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√
n-CONSISTENT PARAMETER ESTIMATION FOR SYSTEMS

OF ORDINARY DIFFERENTIAL EQUATIONS: BYPASSING

NUMERICAL INTEGRATION VIA SMOOTHING

SHOTA GUGUSHVILI AND CHRIS A.J. KLAASSEN

Abstract. We consider the problem of parameter estimation for a system of
ordinary differential equations from noisy observations on a solution of the sys-
tem. In case the system is nonlinear, as it typically is in practical applications,
an analytic solution to it usually does not exist. Consequently, straightforward
estimation methods like the ordinary least squares method depend on repet-
itive use of numerical integration in order to determine the solution of the
system for each of the parameter values considered, and to find subsequently
the parameter estimate that minimises the objective function. This induces
a huge computational load to such estimation methods. We propose an es-
timator that is defined as a minimiser of an appropriate distance between a
nonparametrically estimated derivative of the solution and the right-hand side
of the system applied to a nonparametrically estimated solution. Our esti-
mator bypasses numerical integration altogether and reduces the amount of
computational time drastically compared to ordinary least squares. Moreover,
we show that under suitable regularity conditions this estimation procedure
leads to a

√

n-consistent estimator of the parameter of interest.

1. Brief Introduction

Many dynamical systems in science and applications are modelled by a d-dimensional
system of ordinary differential equations, denoted as

(1)

{
x′(t) = F (x(t), θ), t ∈ [0, 1],

x(0) = ξ,

where θ is the unknown parameter of interest and ξ is the initial condition. With
xθ(t) the solution vector corresponding to the parameter value θ, we observe

Yij = xθj(ti) + ǫij , i = 1, . . . , n, j = 1, . . . , d,

where the observation times 0 ≤ t1 < . . . < tn ≤ 1 are known and the random
variables ǫij have mean 0 and model measurement errors combined with latent
random deviations from the idealised model (1). Under regularity conditions the
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ordinary least squares estimator

(2) θ̃n = argminη

n∑

i=1

d∑

j=1

(Yij − xηj(ti))
2

of θ is
√
n-consistent, at least theoretically. For systems (1) that do not have explicit

solutions, one typically uses iterative procedures to approximate this ordinary least
squares estimator. However, since every iteration in such a procedure involves nu-
merical integration of the system (1) and since the number of iterations is typically
very large, in practice it is often extremely difficult if not impossible to compute (2).
Here we present a feasible and computationally much faster method to estimate the
parameter θ. To define our estimator we first construct kernel estimators

x̂j(t) =

n∑

i=1

(ti − ti−1)
1

b
K

(
t− ti
b

)
Yij

of xθj with K(·) a kernel function and b = bn a bandwidth. Now, our estimator θ̂n
of θ is defined as

θ̂n = argminη

∫ 1

0

‖ x̂′(t)− F (x̂(t), η) ‖2w(t) dt,

where ‖ · ‖ denotes the usual Euclidean norm and w(·) is a weight function.
The main result of this paper is that this estimator is

√
n-consistent under mild

regularity conditions. So, our estimator is comparable to the ordinary least squares
estimator in statistical performance, but it avoids the computationally costly re-
peated use of numerical integration of (1).

2. Introduction

Let us introduce the contents of this paper in more detail. Systems of ordi-
nary differential equations play a fundamental role in many branches of natural
sciences, e.g. mathematical biology, see Edelstein-Keshet (2005), biochemistry, see
Voit (2000), or the theory of chemical reaction networks in general, see for instance
Feinberg (1979) and Sontag (2001). Such systems usually depend on parameters,
which in practice are often only approximately known, or are plainly unknown.
Knowledge of these parameters is critical for the study of the dynamical system
or process that the system of ordinary differential equations describes. Since these
parameters usually cannot be measured directly, they have to be inferred from, as
a rule, noisy measurements of various quantities associated with the process under
study. More formally, in this paper we consider the following setting: let

(3)

{
x′(t) = F (x(t), θ), t ∈ [0, 1],

x(0) = ξ,

be a system of autonomous differential equations depending on a vector of real-
valued parameters. Here x(t) = (x1(t), . . . , xd(t))

T is a d-dimensional state variable,
θ = (θ1, . . . , θp)

T denotes a p-dimensional parameter, while the column d-vector
x(0) = ξ defines the initial condition. Whether the latter is known or unknown, is
not relevant in the present context, as long as it stays fixed. Denote a solution to
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(3) corresponding to parameter value θ by xθ(t) = (xθ1(t), . . . , xθd(t))
T . Suppose

that at known time instances 0 ≤ t1 < . . . < tn ≤ 1 noisy observations

(4) Yij = xθj(ti) + ǫij , i = 1, . . . , n, j = 1, . . . , d,

on the solution xθ are available. The random variables ǫij model measurement
errors, but they might also contain latent random deviations from the idealized
model (1). Such random deviations are often seen in real-world applications. Based
on these observations, the goal is to infer the value of θ, the parameter of interest.

