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An overview of non-centralized Kalman filters

J. Sijs, Student Member, IEEE M. Lazar P.P.J. van den Bosch Z. Papp

Abstract— The usage of Wireless Sensor Networks (WSNs)
for state-estimation has recently gained increasing attention
due to its cost effectiveness and feasibility. One of the major
challenges of state-estimation via WSNs is the distribution of the
centralized state-estimator among the nodes in the network. Sig-
nificant emphasis has been on developing non-centralized state-
estimators considering communication, processing-demand and
estimation-error. This survey paper presents different method-
ologies to obtain non-centralized state-estimators and focuses on
the estimation algorithms and their implementation. The tem-
perature distribution of a bar is used as a benchmark to assess
the non-centralized state-estimators in terms of estimation-error
and communication requirements.

Index Terms— Wireless Sensor Networks, distributed state-
estimation, Kalman filter.

I. INTRODUCTION

State-estimation is a widely used technique in monitoring

and control applications. An important state-estimator still

widely used today is the Kalman filter formally presented

in [1]. The method requires that all process-measurements

are sent to a central system which estimates the global

state-vector of the process. The interest for using WSNs

to retrieve the measurements has recently grown [2], due

to improved performance and feasibility in new application

areas. However, for WSNs consisting of a large amount of

nodes a central state-estimator becomes impracticable due

to high processing demand and energy consumption. As a

result, the distribution of the centralized Kalman filter, in

which each node estimates its own state-vector, has become

a challenging and active research area.

Within this research area two different directions can be

noticed. In one direction each node estimates the global state-

vector and a central system is used to fuse the information of

all the nodes together. Examples of such methods, also called

sensor fusion (SF) can be found in [3]–[8]. In the second

direction the central estimation is absent. Instead each node

estimates a part of the global state-vector using information

from other nodes in its local region, preferably its direct

neighbors. Articles that describe these distributed Kalman

filters (DKFs) are [9]–[14].

The purpose of this paper is to provide a critical overview

of existing non-centralized Kalman filters, which would help

in choosing a particular method for a particular application.
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For each method we present its characteristics, algorithm

and amount of decentralization in terms of processing de-

mand and communication requirements per node. Finally

all methods are assessed in a benchmark problem on their

performance in estimation, communication and robustness to

data loss or node break down.

The remainder of the paper has the following structure.

Some basic notation and the principles of the centralized

Kalman filter are described in Section II. The initial SF/DKF

presented in [3] is then described in Section III. This method

was later used to design DKFs, as shown in Section IV.

Section V presents a hierarchical Kalman filter, while a DKF

with weighted averaging is given in Section VI. Section VII

discusses a DKF with consensus filters and a DKF with

bipartite fusion graphs is presented in Section VIII. Finally,

the different non-centralized Kalman filters are assessed in

Section IX using the benchmark example of estimating the

temperature of a bar via a wireless sensor network. Conclu-

sions and recommendations are formulated in Section X.

II. CENTRALIZED KALMAN FILTER

Suppose a WSN is used in combination with a centralized

Kalman filter to estimate the states of a global process. All

nodes send their measurements to one system where the

centralized Kalman filter estimates the global state-vector.

The measurements of the kth sample instant are combined in

the measurement-vector y[k] with measurement-noise v[k].
The global state-vector of the process is defined as x[k] with

process-noise w[k]. With this, the discretised process-model

becomes:

x[k] = Ax[k−1]+w[k−1], (1a)

y[k] = Cx[k]+ v[k]. (1b)

The probability density function (PDF) of both w[k] and

v[k] are described by a Gaussian-distribution, i.e.

E(w[k]) = 0 and E(w[k]wT [k]) = Q[k],

E(v[k]) = 0 and E(v[k]vT [k]) = R[k].
(2)

The centralized Kalman filter [1] estimates the global

state-vector x̂[k] and the global error-covariance matrix P[k].
Let E(α) represent the expectation of the stochastic variable

α . Then, x̂[k] and P[k] are defined as:

x̂[k] = E(x[k]), P[k] = E((x[k]− x̂[k])(x[k]− x̂[k])T ). (3)

