EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Specification guidelines to avoid the state space explosion
problem

Citation for published version (APA):
Groote, J. F., Kouters, T. W. D. M., & Osaiweran, A. A. H. (2010). Specification guidelines to avoid the state
space explosion problem. (Computer science reports; Vol. 1014). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/90a1c290-102b-485e-86cf-d9ab0df8bdea

Specification Guidelines to avoid the
State Space Explosion Problem

J.F. Groote, T.W.D.M. Kouters, and A.A.H. Osaiweran
Eindhoven University of Technology
Department of Computer Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

J.F.Goote@ue.nl, T.WD. M Kouters@tudent.tue.nl, A A H GCsaiweran@ ue. nl

Abstract

During the last two decades we modelled the behaviour of a large nurhibgstems. We noted that
different styles of modelling had quite an effect on the size of the statesp the modelled system.
The differences were so substantial that some specification styles ledttmfmany states to verify the
correctness of the model, whereas with other styles the number of sede®wmall that verification was
a straightforward activity. In this article we summarise our experiengertwiding seven specification
guidelines. For each guideline we provide an application from the realnaffittight controllers for

which we provide a ‘bad’ model with a large state space, and a ‘goodeimmith a small state space.

1 Introduction

Behavioural specification of computer systems, distridbatgorithms, communication protocols, business
processes, etc. is gaining popularity. Behavioural spetifin refers here to discrete behaviour, such
as the exchange of messages, reading digital sensors atahisgilights on and off. Specifying the
discrete behaviour of systems before construction helpssiing on the behaviour, without simultaneously
being bothered with programming or other implementatictaitke This allows for clearer specification of
systems, both increasing usability and reducing flaws ictige. Very importantly, it also helps to provide
adequate documentation.

These days, we and others have ample experience in systégn te®ugh behavioural specification.
There are for instance well-established workshops anch@dsion this topic [8, 9]. The primary lesson is
that, although, behavioural specification is extremelypfu| it is not enough. We need to verify that the
designed behaviour is correct, in the sense that it eithisfiea certain behavioural requirements or that it
matches a compact external description. It turns out ttsatrélie behaviour is so complex, that a flawless
design without verification is virtually impossible.

As most systems are constructed without using any behaliwerification, it is often the case that
the behaviour of existing systems is problematic and notwelerstood. This provides the second use of
behavioural specification, namely to model existing systémobtain a better understanding of what they
are doing. The model can be investigated to prove that thersyalways satisfies certain requirements.
There are no other ways to obtain such insight. For instaxicaustive testing can increase the confidence
that a system satisfies a certain requirement, but it wilenevovide certainty.

When verifying system behaviour, the state space explosialnigm kicks in. If we do not pay atten-
tion, the behaviour of any real system quickly has so martgsthat despite the use of clever verification
algorithms and powerful computers, verification is oftealpematic. Three decades of improvements of
verification technology did not provide the means to overedhe state space explosion problem.

We believe that the state space explosion problem must &lsdeblt with in another way, namely
by designing models such that their behaviour can be verifla call thisdesign for verifiabilityor
modelling for verifiability This is comparable to ‘design for testability’, which is imlg used in esp.

microelectronics to allow to test a product for productiawi$ [24], and which is slowly finding its way
into software engineering [23].

What we propose is that systems are designed such that tasgsates of their behavioural models are
small. This does impose certain restrictions on how systanshehave. For instance, maintaining local
copies of data throughout a system blows up the state spadds @herefore not recommended. When
modelling existing systems, we advocate that sometimemthgiels are shaped such that the state space
does not grow too much, even if this means that the actua syt not completely faithfully modelled. It
is better to obtain insight with an approximate model, thettigg no insight at all. Note that this approach
is very common in other engineering disciplines.

Compared to the development of state space reduction taadsi design for verifiability is a barely
addressed issue. The best we could find is [17], but it prignaddresses improvements in verification
technology, too. Specification styles from the perspeafvexpressiveness have been addressed [22], but
verifiability is also not really an issue here.

In this article we provide seven specification guidelines the learned by specifying complex realistic
systems (e.g. traffic control systems, medical equipmemeastic appliances, communication protocols).
For each specification guideline we provide an applicatiomfthe domain of traffic light controllers. The
reason for taking this domain is that we felt the need to whis article, when working on a traffic light
controller for a crossing with 12 traffic lights and 24 roadsars. The initial model was so complex that
it was even difficult to verify the correctness requirementeen traffic was restricted to 2 lanes. After
rewriting the model, all correctness requirements for thecontrol system could be verified without any
restriction on the use of traffic lanes, road sensors or drhdfints.

For each guideline we give two examples. The first one doesaketthe guideline into account and
the second does. Generally, the first specification is vetyrak but leads to a large state space. Then
we provide a second specification that uses the guidelineshtéf by a transition system or a table that
the state space that is using the guideline is much smallee. ‘Gad’ and the ‘good’ specification are in
general not behaviourally equivalent (for instance in thiese of branching bisimulation) but as we will
see, they both capture the application’s intent. All speaifons are written in mCRL2, which is a process
specification formalism based on process algebra [12, 25].

In hindsight, we can say that it is quite self evident why thidglines have a beneficial effect on
the size of the state spaces. Some of the guidelines ar@lgedte commonly used, such as reordering
information in buffers, if the ordering is not important. &hse of synchronous communication, although
less commonly used, also falls in this category. Other dimee such as information polling are not really
surprising, but specifiers appear to have a natural tendenege information pushing instead. The use of
confluence and determinacy, and external specificationsomégreign to most specifiers.

Although we provide a number of guidelines that we believeraally important for the behavioural
modellist, we do not claim completeness. Without doubt weehaverlooked a humber of specification
strategies that are helpful in keeping state spaces smafielly this document will be an inspiration to
investigate state space reduction from this perspectibchwltimately can be accumulated in effective
teaching material, helping both students and working firacers to avoid the pitfalls of state space ex-
plosion.

Acknowledgements We thank Sjoerd Cranen, Helle Hansen, Jeroen Keiren, MatRaffelsieper, Frank
Stappers, Ron Swinkels, Marco van der Wijst, and Tim Willerfts their useful comments on the text.

2 A short introduction into mCRL2

Before getting to the design guidelines for avoiding stategce explosion we give a short exposition of
the specification language mCRL2. We only restrict ourseteethe those parts of the language that we
need in this paper. Further information can be obtained frarious sources, but good places to start are
[12, 25]. Especially, at the websitewv. ntr | 2. or g the toolset for mMCRL2 is available, as well as lots
of documentation and examples.

The abbreviation mCRL2 stands for micro Common Representatanguage 2. It is a specifica-
tion language that can be used to specify and analyse the@ibahaf distributed systems and protocols.

MCRL2 is based on the Algebra of Communicating ProcesseB,(I8)), which is extended to include data
and time.

We first describe the data types. Data types consist of spddumctions working upon these sorts.
There are standard data types such as the bool@ythé positive numbers\+) and the natural numbers
(N). All sorts represent their mathematical counterpart. tag number of natural numbers is unbounded.

All common operators on the standard data sorts are availség use~ for equality between elements
of a data type in order to avoid confusion withwhich we use as equality between processes. We also use
if (¢, t, u) representing the termif the conditionc holds, andu if ¢ is not valid.

For any sortD, the sortsList(D) and Set(D) contain the lists and sets over domdn Prepending
an element to a listl is denoted byi>l. Getting the last element of a list is denotedrasad(l). The
remainder of the list after removing the last element is tethasrtail({). The length of a list is denoted
by #(1). Testing whether an element is in a sét denoted ades. The set with only elementis denoted
by {d}. Set union is written as; Us, and set difference as \ s.

Given two sortsD; and D, the sortD;— D5 contains all functions from the elements frain to
elements ofD,. We use standard lambda notation to represent functioms AE:N.x+1 is the function
that addd to its argument. For a functiofiwe use the notatiofijt—u] to represent the functiofi except
that if f[t—u]| is applied to, the valueu is returned. We calf [t—wu] a function update.

Besides using standard types and type constructors sligstandSet users can define their own sorts.
In this paper we most often use user defined sorts with a finiteber of elements. A typical example is
the declaration of a sort containing the three aspgets:, yellow andred of a traffic light.

sort Aspect = struct green | yellow | red;

A more complex user defined sort that we use is a message miogta number that can either be
active or passive. The number in each message can be obtainagplying the functioryet_number
to a message. The functian_active is true when applied to a message of the farmive(n) and false
otherwise.

sort Message = struct active(get_number:N)?is_active | passive(get_number:N);

Using themap keyword elements of data domains can be declared. By intiogwan equation the
element can be declared equal to some expression. An exafrfdeause is the following. The constant
is declared to be equal Band f is equal to the function that returns false for any naturahber.

map n:N;
f:N—B;

eqgn n=3;
f = Ax:N.false;

This concise explanation of data types is enough to undetste paper.

