

q’p’

x

y

(b) Synchronizing refinement of N

(c) MWF net M1 (d) MWF net M2 (e) MWF net M3

t9
t3 t6

c1

q

c2

p

t4

q’p’

t1

t2

t5

t7

t8

u

a

b

d

x

y

(f) Net N ⊙ M1

c1

q

c2

p u

t

q’p’

x

y

(g) Net N ⊙ M2

Fig. 6. Net N ⊙ M1 is not weakly terminating while all other nets are

8

weak termination for MWF nets: input places contain only one token each; with
more initial tokens weak termination is not guaranteed.

Another source of troubles are causal relationships in the refined net. Con-
sider for example places p and q in the linear net N in Fig. 5 with initial marking
[i] and final marking [f], which is clearly weakly terminating. The refined places
p and q are causally related: the token in place p needs to be consumed before a
token can be produced in place q. Refining N with the net depicted in Fig. 3(b)
results in a system with a deadlock caused by the attempt to synchronize p and
q. This example shows that a reachable marking should exists in which all the
places to be refined are marked to guarantee weak termination preservation.

A first conjecture that it would be sufficient to check that the synchronizing
refinement of a system (a refinement with the MWF net from Fig. 3(b)) is weakly
terminating does not work: Consider weakly terminating system N in Fig. 6(a)
with Ω = {m0,m0 − [c1] + [c2]}, where places p and q are marked together in
some reachable marking. In this net, transitions x and y are enabled as long
transition t did not fire. After firing transition u, a token from place p is needed
in order to mark place q.

The refinement of p and q with the net from Fig. 3(b) results in the weakly
terminating net depicted in Fig. 6(b). However, the refinement of N with the
weakly terminating WMF net M1 from Fig. 6(c), depicted in Fig. 6(f), gives a
deadlocking net: Indeed, firing sequence t1t2t3t4t5t6t7t8t1t2t9 leads to marking
[a, b, c2, d] being a deadlock. Note that firing t1t2t4t5t7t8 in N leads to marking
m0 − [c1] + [c2], after the “control” token is moved from c1 to c2, a sort of
causal relationship between p and q is introduced—they cannot be marked in
the same marking of N any further. The synchronizing refinement does not show
the deadlock, for the synchronizing net prevents from moving the token from c1
to c2.

Another attempt to find “critical” refining MWF nets is made in Fig. 6(d)
and Fig. 6(e), in which the synchronizing firing and one of the two “one-way
communication” options are included, thus allowing for moving the token from
c1 to c2. Still, the refinement of N with net M2 (Fig. 6(g)), as well as with
M3, result in a weakly terminating net, not signalling the problem exposed in
N ⊙ M1. The root of all evil is in the “AG EF” pattern of weak termination,
as it would be captured in CTL [3], where AG refers to every reachable state
and EF refers to the existence of a firing sequence leading to a final marking.
Due to the AG-part of the requirement, the check with the synchronizing net
fails—the synchronization cuts off part of the behavior. M2 and M3 (partially)
lift the problem, but they give too much freedom for the EF part.

These examples suggest to check that N can only produce and consume
tokens to/from the refined places in a certain order: a transition can only produce
a “second” token in a place from the set of the refined places (with the “first”
token already consumed from it) after the other refined places have been emptied.
The LTS as depicted in Fig. 7 with both solid and dashed arcs describes the
desired behavior for the set of two refined places. Action p (q) indicates the
production of a token in place p (q), action p′ (q′) indicates the consumption of

9

S0: {},{}

S1: {p},{} S2: {q},{}

S4: {p,q},{}S3: {p},{p} S5: {q},{q}

S6: {p,q},{p} S7: {p,q},{q}

p q

pqp’ q’

q pp’ q’

S8: {p,q},{p,q}

q’ p’

Fig. 7. May/Exit transition system for synchronizable places {p, q}

a token from place p (q). For readability reasons, each state is annotated with
two sets of places: the first set indicates the places that have been marked in the
current iteration, the latter indicates the places from which the token already
has been consumed. The initial state is s0.

Without loss of generality, we assume that each transition in the component
performs at most one action of the LTS, implying that the refined places are
“disconnected”: any transition is connected once to at most one place being
refined. Note that using Murata reduction rules [13] in the reverse direction,
as refinements, any Petri net can be transformed to a net in which a given
set of places becomes disconnected, thus this requirement does not restrict the
applicability of our approach.

