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December 5, 2008

FIXED CYCLE SINGLE-ITEM PRODUCTION SYSTEMS

J. BRUIN∗ AND J. VAN DER WAL¦

∗EURANDOM
¦Eindhoven University of Technology

Abstract. This paper considers a cyclic production system. The cycle consists of a pro-
duction period with a fixed number of production times that can be used for production or
idling, followed by a vacation. The duration of the vacation is independent of the produc-
tion period. Demand arrives according to a (compound) Poisson process and is satisfied
from stock or backlogged. The embedded process is modeled in discrete time and analyzed
using generating functions. The optimal base stock level is derived from a news vendor
type relation. The model is also extended to one with time slot dependent base stock levels.

1. Introduction

We consider a cyclic production system. In the cycle one distinguishes two parts: a
production period and a vacation period. The production period consists of a fixed number,
g, of production times. Each production time can be used for production or for idling. So
the cycle consists of g +1 (possibly random) intervals, that are assumed to be independent.
Demand arrives according to a (compound) Poisson process and is satisfied from stock or
backlogged. A production interval is used for production if the stock level, just before the
beginning of the interval, is below a certain base stock level. The goal is to find the base
stock level that minimizes the average costs (a combination of holding and backlogging
costs). By embedding the system on the time points the intervals start we obtain a discrete
time periodic Markov chain. The state of the Markov chain is the number of items on stock
or the number backlogged and the position within the cycle.

Erkip et al. [5] study this model in a multi-item production setting and present three
algorithms to find the optimal lengths of the production periods of the different items.
Furthermore, the optimal decision level is derived for a single period model and a matrix
analytic method is used to find the optimal decision level for the infinite horizon model.

A more general queueing model with vacations is studied in Fuhrmann and Cooper [6].
They give a decomposition result for the distribution of the number of customers present
in a queueing model with vacations which holds under certain conditions. These conditions
include: Customers arrive according to a Poisson process, the customers are served in
an order that is independent of their service times and service is nonpreemptive. The
decomposition consists of the number of customers present in a standard M |G|1 queue and
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2 BRUIN AND VAN DER WAL

the number of customers who arrive during a residual vacation. Unfortunately, our model
does not satisfy all necessary conditions, because if the base stock level is reached during
a production period, the system idles during one production time. This idling time is also
called a vacation and therefore, the number of customers that arrive during a vacation is
not independent of the number of customers present in the system when the vacation began.
However, the limiting distribution of the stock out (which can be seen as the queue length
distribution of items that need to be produced) can be found in a more direct way, without
using the decomposition result from [6].

In the present study, a news vendor type expression for the optimal decision level is
derived. This expression contains the limiting probabilities of the number of items short
to the base stock level. A generating function approach is used to determine this limiting
distribution. For heavily loaded systems, an approximation of the optimal decision level is
obtained and numerical results are given to show how accurate this approximation is. The
model is then slightly adjusted allowing the base stock levels to be slot dependent.

This paper is structured as follows. In Section 2 we explain the periodic production
model in more detail. We derive an expression for the generating function of the number of
products short compared to the base stock level in Section 3 and obtain the corresponding
limiting distribution via the balance equations in Section 4. Next the optimal base stock
level is derived from a news vendor type equation. For the limiting distribution, a tail
approximation is given to cope with numerical problems and an approximation for the
optimal decision level is derived from this tail approximation. Some numerical results are
presented to give an idea about the quality of the approximation. In Section 8 we consider
the case of time slot dependent base stock levels. Again a news vendor type equation is
given and the equilibrium distribution of the number of items on stock or backlogged is
found in Section 9. Numerical results on this extension are given in Section 11. Section 12
presents some conclusions and suggestions for further research.

