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Abstract

In this report we investigate the performance of particle tracking, exploring the influence of an increasing amount
of estimators. Basically, a simple method to determine particle matchings was used. Then, first, temporal extrapolation

as well as spatial interpolation are employed. Second, a PlY processing step was incorporated. Tests from simulations

show that at relatively high seeding densities the performance was increased with a factor of 4 and 13 for the first and

second step, respectively. In a physical experiment of a wake behind a heated cylinder a clear performance improvement

in the case of PlY preprocessing was observed.

keywords: PTV, PlY, fluid dynamics, velocity measurement
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1 Introduction

1 Introduction

Flow visualisation and velocity estimation by means of using tracer particles is a very old and well-established
technique. A very common way of investigating flow fields in this way is to illuminate tracer particles seeded
in a fluid with a thin sheet of light. The images of the moving particles in the light sheet can be recorded
and processed, see figure 1. With the application of photogrammetric devices, like photo-, film- and video­
cameras, many high resolution images can be recorded. Therefore, large amounts of detailed quantitative
information about velocities in fluids can be obtained.

. . ... ' ... .
• • 0 • 0 • 0 light source

• . e. • •. e.
o b-:i~o-_;~~; ~----------7 ~ imaged fiow. [d..... :.0. ~
• •••• • •••• I

o : digitization
••• , •• I

•• 0 V
t1

1

light sheet

I

: particle tracking

V

Figure 1: General experimental setup for particle tracking.

Currently several techniques, based on the above visualisation technique, have been developed to mea­
sure the 2D-velocity field in a flow. Each technique has its own method of image recording and processing to
extract the velocity data. Several of these techniques, e.g. Particle Tracking Velocimetry (PTV) and Particle
Image Velocimetry (PIV) are quite well known. In PTV individual particles are tracked in subsequent im­
ages whereas in PIV the averaged displacement of particles is determined in corresponding image segments
of two sequential images. These methods can also be applied to one multiple exposed image.

Keane et aI. [11] were one of the first to combine the techniques of PTV and PlY. They used the PIV
estimation of the local convoluted velocity field as an input for the PTV processing. In the PTV step the
displacements of all individual particles are reconstructed. This technique, which we will call High Resolu­
tion Particle Velocimetry (HRPV), has two significant advantages: both the accuracy and the resolution of
the velocity estimation are increased. Resolution is increased because using PIV to estimate a particle's dis­
placement allows a PTV algorithm to search a smaller region for a particle match. Thus seeding density can
be increased. This is confirmed by results obtained by Keane et aI. [11]. On the account of accuracy, Cowen
and Monismith [6] show that PTV algorithms can inherently be more accurate than correlation-based PIV
algorithms. One of the reasons for this is that the PTV is relatively unaffected by the presence of displace­
ment gradients.

An additional advantage of HRPV is that the need of having several sequential images to achieve a suc­
cessful particle tracking result at relatively high seeding densities is circumvented. In HRPV two images
are sufficient to obtain tracking results. This is useful in situations where it is not possible to obtain more
than two sequential images due to practical limits.

In this report we investigate the performance of both PTV and HRPV algorithms. Compared to the wide
variety of existent PTV algorithms there is a large consensus about the PIV processing of image recordings.
Therefore we take a standard cross-correlation PIV method, with proven performance, for the present HRPV
processing. A large number of PTV methods are described in the literature (e.g. [7], [8], [9], [10], [12],
[15], [16], [17], [18], [19], [24] and [28]). Many PTV-algorithms are quite complicated, computationally
expensive and sensitive to its settings and the recorded flows. Therefore it was decided to develop a straight­
forward well defined PTV algorithm suitable for the present purpose, Le. analysing the performance ofPTV



2 The PTV algorithm

and HRPv. Furthermore the new PTV method serves as a bases for the development of a three-dimensional
PTV-code of which first results are reported in Kieft [13] and Schreel et al. [21]. First results of the present
2D PTV-code were already presented in van der Plas and Bastiaans [22].

The report starts with a description of the PTV-algorithm in section 2. Besides the application of a
minmax-filter it differs essentially from other methods in the solver of the matching problem. This solver
is developed on the basis of solution methods for the well-known assignment problem (e.g. Winston [27]).
It turns out that a very simple, efficient and computationally cheap and straightforward method can be de­
duced. In section 3 the applied PIV is described after which the combination of PIV and PTV into HRPV is
treated in section 4. The performance and operational parameters of the algorithm for PTV and HRPV are
determined by tests with synthesised image data, which are given in section 5. In section 6 the algorithm
was tested using experimental data of Kieft et al. [14] who investigated the flow phenomena occurring in the
wake behind a heated cylinder. Due to the induced heat, stable vortex structures shed from the cylinder be­
come disturbed. These heat induced disturbances grow, as the vortex structures are convected downstream,
and manifest themselves as small mushroom type vortex structures. For tracing these mushroom type struc­
tures both accurate and detailed measurement of the flow field is necessary. The report ends with conclusions
on the different methods in section 7.

2 The PTV algorithm

2.1 Components of the method

In figure 2 the flowchart ofthe separate parts in the PTV algorithm are shown. In this paragraph the functions
of the individual components are summarised.

First the visualised images are dynamically thresholded to remove background intensity variations (dy­
namic thresholding). Thereafter the images are processed to obtain the pixel coordinates of the particles
present in the images (blob detection). Next pixel coordinates are re-mapped from pixel coordinates to a
physical coordinate set (mapping). Then, particles of a frame f + 1 are linked with particles from frame
f by the matching algorithm. If a match is established between particle images of the different subsequent
frames, these particle images are labelled to originate from the same physical particle which has moved a
little in time.

