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Abstract 

One of the major aims of one-dimensional extreme-value theory is to estimate quantiles outside 
the sample or at the boundary of the sample. The underlying idea of any method to do this is 
to estimate a quantile well inside the sample but near the boundary and then to shift it somehow 
to the right place. The choice of this" anchor quantile" plays a major role in the accuracy of the 
method. We present a bootstrap method to achieve the optimal choice of sample fraction in the 
estimation of either high quantile or endpoint estimation which extends earlier results by [11] Hall 
and Weissman (1997) in the case of high quantile estimation. An alternative way of attacking 
problems like this one is given in a paper by [8] Drees and Kaufmann (1998). 

1 Introd uction 

In problems of coastal safety, one wants to estimate the 10,000 years return level based on one hundred 
years of observations ([12] de Haan (1990)). In finance one seeks a "value-at-risk" which is basically 
also a quantile outside the range of available observations ([15] Jansen and de Vries 1991, [3] Danielsson 
and de Vries 1997). 

The situation is the following: we have a sample Xl, X 2 , ••• , Xn from some unknown distribution 
function F and want to estimate the quantile corresponding to a probability close to 1 i.e. we want 
xp with 1 - F(xp) = P and P ::; c/n. This inequality means that, if we want to apply asymptotic 
theory and if in the limiting process we want to maintain this essential feature, we are forced to 
assume that in fact P depends on n, P = Pn and lim Pn = O. Then there are still several possibilities: 

n-too 
nPn -+ c E (0,00) or nPn -+ 0 (n -+ 00). In both cases purely non-parametric methods do not work. 
Only if nPn -+ 00 non-parametric methods are successful ([9] Einmahl, 1990). The use of models 
for the tail suggested by extreme value theory stems from the fact that there is no sensible way of 
extrapolating from an intermediate quantile to one outside the sample unless one uses one of the 
Generalized Pareto Distributions (GPD) 

Hy(x) := 1 - (1 + ,x)-lh for those x for which 1 + ,x> 0, 

(r E lR) for modelling the tail of F. The tail condition for F is: 
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for all x for which 0 < H'Y(x) < 1 where a(t) is a suitable positive function. This means for the 
quantile function that for x > 0 

. (l-F)t-(~) - (l-F)t-(l) x'Y-l 
hm tx t=. 
Hoo a(t) 'Y 

For our problem this means 

k n (--'L)'Y-1 
(I-F)t-(Pn) ~ (l-F)t-(-) +a(-k) nPn , 

n 'Y 

Le. an extreme quantile is linked to an intermediate quantile (which can be estimated via the empirical 
distribution function) by using the GPD approximation. The extreme quantile estimator based on 
this relation is 

(1.3) 

where X1,n ~ X 2,n ~ .. . ~ Xn,n are the order statistics and a(n/k) and 7n(k) suitable estimators for 
a(n/k) and 'Y ([18] Weissman 1978, [17] Smith 1984, [2] Boos 1984, [16] Joe 1987 and many others). 
A boundary case is 'Y < 0 and P = O. Then the same expression (with Pn -+ 0) can be used as an 
estimator of the right endpoint of the probability distribution, in the same GPD set-up. 

The choice of k (or rather n - k, the index of the order statistics from where on the GPD ap
proximation is believed to be valid) is crucial for the accuracy of the procedure. The optimal value 
depends on the underlying distribution and is a result of balancing variance and bias components. 
In this paper we present a bootstrap procedure to obtain this optimal value adaptively. The method 
is an extension of what we used for obtaining the optimal number of order statistics in estimating 'Y 
([4] Danielsson, de Haan, Peng and de Vries 1997 and [6] Draisma, de Haan, Peng and Pereira 1998). 
The paper [11] Hall and Weissman (1997) presents a (similar but different) bootstrap method for 
solving the same optimality problem, not for the quantile but for the exceeding probability of a high 
level which is similar. Unlike that paper, we do not assume any of the parameters known. Also our 
conditions on Pn are much more relaxed. The quantile problem is more common in applications than 
the inverse problem of exceedance probabilities of a high level. 

We restrict ourselves to the range 'Y > -~. This range is most important in applications and in 
this range it is most efficient to choose a sequence k = k(n) in (1.3) that goes to infinity with n. Also, 
since we consider tail properties, we have to limit ourselves to sequence k(n) = o(n), n -+ 00. Hence 
we are dealing with intermediate sequences k(n) (Le., the corresponding order statistics Xn-k,n are 
intermediate) : 

k(n) --+ 00, k(n)/n -+ 0 (n -+ 00). (1.4) 

The main idea is the following. We seek 

(1.5) 

where as. E means the asymptotic expectation (according to the limit distribution) and k ranges 
from, say, logn to n/(logn) (this expresses the restriction to intermediate sequences and includes 
the optimal one). Since we are looking for an adaptive method for optimization and since xPn and the 
averaging probability measure in (1.5) are Wlknown, we replace them with sample analogues. So we 
consider 

(1.6) 
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where xPn (k) is as before, En denotes averaging with respect to the empirical distribution function 
and 

k .::.. (k) 
A A n (-Fn - 1 
xPn (k) := Xn-k,n + a( k) npn 'Yn{k) (1.7) 

with fi{n/k) and 'Yn(k) alternative estimators. 
The reason why we put the indicator function 10 in (1.6) is to ensure the convergence of the mean 

square error. For details see [6] Draisma, de Haan, Peng and Pereira (1998). Since 8 is an arbitrary 
positive number, we ignore the indicator function in (1.6), in our simulation study. 

The quantity (1.6) depends on the sample only and can be approximated using a bootstrap pro
cedure where the bootstrap sample size has to be chosen of lower order than n in order to avoid 
unwanted extra randomness. Solving the optimization problem for (1.6) makes sense since the value 
ki minimizing (1.6) is asymptotically related to the value ko from (1.5) and in fact with the help of a 
second bootstrap we can get ko from ki. 

The procedure for quantile and endpoint estimation is explained in section 2 which also contains 
the main results. The most general setting is accounted in section 2.1. We also consider two special 
cases separately. In quantile estimation, if one restricts to the case 'Y positive, the asymptotic results 
may be simplified and become more efficient. This is analysed in section 2.2. All these results use the 
moment estimator ([5] Dekkers, Einmahl and de Haan, 1989) or simplified versions of it to estimate 'Y. 
In section 2.3 we use instead a shift-scale invariant estimator of'Y in endpoint estimation. In section 
3 we present some simulation results and an application. Finally in section 4 are the proofs of the 
results of section 2. 

2 Main results 

2.1 Results for high quantile and endpoint estimation 

We start by explaining the method in detail. Then we shall state the precise conditions and present 
the formal results. 

We shall use explicit estimators for a(f) and 'Y which are as follows. Define for j = 1,2,3 

k-I 

M~j) := ~ I: (log Xn-i,n - log Xn-k,n)j, 
i=O 

'YAn{k) M(l) + 1 _ ~{1 _ (M~1))2 )-1 
.- n 2 (2)' 

Mn 
2 M(l)M(2) 

'Yn{k) .- V M~2) /2 + 1 - 3{1 - n (3)n )-1, 
Mn 

a(~) .;- Xn-k,nM~I)/pdin{k)) 
-aA(~) (1) A k .- Xn-k,nMn / pd'Yn{k)) 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where in{k) and a(f) are the estimators in (1.3) and 'Yn{k) and fi{f) the alternative estimators in 
(1.7), and PI b) = (1 - 'Y_)-1. We denote minb,O) by'Y- and max(-y,O) by'Y+. 
Step 1 Select randomly and independently nl times (nl « n) a memberfrom the set {Xl, X 2,.··, X n}. 
Indicate the result by Xi, X2, ... X~l. Form the order statistics Xi,nl ~ X2,nl ~ ... ~ X~I ,nl and 
compute the quantities (1.3) and (1.7) from (2.1-2.5) on the basis of these order statistics. 