2. Cyclic production

So, we consider a cyclic production system where each cycle starts with g production
times and is concluded by a vacation. Production times and vacation are possibly random
but independent. Demand arrives according to a (compound) Poisson process. The system
is embedded on the instances corresponding to the start of a production time or the start
of a vacation. The time intervals in this chain will be called slots, where we distinguish
between production slots and vacation slots. Each cycle consists of g+1 slots. The decision
to use a production slot for production or for idling is read from a base stock level S. If at
the start of a production slot the inventory is less than S, then the slot is used to produce
exactly one item. Given the assumptions about the demand process and the production
rule the embedded system becomes a periodic (cyclic) embedded Markov chain.

The state of this chain is described as the number of products short to the level S at
the beginning of a slot and the slot number within the cycle. Formulated in this way, the
(limiting) behaviour of the Markov chain is independent of the value of S. Linear cost
functions are considered for the number of items on stock and the backlog. Hence, as we
will show, if the distribution of the number of products short to the base stock level S is
known, an expression for the optimal value of S∗ can be derived from a news vendor type
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equation.

The generating function for the demand in a production slot is denoted by AP (z) =∑∞
k=0 aP (k)zk, with aP (k) the probability that the demand in a production slot is equal to

k. The average length of a production slot is denoted by TP . Similarly, we define AV (z),
aV (k) and TV for the vacation slot. Further, λ denotes the mean demand per time unit. We
define X as the number of products short to the level S and look at the value of X at slot
boundaries. In order to find the limiting distribution of X, a generating function approach
will be used.

3. Generating function

Define Xn,t as the value of X at slot boundary n in cycle t for n = 1, . . . , g + 1. Let us
look at the limiting random variable

Xn = lim
t→∞Xn,t, n = 1, . . . , g + 1.

This limiting distribution is denoted by

p(k, n) = P(Xn = k), k ≥ 0, n = 1, . . . , g + 1

and the generating function of Xn is defined as

Gn(z) =
∞∑

k=0

p(k, n)zk, n = 1, . . . , g + 1.

The distribution of Xn exists if the Markov chain {Xn,t, t = 1, 2, . . .} is aperiodic and
irreducible (which is immediate from the (compound) Poisson demand assumption) and
provided the system is stable, i.e. if λ (gTP + TV ) < g. We assume this is the case.

We have

X1 = Xg+1 + Ag+1,

Xn = Xn−1 + An−1 − I{Xn−1>0}, n = 2, . . . , g + 1,

where An denotes the demand that occurs in time slot n. From these equations we get

G1(z) = Gg+1(z)AV (z),

Gn(z) =
1
z
AP (z) [Gn−1(z) + p(0, n− 1)(z − 1)] , n = 2, . . . , g + 1.

As one easily verifies, this leads by iteration to

G1(z) =
∑g

m=1Ag+1−m
P (z)AV (z)(zm − zm−1)p(0,m)

zg −Ag
P (z)AV (z)

, (3.1)

Gn(z) =
(AP (z)

z

)n−m

G1(z) +
n−1∑

m=1

p(0,m)(z − 1)
(AP (z)

z

)n−m

, (3.2)

n = 2, . . . , g + 1.

The generating function of X1 is of indeterminate form, but the g boundary probabilities
p(0, n), n = 0, . . . , g, can be determined by considering the zeros of the denominator in
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(3.1) that lie on or within the unit circle. The following Rouché type lemma is taken from
[1] and is specialized to our case.

Lemma 1. If ρ := λ(gTP +TV )
g < 1 and AV (0)Ag

P (0) 6= 0, then zg = Ag
P (z)AV (z) has g roots

on or within the unit circle.

Denote the g roots of zg = Ag+1(z) in |z| ≤ 1 by z0 = 1, z1, . . . , zg−1. Since the function
G1(z) is finite on and inside the unit circle, the numerator of the right-hand side of (3.1)
needs to be zero for each of the g roots, i.e., the numerator should vanish at the exact
points where the denominator of the right-hand side of (3.1) vanishes. Lemma 1 and (3.1)
together lead to g equations in terms of the g boundary probabilities, from which the latter
can be determined. The roots can be determined using methods from [7]. It is assumed
that these g roots are all different. If there is multiplicity of the roots greater than two, the
derivatives (up to the number of multiplicity) of the numerator of (3.1) can be set to zero
to obtain sufficiently many equations.