Generally a particle image (or shortly "particle") with number i in frame f + 1 is matched with the closest
particle j in frame f. However particle j may already be occupied by another particle or may not be the best
candidate in a global sense, i.e. if all other matchings are considered. Therefore a global optimisation must
be carried out (matching). This matching can be improved by not using the real position of the particles in
frame f but instead using an estimation of their position in frame f + 1. The estimation may originate from
extrapolation in time as well as interpolation in space. The estimated position is provided by the prediction
algorithm (prediction).

In case the predictor gives insufficient information, external information from file can be retrieved for
each frame on demand (background velocity reader). For HRPV the external information are the results
obtained by PIV. The next paragraphs explain the relevant modules of the tracking algorithm in more detail.

2.2 Dynamic thresholding

Particle detection is almost trivial since the particles appear as bright spots on a dark background. Some­
times the background intensity is non-uniform due to the reflections and the non-uniform intensity profile of
a light sheet. Generally high-pass filtering is applied to remove background intensities. However this also
changes the intensity profile of the particle image and thus influences the particle position that is calculated
from it.

We preferred to perform a non-linear form of dynamical thresholding to remove the background. A
simple and fast algorithm was chosen: a square min-max subtraction filter. The filter leaves the intensity
profile undisturbed while removing non-uniformities with the size of the filter. The filter consists of three
basic operations:

2



2.2 Dynamic thresholding

Image Reader

~
Dynamic Thresholding

~
Blob Detection

~

3

Mapping

~
Background Velocity Reader

~
Matching ------Prediction

~
Path storage

~
Postprocessing

Figure 2: Overview scheme of the particle tracking algorithm.

Step 1: Min Each pixel in a copy from the original image is replaced by the minimum value in a square
filter window.

Step 2: Max Each pixel in the Min filtered image is then replaced by the maximum value in the square
filter window.

Step 3: Sub The result of step 2 is then subtracted from the original image.

Steps 1 to 3 of a one-dimensional min-max subtraction filter, performed on a one-dimensional function f(x),
are shown in figure 3.
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Figure 3: One-dimensional representation of the separate steps of the min-max subtraction filter (with width
of 5).

A rectangular window was chosen, although a circular window is more suitable when dealing with cir­
cular shaped particle images. A rectangular window is separable. It can be obtained by a line filter in the
x-direction followed by a line filter in the y direction. Line implementation in rectangular windows can be
implemented in nearly size-independent processing time by using updating, see Verbeek et al. [23]. In con­
trast a circular window takes a processing time that is linear with the window size when implemented using



2.3 Blob detection

updating. The window width and height should correspond with the maximum width and height of parti­
cles one wishes to detect. The difference between circular and square windows are small in practice, since
for small filter sizes (particle sized, i.e. typically 5x5 or smaller) the circular shape approaches the square
window shape.

2.3 Blob detection

The algorithm for blob detection is rather simple. Pixels that have a vertical or horizontal neighbour are
called connected to each other. Regions of connected pixels in an image with an intensity higher than a
specified threshold level are called blobs. The single threshold is set slightly above the noise level. Since
the images are dynamically thresholded a single threshold is sufficient. The detected blobs fulfilling certain
shape and intensity criteria are then accepted to be valid particle images.

Only minimum required blob size and maximum allowed blob size are currently implemented for the
validation. Furthermore, blobs that are connected to the edges of the image are not accepted as valid parti­
cles. This because these blobs may be part of much larger structures. Moreover, the centre of these blobs can
not be determined, which is essential to PTY. Small particles as used for tracking will appear round with a
Gaussian-like shaped intensity profile due to the characteristics of the imaging optics. In special cases where
noise, reflections, and small background effects remain after dynamic thresholding one can easily add shape
and intensity criteria as needed. Dalziel [7] for example, used additional criteria (e.g. maximum elliptic­
ity, minimum required averaged intensity), to distinguish real particle images from particle sized intensity
blobs.

After this validation step, the particle positions are determined with sub pixel accuracy by using the grey
value weighted centre of gravity (volume centroid) of the segmented blob as in Dalziel [7] and Maas et al.
[15]. Cowen and Monismith [6] performed Monte Carlo simulations with Gaussian shaped particles. Their
results show that for 3 and 5 points estimates of the absolute position the volume centroid estimate is slightly
less accurate than a Gaussian estimate.

2.4 Mapping

The positions of detected particle images are determined in pixel coordinates by the blob detection part and
have to be translated back to physical positions in the light sheet. This translation between pixel coordi­
nates and world coordinates is complicated due to the optical distortions from lenses and differences in the
refractive indices of water, glass and air. Moreover, calculating the relations between particle position in the
light sheet and the particle image in the frame from the position and composition of the separate elements
in the experimental setup is quite laborious. Employing an in-situ calibration technique is a more practical
solution.

Commonly, just before starting measurements, a known grid is placed inside the light sheet and an image
of it is recorded. From this grid image the world and pixel coordinates of a set of N r reference points can be
determined. These reference points are then used to determine the M coefficients (M ~ N r ) of a mapping
function for translating pixel coordinates to world coordinates.

In most cases there are no steep gradients in the image distortion and a global bilinear or biquadratic
mapping function as implemented in our mapping module is sufficient. The equations for determining the
coefficients are solved with least squares fitting using singular value decomposition.

2.5 Matching

For the matching procedure one may define an evaluation function to express the likelihood that one particle
image in one frame and another particle image in the next frame corresponds to the same particle in the
flow field. A solver using the evaluation function is then applied to find the best set of pairings between two
images. The following basic evaluation function is used:
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2.6 Prediction

where x/ is the estimated position of particle j from frame f in frame f + 1. If there is a good estimation

of the movement of the particles or if the displacements are very small, then low values of c{j correspond
to a high probability that two particle images originate from the same physical particle.