We denote the resulting quantities by i~l (k), 'Y~l (k), a*(nt/k) and il(nt/k), x;n (k), "i;;n (k) for 
k = 1,2, ... , nl - 1. Form 

q~!'k = (x;n (k) - "i;;n (k))2 
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on the basis of these bootstrap estimators. 
Step 2 Repeat step 1 r times independently. 
and s = 1,2, ... , r. Calculate 

This results in a sequence q~ k s' k = 1,2, ... , nl - 1 
I •• 

1 r 

r Lq~l.k.s· 
s=1 

r 

Step 3 Minimize ~ Lq~l.k.s with respect to k but reject values which are very small or very near to 
s=1 

nl. Denote the value of k where the minimum is obtained by ko(nd. 
Step 4 Repeat step 1 up to 3 independently with the number nl replaced by n2 = (nd2 In. So n2 is 
smaller then nl. This results in k(;(n2)' 
Step 5 Calculate 

k (n):= (k(;(nd)2 h(i't(k),i'~(k),p~1 (k(;)) 
o k(j(n2) h(i';t(k),i'~(k),P'nl(ko)) 

with i';t(k) and i'~(k) any consistent estimators of 'Y+ and 'Y-, 

A' (k*)'- log ko(nd 
Pnl 0 .- -210gnl+210gk(;(nt} 

a consistent estimator of P' and the functions h and Ii from Propositions 4.12 and 4.13 below respec
tively. 

This ko(n), which is obtained adaptively, is asymptotically as good as the optimal number of order 
statistics in (1.5). 

Now in order to be able to present our main result we have to state the conditions. 
Suppose that the underlying distribution function F is in the domain of attraction of an extreme 

value distribution (or equivalently that the observations above a large threshold have an asymptotic 
GPD distribution). We formulate this condition analytically in terms of the quantile-type function 
U '= (_I_)f-. 

. I-F . 

lim U(tx) - U(t) = x'Y - 1 (2.6) 
Hoo a(t) 'Y 

for all positive x, where a(t) is a suitable positive function. We shall need a second order refinement 
of this relation which reads as follows: there is a function A(t) --+ 0 with constant sign near infinity 
such that for all x > 0 

U(tx)-U(t) xLI 
• a(t) - -'Y- 1 [x'Y+P - 1 x'Y - 1] 

hm =- ---
t~oo A(t) P 'Y + P 'Y 

(2.7) 

with P ~ O. For the final result we shall have to require P < 0, a( t) rv Cl t'Y and A( t) rv C2tP (t --+ 00) 
and in this case (2.7) is equivalent to 

t'Y - 1 
U(t) = CO + Cl-- + c2t'Y+P + o(t'Y+P) with Cl > 0, C2 =1= 0 

'Y 
(t --+ 00). (2.8) 

Theorem 2.1. ' Suppose U := (l~F) f- satisfies {2.8}. If p < 0, 'Y > -1/2, 'Y i= 0, 'Y i= p, npn --+ C 

{finite, ~ O} and 10gPn = 0 (n 1:::J:,) (n --+ 00) where p' is defined in Lemma 4.1 below. Then for 

ko(n) as in {lo5} 

lim ko(n) = 1 
n~oo ko(n) 
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in probability, where 

k (n) = (ko(nd)2 h(1';t(k),1'~(k),P~1 (kG)) 
o ko(n2) h(1';i(k),1';(k),P'nl (kG)) 

(2.9) 

with 1';t(k),1'~(k) any consistent estimators of'Y+ and 'Y-, 

AI (k*) logko(n1) 
Pnl 0 = -2logn1 + 2 log kG(nd 

(2.10) 

and the functions h and Ii from Propositions 4.12 and 4.13 below respectively. 

Hence the asymptotic second moment of the estimator xPn (k) is asymptotically the same whether 
it is based on ko(n) upper order statistics or on ko(n) upper order statistics. 

Remark 2.2. Since P is not known, one could alternatively require logPn = o(ne) for all £ > o. 
Theorem 2.3. Under the conditions of Theorem 2.1, the value ko(n) of k minimizing the asymptotic 
second moment of xPn (k) - xPn satisfies 

(n -t 00). (2.11) 

Remark 2.4. Since the order of magnitude is the same as in the case of minimizing the mean square 
error of the moment estimator 1'n(k) (only the constant differs), we could use the bootstrap procedure 
for one of them in order to get the optimal value for the other. 

Next we turn our attention to the estimation of the right endpoint Xo of the probability distribution 
when 'Y < O. Define (d. [5] Dekkers, Einmahl and de Haan, 1989) 

X (k)·=X _ a(~) ° . n-k,n 1';(k) 

where 

We seek 

ko(n) := arg inf as. E(xo(k) - xO)2. 
k 

(2.12) 

(2.13) 

(2.14) 

In order to construct an adaptive estimator for ko(n) we consider an alternative estimator for xo, 
namely 

~ ft(~) 
Xo (k) := Xn - k n - --

, ~~ (k) 
(2.15) 

where 

~_ ._ 2 M~l) M~2) -1 
'Yn(k).-1- 3(1- (3))· 

Mn 
(2.16) 

Now for xo(k) we apply the same bootstrap procedure as described before for xPn (k), but with 
the constants h(1';t (k), 1'~ (k), P'nl (kG)) and 1i(1';t (k), 1'~ (k), P~l (kG)) replaced by g( 1'; (k), P~l (ko)) and 
g( 1'~ (k), P~l (ko)) respectively. 
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Theorem 2.5. Suppose U := (l~F)+- satisfies {2.8}. If p < 0, -1/2 < I < 0 and 1=1= p, then for 
ko{n) as in {2.14} 

lim ko(n) = 1 
n~oo ko(n) 

in probability, where 

(2.17) 

with 1'; (k) any consistent estimate of 1_, 

AI (e) _ log ko{nr) 
Pnl 0 - -2log n1 + log ko{nr) 

and the functions g and 9 from Propositions 4.14 and 4.15 below respectively. 

Hence the asymptotic second moment of the estimator xo{k) is asymptotically the same whether 
it is based on ko{n) upper order statistics or on ko{n) upper order statistics. 

Theorem 2.6. Under the conditions of Theorem 2.5, the value ko{n) of k minimizing the asymptotic 
second moment of xo(k) - Xo satisfies 

2 I 

ko{n) rv g(r_,p') n 1:
2P
pl (n -+ 00). (2.18) 

2.2 Results for quantile, positive, 

Suppose we know, or assume, I> 0 and want to estimate a high quantile. Confined to this situation, in 
this section we present the required asymptotic results to apply the bootstrap procedure as described 
in the last section. To estimate the quantile we use 

( 
k )i't(k) xp+ (k) := Xn-k n -

n , nPn 

Let 

,,+ ( k ) 'Y;!"(k) 
xp (k) := X n - k n -

n , nPn 

where 

where 
~ ,y~{k):= y ~ 

be a first option to the alternative quantile estimator and 

where 
~+ M~2) 
In (k) := -(-1) . 

2Mn 

be a second option to the alternative quantile estimator. 

(2.19) 

(2.20) 

(2.21) 

Theorem 2.7. Suppose the second order condition {2.8} holds for I> 0 and p < O. Assume I =1= p, 
nPn -+ c {finite, ~ O} and logPn = 0 (nc ) for c > 0, as n -+ 00. Then 

(2.22) 

where ko{n) := argmink as. E (xit (k) - xPn)2 and the function I from Proposition 4.16 below. 
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Theorem 2.8. Suppose the second orner condition (2.8) holds for 'Y > 0 and P < O. Assume 'Y # p, 
nPn --+ c {finite, 2: O} and logPn = o{n€) for c > 0, as n --+ 00. Then 

as n--+oo, (2.23) 

where ko{n) := argmink as. E (x%n (k) - x:Jk) r and the function [ from Proposition 4.17 below. 

Theorem 2.9. Suppose the second order condition {2.8} holds for 'Y > 0 and P < O. Assume 'Y # p, 
nPn --+ c (finite, 2: 0) and logPn = 0 (n€) for c > 0, as n --+ 00. Then 

as n--+ 00 , (2.24) 

where ko{n) := argmink as. E (x%n (k) - i;n (k)) 2 and the function [ from Proposition 4.18 below. 

Remark 2.10. As discussed in section 3 it is advantageous to have a small ratio of the function 
multiplying n-2pl/(1-2pl) in, for example, (2.23) to the function multiplying n-2pl/(1-2pl) in (2.22). 
Note that in quantile estimation for positive 'Y we got the same function (cf. (2.23) and (2.24)) 
whether using xPn (k) or i pn (k) as alternative estimator. However the asymptotic mean square error 
in Theorem 2.9 is four times the asymptotic mean square error in Theorem 2.8 (cf. proof of these 
Theorems). 

