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ON EXACT GROUP EXTENSIONS

JON AARONSON AND MANFRED DENKER

ABSTRACT. We give conditions for the exactness of JR.d-extensions.

§O INTRODUCTION

A nonsingular transformation (X, B, m, T) of a standard probability space is
called a fibred system if there is a generating measurable partition 0 such that
T : a ~ Ta is invertible, nonsingular for a E 0, and a Markov map (or Markov
fibred system) if in addition, Ta E 0'(0) mod m \:j a E o.

Write 0 = {as : s E S} and endow SN with its canonical (Polish) product
topology. Let

n

~ = {s = (81,82,.") E sN: m(n T-ka Sk ) > 0 \:j n:;::: I},
k=1

then ~ is a closed, shift invariant subset of SN, and there is a measurable map
4> : ~ ~ X defined by {4>(st, S2, ..• )} := n~=1T-(k-l)a Sk '

The closed support of the probability m' = m 0 4>-1 is ~, and 4> is a conjugacy
of (X,B,m,T) with (~,B(~),m',shift). Thus we may, and sometimes do, assume
that X = ~, T is the shift, and 0 = {[s] : s E S}.

For n :;::: 1, there are m-nonsingular inverse branches of T denoted
Va : Tn a ~ a and with Radon Nikodym derivatives denoted

, dm 0 Va
Va := dm .

Let (X, B, m, R) be a nonsingular transformation of a standard probability space.
The Frobenius-Perron operators PRn = PRn,m : L 1(m) ~ L 1(m) are defined by

and for the locally invertible (X, B, m, T, 0) (as above) have the form

PTnf = L ITn a V:' f 0 Va'

aEQ~-l
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2 JON AARONSON AND MANFRED DENKER

A locally invertible map (X, B, m, T, a) has:

the Renyi property if:J C> 1 such that V n ~ 1, a E a~-l, m(a) > 0:

I~!~:~ I ::; C for m x m-a.e. (x, y) E Tna x Tn a.

It is well known (a proof is recalled in [A-D-U]) that any topologically mixing
probability preserving Markov map with the Renyi property is exact in the sense
that nn>1 T-n B = {0, X} mod m.

Examples include:
• topological Markov shifts equipped with Gibbs measures ([Bo],[Bo-Ru]) and
• uniformly expanding, piecewise onto C 2 interval maps T : [0, 1] ~ [0,1] satisfying

Adler's condition sUPxE[O,1] Ir~~)~1 < 00 ([Ad]);
or, more generally,

• Gibbs-Markov maps as in [A-D1].
Now let ¢ : X ~ ]Rd be measurable and consider the skew product Tlj> : X x]Rd ~

X x]Rd defined by Tlj>(x, y) := (Tx, y+¢(x)) with respect to the (invariant) product
measure m x mRd where mRd denotes Lebesgue measure.

We say that ¢ is aperiodic if ,(¢) = zhh 0 T has no nontrivial solution in , E

JRd , Z E S1 and h : X ~ S1 measurable. It is not hard to show that if Tlj> is ergodic,
and T is weakly mixing, then Tlj> is weakly mixing iff ¢ is aperiodic.

We're interested in the exactness of Tlj>.
We establish two (partial) results in this direction.

Theorem 1.
Suppose that (X, B, m, T, a) is a probability preserving Markov map with the

Renyi property. Let N ~ 1 and ¢ : X ~ ]Rd be a~-1-measurable (i.e. ¢(x) =
¢(a~-1(x)) where x E a~-1(x) E a~-1).

If Tlj> is topologically mixing, then Tlj> is exact.

For the other result, we assume that (X, B, m, T, a) is an exact probability
preserving locally invertible map with the property that for some Banach space
(L, II· IlL) of functions with II ·112 ::; II . IlL, such that PT : L ~ Land :JM > 0, () E
(0,1) such that

IIPTnf - i fdmllL ::; M(}nllfilL V f E L.

This property can be obtained as a consequence of the quasi compactness of Doeblin
Fortet operators, see [D-F]' [IT-M]).

Given ¢ : X ~ ]Rd measurable, we define the characteristic function operators
Pt(J) = PT(ei(t,lj» J) (t E JRd).

We assume also that Pt : L ~ L (t E ]Rd) and that t 1-+ Pt is continuous
(JRd ~ Hom(L, L).