Suppose that the average inter-frame displacement of particles is smaller than the mean minimum dis­
tance between particles. Then the majority of particles will be matched correctly even if no prediction
scheme is employed, i.e. we have zero-order prediction. Higher orders of spatial and temporal prediction
will be available after tracking several frames and this improves the matching results significantly. Earlier
experiences with the algorithm of Dalziel [7] showed this to be true and this is confirmed by the results later
on in this article.

There are several things an adequate solver should do. First the solver should find a set of independent
matchings. A matching between particle i from frame f and particle image j from frame j + 1 is denoted
bya{j = 1, otherwise a{j = O. A set of matchings is defined to be independent if
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Furthermore the set should contain as much matches as possible. The maximum number of possible match­
ings is determined by the minimum number of observed particle images over the two fields involved. Finally,
the sum of a{jc{j over all values of i and j should be as low as possible. The problem of finding the optimal
set of relations between two data sets defined by an evaluation function is known as the assignment prob­
lem in operations research (see e.g. Winston [27]) and can be solved by the extended Munkres algorithm
as developed by Bourgeois and Lassalle [5].

However, the Munkres algorithm has three disadvantages. First, it tries to match particles for evalua­
tion function values representing distances larger than the maximum inter frame displacement of particles.
Second, a large matrix of the evaluation function values has to be stored and third, solving requires much
computation time, proportional to N;, with Np the number of particles found in a field.

The first disadvantage can easily be solved by defining a restriction on the maximum matching distance,
Dormax, beyond which no valid relations can occur. The added restriction of a maximum matching distance
allows a different, easier solution of the problem. A simple solver was developed which globally optimises
for pairings up to a specified maximum matching distance. At the same time it uses a much smaller sized
sparse matrix and it is considerably faster. This, so called 'sort matching' algorithm, works as follows:

step 1: Store all values of the evaluation function, c{j' of possible pairings within the defined maximum
matching distance, Dormax, in a sparse matrix.

step 2: Sort pairings on size of these evaluation function values.

step 3: Determine independent set of pairings, starting with the lowest value of the evaluation function.
The lowest value corresponds to a match. Subsequent values correspond to matchings if both partners
i and j of the pair are still unmatched, i.e. if L a£ = 0 and I: a{j = O.

j i

For sorting a standard "Quicksort" routine is being used (see e.g. Press et al. [20]). The implementation
of the matching algorithm as described above results in a computational processing time which is a fraction
of the total PTV execution time.

2.6 Prediction

The tracking can be improved by using the estimated positions in the current frame of particles from a pre­
vious frame, instead of the real position of these particles. For this purpose two prediction algorithms are
applied, a spatial and a temporal algorithm. Basically first a temporal extrapolation of the particle path is
calculated to estimate the new position. If this is not possible, i.e. if there are no previous matchings, a
spatial interpolation is calculated using surrounding matched particles. If the amount of information in a
specified surrounding is not sufficient, then spatial interpolation of velocities from an external source, like
PlY, can be invoked. The next two paragraphs describe the temporal and spatial scheme subsequently.



2.7 Post-processing

Scheme 1: Temporal extrapolation of the particle path

Although more sophisticated approaches are possible like those given in Pervez and Solomon [19] and Yagoh
et al. [28], a simple algorithm can be satisfactory in most cases. For each particle i in image frame f extrap­
olation is calculated by Lagrange's extrapolating polynomial of degree Nt - 1 through the last Nt points of
its path as given by
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The maximum order of the polynomial can be specified. Tests with synthesised data have been per­
formed in section 5 to determine the effect of higher order polynomials. Results show that, for the case
considered, the performance of the tracking algorithm is highest for Nt = 2, although larger values of Nt
result in a good performance as well. Application of Nt = 1, i.e. no temporal prediction, results in a clearly
lower performance.

Scheme 2: Spatial interpolation

Spatial interpolation is performed using information of neighbouring matched particles or external velocity
information, for example PIV-data. In case of neighbouring matched particles k, the estimated position is
calculated by

2:k Pk (xr - xr-1
)

If _ f
Xi - Xi + 2:k Pk .

In case of external velocity information the estimated position is calculated in an analogous way by

x'f =xf + 2:k Pk . Uk .8t
t t '"' 'L.APk

with the weighting function Pk having a characteristic width ,6.. Possible options for Pk are:

• Top-hat

{
1 if Ixf

- xf I < ,6.;Pk = ,k

o otherwise.

• Gaussian

(
- (x{ - xrf)

Pk = exp ,6.2 .

(5)

(6)

(7)

(8)

Now Pk is a measure of the amount of information in a specified surrounding. If Pk exceeds a specified
threshold, spatial interpolation is employed, invoking surrounding matched particles. Otherwise the pres­
ence of an external source, containing space and velocity information, is checked. In this case spatial inter­
polation on the basis of the external (PIV) data may be performed.

2.7 Post-processing

The stored particle path data can be used directly or used to calculate particle velocities. For comparison
with our synthesised test images, the velocities of a particle at frame f were calculated from the positions
from its particle track by a central second order scheme:

xf+! - x f - 1

u f = P P (9)
P 28t

This scheme as well as a first order forward scheme and a fourth-order scheme were compared by Malik
et al. [16]. For their data the second order scheme was reported to be the most accurate one by far.