2.3 Results for endpoint with a shift-scale invariant estimator of 'Y 

Here the endpoint estimator itself, as motivated earlier remains the same i.e., we still use as in (2.12) 

a'( !!) AI (k) .- X k Xo .- n-k n - , . , i; (k) 
(2.25) 

The main difference lies in the quantities M~j) (2.1) that change to the following 

k-l 

Nil) := t I: (Xn-i,n - Xn-k,n)j, j = 1,2,3. 
i=O 

(2.26) 

Since 'Y is negative we shall use 

A-'(k) '= l_~(l_(N~I)?)-l 
'Yn . 2 (2) 

Nn 

(2.27) 

to estimate the extreme value index. Note that (2.27) is shift and scale invariant whilst the extreme 
value index estimators used in the previous sections are just scale invariant. In what concerns the 
estimation of a(V it changes to 

A/{?!:) ._ N(1)j (A-'{k)) a k .- n PI 'Yn . (2.28) 

In what regards the alternative estimators necessary for the bootstrap procedure just apply the same 
scheme as in section 2.1 for the endpoint. Substitute in (2.16) M~j), j = 1,2,3 by N;!), j = 1,2,3, 

. A._' I ,. -',..1 ,.,1 
respectIvely, to get "in (k). Substitute in (2.28) i.;;- (k) by "in (k) to get a (I)' to finally obtain xo{k). 

We now state the main result. Note the resemblance with Theorem 2.6. 
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Theorem 2.11. Suppose the second order condition {2.8} holds. If p < ° and -1/2 < , < 0, then 
the value ko(n) of k minimizing the asymptotic second moment of x~(k) - Xo satisfies 

(n -t 00). (2.29) 

Therefore, Theorem 2.5 still applies with the functions g and 9 from Propositions 4.14 and 4.15 below 
respectively, but in the case of g take always 

(2,- - 61':' + 4-l + p - 5,_p + 6,:.p + 2,_p2)2 
C8:=~--~----~~~--~~--~~--~~ 

,~(1 -,_ - p)2({_ + p)2(1 - 2,- - p)2 

and in 9 and 9 replace C2 by C2 {cf. {2.7}-{2.8}}. 

3 A pplications to simulated and real data 

3.1 Simulation results 

The simulations are based on the following three types of distribution functions. 

3.1.1 Generalized Extreme Value distribution (in accordance with theory let, # 0, -1) 

Let G,(x) = exp{ -(1 + ,x)-lh }, 1 +,x > 0. The function U(t) = Ff--(l - l/t) is given by 
U(t) = « -log(1-1/t))-' -1)/" t > 1, where limHoo U(t) = U(oo) = -1/, if, < ° and U(oo) = 00 

if, > 0. Expanding the function U(t), if, # 1, 

t' - 1 1 U(t) = -- - _t'-1 + 0 (t,-l) as t -t 00 , 
, 2 

(3.1) 

and if, = 1, 

1 t- 1 _
1 U(t) = -2" + (t - 1) - 12 + 0 (t ) as t -t 00 , (3.2) 

and so (2.8) holds with (P,CO,C1,C2) equal to (-1,0,1,-1/2) if, # 1 and 
(-2, -1/2,1, -1/12) if, = 1. 

In case of a sample with negative data it has to be translated in order to get just positive data, so 
that the estimators may be applied (remember the condition U(oo) > 0). Since U(oo) = CO - cd" for 
, < 0, the effect of a translation, say adding a positive constant a to the data, changes Co to CO + a. If 
, > ° the translation has no effect on the asymptotic behaviour of U(t). Hence the functions required 
in the first and second order conditions in terms of U(t) (see (2.7)) may be taken as a(t) = CIt' = t' 
and A(t) = p({ + p)C2tP /C1 = ({ - 1)t-1/2 if, # 1 and t-2/6 if, = 1, as t -t 00. The function 
required in th~ second order condition for logU(t) (cf. Lemma 4.1) may be taken as (t -t 00) 

A(t) = 

,,<-I 
,-1<,<0 

,0<,<1 

" = 1 

" > 1 . 

(3.3) 

Note that limHoo(U(t) - a(t)/,) = -1/1' + a if, < 0, -1/, if ° < , < 1, -3/2 if, = 1 and -00 if 
, > 1. 
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3.1.2 Reversed Burr distribution (in accordance with theory let r i= 1) 

A random variable (r.v.) Y is said to have Burr distribution function (d.f.) with parameters (J, A and 
T if Fy(y) = 1- {J>" /({J + yT)A, y > 0, (J, A, T > O. Let X = _y-I . Then X is said to have a Reversed 
Burr distribution, say RB{3,>..,Tl with d.f. given by Fx(x) = 1 - {J>" /({J + (-X)-T)A, X < 0 = xo, 
(J, A, T > O. This d.f. is being used in financial applications. In order to properly use simulated data 
from this model it must then be shifted by a positive constant, say a, so that Xo = a. Therefore 
U(t) = a - (J-l/T(t l />.. _l)-I/T, t > 1, and limHoo U(t) = U(oo) = a. Expanding this function we get 

~-l/T rl/>"T 1 ~-I/T 
a - (J-I/T + _fJ__ - _ _ fJ __ rl/>"T-I/>.. 

AT -l/AT T 
U(t) = 

+0 (ri/>"T-l/>..) as t -+ 00 , (3.4) 

and so (2.8) holds with (-y,P,CQ,ct,C2) equal to (-l/AT, -l/A, a - {J-I/T, (J-I/T/AT, _(J-I/T/T). 
The functions required in the first and second order conditions in terms of U(t) may be taken as 
a(t) = (J-l/Tt-I/>"T /AT and A(t) = (1 + r)t-1/>"/AT, as t -+ 00. The function required in the second 
order condition in terms of log U(t) may be taken as (t -+ (0) 

_ {l+T t- I />.. T < 1 
A(t) = (PI/T -I/>"T ' 

a>"T t ,T> 1 
(3.5) 

3.1.3 Cauchy distribution. 

Let X with d.f. Fx(x) = (arctan x + 1r/2)/1r, X E lR. Then U(t) = tan(1r/2 - 1r/t), t > 1 and 
limHoo U(t) = U(oo) = 00. Expanding this function we get 

1 1r 
U(t) = 1/1r + ;(t - 1) - 3rI + 0 (t-I) as t -+ 00 , (3.6) 

and so (2.8) holds with (-y, p, CQ, ct, C2) equal to (1, -2, 1/1r, 1/1r, -1r/3). The functions required in the 
first and second order conditions in terms of U(t) may be taken as a(t) = t/1r, A(t) = 21r2t- 2 /3, as 
t -+ 00, and the function required in the second order condition in terms oflog U(t) may be taken as 
A(t) = 41r2t-2 /3, as t -+ 00. Note that limt--too(U(t) - a(t)/,) = 0 (if, is positive it holds whenever 
0<, < -p and Co - cd, = 0). 

3.1.4 Simulation results 

Two collections of simulation results are presented. The first, based on samples of moderate size and 
on endpoint estimation, intends to discuss briefly with an example the choice of some parameters 
required when using the bootstrap, namely nl - the size of the first bootstrap resample - and r - the 
number of bo<?tstrap resamples. The second concerns endpoint and high quantiles estimations from 
samples of larger size and from several d.f.s with various first and second order parameters, and p. 

Thus we start by discussing the influence of varying ni with n fixed. Table 1 summarizes the 
results on endpoint estimation of 100 simulations with independent samples of size n = 2000 from 
G- .25 for each ni = 500(250)1750, where the final bootstrap estimates of ko and ZF are presented. 
For instance there is no clear trend along ni in terms of the means of Xo but instead a fluctuation 
around its true value. Also the estimated mean square error (mse, in the table is the square root of 
it) do not reveal any tendency for increasing or decreasing with nl. Nonetheless when ni (or n2) is 
small the minimum of the estimated mse is often unclear and shows a tendency to be attained near 
ni (respectively n2). Also due to a slight bias on this kind of estimators it is found advisable not to 
take too small values of ni (respectively n2). On the other hand as ni (respectively n2) increases the 
results become more unstable in the sense that the number of abortions increases with ni (respectively 
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nl n2 ko xo (xo = 4) Abort. 
(Interv. to look for kJ) (Interv. to look for k2) mean st. deY. mean rootmse Simul. 