In principle, the probabilities p(k, n) can be found by numerically inverting Gn(z). How-
ever, in this case, we can also derive the probabilities from the g boundary probabilities
directly.

4. The limiting distribution

In order to find all limiting probabilities p(k, n) from the probabilities p(0, n), n = 1, . . . , g
(obtained via Lemma 1), we use the balance equations:

p(k, 1) =
k∑

j=0

p(j, g + 1)av(k − j), (4.1)

p(k, n) =
k+1∑

j=1

p(j, n− 1)ap(k + 1− j) + p(0, n− 1)ap(k), n = 2, . . . , g + 1, (4.2)

Using (4.1) with k = 0 the probability p(0, g + 1) can be obtained from:

p(0, g + 1) =
1

av(0)
p(0, 1).

Next let us rewrite equation (4.2) for n = 2, . . . , g + 1 as

p(k + 1, n− 1) =
1

ap(0)


p(k, n)−

k∑

j=1

p(j, n− 1)ap(k + 1− j)− p(0, n− 1)ap(k)


 . (4.3)

Then, starting with k = 0 we first find the probabilities p(1, n), n = 2, . . . , g + 1. The
probability p(1, 1) can then be obtained from equation (4.1). Continuing in this way, one
recursively gets the probabilities p(k, n), k ≥ 2.

5. The optimal base-stock level

Now consider the following linear cost function, with weights based on the average slot
duration:
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C(S) =
g∑

n=1

TP

gTP + TV
(cIE(In) + cBE(Bn)))+

TV

gTP + TV
(cIE(Ig+1) + cBE(Bg+1)) , (5.1)

where In is the number of items on stock at slot boundary n and Bn the backlog at slot
boundary n. Because the cost function is a weighted sum of costs at different time slots,
we also look at the following weighted limiting distribution:

p(k) =
g∑

n=1

TP

gTP + TV
p(k, n) +

TV

gTP + TV
p(k, g + 1) .

The optimal base-stock level S∗ for this ‘news vendor problem’ is now readily obtained as:

S∗ = min

{
S

∣∣∣∣∣
S∑

k=0

p(k) >
cB

cI + cB

}
. (5.2)

6. A geometric tail approximation

The probabilities p(k) in (5.2) can be found using the recursive method from Section 4.
However, we have experienced numerical problems with this procedure for large values of
k. For these cases, we suggest to use the following approximative method to determine S∗.

In [4] Van Eenige uses an approximation from Tijms and van de Coevering [9] for the
tail probabilities that is based on the following asymptotic behavior

lim
k→∞

p(k)
p(k + 1)

= γ,

with γ the unique root of zg −Ag
P (z)AV (z) in (1,∞).

A similar approximation method is employed in Van Mieghem [8], who gives a dominant
pole approximation for P(X > k):

P(X > k) ≈ c

γ − 1
γ−k, (6.1)

with c a normalization constant. The root γ can be determined by bisection.
Upon substituting (6.1) into (5.2), one gets the following approximative value for S∗:

S∗ ≈
⌈−ln(cI) + ln(cI + cB) + ln(c)− ln(γ − 1)

ln(γ)

⌉
.

If the production times and the vacation period are both deterministic and demand is
Poisson distributed, then the total demand in a cycle is Poisson distributed with mean
λ (gTP + TV ) and it can be seen from a Taylor expansion that, γ ≈ 1 + 2(1 − ρ) as ρ ↑ 1.
Then, for high values of ρ, we have ln(γ) ≈ ln(1 + 2(1− ρ)) ≈ 2(1− ρ). Furthermore, if the
approximation in (6.1) is close enough to the exact value for small values of k, one easily
sees that c should be close to ρ(γ − 1) (choose k = 0). Substituting these results into the
equation above, we obtain the approximation S̃ defined as

S̃ =
⌈−ln(cI) + ln(cI + cB) + ln(ρ)

2(1− ρ)

⌉
. (6.2)
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In order to see whether (6.2) results in a good approximation, we give some numerical
results comparing the approximation with the exact method.

