

Kinetic convex hulls and Delaunay triangulations in the black-
box model
Citation for published version (APA):
Berg, de, M. T., Roeloffzen, M. J. M., & Speckmann, B. (2011). Kinetic convex hulls and Delaunay triangulations
in the black-box model. In Proceedings 27th Annual ACM Symposium on Computational Geometry (SoCG'11,
Paris, France, June 13-15, 2011) (pp. 244-253). Association for Computing Machinery, Inc.
https://doi.org/10.1145/1998196.1998233

DOI:
10.1145/1998196.1998233

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1145/1998196.1998233
https://doi.org/10.1145/1998196.1998233
https://research.tue.nl/en/publications/fd731059-af68-400a-bd73-14dfac09e179

Kinetic Convex Hulls and Delaunay Triangulations
in the Black-Box Model

Mark de Berg
mdberg@win.tue.nl

Marcel Roeloffzen
∗

mroeloff@win.tue.nl
Bettina Speckmann

†

speckman@win.tue.nl

Department of Computer Science, TU Eindhoven
PO Box 513, 5600 MB Eindhoven, the Netherlands

ABSTRACT
Over the past decade, the kinetic-data-structures framework
has become the standard in computational geometry for
dealing with moving objects. A fundamental assumption
underlying the framework is that the motions of the ob-
jects are known in advance. This assumption severely limits
the applicability of KDSs. We study KDSs in the black-box
model, which is a hybrid of the KDS model and the tradi-
tional time-slicing approach. In this more practical model
we receive the position of each object at regular time steps
and we have an upper bound on dmax, the maximum dis-
placement of any point in one time step.

We study the maintenance of the convex hull and the De-
launay triangulation of a planar point set P in the black-
box model, under the following assumption on dmax: there
is some constant k such that for any point p ∈ P the disk
of radius dmax contains at most k points. We analyze our
algorithms in terms of ∆k, the so-called k-spread of P . We
show how to update the convex hull at each time step in
O(k∆k log2 n) amortized time. For the Delaunay triangu-
lation our main contribution is an analysis of the standard
edge-flipping approach; we show that the number of flips is
O(k2∆2

k) at each time step.

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—Geometrical problems and computa-
tions

General Terms: Algorithms, Theory

Keywords: Kinetic Data Structures, Black-Box Model, De-
launay Triangulation, Convex Hull

∗Marcel Roeloffzen was supported by the Netherlands’ Or-
ganisation for Scientific Research (NWO) under project
no. 600.065.120.
†Bettina Speckmann was supported by the Netherlands’
Organisation for Scientific Research (NWO) under project
no. 639.022.707.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’11, June 13–15, 2011, Paris, France.
Copyright 2011 ACM 978-1-4503-0682-9/11/06 ...$10.00.

1. INTRODUCTION
Motivation. Algorithms dealing with objects in motion
traditionally discretize time and recompute the structure
of interest at every time step from scratch. This can be
wasteful, especially if the time steps are small: then the ob-
jects will have moved only slightly, and the structure may
not have changed at all. Ideally an object gets attention
if and only if its new location triggers an actual change in
the structure. Kinetic data structures (KDSs), introduced
by Basch et al. [3], try to do exactly that: they maintain
not only the structure itself, but also additional information
that helps to find out when and where the structure will un-
dergo a “real” (combinatorial) change. Instead of sampling
the object locations at regular time intervals, KDSs follow
an event-driven approach. They maintain a collection of
simple geometric tests—these are called certificates—with
the property that as long as these certificates remain valid,
the structure of interest does not change combinatorially. A
KDS computes for each certificate the nearest time in the
future when it will fail and puts all these failure times into
an event queue. Whenever there is an event—that is, a
certificate failure—the KDS is updated. Note that the fact
that we know which certificate has failed when we handle an
event gives us valuable information to update the attribute
efficiently. See one of the surveys by Guibas [12, 13, 14] for
more information and results on KDSs.

A basic assumption in the KDS framework is that the ob-
ject trajectories are known. This is necessary to compute
the failure times of the certificates, which is essential for the
event-driven approach taken in the KDS framework. This
assumption severely limits the applicability of the frame-
work. When tracking moving objects, for instance, one gets
the object locations only at (probably regular) time steps in
an online manner—no detailed knowledge of future trajec-
tories is available. The same is true for physical simulations,
where successive locations are computed by a numerical in-
tegrator. Our goal is to study the kinetic maintenance of two
fundamental geometric structures—convex hulls and Delau-
nay triangulations—in a less restrictive setting: instead of
assuming knowledge of the trajectories, we assume only that
we know upper bounds on the speeds of the objects and that
we get their positions at regular time steps.

Related work. We are not the first to observe that the
basic assumption in the KDS framework is not always valid.
The need for a hybrid model, which combines ideas from
KDSs with a traditional time-slicing approach, was already
noted in the survey by Agarwal et al. [1]. Since then there
have been several papers in this direction, as discussed next.

244

Gao et al. [11] study spanners for sets of n moving points
in a model where one does not know the trajectories in ad-
vance but receives only the positions at each time step. They
call this the blackbox replacement model—we simply call it
the black-box model—and show how to update the spanner
at each time step in O(n + k logα) time. Here α is the
spread of the point set, and k is the number of changes to
the hierarchical structure defining their spanner.

Mount et al. [16] also study the maintenance of geometric
structures in a setting where the trajectories are unknown.
They separate the concerns of tracking the points and up-
dating the geometric structure into two modules: the mo-
tion processor (MP) is responsible for tracking the points,
and the incremental motion algorithm (IM) is responsible for
maintaining the geometric structure. The MP monitors the
points to see whether they move “as expected”, and notifies
the IM when this is no longer the case or some other impor-
tant event happens. The IM then recomputes the structure,
possibly querying the MP for the location of certain points,
and gives the MP new motion estimates. Mount et al. de-
scribe a protocol trying to minimize the interaction between
the modules, and they prove that under certain conditions
their protocol has good competitive ratio. Their approach
goes back to the work of Kahan [15] on certain kinetic 1-
dimensional problems. See also the more recent works by
Cho et al. [8] and by Yi and Zhang [19].

The following papers show how to repair a triangulation
after the vertices have moved. Shewchuk [18] considers d-
dimensional Delaunay triangulations. He introduces star
splaying, which estimates the neighborhood of each vertex
and then resolves all inconsistencies between neighborhoods
until the new Delaunay triangulation is found. The worst-
case expected running time is O(ndd/2e+1+n2 logn), but the
algorithm runs in linear time when the degree of each vertex
is O(1). Agarwal et al. [2] repair an (arbitrary) planar tri-
angulation by finding “inverted” triangles and then finding
regions that can be locally re-triangulated. After O(n) time
to find all inverted triangles, they use O(k2 log k) time to
find and re-triangulate the local regions, where k is the to-
tal complexity of these regions. (The analysis by Agarwal et
al. is more refined and depends on additional parameters
that indicate how entangled the triangulation is.)