500 (10,400) 125 (10,100) 50.5 32.1 4.06 2.22 7 
750 (10,600) 281 (10,220) 58.6 42.5 3.75 1.01 9 
1000 (10,880) 500 (10,400) 60.7 46.5 3.82 .87 10 

1250 (10,1000) 781 (10,620) 53.1 36.0 4.03 3.07 12 
1500 (l0,1200) 1125 (10,900) 55.3 41.9 3.81 .69 24 
1750 (10,1400) 1531 (10,1220) 54.1 31.6 4.00 2.00 17 

Table 1: Simulation results, bootstrap endpoint estimation with 100 independent samples of size 2000 
from G-.25 and r = 300. 

n2). Hence our advise is to take approximately nl = nl2 (which corresponds to c to be approximately 
equal to log2/logn in nl = 0(n1- c ); cf. [6] Draisma, de Haan, Peng and Pereira, 1998). 

In table 1 by each ni is the range within which ki, i = 1,2, minimizing the estimated mse was 
obtained. Due to the asymptotic properties of ki with respect to ni it makes no sense to look for ki 
within a range of very small values (in applications we cut it at 10) and of very large values. In fact 
when ki is near ni the estimated mse frequently shows a sudden downturn to zero. Therefore it is 
advisable to have a look at the estimated mse to avoid nonsense minima. 

In what concerns the number of bootstrap resamples, in practice for each ni the consecutive 
solutions of ki along the bootstrap resamples start stabilizing so that 300 replications (denoted by 
r = 300) seem fairly enough in all cases. 

To end this first analysis, as it might be seen in table 1, not every simulations work well. The 
reasons for aborting are the following: kl is less or equal to k2; the consistent estimate of, is greater 
than zero; due to bad estimates of kl andlor k2 or of the consistent estimate of" ko is 0 or 1; the 
bootstrap estimate of , is positive. 

In table 2 are summarized some results from both endpoint and high quantiles estimation. Each 
simulation result is based on 30 independent samples of size 10000 from the three d.f.s presented 
earlier. In all cases n1 = 5000 and r = 300. Below each bootstrap estimated mean of pI, , and :1:0 or 
:1:10-5 is the correspondent true value. 

In what concerns the endpoint estimates they are close to the true value on average with very 
reasonable mse. Comparing with the classical estimation taking simply ko = ..;n (see figure 1) the 
reduction in variance is clear and in the positive asymmetry of the sample of the estimates when 
using the bootstrap procedure. We note however that we have just presented results for distributions 
verifying p < , < 0 and in the algorithm right before the calculation of ko after calculating the 
consistent estimates of, and pI we make the following choice: if the ratio of , over p is not greater 
than one then we assume p < , < 0 and just use for estimating pi the consistent estimate of, (since 
in this case pI = ,). In that way we avoid the bad estimation of the second order parameter. Indeed 
the usual models verify p < , < O. 

In what concerns quantile estimation the results are rather irregular. In fact recall that we had 
to deal with a, wider range of theoretical conditions than on endpoint estimation. The conditions are 
, < p, p <, < 0, 0 < , < -p & limt-..+oo(U(t) - a(t)/,) i= 0,0 < , < -p & limHoo{U(t) -a{t)/,) = 0 
or, > -p which affect the estimation of the bias functions involved in the algorithm. 

Regarding to all the simulation results one sees that the estimates of pI are in general not good. 
Moreover theoretically Ipl /,1 ~ 1 must hold if, < 0 or, > 0 & limHoo(U(t) - a(t)/,) i= O. Therefore 
in order to deal with it and to make simulations valuable the following procedure was adopted. After 
getting the consistent estimates of, and pI, say i' and pI: (i) if i' < 0 check whether pI Ii' < 1. (i-a) 
If not then assume p < , < 0 and use only i' that is, assume pI = , and take the same estimate 
to both. (ii) If i' > 0 and if limHoo(U(t) - a(t)h) i= 0 (we assume this known in the simulations) 
proceed as under (i). (iii) If limHoo(U(t) - a(t)h) = 0 then there is no possible improvement for 
the estimates of pI and then pI is used for the estimation of the bias. In simulations almost always 
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ko pI 1- .2:0 
ENDPOINT mean st.dev. mean st.dev. mean st.dev. mean rootmse st.dev./ 

(true) (true) (true) mean 
GEV-.25 112.0 76.8 -2.69 .64 -.31 .10 3.88 .39 .10 

(-1) (- .25) (4) 
RB4 ,4,2 73.2 97.0 -1.93 1.29 - .36 .45 - .09 .20 -1.22 

(-.25) ( -.125) (0) 

ko pI 1- .2: 10- 5 
QUANTILE mean st.dev. mean st.dev. mean st.dev. mean rootmse st.dev./ 

(true) (true) (true) mean 
GEV_ .25 6367.2 2341.1 -7.41 2.12 -.65 .30 2.64 1.34 .28 

(-1) (-.25) (3.78) 
R B4,4,2 2395.3 1829.6 -1.47 .43 -.64 .31 - .26 .17 -.38 

(-.25) (-.125) (-.12) 
GEV6 2397.9 999.6 -24.27 18.3 .50 .02 648. 113. .17 

(-1) (.5) (631.) 
GEV5* 7488.0 1372.0 -20.64 14.4 .46 .03 565 . 147. .23 

(-1) (.5) (631.) 
Cauchy(J) 6181.7 328.4 -9.30 1.15 .50 .01 1401. 30432. .21 

(-2) (1) ( 31831.) 
GEVu 2976.5 1417.3 -5.27 2.69 1.53 .12 .31 x 108 .18 X 108 .47 

( -1) (1.5) (.21 x 108 ) 

(1) These do not include the severe outlier shown on Cauchy boxpJot, fig. 2. 

Table 2: Summary of bootstrap simulation results with n = 10000, r = 300 and 30 simulations of 
each; see table 3 for more details. 

ENDPOINT n 1 (Inter. to look for k 1] n2 (Interv. to look for k2) a Abort. Simul. 
GEV_.25 5000 (10,4000) 2500 (10,2000) 4 4 
RB44 ,2 5000 (10,4000) 2500 (10,2000) 2359 4 

QUANTILE nl (Interv. to look for kJ) n2 (Interv. to look for k2) a Abort. Simul. 
GEV_.25 5000 (10,4000) 2500 (10,2000) 4 16 
R B4,4 ,2 5000 (10,4000) 2500 (10,2000) 513 8 
GEV6 5000 (10,4750) 2500 (10,2375) 2 1 
GEV6* 5000 (10,4750) 2500 (10,2375) 2 0 
Cauchy 5000 (10,4900) 2500 (10,2475) 5573 3 
GEVI.5 5000 (10,4999) 2500 (10,2499) 1 17 

Table 3: Simulation parameters, shift (a) and number of abortions. 

GEV-.25 and RB4,4,2 verify (i) and (i-a), GEV,5 verifies (ii), Cauchy verifies (iii) and GEV1.5 is on 
the same pratical situation as in (iii). 

However in applications it is not clear how to get limHoo{U(t) -a{t)fr). Indeed that decision may 
be avoided but then pI must be always considered as in (iii) (see Remark 4.19). The GEV,5* results 
exemplify this situation. 

We will now comment on the quantile simulation results resumed on table 2 and figure 2. We 
exemplify with xlO-5 which corresponds to p = 10-5 ~ 1/{nlogn) for n = 10000. 