A standard approach to estimation of θ is based on the least squares method,
see e.g. Hemker (1972) and Stortelder (1996). Assuming for simplicity d = 1 for
the moment, the least squares estimator is defined as a minimiser of the sum of
squares, i.e.

θ̃n = argminη Rn(η) = argminη

n∑

i=1

(Yi − xη(ti))
2.

If the measurement errors are Gaussian, then θ̃n coincides with the maximum like-
lihood estimator and is asymptotically efficient. Since the differential equations
setting is covered by the general theory of nonlinear least squares, theoretical re-
sults available for the latter apply also in the differential equations setting and
we refer e.g. to Jennrich (1969) and Wu (1981), or more generally to van de Geer
(1990), van de Geer and Wegkamp (1996), and Pollard and Radchenko (2006) for a
thorough treatment of the asymptotics of the nonlinear least squares estimator. De-
spite its appealing theoretical properties, in practice the performance of the least
squares method can dramatically degrade if (3) is a nonlinear high-dimensional
system and if θ is high-dimensional. In such a case we have to face a nonlinear
optimisation problem (quite often with many local minima) and search for a global
minimum of the least squares criterion function Rn in a high-dimensional param-
eter space. The search process is most often done via gradient-based methods,
e.g. the Levenberg-Marquardt method, see Levenberg (1963), or via random search
algorithms, see Section 4.5.2 in Voit (2000) for a literature overview. Since non-
linear systems in general do not have solutions in closed form, use of numerical
integration within a gradient-based search method and serious computational time
associated with it seem to be inevitable. For instance, a relatively simple example
of a four-dimensional system considered in Appendix 1 of Voit and Almeida (2004)
demonstrates that the need to repeat numerical integration multiple times might
increase the computational time for numerical integration up to 95% of the total
computational time required for a gradient based optimisation method. Likewise,
random search algorithms are also very costly computationally. The problems be-
come aggravated for systems of ordinary differential equations that exhibit stiff
behaviour, i.e. systems that are difficult to integrate via explicit numerical integra-
tion schemes, see e.g. Hairer and Wanner (1996) for a comprehensive treatment of
methods of solving numerically stiff systems. Even if a system is not stiff for the
true parameter value, during the numerical optimisation procedure one might pass
the vicinity of parameters for which the system is stiff, which will necessarily slow
down the optimisation process.

The Bayesian approach to estimation of θ, see e.g. Gelman et al. (1996) and
Girolami (2008), encounters similar huge computational problems. In the Bayesian
approach one puts a prior on the parameter θ and then obtains the posterior via
Bayes’ formula. The posterior contains all the information required in the Bayesian
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paradigm and can be used to compute e.g. point estimates of θ or Bayesian credible
intervals. If θ is high-dimensional, the posterior will typically not be manageable
by numerical integration and one will have to resort to Markov Chain Monte Carlo
(MCMC) methods. However, sampling from the posterior distribution for θ via
MCMC necessitates at each step numerical integration of the system (3), in case the
latter does not have a closed form solution. Computational time might thus become
a problem in this case as well. Also, since in general the likelihood surface will have a
complex shape with many local optima, ripples, and ridges, see e.g. Girolami (2008)
for an example, serious convergence problems might arise for MCMC samplers.

Yet another point is that in practice both the least squares method and the
Bayesian approach require good initial guesses of the parameter values. If these are
not available, then both approaches might have problems with convergence to the
true parameter value within a reasonable amount of time. More generally, compu-
tational time will typically be a problem for any optimisation algorithm that relies
on numerical integration of any relatively realistic nonlinear system of ordinary
differential equations. One example is furnished by Kikuchi et al. (2003), where
a system that consists of five differential equations and contains sixty parameters
and that describes a simple gene regulatory network from Hlavacek and Savageau
(1996) is considered. The optimisation algorithm (a genetic algorithm) was run for
seven loops each lasting for about ten hours on the AIST CBRC Magi Cluster with
1040 CPUs (Pentium III 933 MHz)1. This amounted to a total of ca. 70,000 CPU
hours. The authors also remarked that the gradient-based search algorithm would
not be feasible in their setting at all.

A general overview of typical difficulties in parameter estimation for systems of
ordinary differential equations is given in Ramsay et al. (2007), to which we refer
for more details. For a recent overview of typical approaches to parameter estima-
tion for systems of ordinary differential equations in biochemistry and associated
challenges see e.g. Chou and Voit (2009).