Definition 5 (Disconnected places). Let N = (P, T, F) be a Petri net. A set
of places R ⊆ P is called disconnected if ∀r, s ∈ R : r ̸= s⇒ (•r∪r•)∩(•s∪s•) =
∅ and ∀r ∈ R : •r ∩ r• = ∅.

Now let us learn from the example in Fig. 6(a) to arrive to an idea that, as we
will show later, provides a sufficient condition for weak termination preservation.
To see that places p and q cannot be in the set of the refined places together,
we need to observe all possible behaviour, including moving the token from c1
to c2, and this is supported by the LTS. The reason of the deadlock we have
observed is that after reaching marking m0− [c1]+[c2] we are not able to reach a
marking where p and q are both marked. This suggests to check that from every
reachable non-final state of N , some final state can be reached using only the
solid transitions in Fig. 7, which is not the case for N . In the next section, we
present a formalism allowing for this feature and show a sufficient condition, the
principle idea of which is that for the AG-part of soundness all transitions of the
LTS in Fig. 6(a) may be used, whereas for the EF-part of soundness, only the
solid-line transitions can be used.

10

5 Formalization of Synchronizable Places

We first introduce the notion of a may/exit transition system with two kinds
of transitions: exit transitions, depicted with solid lines, to model the behavior
needed to guarantee termination, and may transitions, depicted with dashed
lines, to model the behavior which is allowed but not necessary to terminate. In
Fig. 7, all transitions are may transitions, and the transitions depicted with solid
lines are also exit transitions. As for LTSs, we assume a set of visible actions, A
and a silent action τ ̸∈ A.

Definition 6 (May/exit labeled transition system). A may/exit labeled
transition system (MELTS) is a 6-tuple (S,A, 99K,−→, s0, Ω) where

– S is a set of states;
– A is a set of actions;
– 99K⊆ S × (A ∪ {τ})× S is the set of may transitions;
– −→⊆ S × (A ∪ {τ})× S is the set of exit transitions, such that −→⊆99K;
– s0 ∈ S and Ω ⊆ S are the initial state and a set of final state, respectively.

Let L = (S,A, 99K,−→, s0, Ω) be a MELTS. For s, s′ ∈ S and a ∈ A∪{τ}, we
write (L : s

a99K s′) when (s, a, s′) ∈99K, and (L : s
a−→ s′) when (s, a, s′) ∈−→.

We overload the notation and write (L : s
σ99K s′) or (L : s

σ−→ s′) for a σ ∈ A∗

when s′ can be reached (following 99K or −→ respectively) from s′ by some
sequence σ′ ∈ (A ∪ {τ})∗ such that σ′

|A = σ.
A MELTS is properly terminating if for every state reachable with may tran-

sitions there is a sequence of exit transitions leading to a final state.

Definition 7 (Proper termination of a MELTS). A MELTS L = (S, A,
99K, −→, s0, Ω) is properly terminating if for each state s ∈ S and sequence

σ ∈ A∗ such that (L : s0
σ99K s) there are a sequence υ ∈ A∗ and final marking

mf ∈ Ω such that (L : s
υ−→ mf).

Next, we define the MELTS as introduced in the previous section, named
Sync(R). Let N be a system. Given a set R of disconnected places (the set of
places we want to refine) in N , we construct the MELTS Sync(R) as follows.
Each state is represented by a pair of sets (I,O): set I indicates the places
that have already received a token in the current iteration, and set O indicates
the places from which the tokens have already been consumed in the current
iteration. For each element r in R we identify two types of actions: (1) r, which
adds the element r to I and (2) r′, which adds the element r to O. As the places
of R can be marked only once in each iteration, action r is only enabled in a
state (I,O) if r is not present in I. Similarly, action r′ is allowed only if r ∈ I
but r ̸∈ O. For r ∈ R, action r is an exit transition, and action r′ is an exit
transition in a state (I,O) if I equals R; otherwise, it is a may transition. After
each place of R has received and lost again a token, the state (R,R) is reached
and the system returns with a silent step to the initial state, ready to another
iteration. It is possible to stay at the same state performing silent actions. Fig. 7
shows the MELTS for a disconnected set of two places p and q.

11

Definition 8 (Sync(R)). For a set R (of places), we define MELTS Sync(R) =
(S,A, 99K,−→, (∅, ∅), {(∅, ∅)}) by:

– A =
∪

r∈R{r, r′};
– S = {(I,O) | O ⊆ I ⊆ R};
– −→ = {((I,O), r, (I ′, O)) | (I,O) ∈ S, r ∈ R \ I, I ′ = I ∪ {r}}

∪ {((R,O), r′, (R,O′)) | (R,O) ∈ S, r ∈ R \O,O′ = O ∪ {r}}
∪ {((I,O), τ, (I,O)) | (I,O) ∈ S, I ⊂ R} ∪ {((R,R), τ, (∅, ∅))};

– 99K=−→ ∪ {((I,O), r′, (I,O′)) | I ⊂ R, r ∈ I \O,O′ = O ∪ {r}};

Corollary 9 (Proper termination of Sync(R)). For any set R, MELTS
Sync(R) as defined in Def. 8 is properly terminating.

