

Specification guidelines to avoid the state space explosion
problem
Citation for published version (APA):
Groote, J. F., Kouters, T. W. D. M., & Osaiweran, A. A. H. (2010). Specification guidelines to avoid the state
space explosion problem. (Computer science reports; Vol. 1014). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/90a1c290-102b-485e-86cf-d9ab0df8bdea

Specification Guidelines to avoid the
State Space Explosion Problem

J.F. Groote, T.W.D.M. Kouters, and A.A.H. Osaiweran
Eindhoven University of Technology

Department of Computer Science
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

J.F.Groote@tue.nl, T.W.D.M.Kouters@student.tue.nl, A.A.H.Osaiweran@tue.nl

Abstract

During the last two decades we modelled the behaviour of a large number of systems. We noted that
different styles of modelling had quite an effect on the size of the state spaces of the modelled system.
The differences were so substantial that some specification styles led to far too many states to verify the
correctness of the model, whereas with other styles the number of states was so small that verification was
a straightforward activity. In this article we summarise our experience byproviding seven specification
guidelines. For each guideline we provide an application from the realm of traffic light controllers for
which we provide a ‘bad’ model with a large state space, and a ‘good’ model with a small state space.

1 Introduction

Behavioural specification of computer systems, distributed algorithms, communication protocols, business
processes, etc. is gaining popularity. Behavioural specification refers here to discrete behaviour, such
as the exchange of messages, reading digital sensors and switching lights on and off. Specifying the
discrete behaviour of systems before construction helps focussing on the behaviour, without simultaneously
being bothered with programming or other implementation details. This allows for clearer specification of
systems, both increasing usability and reducing flaws in thecode. Very importantly, it also helps to provide
adequate documentation.

These days, we and others have ample experience in system design through behavioural specification.
There are for instance well-established workshops and journals on this topic [8, 9]. The primary lesson is
that, although, behavioural specification is extremely helpful, it is not enough. We need to verify that the
designed behaviour is correct, in the sense that it either satisfies certain behavioural requirements or that it
matches a compact external description. It turns out that discrete behaviour is so complex, that a flawless
design without verification is virtually impossible.

As most systems are constructed without using any behavioural verification, it is often the case that
the behaviour of existing systems is problematic and not well understood. This provides the second use of
behavioural specification, namely to model existing systems to obtain a better understanding of what they
are doing. The model can be investigated to prove that the system always satisfies certain requirements.
There are no other ways to obtain such insight. For instance exhaustive testing can increase the confidence
that a system satisfies a certain requirement, but it will never provide certainty.

When verifying system behaviour, the state space explosion problem kicks in. If we do not pay atten-
tion, the behaviour of any real system quickly has so many states that despite the use of clever verification
algorithms and powerful computers, verification is often problematic. Three decades of improvements of
verification technology did not provide the means to overcome the state space explosion problem.

We believe that the state space explosion problem must also be dealt with in another way, namely
by designing models such that their behaviour can be verified. We call thisdesign for verifiabilityor
modelling for verifiability. This is comparable to ‘design for testability’, which is mainly used in esp.

1

microelectronics to allow to test a product for production flaws [24], and which is slowly finding its way
into software engineering [23].

What we propose is that systems are designed such that the state spaces of their behavioural models are
small. This does impose certain restrictions on how systemscan behave. For instance, maintaining local
copies of data throughout a system blows up the state space, and is therefore not recommended. When
modelling existing systems, we advocate that sometimes themodels are shaped such that the state space
does not grow too much, even if this means that the actual system is not completely faithfully modelled. It
is better to obtain insight with an approximate model, than getting no insight at all. Note that this approach
is very common in other engineering disciplines.

Compared to the development of state space reduction techniques, design for verifiability is a barely
addressed issue. The best we could find is [17], but it primarily addresses improvements in verification
technology, too. Specification styles from the perspectiveof expressiveness have been addressed [22], but
verifiability is also not really an issue here.

In this article we provide seven specification guidelines that we learned by specifying complex realistic
systems (e.g. traffic control systems, medical equipment, domestic appliances, communication protocols).
For each specification guideline we provide an application from the domain of traffic light controllers. The
reason for taking this domain is that we felt the need to writethis article, when working on a traffic light
controller for a crossing with 12 traffic lights and 24 road sensors. The initial model was so complex that
it was even difficult to verify the correctness requirementswhen traffic was restricted to 2 lanes. After
rewriting the model, all correctness requirements for the full control system could be verified without any
restriction on the use of traffic lanes, road sensors or traffic lights.

For each guideline we give two examples. The first one does nottake the guideline into account and
the second does. Generally, the first specification is very natural, but leads to a large state space. Then
we provide a second specification that uses the guideline. Weshow by a transition system or a table that
the state space that is using the guideline is much smaller. The ‘bad’ and the ‘good’ specification are in
general not behaviourally equivalent (for instance in the sense of branching bisimulation) but as we will
see, they both capture the application’s intent. All specifications are written in mCRL2, which is a process
specification formalism based on process algebra [12, 25].

In hindsight, we can say that it is quite self evident why the guidelines have a beneficial effect on
the size of the state spaces. Some of the guidelines are already quite commonly used, such as reordering
information in buffers, if the ordering is not important. The use of synchronous communication, although
less commonly used, also falls in this category. Other guidelines such as information polling are not really
surprising, but specifiers appear to have a natural tendencyto use information pushing instead. The use of
confluence and determinacy, and external specifications maybe foreign to most specifiers.

Although we provide a number of guidelines that we believe are really important for the behavioural
modellist, we do not claim completeness. Without doubt we have overlooked a number of specification
strategies that are helpful in keeping state spaces small. Hopefully this document will be an inspiration to
investigate state space reduction from this perspective, which ultimately can be accumulated in effective
teaching material, helping both students and working practitioners to avoid the pitfalls of state space ex-
plosion.

Acknowledgements. We thank Sjoerd Cranen, Helle Hansen, Jeroen Keiren, Matthias Raffelsieper, Frank
Stappers, Ron Swinkels, Marco van der Wijst, and Tim Willemse for their useful comments on the text.

2 A short introduction into mCRL2

Before getting to the design guidelines for avoiding state space explosion we give a short exposition of
the specification language mCRL2. We only restrict ourselves to the those parts of the language that we
need in this paper. Further information can be obtained fromvarious sources, but good places to start are
[12, 25]. Especially, at the websitewww.mcrl2.org the toolset for mCRL2 is available, as well as lots
of documentation and examples.

The abbreviation mCRL2 stands for micro Common Representation Language 2. It is a specifica-
tion language that can be used to specify and analyse the behaviour of distributed systems and protocols.

2

mCRL2 is based on the Algebra of Communicating Processes (ACP, [3]), which is extended to include data
and time.

We first describe the data types. Data types consist of sorts and functions working upon these sorts.
There are standard data types such as the booleans (B), the positive numbers (N

+) and the natural numbers
(N). All sorts represent their mathematical counterpart. E.g. the number of natural numbers is unbounded.

All common operators on the standard data sorts are available. We use≈ for equality between elements
of a data type in order to avoid confusion with= which we use as equality between processes. We also use
if (c, t, u) representing the termt if the conditionc holds, andu if c is not valid.

For any sortD, the sortsList(D) andSet(D) contain the lists and sets over domainD. Prepending
an elementd to a list l is denoted byd⊲l. Getting the last element of a list is denoted asrhead(l). The
remainder of the list after removing the last element is denoted asrtail(l). The length of a list is denoted
by #(l). Testing whether an element is in a sets is denoted asd∈s. The set with only elementd is denoted
by {d}. Set union is written ass1∪s2 and set difference ass1\s2.

Given two sortsD1 andD2, the sortD1→D2 contains all functions from the elements fromD1 to
elements ofD2. We use standard lambda notation to represent functions. E.g. λx:N.x+1 is the function
that adds1 to its argument. For a functionf we use the notationf [t→u] to represent the functionf , except
that if f [t→u] is applied tot, the valueu is returned. We callf [t→u] a function update.

Besides using standard types and type constructors such asList andSet, users can define their own sorts.
In this paper we most often use user defined sorts with a finite number of elements. A typical example is
the declaration of a sort containing the three aspectsgreen, yellow andred of a traffic light.

sort Aspect = struct green | yellow | red ;

A more complex user defined sort that we use is a message containing a number that can either be
active or passive. The number in each message can be obtainedby applying the functionget number

to a message. The functionis active is true when applied to a message of the formactive(n) and false
otherwise.

sort Message = struct active(get number :N)?is active | passive(get number :N);

Using themap keyword elements of data domains can be declared. By introducing an equation the
element can be declared equal to some expression. An exampleof its use is the following. The constantn
is declared to be equal to3 andf is equal to the function that returns false for any natural number.

map n : N;
f : N → B;

eqn n = 3;
f = λx:N.false;

This concise explanation of data types is enough to understand the paper.
The use of data is the primary source why state spaces grow outof hand. A system with only two 32 bit

integers has1.8 1019 states which for quite some time to come will not fit into the memory of any computer
(unless compression techniques are used). It is therefore very important to restrict the possible values data
types can have. Often it is wise to model data domains in abstract categories. E.g. instead of using a height
in millimetres, one can abstract this to the three valueslow, middleandhigh.

