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ABSTRACT
A one-dimensional mathematical model is derived for a

three-stage pulse-tube refrigerator (PTR) that is based onthe
conservation laws and the ideal gas law. The three-stage PTR
is regarded as three separate single-stage PTRs that are coupled
via proper junction conditions. At the junctions there are six
fluid flow possibilities each defining its own boundary conditions
for the adjacent domains. Each single stage cools down the gas
in the regenerator to a lower temperature such that the system
reaches its lowest temperature at the cold end of the third stage.
The velocity and pressure amplitudes are decreasing towards the
higher stages and there is an essential phase difference between
them at different positions. The system of coupled PTRs is solved
simultaneously first for the temperatures and then for the veloc-
ities and the regenerator pressures. The final result is a robust
and accurate simulation tool for the analysis of multi-stage PTR
performance.

INTRODUCTION
An innovative technology for cooling down to low tempera-

tures is the so-called pulse-tube refrigerator (PTR). It isapplied
in medicine and space technology, for example to liquefy nitro-
gen and to facilitate superconductivity. A typical Stirling single-
stage PTR is shown in Fig. 1. The PTR consists of a piston
(or compressor) with after-cooler, a regenerator, a cold heat ex-

changer, a pulse tube, a hot heat exchanger, an orifice and a reser-
voir, in this sequence. The piston maintains an oscillatinghelium
flow in the regenerator-tube system. The temperature of the he-
lium increases when the flow is compressed and moving towards
the hot heat exchanger (HHX) into the reservoir. The gas cools
down when the flow is decompressed and moving back towards
the cold heat exchanger (CHX) into the regenerator. The heat
absorbing features of the regenerator, which is a porous medium
with large heat capacity and large heat-exchanging surface, re-
sults in net cooling power per cycle. The cooling takes placeat
the cold heat exchanger, which is placed in a vacuum chamber.
See [1,2] for more explanation and analysis.
For reaching temperatures below 30 K a multi-stage PTR can be
useful. Several single PTR are placed in series, such that the cold
end of one stage is cooling the helium that enters the regenerator
of the next stage. Each single PTR has dimensions and materials
fitted for its intended temperature range. The studied three-stage
pulse-tube refrigerator is sketched in Fig. 2. Its dimensions and
properties are listed in the Appendix.
In this paper we derive a mathematical model that will be the ba-
sis for numerical simulation of the PTR. All parts of the system
are coupled together in a physically correct way. The study is
based on previous work [3, 4], but now extended to modelling
the regenerator and multi-staging.
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Figure 1. SINGLE-STAGE STIRLING PULSE-TUBE REFRIGERATOR.

MATHEMATICAL MODEL
To analyse the fluid flow and heat transfer inside a single-

stage PTR, we consider the fluid as a continuum. The heat ex-
changers are assumed ideal. The basic equations are the three
laws of conservation and the equation of state of an ideal gas.
The material properties are taken constant herein.

The Tube Model
Consider a one-dimensional region 0< x < Lt , whereLt is

the length of the tube. The four basis equations for the tube have
the following dimensional form [4]

∂ρg

∂t
+

∂
∂x

(ρgu) = 0, (1)

ρg(
∂u
∂t

+u
∂u
∂x

) = −
∂p
∂x

+
4
3

µ
∂2u
∂x2 , (2)

ρcg(
∂Tg

∂t
+u

∂Tg

∂x
) =

∂p
∂t

+u
∂p
∂x

+kg
∂2Tg

∂x2 +
4
3

µ(
∂u
∂x

)2, (3)

p = ρgRmTg. (4)

The symbols are defined in the Appendix. The equations are
made non-dimensional by proper scaling parameters [5]. Em-
ploying asymptotic analysis, we see that the pressurept in the
tube is uniform and we set it equal to the pressure at the interface
with the regenerator. By eliminating the density, the following
simplified continuity equation for the dimensionless velocity ut

and energy equation for the dimensionless temperatureTgt are
obtained

∂ut

∂x
= (

a1

pt
)