To evade difficulties associated with the least squares method, or more precisely
with numerical integration that it usually requires, a two-step method was pro-
posed in Varah (1982). In the first step the solution xθ of (3) is estimated via
considering estimation of the individual components xθ1, . . . , xθd as nonparametric
regression problems and using the regression spline method for estimation of these
components. The derivatives of xθ1, . . . , xθd are also estimated from the data by
differentiating the estimators of xθ1, . . . , xθd with respect to time t. Thus no nu-
merical integration of the system (3) is needed. In the second step the obtained
estimate of xθ and its derivative x′

θ are plugged into (3) and an estimator of θ is
defined as a minimiser in θ of an appropriate distance between the estimated left-
and righthand sides of (3). Such an estimator of θ is an M-estimator, see e.g. the
classical monograph Huber (1981), or Chapter 7 of Bickel et al. (1998), Chapter 5
of van der Vaart (1998), and Chapter 3.2 of Wellner and van der Vaart (1996) for
a more modern exposition of the theory of M-estimators. For a related approach
to estimation of θ see also Voit and Savageau (1982), as well as Voit and Almeida
(2004), where a practical implementation based on neural networks is studied. The
intuitive idea behind the use of this two-step estimator is clear: among all functions
defined on [0, 1], any reasonably defined distance between the left- and righthand

1See http://www.cbrc.jp/magi for the cluster specifications.
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side of (3) is minimal (namely, it is zero) for the solution xθ of (3) and the true pa-
rameter value θ. For estimates close enough in an appropriate sense to the solution
xθ, the minimisation procedure will produce a minimiser close to the true parameter
value, provided certain identifiability and continuity conditions hold. This intuitive
idea was exploited in Brunel (2008), where a more general setting than the one in
Varah (1982) was considered. Another paper in the same spirit as Varah (1982) is
Liang and Wu (2008).

This two-step approach will typically lead to considerable savings in computa-
tional time, as unlike the straightforward least squares estimator, in its first step
it just requires finding nonparametric estimates of xθ and x′

θ, for which fast and
numerically reliable recipes are available, whereas the gradient-based least squares
method will still rely on successive numerical integrations of (3) for different pa-
rameter values θ in order to find a global minimiser minimising the least squares
criterion function. We refer to Voit and Almeida (2004) for a particular example
demonstrating gains in the computational time achieved by the two-step estimator
in comparison to the ordinary least squares estimator. When the righthand side
F of (3) is linear in θ1, . . . , θp, further simplifications will occur in the second step
of the two-step estimation procedure, as one will essentially only have to face a
weighted linear regression problem then. This is unlike the least squares approach,
which cannot exploit linearity of F in θ1, . . . , θp. However, we would also like to
stress the fact that the two-step estimator does not necessarily have to be con-
sidered a competitor of either the least squares or the Bayesian approach. Indeed,
since in practice both of these approaches require good initial guesses for parameter
values, these can be supplied by the two-step estimator. In this sense the proposed
two-step estimation approach can be thought of as complementing both the least
squares and the Bayesian approaches. Moreover, an additional modified Newton-
Raphson step suffices to arrive at an estimator that is asymptotically equivalent to
the exact ordinary least squares estimator, as will be shown elsewhere.

Our exposition in the present paper is similar to that in Brunel (2008) to some
degree, one of the differences being that instead of spline estimators we use kernel-
type estimators for estimation of xθ and x′

θ.
2 The conditions are also somewhat

different. We hope that our contribution will motivate further research into the
interesting topic of parameter estimation for systems of ordinary differential equa-
tions. There exists an alternative approach to the ones described here, which also
employs nonparametric smoothing, see Ramsay et al. (2007). For information on
its asymptotic properties we refer to Qi and Zhao (2010). For nonlinear systems
this appproach will typically reduce to one of the realisations of the ordinary least
squares method, e.g. Newton-Raphson algorithm, where however numerical integra-
tion of (3) will be replaced by approximation of the solution of the system (3) by an
appropriately chosen element of some finite-dimensional function space. This seems
to reduce considerably the computational load in comparison to the gradient-based
optimisation methods which employ numerical integration of (3). However, it still
appears to be computationally more intense than the two-step approach advocated
in the present work.

The rest of the paper is organised as follows: in the next section we will detail the
approach that we use and present its theoretical properties. In particular, we will

2The proofs of the main results in Brunel (2008) are incomplete and the main theorems seem
to require further conditions in order to hold.
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show that under appropriate conditions our two-step approach leads to a consistent
estimator with a

√
n convergence rate, which is the best possible rate in regular

parametric models3. Section 4 contains a discussion on the results obtained and
possible extensions. The proofs of the main results are relegated to Section 5, while
the Appendices contain some auxiliary statements.

3. Results

First of all, we point out that in the present study we will be concerned with the
asymptotic behaviour of an appropriate two-step estimator of θ under a suitable
sampling scheme. We will primarily be interested in intuitively understanding the
behaviour of a relatively simple estimator of θ, as well as in a clear presentation of
the obtained results and the proofs. Consequently, the stated conditions will not
always be minimal and can typically be relaxed at appropriate places.

We first define the sampling scheme.

Condition 1. The observation times 0 ≤ t1 < . . . < tn ≤ 1 are deterministic and
there exists a constant c0 ≥ 1, such that for all n

max
2≤i≤n

|ti − ti−1| ≤
c0
n

holds. Furthermore, there exists a constant c1 > 0, such that for any interval
A ⊆ [0, 1] of length |A| and all n ≥ 1 the inequality

1

n

n∑

i=1

1[ti∈A] ≤ c1 max

(
|A|, 1

n

)

holds.