The behaviour of systems is characterised by atomic actions. Actions can represent any elementary ac-
tivity. Here, they typically represent setting a traffic light to a particular colour, getting a signal from a sen-
sor or communicating among components. Actions can carry data parameters. For exampletrig(id , false)
could typically represent that the sensor with identifierid was not triggered (indicated by the boolean
false).

In an mCRL2 specification, actions must be declared as indicated below, where the types indicate the
sorts of the data parameters that they carry.

act trig : N × B;
send : Message;
my turn;

3

0 1 2 3 4
tick tick tick tick

tick

reset

reset

reset

reset

reset

Figure 1: The transition system of the processCounter

In the examples in this article we have omitted these declarations as they are clear from the context.
If two actionsa andb happen at the same time, then this is called a multi-action, which is denoted

asa|b. The operator ‘|’ is called the multi-action composition operator. Any number of actions can be
combined into a multi-action. The order in which the actionsoccur has no significance. So,a|b|c is the
same multi-action asc|a|b. The empty multi-action is written asτ . It is an action that can happen, but
which cannot directly be observed. It is also called the hidden or internal action. The use of multi-actions
can be quite helpful in reducing the state space, as indicated in guideline II in section 5.

Actions and multi-actions can be composed to form processes. The choice operator, used asp + q
for processesp andq, allows the process to choose between two processes. The first action that is done
determines the choice. The sequential operator, denoted bya dot (‘·’), puts two behaviours in sequence.
So, the processa·b + c·d can either perform actiona followed byb, or c followed byd.

The if-then-elseoperator,c → p ⋄ q, allows the conditionc to determine whether the processp or q is
selected. The else part can always be omitted. We then get theconditional operator of the formc → p.
If c is not valid, this process cannot perform an action. It deadlocks. This does not need to be a problem
because using the+ operator alternative behaviour may be possible.

The following example shows how to specify a simple recursive process. It is declared using the
keywordproc. It is a timer that cyclically counts up till four using the action tick, and can beresetat any
time. Note that the name of a process, in this caseCounter, can carry data parameters. The initial state
of the process isCounter(0), i.e., the counter starting with argument0. Initial states are declared using
the keywordinit . As explained below, we underline actions, if they are not involved in communication
between processes.

proc Counter(n:N)
= (n<4) → tick ·Counter(n+1) ⋄ tick ·Counter(0)
+ reset ·Counter(0);

init Counter(0);

In figure 1 the transition system of the counter is depicted. It consists of five states and ten transitions. By
following the transitions from state to state a run through the system can be made. Note that many different
runs are possible. A transition system represents all possible behaviours of the system, rather than one or a
few single runs. The initial state is state0, which has a small incoming arrow to indicate this. The precise
mapping from algebraic processes is given by the operational semantics described in [13]. We will not go
into this precise mapping, but it is quite straightforward.The transition systems referred to in this article
are all generated using the mCRL2 toolset [25].

Sometimes, it is required to allow a choice in behaviour, depending on data. E.g., for the counter it
can be convenient to allow to set it to any value larger than zero and smaller than five. Using the choice
operator this can be written as

set(1)·Counter(1) + set(2)·Counter(2) + set(3)·Counter(3) + set(4)·Counter(4)

Especially, for larger values this is inconvenient. Therefore, the sum operator has been introduced. It is
written as

∑
x:N p(x) and it represents a choice among all processesp(x) for any value ofx. The sortN is

4

0 1 2 3 4
tick tick tick tick

tick

reset

reset

reset

reset

set(1)

set(2)

set(3)

set(4)

reset

Figure 2: TheCounter extended withset transitions

just provided here as an example, but can be any arbitrary sort. Note that the sort in the sum operator can be
infinite. To generate a finite state space, this infinite rangemust be restricted, for instance by a condition.
The example above uses such a restriction and becomes:

∑

x:N

(0<x ∧ x<5) → set(x)·Counter(x)

Just for the sake of completeness, we formulate the example of the counter again, but now with this ad-
ditional option to set the counter, which can only take placeif n equals0. This example is a very typical
sequential process (sequential in the meaning of not parallel). In figure 2 we provide the state space of the
extended counter.

proc Counter(n:N)
= (n<4) → tick ·Counter(n+1) ⋄ tick ·Counter(0)
+

∑
x:N(n≈0 ∧ 0<x ∧ x<5) → set(x)·Counter(x)

+ reset ·Counter(0);
init Counter(0);

Processes can be put in parallel with the parallel operator‖ to model a concurrent system. The be-
haviour ofp ‖ q represents that the behaviour ofp andq is parallel. It is an interleaving of the actions
of p andq where it is also possible that the actions ofp andq happen at the same time in which case a
multi-action occurs. So,a ‖ b represents that actionsa andb are executed in parallel. This behaviour is
equal toa·b + b·a + a|b.

Parallel behaviour is the second main source of a state spaceexplosion. The number of states ofp ‖ q
is the product of the number of states ofp andq. The state space ofn processes that each havem states
is mn. For n andm larger than10 this is too big to be stored in the memory of almost any computer in
an uncompressed way. Using the allow operator introduced inthe next paragraph, the number of reachable
states can be reduced substantially. But without care the number of states of parallel systems can easily
grow out of control.

In order to let two parallel components communicate, the communication operatorΓC and the allow
operator∇V are used whereC is a set of communications andV is a set of data free multi-actions. The idea
behind communication is that if two actions happen at the same time, and carry the same data parameters,
they can communicate to one action. In this article we use theconvention that actions with a subscript
r (from receive) communicate to actions with a subscripts (from send) into an action with subscriptc
(from communicate). Typically, we writeΓ{ar|as→ac}(p ‖ q) to allow actionar to communicate withas

resulting inac in a processp ‖ q. In order to make the distinction between internal communicating actions
and external actions clearer, we underline all external actions in specifications (but not in the text or in the
diagrams). External actions are those actions communicating with entities outside the described system,
whereas internal actions happen internally in components of the system or are communications among
those components.

5

To enforce communication, we must also express that actionsas andar cannot happen on their own.
The allow operator explicitly allows certain multi-actions to happen, and blocks all others. So, in the ex-
ample from the previous paragraph, we must add∇{ac} to blockar andas enforcing them to communicate
into ac. So, a typical expression putting behavioursp andq in parallel, letting them communicate via action
a, is:

∇{ac}(Γ{ar|as→ac}(p ‖ q))

Of course, more processes can be put in parallel, and more actions can be allowed to communicate.
Actions that are the result of a communication are in generalinternal actions in the sense that they take

place between components of the system and do not communicate with the outside world. Using the hiding
operatorτI actions can be made invisible. So, for a process that consists of a single actiona, τ{a}(a) is the
empty multi-actionτ , an action that does happen, but which cannot directly be observed.

If a system has internal actions, then the behaviour can be reduced. For instance in the processa·τ ·p it is
impossible to observe theτ , and this behaviour is equivalent toa·p. The most common behavioural reduc-
tions are weak bisimulation and branching bisimulation [18, 11]. We will not explain these equivalences
here in detail. For us it suffices to know that they reduce the behaviour of a system to a unique minimal
transition system preserving the essence of the external behaviour. This result is called the transition system
modulo weak/branching bisimulation. This reduction is often substantial.

3 Overview of design guidelines

In this section we give a short description of the seven guidelines that we present in this paper. Each
guideline is elaborated in its own section with an example where the guideline is not used, and an intuitively
equivalent description where the guideline is used. We provide information on the resulting state spaces,
showing why the use of the guideline is advantageous.

I Information polling . This guideline advises to let processes ask for information, whenever it is
required. The alternative is to share information with other components, whenever the information
becomes available. Although, this latter strategy clearlyincreases the number of states of a system,
it appears to prevail over information polling in most specifications that we have seen.

II Global synchronous communication. If more parties communicate with each other, it can be that a
component1 communicates with a component2, and subsequently, component2 informs a compo-
nent3. This requires two consecutive communications and therefore two state transitions. By using
multi-actions it is possible to let component1 communicate with component2 that synchronously
communicates with a component3. This only requires one transition. By synchronising commu-
nication over different components, the number of states ofthe overall system can be substantially
reduced.

III Avoid parallelism among components. If components operate in parallel, the state space grows
exponentially in the number of components. By sequentialising the behaviour of these components,
the size of the total state space is only the sum of the sizes ofthe state spaces of the individual
components. In this latter case state spaces are small and easy to analyse, whereas in the former case
analysis might be quite hard. Sequentialising the behaviour can for instance be done by introducing
an arbiter, or by letting a process higher up in the process hierarchy to allow only one sub-process to
operate at any time.

IV Confluence and determinacy. When parallel behaviour cannot be avoided, it is useful to model
such that the behaviour isτ -confluent. In this caseτ -prioritisation can be applied when generating
the state space, substantially reducing the size of the state space. Modelling a system such that it is
τ -confluent is not easy. A good strategy is to strive for determinacy of behaviour. This means that
the ‘output’ behaviour of a system must completely be determined by the ‘input’. This is guaranteed
whenever an internal action (e.g. receiving or sending a message from/to another component) can be
done in a state of a single component, then no other action canbe done in that state.