7. Numerical results

For various parameters settings, for which we can determine the exact value of S∗ nu-
merically, the results for S∗ and S̃ are presented in Table 1. These results are based on a
fixed cycle in which all time slots are deterministic and the demand process is Poisson. The
values of S̃ from (6.2) are given without taking the ‘ceiling’ to show the real difference with
the value of S∗.

cI = 1, cB = 10, g = 5, TP = 1, TV = 5
ρ EI EB S∗ costs S̃ costs

0.50 1.26 0.12 2 2.50 1.70 2.50
0.60 1.92 0.11 3 2.98 2.36 2.98
0.70 2.48 0.14 4 3.89 3.40 3.89
0.80 3.65 0.21 6 5.78 5.44 5.78
0.90 7.32 0.44 12 11.68 11.46 11.68
0.95 14.74 0.89 24 23.62 23.47 23.62

cI = 1, cB = 10, g = 10, TP = 1, TV = 10
ρ EI EB S∗ costs S̃ costs

0.50 1.89 0.14 3 3.30 1.70 4.25
0.60 2.48 0.13 4 3.81 2.36 4.41
0.70 2.96 0.17 5 4.62 3.40 5.18
0.80 4.04 0.22 7 6.27 5.44 6.59
0.90 7.62 0.43 13 11.91 11.46 12.00
0.95 15.00 0.88 25 23.71 23.47 23.79

cI = 1, cB = 10, g = 3, TP = 1, TV = 9
ρ EI EB S∗ costs S̃ costs

0.50 1.31 0.10 2 2.29 1.70 2.29
0.60 2.00 0.09 3 2.85 2.36 2.85
0.70 2.58 0.12 4 3.79 3.40 3.79
0.80 3.78 0.19 6 5.71 5.44 5.71
0.90 7.46 0.42 12 11.66 11.46 11.66
0.95 14.89 0.87 24 23.57 23.47 23.57

Table 1. The values of EI, EB, S∗ and S̃ for various model settings.

One sees that the approximation S̃ is correct for many parameter settings in Table 1.
However, for higher values of g and TV , the approximations gets worse. Fortunately, for
higher values of ρ, the cost difference gets smaller. For these values of ρ, the difference
between S̃ and S∗ is mainly caused by the approximation of c

γ−1 , which does not depend
on the values of g and TV anymore. The approximation of S∗ is less accurate if S∗ is low,
because it is based on (6.1), which is only an approximation for the tail probabilities.
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Figure 1
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TP = 1, TV = 4, λ = 0.5, cI = 1, cB = 10.

Figure 1 gives the effect of g on the value of S∗ and shows that S∗ increases if g decreases.
This is explained by the fact that decreasing g increases the effective utilization. Another
point is that if g is somewhat longer, one needs the safety stock for the vacation period only
at the end of the production period. This suggests that a cost reduction can be obtained
with a base-stock level that is lower at the beginning of a production period and increases
towards the end of the production period.

8. Time slot dependent base-stock levels

We now consider the system in which the base-stock level is time slot dependent. The
different levels are denoted by S1, . . . , Sg, with Sn the base-stock level for time slot n, see
Figure 2. Two assumptions are now stated and discussed below.

Assumption 1.

Sn+1 ≤ Sn + 1, n = 1, . . . , g.

Assumption 2.

Sn ≤ Sn+1, n = 1, . . . , g.

It seems reasonable to expect that the values of Sn are non-decreasing and that Sn ≤
Sn−1 + 1 for all n. However, it probably is possible to construct counterexamples for this
based on the following intuition.

If the production times are highly variable and the non-production slots are not, then
one might need a higher safety stock at the beginning of the production period than near
the end of it.