3 The PIV algorithm

3 The PIV algorithm

In order to perform the HRPV a PIV correlation technique is used to estimate the displacements of groups of
particles. The employed PIV algorithm is based on standard 2D FFT's. These are applied to corresponding
interrogation areas of the subsequent single exposed images. Therefore it is a cross-correlation method. The
average displacement of the particles in an interrogation area is determined by the localisation of the centre
of the correlation peak. An estimation of this position is obtained by a Gaussian fit according to Willert [26].
This is based on the assumption that particle images and therefore the covariance function are approximately
Gaussian shaped.

Velocity gradients in an interrogation area are responsible for a gradually increasing loss of correlation
at larger displacements. This is caused by the fact that particle pairs at high velocity have a larger chance
of being advected over the borders of the interrogation area. Therefore as according to Westerweel [25] a
correlation correction factor can be calculated. In order to deal with the in-plane particle loss this factor is
applied in the present algorithm.

A measure for the quality of the correlation is given by the ratio of highest and second highest peak.
The quality of the correlation can be used to discard unreliable data. A more detailed description of the PIV
algorithm, together with accuracy tests, is given in Bastiaans [4].

4 High resolution particle velocimetry

Now the described PTV and PIV techniques can be combined to HRPY. Of course this can only be ap­
plied in a satisfactory way if the seeding density full-fills some requirements. For the PIV estimation the
image density should be within upper and lower limits to obtain a well defined correlation. Furthermore
the spatial velocity fluctuations within an interrogation area should be relatively small. Therefore there is
a minimum amount of particles required to represent a flow structure adequately. Additional limits for the
seeding density are given by the PTV processing step. A high seeding density would be preferable to ob­
tain a high resolution velocity field sampling. However, in the PTV method the necessity to identify single
particles is even more severe, when compared to PlY. The PIV identification of particles is performed by
using a threshold. Thus it is important to have a minimum amount of overlapping particles. For randomly
distributed particles the fractional amount of overlapping particle images, Po, is given by Bastiaans [4] as
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(10)

(11)

in which N s is the source density according to Adrian [1]

7f 2 Ct.zo
N s = 4de M2 '

for particles of image diameter de at concentration C. The thickness of the light sheet is t.zo and the mag­
nification is denoted by M. Therefore at constant concentration the thickness of the light sheet is limited.
Furthermore a large advantage of the HRPV procedure is the possibility to process sequences with a large
displacement t.smax compared to the mean distance between nearest neighbouring particles Tn. The num­
ber of particles per unite area is C t.zo and the mean distance between nearest neighbouring particles in the
planar projection of the light sheet is then

(12)

The theory of the HRPV procedure was described and evaluated by Keane et al. [11]. In an experiment
of analysing turbulent flow PIV data they found an increase of spatial resolution by a factor of 2.5 in each
direction. Furthermore Cowen and Monismith [6] employed the technique with synthesised images and for
images recorded from a turbulent boundary layer. They conclude that the results of the application of the
HRPV method are superior to the results attained by PIV alone. This in the sense that not only resolution
can be improved but also that the accuracy can be enlarged.

The difference of the present method with the two mentioned above is in the particle tracking algorithm.
Both Keane et al. [11] and Cowen and Monismith [6] use a window method defining the estimated area to



5 Performance tests with synthesised data

which a particle advects. If there are two particles in this window the matching is ambiguous and must
therefore be discarded. Obviously no matching can be established when there is no particle at all in this
window. By minimising the global constraint, as specified in the matching algorithm section 2.5, the present
PTV method should be able to obtain a larger yield without loss of accuracy.

Thus the advantages of using HRPV compared to PIV are the enlarged yield and accuracy. With re­
spect to PTV the advantages are the ability to process only two sequential images at relatively large image
densities and image sequences with relative large advection distances. This can be done with only a small
maximum matching distance, ~rmax, obtaining high quality data.

If we are not dealing with a starting flow, the PTV algorithm as described in previous sections shows a
transient in the quality of the output. Errors could be kept low by using a small maximum matching distance,
but then the yield will show a transient starting at very low values to higher values due to the neighbourhood
estimation. However this will work only if the seeding density per flow structure is high enough, a condition
that also has to be met for performing a successful PlY. Thus, if the seeding density per flow structure is large
enough an additional advantage is obtained by the application of HRPV by omitting the transients.

The HRPV algorithm is implemented by considering the background displacements estimated by PIV
as additional matchings in the neighbourhood estimation. By omitting the temporal extrapolation we obtain
a separated scheme for PIV estimation and PTV matching. Involving also the temporal extrapolation results
in a mixed scheme in which only the displacement of previously unmatched particles is estimated by both
the surrounding matchings of PTV as well as the PIV displacements. Besides performing a PIV estimation
for the entire sequence the implementation can handle the use of PIV estimation of one image pair for the
entire sequence in case of steady flow or statistically steady turbulent flow (with relatively low turbulence
intensity). Furthermore the present HRPV processing is also able to handle sequences in which there is only
a random set of PIV estimations of all possible subsequent image pairs.

5 Performance tests with synthesised data

5.1 Synthesised image data

The developed algorithm was tested with synthetic images of a well defined flow field. The synthetic images
were composed of several components representing important features of real image sequences. The images
are grey level images with 256 grey values, 0 to 255. Particles are represented as Gaussian shaped intensity
blobs. For each pixel value the particle intensity is integrated over the pixel area. An example of a test image
is shown in figure 4. High wave number noise as well as background variations can be added easily.