∂2Tgt

∂x2 − (
1

γpt
)

∂pt

∂t
, (5)

∂Tgt

∂t
= a2(

Tgt

pt
)

∂2Tgt

∂x2 −ut
∂Tgt

∂x
+(1− γ)

∂ut

∂x
Tgt , (6)

wherea1 = 1/BPeg anda2 = γ/BPeg. The temperature equation
(6) is a nonlinear convection-diffusion equation. The coefficient
of the diffusion term is very small,a2 ≪ 1, so that the flow is
highly dominated by convection. The dimensional volume flow

Figure 2. THREE-STAGE STIRLING PULSE-TUBE REFRIGERATOR.

V̇H or the velocityuH through the orifice is in a linear approxi-
mation given by [2]

V̇H(t) = Cor(p−pb), (7)

where pb is the buffer (reservoir) pressure andCor is the flow
conductance of the orifice. The following non-dimensional rela-
tion gives the velocity at the hot end of the tube as the boundary
condition (BC) for the velocity equation (5)

uH(t) = C (p−E0), (8)

whereE0 = pb/pav. The upwind BC for the temperature equa-
tion (6) depend on the local flow directions and read



















Tgt (Lt ,t) = TH if ut(Lt ,t) ≤ 0,

∂Tgt

∂x
(Lt ,t) = [(1− γ)

∂ut

∂x
Tgt (Lt ,0)−

∂Tgt

∂t
(Lt ,t)]/ut(Lt ,t)

if ut(Lt ,t) > 0.
(9)



















Tgt (0,t) = TC if ut(0,t) ≥ 0,

∂Tgt

∂x
(0,t) = [(1− γ)

∂ut

∂x
Tgt (0,t)−

∂Tgt

∂t
(0,t)]/ut(0,t)

if ut(0,t) < 0.
(10)
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whereTH andTC are the given temperatures at the hot and cold
ends respectively.

The Regenerator Model

The governing equations for the regenerator, where 0< x <
Lr , are similar to those of the tube and read [5]

∂ρg

∂t
+

∂
∂x

(ρgu) = 0, (11)

ρg(
∂u
∂t

+u
∂u
∂x

) = −
∂p
∂x

+
4
3

µ
∂2u
∂x2 −

µ
φk

u, (12)

ρr(1−φ)cr
∂Tr

∂t
= β(Tg−Tr)+ (1−φ)kr

∂2Tr

∂x2 , (13)

ρgcgφ
dTg

dt
= β(Tr −Tg)+ φ(

∂p
∂t

+u
∂p
∂x

)+ φkg
∂2Tg

∂x2 +
4
3

µ(
∂u
∂x

)2,

(14)

p = ρgRmTg, (15)

whereφ is the porosity of the regenerator material which is as-
sumed to be constant. The flow resistance is taken into ac-
count by Darcy’s law via the momentum equation (12). By non-
dimensionalising the variables and employing asymptotic analy-
sis, the equations take the following simplified form:

∂ur

∂x
=

a1

pr

∂2Tgr

∂x2 +
a6

pr
(Tr −Tgr )+a7(

ur

pr
)ur −

1
γpr

∂pr

∂t
, (16)

∂pr

∂x
= −Dur , (17)

∂Tr

∂t
= a3(Tgr −Tr)+a4

∂2Tr

∂x2 , (18)

∂Tgr

∂t
= a2(

Tgr

pr
)

∂2Tgr

∂x2 +a5(
Tgr

pr
)(Tr −Tgr )

+(1− γ)
∂ur

∂x
Tgr −ur

∂Tgr

∂x
, (19)

where a3 = F /cr , a4 = 1/crPer , a5 = Eγ/B, a6 =
E/B and a7 = D/γ. Note thatTr is the temperature of the
regenerator material andTgr is the gas temperature inside the re-
generator. All other parameters are given in the Appendix. The
pressurepc at the compressor side gives a BC for Eq. (17),
namelypc = pav− psin(ωt). For the gas temperature equation
(19), which is a convection-diffusion equation, we introduce two
velocity-dependent boundary conditions similar to the equations