The centralized Kalman filter consists of two stages

that are performed each sample instant k: the “prediction-

step” and the “measurement-update”. First the prediction-

step computes the predicted state-vector x̂[k|k−1] and error-
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covariance P[k|k−1]. Second, the measurement-update cal-

culates the estimated state-vector x̂[k|k] and error-covariance

P[k|k]. The centralized Kalman filter, with initial values

x̂[0|0] = x0 and P[0|0] = P0, is formally described by the

following set of equations:

prediction-step

x̂[k|k−1] = Ax̂[k−1|k−1],

P[k|k−1] = AP[k−1|k−1]AT +Q[k−1],
(4a)

measurement-update

K[k] = P[k|k−1]CT (CP[k|k−1]CT +R[k])−1,

x̂[k|k] = x̂[k|k−1]+K[k](y[k]−Cx̂[k|k−1]),

P[k|k] = (I −K[k]C)P[k|k−1].

(4b)

For large scale WSNs the centralized implementation

of (4) results in high processing demand, communication

requirements and energy consumption, which prevents the

usage of a centralized Kalman filter. To overcome this issue,

a number of methodologies to implement the Kalman filter in

a distributed fashion were designed. However, until now there

has been no comparison or evaluation of the obtained results

in this direction. The purpose of this paper is to provide

a critical overview of existing methods for designing non-

centralized Kalman filters. The performance of the different

DKFs is illustrated using a benchmark application example

in Section IX.

Before explaining the different methods of this overview

in detail, we present three assumptions. If not indicated

otherwise, these assumptions hold for the presented method.

Firstly, the existence of a WSN consisting of N nodes is as-

sumed in which each node i has its own measurement-vector

yi with corresponding measurement-noise vi. The global

measurement-vector y, observation-matrix C and equation

(1b) are rewritten as follows:

yi[k] = Cix[k]+ vi[k] ⇒

{

y = (y1,y2, . . . ,yN)T

C = (C1,C2, . . . ,CN)T .
(5)

Secondly, the measurement-noises of two different nodes

are uncorrelated, i.e. R(i, j) = E(viv
T
j ) = 0, if i 6= j. Resulting

in an R-matrix of the form:

R = blockdiag
(

R(1,1),R(2,2), . . . ,R(N,N)

)

. (6)

Thirdly, all nodes j that are directly connected to a node

i are collected in the set Ni, which also includes the node

i. This means that if node j is connected to node i, then

j ∈ Ni. Usually, Ni is containing only direct neighbors of

node i. However, it is also possible that Ni contains other

nodes besides the direct neighbors and in the case of global

communication Ni = N. This will be made clear for each

estimation method.

III. PARALLEL INFORMATION FILTER

This section describes a parallel implementation of the

Kalman filter [3]. Each node i has its own Kalman filter

calculating the global state-estimates x̂i and Pi of node

i using only its measurement-vector yi. In the algorithm

an information-matrix Ii and an information-vector ii are

computed from the yi and R(i,i). Each node sends its state-

estimates to a central system which calculates the global

state-estimates of the whole WSN, i.e. x̂ and P.

The sets of equations of the parallel information filter(PIF)

for node i are:

node i prediction-step

x̂i[k|k−1] = Ax̂i[k−1|k−1],

Pi[k|k−1] = APi[k−1|k−1]AT +Q[k−1],
(7a)

node i information-update

Ii[k] = CT
i R−1

(i,i)[k]Ci, ii[k] = CT
i R−1

(i,i)[k]yi[k], (7b)

node i measurement-update

P−1
i [k|k] = P−1

i [k|k−1]+ Ii[k],

x̂i[k|k] = Pi[k|k](P
−1
i [k|k−1]x̂i[k|k−1]+ ii[k]).

(7c)

The global state-estimates x̂ and P are calculated taking the

covariance intersection into account [15]:

αi[k] =
(tr(Pi[k|k]))

−1

∑
N
i=1(tr(Pi[k|k]))−1

, P−1[k] =
N

∑
i=1

αi[k]P
−1
i [k|k],

x̂[k] = ∑
N
i=1 αi[k]P[k]P−1

i [k|k]x̂i[k|k].
(8)

The calculation of x̂[k] and P[k] is done in a central system,

which can be located in one node only or even in every node.

A drawback of this method is that every node estimates a

global state-vector leading to a high processing-demand. A

second drawback is global communication, for every node

needs to send information to at least one central system.