Starting with GEV-.25 and RB4 ,4,2 one may see large means and standard deviations of ko and 
also large simulated mse of quantile bootstrap estimates. In fact in figure 2 we see that the classical 
procedure (ko = y'n) performs better than the bootstrap one. Comparing quantile and endpoint 
estimation, the different outcomes may be explained by mainly the following two reasons. On one hand, 
the quantile estimator has smaller bias than endpoint estimator and so one must expect beforehand a 
good behaviour of classical results. Also it corresponds to larger ko minimizing asymptotic mse which 
may be a contribution to instability on the results when it comes to calculate ko since it involves 
ki' i = 1,2 that must also be expected larger and with larger variance (see figure 3). This effect is 
strengthened by the fact that the function h (cf. Theorem 2.1) is also much larger in the quantile 
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Figure 1: Comparison of bootstrap endpoint estimates with classical ones (ko = v'n)-

case. Hence a main problem here is in the 'asymptotic ratio' (Variance(of first estimator)xBias(of 
alternative estimator)2)/ (Variance(of alternative estimator)xBias(of first estimator)2) (let us denote 
it simply by Varl Bias~) / (Var2Biasi)). 

In what concerns GEV5, GEV5* and GEV1.5 the results are quite good, similar to those obtained 
on endpoint. This is remarkable given that in GEV5* and GEV1.5 when estimating the bias pI was 
used. Even though the results are better for GEV5 than for GEV5*. In what concerns Cauchy d.f. 
the results are definitely not good. But notice that it happens regardless wether one uses bootstrap 
or one simply takes ko = fo. One explanation may be the huge shift of 5573 applied to the data. We 
have adopted here for each distribution function a common shift for any data set in order to have any 
occasional shift influence under controL 

Simulation results regarding quantile estimation, positive gamma, are omitted since they follow a 
similar trend. 

3.1.5 Application 

Given the previous discussion is was found enough to give an application on endpoint estimation. The 
data consists of the total life span (in days) of the people who died as residents in the Netherlands, 
which were born between the years 1877 - 1881 (included) and were still alive on January 1, 1971. 
Evidence has been given to support the statment that the underlying distribution of the population 
under study has a finite endpoint and the extreme value index is between -1/2 and OJ for a brief 
discussion we reffer to [1] Aarssen and de Haan (1994), where the same sample is analyzed after 
suitable preparation for statistical analysis. The sample size is 10391. Results are also displayed for 
women and men separately with sample sizes of 6260 and 4131, respectively. 

In table 4 are results on bootstrap endpoint estimation. Below each bootstrap resample size, nl 
and n2, in round brackets, is the range taken in looking for the optimal kl and k2 , respectively. In 
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Figure 2: Comparison of bootstrap quantile estimates with classical ones (ko = v'n). 

what concerns the number of bootstrap resamples, following the arguments discussed previously it 
was found convenient to consider larger values: we took 3000 resamples for men+women data, 1500 
for women data and 500 for men data. 

Note that iarge values of kl 0 related to nl and k20 related to n2 were obtained, compared to the , , 
simulated data on endpoint estimation presented earlier. Results are shown for several options of nl. 

Note that the consistent estimate of'Y in each bootstrap intermediate result is always the same within 
each sample of size n, since it is calculated simply by taking k = Vii. The bootstrap estimates of 
endpoint for life span data are quite stable. Only for the men data a positive bootstrap estimate of 
'Y was obtained which is inconsistent with the existence of endpoint. It is believed that it is due to 
having a small sample size, regarding the kind of data. 
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4 Proofs 

The proof of Theorem 2.3 will be given first and of Theorem 2.1 afterwards. The same reversal happens 
with the proofs of Theorems 2.6 and 2.5_ 

We start with a number of auxiliary results. The first one has been taken from [6] Draisma, de 
Haan, Peng a~d Pereira (1998). 

Lemma 4.1. Assume U(oo) > 0 and there exist functions aCt) > 0 and A(t) --+ 0 such that 

U(tx)-U(t) _ xLI 
a(t) "Y 

--'-'-A-:-("--:t )---'-- --+ H"Y ,p (x) 

where 

1 x"Y+p - 1 x"Y - 1 
H"Y p(x) = -[ - --] (p ~ 0). 

, P ,+p 'Y 
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size of the bootstrap intermediate results bootstrap final results 
bootstrap resamples kt.o (kt.o/nt) I k20 (k2 o/n2) I .:y ko (ko/n) I pI I l' I Xo 

men+women sample 
n = 10391 

nt = 4000; n2 = 1539 2536 (.63) 1195 (.78) - .2940 335 (.03) -8.60 -.1625 114.8 years 
(10,3200) ; (10,1231) 
nt - 5000; n2 - 2405 3130 (.62) 1679 (.70) -.2940 363 (.03) -8.59 -.1643 114.7 years 
(10,4000); (10,1924) 

nt - 6000; n2 - 3464 3752 ( .62) 2415 (.70) -.2940 363 (.03) -8.76 - .1643 114.7 years 
(lO,4500) j (10,2700) 
nl - 7000; n2 - 4715 4382 (.63) 2950 (.62) -.2940 405 (.04) -8.95 -.1452 115.9 years 
(10,5600) ; (10,3772) 

women sample 
n = 6260 

nl = 3000; n2 = 1437 2119 (.71) 1149 (.80) -.2753 226 (.04) -11.01 -.15lO 115.5 years 
(lO,2400) ; (10,1149) 
nl - 4000; n2 - 2555 2826 (.71) 1818 (.71) - .2753 254 (.04) -11.44 - .1382 116.4 years 
(10,3200) ; (10,2044) 

men sample 
n = 4131 

nl = 2000; n2 = 968 1554(.78) 760(.78) -.0419 7(-) -14.56 .0770 -
(10,1600) ; (lO,774) 

nl = 3000; n2 = 2178 2332(.78) 1685(.77) - .0419 7(-) -15.39 .0770 -
(10,2400) j (10,1742) 
nt - 4000; n2 - 3873 3000(.75) 2905(.75) -.0419 7(-) -13.92 .0770 -
(10,3200) ; (10,3098) 

Table 4: Results of bootstrap in endpoint estimation of life span of men and women. 

Suppose that, t= p. Then 

~ 
lim U(t) - ,+ [ ] 