(9-10) as follows



















Tgr (0,t) = TH if ur(0,t) ≥ 0,

∂Tgr

∂x
= [a5(

Tgr

pr
)(Tr −Tgr )+ (1− γ)

∂ur

∂x
Tgr −

∂Tgr

∂t
]/ur(0,t)

if ur(0,t) < 0,
(20)



















Tgr (Lr ,t) = TC if ur(Lr ,t) ≤ 0,

∂Tgr

∂x
= [a5(

Tgr

pr
)(Tr −Tgr )+ (1− γ)

∂ur

∂x
Tgr −

∂Tgr

∂t
]/ur(Lr ,t)

if ur(Lr ,t) > 0.
(21)

We apply the heat exchanger temperatures as the proper BC for
the material temperature equation (18). Mass conservationat the
cold end gives BC for the velocity equation (16).

The Three-Stage PTR Model
The three-stage PTR (Fig. 2) is treated as three single-stage

PTRs that are coupled via physical interface conditions. The re-
generator material temperatures are considered to be fullyde-
coupled from each other. The local energy and mass conserva-
tion provide the coupling conditions for the gas velocitiesand
gas temperatures at the interfaces. For instance, at the junction
connecting the first regenerator, the second regenerator and the
first pulse-tube, we have mass conservation according to

ṁReg1 = ṁReg2+ ṁTube1, (22)

which is equivalent with

uAφ
T

|Reg1 =
uAφ
T

|Reg2+
uA
T

|Tube1. (23)

Neglecting the kinetic energy and local conduction terms, the
energy conservation is satisfied by the enthalpy flow condition

H∗|Reg1 = H∗|Reg2+H∗|Tube1, (24)

with

H∗ = n∗Hm, (25)

wheren∗ is the molar flow andHm is the molar enthalpy. Then

n∗ =
uA
Vm

=
uAp
RT

, (26)
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Figure 3. SIX FLUID FLOW POSSIBILITIES AT JUNCTION.

whereVm is the molar volume,R is the gas constant andp is the
thermodynamic pressure. The molar enthalpy is

H∗
m = cpT. (27)

The enthalpy flow is then

H∗ = (
cpp
R

)uA. (28)

Therefore energy conservation at the junction reduces to volume
conservation

uAφ|Reg1 = uAφ|Reg2+uA|Tube1. (29)

By using mass conservation (Eq. 23) and energy conservation
(Eq. 29) together with pressure continuity we couple two
regenerators and one pulse-tube at each junction. Equation(23)
is simply used as the proper BC for the upper regenerator at each
junction.
There are six (out of eight) flow possibilities at an incompress-
ible junction as depicted in Fig. 3. The vertical arrows show
the flow in two consecutive regenerators and the horizontal one
displays the flow to or from the pulse-tube. These multiple flows
are explained below and the corresponding upwind boundary
conditions for the temperature equations (6) and (19) are listed
in Table 1.

State I: There are two outflows: from the upper regenerator
and from the tube. These are described by the Neumann BCs
(Eq. 10) and (Eq. 21) respectively. Temperature-dependant
mass inflow Eq.(23) is used as the BC for the lower regenerator.

State II: We apply Neumann BC (Eq. 21) for the upper
regenerator. Mass inflow Eq.(23) is the BC for the lower
regenerator. The gas in the tube takes the temperature of the
upper regenerator.

Table 1. BOUNDARY CONDITIONS AT THE JUNCTION ACCORDING

TO DIFFERENT STATES. D:=Dirichlet; N:=Neumann

state Regenerator I Regenerator II Pulse-Tube I

1 N. (outflow) D. (inflow) N. (outflow)

2 N. (outflow) D. (inflow) D. (inflow)

3 D. (inflow) N. (inflow) D. (inflow)

4 D. (inflow) N. (outflow) N. (outflow)

5 D. (inflow) D. (inflow) N. (outflow)

6 N. (outflow) N. (outflow) D. (inflow)

State III: We apply Neumann BC (Eq. 10) for the lower
regenerator and mass inflow for the upper regenerator. The gas
temperature of the tube at the junction is equal to the one in the
lower regenerator.