It is shown in [Nag] (see also theorem 4.1 of [A-Dl]) that

(i) there are constants € > 0, K > °and () E (0,1); and continuous functions
,X : B(O, €) ~ Bc(O, 1), g : B(O, €) ~ L such that

Ilptnh - 'x(t)ng(t) Ix hdmllL ::; K(}nllhil L Viti < €, n ~ 1, hE L;

and
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(ii) in case ¢> is aperiodic, then '\f 0 < 0 < M < 00, :J K > 0, 0 < p < 1 such that

3

Examples include:
• (see [A-D1]), (X, B, m, T, Q) a Gibbs-Markov maps and ¢> : X _ ]Rd uniformly
Holder continuous on partition sets. Here L is a space of Holder continuous func
tions f : X-C.
• (see [Rou], [Ry]), X = [0,1], m Lebesgue measure, Q a partition of X mod m
into open intervals, and T : a - Ta an invertible, m-nonsingular homeomorphism
for each a E Q with inf IT'I > 1 and i, of bounded variation on X; and ¢> : X _ ]Rd

either: of bounded variation on X; or constant on each a E Q.

Set ¢>n = ¢> + ¢> 0 T + ... + ¢> 0 Tn-I.

Theorem 2.
Suppose that

(0) '\f ,X > 1 :J nk - 00 such that ¢>nk _ 0 a.e. as k - 00,Xnk

and that ¢> is aperiodic;
then Tel> is exact.

Remarks.
1) Theorem 2 generalises the corresponding theorem on page 443 in [G].
2) The condition (0) is satisfied if m-dist (¢» is in the domain of attraction of a

stable law.
3) The condition (0) is not satisfied iff :J ,X > 1 and c > 0 such that m([!¢>n I >

,Xn]) ~ c '\f n ~ 1 and there are independent processes like this.

§1 FROBENIUS-PERRON OPERATORS, EXACTNESS AND RELATIVE EXACTNESS

Let (X, B, m, R) be a nonsingular transformation of a standard probability space.
The tail (J-algebra of (X, B, m, R) is T(R) := n:=l R-nB and the nonsingular
transformation R is called exact if = {0, X} mod m.

Theorem 1.1 [D-L].

IIPRnflh -IIE(fIT(R))III as n - 00 '\f f E L1(m).

In particular (see [L]), R is exact iff IIPRnflh - O'\f f E L1(m), Ix fdm = O.

Proof.
First note that IPT fl :::; PT!fl whence IIPRnfll1 1and:J limn _ oo IIPRnflll' Next,

'\f n ~ 1 :J gn E LOO(B) with Ix(PRnf)gndm = IIPRnflll' whence

IIPRnfll1 = Lfgn 0 Rndm.

By weak * compactness, :J nk - 00 and 9 E LOO(B) such that gnk 0 Rnk ---" 9 weak
* in £OO(B).
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It follows that g E Loo(T(R)), IIglloo ~ 1 and limn_>oo IIPRnfl11 = Ix fgdm.
Thus

lim IIPRnflh ~ sup { r fhdm: hE Loo(T(R)), Ilhll oo ~ I} = IIE(fIT(R))111'
n->oo JX

To show the converse inequality, note that :3 g E Loo(T(R)), IIglloo = 1 such
that

IIE(fIT(R))lh = i E(fIT(R))gdm = i fgdm

whence V n ~ 1, :3 gn E Loo(B), g = gn 0 Rn and

IIE(fIT(R))lh = i fgdm = i fgn 0 Rndm = i (PRnf)gndm ~ IIPRnflh·

o
Let (X, B, m, R) and (Y, C, jJ, S) be nonsingular transformations of standard

probability spaces. A factor map is a function 7r : X ----+ Y satisfying 7r-
1C C

B, 7r 0 T = So 7r, m 0 7r- 1 = jJ.

The fibre expectation of the factor map 7r : X ----+ Y is an operator

f ~ E(fI7r), L1(X,B,m) ----+ L1(Y,C,jJ)

defined by Iy E(fI7r)gdjJ = Ix fg 0 7rdm.
The factor map 7r : X ----+ Y is called relatively exact if

f E L1(B), E(fI7r) = 0 a.e. ===? IIPRnflh ----+ O.

The corollary below appears in [G]. For the convenience of the reader, we supply
a (possibly different) proof.

Proposition 1.2. Suppose that 7r : X ----+ Y is relatively exact, then T(R) =
7r- 1T(S) mod m.

Proof.
Evidently, 7r- 1T(S) ~ T(R). We show that 7r-1T(S) 2 T(R).
By relative exactness and theorem 1.1, if f E L1(B) and E(f/7r) = 0 a.e., then

Ix fgdm = 0 V g E Loo(T(R)).
Thus if f E L2 (B) e L2 (7r- 1C), then E(fI7r) = 0 a.e. and so

i fgdm = 0 V g E Loo(T(R)), ===? f..l L2 (T(R)).

Thus L2 (B) e L2 (7r- 1C) c L2(B) e L2(T(R)) whence L2 (T(R)) C L2 (7r- 1C) and
T(R) C 7r-1C mod m.

To see that in fact T(R) ~ 7r-1T(S) mod m, fix N ~ 1, then

T(R) = nR-nB = n R-nB
n~1 n~N+1

= R-NT(R) C R-N7r-1C = 7r- 1S-NC.