The stream function describing the 2D vortical flow field chosen for advecting the randomly distributed
particles is given by

8

'l/J(X,y) = sin(1rx)· sin(1rY)

on n = (0,1) x (0,1). The velocity, u, can be calculated with its definition,

(13)

(14)

Particle trajectories can be integrated using a series expansion with respect to time, up to any order. A 10th
order expansion was implemented (more details are given in Bastiaans [4]). For the time steps that are used
in the present study an accuracy of at least 10-6 image width per time step is guaranteed. For the image size
of 5122 this translates to 5 .10-4 pixel per time step. The flow is depicted in figure 5. The maximal particle
displacement ~smax occurring in the image is 1rDt. Because of the shear in the flow one is allowed to study
the effects of merging and separation of particles on the performance of the tracking algorithm. The lack of
particle loss across the boundary allows tracking for long periods without seeding new particles in the flow.
Furthermore, the absence of singularities in the flow keeps the particles evenly distributed over the image.

5.2 Tracking and algorithm parameters

The performance of the tracking algorithm is influenced by the quality of the image sequence and the setting
of the tracking parameters. The quality of the measured image sequence determines whether or not tracking



5.2 Tracking and algorithm parameters

Figure 4: Test image of 512x512 pixels containing 1024 particles.

Figure 5: Velocity vectors and streamlines of the test flow.

9



5.3 PTV tests with synthesised images

results representative for the measured flow field can be obtained. The quality is determined by two impor­
tant factors, the image quality (qi) and sampling quality (qs)' A good image quality implies low noise and
well detectable particle blobs in an image. The sampling quality means how well the particle tracks can
be reconstructed. Therefore, both qi and qs depend on the source density N s as defined in equation (11).
However, for the synthetic image sequences in which distances are measured in pixels and the number of
particles Np is known, the source density can be rewritten as
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Then the mean minimum particle distance is given by

(
AI) !

Tn = 4N
p

,

(15)

(16)

with the particle diameter de and the image area AI measured in pixels and square pixels, respectively. At
high source densities individual particles can not be discerned from each other anymore and PTV processing
will fail. Therefore we consider relatively low source densities.

For determining the sampling quality of an image sequence the displacement of the particles between
images with respect to the mean minimum inter particle distance is of importance. If there is no information
available about the displacement field, a high value of the maximum particle displacement, .6.smax , com­
pared to the mean minimum particle distance, Tn, results in a high uncertainty about which particle images
correspond to each other. Therefore the sampling quality is expressed as the ratio between Tn and .6.smax ,

occurring between two images,

Tn
qs = ---.

.6.smax
(17)

(18)

This sampling quality gives an indication of the track-ability of an image sequence which can be understood
by considering the effect of an increasing .6.smax for a constant Tn.

Besides the quality of the image sequence the algorithm parameters are also of importance for the track­
ing results. The choice of values for the maximum matching distance, the prediction order, and the neigh­
bour weighting function width, .6., is just as important as the image sequence quality.

5.3 PTV tests with synthesised images

Some tests were performed to determine the influence of image sequence quality and algorithm parameters
on the performance of the particle tracking algorithm. An overview of the different tests and their parameter
values are shown in table 1. From the tracking results the fractional yield (1') and the mean velocity error
(J-Lltlvl) were determined per image and analysed. The overall performance, 7/v, of the tracking is expressed
as

JfiJ7/v = ---,
(J-Lltlvl)

with time averaged quantities denoted by (.) and the velocity yield, 1'v, is the number of particle paths with
sufficient length to calculate the velocity using equation (9). For each test performed the above quantities
were calculated and analysed. Each test consisted out of an image sequence of 100 images. Each image of
5122 pixels contained 1024 particles. The half-width (Ip of the Gaussian shaped particles was set to (Ip =
1.5 pixels. This results in a source density of N s = 0.0276 and a fractional overlap of Po = 0.1046.
Furthermore, the fraction of particles that can not be validated because they are connected to the image
edges is 0.0117. Therefore the maximum yield possible is 88.4 %. The mean minimum particle distance
Tn amounts 8 pixels. The tests were run on a Unix-PC, with a Pentium MMX processor at 200MHz, taking
circa one minute to process one image sequence.

Results of the experiments are discussed in the next paragraphs. The values of I, J-Lltlvl and 7/v of test­
runs A and E are given in figure 6 and 7. Results of test-runs B, C and D will be summarised only.
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Test run dN ·512 ~smax . 512 ~Tmax ·512 ~. 512 Nt
A 8 4 216 0.5 a 1
B 8 4122 4122 a 1
C 8 8 8 a 151
D 8 8 0.880.8 a 2
E 8 8 0.8 8 0.8 8 2

Table 1: Test parameters: mean minimum inter particle distance, Tn, maximum particle displacement,
~smax, maximum matching distance, ~Tmax, interpolation radius, ~, and the number of points for tem­
poral extrapolation, Nt. Distances are multiplied by 512 to express their values in pixels. A set of three
numbers indicates a sequence of values in which the first number corresponds to the first value, the second
number to the end value and the third number is the step size.

In test-run A an image sequence is taken with a relative high sampling quality of2.0. The performance of
the algorithm, without any prediction schemes, was tested for different maximum matching distances. Re­
sults show that the performance peaks at ~T max equals ~smax' A logical result since a maximum matching
distance smaller than the maximum particle displacement will certainly result in unmatched particles which
in fact should be matched. A maximum matching distance larger than the maximum particle displacement
will allow for unnecessary erroneous matching relations. However, the increase in mean velocity error at
larger maximum matching distances is limited due to the global optimisation in the matching procedure.
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Figure 6: Results for test case A, qs = 2.0.

The same algorithm settings were used in test-run B to test the influence of the sampling quality on the
performance by varying the maximum particle displacement. The maximum particle displacement was var­
ied with the sampling time for the images. The maximum matching distance was set equal to the maximum
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Figure 7: Results for test case E, qs = 1.0.

particle displacement. This results in an increasing J1.IDeltavl and a decreasing "y giving a decreasing over­
all performance with a decreasing sample quality. At a sampling quality of qs = 2/3 the performance is
dropped from approximately 36 to about 2. A low sampling quality causes a large number oferroneous par­
ticles to be matched. As a result the average length of particle paths decreases, causing a decreasing value
of the velocity yield.