Hence, we observe the solution of the system (3) on the interval [0, 1]. Instead of
[0, 1] we could have taken any other bounded interval. Conditions on t1, . . . , tn as
in Condition 1 are typical in nonparametric regression, see e.g. Gasser and Müller
(1984) and Section 1.7 in Tsybakov (2009), and they imply that t1, . . . , tn are dis-
tributed over [0, 1] in a sufficiently uniform manner. The most important example
in which Condition 1 is satisfied, is when the observations are spaced equidistantly
over [0, 1], i.e. when tj = j/n for j = 1, . . . , d. In this case one may take c0 = 1.
Notice that we do not necessarily assume that the initial condition x(0) = ξ is
measured or is known. If it is, then it is incorporated into the observations and is
used in the first step of the two-step estimation procedure.

Condition 2. The random variables ǫij , i = 1, . . . , n, j = 1, . . . , d, from (4) are
independent and are normally distributed with mean zero and finite variance σ2

j .

This assumption of Gaussianity of the ǫij ’s may be dropped in various ways, as we
will see below; see the note after Proposition 1 and Appendix B.

We next state a condition on the parameter set.

Condition 3. The parameter set Θ is a compact subset of Rp.

Compactness of Θ allows one to put relatively weak conditions on the structure of
the system (3), i.e. the function F.

3It is claimed in Liang and Wu (2008) that their two-step estimation procedure leads to a
faster rate than

√

n, which is impossible. Indeed, their Theorem 2 and its proof are incorrect.
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Just as the least squares method, see e.g. Jennrich (1969), the two-step approach
also requires some regularity of the solutions of (3). In what follows, a derivative
of any function f with respect to the variable y will be denoted by f ′

y. For the
second derivative of f with respect to y we will use the notation f ′′

yy with a similar
convention for mixed derivatives.

Condition 4. The following conditions hold:

(i) the mapping F : Rd ×Θ → R
d from (3) is such that its second derivatives

F ′′
θθ, F

′′
θx, F

′′
xx are continuous;

(ii) for all parameter values θ ∈ Θ, the solution xθ of (3) is defined on the
interval [0, 1];

(iii) for all parameter values θ ∈ Θ, the solution xθ of (3) is unique on [0, 1];
(iv) for all parameter values θ ∈ Θ, the solution xθ of (3) is a Cα function of

t on the interval [0, 1] for some positive integer α.

Observe that Condition 4 (i) implies existence and uniqueness of the solution of (3)
in some neighbourhood of 0. However, we want the existence and uniqueness to hold
on the whole interval [0, 1] and therefore a priori require (ii) and (iii). Furthermore,
α ≥ 2 in (iv) is required when establishing appropriate asymptotic properties of
nonparametric estimators of the solution xθ and its derivative, while α ≥ 3 is needed
in Propositions 3 and 4, and α ≥ 4 in Theorem 1, respectively. Notice that for every
θ the solution xθ is of class Cα in t in a neighbourhood of 0, provided for a given θ
the function F is of class Cα in its first argument. However, we want this to hold on
the whole interval [0, 1] and therefore require (iv). Since in the theory of chemical
reaction networks, see for instance Sontag (2001), the components of F are usually
polynomial or rational functions of x1, . . . , xd and θ1, . . . , θp, the solution of (3)
will be smooth enough in many examples and α ≥ 4 is satisfied in a large number
of practical examples. For the above-mentioned facts from the theory of ordinary
differential equations see e.g. Chapter 2 in Arnold (1973). Also notice that the
condition on F in Liang and Wu (2008), see Assumption C on p. 1573, puts severe
restrictions on F and excludes e.g. quadratic nonlinearities of F in x1, . . . , xd. This,
of course, has to be avoided.

Recall that our observations are Yij = xθj(ti) + ǫij for i = 1, . . . , n, j = 1, . . . , d.
We propose the following nonparametric estimator for xθj ,

(5) x̂j(t) =

n∑

i=1

(ti − ti−1)
1

b
K

(
t− ti
b

)
Yij ,

where K is a kernel function, while the number b = bn > 0 denotes a bandwidth
that we take to depend on the sample size n in such a way that bn → 0 as n → ∞.
In line with a traditional convention in kernel estimation theory, we will suppress
the dependence of bn on n in our notation, since no confusion will arise. When
the ti’s are equispaced, the estimator (5) can in essence be obtained by modifying
the Nadaraya-Watson regression estimator, cf. p. 34 in Tsybakov (2009). It is
usually called the Priestley-Chao estimator after the authors who first proposed
it in Priestley and Chao (1972). As far as an estimator of x′

θj(t) is concerned, we

define it as the derivative of x̂j(t) with respect to t, choosing K as a differentiable
function. Notice that the bandwidth b plays a role of regularisation parameter: too
small a bandwidth results in an estimator with small bias, but large variance, while
too large a bandwidth results in an estimator with small variance, but large bias,
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see e.g. pp. 7–8 and 32 in Tsybakov (2009) for a relevant discussion. In principle
one could use different bandwidth sequences for estimation of xj for different j’s,
but as can be seen from the proofs in Section 5, asymptotically this will not make
a difference for an estimator of θ. A similar remark applies to the use of different
bandwidths for estimation of xθj and its derivative x′

θj . Arguably, the estimator (5)
is simple and there exist other estimators that may outperform it in certain respects
in practice. However, as we will show later on, even such a simple estimator leads
to a

√
n-consistent estimator of θ.