The use of data is the primary source why state spaces grosf bahd. A system with only two 32 bit
integers hag.8 109 states which for quite some time to come will not fit into thennogy of any computer
(unless compression techniques are used). It is therefoyeimportant to restrict the possible values data
types can have. Often it is wise to model data domains inattstategories. E.g. instead of using a height
in millimetres, one can abstract this to the three valaas middleandhigh.

The behaviour of systems is characterised by atomic actietons can represent any elementary ac-
tivity. Here, they typically represent setting a traffichtgo a particular colour, getting a signal from a sen-
sor or communicating among components. Actions can cateymizameters. For exampleg(id, false)
could typically represent that the sensor with identifié¢rwas not triggered (indicated by the boolean
false).

In an mCRL2 specification, actions must be declared as itatidaelow, where the types indicate the
sorts of the data parameters that they carry.

act trig : N x B;
send : Message;
my_turn;

Figure 1: The transition system of the procé&sinter

In the examples in this article we have omitted these detdarmas they are clear from the context.

If two actionsa andb happen at the same time, then this is called a multi-actidngtwis denoted
asalb. The operator|' is called the multi-action composition operator. Any nuenlf actions can be
combined into a multi-action. The order in which the actioesur has no significance. S@p|c is the
same multi-action ag|a|b. The empty multi-action is written as. It is an action that can happen, but
which cannot directly be observed. It is also called the &émddr internal action. The use of multi-actions
can be quite helpful in reducing the state space, as indi¢atguideline Il in section 5.

Actions and multi-actions can be composed to form proces$bs choice operator, used ast ¢
for processep andg, allows the process to choose between two processes. Thadfien that is done
determines the choice. The sequential operator, denoteddoy (), puts two behaviours in sequence.
So, the process b + c-d can either perform actioa followed by, or ¢ followed byd.

Theif-thenelseoperatorec — p ¢ ¢, allows the conditiore to determine whether the processr q is
selected. The else part can always be omitted. We then gebtiditional operator of the form — p.

If ¢ is not valid, this process cannot perform an action. It deadi. This does not need to be a problem
because using the operator alternative behaviour may be possible.

The following example shows how to specify a simple recergivocess. It is declared using the
keywordproc. It is a timer that cyclically counts up till four using thetamn tick, and can beesetat any
time. Note that the name of a process, in this dasanter can carry data parameters. The initial state
of the process iounter(0), i.e., the counter starting with argumeht Initial states are declared using
the keywordinit. As explained below, we underline actions, if they are neblived in communication
between processes.

proc Counter(n:N)
= (n<4) — tick-Counter(n+1) ¢ tick- Counter(0)
+ reset- Counter(0);

init Counter(0);

In figure 1 the transition system of the counter is depictedomsists of five states and ten transitions. By
following the transitions from state to state a run throughgystem can be made. Note that many different
runs are possible. A transition system represents all pledsehaviours of the system, rather than one or a
few single runs. The initial state is statewhich has a small incoming arrow to indicate this. The weci
mapping from algebraic processes is given by the operdts@maantics described in [13]. We will not go
into this precise mapping, but it is quite straightforwalfthe transition systems referred to in this article
are all generated using the mCRL2 toolset [25].

Sometimes, it is required to allow a choice in behaviour,ethgling on data. E.g., for the counter it
can be convenient to allow to set it to any value larger than aed smaller than five. Using the choice
operator this can be written as

set(1)- Counter(1) + set(2)-Counter(2) + set(3)- Counter(3) + set(4)- Counter(4)
Especially, for larger values this is inconvenient. Theref the sum operator has been introduced. It is

written as) | p(z) and it represents a choice among all proceggesfor any value ofr. The sortN is

4

reset
reset
reset
Teset

reset tick tick tick tick

set(1)
set(2)

set(3)
set(4)

tick

Figure 2: TheCounter extended withset transitions

just provided here as an example, but can be any arbitrarydote that the sort in the sum operator can be
infinite. To generate a finite state space, this infinite ranget be restricted, for instance by a condition.
The example above uses such a restriction and becomes:

Z(0<x A z<5) — set(x)-Counter(zx)
x:N

Just for the sake of completeness, we formulate the exanfiphee @ounter again, but now with this ad-
ditional option to set the counter, which can only take plfeeequals). This example is a very typical
sequential process (sequential in the meaning of not pgrdih figure 2 we provide the state space of the
extended counter.

proc Counter(n:N)
= (n<4) — tick-Counter(n+1) o tick- Counter(0)
+ > .n(n0 A 0<z A 2<5) — set(z)-Counter(x)
+ reset- Counter(0);

init Counter(0);

Processes can be put in parallel with the parallel opetatormodel a concurrent system. The be-
haviour ofp || ¢ represents that the behaviourandgq is parallel. It is an interleaving of the actions
of p andq where it is also possible that the actionspafind ¢ happen at the same time in which case a
multi-action occurs. Say || b represents that actiomsandb are executed in parallel. This behaviour is
equal toa-b + b-a + alb.

Parallel behaviour is the second main source of a state spg@besion. The number of statesof| ¢
is the product of the number of statesppéndq. The state space of processes that each havestates
is m™. Forn andm larger thanl0 this is too big to be stored in the memory of almost any compate
an uncompressed way. Using the allow operator introduc#tkeinext paragraph, the number of reachable
states can be reduced substantially. But without care th&beu of states of parallel systems can easily
grow out of control.

In order to let two parallel components communicate, theroamication operator' and the allow
operatoVy are used wheré€' is a set of communications afdis a set of data free multi-actions. The idea
behind communication is that if two actions happen at theestame, and carry the same data parameters,
they can communicate to one action. In this article we usectimyention that actions with a subscript
r (from receive) communicate to actions with a subscsiffrom send) into an action with subscript
(from communicate). Typically, we Writ€y, 4, —a.}(p || ¢) to allow actiona, to communicate withu,
resulting ina. in a proces® | ¢. In order to make the distinction between internal commatitig actions
and external actions clearer, we underline all externé&astn specifications (but not in the text or in the
diagrams). External actions are those actions communigatith entities outside the described system,
whereas internal actions happen internally in componehtiesystem or are communications among
those components.

To enforce communication, we must also express that actipasida,. cannot happen on their own.
The allow operator explicitly allows certain multi-act®to happen, and blocks all others. So, in the ex-
ample from the previous paragraph, we must &g , to blocka, anda, enforcing them to communicate
into a.. So, a typical expression putting behaviopendq in parallel, letting them communicate via action
a, Is:

v{ac}(F{arms—mc}(p H Q))

Of course, more processes can be put in parallel, and maomacan be allowed to communicate.

Actions that are the result of a communication are in gerietatnal actions in the sense that they take
place between components of the system and do not commemiitatthe outside world. Using the hiding
operatorry actions can be made invisible. So, for a process that cerwistsingle actiom, 7¢, (a) is the
empty multi-actionr, an action that does happen, but which cannot directly bergbd.

If a system has internal actions, then the behaviour cancheeel. For instance in the process-pitis
impossible to observe the and this behaviour is equivalentdep. The most common behavioural reduc-
tions are weak bisimulation and branching bisimulation, [1B. We will not explain these equivalences
here in detail. For us it suffices to know that they reduce #tealiiour of a system to a unique minimal
transition system preserving the essence of the exterhal/mmir. This result is called the transition system
modulo weak/branching bisimulation. This reduction iafsubstantial.

3 Overview of design guidelines

In this section we give a short description of the seven dindg that we present in this paper. Each
guideline is elaborated in its own section with an examplenglthe guideline is not used, and an intuitively
equivalent description where the guideline is used. Weigeoinformation on the resulting state spaces,
showing why the use of the guideline is advantageous.

| Information polling . This guideline advises to let processes ask for informatichenever it is
required. The alternative is to share information with ottemponents, whenever the information
becomes available. Although, this latter strategy cleadyeases the number of states of a system,
it appears to prevail over information polling in most sfieations that we have seen.

Il Global synchronous communication If more parties communicate with each other, it can be that a
component communicates with a componeitand subsequently, componeéninforms a compo-
nent3. This requires two consecutive communications and thezefgo state transitions. By using
multi-actions it is possible to let componentommunicate with componegtthat synchronously
communicates with a componehit This only requires one transition. By synchronising commu
nication over different components, the number of statdh@bverall system can be substantially
reduced.

Il Avoid parallelism among components If components operate in parallel, the state space grows
exponentially in the number of components. By sequentigithe behaviour of these components,
the size of the total state space is only the sum of the sizéiseo$tate spaces of the individual
components. In this latter case state spaces are small aptbeanalyse, whereas in the former case
analysis might be quite hard. Sequentialising the behawan for instance be done by introducing
an arbiter, or by letting a process higher up in the procemstthy to allow only one sub-process to
operate at any time.

IV Confluence and determinacy When parallel behaviour cannot be avoided, it is useful taleho
such that the behaviour isconfluent. In this case-prioritisation can be applied when generating
the state space, substantially reducing the size of the spaice. Modelling a system such that it is
T-confluent is not easy. A good strategy is to strive for deteacy of behaviour. This means that
the ‘output’ behaviour of a system must completely be dergeohby the ‘input’. This is guaranteed
whenever an internal action (e.g. receiving or sending asagesfrom/to another component) can be
done in a state of a single component, then no other actiobealone in that state.