Experimental work has also been done on kinetic Delau-
nay triangulations. De Castro et al. [5] describe how to
easily determine a tolerance region for each point, such that
as long as the point remains within its tolerance region we
do not have to check its certificates. They then give exper-
imental results showing that for fairly stable Delaunay tri-
angulations this filtering method is faster than traditional
KDSs. Russel argues in his thesis [17] that in practise a
naive traditional KDS for a Delaunay triangulation is never
faster than rebuilding and presents a filtering approach that
is faster than rebuilding when the number of certificate fail-
ures is small.

The theoretical results discussed above typically express
the running time in terms of the number of changes to the
structure at hand, without further analyzing this number.
This is not surprising, since without assumptions on the
maximum displacements of the points one cannot say much
about the number of changes. This“abstract”analysis is nice
since it makes the results general, but on the other hand it
becomes hard to decide whether it is better to use these ki-
netic algorithms or to simply recompute the structure from

scratch at each time step. This is the goal of our paper:
to develop KDSs in the black-box model that are—under
certain assumptions on the trajectories—provably more ef-
ficient than recomputing the structure from scratch.

Our results. We study black-box KDSs for the convex
hull and the Delaunay triangulation of set P of n points
moving in the plane. As mentioned, we make assumptions
on the point movements and time steps to obtain provably
efficient solutions. In particular, the time steps should be
small enough so that there is some coherence between the
positions of the points in consecutive time steps—otherwise
we cannot do better than recomputing the structure from
scratch. Furthermore, we will assume in most of our results
that P is fairly evenly distributed at each time step. Next
we discuss our assumptions in detail, and state our results.

For a point p ∈ P , let nnk(p, P) denote the k-th nearest
neighbor of p in P \ {p}. Let dist(p, q) denote the Euclidean
distance between two points p and q, and define

mindistk(P) := min
p∈P

dist(p,nnk(p, P)).

Our basic assumption is that dmax, the maximum displace-
ment of any point during one time step, satisfies the Dis-
placement Assumption, that dmax 6 mindistk(P), for some
small k. Note that mindistk(P) may change as the points
move. Thus a more precise statement of the Displacement
Assumption is that dmax is bounded by the minimum value
of mindistk(P) over all time steps—see Section 2. We be-
lieve that in many practical applications, the sampling rate
will be such that the Displacement Assumption is satisfied.

To describe the distribution of P we use the concept of k-
spread, as introduced by Erickson [10] and defined as follows.
Let diam(P) denote the diameter of P . Then the k-spread
of P , denoted by ∆k(P), is defined as

∆k(P) := diam(P)/mindistk(P).

Note that the 1-spread of P is simply the standard spread.
The 1-spread is not very suitable for moving points, however,
as it blows up as soon as two points get very close to each
other. The k-spread is more robust since it allows up to k
objects to get very close to each other without causing a
blow-up in the k-spread. Our analyses will be in terms of
∆k, the maximum k-spread over all time steps, where k is
such that the motions satisfy the Displacement Assumption.

For the convex-hull problem, we present an algorithm that
updates the convex hull at each time step in O(k∆k log2 n)
amortized time. We also present a variant of the algorithm
whose running time does not depend on the k-spread: for
any set of moving points satisfying the Displacement As-
sumption, it updates the convex hull in O(n log k) time.
Lastly we show how to generalise our convex hull algorithm
to higher dimensions.

For the Delaunay triangulation we consider two straight-
forward algorithms. The first one moves the points one at a
time from their old to their new locations, meanwhile updat-
ing the Delaunay triangulation using edge flips. The second
algorithm deletes each point from the triangulation and re-
inserts it at its new location; the triangle into which the new
location lies is found by walking in the triangulation. Our
main contribution lies in the analysis of these simple ap-
proaches under the Displacement Assumption and in terms
of ∆k. For example, we show that the simple flipping algo-
rithm performs only O(k2∆2

k) flips.

245

2. PRELIMINARIES
In this section we introduce some notation, and we discuss
a few basic issues regarding the black-box model and the
concept of k-spread. Although some of our results extend
to higher dimensions, we will focus here on the case where
P is a set of points moving in the plane.

The black-box model. We denote the position of a point
p at time t by p(t), and we let P (t) := {p(t) : p ∈ P} denote
the point set at time t. In the back-box model, we assume
that we receive the positions at regular time steps t0, t1, . . .
and the goal is to update the structure of interest—the con-
vex hull or the Delaunay triangulation in our case—at each
time step. The algorithm need not ask for all new positions
at each time step; it may ignore some points if the new lo-
cations of these points cannot change the structure. Thus a
sublinear update time is potentially feasible—indeed, we will
show how to obtain sublinear update time for the convex-
hull maintenance, under certain conditions. As stated in the
introduction, we assume the sampling rate is such that the
points in P do not move too much in one time step, as com-
pared to their inter-distances. More precisely, we assume
the sampling rate satisfies the following assumption.

Displacement Assumption: There is a maximum
displacement dmax such that

• dmax 6 minti mindistk(P (ti)), and
• dist(p(ti), p(ti+1)) 6 dmax for each p ∈ P

and any time step ti.

The k-spread of a point set. Recall that ∆k(P), the
k-spread of P , is defined as

∆k(P) := diam(P)/mindistk(P).

The k-spread of a point set can be used to bound the number
of points within a region if the diameter of the region is not
too large.

Lemma 1. Let P be a set of points in R2, and let R be a
region in R2 such that diam(R) < diam(P)/∆k(P). Then
R contains at most k points from P .

Proof. Assume for a contradiction that there are k + 1
points inside R. Let p ∈ P ∩R. Then

dist(p,nnk(p, P)) 6 diam(R) <
diam(P)

∆k(P)
.

Hence,

∆k(P) =
diam(P)

mindistk(P)
>

diam(P)

diam(P)/∆k(P)
= ∆k(P),

a contradiction.

Corollary 1. Let B be a minimum bounding square of P ,
and consider a partitioning of B into a regular grid with
∆k(P) × ∆k(P) cells. Then each grid cell contains O(k)
points.

Remark. A statement similar to the converse of Corollary 1
also holds: if a partitioning of the minimum bounding square
B into a regular grid with ∆×∆ cells has at most k points
per cell, then ∆k′(P) = ∆ for some k′ = O(k). The best
case is when a

√
n×√n grid has at most k points per cell,

so that ∆k(P) = O(
√
n). One may think that then the

problems become easy, but this is in fact not the case; for

q

p

Dq(5/2)Dq(2)

Dp(1/2)

r
p1

p2
p3

a) b)

Dr(1/2)

Figure 1: a) r can only be contained in up to k
discs Dp(1/2) for p ∈ P . b) Dq(5/2) contains all discs
Dp(1/2) for which p ∈ Dq(2).

example, one can show that maintaining the points from P
in x-order still takes Ω(n logn) in the black-box model, even
for point sets with ∆k(P) = O(

√
n).