6

V Restrict the use of data. The use of data in a specification is a main cause for state-space explosion.
Therefore, it is advisable to avoid using data whenever possible. If data is essential, try to categorise
it, and only store the categories. For example, instead of storing a height in millimetres, storetoo low,
right heightandtoo high. Avoid buffers and queues getting filled, and if not avoidable try to apply
confluence andτ -prioritisation. Finally, take care that data is only stored in one way. E.g., storing
the names of the files that are open in an unordered buffer is a waste. The buffer can be ordered
without losing information, substantially reducing the state footprint.

VI Compositional design and reduction. If a system is composed out of more components, it can be
fruitful to combine them in a stepwise manner, and reduce each set of composed components using
an appropriate behavioural equivalence. This works well ifthe composed components do not have
different interfaces that communicate via not yet composedcomponents. So typically, this method
does not work when the components communicate in a ring topology, but it works very nicely when
the components are organised as a tree.

VII Specify the external behaviour of sets of sub-components. If the behaviour of sets of components
are composed, the external behaviour tends to be overly complex. In particular the state space is often
larger than needed. A technique to keep this behaviour smallis to separately specify the expected
external behaviour first. Subsequently, the behaviours of the components are designed such that they
meet this external behaviour.

4 Guideline I: Information polling

One of the primary sources of many states is the occurrence ofdata in a system. A good strategy is to only
read data when it is needed and to decide upon this data, afterwhich the data is directly forgotten. In this
strategy data is polled when required, instead of pushed to those that might potentially need it. An obvious
disadvantage of polling is that much more communication is needed. This might be problematic for a real
system, but for verification purposes it is attractive, as the number of states in a system becomes smaller
when using polling.

Currently, it appears that most behavioural specificationsuse information pushing, rather than informa-
tion polling. E.g., whenever some event happens, this information is immediately shared with neighbouring
processes.

Furthermore, we note that there is also a discussion of information pulling versus information pushing
in distributed system design from a completely different perspective [1]. Here, the goal is to minimise
response times of distributed systems. If information whenneeded must be requested (=pulled) from other
processes in a system, the system can become sluggish. But onthe other hand, if all processes inform
all other processes about every potentially interesting event, communication networks can be overloaded,
also leading to insufficient responsiveness. Note that we prefer the verb ‘to poll’ over ‘to pull’, because it
describes better that information is repeatedly requested.

In order to illustrate the advantage of information polling, we provide two specifications. The first one
is ‘bad’ in the sense that there are more states than in the second specification. We are now interested in a
system that can be triggered by two sensorstrig1 andtrig2. After both sensors fire a trigger, a traffic light
must switch from red to green, from green to yellow, and subsequently back to red again. For setting the
aspect of the traffic light, the actionset is used. One can imagine that the sensors are proximity sensors that
measure whether cars are waiting for the traffic light. Note that it can be that a car activates the sensors,
while the traffic light shows another colour than red. In figure 3 this system is drawn.

First, we define a data typeAspect which contains the three aspects of a traffic light.

sort Aspect = struct green | yellow | red ;

The pushing controller is very straightforward. The occurrence oftrig1 and trig2 indicate that the
respective sensors have been triggered. In the pushing strategy, the controller must be able to always
deal with incoming signals, and store their occurrence for later use. Below, the pushing process has two
booleansb1 andb2 for this purpose. Initially, these booleans are false, and the traffic light is assumed to be

7

trig1

trig2

set

Figure 3: A simple traffic light with two sensors

red. The booleans becometrue if a trigger is received, and are set tofalse, when the traffic light starts with
agreen, yellow andred cycle.

proc Push(b1, b2:B, c:Aspect)
= trig1·Push(true, b2, c)
+ trig2·Push(b1, true, c)
+ (b1∧b2∧c≈red)→set(green)·Push(false, false, green)
+ (c≈green)→set(yellow)·Push(b1, b2, yellow)
+ (c≈yellow)→set(red)·Push(b1, b2, red);

init Push(false, false, red);

The polling controller differs from the pushing controllerin the sense that the actionstrig1 andtrig2 now
have a parameter. It checks whether the sensors have been triggered using the actionstrig1(b) andtrig2(b).
The booleanb indicates whether the sensor has been triggered (true: triggered,false: not triggered). In
Poll , sensortrig1 is repeatedly polled, and when it indicates by atrue that it has been triggered, the
process goes toPoll1. In Poll1 sensortrig2 is polled, and when both sensors have been triggeredPoll2 is
invoked. InPoll2 the traffic light goes through a colour cycle and back toPoll .

proc Poll = trig1(false)·Poll + trig1(true)·Poll1;
Poll1 = trig2(false)·Poll1 + trig2(true)·Poll2;
Poll2 = set(green)·set(yellow)·set(red)·Poll ;

init Poll ;

The transition systems of both systems are drawn in figure 4. At the left the diagram for the pushing system
is drawn, and at the right the behaviour of the polling trafficlight controller is depicted. The diagram at the
left has 12 states while the diagram at the right has 5, showing that even for this very simple system polling
leads to a smaller state space.

5 Guideline II: Use global synchronous communication

Communication along different components can sometimes bemodelled by synchronising the communi-
cation over all these components. For instance, instead of modelling that a message is forwarded in a
stepwise manner through a number of components, all components engage in one big action that says that
the message travels through all components at once. In the first case there is a new state for every time the
message is forwarded. In the second case the total communication only requires one extra state. The use
of global synchronous communication can be justified if passing this message is much faster than the other
activities of the components, or if passing such a message isinsignificant relative to the other activities.

Several formalisms use global synchronous interactions asa way to keep the state space of a system
small. The co-ordination language REO uses the concept veryexplicitly [2]. A derived form can be found
in Uppaal, which uses committed locations [16].

To illustrate the effectiveness of global synchronous communication, we provide the system in figure 5.
A trigger signal enters ata, and is non-deterministically forwarded viabc or cc to one of the two components
at the right. Non-deterministic forwarding is used, to makethe application of confluence impossible (see
guideline IV). One might for instance think that there is a complex algorithm that determines whether the
information is forwarded viabc or cc, but we do not want to model the details of this algorithm. After being

8

trig2

trig1

trig1

trig2

trig2

trig1

trig1

trig2

trig2

trig1

trig1

trig2

set(yellow)

set(yellow)

set(yellow)

set(yellow)

set(red)

set(red)

set(red)
set(red)

trig2

trig2

trig2

trig2

trig2

trig2

trig1

trig1

trig1

trig1

trig1

trig1

set(green) trig1(true)

set(red)

trig2(true)

set(yellow)

set(green)

trig1(false)

trig2(false)

Figure 4: Transition systems of push/poll processes

passed viabc or cc, the message is forwarded to the outside world viad or e. To illustrate the effect on state
spaces, it is not necessary that we pass an actual message, and therefore it is left out.

a

cc
e

bc

d

C1

C2

C3

Figure 5: Synchronous/asynchronous message passing

The asynchronous variant is described below. ProcessC1 performsa, and subsequently performsbs or
cs, i.e. sending viab or c. The processC2 reads viab by br, and then performs ad. The behaviour ofC3 is
similar. The whole system consists of the processesC1, C2 andC3 wherebr andbs synchronise to become
bc, andcr andcs becomecc. The behaviour of this system contains 8 states and is depicted in figure 6 at
the left.

proc C1 = a·(bs + cs)·C1;
C2 = br·d·C2;
C3 = cr·e·C3;

init ∇{a,bc,cc,d,e}(Γ{br|bs→bc,cr|cs→cc}(C1||C2||C3));

The synchronous behaviour of this system can be characterised by the following mCRL2 specification.
ProcessC1 can perform a multi-actiona|bs (i.e. actiona andbs happen exactly at the same time) or a

9

ad e

bc cc

a ad
ee

d

cc bc

ae d

a|cc|e a|bc|d

Figure 6: Transition systems of a synchronous and an asynchronous process

multi-actiona|cs. This represents the instantaneous receiving and forwarding of a message. Similarly,C2

andC3 read and forward the message instantaneously. The effect isthat the state space only consists of
one state as depicted in figure 6 at the right.

proc C1 = a|bs·C1 + a|cs·C1;
C2 = br|d·C2;
C3 = cr|e·C3;

init ∇{a|cc|e,a|bc|d}(Γ{br|bs→bc,cr|cs→cc}(C1||C2||C3));

The operator∇{a|cc|e,a|bc|d} allows the two multi-actionsa|cc|e anda|bc|d, enforcing in this way that in
both cases these three actions must happen simultaneously.

6 Guideline III: Avoid parallelism among components

When models have many concurrent components that can independently perform an action, then the state
space of the given model can be reduced by limiting the numberof components that can simultaneously
perform activity. Ideally, only one component can perform activity at any time. This can for instance
be achieved by one central component that allows the other components to do an action in a round robin
fashion.

It very much depends on the nature of the system whether this kind of modelling is allowed. If the
primary purpose of a system is the calculation of values, sequentialising appears to be defendable. If on
the other hand the sub-components are controlling all kindsof devices, then the parallel behaviour of the
sub-components might be the primary purpose of the system and sequentialisation can not be used.