Taking the intersection over N shows the claim. 0

Corollary 1.3 ([G], proposition 1).
If S is exact and 7r : X ----+ Y is relatively exact, then T is exact.
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§2 PROOF OF THEOREM 1

For a nonsingular transformation (X, B, m, R), define the tail relation of R:

5

Evidently 'r(R) is an equivalence relation and if (X, B, m) is standard, then
'r(R) E B(X x X).

If R is locally invertible, then 'r(R) has countable equivalence classes and is
nonsingular in the sense that m('r(R)(A)) = °\f A E B, m(A) = °where
'r(R)(A) := {y EX: :3 x E A (x, y) E 'r(R)}.

A set A E B(X) is invariant under the equivalence relation 'r E B(X x X) if
'r(A) = A and the equivalence relation 'r is called ergodic if'r-invariant sets have
either zero, or full measure.

The collection of invariant sets under 'r(R) is the tail a-algebra T(R) (whence
the name" tail relation").

In order to prove theorem 1, it suffices to show that 'r(T<t» is ergodic.
The tail relation of T<t> is given by

'r(T<t> )

= {((x, s), (y, t)) E (X X G)2: :3 n 2: 0, Tnx = Tny, S - t = cPn(Y) - cPn(x)}

= {((x, S), (y, t)) E (X X G)2: (x, y) E'r(T), ¢(x, y) = S - t}

where ¢ : 'r(T) -+ lRd is defined by ¢(x, y) := 'L':=o(cP(Tn y) - cP(Tn x )).
We prove that 'r(T<t» is ergodic by the method of Schmidt (explained in [S]), by

showing that \f t E lRd , U a neighbourhood of t and A E B m(A) > 0, :3 B EBB c
A and T : B -+ B nonsingular such that (x, T(X)) E 'r(T) and ¢(x, T(X)) E U \f x E
B.

This boils down to showing that

\f A E B+ go E lRd TJ > 0, :3 B E B+ B c A, n 2: 1

and T : B -+ T B c A nonsingular such that

(+) Tn 0 T Tn and II cPn 0 T - cPn - go II < TJ on B.

The proof of (+) will be written as a sequence of minor claims, '0,'1, ....

'0 We first claim that there is no loss in generality in assuming that N = 1 (i.e.
that cP : X -+ lRd is a-measurable). This is because (X, B, m, T, a~-l) is also a
probability preserving Markov map with the Renyi property and inducing the same
(shift) topology on X as (X, B, m, T, a).'1 \f s, t E S, :3 '" = "'s,t 2: 1 and a = as,t = [a1, ... aK]' b = bs,t = [bI, ... bK] E

a~-l, a1 = b1 = S aK= bK= t such that IlcPK(b) - cPK(a) - goll < TJ.
This follows from topological mixing of T<t>.

By the Renyi property, :3 M > 1 such that
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Given U = [Ub ... ' un] E Q~-1 with Un = t, define T = Tu : unT-na -+ unT-nb
by

'2 T = Tu : un T-n a -+ un T-nb is invertible nonsingular and d;;';T = M±4:~~~.

PROOF

1 dmOT
d dm = m(unT-nbnc)

unT-nanc m

= M±2 m(b) m(u)m(b)m(c)
m(a)

= M±4 m(b) m(u n T-na n c).
m(a)

o'3 PROOF OF :j:
Fix 0 < E < M-1 min{m(as ,d, m(bs,t)}, then

Let 8 > 0 be so small that 8 < m~~~(a~).

:3 n ~ 1 and u E Q~-1 such that m(A n u) ~ (1- 8)m(u) and [8] e T[un].
Consider Tu : un T-n a -+ un T-nb as in '2. Evidently Tn+K 0 T Tn+K and

II<Pn+K 0 T - <Pn+K - goll < 'TJ on un T-na.
To complete the proof we claim that :3 B E B+ B e An u n T-n a such that

TBeA.
To see this, note that

m(u n T-na n A) ~ m(u n T-na) - m(u \ A) ~ (E - 8)m(u),

whence using '2,

m(b) m(b)(E - 8)
m(T(u n T-na n A)) ~ M4

m
(a) m(u n T-na n A) ~ M4m (a) m(u).

Since T(U n T-na n A) e u, the condition on 8 > 0 ensures that m(T(u n T-n a n

A) n A) > 0 whence m(B) > 0 where B := T- 1 (T(U n T-n a n A) n A) eA. 0

§3 PROOF OF THEOREM 2

We prove theorem 2 via corollary 1.3. To do this, we must consider Ttl> as a
nonsingular transformation with respect to some probability P rv m x mJRd.