Remark. For small k, the k-spread can be arbitrarily large.
For k = n− 1, on the other hand, we have ∆k(P) 6 2. Ob-
viously, the k-spread decreases monotonically (though not
necessarily strictly monotonically) as k increases. A natu-
ral question is whether anything more precise can be said
about how ∆k(P) changes as k varies. It is easy to see that
we cannot say much about the change in k-spread when
k is decreased: ∆k−1(P) cannot be bounded in terms of
∆k(P), since mindistk−1(P) can be arbitrarily much smaller
than mindistk(P). When k is increased, on the other hand,
then at some point the k-spread will go down.

Lemma 2. For a pointset P where the k-spread of P is
∆k(P) it holds that ∆k′(P) 6 ∆k(P)/2 for k′ = 25k.

Proof. LetDr(α) denote the open disk centered at r ∈ R2

with radius α ·mindistk and let Pr(α) = P ∩Dr(α). From
Lemma 1 it follows that a disk Dr(1/2) contains no more
then k points of P . We claim that there is no point r ∈ R2

such that r ∈ Dp(1/2) for more than k points p ∈ P . As-
sume that a point r exists that is in the disk Dp(1/2) for
k + 1 different points p ∈ P , then Dr(1/2) contains k + 1
points, which contradicts the spread assumption—see Fig-
ure 1a. It follows that the intersection depth of the disks
Dp(1/2) for all points p ∈ P is at most k.

Let q ∈ P , then the disks Dp(1/2) for p ∈ Pq(2) are
contained in Dq(5/2) as illustrated in Figure 1b. Because
the stabbing depth of the disks Dp(1/2) is at most k the
sum of the areas of these disks is at most k |Dq(5/2)|, where
|Dq(5/2)| is the area of Dq(5/2). This gives:

|Pq(2)| 6 k |Dq(5/2)|
|Dp(1/2)| = 25k

It follows that mindistk′ > 2mindistk and ∆k′ 6 ∆k/2 for
k′ = 25.

Finally, observe that Corollary 1 implies that ∆k(P) =

Ω(
√
n/k).

3. MAINTAINING THE CONVEX HULL
Let CH(P) denote the convex hull of a point set P , and let
∂CH(P) denote the boundary of CH(P). In this section we
give algorithms to maintain CH(P (t)). From now on, we
will use CH(t) as a shorthand for CH(P (t)). Our algorithms
rely on the following observation, which follows from the fact
that the distance between p and ∂CH(P) can change by only
2dmax in a single time step.

246

Lemma 3. Consider a point p ∈ P , and let dp(t) :=
dist(p(t), ∂CH(t)). Then p cannot become a vertex of CH(P)

until at least
dp(t)

2dmax
time steps have passed.

Lemma 3 suggests the following simple scheme to maintain
CH(P). Compute the initial convex hull CH(t0), and com-
pute for each point p ∈ P its distance to ∂CH(t0). Us-
ing this distance and Lemma 3, compute a time stamp t(p)
for p, which is the number of time steps until p can be a
vertex of the convex hull. Thus p can be ignored until the
time stamp expires after t(p) time steps. In a generic time
step ti, we now determine the set Q(ti) of all points whose
time stamps expire, compute their convex hull—here we may
use CH(ti−1)—and compute new time stamps for the points
in Q(ti).

To implement this algorithm we use an array A. A[ti]
points to a list that contains the points whose time stamps
expire at time ti. We actually work with an array A[0..n−1]
with n entries, and let time advance through the array in a
cyclic manner (using without loss of generality that ti = i).
We bound the time stamps to be at most n steps, and we use
an approximation of dist(p(t), ∂CH(t)) to speed up the com-
putations. Our approach is made explicit in Algorithm 1.
Note that the algorithm needs to know only dmax to work
correctly, it does not need to know bounds on the k-spread.

Algorithm 1: UpdateCH

1 Q(t)← set of points stored in A[t]
2 Compute CH(Q(t)) and set CH(t)← CH(Q(t)).
3 foreach p ∈ Q(t) do
4 Compute a lower bound d∗p on dist(p(t), ∂CH(t)).

5 t(p)← min(1 + b d∗p
2dmax

c, n)

6 Add p to A[(t+ t(p)) mod n].

7 t← (t+ 1) mod n

It remains to describe how to compute CH(Q(t)) in Step 2
and how to compute the values d∗p in Step 5. Computing
CH(Q(t)) can be done by an optimal convex-hull algorithm
in O(|Q(t)| log |Q(t)|) time. To compute d∗p we proceed as
follows. Let qabove be the point on ∂CH(t) directly above p,
and define qbelow, qleft, and qright similarly—see Figure 2.
These points can be found in logarithmic time using binary
search. Let qmin denote the minimum distance between p
and any of the points qabove, qbelow, qleft, and qright. Then we
set d∗p = qmin/

√
2 (note that d∗p 6 dist(p, ∂CH(t)) 6

√
2 d∗p).

We get the following result.

Lemma 4. At each time step t, UpdateCH updates the
convex hull in O(|Q(t)| logn) time.

q

qabove

qright

qbelow

qleft

CH(t)

Figure 2: Points straight above, below, left and right
of q are used to approximate the minimum distance
from q to ∂CH(t).

Below we describe a more efficient version of the algorithm
for large k-spread, but first we analyze the number of time
stamps expiring in each time step.

Analysis of the number of expiring time stamps. We
perform our analysis in terms of ∆k, which is an upper
bound on the k-spread of P at any time. We first prove
a bound on the number of convex-hull vertices.

Lemma 5. The number of vertices of the convex hull CH(P)
of a point set P is O(k∆k).

Proof. The length of ∂CH(P) is Θ(diam(P)), so we can
cut ∂CH(P) into Θ(diam(P)/mindistk(P)) = Θ(∆k) pieces
with a length less than mindistk(P). From Lemma 1 we
know that each such piece contains at most k points. It
follows that ∂CH(P) contains O(k∆k) vertices.

In the worst case all time stamps expire in a single time step.
However, using an amortization argument we show that on
average only O(k∆k logn) points expire in each time step.

Lemma 6. The amortized number of time stamps expir-
ing in each time step is O(k∆k logn).