The next tests are performed for a sampling quality of qs = 1, which is a relatively difficult case for any
PTValgorithm. Without a prediction scheme the performance is about 7, as obtained from test-run B. A
sampling quality of 1 contains sufficient information to start tracking and there is ample room for improve­
ment of the tracking result. In test-run C temporal prediction is used to improve the results. The success of
the temporal prediction scheme depends of course on accuracy with which the particle position in the next
frame can be expected. Flow dynamics, prediction scheme and magnitude of the error in the particle posi­
tion are of importance. Clearly extrapolation order 1, Nt = 2, or higher is best, improving both the results
for yield and accuracy. At these values the performance is increased from 7 to about 23. However, for order
4 extrapolation some decrease in the performance is observed. For this case the yield is still at a high level
but the velocity errors start to grow. Since our test flow field only has large scales, the extrapolation errors
are mainly caused by the the errors in the particle positions. These small errors may give poor estimations
of the new particle positions at high orders of the temporal extrapolation.

Spatial prediction can be used to improve the matching yield of particles for which no temporal predic­
tion is possible. This should improve yield an accuracy and, therefore, performance. Tests for comparing
the results for tracking with and without spatial prediction were done with different maximum matching
distance values in test-runs D and E. Again the sampling quality was 1 and Nt was equal to 2. In figure 7
results are shown for case E in which spatial prediction was activated. The results for D and E are similar
in shape but the case which includes spatial prediction shows clearly an improvement in yield, accuracy
and performance as expected. For the reference case the performance is increased from about 24 to about
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28. Additional testing has shown that, for this type of large scale flow, the performance improvement due
to spatial prediction is more or less constant for any reasonable value of bo. Furthermore the sensitivity of
the exact setting of boTmax for the performance is decreased as can be observed from a comparison of test
case A with E (figures 6 and 7). In test case A there is a sharp performance peak, whereas in test-case E the
maximum is constant for a range of boTmax .

According to the above results, the best algorithm settings are Nt = 2, boTmax = bosmax and bo set to
any reasonable value for the distances between particles. Of course also the scales in the flow must be taken
into account. In the present case at qs = 1 the mentioned settings of the algorithm result in an increase of the
performance from 7, without any additional estimations, to 28, in the case of optimal settings. Sometimes
the results can be improved somewhat by changing the parameters a little. One can easily think of certain
situations where the presented optimal settings might not the best choice. For a stationary flow one could
easily improve performance by decreasing the boTmax' Although at the first samples performance would be
decreased, due to spatial prediction in the long run performance would improve. However in most cases the
flow is dynamic and boTmax = bosmax would be better.

5.4 HRPV tests with synthesised images

A further increase in performance is expected if the pry algorithm is adapted for HRPY purposes. The
spatial prediction code was extended in order to use the PLY results for the spatial velocity prediction. PLY
was performed on frame 1 and 2 of the particular image sequence of test C, which has a sampling quality of
1. The size of the interrogation areas was chosen to obtain an image density of 16, i.e. the interrogation areas
contain 16 particle images on average, in order to obtain a well-defined correlation. Thus, interrogation areas
of 64 x 64 pixels are used, with an overlap of 32 pixels. This results in 15 x 15 interrogation areas of which
there are only 8 x 8 independent data points. Therefore by using PLY alone the fractional velocity yield, Iv'
is only 1/16. The accuracy of the PLY estimation could be evaluated as well. However, the PLY results give
an estimation of the convoluted velocity field, which is an estimation of the local velocity if the interrogation
areas are small compared to the size of the flow structures. A comparison with actually obtained velocity
vectors with the convoluted analytical flow field would fall beyond the scope of the present report. The PLY
results were used for spatial prediction for processing the full sequence and they are shown in figure 8.

soo

Figure 8: Obtained PLY velocity field as used for the HRPY processing.

The results of the HRPY are shown in figure 9. Clearly the HRPY result has a higher yield and accu­
racy and thus a much higher performance. The velocity yield is equal to the theoretical maximum yield,
except for very small maximum matching distances. The mean velocity error stays constant at about 0.01
and the performance has a value of 92 to 98. Also one can see that the HRPY results are more or less inde­
pendent of the maximum matching distance. At very small maximum matching distance the HRPY shows
a slightly increased performance. Additionally, a smaller maximum matching distance allows for a smaller

13
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Figure 9: Results for the HRPV processing case, qs = 1.0.

mean minimum particle distance, which can be used to increase the particle density and thus the resolution
can be improved.

6 Tests with experimental data

6.1 Experimental setup

Since the synthesised images indicated that the algorithm performs in a satisfactory way, the next step is to
test the algorithm with experimentally obtained data. The algorithm is tested on flow phenomena occurring
in the wake behind a heated cylinder. The experimental conditions are schematically displayed in figurelO.

For the experiments a water tank facility is designed in which the heated cylinder ( D = 8.5 mm, L =
495 mm) is towed through the motionless tank rather then being exposed to a forced main flow. The specific
dimensions of the water tank are for the length x width x height = 500 em x 50 em x 75 em. The main
advantage of this device is a minimal creation of boundary layers and an almost uniform inflow velocity
distribution (Anagnostopoulos [3]). To obtain the desired cylinder wall temperature an electric rod heater
is used with a maximum heat density of 8.0 Wjem2 • The temperature of the cylinder is kept constant in
time by controlling the heat input with the help of the measured wall temperature. The translation of the
construction is obtained by an electric motor which is corrected for its variation in rotational speed by means
of a closed circuit. This results in a variation in the rotational speed of less than 0.2 percent. The motor is
coupled to the drive wheel by using a 1 : 100 gear. Around the drive and the idle wheel of the translation
system an almost inelastic fibre based tape is looped which is finally connected to the construction which
carries the cylinder.