V Restrict the use of data The use of data in a specification is a main cause for staeesgxplosion.
Therefore, it is advisable to avoid using data wheneveriplesdf data is essential, try to categorise
it, and only store the categories. For example, insteaddfgta height in millimetres, stoteo_low,
right_heightandtoo_high. Avoid buffers and queues getting filled, and if not avoideto} to apply
confluence ane-prioritisation. Finally, take care that data is only stbie one way. E.g., storing
the names of the files that are open in an unordered buffer iastew The buffer can be ordered
without losing information, substantially reducing thatstfootprint.

\Y

Compositional design and reduction If a system is composed out of more components, it can be
fruitful to combine them in a stepwise manner, and reducé satof composed components using
an appropriate behavioural equivalence. This works weléfcomposed components do not have
different interfaces that communicate via not yet compaz®dponents. So typically, this method
does not work when the components communicate in a ringéggpbut it works very nicely when
the components are organised as a tree.

Vi

Specify the external behaviour of sets of sub-component#f the behaviour of sets of components
are composed, the external behaviour tends to be overlyleanip particular the state space is often
larger than needed. A technique to keep this behaviour sstdl separately specify the expected
external behaviour first. Subsequently, the behavioulseo€bmponents are designed such that they
meet this external behaviour.

4 Guideline I: Information polling

One of the primary sources of many states is the occurrendatafin a system. A good strategy is to only
read data when it is needed and to decide upon this dataydfteln the data is directly forgotten. In this
strategy data is polled when required, instead of pushetbetthat might potentially need it. An obvious
disadvantage of polling is that much more communicatioresded. This might be problematic for a real
system, but for verification purposes it is attractive, asnhmber of states in a system becomes smaller
when using polling.

Currently, it appears that most behavioural specificatimgsinformation pushing, rather than informa-
tion polling. E.g., whenever some event happens, thisinédion is immediately shared with neighbouring
processes.

Furthermore, we note that there is also a discussion ofrimdtion pulling versus information pushing
in distributed system design from a completely differemspective [1]. Here, the goal is to minimise
response times of distributed systems. If information wheeded must be requested (=pulled) from other
processes in a system, the system can become sluggish. Bl ather hand, if all processes inform
all other processes about every potentially interestirgg\communication networks can be overloaded,
also leading to insufficient responsiveness. Note that wéepthe verb ‘to poll’ over ‘to pull’, because it
describes better that information is repeatedly requested

In order to illustrate the advantage of information pollimge provide two specifications. The first one
is ‘bad’ in the sense that there are more states than in tlimdespecification. We are now interested in a
system that can be triggered by two sengeig, andirig,. After both sensors fire a trigger, a traffic light
must switch from red to green, from green to yellow, and sgbsstly back to red again. For setting the
aspect of the traffic light, the actiofat is used. One can imagine that the sensors are proximity et
measure whether cars are waiting for the traffic light. Nbt it can be that a car activates the sensors,
while the traffic light shows another colour than red. In feg@rthis system is drawn.

First, we define a data typéspect which contains the three aspects of a traffic light.

sort Aspect = struct green | yellow | red;

The pushing controller is very straightforward. The ocenoe oftrig, and trig, indicate that the
respective sensors have been triggered. In the pushinggtrahe controller must be able to always
deal with incoming signals, and store their occurrencedteriuse. Below, the pushing process has two
booleans; andb, for this purpose. Initially, these booleans are false, &edraffic light is assumed to be

trig,
set

trig,

Figure 3: A simple traffic light with two sensors

red. The booleans becortreeif a trigger is received, and are setfadse when the traffic light starts with
a green, yellow andred cycle.

proc Push(by,ba:B, c: Aspect)
= trig,-Push(true, by, c)
+ trigy- Push(by, true, c)
+ (byAbaAcrered)— set(green)- Push(false, false, green)
+ (crgreen)— set(yellow)- Push(by, by, yellow)
+ (cryellow)—set(red)- Push(by, by, red);
init Push(false, false, red);

The polling controller differs from the pushing controllarthe sense that the actionsg, andtrig, now
have a parameter. It checks whether the sensors have bggeréd using the actionsig, (b) andirig, ().
The boolearb indicates whether the sensor has been triggemac:(triggered,false: not triggered). In
Poll, sensortrig, is repeatedly polled, and when it indicates byrae that it has been triggered, the
process goes tBoll;. In Poll; sensottrig, is polled, and when both sensors have been trigg€eét} is
invoked. InPoll, the traffic light goes through a colour cycle and backtd.

proc Poll = trig, (false)-Poll + trig, (true)-Polly;
Polly = trig,(false)-Polly + trigy(true)- Polls;
Polly = set(green)-set(yellow)-set(red)- Poll;
init Poll;

The transition systems of both systems are drawn in figurd theleft the diagram for the pushing system
is drawn, and at the right the behaviour of the polling trdfjbt controller is depicted. The diagram at the
left has 12 states while the diagram at the right has 5, stgpthizt even for this very simple system polling
leads to a smaller state space.

5 Guideline II: Use global synchronous communication

Communication along different components can sometimeadielled by synchronising the communi-
cation over all these components. For instance, insteadoolelfing that a message is forwarded in a
stepwise manner through a number of components, all cormporagage in one big action that says that
the message travels through all components at once. In ghedise there is a new state for every time the
message is forwarded. In the second case the total comntionicely requires one extra state. The use
of global synchronous communication can be justified if pagsthis message is much faster than the other
activities of the components, or if passing such a messdgsignificant relative to the other activities.

Several formalisms use global synchronous interactiores\aay to keep the state space of a system
small. The co-ordination language REO uses the conceptexgicitly [2]. A derived form can be found
in Uppaal, which uses committed locations [16].

To illustrate the effectiveness of global synchronous caemigation, we provide the system in figure 5.
Atrigger signal enters at, and is non-deterministically forwarded \ligor c. to one of the two components
at the right. Non-deterministic forwarding is used, to méhke application of confluence impossible (see
guideline V). One might for instance think that there is angtex algorithm that determines whether the
information is forwarded viéa, or c., but we do not want to model the details of this algorithm.eAfieing

trigo

set(red)
set(red)

trig, trig, (false)

trigo
G set(red)
o\
set(yellow)
set(red))
trig, trig,
set(yellow)
. irig
trig, W
2
trig2C trig
2

set(green) trig, (true)

set(red)
trig, (false)

trig, (true)

set(yellow)

trig,

set(yellow)

set(yellow)

set(green)

trigy
Figure 4: Transition systems of push/poll processes

passed via, or c., the message is forwarded to the outside worldMiae. To illustrate the effect on state
spaces, it is not necessary that we pass an actual messdgeegfore it is left out.

o 4

Ce

Figure 5: Synchronous/asynchronous message passing

The asynchronous variant is described below. Pro€egserformsa, and subsequently perforrhgor
cs, I.e. sending via or c. The procesg’s reads via by b,., and then performs @& The behaviour of’s is
similar. The whole system consists of the procegses’s andCs whereb,. andb, synchronise to become
b., ande, andc, becomec.. The behaviour of this system contains 8 states and is @epictfigure 6 at
the left.

proc Ci =a-(bs+cs)-Ch;
Cy = b,-d-Cy;
C3 = ce-Cs;

init Viabe.code} (Lo, b —be.crcs—ce} (C1]|Cal|C3));

The synchronous behaviour of this system can be charasddristhe following mCRL2 specification.
Procesg”; can perform a multi-actiom|b; (i.e. actiona andbs happen exactly at the same time) or a

alcele albc|d

Figure 6: Transition systems of a synchronous and an asynabis process

multi-actiona|c,. This represents the instantaneous receiving and fornguafia message. Similarlg,
and Cj5 read and forward the message instantaneously. The effdwtishe state space only consists of
one state as depicted in figure 6 at the right.

proc Ci = albs-C1 + a|cs-Chy;
Csy = br|d'02;
CB = CT’|§'C3;
it Viajelealveld} (T, b, —bercoles—eo} (C1][C2][C3));

The operatoiV (4/c |e,alv. |4} @llows the two multi-actiong|c.|e anda/b.
both cases these three actions must happen simultaneously.

d, enforcing in this way that in

6 Guideline IlI: Avoid parallelism among components

When models have many concurrent components that can indempnperform an action, then the state
space of the given model can be reduced by limiting the nurabeomponents that can simultaneously
perform activity. Ideally, only one component can perforativaty at any time. This can for instance
be achieved by one central component that allows the othrepepents to do an action in a round robin
fashion.

It very much depends on the nature of the system whether thisdf modelling is allowed. If the
primary purpose of a system is the calculation of valuesyeetiglising appears to be defendable. If on
the other hand the sub-components are controlling all kiridievices, then the parallel behaviour of the
sub-components might be the primary purpose of the systeiseguentialisation can not be used.