Let p : JR.d -+ ~ be continuous with JJRd p(y)dy = 1 and define a probability
P on X x JR.d by dP(x, y) := p(y)dm(x)dy; then (X x JR.d, B(X X JR.d), P, Ttl» is a
nonsingular transformation with Frobenius-Perron operators given by
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1
PTn p f (x, y) = -() PTn (J . 1@p)(x,y)

q,' py q,

7

where PTn := PTn mXm d·q, q,' IR

Consider the map 7r : X x ]Rd ---+ X defined by 7r(x, y) = x. This is a factor map
as it satisfies 7r- 1B(X) C B(X x ]Rd), 7r 0 T</> = To 7r, Po 7r-1 = m.

The fibre expectation of 7r is given by

E(JI7r)(x) = [ f(x, y)p(y)dy (J E L1(X X ]Rd, B(X X ]Rd), P)).
J[?d

By corollary 1.3 and exactness of T, it suffices to show that 7r is relatively exact.
To do this, we show that

[ f(x, y)p(y)dy = 0 a.e. ===}
J[?d

[ IPTn,pfldP = [ IPTn(J·1 @p)ld(m x m[?d) ---+ 0
JXX[?d q, JXX[?d ¢

as n ---+ 00; equivalently (taking F(x, y) := f(x, y)p(y)),

[ F(x,y)dy=Oa.e. ===} [ IPTnFld(mxm[?d)---+O
J[?d JXX[?d ¢

as n ---+ 00.

To prove (*), we first claim that
~1 for A > 1, h E L1(m) and f E L1(]Rd),

as k ---+ 00 where C = 2~m(B(O, 1)) and ~~Z ---+ 0 a.e..
PROOF As can be checked,

Denoting E(H) := Ix Hdm for H E L1(m), we have

By the Cauchy-Schwartz inequality,

(3)

whereas
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1 :s: 1 IE(PTn,.(h(·)f(y - <Pnk(·))l[1c1>nk(o))I:5,\n kj)ldy
lyl>2,\nk lyl>2,\nk

+1 IE(PTnk (h(·)f(y - <Pnk (.))l[1c1>nkOI>,\nkj))ldy = I + II.
lyl>2,\nk

Here as k -+ 00:

(4)

. cl>nk 0 . dSInce ,\nk -+ a.e., an

(5)

I:S: 1 E(lhllf(y - <Pnk)11[1c1>n,.(-)I:5,\nkj)dy
lyl>2,\nk

= E(lhI1[1c1>nk,:5,\nkjl If(y - <Pnk)ldY)
lyl>2,\nk

:s: E(lhl)1 If(y)ldy -+ 0,
Iyl>,\nk

Substituting (3),(4) and (5) into (2) proves'1. 0
To complete the proof of (*), let FE LI(m x m]Rd) satisfy f]Rd F(x,y)dy = 0 for

m-a.e. x E X and fix E > o. We show that

Standard approximation techniques show that V E > 0, :J N E N, hI, .. " hN E
L, 9I, ... ,9N E LI(JRd) such that f]Rd9k(y)dy = 0 (1:S: k:S: N) and

N

IIF - L hk (9 9kll£l(rnXrn
R

k) < ~.
k=I

Next, it follows from theorems 1.6.3 and 1.6.4 in [Rud] that
:J !I, ... ,fN E L I nL2 such that

• [ik =1= 0] is compact and bounded away from 0 (1:S: k :s: N);
and

• Ilfk - 9kll£l(rnR d) < 2NllhkII L1 (Tn) (1:S: k :s: N), whence

N N N

II L hk (9 fk - L hk (9 9kll£l(rnXrnad) :s: L Ilhkll£l(rn) . Ilfk - 9kll£l(]Rd) < ~,
k=I k=I k=I

N

IIF - L hk (9 fkll£l(rnXrnad) < E

k=I
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where h ELand f E L 1 n L 2 is such that [j =1= 0] is compact and bounded away
from O.

We claim'2 If h ELand f E L 1 n L2 is such that [j =1= 0] is compact and bounded away
from 0, then :3 0 < P < 1 such that

(6)

PROOF

Let [j i= 0] c B(O, M) \ B(O, b). By (ii) (above), :3 K > 0, 0 < P < 1 such that

IP;h(x)1 ::; Kpn V x E X, n 2: 1, b::; Ii'l ::; M,

whence using the fact that the Fourier transform of y .- PT</> (h 0 f)(x, y) is 'Y .

j('Y)P;h(x) and Plancherel's formula, we have

proving '2. 0
To finish the proof of theorem 2, we claim'3 if (6) holds for hE Land f E L 1 n L 2

, then

(7)

PROOF

Fix.A> 1 such that .A~p < 1. Suppose that ~:Z -+ 0 a.e.. Using (6), we have
by'l,

as k -+ 00; establishing (7) since IIPT;(h 0 f)111 1. 0

This completes the proof of theorem 2.
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