Theoretical properties of the Priestley-Chao estimator were studied in Benedetti
(1977), Priestley and Chao (1972), and Schuster and Yakowitz (1979). However,
the first two papers do not cover its convergence in the L∞ (supremum) norm,
while the third one does not do it in the form required in the present work. Since
this is needed in the sequel, we will supply the required statement, see Proposition
1 below.

To put things in a somewhat more general context than the one in our differential
equations setting, consider the following regression model:

Yi = µ(ti) + ǫi, i = 1, . . . , n,

t1, . . . , tn satisfy Condition 1 ,

ǫ1, . . . , ǫn are i.i.d. Gaussian with E [ǫi] = 0 and Var [ǫi] = σ2 > 0.

(6)

Our goal is to estimate the regression function µ and its derivative µ′. The estimator
of µ will be given by an expression similar to (5), namely

(7) µ̂n(t) =
n∑

i=1

(ti − ti−1)
1

b
K

(
t− ti
b

)
Yi,

while an estimator of µ′ will be given by µ̂′
n. We postulate the following condition

on the kernel K for some strictly positive integer α.

Condition 5. The kernel K is symmetric and twice continuously differentiable, it

has support within [−1, 1], and it satisfies the integrability conditions:
∫ 1

−1K(u)du =

1 and
∫ 1

−1
uℓK(u)du = 0 for ℓ = 1, . . . , α− 1.

The following proposition holds.

Proposition 1. Suppose the regression model (6) is given and Condition 5 holds.
Fix 0 < δ < 1/2.

(i) If µ is α ≥ 1 times continuously differentiable and b → 0 as n → ∞, then

(8) sup
t∈[δ,1−δ]

|µ̂n(t)− µ(t)| = OP



√(

bα +
1

nb2

)2

+
logn

nb


 .

(ii) If µ is α ≥ 2 times continuously differentiable and b → 0 as n → ∞, then

(9) sup
t∈[δ,1−δ]

|µ̂′
n(t)− µ′(t)| = OP



√(

bα−1 +
1

nb3

)2

+
logn

nb3




is valid. In particular, µ̂n and µ̂′
n are consistent on [δ, 1 − δ], if nb3/ logn → ∞

holds additionally.
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Gaussianity of the ǫi’s allows one to prove (8) and (9) by relatively elementary
means. This assumption can be modified in various ways, for instance by assuming
that the ǫi’s are bounded, and we state and prove the corresponding modification
of Proposition 1 in Appendix B, see Proposition 5. If we only assume that the
ǫi’s are i.i.d. with E [ǫi] = 0 and Var [ǫi] < ∞, then the analogues of (8) and (9)
can be proved using the arguments from the proofs of Theorem 2 and Lemma 3 in
Schuster and Yakowitz (1979). The rate of convergence will however be different
and will lead to a stronger condition on α in Theorem 1, which is the main result
of the present paper. In general, normality of the measurement errors is a standard
assumption in parameter estimation for systems of ordinary differential equations,
see e.g. Girolami (2008), Hemker (1972), and Ramsay et al. (2007).

The following corollary is immediate from Proposition 1.

Corollary 1. Under Conditions 1–5 we have for the estimator x̂j

(10) sup
t∈[δ,1−δ]

|x̂j(t)− xθj(t)| = OP



√(

bα +
1

nb2

)2

+
logn

nb




and

(11) sup
t∈[δ,1−δ]

|x̂′
j(t)− x′

θj(t)| = OP



√(

bα−1 +
1

nb3

)2

+
logn

nb3


 ,

provided α ≥ 2 and b → 0 as n → ∞. In particular, x̂j and x̂′
j are consistent, if

nb3/ logn → ∞ holds additionally.

In the proof of Proposition 1 we need to use the continuous mapping theorem in
order to prove convergence in probability of certain integrals of F and its derivatives
with x̂ plugged in. This is where Corollary 1 is used.

Now that we have consistent (in an appropriate sense) estimators of xθj and x′
θj ,

we can move to the second step in the construction of the two-step estimator of θ.