If there is little variability in the slot durations, one wants to have the highest base stock
level at the end of the production period. In the slot just before it, the safety stock is
needed only because of the capacity limitation. Take the one but last slot. For a certain
level, the inventory costs for the next slot might be just the reason not to produce. However,
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if (due to a somewhat lower than average demand in the previous inactive period) in the
last production slot one already has a stock level that is one higher than the base stock
level of the previous slot, one might still be willing to produce one more item.

Figure 2
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The base stock levels of 5 production slots.

In order to find the optimal values of S1, . . . , Sg, we slightly adapt the model description
from Section 2. With different base-stock levels (and Poisson demand) in every slot the
stock level can reach the maximum of S1, . . . , Sg, so in some slot(s) n the difference with
the base-stock level Sn can be negative. This is shown in Figure 3, where the stock level
just before the first production slot in the second cycle is higher than S1. Therefore, we

Figure 3
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The inventory level during two cycles.

define Smax = max{S1, . . . , Sg} and X̃n as the number of products short compared to Smax

at slot boundary n.
As before, if ρ < 1 the limiting distribution of X̃n exists and it is denoted by

p̃(k, n) = lim
t→∞P(X̃n,t = k), n = 1, . . . , g + 1, k ≥ 0,

with generating function

G̃n(z) =
∞∑

k=0

p̃(k, n)zk, n = 1, . . . , g + 1.

Define
δ(Sn) := Smax − Sn, n = 1, . . . , g.
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In the same way as in Section 3, we get

G̃1(z) =
∑g

m=1

∑δ(Sm)
k=0 p̃(k, m)(zk+m − zk+m−1)Ag+1−m

P (z)AV (z)
zg −Ag

P (z)AV (z)
, (8.1)

G̃n(z) = G̃1(z)
(AP (z)

z

)n−j

+
n−1∑

m=1

δ(Sm)∑

k=0

p̃(k,m)(zk − zk−1)
(AP (z)

z

)n−m

,

n = 2, . . . , g + 1,

The expressions for G̃1(z), . . . , G̃g+1(z), however, still contain the unknown boundary
probabilities p̃(k, n), k = 0, . . . , δ(Sn), n = 1, . . . , g. Lemma 1 gives g equations. Since
there are more than g unknowns, we will have to construct a larger set of balance equations
for these boundary probabilities. Because a similar problem is discussed in [3], the same
approach is used to find the boundary probabilities in the paragraph below.

9. The boundary probabilities

The boundary probabilities we are looking for only concern probabilities from the pro-
duction period. For ease of notation we combine the last production slot and the vacation
period into one production slot.

With a∗g(k), k ≥ 0, denoting the distribution of the total demand in time slots g and
g + 1, the set of balance equations becomes:

p̃(k, n) =
k+1∑

m=δ(Sn−1)+1

p̃(m, n− 1)ap(k + 1−m) (9.1)

+
δ(Sn−1)∑

m=0

p̃(m,n− 1)ap(k −m), 2 ≤ n ≤ g, k ≥ δ(Sn−1),

p̃(k, n) =
k∑

m=0

p̃(m,n− 1)ap(k −m), 2 ≤ n ≤ g, 0 ≤ k < δ(Sn−1), (9.2)

p̃(k, 1) =
k+1∑

m=δ(Sg)+1

p̃(m, g)a∗g(k + 1−m) (9.3)

+
δ(Sg)∑

m=0

p̃(m, g)a∗g(k −m), k ≥ δ(Sg),

p̃(k, 1) =
k∑

m=0

p̃(m, g)a∗g(k −m), 0 ≤ k < δ(Sg). (9.4)

The algorithm below uses a set of unknown probabilities (variables), U , and a set of
equations, E, from which the unknowns have to be obtained. Initially we define U =
{p̃(k, n); k = 0, . . . , δ(Sn), n = 1, . . . , g} and we let E contain the g equations from Lemma
1 plus the equations described by (9.2) and (9.4). The balance equation with left-hand side
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p̃(k, n) will be labeled with (k, n). So U now contains the variables p̃(k, n), k = 0, . . . , δ(Sn),
and E the equations (k, n), k = 0, . . . , δ(Sn−1) − 1. Then the number of equations in E
(including the ones from Lemma 1) and the number of unknowns in U are both equal to∑

n δ(Sn) + g.
Note that by construction for each equation in E the variables on the right-hand side

belong to U . Under the assumption Sn ≤ Sn−1 +1 for all n (see Assumption 1) the variable
on the left-hand side will always be in U as well.