In some specification languages explicit avoidance of parallel behaviour between components has been
used. For instance Esterel [4] uses micro steps which can be calculated per component. In Promela there is
an explicit atomicity command, grouping behaviour in one component that is executed without interleaving
of actions of other components [15].

As an example we considerM traffic lights guarding the same number of entrances of a parking lot. See
figure 7 for a diagrammatic representation whereM=3. A sensor detects that a car arrives at an entrance.
If there is space in the garage, the traffic light shows green for some time interval. There is a detector at the
exit, which indicates that a car is leaving. The number of cars in the garage cannot exceedN .

The first model is very simple, but has a large state space. Each traffic light controller (TLC) waits
for a trigger of its sensor, indicating that a car is waiting.Using theenters action it asks theCoordinator

for admission to the garage. If a car can enter, this action isallowed by the co-ordinator and a traffic light

10

TLC (1)
show

trig

TLC (2)
show

trig

TLC (3)
show

trig

Coordinator

enter
enter

enter

leave

Figure 7: A parking lot with three entrances

cycle starts. Otherwise theenters action is blocked. TheCoordinator has an internal counter, counting
the number of cars. When aleave action takes place, the counter is decreased. When a car is allowed to
enter (viaenterr), the counter is increased.

proc Coordinator(count :N)
= (count>0)→leave · Coordinator(count−1)
+ (count<N)→enterr·Coordinator(count+1);

TLC (id :N+)
= trig(id)·enters·show(id , green)·show(id , red)·TLC (id);

init ∇{trig,show ,enterc,leave}(Γ{enters|enterr→enterc}(Coordinator(0)‖TLC (1)‖TLC (2)‖TLC (3)));

The state space of this control system grows exponentially with the number of traffic light controllers. In
columns 2 and 4 of table 1 the sizes of the state spaces for differentM are shown. It is also clear that the
number of parking placesN only contributes linearly to the state space.

Following the guideline, we try to limit the amount of parallel behaviour in the traffic light controllers.
So, we put the initiative in the hands of the co-ordinator in the second model. It assigns the task of
monitoring a sensor to one of the traffic light controllers ata time. The traffic controller will poll the
sensor, and only if it has been triggered, switch the traffic light to green. After it has done its task, the
traffic light controller will return control to the co-ordinator. Of course if the parking lot is full, the traffic
light controllers are not activated. Note that in this second example, only one traffic light can show green
at any time, which might not be desirable.

proc Coordinator(count :N, active id :N+)
= (count>0)→leave·Coordinator(count−1, active id)
+ (count<N)→enters(active id)·

∑
b:B enterr(b)·

Coordinator(count+if(b, 1, 0), if(active id≈M, 1, active id+1));

TLC (id :N+)
= enterr(id)·

(trig(id , true)·show(id , green)·show(id , red)·enters(true)+
trig(id , false)·enters(false)

)·
TLC (id);

init ∇{trig,show ,enterc,leave}(Γ{enters|enterr→enterc}

(Coordinator(0, 1)||TLC (1)||TLC (2)||TLC (3)));

As can be seen in table 1 the state space of the second model only grows linearly with the number of traffic
lights.

11

M parallel (N = 10) restricted (N = 10) parallel (N = 100) restricted (N = 100)
1 44 61 404 601
2 176 122 1, 616 1, 202
3 704 183 6, 464 1, 803
4 2, 816 244 25, 856 2, 404
5 11, 264 305 103, 424 3, 005
6 45, 056 366 413, 696 3, 606
10 11.5 106 610 106 106 6, 010

Table 1: State space sizes of parking lot controllers (N : no. of traffic lights,M : no. of parking places)

7 Guideline IV: Confluence and determinacy

In [14, 18] it is described howτ -confluence and determinacy can be used to assist process verification. By
modelling such that a system isτ -confluent, verification can become substantially easier. The formulations
in [14, 18] are slightly different; we use the formulation from [14] because it is more suitable for verification
purposes.

A transition system isτ -confluentiff for every states that has an outgoingτ and an outgoinga-
transition,s

τ
−→ s′ ands

a
−→ s′′, respectively, there is a states′′′ such thats′

a
−→ s′′′ ands′′

τ
−→ s′′′.

This is depicted in figure 8. Note thata can also be aτ , but then the statess′ ands′′ must be different.

s

s′ s′′

s′′′

τ a

a τ

Figure 8: Confluent case

When traversing a state space of aτ -confluent transition system, it is allowed to ignore all outgoing
transitions from a state that has at least one outgoingτ -transition, except one outgoingτ -transition. This
operation is calledτ -prioritisation. It preserves branching bisimulation equivalence [11] andtherefore
almost all behaviourally interesting properties of the state space. There is one snag, namely that if the
resultingτ transitions form a loop, then the outgoing transitions of one of the states on the loop must
be preserved. The first algorithm to generate a state space while applyingτ -prioritisation is described in
[5]. Whenτ -prioritisation has been applied to a transition system, large parts of the ‘full’ state space have
become unreachable. Of the remaining reachable states, many have a single outgoingτ -transitions

τ
−→ s′.

The statess ands′ are branching bisimilar and can be mapped onto each other, effectively removing one
more state. Furthermore, all states on aτ -loop are branching bisimilar and can therefore be merged into
one state, too.

If a state space isτ -confluent, thenτ -prioritisation can have a quite dramatic reduction of the size of
the state space. This technique allows to generate the prioritised state space of highly parallel systems
with thousands of components. In figure 9 aτ -confluent transition system is depicted before and after
application ofτ -prioritisation, and the subsequent merging of branching bisimilar states.

To employτ -prioritisation, a system must be defined such that it isτ -confluent. The main rule of thumb
is to take care that if an internal action can be performed in astate of a component, no other action can
be done in that state. These internal actions include sending information to other components. If data is

12

a τ

τ τ τ

a τ

d d d

a τ

τ

a τ

d d

a τ

a

d d

a

Figure 9: The effect ofτ -prioritisation and branching bisimulation compression

received, it must be received from only one component. A selection among different components offering
data is virtually always non confluent. Note that in particular pushing information generally destroys
confluence. Pushed information must always be received, so,in particular it must be received while internal
choices are made and information is forwarded.

SensorC (2)

SensorC (1)

CrossingC (2)

CrossingC (1)

LightC (2)

LightC (1)

trig

trig

sensc

sensc

cyclec

cyclec

show

show

turnc

Figure 10: A simple traffic light with two triggers

We model a simple crossing system that contains two traffic lights. First, we are not bothered about
confluence. Each traffic light has a sensor indicating that traffic is waiting. We use a control system with 6
components (see figure 10).

For each traffic light we have a sensor controllerSensorC , a crossing controllerCrossingC , and a
traffic light controllerLightC . The responsibility of the first is to detect whether the sensor is triggered, us-
ing the actiontrig , and forward its occurrence using the actionsens to CrossingC. The crossing controller
takes care that after receiving asens message, it negotiates with the other crossing controller whether it
can turn the traffic light to green (using theturn action), and informsLightC using the actioncycle to
set the traffic light to green. The light controller will switch the traffic light to green, yellow and red, and
subsequently informs the crossing controller that it has finished (by sending acycle message back).

Below a straightforward model of this system is provided. The sensor controllerSensorC gets a trigger
via the actiontrig and forwards it usingsenss. The traffic light controller is equally simple. After a trigger
(via cycler), it cycles through the colours, and indicates through acycles message that it finished.

The crossing controllerCrossingC is a little more involved. It has four parameters. The first one isid

which holds an identifier for this controller (i.e.1 or 2). The second parametermy turn indicates whether
this controller has the right to set the traffic light to green. The third parameter issensor triggered which
stores whether a sensor trigger has arrived. The fourth one is cycle indicating whether the traffic light
controller is currently going through a traffic light cycle.The most critical actions are allowing the traffic

13

light to become green (cycles) and giving ‘my turn’ to the other crossing controller (turns). Both can only
be done if no traffic light cycle is going on and it is ‘my turn’.

Note that at the init clause all components are put in parallel, and using the communication operatorΓ
and allow operator∇ it is indicated how these components must communicate.

proc SensorC (id :N+) = trig(id)·senss(id)·SensorC (id);

LightC (id :N+)
= cycler(id)·

show(id , green)·
show(id , yellow)·
show(id , red)·
cycles(id)·
LightC (id);

CrossingC (id :N+,my turn, sensor triggered , cycle:B)
= sensr(id)·CrossingC (id ,my turn, true, cycle)
+ (sensor triggered∧my turn∧¬cycle) → cycles(id)·

CrossingC (id ,my turn, false, true)
+ cycler(id)·CrossingC (id ,my turn, sensor triggered , false)
+ turnr·CrossingC (id , true, sensor triggered , cycle)
+ (¬sensor triggered∧my turn∧¬cycle)→turns·

CrossingC (id , false, sensor triggered , cycle);

init ∇{trig,show ,sensc,cycle
c
,turnc}

(Γ{sensr|senss→sensc,cycle
r
|cycle

s
→cycle

c
,turnr|turns→turnc}

(SensorC (1)||SensorC (2)||
CrossingC (1, true, false, false)||CrossingC (2, false, false, false)||
LightC (1)||LightC (2)));

This straightforward system description has a state space of 160 states. We are interested in the behaviour
of the system wheretrig andshow are visible, and the other actions are hidden. We can do this by applying
the hiding operatorτ{sensc,cycle

c
,turnc} to the process. The system is confluent with respect to the hidden

cyclec action. The hiddensensc andturnc actions are not contributing to the confluence of the system.
In the uppermost row of table 2 the sizes of the state space aregiven: of the full state space, after

applying tau-prioritisation and after applying branchingbisimulation reduction.
In order to employ the effect of confluence, we must make the hidden actionsturnc andsensec conflu-

ent, too. The reason that these actions are not confluent is that handing over a turn and triggering a sensor
are possible in the same state, and they can take place in any order. But the exact order in which they
happen causes a different traffic light go to green.