Hollow glass particles of size 10 and 20 fLm are used as seeding. These particles are illuminated with
a 200 mJ pulsed Nd:YAG laser. The recording is performed by using an eight bit digital camera with a
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Figure 10: Definition of the mixed convection problem.

1008 x 1019 resolution at 29 Hz (Kodak ES 1.0). The camera is directly coupled to the data acquisition
system. The laser is synchronised by using the frame strobe of the camera as a master-signal. The method, as
described above, resulted in an image sequence with relative low noise and well detectable particle images.
An example of such an image is displayed in figure 11. More details about the experiment are given in
Kieft [13].

Figure 11: Typical image as obtained from the physical experiment.

6.2 Tracking and algorithm parameters

The blob detection and dynamical threshold parameters were optimised so that a maximum amount of parti­
cles could be detected. These parameters remained fixed during all tests. With this optimal set of parameters
about 12,000 blobs were detected which results in a constant Tn equal to 4.6 camera pixels.

To get a good impression of the experimental performance of the algorithm it is sufficient to vary the
sampling quality and measure the corresponding performance. This sampling quality can either be changed
by varying Tn or llsmax, according to equation (17). In the tests which are applied on the same sequence of
acquired images, the image quality, qs, is varied by skipping frames in the acquired image sequence. For a
frame skip equal to 0, the subsequently grabbed camera frames are analysed while for a frame skip of k only
the kth grabbed image is analysed. By doing so llsmax (the displacement of particles between the analysed
images) increases and therefore qs decreases. In table 2 the applied frame skips are given together with the
corresponding sampling qualities (equation (17)).

In the experimental case the exact solution of the flow field is not available. Therefore a more practical
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Table 2: Applied frame skips with corresponding sampling qualities qs'

performance measure 'TJex needed to be defined,

16

V('Y)
'TJex = --,

(Ju,v
(19)

where (1u, v denotes the mean standard deviation of the u and v component of the velocity vectors. This stan­
dard deviation is calculated by dividing the flow field into Nm monitoring areas in which the local standard
deviation of the flow field is calculated with respect to the average velocity field within this small area. By
averaging this local standard deviation over all monitoring areas (1u,v is calculated. For all tests, it turned
out that (1u ~ (1v, therefore all further discussions are based on (1u.

One should note that when Nm is taken too small (in other words the monitoring area is large), physical
velocity gradients will contribute to the mean average standard deviation. On the other hand, by taking
N m too large, the amount of vectors on which the standard deviation in the interrogation area is evaluated
becomes very small. In the presented results Nm is chosen to be256 (16 x 16). As stated before, the physical
velocity gradients will contribute to the local standard deviation. However, when there are no erroneous
velocity vectors measured this standard deviation will be relatively low compared to the situation in which
there are more and more erroneous velocity vectors. Therefore the local standard deviation is still a good
qualitative measure of the errors. This holds analogously for the experimental performance.

In order to compare the performance of the PTV and HRPV method, the basis of these codes were cho­
sen to be identical. This means that the blob detection, filtering and mapping are performed in a similar
approach (figure 2). For the PTV code, no background reader was present, prediction was carried out using
the information of the previous matching. For HRPV a prediction of the new particle location was obtained
by using the background velocity fields which are obtained by running the PIV code on the same images as
the ones used for the tracking.

6.3 Experimental results

For the tests as presented here, the HRPV results show a better performance than the PTV-results as can
be observed in figure 12. For almost all chosen qs, 'TJex turns out to be higher for the HRPV results. Only
for the largest qs, this difference is small and even coincides for PTV and HRPY. However, for small qs
the difference is significant. Remarkable is the fact that the curve which represents the HRPV results does
not show a maximum as can be seen in the PTV results, but increases linearly with decreasing qs. The
performance, presented here, is a combination of the total amount of velocity vectors found, expressed in the
value of 'Y and the quality of these vectors which is expressed in the standard deviation of the vectors within a
small sub domain ((1u,v)' In the figures 13 and 14 these separate quantities are presented. As one can see, for
the PTV results, 'Y mainly increases as qs decreases. This implies that for increasing frame skip more vectors
can be found. This can be attributed to the fact that the accuracy of the sub-pixel interpolation becomes
increasingly dominant. Therefore the errors in the temporal extrapolation increase rapidly. Then the present
high seeding density results in lots of erroneous matchings. This can also be observed in the increase of the
local standard deviation. The quality of the PTV vectors decreases rapidly for qs < 2 (increasing (1u). For
the smallest qs, this standard deviation is almost of the same order as the length of the velocity vectors.

For the HRPV results, the 'Y increases with an increase of sampling quality. However, the accuracy de­
creases more and therefore the performance shows a monotonic decrease. This behaviour can be understood
by considering the particle location error, which becomes of minor importance for large particle displace­
ments (small qs).

Another approach to investigate the performance of the algorithms is by means of a vector field analysis.
From the vector fields as depicted in figures 15 and 16, the higher performance of the HRPV algorithm can
be seen by visual comparison. For qs = 6, both vector fields (figures 15a and 16a) show no significant
difference. The stray vectors which can be observed are mostly caused by the positional error in the particle
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location whose importance increases for increasing qs (small displacements with respect to the inter particle
distance).
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Figure 15: PTV vector fields at t=5 [s] for different sampling qualities.