Each visible transition in Sync(R) corresponds to the production or con-
sumption of a token in one of the places of R. Since we restrict our attention to
sets of disconnected places, a transition either produces a token, or consumes a
token from such a place. We define a mapping function h from the transitions
of N to the may/exit transitions of Sync(R) that expresses this relation.

Definition 10 (Transition mapping). Let N = (P, T, F) be a Petri net, R ⊆
P be a set of disconnected places and Sync(R) as defined in Def. 8. We define
the function hN,R : T → A for every t ∈ T by

hN,R(t) =

 r if r ∈ R ∩ t•,
r′ if r ∈ R ∩ •t,
τ otherwise.

We lift the notation to sequences: for a sequence σ ∈ T ∗ of length n, hN,R(σ) =
⟨hN,R(σ(1)), . . . , hN,R(σ(n))⟩. If the context is clear, we omit the subscript.

We call a set R of places in a system N synchronizable, if there is a kind
of refinement relation between Sync(R) and N , namely every firing sequence of
N can be mapped onto a may-sequence of Sync(R), covering the AG-part of
weak termination; to cover the EF-part of weak termination, for every reachable
marking m of N there should be a firing sequence leading to a final marking
corresponding to some exit sequence in Sync(R). If this requirement is met, we
say that the places of R are synchronizable.

Definition 11 (Synchronizable places). Let N = (N,m0, Ω) be a system
with N = (P, T, F) and a set R ⊆ P of disconnected places such that m(r) = 0
for all r ∈ R and m ∈ Ω ∪ {m0}. Let Sync(R) be as defined in Def. 8. Set R is
called synchronizable if:

∀γ ∈ T ∗, m ∈ R(N) : (N : m0
γ−→ m) =⇒ ∃s ∈ S, σ ∈ T ∗,mf ∈ Ω :

(Sync(R) : (∅, ∅)
h(γ)
99K s) ∧ (N : m

σ−→ mf) ∧ (Sync(R) : s
h(σ)−→ (∅, ∅))

12

The definition of synchronizable places has some similarities with the notions
of simulation [6] and refinement [11] and it encapsulates the definition of weak
termination. In the net of Fig. 6(a) the set of places {p, q} is not synchronizable,
as after firing transition t the marking in which places p and q are both marked
is not reachable.

Corollary 12 (Synchronizable places imply weak termination). Let N
be a system with N = (P, T, F) and let R ⊆ P be a synchronizable set of places.
Then N is weakly terminating.

Furthermore, the structure of the MELTS Sync(R) ensures that synchroniz-
able places are safe: a firing sequence leading to a marking with more than one
token on some place of R has no counterpart in Sync(R), and thus would contra-
dict the definition of synchronizable places. By definition, synchronizable places
are not marked in the initial marking nor in any final marking.

Corollary 13 (Synchronizable places are safe). Let N = (N,m0, Ω) be a
system with N = (P, T, F). Let R ⊆ P be a set of synchronizable places. Then
each place r ∈ R is safe.

6 Synchronizable Places Preserve Weak Termination

In this section, we prove that weak termination is preserved through refinements
of sets of synchronizable places. Given a system N with a set of synchronizable
places R, and a weakly terminating MWF net M with a mapping function α,
we need to prove that the refinement N ⊙α M is weakly terminating.

By the definition of synchronizable places, every firing sequence of the system
N can be replayed in Sync(R) using may transitions after projection. To relate
reachable markings of N to the corresponding states of Sync(R), we introduce
relation QN,R, defining it recursively, based on the firing rule of net N .

Definition 14 (Mapping markings to states). Let N = (N,m0, Ω) be a
system with N = (P, T, F) and a set of disconnected places R ⊆ P , and Sync(R)
be as defined in Def. 8. We define the relation QN,R ⊆ R(N ,m0)× S by:

– m0QN,R (∅, ∅);
– if (N : m0

σ−→ m
t−→ m′) for some σ ∈ T ∗ and t ∈ T and mQN,R (I,O)

then
• if ∃r ∈ (R ∩ t•) \ I then m′QN,R (I ∪ {r}, O),
• if ∃r ∈ (I ∩ •t) \O and O ∪ {r} ⊂ R then m′QN,R (I,O ∪ {r}),
• if ∃r ∈ (I ∩ •t) \O and O ∪ {r} = R then m′QN,R (∅, ∅)
• otherwise, m′QN,R (I,O).