In some specification languages explicit avoidance of fta¢haviour between components has been
used. For instance Esterel [4] uses micro steps which caalbelated per component. In Promela there is
an explicit atomicity command, grouping behaviour in onmponent that is executed without interleaving
of actions of other components [15].

As an example we consid@f traffic lights guarding the same number of entrances of apat&t. See
figure 7 for a diagrammatic representation wh&fe- 3. A sensor detects that a car arrives at an entrance.
If there is space in the garage, the traffic light shows greesdme time interval. There is a detector at the
exit, which indicates that a car is leaving. The number of dathe garage cannot excead

The first model is very simple, but has a large state spaceh &affic light controller ('L C") waits
for a trigger of its sensor, indicating that a car is waitikging theenter, action it asks th&oordinator
for admission to the garage. If a car can enter, this actiafidgsved by the co-ordinator and a traffic light

10

Coordinator M

enter enter
enter
show TLC(1) show TLC(2) show TLC(3)
trig T trig T trig T

Figure 7: A parking lot with three entrances

cycle starts. Otherwise thenter, action is blocked. Th&'vordinator has an internal counter, counting
the number of cars. Whenlaave action takes place, the counter is decreased. When a caovgedlito
enter (viaenter,.), the counter is increased.

proc Coordinator(count:N)
= (count>0)—leave - Coordinator(count—1)
+ (count<N)—enter,- Coordinator(count+1);

TLC(id:NV)
= trig(id)-enterg-show(id, green)-show(id, red)- TLC(id);

init V{M,show,enterc,leave}(r{enters |enter,—enter, }(Coordmatm(O) ” TLC(l) H TLC(Q) ” TLC(S)))’

The state space of this control system grows exponentiatly thhe number of traffic light controllers. In
columns 2 and 4 of table 1 the sizes of the state spaces ferdtiff)\/ are shown. It is also clear that the
number of parking placed only contributes linearly to the state space.

Following the guideline, we try to limit the amount of paslbehaviour in the traffic light controllers.
So, we put the initiative in the hands of the co-ordinatortie second model. It assigns the task of
monitoring a sensor to one of the traffic light controllersagtime. The traffic controller will poll the
sensor, and only if it has been triggered, switch the traiflatito green. After it has done its task, the
traffic light controller will return control to the co-ordator. Of course if the parking lot is full, the traffic
light controllers are not activated. Note that in this seterample, only one traffic light can show green
at any time, which might not be desirable.

proc Coordinator(count:N, active_id:NT)
= (count>0)—leave- Coordinator(count—1, active_id)
+ (count<N)—enters(active_id)- Y, » enter,(b)-
Coordinator(count+if (b, 1,0), if (active_id=M, 1, active_id+1));

TLC(id:NT)
= enter,(id)-
(trig(id, true)-show(id, green)-show (id, red)-enter(true)+
trig(id, false)-enter4(false)

TLO(id);
init v{trzq show enterc,leave}(r{enter lenter, —enter.}
(Coordinator(0,1)||TLC(1)||TLC(2)|| TLC(3)));

As can be seen in table 1 the state space of the second mogeirowls linearly with the number of traffic
lights.

11

M | parallel V. = 10) restricted (V = 10) | parallel (Vv = 100) restricted {V = 100)
1 44 61 404 601
2 176 122 1,616 1,202
3 704 183 6,464 1,803
4 2,816 244 25,856 2,404
5 11,264 305 103, 424 3,005
6 45,056 366 413, 696 3,606
10 11.5108 610 106 108 6,010

Table 1: State space sizes of parking lot controll@fs fo. of traffic lights,M: no. of parking places)

7 Guideline IV: Confluence and determinacy

In [14, 18] it is described how-confluence and determinacy can be used to assist procéfssation. By
modelling such that a systemvisconfluent, verification can become substantially easiee formulations
in [14, 18] are slightly different; we use the formulationfin [14] because it is more suitable for verification
purposes.

A transition system is-confluentiff for every states that has an outgoing and an outgoing:-

transition,s — s’ ands — s”, respectively, there is a sta#¥’ such thats’ —— s/ ands” — s'"’.
This is depicted in figure 8. Note thatcan also be &, but then the states ands” must be different.

Figure 8: Confluent case

When traversing a state space of-@onfluent transition system, it is allowed to ignore allgnihg
transitions from a state that has at least one outgeitrgnsition, except one outgoingtransition. This
operation is called--prioritisation. It preserves branching bisimulation equivalence [11] Hretefore
almost all behaviourally interesting properties of thdestgpace. There is one snag, namely that if the
resulting transitions form a loop, then the outgoing transitions of arf the states on the loop must
be preserved. The first algorithm to generate a state spaites agiplying 7-prioritisation is described in
[5]. Whenr-prioritisation has been applied to a transition systemgdaarts of the ‘full’ state space have
become unreachable. Of the remaining reachable stateg,taae a single outgoing-transitions — s’.

The states ands’ are branching bisimilar and can be mapped onto each otliectieély removing one
more state. Furthermore, all states on-Bop are branching bisimilar and can therefore be mergtd in
one state, too.

If a state space is-confluent, then-prioritisation can have a quite dramatic reduction of tize of
the state space. This technique allows to generate thdtizeor state space of highly parallel systems
with thousands of components. In figure @&onfluent transition system is depicted before and after
application ofr-prioritisation, and the subsequent merging of branchiegtilar states.

To employr-prioritisation, a system must be defined such thatitt®nfluent. The main rule of thumb
is to take care that if an internal action can be performedstate of a component, no other action can
be done in that state. These internal actions include sgndfarmation to other components. If data is

12

Il a T |
O O O O
T T T T
a T a l
O O O O O
d d d d d d d
a T a T a
O O O O O

Figure 9: The effect of-prioritisation and branching bisimulation compression

received, it must be received from only one component. Acsiele among different components offering
data is virtually always non confluent. Note that in partieubushing information generally destroys
confluence. Pushed information must always be received) pasticular it must be received while internal
choices are made and information is forwarded.

tri le

- SensorC(1) sl CrossingC(1) Ve LightC(1) shou,
turn,

tri , cycle

- SensorC(2) adlad- CrossingC(2) e LightC(2) show,

Figure 10: A simple traffic light with two triggers

We model a simple crossing system that contains two trafjlatdi. First, we are not bothered about
confluence. Each traffic light has a sensor indicating tladfidris waiting. We use a control system with 6
components (see figure 10).

For each traffic light we have a sensor controlfensorC, a crossing controlleCrossingC, and a
traffic light controllerLightC'. The responsibility of the first is to detect whether the sersstriggered, us-
ing the actionirig, and forward its occurrence using the actiens to CrossingC The crossing controller
takes care that after receivingsans message, it negotiates with the other crossing controllether it
can turn the traffic light to green (using thern action), and informd.ightC' using the actiorcycle to
set the traffic light to green. The light controller will swalit the traffic light to green, yellow and red, and
subsequently informs the crossing controller that it hasHied (by sending aycle message back).

Below a straightforward model of this system is providede $bnsor controllefensorC gets a trigger
via the actiontrig and forwards it usingens,. The traffic light controller is equally simple. After a tggr
(via cycle,.), it cycles through the colours, and indicates througlyde , message that it finished.

The crossing controlle€rossingC' is a little more involved. It has four parameters. The first &d
which holds an identifier for this controller (i..0r 2). The second parametery _turn indicates whether
this controller has the right to set the traffic light to gre@he third parameter isensor_triggered which
stores whether a sensor trigger has arrived. The fourth ®agcie indicating whether the traffic light
controller is currently going through a traffic light cycl&he most critical actions are allowing the traffic

13

light to become greenfcle,) and giving ‘my turn’ to the other crossing controllet{n). Both can only
be done if no traffic light cycle is going on and itis ‘my turn’.

Note that at the init clause all components are put in pdraltel using the communication operator
and allow operato¥ it is indicated how these components must communicate.

proc SensorC(id:N*1) = trig(id)-senss(id)-SensorC(id);

LightC (id:N*)
= cycle,.(id)-
show(id, green)-
show(id, yellow)-
show(id, red)-
cycle(id)-
LightC(id);

CrossingC (id:N1, my_turn, sensor_triggered, cycle:B)
= sens,(id)- CrossingC (id, my_turn, true, cycle)
+ (sensor_triggered ANmy _turnA—cycle) — cycle (id)-
CrossingC'(id, my_turn, false, true)
+ cycle, (id)- CrossingC (id, my_turn, sensor_triggered, false)
+ turn,.- CrossingC'(id, true, sensor_triggered, cycle)
+ (—sensor_triggered Amy _turnA—cycle) — turn.g-
CrossingC'(id, false, sensor_triggered, cycle);

init V{M,Mﬁensc7cyclec,turnu}
(F{sens,,.\senss—»sensc,cycler|cycles—»cyclec,turn,,|turn5~>turnc}
(SensorC(1)||SensorC(2)|]
CrossingC(1, true, false, false)|| CrossingC (2, false, false, false)]|
LightC(1)|| LightC (2)));

This straightforward system description has a state spat@Qostates. We are interested in the behaviour
of the system wherer-ig andshow are visible, and the other actions are hidden. We can doyhapgplying

the hiding operatofens,,cycie, ,turn.} t0 the process. The system is confluent with respect to traehid
cycle, action. The hidderens. andturn,. actions are not contributing to the confluence of the system.