This method was improved in the decentralized information

filter presented in the next section.

IV. DECENTRALIZED INFORMATION FILTER

In [9] the decentralized information filter (DIF) was pro-

posed to overcome some drawbacks of the PIF. Again each

node i has its own global state-estimates x̂i and Pi. However,

the central estimation is decentralized among the nodes and a

node i is only connected to its neighboring nodes in Ni. These

nodes exchange their information-matrix Ii and information-

vector ii . Meaning that node i receives I j and i j from the

nodes j with j ∈ Ni, j 6= i. The received I j and i j are added

to Ii and ii respectively.

The sets of equations of the DIF for node i are:

node i prediction-step

x̂i[k|k−1] = Ax̂i[k−1|k−1],

Pi[k|k−1] = APi[k−1|k−1]AT +Q[k−1],
(9a)

node i information-update

Ii[k] = CT
i R−1

(i,i)[k]Ci, ii[k] = CT
i R−1

(i,i)[k]yi[k], (9b)

local measurement-update

P−1
i [k|k] = P−1

i [k|k−1]+ ∑
j∈Ni

I j[k],

x̂i[k|k] = Pi[k|k](P
−1
i [k|k−1]x̂i[k|k−1]+ ∑

j∈Ni

i j[k]).
(9c)
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An important aspect of this DKF is that if node i is

connected to all other nodes and assumptions (5) and (6) are

valid, its state-estimates x̂i and Pi are exactly the same as the

estimates of a centralized Kalman filter [1]. An advantage

is that only local communication is required. A drawback

however, is that each node estimates the global state-vector.

V. DECOUPLED HIERARCHICAL KALMAN FILTER

In [10]–[12] decoupled hierarchical Kalman filters

(DHKFs) are presented. The common feature of this method

is that the global state-vector x and the process-model are

divided in N parts. Each node estimates one of the N parts

and exchanges its state-estimates with all other nodes in the

WSN. The process-model is described as:






x1[k]
...

xN [k]






= A







x1[k−1]
...

xN [k−1]






+







w1[k−1]
...

wN [k−1]






,







y1[k]
...

yN [k]






= C







x1[k]
...

xN [k]






+







v1[k]
...

vN [k]






,

(10)

where,

A =







A(1,1) · · · A(1,N)
...

. . .
...

A(N,1) · · · A(N,N)






,C =







C(1,1) · · · C(1,N)
...

. . .
...

C(N,1) · · · C(N,N)






.

Just as R, also the matrices Q and P are both assumed to be

block-diagonal matrices. Therefore we define Qi = E(wiw
T
i )

and Pi = E((xi − x̂i)(xi − x̂i)
T ). Node i estimates x̂i[k] and

Pi[k]. The algorithm for each node i is:

node i prediction-step

x̂i[k|k−1] =
N

∑
j=1

A(i, j)x̂ j[k−1|k−1], (11a)

Pi[k|k−1] =
N

∑
j=1

(A(i, j)Pj[k−1|k−1]AT
(i, j))+Qi[k−1],

node i measurement-update

Ki[k] = Pi[k|k−1]CT
(i,i)(

N

∑
j=1

(C(i, j)Pj[k|k−1]CT
(i, j))+R(i,i)[k])

−1,

x̂i[k|k] = x̂i[k|k−1]+Ki[k](yi[k]−
N

∑
j=1

C(i, j)x̂ j[k|k−1]),

Pi[k|k] = (I −Ki[k]C(i,i))Pi[k|k−1]. (11b)

Notice that this method is better compared to the PIF

and DIF in terms of processing-demand and the amount of

data transfer required. A drawback however, is that global

communication is still required.

VI. DISTRIBUTED KALMAN FILTER

WITH WEIGHTED AVERAGING

In previous methods each node sends a vector with its

corresponding covariance-matrix to the other nodes, i.e. ii

with Ii or x̂i with Pi. In the distributed Kalman filter with

weighted averaging (DKF-WA) [13] a node i only sends its

state-vector, without covariance-matrix, to its neighboring

nodes in the set Ni. The weighted average of all received

state-vectors forms the node’s estimated global state-vector

x̂i. One remark should be made: in this case the matrix R is

not necessarily block-diagonal, i.e. R(i, j) 6= 0, ∀ j ∈ Ni.