Proof. We prove the lemma using the accounting method:
each point has an account into which we put a certain amount
of money at each time step, and whenever the time stamp
of a point expires it has to pay 1 euro from its account. To
prove the lemma we need to devise a scheme such that (i) a
point always has at least 1 euro in its account when its time
stamp expires, and (ii) the total amount of money handed
out at each time step is O(k∆k log ∆k). Our scheme is that
at time step ti each point p receives

min

(
1, max

(
1

n
,

8
√

2 · dmax

dp(tj)

))
euros,

where dp(tj) = dist(p(tj), ∂CH(tj)).
To prove (i), consider a point p whose time stamp expires

at time ti, and let tj < ti be the previous time step when
p’s time stamp expired. (If there is no such time step, we
can take j = 0.) Now define t(p) := ti − tj = i− j to be the
number of time steps from tj up to ti−1. If t(p) = n then
p certainly has enough money in its account at time ti, so
assume this is not the case. Then

t(p) = 1 +

⌊
d∗p(tj)

2dmax

⌋
> 1 +

⌊
dp(tj)

2
√

2 · dmax

⌋
>

dp(tj)

2
√

2 · dmax

.

The amount of money received by p from tj up to ti−1 is
thus at least

t(p) · 8
√

2 · dmax

maxtj6t6ti−1 dp(t)
>

4dp(tj)

maxtj6t6ti−1 dp(t)

The distance between p and CH(P) increases (or decreases)
by at most 2dmax at each time step, so during at any time
tj 6 t 6 ti−1 the distance from p to ∂CH(P) is at most

dp(tj) + t(p) · 2dmax 6 dp(tj) +

(
1 +

dp(tj)

2dmax

)
· 2dmax

= 2 · dp(tj) + 2dmax 6 4 · dp(tj),
where in the last step we assumed that dp(tj) > dmax (since
otherwise p already receives at least 1 euro at time tj).
Hence the total amount of money received by p is at least

4dp(tj)

maxtj6t6ti−1 dp(t)
>

4dp(tj)

4 · dp(tj)
= 1

247

To prove (ii), we consider the points p such that dp(ti) 6
8
√

2n · dmax; the remaining points get 1/n euros each, so in
total at most 1 euro. We divide these points into groups
G1, . . . , G`. Each group Gj contains the points p ∈ P such
that (j − 1) · dmax 6 dp(ti) 6 j · dmax, where ` = 8

√
2n.

All points from Gj lie in an annulus of diameter O(∆k ·
mindist(P (ti))) where the distance between the inner and
outer boundary of the annulus is Θ(dmax). Using a simple
packing argument and Lemma 1 it follows that such an an-
nulus contains O(k∆k) points. Hence, the total amount we
have to pay to all points in a single group Gj is

O(k∆k) ·min

(
1,

8
√

2 · dmax

(j − 1) · dmax

)
= O

(
k∆k

j

)
euros.

Summing this over all groups we see that the amount we
pay at each time step is

8
√
2n∑

j=1

O

(
k∆k

j

)
= O(k∆k logn).

Lemma 4 and 6 imply the following theorem.

Theorem 1. Under the Displacement Assumption, the
convex hull of a set P of n points moving in the plane can
be maintained in the black-box model in O(k∆k log2 n) time
amortized per time step, where ∆k is the maximum k-spread
of P at any time.

A linear-time algorithm without spread assumption.
Next we show how the convex hull of a point set with a
high k-spread can still be maintained in near-linear time
per step, under the Displacement Assumption. Consider a
partitioning of the plane into vertical columns of width dmax.
We maintain a left-to-right ordered list Lcol of the columns
that contain at least one point from P . For each column C
we also maintain the set P (C) of points inside that column.
By the Displacement Assumption each point can either stay
in its column or move to a neighboring column in a single
time step. Hence we can update Lcol and and the sets P (C)
in O(1) time per point at each time step. We also maintain a
bottom-to-top sorted list Lrow of the rows with height dmax

that contain at least one point from P .
After we have updated Lcol and the sets P (C) at time t

each set P (C) contains those points that are in C at time t.
Now suppose we want to compute CH(t) from CH(t−1). We

CH(t− 1)

pne
pnw

psw pse

Figure 3: Potential vertices of the northern section
of CH(t) must be in the dark gray regions.

divide CH(t−1) into four sections using points pnw, pne, psw, pse.
The points pnw and pne are vertices on the upper boundary
of CH(t − 1) that have tangent lines with a slope of 1 and
−1 respectively. The points psw and pse are on the lower
boundary of CH(t − 1) and they have tangent lines with a
slope of −1 and 1 respectively (see Figure 3). We focus on
the northern section CHn(t− 1) of the convex hull between
pnw and pne.

We want to find all points of P (t) that are within distance
dmax of the northern section of the convex hull. We inspect
the columns of Lcol from left to right. For each column C
we see if it is intersected by CHn(t−1). If this is the case we
find the lowest and highest y-coordinate of this intersection,
denoted by y`(C) and yh(C) respectively. Now for each point
p(t) ∈ P (C) we test if its y-coordinate y(p(t)) is greater
than y`(C) − 2dmax. We define P ∗(C) ⊆ P (C) as the set
of points which satisfy this criterion. The slope of edges of
CHn(t − 1) is between 1 and −1, which guarantees that all
points of P (C) that are within distance dmax of CHn(t− 1)
are in P ∗(C). Note that using yl(C) − dmax as bound on
the y-coordinate is not sufficient, since a point s(t) ∈ C
may have a shorter distance to the part of CHn(t − 1) in a
neighboring column (see Figure 4). Additionally we inspect
the columns Cnw and Cne which are to the left of the column
containing pnw and right of the column containing pne as
shown in Figure 3. For Cnw we find the set P ∗(Cnw) of points
which have a y-coordinate greater than y(pnw)− 2dmax.

Every point p(t) ∈ P (t) for which dist(p(t), CHn(t− 1)) 6
dmax is in the set P ∗(C) for some column C. The points

y`

yh

}dmax

}
dmax

s(t)

CH(t− 1)
}

dmax

}dmax

Figure 4: Potential vertices
are between yl(C)−2dmax and
yh + 2dmax.

P ∗(C) all have a y-
coordinate of at least
y`(C) − 2dmax. Also
no point in P (C) can
have a y-coordinate
of more than yh +
2dmax 6 y`(C) +
3dmax since a point
p(t) can be no more
then dmax away from
CH(t− 1). For every
column C the points
of P ∗(C) are con-
tained in a dmax ×
5dmax rectangle and
thus contain O(k)
points. It follows
that we can sort
them in O(k log k) time per column and sort the points in⋃
C∈Lcol

P ∗(C) in O(n log k) time. It then takes O(n) time

to compute the convex hull of
⋃
C∈Lcol

P ∗(C).
In a similar fashion we compute the convex hulls for the

points that are within distance dmax of the eastern, southern
or western part of CH(t−1). We then merge the four convex
hulls in O(n) time to obtain CH(t).

Theorem 2. Under the Displacement Assumption, the
convex hull of a set P of n points moving in the plane can
be maintained in the black-box model in O(n log k) time per
time step.