In particular, we define the estimator θ̂n of θ as

θ̂n = argminη∈Θ

∫ 1

0

‖x̂′(t)− F (x̂(t), η)‖2w(t)dt

= argminη∈Θ Mn,w(η),

(12)

where ‖ · ‖ denotes the usual Euclidean norm and w is a weight function. We will
refer to Mn,w(η) as a (random) criterion function. Since Θ is compact and Mn,w is

continuous in η, the minimiser θ̂n always exists. The fact that θ̂n is a measurable
function of the observations Yij follows from Lemma 2 of Jennrich (1969). Notice
that in Liang and Wu (2008) and Varah (1982) the criterion function is given by

n∑

i=1

‖x̃′(ti)− F (x̃(ti), η)‖2,

where x̃ and x̃′ are appropriate estimators of xθ and x′
θ. However, in order to obtain

a
√
n-consistent estimator of θ, it is important to use an integral type criterion: the

nonparametric estimators of xθ and x′
θ have a slower convergence rate than

√
n

and the latter has to be counterbalanced by some other means when estimating θ.
In light of this the choice of the weight function w also appears to be important.
Furthermore, the observations Yij indirectly carry information on the entire curves
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xθj(t), t ∈ [0, 1], and not only on the points xθj(ti). An integral type criterion allows
one to exploit this fact in the second step of this two-step estimation procedure.

Introduce the asymptotic criterion

(13) Mw(η) =

∫ 1

0

‖F (xθ(t), θ) − F (xθ(t), η)‖2w(t)dt

corresponding to Mn,w. Observe that by Condition 4 it is bounded. Using Corollary

1 as a building block, one can show that the two-step estimator θ̂n is consistent.
To this end we will need the following condition on the weight function w.

Condition 6. The weight function w is a nonnegative function that is continuously
differentiable, is supported on the interval (δ, 1 − δ) for 0 < δ < 1/2, and is such
that the Lebesgue measure of the set {t : w(t) > 0} is positive.

The fact that w vanishes at the endpoints of the interval [δ, 1 − δ] and beyond,
is needed to obtain a

√
n-consistent estimator of θ. The condition that w is sup-

ported on (δ, 1 − δ) takes care of the boundary bias effects characteristic of the
conventional kernel-type estimators, see e.g. Gasser and Müller (1984) for more
information on this. Boundary effects in kernel estimation are usually remedied
by using special boundary kernels, see e.g. van Es (1991), Gasser et al. (1985),
Messer and Goldstein (1993). Using such a kernel, it can be expected that in our
case as well the boundary effects will be eliminated and one may relax the require-
ment 0 < δ < 1/2 from Condition 6 to allowing δ = 0, i.e. to allowing w to be
supported on (0, 1). The condition that the weight function w is positive on a set
with positive Lebesgue measure, is important for (14) to hold and in fact w(t) = 0
a.e. would be a strange choice.

The following proposition is valid.

Proposition 2. Suppose b → 0 and nb3/ logn → ∞. Under Conditions 1–6 and
the additional identifiability condition

(14) ∀ε > 0, inf
‖η−θ‖≥ε

Mw(η) > Mw(θ),

we have θ̂n
P→ θ.

The proposition is proved via a reasoning standard in the theory of M-estimation:
we show that Mn,w converges to Mw and that the convergence is strong enough

to imply the convergence of a minimiser θ̂n of Mn,w to a minimiser θ of Mw, cf.
Section 5.2 of van der Vaart (1998). A necessary condition for (14) to hold is
that xθ(·) 6= xθ′(·) for θ 6= θ′. The latter is a minimal assumption for statistical
identifiability of parameter θ. The identifiability condition (14) is common in the
theory of M-estimation, see Theorem 5.7 of van der Vaart (1998). It means that θ
is a point of minimum of Mw(η) and that it is a well-separated point of minimum.
The most trivial example with this condition satisfied is when d = p = 1 and
x′(t) = θx(t) hold with initial condition x(0) = ξ, where ξ 6= 0. Observe that since
Θ is compact and Mw is continuous, uniqueness of a minimiser of Mw implies (14),
cf. Exercise 27 on p. 84 of van der Vaart (1998).

In practice (14) might be difficult to check globally and one might prefer to con-
centrate on a simpler local condition: if the first order condition [dMw(η)/dη]η=θ =
0 holds and if the Hessian matrix H(η) = (∂2Mw(η)/∂ηi∂ηj)i,j of Mw is strictly
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positive definite at θ, then (14) will be satisfied for η ∈ Θ restricted to some neigh-
bourhood of θ, because Mw will have a local minimum at such θ and a neighbour-
hood around it can be taken to be compact with small enough diameter, so that
(14) holds for η restricted to this neighbourhood. The conclusion of the theorem
will then hold for the parameter set restricted to this neighbourhood of θ.

In a statement analogous to Proposition 2, Brunel (2008) requires that the solu-
tions of (3) belong to a compact setK for all θ and t and that F from (1) is Lipschitz
in its first argument x for x restricted to this compact K uniformly in θ ∈ Θ. It is
also assumed that the nonparametric estimators x̂n(t) belong a.s. to K for all n and
t. However, the latter typically will not hold for linear smoothers, see Definition
1.7 in Tsybakov (2009), which constitute the most popular choice of nonparametric
regression estimators in practice. For instance, local polynomial estimators, see
Section 1.6 in Tsybakov (2009), projection estimators, see Section 1.7 in Tsybakov
(2009), or the Gasser-Müller estimator, see Gasser and Müller (1984), are all ex-
amples of linear smoothers. Hence we prefer to avoid this condition altogether,
although this somewhat complicates the proof.