The algorithm of the DKF-WA is divided into an on-line

and an off-line part. In the on-line part each node has its

own estimate of the global state-vector x̂i which is partly

calculated using the equations of the centralized Kalman

filter. In this method a node i has a fixed, pre-calculated

Kalman gain Ki. After the measurement-update the nodes

exchange their estimated state-vector. A node i receives the

state-vectors x̂ j ( j ∈Ni) which are then weighted with a fixed,

pre-calculated matrix W(i, j). The weighted average is chosen

as the new estimated global state-vector of node i, i.e. x̂i.

The on-line algorithm is:

node i prediction-step (on-line)

x̂i[k|k−1] = Ax̂i[k−1|k−1], (12a)

node i measurement-update (on-line)

x̂i[k|k] = x̂i[k|k−1]+Ki(yi[k]−Cix̂i[k|k−1]), (12b)

local weighted average (on-line)

x̂i[k|k] = ∑
j∈Ni

W(i, j)x̂ j[k|k]. (12c)

Next, we explain the off-line algorithm which is used to

calculate Ki and W(i, j). For that, the error-covariance between

the estimated global state-vectors of node i and j is:

P(i, j)[k] = E((x[k]− x̂i[k])(x[k]− x̂ j[k])
T ). (13)

The off-line algorithm uses the same stages for P(i, j) as the

on-line algorithm for x̂i in (12). First the “prediction-step”

(12a) and “measurement-update” (12b) of a node i are given

to calculate P(i, j)[k|k−1] and P(i, j)[k|k], with j ∈ Ni:

node i prediction-step (off-line)

P(i, j)[k|k−1] = AP(i, j)[k−1|k−1]AT +Q[k−1], (14a)

node i measurement-update (off-line)

Ki[k] = P(i,i)[k|k−1]CT
i (CiP(i,i)[k|k−1]CT

i +R(i,i)[k])
−1,

P(i, j)[k|k] = (I −Ki[k]Ci)P(i, j)[k|k−1](I −K j[k]C j)
T

+Ki[k]R(i, j)K
T
j [k]. (14b)

Notice R(i, j) and the calculation of Ki in (14b). The next

step is calculating W(i, j) of the weighted average as in

(12c). To keep the state-estimation unbiased the following

constraint is introduced:

∑
j∈Ni

W(i, j)[k] = In×n. (15)

From (12c) and (15) we can derive:

x[k]− x̂i[k|k] = ∑
j∈Ni

W(i, j)x[k]− ∑
j∈Ni

W(i, j)x̂ j[k|k],

= ∑
j∈Ni

W(i, j)(x[k]− x̂ j[k|k]).
(16)
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Using (13) the weighted average of P(i, j)[k|k] results in:

P(i, j)[k|k] = ∑
p∈Ni

∑
q∈N j

W(i,p)[k]P(p,q)[k|k]W
T
( j,q)[k]. (17)

Equation (17) can also be written in matrix form. If

Ni = (i1, i2, · · · , iNi
) and we define Wi = (W(i,i1), · · · ,W(i,iNi

)),
equation (17) becomes:

P(i, j)[k|k] = Wi









P(i1, j1)[k|k] · · · P(i1, jNj
)[k|k]

...
. . .

...

P(iNi
, j1)[k|k] · · · P(iNi

, jNj
)[k|k]









Wj
T
.

(18)

The last step in this off-line algorithm is to minimize

P(i,i)[k|k] with respect to Wi = (W(i,i1), · · · ,W(i,iNi
)) taking

constraint (15) into account. For further details we refer the

interested reader to [13]. The off-line algorithm runs until

the values Ki and W(i, j) remain constant. These values are

then used in the on-line algorithm.

An important aspect in the performance of this method

is that each node estimates the global state-vector, but due

to the fixed matrices Ki and W(i, j) its processing-demand

remains low. It was already noticed that the DKF-WA has

low communication requirements. However, it is not robust

against lost data or nodes breaking down. For in that case

the weighted averaging of (12c) will not be accurate.