3.1 Convex Hull in Higher Dimensions
The algorithm we described to update the convex hull after
each time step under the spread assumption generalizes to

248

higher dimensions. We follow the steps of Algorithm Up-
dateCH. The array A again holds pointers to lists of points
that expire at a certain time step. Computing the convex
hull of Q(t) in line 2 can be done using the output sensi-
tive algorithm by Chan [6]. To compute new time stamps
we again find a lower bound on the distance to the bound-
ary of the convex hull. We do this by shooting axis-aligned
rays in all 2d possible directions using Chans algorithm [6]
for ray-shooting queries. The minimum qmin of the dis-
tances obtained from the ray-shooting queries bounds the
minimum distance dp(t) from a point p(t) to ∂CH(t − 1) in
d dimensions:

qmin/
√
d 6 dp(t) 6 qmin.

For the number of expired points in a single time step we
use a similar amortization scheme where each point p(t) gets

min

(
1,max

(
1

n
,

8
√
d dmax

dp(t)

))
euros.

Combining this we get the following theorem.

Theorem 3. Under the Displacement Assumption, the
convex hull of a set P of n points moving in Rd can be main-
tained in the black-box model in

O((k∆d−1
k log ∆k)bd/2c logO(1) k∆k)

time amortized per step, where ∆k is the maximum k-spread
of P at any time.

When the spread is optimal—∆k = O(n1/d) and k =
O(1)—this is slightly faster than rebuilding from scratch in
three dimensions; it even runs in sublinear time. In higher
dimensions Chans output-sensitive algorithm [6] is slightly
faster. The reason for this is that when for d > 4 the com-
plexity of the convex hull is Ω(n), hence we do not benefit
from using time stamps to inspect only a small number of
points.

4. DELAUNAY TRIANGULATION
We denote the Delaunay triangulation of a point set P by
DT (P), and we use DT (t) as a shorthand for DT (P (t)). We
describe two algorithms to recompute DT (t) given DT (t−
1). Both algorithms use the same global approach: they
update the position of each point in turn (and change the
Delaunay triangulation accordingly). Let P = {p1, . . . , pn}
and define Qi = {p1(t), . . . , pi(t), pi+1(t − 1), . . . pn(t − 1)}.
Thus Q0 = P (t− 1) and Qn = P (t). Updating the position
of pi now means computing DT (Qi) from DT (Qi−1). This
can be done in two ways.

• MoveAndFlip: The point pi(t − 1) is moved along
a straight line to its new position pi(t) while main-
taining the Delaunay triangulation. For each point we
follow the traditional KDS approach. We compute all
in-circle certificates that involve pi and sort them by
their failure times—the failure time of a certificate is
the position along the line pi(t−1)pi(t) where the cer-
tificate becomes false. Each time a certificate fails we
flip an edge of the Delaunay triangulation and update
the collection of certificates.

• InsertAndDelete: We first walk in DT (Qi−1) from
pi(t−1) to pi(t) to determine the triangle τ ofDT (Qi−1)

containing pi(t). Then we insert pi(t) into DT (Qi−1)
in the usual way, namely by adding edges from pi(t) to
the vertices of τ and then perform edge flips until we
have the Delaunay triangulation of Qi−1 ∪ {pi(t)} [4].
Finally, we delete pi(t−1) using the algorithm by Dev-
illers [9] or we delete pi(t − 1) with all its edges and
then use the algorithm by Chin et al. [7] to repair the
Delaunay triangulation.

Let D(p, r) denote the disk of radius r centered at point p.
Note that D(pi(t− 1), dmax) is exactly the region reachable
from pi(t − 1) in one time step. Now consider two points
pj , p` ∈ P . We say that pjp` is a potential edge at time t
if there is a placement of each point pi ∈ P somewhere in
its disk D(pi(t − 1), dmax) such that pjp` is an edge in the
Delaunay triangulation of the resulting point set. We then
call pj and p` potential neighbors. Theorem 6 below states
the number of potential edges is O(k2∆2

k). With this result
in hand, we can analyze our update algorithms.

Theorem 4. Computing DT (t) from DT (t − 1) using
MoveAndFlip requires O(k2∆2

k) flips in total and takes
O(k2∆2

k logn) time.

Proof. Consider the movement of pi from pi(t − 1) to
pi(t). A flip occurs when pi becomes co-circular with three
other points, say a, b, c, and circ(a, b, c), the circle defined
by a, b, c, is empty. Next we observe that each point a, b, c
must form a potential edge with pi: at the time of the flip
pi is on circ(a, b, c), which contains no other points, hence
api, bpi and cpi are edges of the Delaunay triangulation at
that time. Let E(pi) denote the set of potential edges with
pi as an endpoint, and let N(pi) = {q ∈ Qi | qpi ∈ E(pi)} be
the set of potential neighbors of pi. The number of empty
circles defined by N(pi) is equal to the number of Delaunay
triangles in DT (N(pi)), which is O(|N(pi)|) = O(|E(pi)|).
Using Theorem 6 we conclude that the total number of flips
for moving all points pi ∈ P is∑

pi∈P
O(|E(pi)|) = O(k2∆2

k).

At each flip we can update the Delaunay triangulation in
O(1) time. We must also update the event queue storing
the certificate failure times, which takes O(logn) time since
we have to delete and insert only O(1) certificates into the
queue. The running time thus becomes O(k2∆2

k logn).

The O(logn) factor in the running time for the MoveAnd-
Flip approach stems from the event queue on the certifi-
cates. The InsertAndDelete approach avoids this factor.

Theorem 5. Computing DT (t) from DT (t−1) using In-
sertAndDelete takes O(k2∆2

k) time.

Proof. Consider the update of the position of pi. Note
that whenever we cross an edge pjp` during the walk with
pi, then pjp` would be part of a flip in the MoveAndFlip
strategy. This implies that the number of edges crossed is
at most linear in the number of potential edges. Moreover,
inserting pi(t) takes time linear in the degree of pi(t) in
DT (Qi−1 ∪ {pi(t)}) [4] and deletion of pi(t− 1) takes linear
time in the degree of pi(t−1) [7]. Overall, updating the posi-
tion of pi takes linear time in the number of potential edges
involving pi, so the total time is O(k2∆2

k) by Theorem 6.
The algorithm by Chin et al. [7] is somewhat difficult and

249

D+ D

pj

p′j

p`

p′`

c
pi

p′i

D(pj , dmax)

D−

Figure 5: pjp` is a potential edge only if a disk D−

exists that has pj and p` within distance 2dmax and
does not contain any other points of P .

might be slow when deleting points with a small degree. In
that case it may be more efficient to use the asymptotically
slower, but simpler algorithm by Devillers [9].

Analysis of the number of potential edges. Potential
edges are defined on the point set P (t− 1) at a single time
step, so we drop the time parameter and use P = {p1 . . . pn}
to denote the set of points we are dealing with. We also
define mindistk := mindistk(P) and ∆k := ∆k(P). (The
latter is a slight abuse of notation as in fact ∆k was defined
as an upper bound on the k-spread at any time.) We first
give a necessary condition for two points pj and p` to form a
potential edge. We call a disk empty if its interior does not
contain any point from P . The following lemma follows from
the empty-disk property of Delaunay triangulations and the
fact that points move by at most dmax in a single time step.