If the context is clear, we omit the subscript.

To show that projecting an arbitrary firing sequence of the refinement L on
the transitions of the original system N gives a firing sequence of N , we first
define a mapping φ of all reachable markings of L to markings of N .

13

Definition 15 (Original net mapping). Let L = N ⊙α M be as defined in
Def. 4. We define the function φN,R : T ∗ → INPN by

φN,R(σ)(p) =

{
m(p), where (N : m0N

σ−→ m) if p ∈ PN \R
m0(p) +

∑
t∈•p |σ|{t}| −

∑
t∈p• |σ|{t}| if p ∈ R

for all σ ∈ T ∗. If the context is clear, we omit the subscript N,R.

The mapping ensures that given a firing sequence with which we reached a
marking in the refined net, the mapped marking onto the original net is reachable
as well, provided that the refining net is weakly terminating. If this is the case,
then whenever the marking reached in L is mapped by φ to a marking N that is
related to state (∅, ∅) in Sync(R), then the refining multi-workflow net is empty.

Lemma 16 (Trace inclusion for original net). Let L = N ⊙α M be as

defined in Def. 4 and M is weakly terminating. Let (L : m0
σ−→ m) for some σ ∈

T ∗ and m ∈ R(L,m0). Then (1) (N : m0N

σ|TN−→ φ(σ)) and (2) if φ(σ)Q (∅, ∅)
then m|PM

= ∅.

Proof. We prove the first statement by induction on the structure of σ. Let
σ = ϵ. Then the statement holds by definition of ⊙ and φ.

Now suppose σ = σ′; ⟨t⟩ for some σ′ ∈ T ∗, t ∈ T and m′ ∈ R(L,m0) such

that (L : m0
σ′

−→ m′ t−→ m) and (N : m0N

σ′
|TN−→ φ(σ′)). Suppose t ∈ TM . Then

σ|TN
= σ′

|TN
and φ(σ′) = φ(σ). Hence, the statement holds. Next, suppose

t ∈ TN . If R ∩ •t = ∅, then the statement directly follows from the firing rule of
Petri nets and the marking equation. Otherwise, i.e., an r ∈ R ∩ •t exists, then
by the second requirement of Def. 2, φ(σ)(r) = 1 since otherwise M would not
be weakly terminating. Then, the statement directly follows from the firing rule
of Petri nets and the marking equation.

For the second statement, we have by the synchronizability of R:

∃n ∈ IN : ∀r ∈ R :
∑

t∈ •
N r

|σ|{t}| =
∑
t∈r•N

|σ|{t}| = n

Suppose n = 0. Then the statement holds by definition of ⊙. Now suppose n > 0
and the statement holds for all n′ < n. Let r ∈ R, σ′, σ′′ ∈ T ∗, m′ ∈ R(L,m0)

and m̃′ ∈ R(N ,m0N) such that σ = σ′;σ′′, m̃′ = φ(σ′), (L : m0
σ′

−→ m′ σ′′

−→ m),
m′

|PM
= ∅, m̃′Q (∅, ∅) and

∑
t∈ •

N r |σ′′
|{t}| = 1. Since m′

|PM
= ∅ and r ∈

(σ′′
|TN

)
•
N

for all r ∈ R, we have (M : π1(EM)
σ′′

|TM−→ m) and π2(EM) ≤ m for
some marking m ∈ R(M,π1(EM)). By Lm. 3, m = π2(EM). Since φ(σ)Q (∅, ∅),
for all r ∈ R, r ∈ •

N σ
′′
|TN

. Hence, m|PM
= ∅. ⊓⊔

Corollary 17. If R is a set of synchronizable places then QN,R is a functional
relation.

14

q

p

t

a

t1

t2

(a) Net N

q

p

t

a

u

t1

t2

q’

p’

(b) Net N refined with Fig. 3(b)

Fig. 8. Relation Q of Def. 15 is not a simulation relation

Note that relation Q is not a simulation relation [6]. Consider the example
in Fig. 8. In this net, places p and q are synchronizable. Net N is refined with
the net in Fig. 3(b). In the original net, after firing transition t1 marking [p, a]
is reached and transition t is enabled. However, in the refined net, transition
t cannot become enabled before transition t2 has fired. Hence, no simulation
relation exists.