VII. DISTRIBUTED KALMAN FILTER

WITH CONSENSUS FILTERS

In [14], [16] the distributed Kalman filter with consensus

filter (DKF-CF) was proposed. In this method a node i has

its own estimate of the global state-vector x̂i and the node

can only communicate with its neighboring nodes collected

in Ni. Instead of averaging the received state-vectors, a node

tries to reach consensus on them using a correction-factor ε .

Basically the algorithm of the DKF-CF adds an extra stage

to the algorithm of the DIF in (9), i.e. the “local-consensus”-

stage. Hence, every node has its own global state-estimates

x̂i and Pi. We define x̂c
i to be the estimated global state-vector

of node i before the consensus-stage. The algorithm is:

node i prediction-step

x̂i[k|k−1] = Ax̂i[k−1|k−1],

Pi[k|k−1] = APi[k−1|k−1]AT +Q[k−1],

(19a)

node i information-update

Ii[k] = CT
i R−1

(i,i)[k]Ci, ii[k] = CT
i R−1

(i,i)[k]yi[k],
(19b)

local measurement-update

P−1
i [k|k] = P−1

i [k|k−1]+ ∑
j∈Ni

I j[k],

x̂c
i [k|k] = Pi[k|k](P

−1
i [k|k−1]x̂i[k|k−1]+ ∑

j∈Ni

i j[k]),

(19c)

local consensus

x̂i[k|k] = x̂c
i [k|k]+ ε ∑

j∈Ni

(x̂c
j[k|k]− x̂c

i [k|k]).
(19d)

Due to the “local-consensus”-stage this method requires

more communication then the DIF, but it does not necessarily

lead to an improved estimation-error. A drawback is that

each node estimates the global state-vector, meaning high

processing-demand and data transfer per node. A DKF that

overcomes this problem is the distributed Kalman filter with

bipartite fusion graphs.

VIII. DISTRIBUTED KALMAN FILTER

WITH BIPARTITE FUSION GRAPHS

Originally, the usage of graphs to show how sensors are

related to state estimates in DKFs was employed in [17].

More recently, DKFs with bipartite fusion graphs (DKF-

BFG) were presented in [18]. The method assumes that each

node is connected only to its neighboring nodes collected in

Ni. Furthermore, a node has its own state-estimate which is

only a part of the global state-vector. This means that the

global state-vector at node i, i.e. x
global
i , is divided into two

parts: a part that is estimated, i.e. xi, and a part that is not

estimated, i.e. di. The vectors xi and di are defined using

some transformation-matrices Γi and Si as follows:
(

xi[k]
di[k]

)

=

(

Γi

Si

)

x
global
i [k]. (20)

Preferably, the states of xi are determined by taking

those states of x
global
i that have a direct relation with the

measurement-vector yi. Meaning that Γi and Si are defined

by observation-matrix Ci. Assume I is the identity matrix

with size equal to the number of states in x
global
i . If the jth

column of Ci contains non-zero elements, the jth row of I is

put into Γi. If not, the jth row of I is put into Si. An example

of Ci with its corresponding Γi and Si is:

Ci =

(

c11 c12 0 0 c15

0 c22 0 0 0

)

⇒

Γi =





1 0 0 0 0

0 1 0 0 0

0 0 0 0 1



 ,Si =

(

0 0 1 0 0

0 0 0 1 0

)

.

(21)

Due to the fact that a node i estimates a part of the global

state-vector, the node also has its own process-model derived

from the global one. This is done by using Γi and Si on the

global process-model. The following matrices are defined:

Ai = ΓiAΓT
i , Di = ΓiAST

i , Hi =CiΓ
T
i and wi[k] = Γiw[k]. With

this, the process-model of node i becomes:

xi[k] = Aixi[k−1]+Didi[k−1]+wi[k−1],

yi[k] = Hix[k]+ vi[k].
(22)

The method assumes that the state-vector xi is estimated

by node i as x̂i, state-vector di is sent by other nodes and

is represented by node i as d̂i. What remains is the matrix

Qi[k] = E(wi[k]w
T
i [k]).