t-too A(t) = c E -00,00 

where 

c= 

o , 
,+p , 
,+p 
±oo 
±oo 
±oo 

if, < p 
if, >-p 

if 0 <, < -p and limt-too(U(t) - a(t)/,) = 0 
if p < , ::; 0 

if 0 < , < -p and limt-too(U(t) - a(t)/,) t= 0 
if, = -po 

Furthermore 

where 

~~~~~~_ x~--l 

---'-.:..:....--'--;;;-----',--- -+ H,_ ,p' (x) 

A(t) = { 

p' = { 

A(t) ifc = 0 
~ ,+ - U(t) if c = ±oo 

pA(t)/h + p) if c = , / h + p), 

if (0 < , < -p and limt-too(U(t) - a(t)/,) t= 0) 
if p < , ::; 0 

if (0 <, < -p and limt-too(U(t) - a(t)/,) = 0) 
or , < p or , ;;::: - p. 
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Remark 4.2. Hence p' = 0 if"( = O. 

Lemma 4.3. Suppose for some function a{t) > 0 and function A{t) not changing sign, lim A{t) = 0, 
t~oo 

U(tx)-U(t) x1'-1 
• a(t) - -'Y- 1 [x'Y+P - 1 x'Y - 1] 
t~~ A(t) = P "( + p - -"(- = H'Y,p{x) 

for all x > 0, with p < O. Then 

U(tx)-U(t) ~ - 1 -1 
lim __ a-,--(t,--) --,---:---;-x_1' -_1 ____ _ 

Hoc A(t) p + "(_ 
x~oc 

The same holds with p = 0 and "( < o. 
Moreover, for "( < 0, 

lim 
t~oc 

U(oo)-U(t) + 1 
a(t) ;Y 

A(t) 
-1 

"(-{"(- + p). 

Proof. From [7] Drees' inequality (1998) it follows that 

lim supx-'Y+P+c a(t) 'Y - H (x) = O. 
[ 

U(tx)-U(t) - x1'-l 1 
Hoo x~l A(t) 'Y,p 

for negative p and each positive t:. The first result follows by considering the cases "( > 0, "( = 0 and 
"( < 0 separately. 

As to the second result, relation (2.11) and Remark 2(i) from [14] de Haan and Stadtmiiller (1996) 
imply: limHoo(U(t) - a(t)h) = U(oo) and 

lim U(oo) - U(t) + a(t)/"( = ~ 
t~oo a(t)A(t)/"( "( + P 

The result follows. D 

Remark 4.4. If {U(tx)/U(t) -x'Y}/a(t) --+ x'Y(xP-l)/p, with"( > 0 and p < 0, t --+ 00, for all x> 0, 
then 

lim {x-'YU(tx)/U(t) - l}/a(t) = -l/p. 
t~oc 
x~oo 

Take random variables Y1, Y2 , ••• i.i.d. with distribution fWlction 1 - l/y, y > 1. Then U{Yr), 
U(Y2 ), ••• are i.i.d. F. 

Lemma 4.5. Write 

(i) . 

M . . = Mn UJ (Yn-k,n) _ I. 
J • . ( J 

aJ Yn-k,n) 

for j = 1,2,3 with 

k-l 

MAi ) : = ~ I: {log U (Yn-i,n) - log U (Yn-k,n) }i , 
i=O 

l/lt : = 1 - "(_ 

1/12: = (1 - ,,(_)(1 - 2,,(_)/2 

l/h : = {I - ,,(_)(1 - 2,,(_)(1 - 3,,(_)/6. 
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Then under the conditions of Lemma 4.1, for k = k(n) -+ 00 and k(n)/n -+ 0 (n -+ 00) 

P1 - n 1 - n 
M1 = v'k + d1A{ k) + op( v'k) + op(ACk)) 

P2 - n 1 - n 
M2 = v'k + d2A( k) + op{ v'k) + op(A( k)) 

P3 -n 1 -n 
M3 = v'k + d3A( k) + op( v'k) + op(A( k)) 

and 

{ 
d - 1 

1 - (1-"Y-)(I-p'-"Y-) 
d - 2(3-2p' -41'_) 

2 - (1-"Y-)(1-2"Y-)(I-p'-"Y-)(I-p'-2"Y_) 
d = 6(18"Y~ -221'- +15p' "Y_+3p,2 -8p' +6) 

3 (1-1'-) (1-21'_) (1-31'-) (l-p'-"Y-) (l-p'-2"Y-) (1-p'-3"Y-)· 

Proof. By Lemma 4.1 

1 k-1 
{k I)og U(Yn-i,n) -log U(Yn-k,n)} U(Yn-k,n)/a(Yn-k,n) 

i=o 

~ -n -n 1 
= E(Y"Y~ - 1)/,- + v'k + A( k )EH"Y_,p'(Y) + op(A( k)) + op( v'k) 

with Y, Y1 , Y2 , ..• i.i.d. with distribution function 1 - l/y, y > 1, and PI the normal limit random 
variable of 

1 k 

v'k[k I)Yi"Y- -1)/,- - E{Y"Y- -1)/,_]. 
i=l 

Similarly for MY), j = 2,3; note that by Lemma 4.1 

(
lOg U(tx) -log U(t))i (x"Y- - l)i . _ (x"Y- _1)i-1 -

a(t)/U{t) = ,_ + JA{t) ,_ H"Y_,p'{x) + o(A{t)), 
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hence 

Lemma 4.6. Under the given conditions 

with 

= lim a(t)/U(t) - 'Y+ = 
q,,(,p Hoo .A(t) 

o if'Y < p 
'Y/p if (limHoo U(t) - a(t)/'Y+ = 0 

and 0 < 'Y < - p) or 'Y > - P 
-1 if (limHOO U(t) - a(t)/'Y+ =1= 0 and 0 < 'Y < -p) 

or p < 'Y ~ 0 or 'Y = - P 

Proof. 

MAl) = a(Yn-k,n)/U(Yn-k,nHh + Md 

a(Yn-k,n) -

= U(~n-k,n) - 'Y+ A(:n-k,n) .A(~){l + M } + {I + M } 
A(Yn-k,n) A( f) k 1 1 'Y+ 1 1 
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Lemma 4.7. Under the given conditions 

~~(k) 

1 (1) 2 (2) 1 4 2 
= 1 - 2{1 - (Mn ) /Mn } - = 'Y- - lIb Ml + l~M2 

'Y- + ~(1 - 'Y_)2(1 - 2'Y-){ -4Ml + (1 - 2'Y_)M2}· 

= 1_~{1_M~I)M~2)}-1 
3 M~3) 

3b 3 3b 
'Y- - 2zr l3 Ml - 21113 M2 + 2it1~M3 

'Y- + (1 - 'Y_)2(1 - 3'Y_) {-6MI - 3(1 - 2'Y_)M2 + (1 - 2'Y_)(1- 3'Y_)M3} 
12 

Remark 4.8. Hence for 'Y > 0 

1 1 - n 
i~(k) = -2Ml + 2M2 +o(y'k) +o(A(k)) 

A_ 1 1 1 1 - n 
'Y (k) = --Ml - -M2 + -M3 + 0(-) + o(A( - )). 

n 2 4 12 y'k k 

Proof (of Lemma 4.7). For the expansion of i;(k) see [5] Dekkers, Einmahl and de Haan (1989), proof 

of Corollary 3.2. Next we consider ~~(k): 

1 - 3'Y- (it + Mt}(l2 + M 2) 
-

3(1 - 'Y-) 

= 12 Ml + 0.. M2 - lll2 M3 + terms of lower order. 
13 l3 l~ 

Write 1f:= M~I) M~2) /M!n3) and A:= (1 - 3'Y-)/{3(1 - 'Y-n. 

A_ 2 1 2 1 2 A-1f 
'Yn (k) - 'Y- = 1 - 3 1 _ 1f - 1 + 31 _ A = 3 (1 - A)(1 - 1f) 

Hence, disregarding terms of lower order, 

~~ (k) - 'Y-

o 

Lemma 4.9. Let b{n/k) = U{Yn-k,n). Under the given conditions 

b{f) - U{f) _ B 1 n 
a(V - y'k + op(y'k) + op{A(k)) 

with B a standard normal random variable, independent of PI, P2 and P3 • 
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Proof. We use the second order conditions for U. 

U(Yn-k,n) - U(~) _ 
a(~) 

(~Yn-k,n)'Y - 1 n k n 
'Y + A( k")Hy,p(;Yn- k,n) + o(A( k")) 

k k n n 
(;Yn-k,n -1) + op(;Yn-k,n -1) + A( k")op(l) + o(A(k")) 

B 1 n 
v'k + op( v'k) + op(A( k")) 

Remark 4.10. No bias term comes into play. 

Lemma 4.11. Under the given conditions 

and 

Proof· 

Xn_k,nM~l) (1 - i';(k)) 

a(~) 

(1 - 'Y_)M~l)U(Yn_k,n) a(Yn-k,n) 

a(Yn-k,n) a(~) 

1 - i';(k) 
1- 'Y-

Now by the second order conditions for U 

a(tx) 'Y 
. a(t) - X x p - 1 

hm =x'Y--
Hoo A(t) p 

locally uniformly for x > 0, hence 

a(Yn-k,n) _ 1 = 
a(V 

(
k )'Y n k (~Yn-kn)P-1 n = - Yn- k n -1 + A( -kH -Yn- k nF ' + o(A( -k)) 
n' n' p 

k k n n 
= 'Y( -Yn-k n - 1) + o( -Yn-k n - 1) + A( -k )op(l) + o(A( -k)) 
n' n' 
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Consequently 

a(I) 
a(I) 

Similarly for 