We prove instead that we have the trace inclusion of the refined net into the
traces of the original net when transitions of the refining net are considered as
silent. A similar statement can be made for the refining MWF net M when the
transitions of N are considered as silent. Here extra care should be taken in order
to supply proper initial and final markings (e.g. the firing of t1 in the refined net
depicted in Fig. 8 results in marking [p, a]; its projection on M is [p] not being
reachable in M). Therefore, all places of R that have not yet been marked in
the current iteration (i.e., the places of R \ I) are added to the marking of M ,
as well as the tokens that already have been removed from the final marking of
M (i.e., the places of O).

Definition 18 (Refining net mapping). Let L = N ⊙α M be as defined in
Def. 4. We define the function ψN,R : T ∗ → INPM by

ψN,R(σ) = m|PM
+

 ∑
r∈R\I

π1(α(r))

+

(∑
r∈O

π2(α(r))

)

where φ(σ)Q (I,O) and m ∈ R(L,m0) such that (L : m0
σ−→ m) for all σ ∈ T ∗.

If the context is clear, we omit the subscript N,R.

Lemma 19 (ψ maps R(L,m0) to R(M,π1(EM))). Let L = N ⊙α M be as

defined in Def. 4 and M is weakly terminating. Let (L : m0
σ−→ m) for some

σ ∈ T ∗ and m ∈ R(L,m0). Then ψ(σ) ∈ R(M,π1(EM)).

Proof. Let m̃ = φ(σ) and O ⊆ I ⊆ R such that m̃Q (I,O). We prove the lemma
by induction on the structure of σ. If σ = ϵ, the statement holds by Lm. 16.

15

Now suppose σ = σ′; ⟨t⟩ for some t ∈ T , σ′ ∈ T ∗ and marking m′ ∈ R(L,m0)

such that (L : m0
σ′

−→ m′ t−→ m) and ψ(σ′) ∈ R(M,π1(EM)). Let m̃′ = φ(σ′)
and let O′ ⊆ I ′ ⊆ R such that m̃′Q (I ′, O′). Then I ′ ⊆ I and O′ ⊆ O. If t ∈ TM ,
then •t ≤ m′

|PM
, then t• ⊆ PM and the statement holds. Otherwise, assume

t ∈ TN . We need to do a case analysis based on the postset of transition t.

If R∩ •
N t = R∩ t•N = ∅, then I = I ′, O = O′ and m|PM

= m′
|PM

. Hence, the
statement holds.

If R ∩ t•N ̸= ∅, then a r ∈ R exists such that r ∈ t•N . Further, r ̸∈ I ′, O = O′

and I = I ′ ∪ {r}, since otherwise R could not be a set of synchronizable places.
By the firing rule of Petri nets, m|PM

= m′
|PM

+[π1(α(r))]. In this way, we have:

ψ(σ′) = m′
|PM

+
∑

r∈R\I′

π1(α(r)) +
∑
r∈O′

π2(α(r))

= m′
|PM

+ [π1(α(r))] +
∑

r∈R\I

π1(α(r)) +
∑
r∈O

π2(α(r))

= m|PM
+
∑

r∈R\I

π1(α(r)) +
∑
r∈O

π2(α(r)) = ψ(σ)

Thus, the statement holds. A similar argument holds if R ∩ •
N t ̸= ∅.

Hence, the lemma holds. ⊓⊔

As a consequence of Lm. 16 and Lm. 19, boundedness is preserved by the
refinement of synchronizable places.

Corollary 20 (Refinement preserves boundedness). Let L = N ⊙α M be
as defined in Def. 4 and M is weakly terminating. If N is k-bounded and M is
l-bounded, then L is max(k, l)-bounded.

Lm. 19 implies that for every reachable marking m of L corresponding to
a marking of N in which all synchronizable place are marked, there is a firing
sequence from m in L using transitions of M only and leading to a marking in
which all places of M are empty except for the final places. Note that in the
refined net, one of the final places can already be emptied.

Corollary 21 (Completing trace of refining net). Let L = N ⊙α M be as

defined in Def. 4 and M is weakly terminating. Let (L : m0
σ−→ m) for some

σ ∈ T ∗, m ∈ R(L,m0), and let s ∈ {(R,O) | O ⊆ R} be such that φ(σ)Qs.
Then there are a marking m′ ∈ INP and a firing sequence ν ∈ T ∗

M such that

(M : ψ(σ)
ν−→ fM), (L : m

ν−→ m′) and m′
|PM

≤ fM .