In the uppermost row of table 2 the sizes of the state spacgieea: of the full state space, after
applying tau-prioritisation and after applying branchivigimulation reduction.

In order to employ the effect of confluence, we must make tddn actiongurn. andsense, conflu-
ent, too. The reason that these actions are not confluerdtieéimding over a turn and triggering a sensor
are possible in the same state, and they can take place inrdeg dBut the exact order in which they
happen causes a different traffic light go to green.

We can prevent this by making the behaviour of the crossimgralber CrossingC' deterministic. A
very simple way of doing this is given below. We only provitie definition ofSensorC and CrossingC
asLightC remains the same and the init line is almost identical. Tha uf the specification below is that
the controllersCrossingC are in charge of the sensor and light controllers. When thesang controller
has the turn, it polls the sensor. And only if it has been &igg, it initiates a traffic light cycle. In both
cases it gives the turn to the other crossing controller.

14

proc SensorC(id:NT) = sens, (id)- >_, 5 trig(id, b)-sens(id, b)-SensorC (id);

CrossingC (id:N1, my_turn:B) =
my_turn
— senss(id)-
(sens,(id, true)-
cycle,(id)-
cycle, (id)
+
sens,.(id, false)
).
turng:
CrossingC'(id, false)
o turn,.-
CrossingC'(id, true);

The state space of this system turns out to be small, namedya2€s (see table 2, second row). It is even
smaller after applying-prioritisation, namely 8 states. Remarkably, this is alsosize of the state space
after branching bisimulation minimisation. As the stata@pis small, it is possible to inspect the state
space in full (see figure 11). An important property of thisteyn is that the relative ordering in which the
triggers at sensor 1 and sensor 2 are polled does not infltleaacedering in which the traffic lights go to
green. This sequence is only determined by the booleanéntiiatite whether the sensor is triggered or
not. This effect is not very clear here, because the sensensadled in strict alternation. But in the next
example we see that this property also holds for more comgaaxollers, where the polling order is not
strictly predetermined.

trig(2, true) show(1, red)

— =

show(1, yellow)

trig(2, false) T
show(2, green) @) @) show(1, green)

trig(1, false)

?/tm'g(l, true) T

Figure 11: The state space of a simple confluent traffic lightroller

show(2, yellow)

show(2, red)

The previous solution can be too simple for certain purpo$és show that the deterministic speci-
fication style can still be used for more complex systems,thatithe state space that is generated using
T-prioritisation is still much smaller than state spacesegated without the use of confluence.

So, for the sake of the example we assume that it is desiredettkahe sensors while a traffic light
cycle is in progress. Both crossing controllers continlppusquest the sensors to find out whether they
have been triggered. If none is triggered the traffic lighttoollers inform each other that the turn does
not have to switch side. If the crossing controller whose ftiis, gets the signal that its sensor has been
triggered, it awaits the end of the current traffic light e/tycle, (id)), and simply starts a new cycle
(cycle,(id)). If the sensor of the crossing controller that does not hlageirn is triggered, this controller
indicates usingurn(true) that it wants to get the turn. It receives the turnthyn,.. Subsequently, it
starts its own traffic light cycle.

15

no reduction| afterr-prioritisation | mod branch bis
Non-confluent controller 160 128 124
Simple confluent controller 20 8 8
Complex confluent controllef 310 56 56

Table 2: The number of states of the transitions systemsgonple crossing

The structure of the system is the same as in the non-conthadint light cycle, and therefore the init
part is not provided in the specification below.

proc SensorC(id:NT) = sens, (id)- Y, 5 trig(id, b)-senss(id, b)-SensorC (id);

CrossingC (id:NT, my_turn:B) =
senss(id)-
(sens,(id, true)-
(my_turn— cycle,.(id)oturng(true)-turn,.)-
cycle(id)-
CrossingC'(id, true)
+
sens,(id, false)-
(my_turn
— (turn,(true)-
cycle, (id)-
turng:
CrossingC'(id, false)
|
turn.,(false)-
CrossingC'(id, true)

o turns(false)-
CrossingC(id, false)
)

);

LightC (id:N*, active:B) =
active
— cycley(id)-LightC (id, false)
o cycle,.(id)-show(id, green)-show(id, yellow)-show(id, red)- LightC (id, true);

This more complex traffic light controller has a substaltitdrger state space of 310 states. However,
when the state space is generated wibrioritisation, it has shrunk to 56 states, which is alsaitinimal
size modulo branching bisimulation or even weak trace edgince.

The complexity of the system is in the way the sensors aregolfigure 12 depicts the behaviour where
showing the aspects of the traffic lights is hidden. As in theote confluent controller, the relative ordering
of the incoming triggers does not matter for the state théesyends up in. E.g., executing sequences
trig(2, false) trig(1, true) andtrig(1, true) trig(2, false) from the initial state lead to the lowest state in
the diagram. This holds in general. Any allowed reorderifipe triggers from sensor 1 and 2 with respect
to each other will bring one to the same state.

8 Guideline V: Restrict the use of data

The use of data in behavioural models can quickly blow up & sjpace. Therefore, data should always
be looked at with extra care, and if its use can be avoides stibuld be done. If data is essential (and it

16

trig(1, true)

trig(1, false) trig(2, false)

trig(1, true))

trig(1, false) trig(2, true)

trig(1, true) trig(2, true)

trig(2, true
trig(2, false)

trig (1, true)

trig(1, false) trig(2, false)

trig(1, true)

Figure 12: The sensor polling pattern of a more complex centlaontroller

almost always is), then there are several methods to rethuomtprint. Below we give three examples, one
where data is categorised, one where the content of quetexduised and one where buffers are ordered.

In order to reduce the state space of a behavioural modelrieBmes helps to categorise the data in
categories, and formulate the model in terms of these caesganstead of individual values. From the
perspective of verification, this technique is called axdtinterpretation [7]. Using this technique, a given
data domain is interpreted in categories, in order to agssterification process. Here, we advice that the
modeller uses the categories in the model, instead of ¢gttia values be interpreted in categories during
the verification process. As the modeller generally knowsiodel best, he also has a good intuition about
the appropriate categories.

AC

2 dist trig

Figure 13: An advanced approach controller

Consider for example an intelligent approach controlleicvimeasures the distance of an approaching
car as depicted in figure 13. If the car is expected to pasardied before the next measurement, a trigger
signal is forwarded. The farthest distance the approactiatar can observe i3/. A quite straightforward
description of this system is given below. Using the actiost the distance to a car is measured, and the
actiontrig models the trigger signal.

map M :N;
egn M = 100;

proc AC(dprev:N) = > 1 n(d<M)—(dist(d)-(2d<dprev)—trig- AC(M)oAC(d));
init AC(M);

17

The state space of this system is a staggefifig-1 states big, or more concretelp001 states. This

is of course due to the fact that the valuesiandd,,., must be stored in the state space to enable the
evaluation of the conditioBd<d,.,. But only the information needs to be recalled whether thigition
holds, instead of both values @fandd,.,. So, a first improvement is to move the condition backward as
is done below, leading to a requirdd+1 states, or 101 in this concrete case.

proc AC(dpres:N) =, y(d<M)—((2d<dprey)— dist(d)-trig- AC (M)odist(d)-AC(d));
init AC1(M);

But we can go much further, provided it is possible to absfiracn the concrete distances. Let us assume
that the only relevant information that we obtain from th@iwdual distances is whether the car is far from
the sensor or nearby. Note that we abstract from the congpeted of the car which was used above. The
specification of this abstract approach controllet C' is given by:

sort Distance = struct near | far;
proc AAC =3, pistance dist(d)-((d=near)—trig- AACoAAC);
init AAC;

Note thatM does not occur anymore in this specification. The state spaw®v reduced to two states.