We can prevent this by making the behaviour of the crossing controller CrossingC deterministic. A
very simple way of doing this is given below. We only provide the definition ofSensorC andCrossingC

asLightC remains the same and the init line is almost identical. The idea of the specification below is that
the controllersCrossingC are in charge of the sensor and light controllers. When the crossing controller
has the turn, it polls the sensor. And only if it has been triggered, it initiates a traffic light cycle. In both
cases it gives the turn to the other crossing controller.

14

proc SensorC (id :N+) = sensr(id)·
∑

b:B trig(id, b)·senss(id, b)·SensorC (id);

CrossingC (id :N+,my turn:B) =
my turn

→ senss(id)·
(sensr(id , true)·
cycles(id)·
cycler(id)
+
sensr(id , false)

)·
turns·
CrossingC (id , false)

⋄ turnr·
CrossingC (id , true);

The state space of this system turns out to be small, namely 20states (see table 2, second row). It is even
smaller after applyingτ -prioritisation, namely 8 states. Remarkably, this is alsothe size of the state space
after branching bisimulation minimisation. As the state space is small, it is possible to inspect the state
space in full (see figure 11). An important property of this system is that the relative ordering in which the
triggers at sensor 1 and sensor 2 are polled does not influencethe ordering in which the traffic lights go to
green. This sequence is only determined by the booleans thatindicate whether the sensor is triggered or
not. This effect is not very clear here, because the sensors are polled in strict alternation. But in the next
example we see that this property also holds for more complexcontrollers, where the polling order is not
strictly predetermined.

τ
trig(1, true)

τ

τ

show(1, green)

show(1, yellow)

show(1, red)
τ

trig(1, false)

τ

ττ

trig(2, false)

trig(2, true)
τ

τ

show(2, green)

show(2, yellow)

show(2, red)
τ

τ

τ

Figure 11: The state space of a simple confluent traffic light controller

The previous solution can be too simple for certain purposes. We show that the deterministic speci-
fication style can still be used for more complex systems, andthat the state space that is generated using
τ -prioritisation is still much smaller than state spaces generated without the use of confluence.

So, for the sake of the example we assume that it is desired to check the sensors while a traffic light
cycle is in progress. Both crossing controllers continuously request the sensors to find out whether they
have been triggered. If none is triggered the traffic light controllers inform each other that the turn does
not have to switch side. If the crossing controller whose turn it is, gets the signal that its sensor has been
triggered, it awaits the end of the current traffic light cycle (cycler(id)), and simply starts a new cycle
(cycles(id)). If the sensor of the crossing controller that does not have the turn is triggered, this controller
indicates usingturns(true) that it wants to get the turn. It receives the turn byturnr. Subsequently, it
starts its own traffic light cycle.

15

no reduction afterτ -prioritisation mod branch bis
Non-confluent controller 160 128 124
Simple confluent controller 20 8 8
Complex confluent controller 310 56 56

Table 2: The number of states of the transitions systems for asimple crossing

The structure of the system is the same as in the non-confluenttraffic light cycle, and therefore the init
part is not provided in the specification below.

proc SensorC (id :N+) = sensr(id)·
∑

b:B trig(id , b)·senss(id , b)·SensorC (id);

CrossingC (id :N+,my turn:B) =
senss(id)·
(sensr(id , true)·

(my turn→cycler(id)⋄turns(true)·turnr)·
cycles(id)·
CrossingC (id , true)
+
sensr(id , false)·
(my turn

→ (turnr(true)·
cycler(id)·
turns·
CrossingC (id , false)
+
turnr(false)·
CrossingC (id , true)

)
⋄ turns(false)·

CrossingC (id , false)
)

);

LightC (id :N+, active:B) =
active

→ cycles(id)·LightC (id , false)
⋄ cycler(id)·show(id , green)·show(id , yellow)·show(id , red)·LightC (id , true);

This more complex traffic light controller has a substantially larger state space of 310 states. However,
when the state space is generated withτ -prioritisation, it has shrunk to 56 states, which is also its minimal
size modulo branching bisimulation or even weak trace equivalence.

The complexity of the system is in the way the sensors are polled. Figure 12 depicts the behaviour where
showing the aspects of the traffic lights is hidden. As in the simple confluent controller, the relative ordering
of the incoming triggers does not matter for the state the system ends up in. E.g., executing sequences
trig(2, false) trig(1, true) andtrig(1, true) trig(2, false) from the initial state lead to the lowest state in
the diagram. This holds in general. Any allowed reordering of the triggers from sensor 1 and 2 with respect
to each other will bring one to the same state.

8 Guideline V: Restrict the use of data

The use of data in behavioural models can quickly blow up a state space. Therefore, data should always
be looked at with extra care, and if its use can be avoided, this should be done. If data is essential (and it

16

trig(1, true)

trig(1, false) trig(2, false)
trig(1, true)

trig(2, true)

trig(1, true)

trig(1, false)

trig(2, false)

trig(1, true)

trig(2, false)

trig(2, true)

trig(1, false)

trig(2, true)

trig(1, false) trig(2, false)

trig(2, true)

trig(1, true)

trig(1, false) trig(2, false)

trig(1, true)

Figure 12: The sensor polling pattern of a more complex confluent controller

almost always is), then there are several methods to reduce its footprint. Below we give three examples, one
where data is categorised, one where the content of queues isreduced and one where buffers are ordered.

In order to reduce the state space of a behavioural model, it sometimes helps to categorise the data in
categories, and formulate the model in terms of these categories, instead of individual values. From the
perspective of verification, this technique is called abstract interpretation [7]. Using this technique, a given
data domain is interpreted in categories, in order to assistthe verification process. Here, we advice that the
modeller uses the categories in the model, instead of letting the values be interpreted in categories during
the verification process. As the modeller generally knows his model best, he also has a good intuition about
the appropriate categories.

AC
trigdist

Figure 13: An advanced approach controller

Consider for example an intelligent approach controller which measures the distance of an approaching
car as depicted in figure 13. If the car is expected to pass distance0 before the next measurement, a trigger
signal is forwarded. The farthest distance the approach controller can observe isM . A quite straightforward
description of this system is given below. Using the actiondist the distance to a car is measured, and the
actiontrig models the trigger signal.

map M : N;
eqn M = 100;
proc AC(dprev :N) =

∑
d:N(d<M)→(dist(d)·(2d<dprev)→trig ·AC (M)⋄AC (d));

init AC (M);

17

The state space of this system is a staggeringM2+1 states big, or more concretely10001 states. This
is of course due to the fact that the values ofd anddprev must be stored in the state space to enable the
evaluation of the condition2d<dprev . But only the information needs to be recalled whether this condition
holds, instead of both values ofd anddprev . So, a first improvement is to move the condition backward as
is done below, leading to a requiredM+1 states, or 101 in this concrete case.

proc AC 1(dprev :N) =
∑

d:N(d<M)→((2d<dprev)→dist(d)·trig ·AC 1(M)⋄dist(d)·AC 1(d));
init AC 1(M);

But we can go much further, provided it is possible to abstract from the concrete distances. Let us assume
that the only relevant information that we obtain from the individual distances is whether the car is far from
the sensor or nearby. Note that we abstract from the concretespeed of the car which was used above. The
specification of this abstract approach controllerAAC is given by:

sort Distance = struct near | far ;
proc AAC =

∑
d:Distance dist(d)·((d≈near)→trig ·AAC⋄AAC);

init AAC;

Note thatM does not occur anymore in this specification. The state spaceis now reduced to two states.
We now provide an example showing how to reduce the usage of buffers and queues. Polling andτ -

confluence are used, to achieve the reduction. We model a system with autonomous traffic light controllers.
Each controller has one sensor and controls one traffic lightthat can be red or green. If a sensor is triggered,
the traffic light must show green. At most one traffic light canshow green at any time. The controllers are
organised in a ring, where each controller can send messagesto its right neighbour, and receive messages
from its left neighbour. For reasons of efficiency we desire that there are unbounded queues between the
controllers, such that no controller is ever hampered in forwarding messages to its neighbour. The situation
is depicted in figure 14.