State IV: There are two outflows, from lower regenerator
and tube, and we apply the Neumann BCs (Eq. 10) and (Eq. 21)
to them. Mass conservation (Eq. 23) is applied to the junction
and this gives the BC for the upper regenerator.

State V: In this state, which lasts a very short time during
the gas circulation, Neumann BC (Eq. 10) is applied to the
pulse-tube and the gas temperature of the regenerators is taken
equal to the gas temperature of the pulse-tube at the junction.

State VI: In this flow situation, which also lasts for a very
short time, the flow from both regenerators enters the pulse-tube.
Mass inflow according to (Eq.23) is then defined to the junction
as the BC for the pulse-tube. Two Neumann BCs for the gas
temperatures are applied to the outflows from the regenerators.

The simulation starts from linear functions for the initial
temperatures in the regenerators. Third degree polynomials are
used for the initial temperatures of the tubes. These are derived
from estimates of the flow amplitudes at the cold and hot ends of
the tubes. The initial temperatures at the cold heat exchangers,
CHX I and CHX II are estimated. The temperature of CHX III is
set as a constant value.

NUMERICAL METHOD
The energy equations for the gas temperature in the tubes

(6), the gas and the material temperatures in the regenerators (18-
19) are solved simultaneously for all three stages by an implicit
method of lines. The equations are discretised in space using
one-sided differences of second-order accuracy and flux limiters
for the convection terms. Theθ-method withθ = 0.5+ ∆t gives

4



second-order accuracy in time. For instance, the discretisation of
Eq. (6) forun

j > 0 and omitting the subscriptt is

Tn+1
gj

−△tnθ
(

ε2(
Tn

g j

pn
j
)
Tn+1

g j−1
−2Tn+1

gj
+Tn+1

gj+1

h2 +(1− γ)Tn
gj

un+1
j+1 −un+1

j−1

2h

)

=

Tn
g j

+(1−θ)△tn

(

ε2(
Tn

g j

pn
j
)
Tn

g j−1
−2Tn

gj
+Tn

gj+1

h2 +(1− γ)Tn
gj

un
j+1−un

j−1

2h

)

−cn
j



1+
1
2
(1−cn

j )





Φn
j+ 1

2

rn
j+ 1

2

−Φn
j− 1

2







(Tn
g j
−Tn

gj−1
),

(30)

where the Courant numbercn
j := △tnun

j /△x and△tn is an adap-
tive time step satisfying condition (32). The ratiorn

j+ 1
2

is defined

by

rn
j+ 1

2
:=























Tn
g j
−Tn

g j−1

Tn
g j+1

−Tn
g j

if un
j > 0,

Tn
g j+2

−Tn
g j+1

Tn
g j+1

−Tn
g j

if un
j < 0.

(31)

The flux limiterΦn
j+ 1

2
= Φ(rn

j+ 1
2
) herein is that of Van Leer, see

[6]. For r ≤ 0 the limiter functionΦ(r) = 0. Because of the CFL
stability condition|cn

j | ≤ 1 it is required that

△tn ≤△x/max
j

|un
j |. (32)

The continuity equation (5) is discretised with second order of
accuracy as follows

un+1
Nx

= un+1
H , j = Nx,

un+1
j+1 −un+1

j−1 =
2ε1

h
(Tn+1

g j−1
−2Tn+1

gj
+Tn+1

gj+1
)

−
h

γpn
j
(
3pn+1

j −4pn
j + pn−1

j

∆t
), j = 2, ...,Nx−1,

−3un+1
1 +4un+1

2 −un+1
3 =

2ε1

h
(Tn+1

g3
−2Tn+1

g2
+Tn+1

g1
)

−
h

γpn
1
(
3pn+1

1 −4pn
1+ pn−1

1

∆t
), j = 1,

(33)

for every time leveln = 0,1,2,3, ... with uH given by Eq. (8).
The pulse-tubes and regenerators are coupled by the interface
conditions Eq.(23) and Eq.(29). The global system of equations
for the temperatures that is numerically solved reads





