We now provide an example showing how to reduce the usagefigrdand queues. Polling and
confluence are used, to achieve the reduction. We modelensysith autonomous traffic light controllers.
Each controller has one sensor and controls one traffictligitican be red or green. If a sensor is triggered,
the traffic light must show green. At most one traffic light cluow green at any time. The controllers are
organised in a ring, where each controller can send messagsgsight neighbour, and receive messages
from its left neighbour. For reasons of efficiency we dediatt there are unbounded queues between the
controllers, such that no controller is ever hampered iwéoding messages to its neighbour. The situation
is depicted in figure 14.

trig trig
V y

o o
%

rie I e

t t
trig trig

Figure 14: Process communication via unbounded queues

We make a straightforward protocol, where we do not look gffeiency. Whenever a traffic light
controller receives a trigger, it wants to know from the otbentrollers that they are not showing green.
For this reason it sends its sequence number withaativie tag around. If it makes a full round with-
out altering the active tag, it switches its own traffic light to green. Otherwiskthe tag is switched to
‘passive it retries sending the message around. A formal desorigs given by the following specifica-
tion. The proces®)ueue(id, q) describes an infinite queue between the processes withfidentd and
id+1 (modulo the number of processes). The paramgtaEntains the content of the queue. The process
TLC(id, triggered, started) is the process with idd wheretriggered indicates that it has been triggered

18

N | Non confluent After branching bis Confluent Withr-prioritisation ~ After branching bis
2 116 58 10 6 6
3 3.2103 434 15 9 9
4 122103 310° 20 12 12
5 5.9 106 21 10° 25 15 15
6 357 106 - 30 18 18
20 - - 100 60 60

Table 3: Traffic lights connected with queues

to show green, angtarted indicates that it has started with the protocol sketchedabim the initialisa-
tion we describe the situation where there are two processgsvo queues, but the protocol is suited for
any number of processes and an equal number of queues.

sort Aspect = struct green | red;
Message = struct active(get_number : N)?is_active | passive(get_number : N);
map N :NT;
eqn N =2;
proc Queue(id:N, q:List(Message)) =
> m:Message din,. (i, m)- Queue(id, m>q)+
(#¢>0)—qout, ((id+1) mod N, rhead(q))- Queue(id, rtail(q));

TLC(id:N, triggered, started:B) =
trig(id)- TLC(id, true, started)+
(triggered \—started)
—qin, (id, active(id))- TLC (id, false, true)+
Zm:Message Qout, (Zd7 m)
((started Nis_active(m)Aget_number(m)stid)
—Qin, (1d, passive(get_number(m)))- TLC (id, triggered, started)
o((started Aget_number(m)=id)
—(is_active(m)— show(id, green)-show(id, red)- TLC(id, triggered, false)
oTLC(id, true, false)
)

oG, (id, m)- TLC(id, triggered, started)
)

Init T{Gine Goute } (V{ trig,show,qin,. , qmnr}({@in, |Ging — Qine » qmnr\qnmgﬂqomr}(

TLC(0, false, false)|| TLC(1, false, false)|| Queue(0, [])|| Queue(1,]]))));

Note that the state space of this system is growing very dieatlst with the number of processes. See the
second column in table 3. In the third column the state sgag&én after a branching bisimulation reduc-
tion, where only the actionshowand trig are visible. Even the state space after branching bisimulat
reduction is quite large. A dash indicates that the mCRLZsgidailed to calculate the state space or the
reduction thereof (running out of space on a 1Thyte main nmgiitaux machine).

We will reduce the number of states by making the system cemtflu\We replace data pushing by
polling. The structure of the protocol becomes quite défer Each process must first obtain a mutually
exclusive token, then polls whether a trigger has arrived, and if so, svétcthe traffic light to green. Sub-
sequently, it hands the token over to the next process. Téwfg@mtion is given below for two processes.
The specification of the queue is omitted, as it is exactlystirae as the one of the previous specification.

19

N | non ordered ordered
1 2 2
2 5 4
3 16 8
4 65 16
5 326 32
6 2.010°% 64
7 14 103 128
8 110 103 256
9 986 103 512
10 9.910% 1.0210°
11 109 106 2.05 103
12 1.3010° 4.1010°

Table 4: Number of states of an non ordered/ordered buffégr mvax.N elements

sort Aspect = struct green | red;
Message = struct token;

map N :NT;

eqn N =2;

proc TLC(id:N, active:B) =
active— (trig(id, true)-show(id, green)-show
Qin, (id, token)- TLC(id, false)
O Qout,. (1d, token)- TLC(id, true);

(id, red) + trig(id, false))-

init T{qinc qoutc } 3 (V {trig show, Aine» qnmr}({iny |Qins = Qine» qouf.,“qnm;‘}qom,‘}(
TLC(0, true)|| TLC (1, false)|| Queue(0, [])|| Queue(1,]]))));

The number of states of the state space for different nunfocesses are given in the fourth column of
table 3. In the fifth and sixth columns the number of statesr afprioritisation and branching bisimulation
reduction are given. Note that the number of states affetioritisation is equal to the number of states
after application of branching bisimulation. Note alscttie differences in the sizes of the state spaces is
quite striking.

As a last example we show the effect of ordering buffers. Witkues and buffers different contents
can represent the same data. If a buffer is used as a setdiengrin which the elements are put into the
buffer is irrelevant. In such cases it helps to maintain atepon the data structure. As an example we
provide a simple process that reads arbitrary natural nesrdyealler thanV and puts them in a set. The
process doing so is given below.

map N:N;
insert, ordered_insert : N x List(N) — List(N);

var n,n’ : N;b: List(N);

eqn insert(n,b) = if (n € b, b, n>b);
ordered _insert(n, []) = [n];
ordered _insert(n,n'pb) = if (n<n', n>n'pb, if (n~n’, n'vb, n'vordered_insert(n, b)));
N = 10;

proc B(buffer:List(N)) = > (n<N)—read(n)-B(insert(n, buffer));

it B();

If the functioninsert is used, the elements are put into a set in an arbitrary onderg precisely, the
elements are prepended). If the functionlered _insert is used instead ofnsert, the elements occur in

20

ascending order in the buffer. In table 4 the effect of ompis shown. Although the state spaces with
ordering also grow exponentially, the beneficial effect mfesing does not need further discussion.

9 Guideline VI: Compositional design and reduction

When a system that must be designed consists of several cemigpit can be wise to organise these
components in such a way that stepwise composition and tieduare possible. The idea is depicted in
figure 15. At the left hand side of figure 15 a set of communicptiomponents’;, ..., Cs is depicted. In
the middle, the interfaces, . .., I; are also shown. At the right the system has a tree structure.

Figure 15: The compositional design and verification steps

When calculating the behaviour of the whole system, a cherigation of the simultaneous behaviour
at the interfaced,, Is and; is required where all communication at the other interfasdsdden. Un-
fortunately, calculating the whole behaviour before hidinternal communication may not work, because
the whole behaviour has too many states. An alternative ésiabine and hide in an alternating fashion.
After each hiding step a behavioural reduction is appliductvresults in a reduced transition system.

For instance, the interface behavioulatl; andls can be calculated from the behaviour@f andC,
by hiding the behaviour at,. Subsequenthy’; andC'; can be added, after which the communicatiofiat
can be hidden. At last addin@; and hiding the actions at the interfacesand I5 finishes the calculation
of the behaviour. This alternation of composing behavio hiding actions is quite commonly known
and some toolsets even developed a script language to alloanfoptimal stepwise composition of the
whole state space [10].

In order to optimally employ this stepwise sequence of casitjmm, hiding and reduction, it is desired
that as much communication as possible can be hidden to &iloa maximal reduction of behaviour.
But there is something even more important. If a subset ofpmorants has more interfaces that will be
closed off by adding more components later, it is very likiblgtt there is some relationship between the
interactions at these interfaces. As long as the set of coaie has not been closed, the interactions at
these interfaces are unrelated, often leading to a sevevdlyin the state space of the behaviour of this
set of sub-components. When closing the dependent intsrftue state space is brought to its expected
size. If such dependent but unrestricted interfaces otieeiise of stepwise composition and reduction is
generally ineffective.

As an example consider figure 15 again.CH, Cs, C4 andCs have been composed, the system has
interactions at interfacek, and I3 that can happen independently. Addi6g restricts the behaviour at
these interfaces. For instaneg, can strictly alternate between sending datalyiand 3, but withoutC,
any conceivable order must be present in the behavioGy o3, Cy andCs.

Dependent but unrestricted interfaces can be avoided by asiree topology. See figure 15 (c) where
the dependency at interfacésand; has been removed by duplicating compon@at If a tree topology
is not possible, then it is advisable to restrict behavidalegpendent but unrestricted interfaces as much as
possible from inside sets of components.

As an example we provide yet another distributed traffic mdletr (see figure 16). There are a certain
numberN of traffic lights. At the central component (tf&p Controller) requests arrive using et (m)
action to switch traffic lightn to green. This request is forwarded via intermediate coraptn(called

21

Iset, ready

TopController
sete, M \mma iy,
Controller Controller
sete, reaV\etC, ready,. Set., TPQM’ ready,.
TL token,, TLO token,, TL token, TLC
showl ‘m Tofen show lshow

e ©

Figure 16: Distribution of system components

Controllers) to traffic light controllers TLC's). If a traffic light has been set to green and subsequently to
red again, an actioready(n) indicates that the task has been accomplished. The systesthgwarantee
that one traffic light can be green at any time but the orderhiitivthis happens is not prescribed.

We start presenting a solution that does not have a treedgypolUsing the principle of separation
of concerns, we let the traffic light controllers be respblesfor taking care that no two traffic lights are
showing green at the same time. The top- and other consdilave as task to inform the traffic light
controllers that they must set the light to green, and thaysjport the ready messages back to the central
controller.