Lemma 7. If pjp` is a potential edge then there is an
empty disk D− such that pj and p` are within distance 2dmax

of D−.

Proof. Assume that pjp` is a potential edge. Then there
is a set of points P ′ = {p′1 . . . p′n}, where p′i ∈ D(pi, dmax) for
all i, such that p′jp

′
` is an edge in DT (P ′). Let D = D(c, r)

denote an empty disk with p′j and p′` on its boundary. For
now assume r > dmax, and let D− = D(c, r − dmax); see
Figure 5. For any point p′i, we know that |cp′i| > r and
|pip′i| 6 dmax. It follows from the triangle inequality that
|cpi| > r − dmax and that pi cannot be inside D−.

For p′j it holds that |cp′j | = r and |pjp′j | 6 dmax. By
the triangle inequality we get that |cpj | 6 r + dmax. The
same holds for p`, which proves that pjp` can be a potential
edge only if there is a disk D− that does not contain any
other points of P but has pj and p` within distance 2dmax

of its boundary. It remains to consider the case r 6 dmax.
Then |pjp`| 6 4dmax. The overlap region of D(pj , 2dmax)
and D(p`, 2dmax) is non-empty. If the overlap has positive
area then we can place a (possibly very small) disk D in-
side D(pj , 2dmax) ∩D(p`, 2dmax) that does not contain any
points from P and, hence, satisfies the conditions of the
lemma. If the overlap is a single point q—note that this
point could happen to be a point in P—then we can place
a small empty disk touching q and satisfying the conditions
of the lemma.

Figure 6: Points in U+\U must be in cells intersected
by ∂U+ or ∂U .

Let Epot denote the set of potential edges defined by P .
For each potential edge pjp` we pick a disk as in Lemma 7,
which we call its witness disk. We split the set of witness
disks into three subsets based on the size of the disks:

• DS: the small witness disks, which have radius at most
16 ·mindistk,
• DM: the medium-size witness disks, which have radius

between 16 ·mindistk and diam(P),
• DL: the large witness disks, which have radius larger

than diam(P).

The number of potential edges contributed by disks in DS

is easy to bound: if a potential edge pq has a small witness
disk, then q must lie within O(mindistk) distance of p, and so
by Lemma 1 there are only O(k) such points for any point p.

Lemma 8. The number of potential edges contributed by
the witness disks in DS is O(kn).

To prove bounds for DL and DM we need the following
lemma. For a square σ, let size(σ) denote its edge length
and let union(D) denote the union of a set D of disks.

Lemma 9. Let σ be a square with edge length size(σ) and
let Pσ = P ∩ σ. Let D be a set of disks with radius at least
size(σ)/4 that do not contain any points of Pσ. Then the
number of points in Pσ within distance 2dmax of union(D)
is O(k · size(σ)/mindistk).

Proof. Define D+ := {D(c, r + 2dmax) : D(c, r) ∈ D}.
Set U := union(D) and U+ := union(D+). Since the disks
in D are empty, all the points of Pσ that are within distance
2dmax of union(D) lie in U+ \ U . We overlay the square σ
by a grid whose cells have size 4 ·mindistk. Because dmax 6
mindistk, each grid cell intersecting U+ \ U must intersect
∂U+ or ∂U (or both); see Figure 6. Since the grid cells have
size 4 · mindistk it follows from Lemma 1 that they each
contain O(k) points. It remains to prove that the number of
grid cells intersected by ∂U+ or ∂U is O(size(σ)/mindistk).

We show how to count the cells intersecting ∂U+; the
cells intersecting ∂U can be counted similarly. We split the
boundary of each disk D+ ∈ D+ into a left arc, right arc,
top arc, and bottom arc at the points where the tangent
lines have slope +1 and −1. The boundary ∂U+ consists
of parts of these arcs. We count the cells intersecting ∂U+

separately for each type of arc. If a row is intersected by a

250

left arc α of some disk D+ then α intersects at most two1

cells, say C and C′, in that row. The Θ(size(σ)/mindistk)
cells immediately to the right of C,C′ (if these cells exist) are
contained in the interior of D+. These cells cannot intersect
another left arc on ∂U+. Hence, in each row of the grid
there are only O(1) cells intersecting a left arc on ∂U+. The
total number of grid cells intersecting a left arc on ∂U+

is therefore proportional to the number of rows, which is
O(size(σ)/mindistk). For the right, top, and bottom arcs
we can use a similar argument.

We can now prove that the large witness disks contribute
O(k2∆2

k) potential edges.

Lemma 10. The number of potential edges contributed by
the witness disks in DL is O(k2∆2

k).

Proof. Obviously, P is contained inside a diam(P) ×
diam(P) square. Because the disks in DL have radius at
least diam(P) = ∆k ·mindistk we can apply Lemma 9 to con-
clude there are only O(k∆k) points within distance 2dmax of
union(DL). These points defineO(k2∆2

k) potential edges.

It remains to bound the number of potential edges con-
tributed by the medium-size disks. For 2 6 i 6 log4 ∆k,
define

DiM := {D ∈ DM : 4i·mindistk 6 radius(D) < 4i+1·mindistk}.
We bound the number of potential edges contributed by a
subset DiM in terms of the area of union(DiM).

Lemma 11. The number of potential edges contributed by
witness disks in DiM is O(k2 Ai

mindist2
k

), where Ai is the area

of union(DiM).

Proof. We overlay the plane with a grid whose cells have
size 4i+1 ·mindistk. Any two points defining a potential edge
with a witness disk in DiM have distance at most

4i+1 ·mindistk + 4dmax 6 4i+2 ·mindistk

from each other, and so the points in any grid cell can
form potential edges with points in only O(1) other cells.
Lemma 9 implies that in any cell only O(k4i+1) points are
within distance 2dmax of union(DiM). Hence in total the
points in any cell C can contribute only O((k4i+1)2) =
O(k242i) potential edges with witness disks from DiM. Now
we just have to count the number of cells within distance
2dmax of union(DiM). Let

(DiM)+ := {D(c, r + 2dmax) : D(c, r) ∈ DiM}
and set U+

i := union((DiM)+). Note that the area of U+
i is

O(Ai). We need to count the number of cells intersecting
U+
i . Each cell intersecting U+

i either contains at least 1/4
of a disk with radius at least 4imindistk or it is adjacent to
such a cell. Hence, the total number of intersected cells is
bounded by

O(area(U+
i)/area of one cell) = O(Ai/(4

i+1 ·mindistk)2).

We already showed that the points in any given cell con-
tribute O(k242i) potential edges in total, so the total number
of potential edges is O(k2Ai/mindist2k).