X X C C 0 0 0 0 0
X X 0 0 0 0 0 0 0
C 0 X 0 0 0 0 0 0
C 0 0 X X C C 0 0
0 X 0 X X 0 0 C 0
0 0 0 C 0 X 0 0 0
0 0 0 C 0 0 X X 0
0 0 0 0 C 0 X X 0
0 0 0 0 0 0 0 0 X

























































TgR1

TR1

TgTube1

TgR2

TR2

TgTube2

TgR3

TR3

TgTube3





























n+1

=





























F1

F2

F3

F4

F5

F6

F7

F8

F9





























n

(34)

whereX represents the discretisation of a single PTR, andC ac-
counts for the coupling at the junctions. The global system of
equations for the velocities and the regenerator pressuresthat is
numerically solved reads





























X X C C 0 0 0 0 0
X X 0 0 0 0 0 0 0
0 C X 0 0 0 0 0 0
0 0 0 X X C C 0 0
0 C 0 X X 0 0 0 0
0 0 0 0 C X 0 0 0
0 0 0 C 0 0 X X C
0 0 0 0 C 0 X X 0
0 0 0 0 0 0 0 C X

























































uR1

pR1
uTube1

uR2

pR2
uTube2

uR3

pR3
uTube3





























n+1

=





























F1

F2

F3

F4

F5

F6

F7

F8

F9





























n

. (35)

RESULTS and DISCUSSION
A three-stage PTR operating at 20 Hz has been simulated

for a set lowest temperature of 4 K. All parameters are listedin
the Appendix. In Fig. 4 we see the velocities at different posi-
tions for all three stages. Fig. 5 shows the pressure at different
positions in the pulse-tube refrigerator. The amplitude ofveloc-
ity and pressure decreases with distance from the compressor,
and there is a phase difference between all signals. The pressure
drop is caused by the resistance of the regenerators and the veloc-
ity decrease is caused by the compressibility and the decrease of
temperature and pressure per tube. Fig. 6 and 7 give the temper-
atures at the cold and hot ends of the tubes. At the hot end, in the
decompression phase, gas flows from the buffer via the orifice
and carries the room temperatureTH as it enters the pulse-tube.
In the compression phase, as soon as the uniform pressure in the
tube becomes higher than the pressure in the buffer, the gas is ap-
proaching the HHX with a temperature higher than the boundary
temperatureTH (BC (9)). At the cold end the gas enters the tube
via the CHX with temperatureTC and at a pressure higher than
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Figure 4. Velocity variation in the three-stage PTR.

the buffer pressure and returns to the CHX at a lower pressure
with a temperature lower thanTC (BC (10)). This below-TC tem-
perature generates the desired cooling power. When the pressure
and the velocity at the cold end of the third stage are in phasethe
maximum cooling power occurs. The cooling power is equal to
the cycle-averaged enthalpy flow [1,2]

Ḣ =
1
tc

Z t+tc

t
cpṁtTgdt, (36)

with

ṁt = Atρgut ,

wheretc is the cycle period. In Refs [1, 2] this quantity is esti-
mated by

Ḣe =
1
2

Cor p̄
2, (37)

where p̄ is the pressure amplitude which differs per tube. The
calculated values are 4.37 W, 0.67 W and 0.46 W for the first,
the second and the third tube, respectively. The corresponding
estimated values 4.26 W, 0.86 W and 0.43 W are consistent. The
calculated enthalpy flows in the three tubes are shown in Fig.8.

CONCLUSION
A mathematical model has been developed that describes

the heat and mass transfer in a three-stage pulse-tube refrigerator
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Figure 5. Pressure variation in the three-stage PTR.
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Figure 6. Cold end temperatures in the three-stage PTR.

where the hot and cold heat exchangers are assumed to be ideal.
The system is operating at frequencies higher than usual. Inthe
coupling of single-stage PTRs, six fluid flow possibilities at the
junctions have been considered. Each flow possibility led toits
own set of upwind BCs. The studied three-stage PTR is able to
cool down to 4 K with a remaining cooling power of about 0.5
W. Real gas in the third stage, temperature-dependant material
properties and double inlets are essential features that have not
been considered herein.
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Figure 7. Hot end temperatures in the three-stage PTR.
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Figure 8. Enthalpy flow in middle of three pulse-tubes.
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Table 2. GEOMETRIES.