Now that the characteristics of the DKF-BFG are pre-

sented, we proceed with the estimation algorithm. Notice

that the algorithmic procedure is actually based on the the

DIF algorithm in (9). Each node shares its local information-

matrix Ii and information-vector ii with its neighbors in

Ni. But because the state-vectors in different nodes are not

necessarily equal, in contrast with the DIF, the structure of
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Ii and ii differs per node. This means that Ii cannot be added

to I j, as is the case in (9c). This is solved by using Γi and

Si as shown in the algorithm:

node i prediction-step

x̂i[k|k−1] = Aix̂i[k−1|k−1]+Did̂i[k−1],

Pi[k|k−1] = AiPi[k−1|k−1]AT
i +Qi[k−1],

(23a)

node i information-update

Ii[k] = HT
i R−1

(i,i)Hi, ii[k] = HT
i R−1

(i,i)yi[k], (23b)

local measurement-update

P−1
i [k|k] = P−1

i [k|k−1]+ ∑
j∈Ni

(ΓiΓ
T
j )I j[k](ΓiΓ

T
j )

T ,

x̂i[k|k] = Pi[k|k]P
−1
i [k|k−1]x̂i[k|k−1]

+Pi[k|k] ∑
j∈Ni

(ΓiΓ
T
j )i j[k](ΓiΓ

T
j )

T .

(23c)

An important issue in the performance of this method is

whether the global process-model is sparse and localized so

that the node’s process-model can be derived without loss of

generality. If this is indeed the case, its performance should

be equal to the DIF. A drawback is that although only local

communication is assumed in [18], it is also assumed that

the states of d̂i are sent by other nodes. This means that

extended or even global communication may still be needed.

A benefit of this method is that a node only estimates a part

of the global state-vector so that its processing-demand per

node is low.

IX. APPLICATION EXAMPLE

This section assess the non-centralized Kalman filters

presented in this paper in terms of state-estimation error,

communication requirements and robustness against data loss

or node break down.

The benchmark process is the heat transfer of a bar. The

bar is divided into 100 segments and the temperature Tn

of each segment n is estimated. The state-vector of the

the global process is therefore x = (T1,T2, · · · ,T100)
T . The

bar is heated at the 48th segment. The WSN consists of

5 nodes, placed at segment 11, 31, 51, 71 and 91. Each

node measures the temperature of its own specific segment.

Several of the DKFs are used to estimate the temperature at

all 100 segments. A graphical description of this system is

shown in Figure 1.

Fig. 1. Bar with Wireless Sensor Network.

The DKFs are first initialized. The sampling time is 10

seconds and the model runs for 10,000 seconds. The initial

state-vector and error-covariance together with Q and R are

the same for all methods. This concludes the design of the

PIF and the DHKF. Communication is only allowed with

the neighboring nodes. For example, node 3 receives from

and sends data to node 2 and 4. In this way the design of

the DIF is also completed. For the DKF-CF the value of ε

is set 0.1, which gave good simulation-results. The design

of this parameter is critical, for if too big the estimation

algorithm becomes unstable, while if too little the method

has no improvements over the DIF algorithm. Matrices Γi

and Si of the DKF-BFG are constructed in such a way that

node 1 estimates state 1 to 21, node 2 state 1 to 41, node 3

state 21 to 61, node 4 state 41 to 81 and node 5 state 61 to

100.

Figure 2 and Figure 3 show the real temperature of

all the states together with the measurements (with noise)

both at 10,000 seconds. Also the estimated states of the

different methods are plotted. The estimation of a state’s

nearest node is plotted, i.e. the plotted states 41 to 60 were

estimated by node 3. In case of Figure 2 no data loss was

simulated. In Figure 3 however, we simulated a 5% loss of

the communicated data-packages.
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Fig. 2. State-estimation at time 10,000 seconds without data loss.
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Fig. 3. State-estimation at time 10,000 seconds with 5% data loss.

Beside state-estimation, communication is also an im-
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portant aspect. Table I shows which variables need to be

transmitted and whether they are transmitted locally (i.e. to

node in Ni) or globally (i.e. to all nodes in N). The total

number of sent items is shown in the fourth column. Take

for example DIF; ii has 100 items and Ii 10,000 items. Nodes

2, 3 and 4 send this data to 2 other nodes which leads to

20,200 items to be sent per node. Nodes 1 and 5 send to 1

other node, resulting in 10,100 sent items per node.