TLC TLC

TLC TLC

trig

trig

trig

trig

Figure 14: Process communication via unbounded queues

We make a straightforward protocol, where we do not look intoefficiency. Whenever a traffic light
controller receives a trigger, it wants to know from the other controllers that they are not showing green.
For this reason it sends its sequence number with an ‘active’ tag around. If it makes a full round with-
out altering the ‘active’ tag, it switches its own traffic light to green. Otherwise, if the tag is switched to
‘passive’, it retries sending the message around. A formal description is given by the following specifica-
tion. The processQueue(id , q) describes an infinite queue between the processes with identifiers id and
id+1 (modulo the number of processes). The parameterq contains the content of the queue. The process
TLC (id , triggered , started) is the process with idid wheretriggered indicates that it has been triggered

18

N Non confluent After branching bis Confluent Withτ -prioritisation After branching bis
2 116 58 10 6 6
3 3.2 103 434 15 9 9
4 122 103 3 103 20 12 12
5 5.9 106 21 103 25 15 15
6 357 106 - 30 18 18
20 - - 100 60 60

Table 3: Traffic lights connected with queues

to show green, andstarted indicates that it has started with the protocol sketched above. In the initialisa-
tion we describe the situation where there are two processesand two queues, but the protocol is suited for
any number of processes and an equal number of queues.

sort Aspect = struct green | red ;
Message = struct active(get number : N)?is active | passive(get number : N);

map N : N
+;

eqn N = 2;
proc Queue(id :N, q:List(Message)) =∑

m:Message qinr
(id ,m)·Queue(id ,m⊲q)+

(#q>0)→qouts
((id+1)mod N, rhead(q))·Queue(id , rtail(q));

TLC (id :N, triggered , started :B) =
trig(id)·TLC (id , true, started)+
(triggered∧¬started)

→qins
(id , active(id))·TLC (id , false, true)+∑

m:Message qoutr
(id ,m)·

((started∧is active(m)∧get number(m)6≈id)
→qins

(id , passive(get number(m)))·TLC (id , triggered , started)
⋄((started∧get number(m)≈id)

→(is active(m)→show(id , green)·show(id , red)·TLC (id , triggered , false)
⋄TLC (id , true, false)

)
⋄qins

(id ,m)·TLC (id , triggered , started)
));

init τ{qinc
,qoutc}

(∇{trig,show ,qinc
,qoutc}

(Γ{qinr
|qins

→qinc
,qoutr |qouts→qoutc}

(
TLC (0, false, false)||TLC (1, false, false)||Queue(0, [])||Queue(1, []))));

Note that the state space of this system is growing very dramatically with the number of processes. See the
second column in table 3. In the third column the state space is given after a branching bisimulation reduc-
tion, where only the actionsshowandtrig are visible. Even the state space after branching bisimulation
reduction is quite large. A dash indicates that the mCRL2 toolset failed to calculate the state space or the
reduction thereof (running out of space on a 1Tbyte main memory linux machine).

We will reduce the number of states by making the system confluent. We replace data pushing by
polling. The structure of the protocol becomes quite different. Each process must first obtain a mutually
exclusive ‘token’, then polls whether a trigger has arrived, and if so, switches the traffic light to green. Sub-
sequently, it hands the token over to the next process. The specification is given below for two processes.
The specification of the queue is omitted, as it is exactly thesame as the one of the previous specification.

19

N non ordered ordered
1 2 2
2 5 4
3 16 8
4 65 16
5 326 32
6 2.0 103 64
7 14 103 128
8 110 103 256
9 986 103 512
10 9.9 106 1.02 103

11 109 106 2.05 103

12 1.30 109 4.10 103

Table 4: Number of states of an non ordered/ordered buffer with max.N elements

sort Aspect = struct green | red ;
Message = struct token;

map N : N
+;

eqn N = 2;

proc TLC (id :N, active:B) =
active→(trig(id , true)·show(id , green)·show(id , red) + trig(id , false))·

qins
(id , token)·TLC (id , false)

⋄ qoutr
(id , token)·TLC (id , true);

init τ{qinc
,qoutc}

(∇{trig,show ,qinc
,qoutc}

(Γ{qinr
|qins

→qinc
,qoutr |qouts→qoutc}

(
TLC (0, true)||TLC (1, false)||Queue(0, [])||Queue(1, []))));

The number of states of the state space for different number of processes are given in the fourth column of
table 3. In the fifth and sixth columns the number of states afterτ -prioritisation and branching bisimulation
reduction are given. Note that the number of states afterτ -prioritisation is equal to the number of states
after application of branching bisimulation. Note also that the differences in the sizes of the state spaces is
quite striking.

As a last example we show the effect of ordering buffers. Withqueues and buffers different contents
can represent the same data. If a buffer is used as a set, the ordering in which the elements are put into the
buffer is irrelevant. In such cases it helps to maintain an order on the data structure. As an example we
provide a simple process that reads arbitrary natural numbers smaller thanN and puts them in a set. The
process doing so is given below.

map N : N;
insert , ordered insert : N × List(N) → List(N);

var n, n′ : N; b : List(N);
eqn insert(n, b) = if (n ∈ b, b, n⊲b);

ordered insert(n, []) = [n];
ordered insert(n, n′⊲b) = if (n<n′, n⊲n′⊲b, if (n≈n′, n′⊲b, n′⊲ordered insert(n, b)));
N = 10;

proc B(buffer :List(N)) =
∑

n:N(n<N)→read(n)·B(insert(n, buffer));

init B([]);

If the functioninsert is used, the elements are put into a set in an arbitrary order (more precisely, the
elements are prepended). If the functionordered insert is used instead ofinsert , the elements occur in

20

ascending order in the buffer. In table 4 the effect of ordering is shown. Although the state spaces with
ordering also grow exponentially, the beneficial effect of ordering does not need further discussion.

9 Guideline VI: Compositional design and reduction

When a system that must be designed consists of several components, it can be wise to organise these
components in such a way that stepwise composition and reduction are possible. The idea is depicted in
figure 15. At the left hand side of figure 15 a set of communicating componentsC1, . . . , C5 is depicted. In
the middle, the interfacesI1, . . . , I7 are also shown. At the right the system has a tree structure.

C4 C5

C2 C3

C1

(a)

C4 C5

C2 C3

C1

I4 I5

I2 I3

I1

I6 I7

(b)

C4 C5 C ′
5

C2 C3

C1

(c)
Figure 15: The compositional design and verification steps

When calculating the behaviour of the whole system, a characterisation of the simultaneous behaviour
at the interfacesI1, I6 andI7 is required where all communication at the other interfacesis hidden. Un-
fortunately, calculating the whole behaviour before hiding internal communication may not work, because
the whole behaviour has too many states. An alternative is tocombine and hide in an alternating fashion.
After each hiding step a behavioural reduction is applied, which results in a reduced transition system.

For instance, the interface behaviour atI2, I5 andI6 can be calculated from the behaviour ofC2 andC4

by hiding the behaviour atI4. Subsequently,C3 andC5 can be added, after which the communication atI5

can be hidden. At last addingC1 and hiding the actions at the interfacesI2 andI3 finishes the calculation
of the behaviour. This alternation of composing behaviour and hiding actions is quite commonly known
and some toolsets even developed a script language to allow for an optimal stepwise composition of the
whole state space [10].

In order to optimally employ this stepwise sequence of composition, hiding and reduction, it is desired
that as much communication as possible can be hidden to allowfor a maximal reduction of behaviour.
But there is something even more important. If a subset of components has more interfaces that will be
closed off by adding more components later, it is very likelythat there is some relationship between the
interactions at these interfaces. As long as the set of components has not been closed, the interactions at
these interfaces are unrelated, often leading to a severe growth in the state space of the behaviour of this
set of sub-components. When closing the dependent interfaces, the state space is brought to its expected
size. If such dependent but unrestricted interfaces occur,the use of stepwise composition and reduction is
generally ineffective.

As an example consider figure 15 again. IfC2, C3, C4 andC5 have been composed, the system has
interactions at interfacesI2 andI3 that can happen independently. AddingC1 restricts the behaviour at
these interfaces. For instance,C1 can strictly alternate between sending data viaI2 andI3, but withoutC1

any conceivable order must be present in the behaviour ofC2, C3, C4 andC5.
Dependent but unrestricted interfaces can be avoided by using a tree topology. See figure 15 (c) where

the dependency at interfacesI2 andI3 has been removed by duplicating componentC5. If a tree topology
is not possible, then it is advisable to restrict behaviour at dependent but unrestricted interfaces as much as
possible from inside sets of components.

As an example we provide yet another distributed traffic controller (see figure 16). There are a certain
numberN of traffic lights. At the central component (theTopController) requests arrive using aset(m)
action to switch traffic lightm to green. This request is forwarded via intermediate components (called

21

TopController

set , ready

Controller Controller

TLC TLC TLC TLC

setc, readyc setc, readyc

setc, readycsetc, readycsetc, readycsetc, readyc

show
show show

show

tokenc tokenc tokenc

tokenc

Figure 16: Distribution of system components

Controllers) to traffic light controllers (TLCs). If a traffic light has been set to green and subsequently to
red again, an actionready(n) indicates that the task has been accomplished. The system must guarantee
that one traffic light can be green at any time but the order in which this happens is not prescribed.