However, if the assumption Sn ≤ Sn−1 + 1 for all n does not hold, then for one or more
of the equations in E the left-hand side probability is not in U . Then the sets U and E will
(have to) be enlarged, slot by slot, in the following way.

Start with the slot just after the one with the lowest decision level, thus largest δ(Sn).
Let n be the current production slot. For each (k, n) ∈ E for which p̃(k, n) is not yet in
U the variable p̃(k, n) is added to U . Next, for each of these variables an extra balance
equation is added to E, namely equation (k− 1, n + 1) (where g + 1 is to be read as 1). All
probabilities appearing at the right-hand side of this new equation are already in U and at
most one extra unknown probability appears at the left-hand side. Then go to next slot,
n+1. Again each variable that appears in E but is not in U is added to U , and in the same
way as before, for a new variable p̃(k, n) equation (k−1, n+1) is added to E. Continue until
all slots have been considered. In the last step (step g), the (a) slot with the highest value
of δ(Sn) is reached. Therefore, the probabilities on the left-hand side of all equations added
in the previous step are already in U , because k can not exceed max{δ(S1), . . . , δ(Sg)}.)
This means that the construction ends with |E| = |U | and the variables in U being the only
ones appearing in E.

Assuming that all equations from the roots, l’Hôpital’s rule, and this algorithm are lin-
early independent, the unknowns in U can be found.

10. Optimal maximum decision level

Denote the number of products short compared to Smax at weighted random slot bound-
aries by X̃. The generating function of X̃ is defined as

G̃(z) =
∞∑

k=0

p̃(k)zk =
g∑

n=1

TP

gTP + TV
Gn(z) +

TV

gTP + TV
Gg+1(z),

with

p̃(k) =
g∑

n=1

TP

gTP + TV
p(k, n) +

TV

gTP + TV
p(k, g + 1), k ≥ 0.

The limiting distributions of X̃, X̃1, . . . , X̃g can be found by inverting G̃(z) and G̃n(z), n =
1, . . . , g. The distribution of X̃ depends on δ(S1), . . . , δ(Sg), but not on Smax. For a given
vector (δ(S1), . . . , δ(Sg)) the optimal value of Smax is given by

Smax∗ = min

{
Smax

∣∣∣∣∣
Smax∑

k=0

p̃(k) >
cB

cI + cB

}
. (10.1)

We emphasize that the distribution of X̃ depends on the whole vector (δ(S1), . . . , δ(Sg))
and thus Smax∗ does as well. Furthermore, there is no expression for the optimal value of
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every individual Sn, n = 1, . . . , g. In the next Section we present a search for a presumably
optimal vector (δ(S1), . . . , δ(Sg)) based on the two Assumptions 1 and 2.
In order to also find the expected costs C(S1, . . . , Sg) for a given vector {S1, . . . , Sg}, we
write

C(S1, . . . , Sg) = cIEI + cBEB = (cI + cB)
Smax∑

k=0

p̃(k)(Smax − k) + cB(EX̃ − Smax),

where the weights TP
gTP +TV

and Gv
gTP +TV

are now hidden in p̃(k) and EX̃.