TABLE I

REQUIRED COMMUNICATION

DKF variables nodes send items per node

PIF x̂i[k|k] Pi[k|k] N 40,400

DIF ii[k] Ii[k] Ni 10,100 or 20,200

DHKF x̂i[k|k−1] Pi[k|k−1] N 3360
x̂i[k|k] Pi[k|k]

DKF-WA x̂i[k] Ni 200

DKF-CF ii[k] Ii[k] x̂c
i [k|k] Ni 20,400

DKF-BFG ii[k] Ii[k]/x̂i[k|k Ni/N 500 or 1800 or 3440

Figure 2 and Figure 3 together with Table I show the

performance, robustness to data loss and the communication

requirement, respectively, for each method. Unfortunately,

the methods that require the least data transfer, i.e. DKF-

WA and DHKF, suffer the most from data loss. Note that

the estimated temperature values obtained with these two

methods do not even appear in Figure 3 (they are around

100K). Furthermore, also the DKF-BFG estimator, although

it needs much less communication than the DIF estimator,

in the presence of data loss is not robust, as can be observed

in Figure 3. On the overall, the least estimation error was

obtained for the DIF estimator, which is also the most robust

against data loss. Another aspect that can be observed is

that the process-model is almost localized and sparse, as the

results of the DKF-BFG closely resemble the ones obtained

with the DIF, when no data loss occurs.

X. CONCLUSIONS

In this paper we presented an overview of different

methodologies for designing non-centralized Kalman filters

that can be used in WSNs. Each method was described

and analyzed in terms of communication requirements, ro-

bustness and estimation-error. It turned out that the DKF-

WA requires the least communication and provides a low

state-estimation error. However, it lacks robustness for its

estimation error increases significantly when data is lost or

nodes break down, which is usually the case in WSNs. For

this reason it is not suitable for most WSNs. A method that

can deal with unreliable data transfer and node loss, but still

has a low state-estimation error is the DIF. It also has average

requirements regarding the amount of data transfer needed

compared to other methods. The amount of computations

and communication per node can be decreased when the

DKF-BFG is used. However, this approach is valid only

for processes that have a localized and sparse structure, and

assuming that there is no data-loss. Hence, the DKF-BFG is

not suitable for usage in WSNs.

An extension on this survey paper is to take mathematical

models for communication into account. Meaning that both

communication topology as well as the introduced errors and

noises due to wireless communication links are used in the

noise- and stability analysis, as described in [19].

Based on the above conclusions, future work on non-

centralized estimators, suitable for WSNs, needs to find new

methods for reducing the communication and computation

requirements, without loosing robustness to data loss. Im-

proving the robustness of the DKF-BFG seems to be a

possible solution.
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Automática, vol. 21, pp. 19–28, 2001.
[13] P. Alriksson and A. Rantzer, “Distributed Kalman filter using weighted

averaging,” in Proc. of the 17th Int. Symp. on Mathematical Theory

of Networks and Systems, Kyoto, Japan, 2006.
[14] R. Olfati-Saber, “Distributed Kalman filtering for sensor networks,” in

46th IEEE Conf. on Decision and Control, New Orleans, LA, USA,
2007.

[15] S. Julier and J. Uhlmann, “A non-divergent estimation algorithm in the
presence of unknown correlations,” in American Control COnference,
Albuquerque, New Mexico, 1997.

[16] R. Olfati-Saber, “Distributed Kalman filter using embedded consensus
filters,” in 44th IEEE Conf. on Decision and Control 2005 and 2005

European Control Conference (CDC-ECC’05), Seville, Spain, 2005,
pp. 8179–8184.

[17] A. Mutambara and D.-W. H.F., “Fully decentralized estimation and
control for a modular wheeled mobile robot,” International Journal of

Robotic Research, vol. 19, no. 6, pp. 582–596, 2000.
[18] U. Khan and J. Moura, “Distributed Kalman filters in sensor networks:

Bipartite Fusion Graphs,” in IEEE 14th Workshop on Statistical Signal

Processing, Madison, Wisconsin, USA, 2007, pp. 700–704.
[19] R. Smith and F. Hadaegh, “Closed-Loop Dynamics of Cooperative

Vehicle Formations With Parallel Estimators and Communication,”
IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1404–
1414, 2007.

744

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 18, 2009 at 05:55 from IEEE Xplore.  Restrictions apply. 