To prove that the refinement of a set of synchronized places R preserves
weak termination, we first show that for any reachable marking in the refined
net that is related to the initial state of Sync(R), (∅, ∅), a firing sequence exists
that reaches a final marking of the refined net.

16

Lemma 22 (Completing trace in refined net). Let L = N ⊙αM as defined
in Def. 4 such that M is weakly terminating. Let γ ∈ T ∗ and m ∈ R(L,m0) such

that (L : m0
γ−→ m) and φ(γ)Q (∅, ∅). Then a σ ∈ T ∗ and an f ∈ Ω exist such

that (L : m
σ−→ f).

Proof. Let m̃0 = φ(σ). Then m̃0 ∈ R(N ,m0N). Since R is a set of synchronizable
places, there exists a firing sequence µ ∈ T ∗ with |µ| = n and marking fN ∈ ΩN

such that (N : m̃0
µ−→ fN) and (Sync(R) : (∅, ∅) h(µ)−→ (∅, ∅)), i.e., firing sequence

µ only uses exit transitions in Sync(R). Since M is sound, a ν ∈ T ∗
M exists such

that (M : π1(EM)
ν−→ π2(EM)). Let m̃1, . . . , m̃n ∈ R(N) such that m̃n = fN

and (N : mi−1
µ(i)−→ mi) for all 1 ≤ i ≤ n.

We construct sequence σ = σ1; . . . ;σn as follows:

σi =

{
⟨µ(i)⟩; ν if µ(i)

• ∩R ̸= ∅ and m̃iQ (R, ∅)
⟨µ(i)⟩ otherwise

Next, we need to prove that σ is a firing sequence of L. We prove this by
showing for all 1 ≤ i ≤ n the existence of markings mi−1,mi ∈ R(L,m0) such

that (L : mi−1
σi−→ mi), φ(σ1; . . . ;σi) = m̃i and if m̃iQ (R,O) for some O ⊆ R

then m|PM
≤ π2(EM).

Suppose n = 0. Then σ = ϵ. Choose m0 = m. Then the statement holds
trivially.

Now suppose 0 < i < n and a marking mi−1 ∈ R(L,m0) exists such that

(L : m
σ′

−→ mi−1) and φ(σ′) = m̃i−1 where σ′ = σ1; . . . σσi−1. Let t = σi(1).

Then •t ≤ m̃i−1, since (N : m̃i−1
t−→ m̃i). If R ∩ •t = ∅, then t ≤ m, and thus

a m′ ∈ INP exists such that (L : mi−1
t−→ m′). Otherwise, an r ∈ R exists such

that R∩•t = {r}. Then m̃i−1Q (R,O) for some O ⊆ R. Hence,m|PM
≤ π2(EM).

Since •t ≤ m̃i−1, we have m̃i−1(r) = 1, and hence, m(π2(α(r))) = 1. Thus, a

marking m′ ∈ INPL exists such that (L : mi−1
t−→ m′). Then φ(σ) = m̃i. If

|σ| = 1, choose mi = m′. Then the statement holds. Otherwise, i.e., |σ| > 1,
we have m̃iQ (R, ∅). Since R ∩ t• ̸= ∅, m′

|PM
= π1(EM). Hence, a marking mi

exists such that (L : m′ µ−→ mi), φ(σ) = m̃i and mi|PM
= π2(EM). Thus, the

statement holds.
Hence, σ has the desired property. ⊓⊔

To prove that the refinement of a set of synchronized places R preserves weak
termination, we first show that from any reachable marking in the refined net,
it is possible to reach a marking that corresponds to the initial state of Sync(R).

Now, we use the above lemma to show that from any marking reachable in
L a final marking is reachable.

Theorem 23 (Refinement of synchronizable places preserves weak ter-
mination). Let L = N ⊙α M be as defined in Def. 4 and M is weakly termi-
nating. Then L is weakly terminating.

17

Proof. Let γ ∈ T ∗ and m ∈ R(L,m0) such that (L : m0
γ−→ m). We need

to show the existence of a sequence σ ∈ T ∗ and marking f ∈ Ω such that
(L : m

σ−→ f).
Define m̃ = φ(γ). Then m̃Q (I,O) for some O ⊆ I ⊆ R. Since R is a set

of synchronizable places, a firing sequence σ1 ∈ T ∗
N and marking m̃1 exist such

that (N : m̃
σ1−→ m̃1) and (Sync(R) : (I,O)

h(σ1)−→ (R,O)), i.e., σ1 corresponds to
a firing sequence of only exit transitions in Sync(R).