The finite sum
∑Smax

k=0 p̃(k)(Smax− k) is obtained from the equilibrium probabilities. For
EX̃ we use E(X̃1), . . . ,E(X̃g+1). For the derivation of E(X̃1), we refer to appendix A. The
expressions for E(X̃n), n = 2, . . . , g + 1 are then obtained with

X̃n = X̃n−1 + An−1 − IX̃n−1>δ(Sn−1), n = 2, . . . , g + 1,

with An−1 the number of arrivals in time slot n − 1 and IX̃n−1>δ(Sn−1) the production
indicator of time slot n− 1. The result is:

E(X̃1) =
1

g − λ (gTP + TV )




g∑

m=1

δ(Sm)∑

k=0

p̃(k, m) [(gTP + TV ) λ + k + m− 1]

− 1
2

[
g(g − 1)− (gTP + TV )2 λ2

])
,

E(X̃n) = E(X̃1) + λ (gTP + TV )−
n−1∑

m=1

δ(Sm)∑

k=0

p̃(k, m), n = 2, . . . , g + 1.

11. Numerical Results

Next we present some numerical results comparing the expected costs per time unit for
fixed cycles with one general decision level with the costs for fixed cycles with time slot
dependent decision levels.

Recall that given the vector (δ(S1), . . . , δ(Sg)) the distribution of X̃ does not depend on
Smax and that the corresponding optimal Smax is given by (10.1).

In order to limit the number of possible vectors with distances we use Assumptions 1
and 2 : Sn ≥ Sn−1, n = 2, . . . , g and Sn ≤ Sn−1 + 1, n = 2, . . . , g. Then the number of
possible vectors with distances equals 2g−1. In the numerical results below, the presented
optimal values {S1, . . . , Sg} are the optimal ones given these two restrictions.

Tables 2 and 3 show numerical results for TV = 5, while in Tables 4 and 5, TV = 25.
Tables 2 and 4 show numerical results for cI = 1, cB = 10, while in Tables 3 and 5 cB = 20.
For almost every value of ρ < 0.95, Tables 4 and 5 show a larger cost reduction than
Tables 2 and 3. Apparently, the length of the vacation period has a positive effect on the
attainable cost reduction, while the value of ρ and the fraction cI

cI+cB
have a negative effect

on the attainable cost reduction. The first observation can be explained by the fact that
the average arrivals per time slot decrease if TV increases, so there is relatively more time
to get a high stock level at the end of the production period. Therefore, the decision levels
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Table 2

cI = 1, cB = 10, g = 5, TP = 1, TV = 5
ρ S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 5 4.642 [4 4 5 5 5] 4.608 0.716
0.8 6 5.782 [5 5 6 6 6] 5.762 0.334
0.85 8 7.731 [7 7 8 8 8] 7.716 0.195
0.9 12 11.682 [11 11 12 12 12] 11.672 0.089
0.95 24 23.630 [23 23 24 24 24] 23.625 0.023

Table 3

cI = 1, cB = 20, g = 5, TP = 1, TV = 5
ρ S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 6 5.807 [4 5 6 6 6] 5.699 1.869
0.8 8 7.262 [7 7 8 8 8] 7.239 0.324
0.85 10 9.794 [9 9 10 10 10] 9.769 0.248
0.9 15 14.749 [15 15 15 15 15] 14.749 0.000
0.95 30 30.000 [29 30 30 30 30] 29.963 0.110

Table 4

cI = 1, cB = 10, g = 5, TP = 1, TV = 25
ρ S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 5 4.984 [3 4 5 5 6] 4.933 1.024
0.8 7 6.039 [4 5 6 7 7] 6.006 0.551
0.85 9 7.931 [6 7 8 8 9] 7.902 0.365
0.9 12 11.816 [10 11 11 12 13] 11.798 0.150
0.95 24 23.692 [22 23 23 24 24] 23.688 0.015

Table 5

cI = 1, cB = 20, g = 5, TP = 1, TV = 25
ρ S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 7 6.118 [4 5 6 6 7] 5.976 2.329
0.8 8 7.448 [6 6 7 7 8] 7.425 0.309
0.85 11 9.961 [9 9 10 11 11] 9.894 0.670
0.9 16 14.946 [14 14 15 16 16] 14.856 0.604
0.95 31 30.029 [29 30 30 31 31] 29.987 0.140

at the beginning of the production period can be lower. The second observation is easy
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to explain: The values of ρ increases the load on the system, so the system should use its
full capacity to get Smax∗ products on stock. The last observation is explained by the fact
that if the backlogging costs are relatively high, one wants to prevent the system to create
backlog. Therefore, the decision levels are all close to Smax∗.