ti(I) _ 
a(I) 

Hence 

ti(I) 
a(I) - 1 

Proposition 4.12. Under the conditions of Theorem 2.1, as n ~ 00, 

k () 
{ 

(c4C2(:'2P')) 1_12pl nl __ 22~1 for, > 0 
on'" I 2' 

( 4 1+21 ) 1-2p' n1--lpl for '" < 0 , 
C6C2 -2p' -2"( I 
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We have asymptotic expansions for i'n(k), a (n/k), b(n/k) and also for the last term (the bias term) 
but not for (a~n(k) -l)/i'n(k). So we want to simplify the expression (as in [13] de Haan and Rootzen, 
1993). Since we are dealing with the asymptotic second moment it makes sense to first consider the 
limit behaviour in distribution rather than in L 2 • 

First suppose 'Y > O. Note that a(I)a~ rv CIP;;"1. Hence 

[{ 
1 1 a i'n(k)-"1 -1} a(n) 

xPn (k) - xPn rv CIP;;"1 (1 - a;;"1Hi'n(k) - ~) + n i'n(k) a(~) 

1 - a;;"1 (aon _ 1) -"1 b(I) - U(I) 
+ (n) + an (n) 'Y aI aI 

-a-"1 {U(f,;-) - U(I) _ a~ -1}] 
n a(I) 'Y 

rvCIP-"1 ____ + n +_(_k -1)-- A(-) 
[

1 1 ai'n(k)-"1 -1 1 a(!!) 1 -1 n 1 
n i'n(k) 'Y i'n(k) 'Y a(I) 'Y P + 'Y- k 

plus terms of lower order by the Lemmas above for any intermediate sequence k(n) and n -t 00. 
Consider this expression for the sequence k(n) = [n-2p' /(1-2p')]. Then by the expressions of Lemmas 
4.6 and 4.7 we have i'n(k) -'Y = o((k(n))-1/2) (see also [6] Draisma, de Haan, Peng and Pereira, 1998). 

Hence, since 10gPn = o( Vk(n)), (i'n(k) - 'Y) logan converges to zero for the sequence k(n), and in fact 
the entire expression in square brackets tends to zero. This must then also be the case for the as yet 
unknown optimal sequence. Hence we may replace (a~n(k)-"1 - l)/i'n(k) by (loganHi'n(k) - 'Y)/i'n(k) 
in the minimization procedure. We get 

A -"1 [1 1 i'n(k) - 'Y 1 (a(v) 1 n ] 
xPn (k) - xPn rv CIPn i'n(k) - 7 + (log an) i'n(k) + 7 a(I) - 1 + 'Y(p + 'Y-) A( k") 

plus terms of lower order. Since (log an)(i'n(k) - 'Y)/i'n(k) dominates all the other terms we find 
(n -t 00) 

Next suppose 'Y < O. Note that 

n [ 1 1 a~n(k) -a~ a(I) 
xPn(k) - xPn = a(k") (a~ -l)(i'n(k) -~) + i'n(k) a(I) 

a~ -1 (aOn ) b(I) - U(V 1 -1 A(n)] +-- --1 + -- -
'Y a(V a(I) 'YP+'Y- k 

= a( ~) - - -- + an - an _ _ ~ _ 1 k k _ A( ~) [1 
1 i'n(k) "1 1 ( A (!!) ) b

A

(!!) - U(!!) 1 ] 

k 'Y i'n(k) i'n(k) 'Y a(I) a(I) 'Y(p + 'Y-) k 

plus terms of lower order, for any intermediate sequence k(n). 
Now 
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(n -+ 00). Hence the second term (a~n(k) - a~)/in(k) is of smaller order than the first term 1/,,( -
l/in(k). We find (n -+ 00) 

inf as. E(xPn (k) - X p1.)2 rv 
k 

inf as .. E {a2(~) [in(k) - "( _ ~ (d(f) -1) + b(I) - U(I) _ 1 A(~)l2} 
k k "(2 "( a(V a(I) "((p+"(_) k 

inf as. E {a2(~) [in(k) - "( _ ~ (d(f) _ 1) + b(f) - U(f) _ 1b<p} A(~)l2} 
k k "(2 "( a(I) a(V "((p + "(_) k 

by Lemma 4.1. 
Next we consider as. E(xpn (k) - xPn)2 for,,( > 0: by Lemmas 4.6 and 4.7, disregarding terms that 

are o(~) or o(A(I))' 

as. E(in(k) - "()2 = E{("(+ - 2)Ml + ~M2 + q'Y,pA(~)}2 
Pl - n 1 P2 - n - n 2 

E{h+ - 2)( v'k + dlA( k)) + 2"( v'k + d2 A( k)) + q'Y,pA( k)} 

2EPr 1 EPi EPlP2 1}2 -2(n) = ("(+ - 2) -k- + 4-k- + ("(+ - 2) k + {b+ - 2)dl + 2"d2 + q'Y,P A k 
_. ,,(2C3 (,,(+) + "(2C4(~+'P') A2(~). 

Cfk c l k 

So we are looking for 

Write s:= (logu)2/u. Then u rv S-l (log s)2(U -+ 00) and we are dealing with 

This can be minimized by equating the derivative to zero. The result is 

That is, 

23 



Note that the right hand side tends to zero since nPn -+ O(n -+ 00). Now, replacing u by k/(nPn), we 
get 

or 

( 
C3 )dpr.4 

ko(n) rv C4 C2( -2P') n 1-2p • 

Note that ko(n) does not depend on Pn. 
Finally we consider as. E(xPn (k) - xpn )2 for "1 < 0: by the preceding Lemmas, disregarding terms 

which are o(J,c) or o(A(r)), 

Hence 

Hence 

By assumption 1 + 2"1 > O. Write t := k-(1+2,). We want to minimize 

Equating the derivative to zero yields 

k l - 2p' t 2P'+2J-l Cs -2p' 1 + 2"1 = 1+2-y =-n 
~C6 -2p' - 2"1' 
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i.e. (n -+- 00) 

1 

( 
1 + 27 C5) 1-2p' ,=.¥,. ko(n) rv , - nl-2p . 

-2p - 27 ~C6 

Proof of Theorem 2.1. Immediate consequence of Proposition 4.12. 

Proposition 4.13. Under the conditions of Theorem 2.3, as n -+- 00, 

where ko(n) := arg mink as. E(xpn (k) - ~Pn (k))2, 

k .=.. (k) ~ ~ n (n-)'Yn - 1 - , 
xPn(k):= Xn-k,n + a(k") pn~n(k) , C2 from A(t) rv C2tP (t -+- 00) and 

(;3 .-

(;4 .-

(;5 .-

(;6 .-

[ 
-2+121'- -22'Y~ +121': +5p' -221'_/ +21'Y~ p' _6p,2 +121'- p,2 +2p,3 

21': (1-1'- )(1-1'- -p')(1-2'Y_ -p')(1-3'Y- -p') 

+ 
2-141'_ +34'Y~ -341': +12'Y~ -6p' +30"(- p' -46"(~ p' +22'Y:p' +6p,2 -18'Y_p'2+12'Y~p'2 _2p,3 +2'Y_p,3] 2 

if q'Y,P = -1 . 
2'Y~ (1-1'- )(1-1'- -p')( 1-21'- -p')( 1-31'- - p')y' (1-1'-)( 1-21'_) 

o 

o 

Proof. For 7 > 0, neglecting terms which are o( ~) or o(A(I' )), and by similar arguments as in the 
. vk 

proof of Proposition 4.12, the dominant term in the expansion of xPn (k) - "5:pn (k) turns out to be 
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Hence 

as. E(xpn (k) - i=pn (k))2 = (log an)2cip~2'1-2 

[( _ ~)2EPt (3 - I+)2 EPi (~)2EPi 
1+ 2 k + 4 k + 12 k 

1 3 1 3 EP1P3 1 EP2P3 
+2((+ - 2)(3 - I+)EP1P2 - 6((+ - 2) k - 24 (3 - 1+) k 

+ {((+ - ~)dl + ~(3 - I+)d2 - ~d3}2 jp(~)l 
2 4 12 k 

2 2, 2 [ (log an )2 , 2 -2 n ] 
-. CIP~ ,- (;3((+) k + (:4((+, P )(log an) A (k) . 

Minimizing this over k as in the proof of Proposition 4.12 yields (n --+ 00) 

Next suppose 1 < O. Then, neglecting terms which are o( JI) or o(A( f»' as in the proof of Proposition 
4.12, 

Hence 
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As in the proof of Proposition 4.12 we find (n -4 00) 

1 - (1 + 2, (5 ) 1_2pf ~ 
ko(n) rv nl-2p . 

-2P' - 2,~~ 

o 