Symbol Definition Value

dt1 diameter of the 1st tube 24.6 mm
dt2 diameter of the 2nd tube 7 mm
dt3 diameter of the 3rd tube 5 mm
dr1 diameter of the 1st regenerator 72 mm
dr2 diameter of the 2nd regenerator 32 mm
dr3 diameter of the 3rd regenerator 19 mm
Lt1 length of the 1st tube 67.5 mm
Lt2 length of the 2nd tube 246 mm
Lt3 length of the 3rd tube 285 mm
Lr1 length of the 1st regenerator 65 mm
Lr2 length of the 2nd regenerator 78.5 mm
Lr3 length of the 3rd regenerator 70 mm

Table 3. REGENERATOR MATERIAL PROPERTIES.

Symbol Definition Value

Material kind 1st regenerator Stainless Steel
Material kind 2nd regenerator Lead
Material kind 3rd regenerator ErNi

cr reg. specific heat capacity 400 J kg−1 K−1

k reg. permeability 3.0×10−11 m2

k̄g gas thermal conductivity 1.58×10−1 W m−1 K−1

k̄r1 1st reg. thermal conductivity 10 W m−1 K−1

k̄r2 2nd reg. thermal conductivity 5 W m−1 K−1

k̄r3 3rd reg. thermal conductivity 5 W m−1 K−1

ρr1 1st reg. density 7800 kg m−3

ρr2 2nd reg. density 11350 kg m−3

ρr3 3rd reg. density 9400 kg m−3

φ1 1st reg. porosity 0.682
φ2 2nd reg. porosity 0.6
φ3 3rd reg. porosity 0.6
β reg. heat transfer coefficient 108 W m−3 K−1

Table 4. GENERAL PROPERTIES.

Symbol Definition Value

f frequency 20 s−1

α orifice setting parameter [2] 1
Cor1 Lt1ω/γαū 1.21−9 m3 Pa−1s−1

Cor2 Lt2ω/γαū 3.57−10 m3 Pa−1s−1

Cor3 Lt3ω/γαū 2.11−10 m3 Pa−1s−1

cp gas specific heat capacity 5.2×103 J kg−1K−1

p̄ pressure oscillation amplitude 105 Pa
pav average pressure 2×106 Pa
R gas constant 8.4 J mol−1K−1

Rm specific gas constant 2.1×103 J kg−1K−1

Ta ambient temperature 300 K
TH hot temperature 300 K
ū gas velocity 1.0 m s−1

Vb1 1st buffer volume 1×10−3 m3

Vb2 2nd buffer volume 1×10−3 m3

Vb3 3rd buffer volume 1×10−3 m3

ω angular frequency 125.66 s−1

ρ̄ gas density 4.7 kg m−3

µ̄ gas dynamic viscosity 10−5 Pa s

Table 5. DIMENSIONLESS NUMBERS AND VALUES.

Symbol Definition Value

B pav/ρ̄RmTa 0.675
C1 Cor1pav/At1ū 5.089
C2 Cor2pav/At2ū 18.553
C3 Cor3pav/At3ū 21.49
D kµu2/φpavωk 2.2×10−3

E β/ρcgφω 47.74
E0 p̄b/pav 1.0008
F β/[ρrcr(1−φ)ω] 1.604

Per1 ρr1cru2/kr1ω 1.24×103

Per2 ρr2cru2/kr2ω 1.806×103

Per3 ρr3cru2/kr3ω 0.748×103

Peg ρgcgu2/kgω 1.231×103

γ cg/cv 5/3

Subscripts
b buffer
C cold end
H hot end
g gas
r regenerator
t tube
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