1If α has an endpoint in the row, we need to argue a little
more carefully. We can show that there are now O(1) cells
intersected, rather than two.

Recall that i 6 log4 ∆k. Since diam(P) = ∆k ·mindistk, we
know that the diameter of union(DiM) is at most

∆k ·mindistk + 4i+1 ·mindistk = O (∆k ·mindistk) .

Hence, Ai = O(∆2
k · mindist2k), and so Lemma 11 implies

that DiM contributes O(k2∆2
k) potential edges. Since the

number of subsets DiM is O(log ∆k), It follows that the total
number of potential edges contributed by medium-size disks
is O(k2∆2

k log ∆k).
We can get rid of the O(log ∆k) factor by not consider-

ing each subset DiM in isolation, but also considering their
interaction. From Lemma 11 we know that the set DiM can
only contribute many edges if Ai = area(Ui) is large, where
Ui = union(DiM). In the next lemma we show that Ai can’t
be large for all i.

Lemma 12. There is a region Vi ⊆ Ui such that, for all
j 6 i− 2, union(Uj) is disjoint from Vi and this region has
area at least Ai/γ = Θ(Ai), for some fixed constant γ > 1.

Proof. Consider a disk D ∈ DiM with center c and ra-
dius r. Set

r− := r − 4i−1 ·mindistk − 2dmax

and define D− = D(c, r−). Then D− must be disjoint from
any disk in DjM for j 6 i − 2. Indeed, any disk of DjM has
radius at most 4i−1 ·mindistk, so if it were to intersect D−

it would be completely contained in D(c, r − 2dmax). This
means that all points are at least distance 2dmax away from
it, and so it cannot be a witness disk of a potential edge.

Note that the radius r− of any inner disk D− is

r− = r− 4i−1 ·mindistk − 2dmax > r− (4i−1 + 2) ·mindistk.

We overlay Ui with a grid whose cells have size (4i−2) ·
mindistk. Then any inner disk D− contains at least one
grid cell and D itself intersects a constant number of cells
(see Figure 7). Hence, we can charge any cell intersecting
a disk D of DiM to a cell that is completely inside some in-
ner disk D− in such a way that we charge only a constant
number of cells to each cell in an inner disk. It follows that

Ai = O(area of the union of the inner disks),

which proves the claim.

With this result we prove that the total number of potential
edges contributed by DM is O(k2∆2

k).

Figure 7: A disk intersects only a constant number
of gridcells (light gray) and has at least one grid cell
completely contained in its inner area (dark gray).

251

Lemma 13. The number of potential edges contributed by
the witness disks in DM is O(k2∆2

k).

Proof. We prove the bound for the subsets for which
i is even; the proof for the subsets with i odd is similar.
Consider the subsets DiM, for even i, in order of decreasing i.
Let A∗i be the area that it still available for the disks in DiM
after considering all disks from DjM where j > i + 2. Thus
Ai 6 A∗i . Lemma 12 implies that A∗i−2 6 A∗i − (1/γ)Ai for
some constant γ > 1. In other words, Ai 6 γ(A∗i − A∗i−2).
If we define jmax = log4 ∆k/2 then using Lemma 11 we can
bound the contribution to the number of potential edges for
DiM, with i even, as follows.

jmax∑
j=1

O(k2
A2j

mindist2k
) = O

(
k2

mindist2k

jmax∑
j=1

γ(A∗2j −A∗2j−2)

)

= O

(
k2

mindist2k
γ(A∗2jmax

−A∗0)

)
= O(k2∆2

k)

The last step follows from the fact that

A∗2jmax
= O(diam(P)2) = O(∆2

k ·mindist2k).

From Lemma’s 8, 10 and 13 we conclude the following.

Theorem 6. Let P be a set of n points. Under the Dis-
placement Assumption, the number of potential edges defined
by P is O(min(k2∆2

k, n
2)).

We can show this bound is tight in the worst case. One
could hope that only a smaller number of edges may actually
occur during movement, but even this is not the case: Next
we show that Ω(k2∆2

k) edges can occur when moving the
points one at a time.

Theorem 7. For large enough n, and k > 1 and ∆k >√
8n, there is a set P of n points with a k-spread of ∆k at

time t − 1 such that computing DT (P (t)) from DT (P (t −
1)) under the Displacement Assumption takes Ω(k2∆2

k) time
using the MoveAndFlip or InsertAndDelete approach
if the points are moved in a bad order.

Proof. Consider the following set P = X ∪ Y ∪ Z. The
points in Y and Z will generate the desired Ω(k2∆2

k) lower-
bound, whereas X contains leftover points which are placed
on a grid and do not move to ensure the spread assumption

X

Y

Z

Figure 8: We need Ω(k2∆2
k) time to update the De-

launay triangulation when points of Y move in a bad
order.

D

Y

Z

zj

Ci,j
d

ci,j

d ci,j

Dt

Db
{r }r − 2i

2m+1

a b

b

Figure 9: The point of Y and Z are in the top and
bottom wedges respectively.

is not violated. Without loss of generality we assume that
mindistk = 1. The points of X are placed in a square of
height and width ∆k/(2

√
2) and the points of Y (t− 1) and

Z(t− 1) are placed in a similar square (see Figure 8).
We place the points of Y and Z at time t − 1 along the

boundary of a disk D = D(d, r) as follows. We divide D into
four sections using lines with a slope of 1 and −1 through the
center d of D. Points of Y (t− 1) are along the boundary of
the top section Dt and points of Z(t−1) along the boundary
of the bottom section Db (see Figure 9). The points of Y
will move into D; whenever a point y ∈ Y has moved it
will have an edge with every point of Z in the Delaunay
triangulation. Let y1 . . . ym be the points of Y in the order
in which we move them and z1 . . . zm the points of Z, which
do not move. Let Pi be the point set P between time t− 1
and t just after yi has moved:

Pi := {y1(t) . . . yi(t), yi+1(t− 1) . . . ym(t− 1)} ∪ Z ∪X
Note that the time parameter for Z and X is omitted as
points in these sets do not move.

Each point yi(t − 1) is moved towards d by a distance

2 2i

2m+1 = 2i+1

2m+1 = 2−(m−i). Let Ci,j be the disk inside D

and tangent to D in zj with radius r − 2−(m−i+1) and let
ci,j denote the center of Ci,j . For every point zj the point
yi(t) will be contained in Ci,j .

For yi(t) and zj to form an edge in the Delaunay trian-
gulation there has to be a disk that contains yi(t) and zj ,
but no other points of Pi. No point of Z, other than zj can
be inside Ci,j as all points of Z are on the boundary of D
and Ci,j only intersects D in zj . For each point in Pi\{yi}
it holds that the distance to d is at least r − 2−(m−i+1).
Now we claim (and will prove later) that every point inside
Ci,j that is in the top section of D has at most distance√
r2 − r2−(m−i) to d. Since√

r2 − r2−(m−i) 6 r − 2−(m−i+1)

it follows that no point of Pi\{yi} is contained in Ci,j .
Therefor there is an edge between yi(t) and zj in DT (Pi).