Then m̃1Q (R,O) and R ∩ •σ1 = ∅, since otherwise h(σ) was not a firing
sequence in Sync(R). Then σ1 is also a firing sequence in L. Thus, a marking

m1 ∈ INP exists such that (L : m
σ1−→ m1) and m̃1 = φ(γ;σ1).

By Cor. 21, a firing sequence σ2 ∈ T ∗
M and marking m2 ∈ INP exist such

that (L : m1
σ2−→ m2), m2|PM

≤ π2(EM) and m̃1 = φ(γ;σ1;σ2).
Again since R is a set of synchronizable places, a firing sequence σ3 ∈ T ∗

N and

marking m̃2 ∈ INPN exist such that (m̃1 : σ3
m̃2−→) and (Sync(R) : (R,O)

h(σ3)−→
(∅, ∅)). Sincem2|PM

≤ π2(EM), a markingm3 ∈ INP exist such that (L : m2
σ2−→

m3) and m̃2 = φ(γ;σ1;σ2;σ3).
By Lm. 22, a firing sequence σ4 ∈ T ∗ and marking f ∈ Ω exist such that

(L : m3
σ4−→ f). Thus, σ = σ1;σ2;σ3;σ4 has the desired property. Hence, L is

weakly terminating. ⊓⊔

Clearly, synchronizability of a set of places can be effectively checked for
bounded systems N . Since weak termination can be reformulated in terms of
home spaces, and the home space problem is decidable [4], we expect that the
synchronizability problem is decidable for unbounded Petri nets as well.

7 Related Work

Refinements and reduction rules were in focus of the Petri nets community for
a long time (see e.g. [2,13,14]). A number of rules were developed for popular
subclasses of Petri nets (see e.g. [5] for reductions of free choice Petri nets, based
on linear algebraic properties of these nets). The refinement we presented is a
generalization of the refinement from [8] for the case of sets of places instead of
a single place. In this sense our refinement is similar to the refinement N∥|PM
of a host net N with a daughter net M [19], but ∥|P is defined differently from
our ⊙α, namely, ∥|P basically fuses places from P in N1 and N2. Moreover, the
focus of [19] is on the characterization of external equivalences (shown to be
undecidable), while our focus is at the preservation of weak termination through
refinements.

The notion of synchronizability of places is closely related to the notion of
objectivity [15] in condition/event systems, which are Petri nets with safe places.
There process semantics is used instead of interleaving semantics, and the run of
a system is specified by an occurrence net, which is a, possibly infinite, acyclic
marked graph. A process maps the nodes of the occurrence graph on the nodes
of the condition/event system. As the net is acyclic, relation < can be defined
on the nodes of the net as the transitive irreflexive closure of the flow relation.

18

p q

p' q’

pq

p' q’

Fig. 9. LTS of places that are objective

qp

i

f

Fig. 10. Places p and q are synchroniz-
able

Objective places need both to be marked before they can get unmarked. The
notion of objectivity can be described by the LTS shown in Fig. 9. This LTS is a
subgraph of the MELTS Sync (Def. 8). If two places are objective, they are also
synchronizable, as the firing sequences projected on the MELTS Sync only use
states s0, s1, s2, s4, s6 and s7. The states s3 and s4, i.e. the states in which place
p is already unmarked but q not yet marked (or vice versa), are never reached.
On the other hand, synchronizability does not imply objectivity: Consider the
example of Fig. 8(a); places p and q are synchronizable, but not objective, as
•q ̸< p• (since ¬(t < t2)).

Note that the synchronic distance [17] between the sets of input transitions
of two arbitrary places from a set of synchronizable places is at most one. This
does not provide a sufficient condition for weak termination preservation through
refinement, for this condition holds for input transitions of places p and q from
net N in Fig. 6(a), for which a non-weakly termination refinement exists.

May/exit transition systems, which we introduce to capture the notion of
synchronizability, resemble modal transition systems with may/must transitions,
and the relation we establish between a Petri net and the MELTS Sync resembles
the refinement relation of [11,12]. A modal transition system L refines another
modal transition system L′ if all the may transitions of L are also possible in
L′, and all must transitions of L′ are also must transitions in L. The synchro-
nizability definition resembles the necessary condition of must-soundness from
[16]; there it is shown that weak termination is preserved through all possi-
ble (data) refinements iff from any configuration that is may-reachable from
the start configuration, a subset of the final configurations is must-reachable.
The main difference with our approach here lies in the fact that we do not re-
quire the Petri net system to have counterparts for all the exit transitions of
the MELTS Sync, like it is done for must transitions, thus loosing the coupling
as it is imposed by the refinement relation. Consider the example depicted in
Fig. 10; {p, q} is a set of synchronizable places, although the exit transition

(Sync(R) : (∅, ∅) q−→ ({q}, ∅)) can never be taken, implying that the net is not
a refinement of Sync (when “exit” is renamed to “must”).