We start presenting a solution that does not have a tree topology. Using the principle of separation
of concerns, we let the traffic light controllers be responsible for taking care that no two traffic lights are
showing green at the same time. The top- and other controllers have as task to inform the traffic light
controllers that they must set the light to green, and they transport the ready messages back to the central
controller.

The traffic light controllers use a simple protocol as described in the queue example in section 8. They
continuously exchange a token. The owner of the token is allowed to set the traffic light to green. The
parameterid is the identifier of the traffic light. The parameterlevel indicates the level of the traffic
light controllers. The top controller has level0. In figure 16 the level of the traffic light controllers is 2.
Furthermore,has token indicates that this traffic light controller owns the token,andbusy indicates that it
must let the traffic light go through a green-red cycle.

The controllers and the top controller are more straightforward. They pass set commands from top to
bottom, and send ready signals from bottom to top. The parameters id low and idhigh indicate the range
of traffic lights over which this controller has control. Thedescription below describes a system with four
traffic light controllers.

sort Aspect = struct green | red ;

proc ControllerTop(id low , idhigh :N) =∑
n:N(id low≤n ∧ n≤idhigh)→(set(n)·sets(n, 1)+readyr(n, 1)·ready(n))·

ControllerTop(id low , idhigh);

Controller(id low , idhigh , level :N) =∑
n:N(id low≤n ∧ n≤idhigh)→
(setr(n, level)·sets(n, level+1)·Controller(id low , idhigh , level)+
readyr(n, level+1)·readys(n, level))·Controller(id low , idhigh , level);

22

bottom control bottom and top control top control
4 nodes 8 nodes 4 nodes 8 nodes 4 nodes 8 nodes

Total system 10.0 103 236 106 1.09 103 96.3 103 368 15.6 103

Mod branch. bis. 3.84 103 39.8 106 236 7.42 103 236 7.42 103

Without top controller 1.80 103 25.3 106 1.80 103 25.3 106 - -
Mod branch. bis. 983 5.9 106 983 5.9 106 - -

Half system 131 93.9 103 131 93.9 103 56 16.8 103

Mod branch. bis. 107 44.1 103 107 44.1 103 33 3.06 103

Table 5: State space sizes for a hierarchical traffic light controller

TLC (id , level :N, has token, busy :B) =
setr(id , level)·TLC (id , level , has token, true)+
(has token∧busy)→show(id , green)·show(id , red)·readys(id , level)·

TLC (id , level , has token, false)+
(has token∧¬busy)→tokens((id+1)mod 4)·TLC (id , level , false, busy)+
(¬has token)→tokenr(id)·TLC (id , level , true, busy);

init ∇{setc,ready
c
,tokenc,show ,set,ready}(Γ{setr|sets→setc,ready

r
|ready

s
→ready

c
,tokenr|tokens→tokenc}(

ControllerTop(0, 3)||Controller(0, 1, 1)||Controller(2, 3, 1)||
TLC (0, 2, true, false)||TLC (1, 2, false, false)||
TLC (2, 2, false, false)||TLC (3, 2, false, false)));

In order to understand the state space of components and setsof sub-components, we look at the size of the
whole state space, the size of the state space without the topcontroller, and the size of half the system with
one controller and two TLCs. The results are listed in table 5for a system with four and eight traffic light
controllers. In case of four traffic lights, a half system hastwo traffic lights and one controller. In case of
eight traffic lights, a half system has four traffic lights andthree controllers. The results of the sizes of the
state spaces are given in the columns under the header ‘bottom control’. In all cases the size of the state
space modulo branching bisimulation is also given. Here allinternal actions are hidden and the external
actionsshow , set andready are visible.

What we note is that the sizes of the state spaces are large. In particular the size of the state space
modulo branching bisimulation of the system without the topcontroller multiplied with the size of the top
controller is almost as large as the size of the total state space. The state space of the top controller for
four traffic lights has 9 states and the one for eight traffic lights has 17 states. It makes little sense to use
compositional verification in this case, but the fact that the top controller hardly restricts the behaviour
of the rest of the system saves the day. If the top controller is more restrictive compositional verification
makes no sense at all.

If we analyse the large state space of this system, we see thatthe independent behaviour of the con-
trollers substantially adds to the size of the state space. We can restrict this by giving more control to
the top controller. Whenever it receives a request toset a traffic light to green, it stores it in a set called
requests. Whenever a traffic light is allowed to go to green, indicated by busy equals false, the top con-
troller non-deterministically selects an index of a trafficlight from requests and instruct it to go to green.
The specification of the new top controller is given below.

proc ControllerTop(id low , idhigh :N) = ControllerTop(id low , idhigh , ∅, false);

ControllerTop(id low , idhigh :N, requests :Set(N), busy :Bool) =∑
n:N(id low≤n ∧ n≤idhigh ∧ n/∈requests)→

set(n)·ControllerTop(id low , idhigh , requests∪{n}, busy)+∑
n:N(id low≤n ∧ n≤idhigh ∧ n∈requests ∧ ¬busy)→

sets(n, 1)·ControllerTop(id low , idhigh , requests \ {n}, true)+∑
n:N(id low≤n ∧ n≤idhigh ∧ n∈requests)→

readyr(n, 1)·ready(n)·ControllerTop(id low , idhigh , requests, false);

23

The resulting state spaces are given in table 5 under the header ‘bottom and top control’. The first
observation is that the sizes of the state spaces without topcontrol and of a half system have not changed.
This is self evident, as only the top controller has been replaced. It is important to note that the sizes of the
state space modulo branching bisimulation of the the systemwithout top controller is almost as large as
the unreduced state space of the full system for four traffic lights. For eight traffic lights the intermediate
reduced state space is much larger than the unreduced systemof the full state space.

We can remove the low level control via the exchange of the token. This is possible because the
top controller now guarantees that at most one traffic light shows green. This is done by replacing the
specification of the traffic light controller by the simple specification below. Note that the communication
topology of the system now has a tree structure.

proc TLC (id , level :N) =
setr(id , level)·show(id , green)·show(id , red)·readys(id , level)·TLC (id , level);

We are not interested anymore in the behaviour of the system with all the traffic light controllers and no
top controller. We only need to look at the sizes of the half systems which can be reduced and both half
systems can directly be combined with the top controller. Note that in this way we circumvent the blow-up
of intermediate processes. Note also that the resulting state spaces modulo branching bisimulation for the
system with ‘top control’ are the same as those for ‘bottom and top control’. This shows that the token
exchange is really immaterial when the top controller guarantees that at most one traffic light goes to green.
Finally, note that the half systems with bottom control are only slightly bigger than the half systems with
top control. From this we can conclude that token exchange byitself does not contribute substantially to
the size of the state space.

10 Guideline VII: Specify external behaviour of sets of sub-components

In the previous section we mentioned that stepwise composition and reduction might be a way to avoid a
blow-up of the state space. But we observed that sometimes the composed behaviour of sets of components
is overly complex, and contains far too many states, even after applying a behavioural reduction.

In order to keep the behaviour of such sets of components small, it is useful to first design the desired
external behaviour of this set of components, and to subsequently design the behaviour of the components
such that they meet this external behaviour. The situation is quite comparable to the implementation of
software. If the behaviour is governed by the implementation, a system is often far less understandable and
usable, than when a precise specification of the software hasbeen provided first, and the software has been
designed to implement exactly the specified behaviour.

The use of external behaviour for various purposes was most notably defended in the realm of protocol
specification [21], although keeping the state space small was not one of these purposes. The word service
was commonly used in this setting for the external behaviour. More recently, the ASD development method
has been proposed, where a system is to be defined by first specifying the external behaviour of a system,
which is subsequently implemented [6]. The purpose here is primarily to allow a designer to keep control
over his system.

In order to illustrate how specifications can be used to keep external behaviour small, we provide a
simple example, and show how a small difference in the behaviour of the components has a distinctive
effect on the complexity in terms of states. From the perspective of the task that the components must
perform, the difference in the description looks relatively minor. The example is inspired by the third
sliding window protocol in [20] which is a fine example of a setof components that provides the intended
task but has a virtually incomprehensible external behaviour.

Our system is depicted in figure 17. The first specification hasa complex external behaviour whereas
the external behaviour of the second is straightforward. The system consists of a device-monitor and a
controller that can be started (start) or stopped (stop) by an external source. The device-monitor observes
the status of a number of devices and sends the defected device number to the controller via the action
broken. The controller comprises a buffer that stores the status ofthe devices.