Proof of Theorem 2.1. Cf. [6] Draisma, de Haan, Peng and Pereira (1998). o 

Proposition 4.14. Under the conditions of Theorem 2.6, as n -4 00, 

if q-y,p = 0, 

if q-y,p = -1. 
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Hence 

1 

( 
1 + 2,_ C7) 1-2p/ ~ 

ko(n) rv, n 1-2p • 
-2p - 2,_ ~C8 

o 

Proof of Theorem 2.6. Immediate consequence of Proposition 4.14. o 

Proposition 4.15. Under the conditions of Theorem 2.5, as n -+ 00, 

_1_, , 

-ko(n) _. ( 1 + 2,_ C7) 1-2p' ~ ~ ,- ::a-
C8 

nl-2p =: gb-,P') n l - 2p 

-2P' - 2,_ '-2 

where ko(n):= argmink as. E(xo(k) - #:O(k))2, C2 from A(t) rv C2tP'(t -+ 00) and 

._ _ ( )._ (1 _,_)2(1 - 6,_ + 35,~ - 78,~ + 72,~) 
C7 C7,- .- 4,~(1- 2,_)(1- 3,_)(1- 4,_)(1- 5,_)(1- 6,_) 

_, (b- - 1)p'? 
C8 .- c8b-, p) := 4,~(1 _, __ p')2(1- 2,_ - p')2(1 - 3, __ p')2· 

Proof. 

X (k) - #: (k) = X - (ion _ {X _ fi(i') } 
o 0 n-k,n i;;:(k) n-k,n fY~(k) 

n [ 1 ((ion ) 1 (ii(f) ) (1 1) 1 
= a(k) - i;;(k) a(f) -1 + fY~(k) a(f) -1 - i;;:(k) - fY~(k) . 
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Hence 

as. E(xo(k) - :fO(k))2 = 
2 n [1 {2 2 2 2 2 2 = a (k) k 91 EP1 + 92 EP2 + 93 EP3 + 29192EP1P2 

2 -2 n ] 
+29193EP1P3 + 29293EP2P3} + (91 d1 + 92d2 + 93d3) A (k) 

_. a2(~) {C7
(;-) + C8(,_,pf)A2(~)} = Ci(~)2'Y- {c; + C8~(~)2P/}. 

Minimizing with respect to k as before yields (n --+ (0) 

1 

ko(n) '" ( 1 + 2,- C7) 1-2p' n 1 __ 
2
:;, • 

-2P' - 2,- ~C8 

Proof of Theorem 2.5. Cf. [6] Draisma, de Haan, Peng and Pereira (1998). 

Proposition 4.16. Under the conditions of Theorem 2.7, as n --+ 00, 

(
-PI(l - PI)2) 1/(1-2pf) ..::..'le!.... ..::..'le!.... 

ko{n) '" 2C2 n 1-2pl =: 1(,+, pI) n 1-2pl 

where ko(n) := argmink as. E (x;n (k) - xpn)2 and (;2 from A(t) '" C2tP' (t --+ (0). 

Proof. Set an = k/(nPn) and note that an --+ 00 as n --+ 00. From Lemma 4.3 

U(tX) = U(t) +a(t)X'Y; 1 {1- ~A (~) +0 (A (~)) }, t --+ OO,X --+ 00. 
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Also from [6] Draisma, de Haan, Peng and Pereira (1998) (or from ql'P in Lemma 4.6) 

a(t)/u...(t) - 1+ = 1+ (1 + 0 (1)) ¢:> U(t) = ~ - ..!:..A (t) + 0 (A (t)) . 
A(t) pI a(t) 1+ pI 

Hence, still using the asymptotic expansion of a(Yn-k,n)/a(n/k) in the proof of Lemma 4.11, 

x:n (k) - xPn = U(Yn_k,n)a~t(k) - U (p~) 

(4.5) 

a (~) {a (Yn:k,n) U (Yn-k,n) a%t(k) _ U (!) _ a~+ - 1 [1 _ ~ A (~) + 0 (A (~))] } 
k a Cd a (Yn-k,n) a (k) 1+ P k k 

a(~){[,~ + ~- :,A(~)+o(A(~))+o(~)]a%t(k) 
- [,~ - :' A (~) + 0 (A (~ ) ) ] - a~~: 1 [1 - ~ A (~) + 0 (A (~) ) ] } 
a (~) al + a~n -1+ -1 (1 + 0 (1)) + B -.!.A (~) + _l_A (~) 

{ 

-+(k) 

k n 1+ P v'k pI k I+P k 

+0 (A (~) ) + 0 (A (~) ) + 0 ( ~) } . 

Therefore foHowing the same arguments as in Proposition 4.12 for positive I, noticing that 

{ 

0 (A (t)) if 0 < I < -p &limHoo U(t) - a(t)/, i= 0 or 
A(t) = _ 

o (A (t)) otherwise, 

,= -p 

and using a(t) rv Cltl + :::::} a (n/k) a~+ rv Clp~/+, as t -+ 00, we get for the optimal sequence ko(n) 

-1+ 
x:Jko(n)) - xPn rv ct~: logan (i';t(ko(n)) - 1+) 

that is, 

Therefore from Lemma 4.6 

(A+( ) )2 ,! ,! -2 (n) 
E In k . - 1+ rv k + pt2(l _ pl)2 A k 

and the result follows. The rest of the proof is similar to the proof of Proposition 4.12 

Proof of Theorem 2.7. Immediate consequence of Proposition 4.16. 

Proposition 4.17. Under the conditions of Theorem 2.8, as n -+ 00, 

- ((1- PI)4)1/{l-2PI).=:li!!.... - .=:li!!.... 
ko(n) rv _ n l - 2p' =: l(r+,pl) n l - 2p' 

-2plc2 

where ko(n) := argmink as. E (x:n (k) - x;n (k)) 2 and C2 from A(t) rv c2tfJ' (t -+ (0). 
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Proof. Following similar arguments as before, for the optimal sequence ko(n) we have 

-,+ 
xtn(ko(n)) -x;n(ko(n)) '" Cl~: logan (r:(ko(n)) -,y~(ko(n))) 

where from Lemma 4.6, neglecting terms which are o(J,c) or o(A(I)), 

so that 

as n~oo. 

The result follows. 

Proof of Theorem 2.8. Immediate consequence of Proposition 4.17. 

Proposition 4.18. Under the conditions of Theorem 2.9, as n ~ 00, 

I 

= ((1 -PI)4) 1- 2pl.:::1.e!.... - .:::1.e!.... 
ko(n) '" _ nl-2pl =: l(f+,pl) nl-2pl 

-2plc2 

where ko(n) := argmink as. E (xtJk) - ~;Jk) rand C2 from A(t) '" C2tP' (t ~ 00). 

Proof. By Lemma 4.5 and (4.5), neglecting terms which are o(J,c) or o(A(I))' 

(2) ( ) ~+ (k) = Mn = ~ a Yn-k,n M2 + 12 = + 'Y+ P2 _ 'Y+Pl + 'Y+ A (~) 
'Yn 2M~1) 2 U (Yn-k,n) Ml + II 'Y+ 2 Jk Jk (1 _ pl)2 pI k 

Hence 

A+(k) _ ~+(k) = 2'Y+Pl _ 'Y+ P2 _ 'Y+ A (~) 
'Yn 'Yn Jk 2 Jk (1 _ pl)2 k 

Therefore following the same arguments as before 

and since 

222 
E (i'+(kj - i+ (k)) '" 'Y+ + '+ A2 (~) 

n n k (1 _ pl)4 k as n~oo 

the result follows. 

Proof of Theorem 2.9. Immediate consequence of Proposition 4.18. 

(4.8) 

o 

o 

(4.9) 

o 

o 

Remark 4.19. Compared to the quantile results when not restricting " in Theorems 2.72.8 and 2.9 
a slightly different scheme was adopted, not separating results when ((0 < , < -p and limHoo(U(t) -
a(t)/,) =1= 0) or (f = -p)) or not. Note that in applications it is not evident to know about 
limHoo(U(t) - a(t)/,). In the proofs the main difference relies on having taken q"pl = ,Ipl in 
(4·5) and in the expansions of the 'Y estimators (4.6), (4.8) and (4) instead of q"p as in Lemma 4·6, 
which is not but a unified way of writing q"P when, is positive. 
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Proof of Theorem 2.11. Since we are dealing with NAj), j = 1,2,3, using the second order condition 
(2.8) we have 

(U(txl(~ U(t))j = (X'Y~_-I)j +j A(t) (X'Y~_-1 )j-1 H'Y_,p(x) +o(A(t)). 

Therefore 

NAj) 
Mj = . -lj 

oJ (Yn-k,n) 

for j = 1,2,3 with Mj and lj as in Lemma 4.5, just replacing p' by p and A by A. The rest of the 
proof is the same as before. 0 
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