The traffic light controllers use a simple protocol as déxdiin the queue example in section 8. They
continuously exchange a token. The owner of the token isvaliioto set the traffic light to green. The
parameterid is the identifier of the traffic light. The parametkwel indicates the level of the traffic
light controllers. The top controller has lev@l In figure 16 the level of the traffic light controllers is 2.
Furthermorehas_token indicates that this traffic light controller owns the tokandbusy indicates that it
must let the traffic light go through a green-red cycle.

The controllers and the top controller are more straightéod. They pass set commands from top to
bottom, and send ready signals from bottom to top. The pasas,;,, andid,,, indicate the range
of traffic lights over which this controller has control. THescription below describes a system with four
traffic light controllers.

sort Aspect = struct green | red;

proc ControllerTop(idiow, idpigh:N) =
> (10w <n A n<idpign)—(set(n)-sets(n, 1)+ready, (n, 1)-ready(n))-
ControllerTop(idiow, idhigh);

Controller(idiow, idhigh, level:N) =

Yo (diow<n An<idpign)—
(set (n, level)-sets(n, level+1)- Controller(id oy, id high, level)+
ready,.(n, level+1)-ready (n, level))- Controller (id o, i pigh, level);

22

bottom control bottom and top contro top control
4nodes 8nodes 4 nodes 8 nodes 4 nodes 8 nodes
Total system 10.0 10> 236 10° | 1.09 10° 96.3 103 368 15.6 103
Mod branch. bis. 3.8410° 39.8 10° 236 7.42 103 236 7.4210°
Without top controller| 1.80 10> 25.3 105 | 1.80 103 25.3 106 - -
Mod branch. bis. 983 5.910 983 5.9 106 - -
Half system 131 93.910° 131 93.9 103 56 16.8 103
Mod branch. bis. 107 44.1 103 107 44.1 103 33 3.06103

Table 5: State space sizes for a hierarchical traffic lightrodler

TLC(id, level:N, has_token, busy:B) =
set,(id, level)- TLC (id, level, has_token, true)+
(has_tokenNbusy)— show(id, green)-show(id, red)-ready ,(id, level)-
TLC(id, level, has_token, false)+
(has_tokenA—busy)—tokens((id+1) mod 4)- TLC (id, level, false, busy)+
(—has_token)—token,(id)- TLC (id, level, true, busy);

init v{setc,7‘6(Ldyc,takenc,show,siet,w} (F{set,«|sets—>setc,7'eadyT\'r'etLdys—n'eadyC,tokenr\tokens—%okenc}(
ControllerTop(0, 3)|| Controller(0, 1, 1)|| Controller(2, 3, 1)||
TLC(0,2, true, false)|| TLC (1,2, false, false)]|
TLC (2,2, false, false)|| TLC (3, 2, false, false)));

In order to understand the state space of components anaf sets-components, we look at the size of the
whole state space, the size of the state space without thedtdpller, and the size of half the system with
one controller and two TLCs. The results are listed in tabfiers system with four and eight traffic light
controllers. In case of four traffic lights, a half system has traffic lights and one controller. In case of
eight traffic lights, a half system has four traffic lights @htee controllers. The results of the sizes of the
state spaces are given in the columns under the headerrbotintrol’. In all cases the size of the state
space modulo branching bisimulation is also given. Heréntdrnal actions are hidden and the external
actionsshow, set andready are visible.

What we note is that the sizes of the state spaces are largeartioypar the size of the state space
modulo branching bisimulation of the system without the¢optroller multiplied with the size of the top
controller is almost as large as the size of the total stadeespThe state space of the top controller for
four traffic lights has 9 states and the one for eight traffjots has 17 states. It makes little sense to use
compositional verification in this case, but the fact that tbp controller hardly restricts the behaviour
of the rest of the system saves the day. If the top contralendre restrictive compositional verification
makes no sense at all.

If we analyse the large state space of this system, we se¢hthaidependent behaviour of the con-
trollers substantially adds to the size of the state space.c& restrict this by giving more control to
the top controller. Whenever it receives a requestetoa traffic light to green, it stores it in a set called
requests. Whenever a traffic light is allowed to go to green, indicatgthbsy equals false, the top con-
troller non-deterministically selects an index of a traffiht from requests and instruct it to go to green.
The specification of the new top controller is given below.

proc ControllerTop(id oy, idpign:N) = ControllerTop(idiow, idhigh, 0, false);

ControllerTop(idiow, 1dnigh:N, requests: Set(N), busy: Bool) =
Yo (i iow<n A n<idpign N n¢requests)—
set(n)- ControllerTop(idiow, idhigh, requestsU{n}, busy)+
Yo (0w <n An<idpign A nErequests A ~busy)—
sets(n, 1)- ControllerTop(id oy, idpigh, requests \ {n}, true)+
Yoo (0w <n An<idpign A nErequests)—
ready,.(n, 1)-ready(n)- ControllerTop(idiow, idrigh, requests, false);

23

The resulting state spaces are given in table 5 under theeh&zmttom and top control’. The first
observation is that the sizes of the state spaces withowtanpol and of a half system have not changed.
This is self evident, as only the top controller has beeraagl. It is important to note that the sizes of the
state space modulo branching bisimulation of the the systéhout top controller is almost as large as
the unreduced state space of the full system for four trafffid. For eight traffic lights the intermediate
reduced state space is much larger than the unreduced sykteeifull state space.

We can remove the low level control via the exchange of thernokThis is possible because the
top controller now guarantees that at most one traffic ligiuws green. This is done by replacing the
specification of the traffic light controller by the simpleesffication below. Note that the communication
topology of the system now has a tree structure.

proc TLC(id,level:N) =
set,.(id, level)-show(id, green)-show(id, red)-ready . (id, level)- TLC'(id, level);

We are not interested anymore in the behaviour of the systi#éimal the traffic light controllers and no
top controller. We only need to look at the sizes of the ha#tems which can be reduced and both half
systems can directly be combined with the top controlleteNbat in this way we circumvent the blow-up
of intermediate processes. Note also that the resulting spces modulo branching bisimulation for the
system with ‘top control’ are the same as those for ‘bottom #p control’. This shows that the token
exchange is really immaterial when the top controller gnias that at most one traffic light goes to green.
Finally, note that the half systems with bottom control antylightly bigger than the half systems with
top control. From this we can conclude that token exchangisbif does not contribute substantially to
the size of the state space.

10 Guideline VII: Specify external behaviour of sets of sub-componesst

In the previous section we mentioned that stepwise conipnsiind reduction might be a way to avoid a
blow-up of the state space. But we observed that sometirrethposed behaviour of sets of components
is overly complex, and contains far too many states, evem aftplying a behavioural reduction.

In order to keep the behaviour of such sets of componentd,sirialuseful to first design the desired
external behaviour of this set of components, and to sulesglyudesign the behaviour of the components
such that they meet this external behaviour. The situadajuite comparable to the implementation of
software. If the behaviour is governed by the implementatiosystem is often far less understandable and
usable, than when a precise specification of the softwarbédes provided first, and the software has been
designed to implement exactly the specified behaviour.

The use of external behaviour for various purposes was nodsbly defended in the realm of protocol
specification [21], although keeping the state space snelvot one of these purposes. The word service
was commonly used in this setting for the external behavidare recently, the ASD development method
has been proposed, where a system is to be defined by firstydpgthe external behaviour of a system,
which is subsequently implemented [6]. The purpose herensapily to allow a designer to keep control
over his system.

In order to illustrate how specifications can be used to keggrieal behaviour small, we provide a
simple example, and show how a small difference in the belbiawf the components has a distinctive
effect on the complexity in terms of states. From the peitsgeof the task that the components must
perform, the difference in the description looks relativelinor. The example is inspired by the third
sliding window protocol in [20] which is a fine example of a sétomponents that provides the intended
task but has a virtually incomprehensible external behavio

Our system is depicted in figure 17. The first specificationdhesmplex external behaviour whereas
the external behaviour of the second is straightforwarde 3ystem consists of a device-monitor and a
controller that can be startes¢rt) or stopped §top) by an external source. The device-monitor observes
the status of a number of devices and sends the defectecedmwiober to the controller via the action
broken. The controller comprises a buffer that stores the stattiseoflevices.