Under the conditions in this section it turns out that the estimator θ̂n is not
merely a consistent estimator, but a

√
n-consistent estimator of θ, in the sense of

(18) below. This result follows in essence from the fact that up to a higher order

term the difference θ̂n − θ can be represented as the difference of the images of
x̂ and xθ under a certain linear mapping, cf. (30). It is known that even though
nonparametric curve estimators cannot usually attain the

√
n convergence rate, see

e.g. Chapters 1 and 2 of Tsybakov (2009), extra smoothness often coming from the
structure of linear functionals allows one to construct in many cases

√
n-consistent

estimators of these functionals via plugging in nonparametric estimators, see e.g.
Bickel and Ritov (2003) and Goldstein and Messer (1992) for more information.
The variance of such plug-in estimators can often be proven to be of order n−1, while
the squared bias can be made of order n−1 by undersmoothing, i.e. selecting the
smoothing parameter smaller than what is an optimal choice in nonparametric curve
estimation when the object of interest is a curve itself, cf. Goldstein and Messer
(1992). Precisely this happens in our case as well: if the mean integrated squared
error is used as a performance criterion of a nonparametric estimator, then under
our conditions the optimal bandwidth for estimation of xθ is of order n−1/(2α+1),
whereas the optimal bandwidth for estimation of θ is in fact smaller, see Theorem
1 below. Note that this is a different approach than the one in Bickel and Ritov
(2003), where it is assumed that nonparametric estimators attain the minimax rate
of convergence and the

√
n-rate for estimation of a functional in concrete examples,

if possible, is achieved by different means exploiting extra smoothness coming from
the structure of a functional, see e.g. the first example in Section 2 there. In
many cases it can be proved that such plug-in type estimators are efficient, see
Bickel and Ritov (2003). Notice, however, that in our case this will not imply that

θ̂n is efficient.
First we will provide an asymptotic representation for the difference θ̂n − θ.

Proposition 3. Let θ be an interior point of Θ. Suppose that the conditions of
Proposition 2 hold and let the matrix Jθ defined by

(15) Jθ =

∫ 1−δ

δ

(F ′
θ(xθ(t), θ))

TF ′
θ(xθ(t), θ)w(t)dt
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be nonsingular. Fix α ≥ 3. If b ≍ n−γ holds for 1/(4α− 4) < γ < 1/6, then

(16) θ̂n − θ = OP

(
J−1
θ (Γ(x̂)− Γ(xθ))

)
+ oP (n

−1/2)

is valid with the mapping Γ given by
(17)

Γ(z) =

∫ 1−δ

δ

{
(F ′

θ(xθ(t), θ))
TF ′

x(xθ(t), θ)w(t) −
d

dt
[(F ′

θ(xθ(t), θ))
Tw(t)]

}
z(t)dt.

With the above result in mind, in order to complete the study of the asymptotics

of θ̂n, it remains to study the mapping Γ. Clearly, it suffices to study the asymptotic
behaviour of

∆(µ̂n)−∆(µ) =

∫

R

v(t)k(t)µ̂n(t)dt−
∫

R

v(t)k(t)µ(t)dt,

where v is a known function that satisfies appropriate assumptions, while k stands
either for w or its derivative w′. The next proposition deals with the asymptotics
of ∆(µ̂n)−∆(µ).

Proposition 4. Under Conditions 5 and 6 and for any continuous function v it
holds in the regression model (6) that

∆(µ̂n)−∆(µ) = OP (n
−1/2),

provided µ is α ≥ 3 times differentiable and the bandwidth b is chosen such that
b ≍ n−γ holds for 1/(2α) ≤ γ ≤ 1/4.

Our main result is a simple consequence of Propositions 3 and 4.

Theorem 1. Let θ be an interior point of Θ. Assume that Conditions 1–6 together
with (14) hold and that (15) is nonsingular. Fix α ≥ 4. If the bandwidth b is such
that b ≍ n−γ holds for 1/(2α) < γ < 1/6, then

(18)
√
n(θ̂n − θ) = OP (1)

is valid.

Thus any bandwidth sequences satisfying the conditions in Theorem 1 are opti-
mal, in the sense that they lead to estimators with similar asymptotic behaviour.
In particular, each of such bandwidth sequences ensures a

√
n convergence rate of

θ̂n. Consequently, dependence of the asymptotic properties of the estimator θ̂n on
the bandwidth is less critical than it typically is in nonparametric curve estima-
tion. Notice that the condition α ≥ 4 in Theorem 1 is needed in order to make the
conditions in Propositions 3 and 4 compatible.