The first specification can be described as follows. The device monitor is straightforward in the sense
that it continuously performs actionsbrokens(n) for numbersn<M . The parameterbuff represents the

24

DeviceMonitor Controller

brokenc(n) out

start

stop

Figure 17: A system comprises a controller and a device-monitor

buffer by a function from natural numbers to booleans. Ifbuff (i) is true, it indicates that a fault report has
been received for devicei. The boolean parameterb indicates whether the controller is switched on or off
and the natural numberi is the current position in the buffer, which the controller uses to cycle through the
buffer elements. It sends an actionout whenever it encounters an element that is set totrue. The internal
actionint takes place when the controller moves to investigate the next buffer place.

map M :N+;
eqn M=2;
map buff 0:N→B;
eqn buff 0 = λn:N.false;
proc DeviceMonitor =

∑
n:N(n<M)→brokens(n).DeviceMonitor ;

Controller(buff :N→B, b:B, i:N)
=

∑
n:N brokenr(n)·Controller(buff [n→true], b, i)

+ (¬buff (i)∧b)→stop·Controller(buff , false, i)
+ (¬b)→start ·Controller(buff , true, i)
+ (buff (i)∧b)→out ·Controller(buff [i→false], b, (i+1)mod M)
+ (¬buff (i)∧b)→int ·Controller(buff , b, (i+1)mod M)

init τ{brokenc,int}(∇{brokenc,out,start,stop,int}(Γ{brokenr|brokens→brokenc}(
Controller(buff 0, false, 0)||DeviceMonitor)));

The total number of devices is denoted byM . All positions ofbuff are initially set tofalse as indicated
by the lambda expressionλn:N.false. In this specification the controller blocks thestop request if there is
a defected device at indexi of the buffer forming a dependency between external and internal behaviour.
If we calculate the state space of the external behaviour of this system withM = 2 and apply a branching
bisimulation reduction, we obtain the state space depictedin figure 18. Note that the behaviour is remark-
ably complex. In particular a number ofτ -transitions complicate the transition system. But they cannot be
removed as they are essential for the perceived external behaviour of the system.

τ

start

stop

τout

τ

out

τ

stop start

τ

τ

τ

τ

start

start

Figure 18: The system external behaviour (first specification)

Table 6 provides the number of states produced as a function of the number of devices monitored in the

25

system. The table shows that the state space of the original system and the state space capturing the external

M No. of original states No. of external states
1 4 2
2 16 8
3 48 16
4 128 32
5 320 64
6 768 128
10 20.5 103 2.48 103

Table 6: Sizes of the original and external state space of themonitor controller (first specification)

behaviour are comparable. This indicates a complex external behaviour that might complicate verification
with external parties and makes understanding the behaviour quite difficult.

start

stop out

Figure 19: The system external behaviour (second specification)

It might be amazing that the external state space of the system is large. Actual expectation is that it
should be small, matching the specification below, depictedin the transition system in figure 19.

proc Stopped = start·Started ;
Started = out·Started + stop·Stopped ;

init Stopped ;

Investigation of the cause of the difference between the actual and the expected sizes of the transition
systems leads to the conclusion that blocking thestop action whenbuff (i) is true is the cause of the
problem. If we remove this from the condition of the stop action, we obtain the mCRL2 specification
below. In this specification thestop request is processed independently from the rest of the behaviour.

M No. of original states No. of external states
1 4 2
2 16 2
3 48 2
4 128 2
5 320 2
6 768 2
10 20.5 103 2

Table 7: Sizes of the original and external state space of themonitor controller (second specification)

26

map M :N+;
eqn M=2;
map buff :N→B;
eqn buff = λn:N.false;
proc DeviceMonitor =

∑
n:N(n<M)→brokens(n).DeviceMonitor ;

Controller(buff :N→B, b:B, i:N)
=

∑
n:N brokenr(n)·Controller(buff [n→true], b, i)

+ b→stop·Controller(buff , false, i)
+ (¬b)→start ·Controller(buff , true, i)
+ (buff (i)∧b)→out ·Controller(buff [i→false], b, (i+1)mod M)
+ (¬buff (i)∧b)→int ·Controller(buff , b, (i+1)mod M)

init τ{brokenc,int}(∇{brokenc,out,start,stop,int}(Γ{brokenr|brokens→brokenc}(
Controller(buff , false, 0)||DeviceMonitor)));

As can be seen from table 7, the number of states of the non-reduced model remains the same. However,
the reduced behaviour is exactly the one depicted in figure 19for any constantM . This means that it has
only two states. This specification is much more usable for stepwise composition and reduction than the
first one we provided.

11 Conclusion

We have shown that different specification styles can substantially influence the number of states of a
system. We believe that an essential skill of a behavioural modellist is to make models such that the insight
that is required can be obtained. If a system is to be designedsuch that it provably satisfies a number of
behavioural requirements, then the behaviour must be sufficiently small to be verified. If an existing system
is modelled to obtain insight in its behaviour, then on the one hand the model should reflect the existing
system sufficiently well, but on the other hand the model of the system should be sufficiently simple to
allow to answer relevant questions about the behaviour of the system.

As far as we can see hardly any attention has been paid to the question how to make behavioural models
such that they can be analysed. All attention appears to be directed to the question of how to analyse given
models better. But it is noteworthy that it is very common in other modelling disciplines to let models be
simpler than reality. For instance in electrical engineering models are as much as possible reduced to sets of
linear differential equations. In queueing theory, only a few queueing models can be studied analytically,
and therefore, it is necessary to reduce systems to these standard models if analytical results are to be
obtained.

We provided seven guidelines, based on our experience with building models of various systems. There
is no claim that this set is complete, or even that these sevenguidelines are the most important model reduc-
tion techniques. What we hope is that this paper will induce research such that more reduction techniques
will be uncovered, described, classified and subsequently become a standard ingredient in teaching be-
havioural modelling.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing push and pull for data broadcast. Proceedings of
the 1997 ACM SIGMOD international conference on Managementof data, pp. 183-194. 1997.

[2] F. Arbab. Reo: A Channel-based coordination model for component composition. Mathematical
Structures in Computer Science, Cambridge University Press, 14(3):329-366, 2004.

[3] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theoretical Computer Sci-
ence 18, 1990.

[4] G. Berry , G. Gonthier, The ESTEREL synchronous programming language: design, semantics, im-
plementation. Science of Computer Programming, 19:87-152, 1992.

27

[5] S.C.C. Blom and J.C. van de Pol. State space reduction by proving confluence. In E. Brinksma and
K.G. Larsen, editors, Proceedings of 14th Int. Conf. on Computer Aided Verification (CAV’02). Lec-
ture Notes in Computer Science 2404, pp. 596-609, Springer Verlag, 2002.

[6] G.H. Broadfoot. ASD case notes: costs and benefits of applying formal methods to industrial con-
trol software. In proceedings of formal methods conference(FM 2005). LNCS 3582, pp. 548-551.
Springer Verlag, 2005.

[7] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM Transactions
on Programming Languages and Systems (TOPLAS) 19(2):253-291, 1997.

[8] Formal Methods for Industrial Critical Systems. Conference Proceedings. 1996–2010.

[9] Formal Methods in System Design. Journal. Springer Verlag, 1992–2010.

[10] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2006: A toolbox for the onstruction and anal-
ysis of distributed processes. Proceedings of the 19th International Conference on Computer Aided
Verification (CAV’2007, Berlin, Germany). Volume 4590 of Lecture Notes in Computer Science,
pp. 158-163. Springer Verlag, 2007.

[11] R.J. van Glabbeek and W.P. Weijland. Branching time andabstraction in bisimulation semantics.
Journal of the ACM 43(3):555-600, 1996.

[12] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J. van Weerdenburg. Analysis of
distributed systems with mCRL2. In M. Alexander, W. Gardner, editors, Process Algebra for Parallel
and Distributed Processing. Chapman Hall, pp. 99-128, 2009.

[13] J.F. Groote and M.A. Reniers. Modelling and analysis ofcommunicating systems. To appear 2011.

[14] J.F. Groote and M.P.A. Sellink. Confluence for process verification. Theoretical Computer Science.
170(1-2):47–81, 1996.

[15] G.J. Holzmann. The SPIN model checker. Primer and reference manual. Addison-Wesley, 2003.

[16] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Int. Journal on Software Tools for Tech-
nology Transfer, 1(12):134-152, October 1997.

[17] F.J. Lin, P.M. Chu, and M.T. Liu. Protocol verification using reachability analysis: The state
space explosion problem and relief strategies. ACM SIGCOMMComputer Communication Review.
17(5):126–135, 1987.

[18] R. Milner. A Calculus of communicating systems. Lecture Notes in Computer Science 92, Springer
Verlag, 1980.

[19] A. Osaiweran, M. Boosten, and M.R. Mousavi. Analyticalsoftware design: Introduction and indus-
trial experience report. Eindhoven University of Technology. Technical report CSR-10–01, 2010.

[20] A.S. Tanenbaum. Computer networks. Second edition. Prentice Hall, 1988.

[21] C.A. Vissers, and L. Logrippo. The importance of the service concept in the design of data com-
munications protocols. In M. Diaz, editor, Protocol Specification, Testing and Verification (proc. of
the IFIP WG 6.1 Fifth International Workshop on Protocol Sepcification, Testing and Verification),
Elsevier North Holland, pp. 3-17, 1986.

[22] C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Specification styles in distributed systems
design and verification. Theoretical Computer Science 89:179-206, 1991.

[23] J.M. Voas. K.W. Miller. Software testability: the new verification. IEEE Software 12(3):17-28, 1995.

[24] L.-T. Wang, C.-W. Wu and X. Wen. Design for testability.VLSI test principles and architectures.
Morgan Kaufmann Publishers. 2006.

[25] www.mcrl2.org. 2010.

28