In this manner each point yi(t) has edges to all points of
Q in DT (Pi). Since both Y and Z contain Ω(k∆k) points,
the total number of edges created is Ω(k2∆2

k).
What remains to be proven is that the distance between

any point in Ci,j ∩ Dt and the center d of D is at most√
r2 − r2−(m−i).

252

The shortest distance from the boundary of Ci,j is achieved
by the point a on the line through zj and d and by con-
struction this point is in Dt. If we go clockwise or counter-
clockwise along the boundary of Ci,j the distance to d only
becomes larger until we reach zj . The worst case situation
arises for the point b on one of the bounding edges of Dt
(see Figure 9). Here the longest distance from the boundary
of Ci,j to d is√

(r − 2−(m−i+1))2 − (2−(m−i+1))2 =
√
r2 − r2−(m−i).

5. CONCLUSION
We presented algorithms for maintaining the convex hull
and the Delaunay triangulation of a planar point set P in
the KDS black-box model. The algorithms are simple and
do not require knowledge of the k-spread ∆k(P) or k: the
convex-hull algorithms needs to know only dmax, the max-
imum displacement of any point in one time step, and the
Delaunay-triangulation algorithm needs no knowledge at all.
Our main contribution lies in the analysis of these algorithms
under the Displacement Assumption and in terms of ∆k.

For the convex-hull maintenance we spend O(k∆k log2 n)
amortized time. This is optimal up to the logarithmic fac-
tors, because the convex hull can undergo Ω(k∆k) changes
in any time step. Moreover, we can show that our bound
O(k∆k logn) on the number of expiring time stamps is tight
in the worst case. However, it may be possible to get rid of
one logarithmic factor from the time bound by a more clever
algorithm. In fact, when we can use the floor function, then
we know how to to do this. Unfortunately, the algorithm
needs to know mindistk(P (t)), which is perhaps not realis-
tic. It would be interesting to design an algorithm that needs
to know only dmax and achieves O(k∆k logn) update time.
Another interesting open problem is whether it is possible
to make the time bound worst-case rather than amortized.

For the Delaunay triangulation we have shown that a sim-
ple flipping algorithm needs O(k2∆2

k) flips. The bound is
based on an analysis of the number of potential edges—that
is, all edges that can possibly arise in one time step. Our
bound on the number of potential edges is tight in the worst
case and we show that there is also an Ω(k2∆2

k) lower bound
on the number of edges that appear in the worst case when
moving points one at a time.

It depends on the application how realistic our model
is. We expect that most sampling rates are such that the
Displacement Assumption is satisfied. A valid question is
whether point sets can be expected to have small k-spread.
In meshing-type applications, it may be realistic to assume
that the k-spread is O(

√
n); our results imply then that the

simple flipping approach needs only O(n) flips. In any case,
∆k seems like a reasonable parameter to measure efficiency.
We think it will be interesting to study other structures in
the KDS black-box model under the Displacement Assump-
tion and to analyze their performance in terms of the ∆k.

6. REFERENCES
[1] P.K. Agarwal, L.J. Guibas, H. Edelsbrunner, J.

Erickson, M. Isard, S. Har-Peled, J. Hershberger, C.
Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha, D.
Metaxas, B. Mirtich, D. Mount, S. Muthukrishnan, D.

Pai, E. Sacks, J. Snoeyink, S. Suri, and O. Wolefson.
Algorithmic issues in modelling motion. ACM
Comput. Surv. 34:550–572 (2002).

[2] P.K. Agarwal, B. Sadri, and H. Yu. Untangling
triangulations through local explorations. In Proc.
24th ACM Sympos. Comput. Geom., pages 288–297,
2008.

[3] J. Basch, L.J. Guibas, and J. Hershberger. Data
structures for mobile data. In Proc. 8th ACM-SIAM
Sympos. Discr. Algorithms , pages 747–756, 1997.

[4] M. de Berg, M.van Kreveld, M. Overmars, O.
Schwartzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, Germany
3rd edition, 2008.

[5] P.M. Manhães de Castro, J. Tournois, P. Alliez, and
O. Devillers. Filtering relocations on a Delaunay
triangulation. In Proc. Sympos. Geometry Processing,
pages 1465–1474, 2009

[6] T. Chan. Output-sensitive results on convex hulls,
extreme points, and related problems. Discr. Comput.
Geom. 16: 369–387 (1996).

[7] F. Chin, J. Snoeyink and C.A. Wang. Finding the
medial axis of a simple polygon in linear time. Discr.
Comput. Geom. 21:405–420 (1999).

[8] M. Cho, D.M. Mount, and E. Park. Maintaining nets
and net trees under incremental motion. In Proc. 20th
Sympos. Algo. Comput., pages 1134–1143, 2009.

[9] O. Devillers. On deletion in Delaunay triangulations.
In Proc. 15th ACM Sympos. Comput. Geom., pages
181–188, 1999.

[10] J. Erickson. Dense Point Sets Have Sparse Delaunay
Triangulations. Discr. Comput. Geom. 30:83-115
(2005).

[11] J. Gao, L.J. Guibas, A. Nguyen. Deformable spanners
and applications. In Proc. 20th ACM Sympos.
Comput. Geom., pages 190–199, 2004.

[12] L.J. Guibas. Kinetic data structures—a
state-of-the-art report. In Proc. 3rd Workshop
Algorithmic Found. Robot., pages 191–209, 1998.

[13] L.J. Guibas. Kinetic data structures. In: D. Mehta
and S. Sahni (editors), Handbook of Data Structures
and Applications, Chapman and Hall/CRC, 2004.

[14] L.J. Guibas. Motion. In: J. Goodman and J.
O’Rourke (eds.), Handbook of Discrete and
Computational Geometry (2nd edition), pages
1117–1134. CRC Press, 2004.

[15] S. Kahan. A model for data in motion. In Proc. 23rd
ACM Sympos. Theory Comput., pages 267–277, 1991.

[16] D.M. Mount, N.S. Netanyahu, C.D. Piatko,
R. Silverman, and A.Y. Wu. A computational
framework for incremental motion. In Proc. 20th ACM
Sympos. Comput. Geom., pages 200–209, 2004.

[17] D. Russel (2007). Kinetic Datastructures in Practise.
Ph.D. thesis. Stanford University: U.S.A.

[18] R. Shewchuk. Star splaying: an algorithm for repairing
Delaunay triangulations and convex hulls. In Proc.
21st ACM Sympos. Comput. Geom., pages 237–246,
2005.

[19] K. Yi and Q. Zhang. Multi-dimensional online
tracking. In Proc. 20th ACM-SIAM Sympos. Discr.
Algo., pages 1098–1107, 2009.

253