As qs decreases, first the quality of the vector field improves. The flow structures which can be found
around x, y = [-0.5, 0] and x, y = [-0.5, -3J can be seen clearly as well as an escaping thermal structure
at x, y = [2,2] (figures 15a,b and 16a,b). A further decreasing of qs, results in a PTV-vector-field where
more stray vectors can be observed, while for the HRPV vector field the quality remains constant or even
improves (figures 15c and 16c). For the smallest qs investigated, the PTV vector field appears as a random
field of vectors, no coherent fluid flow can be detected. This means that no correlation can be found be­
tween particles in subsequent frames. The HRPV results on the other hand, still represents the flow field
satisfactory. Only in the area where one finds large velocity gradients, some regions occur where less vec­
tors are found. These regions were mainly caused by the low density of valid background velocity vectors.
In the regions with large velocity gradients the PIV correlation between images was lost for large frame skips
(small qs)' Therefore the invalid PlV estimated velocity vectors in these regions, as detected by the corre­
lation peak height ratio, where discarded. The absence of a good velocity estimate for predicting particle
positions results in a decay of the number of matches in the regions with large velocity gradients.

A more sensitive quantity to investigate the quality of the resulting vector field is the spanwise vorticity
component W z , which is defined by

(20)
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Figure 16: HRPV vector fields at t=5 [s] for different sampling qualities.

To calculate the vorticity, a Gaussian weighting method is used (Agui and Jimenez [2]) which interpolates
the random distributed vector field on a regular grid on which the vorticity can be calculated by a central
difference approach. By doing so, the vorticity is calculated from the presented vector field (Figs. 15 and
16). The PTV vorticity plots show that the best quality can be found for qs = 3. Further decreasing of qs
results in a decrease of the quality eventually leading to a more or less chaotic vorticity distribution. For the
HRPV results, the quality improves up to qs = 1.2 and then decreases. The latter occurs due to the lack of
information in regions of strong velocity gradient as already mentioned in the vector field discussion.

7 Conclusions

In the present report a particle tracking algorithm was introduced with a new straightforward matching pro­
cedure which turns out to be very efficient. It was used in combination with PIV to perform high resolution
particle velocimetry. The algorithms were tested with synthetic and experimental data.

The tests with synthetic images show that the PTV algorithm is fast and accurate and for sampling qual­
ity values of 1 and larger a good overall performance value is achieved. The results also indicate that for
optimal performance the algorithm parameter values should have the following values: .0..rmax = .0..smax ,
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Figure 17: PTV vorticity distribution at t=5 [s] for different sampling qualities.

6.smax < Tn (or qs > 1), Nt = 2 and 6. at any reasonable value. In most cases 6. = Tn is reasonable
if a Gaussian window is applied. It was shown that for a sequence quality of 1, which is quite difficult to
track with high accuracy, the performance could be increased from about 7 to 28 by using nearby spatial
and temporal information. In case of high resolution particle velocimetry, where a PIV estimation is used
to enhance the results, a performance of approximately 98 is obtained and the sensitivity to the tracking pa­
rameters has become very low. Moreover, the highest resolution is determined by the lowest possible Tn,

provided that the fractional overlap Po is still small.
The experimental results presented here show that the performance of the HRPV algorithm turns out to

be higher than that of the PTV algorithm, especially for image sequences where the particle displacements
is larger than the mean minimum inter particle distance (qs < 1). This corresponds largely with the results
from tests with synthesised image sequences.

However, in the tests with the synthesised data the occurring error was dominated by erroneous match­
ings. In the experimental results this error is a combination of the erroneous matching and the particle po­
sition error. Especially for large values of qs (very small displacements), the latter error turns out to be the
most dominant one for both PTV and HRPY. For very small particle displacements this error can become
of the same order as the length of the velocity vector. Here it should be noted that the crucial parameter is



7 Conclusions 21

(a) qs = 6 (b) qs = 3

432o
XlD

4,------,------,...--,---,-----,----,----,---

-3

-1

_4·'----~-~_-'-'-____L..---'--"_---'-_~_ __'"'____"__'_
-4 -3 -2 -1

-2

~ 0

(c) q. = 1.2 (d) q. = .333

Figure 18: HRPV vorticity distribution at t=5 [s] for different sampling qualities.

then solely the particle displacement and not qs.
For the HRPV results the accuracy of the obtained velocity vectors expressed in terms of a standard

deviation of the vector field, remains high (smalll7u ,v)' This means that although the fractional velocity
yield of the HRPV results decreases, the validity of the found vectors is more or less preserved. This in
contrast to the PTV algorithm where the l7u reaches a minimum at qs = 3. For decreasing of qs accuracy
is lost fast due to random matching.

From the analyses of the vector and vorticity field it can be concluded that the HRPV algorithm per­
forms optimally at qs ~ 1. This difference in optimum performance with respect to the defined measure
'T}ex, occurs due to the fact that in this definition the accuracy is weighted stronger than the spatial reso­
lution (expressed in "(). Furthermore, it turns out that the quality of the background velocity is of crucial
importance to the performance of the HRPV algorithm. Missing vectors in this background velocity, due
to ambiguous PIV correlations, cause a decrease of the velocity yield of the tracking results and therefore a
decrease in performance. Thus in practice the possibility to generate adequate background velocity vectors
determines the lowest limit of qs for HRPY. In this particular case this limit can be found somewhere around
qs ~ 0.5.

An additional advantage of the HRPV algorithm is the possibility to obtain a qualitative good vector
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field from just two images. This property makes it possible to perform particle tracking on two fast acquired
images as obtained for example in measurements of high speed turbulent flows. The additional tracking then
improves the spatial resolution strongly.
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