12. Conclusion

In this paper, we analyzed a fixed cycle scheme in a single-item production setting.
Besides the analysis for a fixed cycle with one base stock level for all decisions slots we
also treat the situation with time slot dependent decision levels. An expression for the
generating function for the stock out at random slot boundaries is found and the boundary
probabilities that appear in the numerator of this expression are determined via the balance
equations. The optimal values of S and Smax are found via news vendor type equations
and in the case with a general decision level, an approximation based on the geometric tail
behavior of the stock out distribution is given for S∗. Numerical results show that this
approximation works well for high values of ρ. Time slot dependent decision levels seem to
be useful for low values of ρ and cI

cI+cB
and when the production period is long.

In a multi-item production setting, different fixed cycle schemes can be compared in
order to find the optimal fixed cycle. If the lengths of the different production periods are
determined, the resulting fixed cycle can be used as a basis for a one step improvement
approach, see [2] for results on this approach in the multi-item production setting with lost
sales.

Acknowledgement. We thank Johan van Leeuwaarden for the helpful discussions on the
determination of the boundary probabilities in the expressions of G(z) and G̃(z).

Appendix A. Expectation in the first slot

We obtain the mean value of X̃1 by taking the first derivative of G̃1(z). We rewrite this
generating function as N (z)

D(z) , with

N (z) =
g∑

m=1

δ(Sm)∑

k=0

p̃(k, m)(zk+m − zk+m−1)Ag+1−m
P (z)AV (z)

and
D(z) = zg −Ag

P (z)AV (z)

to keep the notation simple.
G̃′1(1) can be rewritten as

N ′(z)D(z)−D′(z)N (z)|z=1

D2(z)|z=1
=
N ′(z)−D′(z)G̃1(z)|z=1

D(z)|z=1
.

Since G̃1(1) = N ′(1)
D′(1) by l’Hôpital and D(1) = 0, we can use l’Hôpital again:

G̃′1(1) =
N ′′(z)−D′′(z)G̃1(z)−D′(z)G̃′1(z)|z=1

D′(z)|z=1
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Using G̃1(1) = 1 and rearranging terms gives us:

G̃′1(1) =
N ′′(1)−D′′(1)

2D′(1)
,

with

D′(1) = g − (gTP + TV ) ,

N ′′(1) = 2
g∑

m=1

δ(Sm)∑

k=0

p̃(k, m) [(gTP + TV ) λ + k + m− 1] ,

D′′(1) =
[
g(g − 1)− (gTP + TV )2 λ2

]
.
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[5] Erkip, N., R. Güllü and A. Kocabiyikoglu (2000). A quasi-birth-and-death model to evaluate fixed cycle
time policies for stochastic multi-item production/inventory problem, Proceedings of MSOM conference,
Ann Harbor.

[6] Fuhrmann, S.W. and R.B. Cooper (1985). Stochastic decomposition in an M/G/l queue with generalized
vacations, Operatoins Research 33: 11-17.

[7] Janssen, A.J.E.M. and J.S.H. van Leeuwaarden (2004). Analytic computation schemes for the discrete-
time bulk service queue, Queueing Systems 50: 141-163.

[8] van Mieghem, P. (1996). The asymptotic behavior of queueing systems, Queueing Systems, 23: 27-55.
[9] Tijms, H.C. and M.C.T. van de Coevering (1991). A simple numerical approach for infinite-state Markov

chains, Probability in the Engineering and Informational Sciences 5: 85-295.

EURANDOM, 5612 AZ Eindhoven, The Netherlands

E-mail address: bruin@eurandom.tue.nl

Eindhoven Univerity of Technology, 5612 AZ Eindhoven, The Netherlands

E-mail address: jan.v.d.wal@tue.nl