The first specification can be described as follows. The @avionitor is straightforward in the sense
that it continuously performs actiorigoken(n) for numbersn<M. The parametebuff represents the

24

DeviceMonitor Controller
broken.(n) BOR0 out

start
stop
ka4

Figure 17: A system comprises a controller and a device-tooni

buffer by a function from natural numbers to booleansudff (¢) is true, it indicates that a fault report has
been received for device The boolean parametéiindicates whether the controller is switched on or off
and the natural numbeiis the current position in the buffer, which the controllsea to cycle through the
buffer elements. It sends an actiont whenever it encounters an element that is seétte. The internal
actionint takes place when the controller moves to investigate themédfer place.

map M:NT;
eqn M=2;
map buff ;:N—B;
eqgn buff , = An:N.false;
proc DeviceMonitor =), (n<M)—brokens(n).DeviceMonitor;
Controller(buff N—B, b:B, i:N)
= Y ..y broken,(n)-Controller (buff [n—true], b, i)
+ (—buff (i) A\b)—stop- Controller (buff , false,)
+ (=b)—start- Controller (buff , true, 1)
+ (buff (i)Ab)—out- Controller (buff [i— false], b, (i+1) mod M)
+ (=buff (i) Ab)—int- Controller(buff, b, (i+1) mod M)
init T{broken.,int} (v{brokenu,w,m,sto ,int} (F{broken7v|brokensﬂbrokenc} (
Controller(buff , false, 0)|| Device Monitor)));

The total number of devices is denotedMy All positions ofbuff are initially set tofalse as indicated
by the lambda expressiom:N. false. In this specification the controller blocks th&p request if there is
a defected device at indexof the buffer forming a dependency between external andriatdehaviour.

If we calculate the state space of the external behaviolrieklystem withl/ = 2 and apply a branching
bisimulation reduction, we obtain the state space depictéidure 18. Note that the behaviour is remark-
ably complex. In particular a number eftransitions complicate the transition system. But thaynca be
removed as they are essential for the perceived external/tmlr of the system.

Figure 18: The system external behaviour (first specificatio

Table 6 provides the number of states produced as a fundtible aumber of devices monitored in the

25

system. The table shows that the state space of the origistaia and the state space capturing the external

M | No. of original states No. of external states
1 4 2
2 16 8
3 48 16
4 128 32
5 320 64
6 768 128
10 20.5 103 2.48 103

Table 6: Sizes of the original and external state space ahtir@tor controller (first specification)

behaviour are comparable. This indicates a complex extbefeaviour that might complicate verification
with external parties and makes understanding the behagidte difficult.

start

sop Ot

Figure 19: The system external behaviour (second spedaifipat

It might be amazing that the external state space of themyistéarge. Actual expectation is that it
should be small, matching the specification below, depiictede transition system in figure 19.

proc Stopped = start-Started,
Started = out-Started + stop- Stopped;
init Stopped;

Investigation of the cause of the difference between thesheind the expected sizes of the transition
systems leads to the conclusion that blocking the action whenbuff (i) is true is the cause of the
problem. If we remove this from the condition of the stop @ctiwe obtain the mCRL2 specification
below. In this specification th&op request is processed independently from the rest of the/lmira

No. of original states No. of external states
4 2

16

48

128

320

768

20.5 103

BouorwnrZ

NN NN

Table 7: Sizes of the original and external state space ahtivétor controller (second specification)

26

map M:NT;
eqn M=2;
map buff:N—B;
egn buff = An:N. false;
proc DeviceMonitor =), (n<M)—brokens(n).DeviceMonitor;
Controller (buff :N—B, b:B, i:N)
= Y ..y broken,(n)-Controller (buff [n—true], b, i)
+ b—stop- Controller(buff, false, i)
+ (=b)—start- Controller (buff , true, 1)
+ (buff (i)Ab)—out- Controller (buff [i— false], b, (i+1) mod M)
+ (=buff (i) Ab)—int- Controller(buff, b, (i+1) mod M)
init T{broken.,int} (v{ broken.,out,start,stop,int} (F{ broken,.|brokens—broken.} (
Controller(buff, false, 0)|| DeviceMonitor)));

As can be seen from table 7, the number of states of the narceddnodel remains the same. However,
the reduced behaviour is exactly the one depicted in figur®rl@ny constanfl/. This means that it has
only two states. This specification is much more usable fpwsitse composition and reduction than the
first one we provided.

11 Conclusion

We have shown that different specification styles can sobatly influence the number of states of a
system. We believe that an essential skill of a behavioucaletiist is to make models such that the insight
that is required can be obtained. If a system is to be desigaeld that it provably satisfies a number of
behavioural requirements, then the behaviour must be murffig small to be verified. If an existing system
is modelled to obtain insight in its behaviour, then on the band the model should reflect the existing
system sufficiently well, but on the other hand the model efskistem should be sufficiently simple to
allow to answer relevant questions about the behavioureoyistem.

As far as we can see hardly any attention has been paid to &stigj how to make behavioural models
such that they can be analysed. All attention appears torbetdd to the question of how to analyse given
models better. But it is noteworthy that it is very common thes modelling disciplines to let models be
simpler than reality. For instance in electrical enginegrinodels are as much as possible reduced to sets of
linear differential equations. In queueing theory, onlyew fjueueing models can be studied analytically,
and therefore, it is necessary to reduce systems to thesgastmodels if analytical results are to be
obtained.

We provided seven guidelines, based on our experience wiittitig models of various systems. There
is no claim that this set is complete, or even that these spwielelines are the most important model reduc-
tion techniques. What we hope is that this paper will induseaech such that more reduction techniques
will be uncovered, described, classified and subsequepttprhe a standard ingredient in teaching be-
havioural modelling.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Balancing pusk @ull for data broadcast. Proceedings of
the 1997 ACM SIGMOD international conference on Manageroédata, pp. 183-194. 1997.

[2] F. Arbab. Reo: A Channel-based coordination model faomponent composition. Mathematical
Structures in Computer Science, Cambridge UniversityR143):329-366, 2004.

[3] J.C.M. Baeten and W.P. Weijland. Process algebra. CiglgbiTracts in Theoretical Computer Sci-
ence 18, 1990.

[4] G. Berry, G. Gonthier, The ESTEREL synchronous programgntanguage: design, semantics, im-
plementation. Science of Computer Programming, 19:87-1922.

27

[5] S.C.C. Blom and J.C. van de Pol. State space reductiorrdwinmg confluence. In E. Brinksma and
K.G. Larsen, editors, Proceedings of 14th Int. Conf. on CateipAided Verification (CAV'02). Lec-
ture Notes in Computer Science 2404, pp. 596-609, Springday, 2002.

[6] G.H. Broadfoot. ASD case notes: costs and benefits ofyapgpiformal methods to industrial con-
trol software. In proceedings of formal methods conferefidd 2005). LNCS 3582, pp. 548-551.
Springer Verlag, 2005.

[7] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretadf reactive systems. ACM Transactions
on Programming Languages and Systems (TOPLAS) 19(2):2331897.

[8] Formal Methods for Industrial Critical Systems. Corfiece Proceedings. 1996—2010.
[9] Formal Methods in System Design. Journal. Springeragerii992-2010.

[10] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 28a60lbox for the onstruction and anal-
ysis of distributed processes. Proceedings of the 19thnational Conference on Computer Aided
Verification (CAV’'2007, Berlin, Germany). Volume 4590 of tfeire Notes in Computer Science,
pp. 158-163. Springer Verlag, 2007.

[11] R.J. van Glabbeek and W.P. Weijland. Branching time ahstraction in bisimulation semantics.
Journal of the ACM 43(3):555-600, 1996.

[12] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. blsg and M.J. van Weerdenburg. Analysis of
distributed systems with mCRL2. In M. Alexander, W. Gardmelitors, Process Algebra for Parallel
and Distributed Processing. Chapman Hall, pp. 99-128, 2009

[13] J.F. Groote and M.A. Reniers. Modelling and analysisafhmunicating systems. To appear 2011.

[14] J.F. Groote and M.P.A. Sellink. Confluence for processfication. Theoretical Computer Science.
170(1-2):47-81, 1996.

[15] G.J. Holzmann. The SPIN model checker. Primer and eefeg manual. Addison-Wesley, 2003.

[16] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nuitskme. Journal on Software Tools for Tech-
nology Transfer, 1(12):134-152, October 1997.

[17] FJ. Lin, P.M. Chu, and M.T. Liu. Protocol verificatiorsing reachability analysis: The state
space explosion problem and relief strategies. ACM SIGCO®Mmputer Communication Review.
17(5):126-135, 1987.

[18] R. Milner. A Calculus of communicating systems. LeetiNotes in Computer Science 92, Springer
Verlag, 1980.

[19] A. Osaiweran, M. Boosten, and M.R. Mousavi. Analytisaftware design: Introduction and indus-
trial experience report. Eindhoven University of TechigyloTechnical report CSR-10-01, 2010.

[20] A.S. Tanenbaum. Computer networks. Second editioentitre Hall, 1988.

[21] C.A. Vissers, and L. Logrippo. The importance of thevissx concept in the design of data com-
munications protocols. In M. Diaz, editor, Protocol Spesifion, Testing and Verification (proc. of
the IFIP WG 6.1 Fifth International Workshop on Protocol Segation, Testing and Verification),
Elsevier North Holland, pp. 3-17, 1986.

[22] C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinks®pecification styles in distributed systems
design and verification. Theoretical Computer Science 83206, 1991.

[23] J.M. Voas. K.W. Miller. Software testability: the newenification. IEEE Software 12(3):17-28, 1995.

[24] L.-T. Wang, C.-W. Wu and X. Wen. Design for testabiliyLSI test principles and architectures.
Morgan Kaufmann Publishers. 2006.

[25] www. ner | 2. or g. 2010.

28