An approach for checking weak termination of refinements of pairs of places is
presented in [7], where the refinement is reduced to an application of synchronous
composition. The check consists of two parts: one on the original net, and one on

19

the refining net, based on the theory of maximal controllers. We work here with
sets of places and use a different technique in order to guarantee the preservation
of weak termination for a refinement of a set of places with an arbitrary weakly
terminating multi-workflow net.

8 Conclusions

In this paper we have defined refinements of sets of places with multi-workflows,
targeted at component-based systems. We have shown that weak termination
is preserved through refinements of sets of synchronizable places. We have not
proven that this condition is also a necessary condition, although we have a
strong belief that it is.

We plan to implement the synchronizability check for bounded Petri nets on
the basis of the standard soundness check for workflow nets (see [18]), using the
synchronous product of the Petri net system and the MELTS, and enforcing the
EF part with the exit-path condition. We also want to find a way to compute
all the maximal sets of synchronizable places for a given system and investigate
how their synchronizability can be affected by other refinements.

References

1. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic
and Algebraic Programming, 47(2):47–145, 2001.

2. G. Berthelot. Transformations and decompositions of nets. In Petri Nets, central
models and their properties, volume 254 of Lecture Notes in Computer Science,
pages 360–376. Springer, 1987.

3. E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logics of Programs, volume 131 of Lecture Notes
in Computer Science, pages 52–71. Springer, 1982.

4. D. de Frutos Escrig and C. Johnen. Decidability of home space property. Tech-
nical report, Univ. de Paris-Sud, Centre d’Orsay, Laboratoire de Recherche en
Informatique Report LRI–503, July 1989. NewsletterInfo: 35.

5. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1995.

6. R.J. van Glabbeek. The Linear Time - Branching Time Spectrum II: The Semantics
of Sequential Systems with Silent Moves. In Proceedings of CONCUR 1993, volume
715 of Lecture Notes in Computer Science, pages 66–81. Springer, 1993.

7. K.M. van Hee, A.J Mooij, N. Sidorova, and J.M.E.M. van der Werf. Soundness-
preserving refinements of service compositions. In Web Services and Formal Meth-
ods 10, Lecture Notes in Computer Science. Springer, 2011. to appear.

8. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and separability of
workflow nets in the stepwise refinement approach. In Application and Theory of
Petri Nets 2003, volume 2679 of Lecture Notes in Computer Science, pages 335 –
354. Springer, 2003.

9. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Generalised soundness of workflow
nets is decidable. In Application and Theory of Petri Nets 2004, volume 3099 of
Lecture Notes in Computer Science, pages 197–216. Springer, 2004.

20

10. K.M. van Hee, N. Sidorova, and J.M.E.M. van der Werf. Construction of asyn-
chronous communicating systems: Weak termination guaranteed! In Proceedings
of the 9th International Conference on Software Composition (SC 2010), volume
6144 of Lecture Notes in Computer Science, pages 106 – 121. Springer, 2010.

11. K.G. Larsen. Modal specifications. In Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notes in Computer Science, pages 232–246.
Springer, 1990.

12. K.G. Larsen and B. Thomsen. A modal process logic. In Logic in Computer
Science, pages 203–210. IEEE Computer Society, 1988.

13. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

14. T. Murata and I. Suzuki. A method for stepwise refinement and abstraction of
Petri nets. Journal of Computer and System Sciences, 27(1):51 – 76, 1983.

15. W. Reisig. A strong part of concurrency. In Advances in Petri Nets 1987, volume
266 of Lecture Notes in Computer Science, pages 238–272. Springer, 1987.

16. N. Sidorova, C. Stahl, and N. Trčka. Workflow soundness revisited: Checking cor-
rectness in the presence of data while staying conceptual. In Advanced Information
Systems Engineering, 22nd Int. Conference, CAiSE 2010, volume 6051 of Lecture
Notes in Computer Science, pages 530–544. Springer, 2010.

17. I. Suzuki and T. Kasami. Three measures for synchronic dependence in petri nets.
Acta Informatica, 19:325–338, 1983.

18. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing workflow
processes using Woflan. Computer Journal, 44:246–279, 2001.

19. W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets,
volume 625 of Lecture Notes in Computer Science. Springer, 1992.

21