4. Discussion

The main result of the paper, Theorem 1, is that under certain conditions for sys-
tems of ordinary differential equations parameter estimation at the

√
n rate is pos-

sible without employing numerical integration. Although we have shown this in the
case when in the first step of the two-step procedure a particular kernel-type estima-
tor is used, it may be expected that a similar result holds for other nonparametric
estimators. In practice for small or moderate sample sizes it might be advanta-
geous to use more sophisticated nonparametric estimators than the Priestley-Chao
estimator, but asymptotically this does not make a difference.
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Once a
√
n-consistent estimator θ̂n of θ is available, one might ask for more,

namely if one can construct an estimator that is asymptotically equivalent to the
ordinary least squares estimator (2) or that is semiparametrically efficient. It is
expected that this can be achieved without repeated numerical integration of (1)

by using θ̂n as a starting point and performing a one-step Newton-Raphson type
procedure; see e.g. Section 7.8 of Bickel et al. (1998) or Chapter 25 of van der Vaart
(1998). We intend to address this issue of efficient and ordinary least squares
estimation in a separate publication.

Doubtless, the main challenge in implementing the two-step estimation proce-
dure lies in selecting the smoothing parameter b. This is true for any two-step
procedure, e.g. the one based on the regression splines as in Brunel (2008) or the
local polynomial estimator as in Liang and Wu (2008), and not only for our specific
estimator. Observations that we supply below apply in principle to any two-step
estimator and not only to the specific one considered in the present work. Hence
they are of general interest.

Some attention has been paid in the literature to the selection of the smoothing
parameter in the context of parameter estimation for ordinary differential equations.
The considered options range from subjective choices and smoothing by hand to
more advanced possibilities. Perhaps the simplest solution would be to assume
that the targets of the estimation procedure are xθj , j = 1, . . . , d, and to select b
(a different one for every component xθj) via a cross-validation procedure, see e.g.
Section 5.3 in Wasserman (2006) for a description of cross-validation techniques in
the context of nonparametric regression. This should produce reasonable results, at
least for relatively large sample sizes, cf. simulation examples considered in Brunel
(2008). However, it is clear from Theorem 1 that despite its simplicity, such a choice
of b will be suboptimal. One other possibility for practical bandwidth selection is
nothing else but a variation on the plug-in bandwidth selection method as described

e.g. in Jones et al. (1996): if one computes the mean squared error of θ̂n, one can
see from the proof in Section 5 that the terms that depend on the bandwidth b
are lower order terms in the expansion of the mean squared error. One can then
minimise with respect to b a bound on these lower order terms. A minimiser, say b∗,
will depend on the unknown true parameter θ, also via xθ and x′

θ, as well as on the

error variances σ2
1 , . . . , σ

2
d. However, θ, xθ, and x′

θ can be re-estimated via θ̂n, x̂, and

x̂′ using a different, pilot bandwidth b̃. Of course, instead of x̂ and x̂′ the use of any
other nonparametric estimators of a regression function and its derivative, e.g. local
polynomial estimators, see Section 1.6 of Tsybakov (2009), or the Gasser-Müller
estimator, see Gasser and Müller (1984), is also a valid option. Error term variances
can be estimated via one of the methods described in Hall and Marron (1990) or
Section 5.6 of Wasserman (2006). Once the pilot estimators of θ, xθ, and x′

θ together
with estimators of σ2

1 , . . . , σ
2
d are available, these can be plugged back into b∗ and in

this way one obtains a bandwidth b̂ that estimates the optimal bandwidth b∗. The

final step would be computation of θ̂n with a new bandwidth b̂. Unfortunately, this
method leads to extremely cumbersome expressions and furthermore, since we are
minimising an upper bound on numerous remainder terms, it will probably tend
to oversmooth, i.e. produce a bandwidth b larger than required. Moreover, the
plug-in approach in general is subject to some controversy having both supporters
and critics, see e.g. Loader (1999) and references therein. An alternative to the
plug-in approach might be an approach based on one of the resampling methods:
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cross-validation, jackknife, or bootstrap. Theoretical analysis of the properties of
such bandwidth selectors is a rather nontrivial task. Also a thorough simulation
study is needed before the practical value of different bandwidth selection methods
can be assessed. We do not address these issues here.

The next observation of this section concerns the numerical computation of the
two-step estimator. The kernel-type nonparametric regression estimates of xθj , j =
1, . . . , d, can be quickly evaluated on any regular grid of points 0 ≤ s1 ≤ . . . ≤ sm,
via techniques using the Fast Fourier Transform (FFT) similar to those described
in Appendix D of Wand and Jones (1995). Furthermore, in the second step of the
two-step estimation procedure the criterion function Mn,w can be approximated by
a finite sum by discretising the integral in its definition. If F is linear in θ1, . . . , θp,
then as already observed in Varah (1982), see pp. 29 and 31, cf. p. 1262 in Brunel
(2008) and p. 1573 in Liang and Wu (2008), this will lead to a weighted linear least
squares problem, which can be solved in a routine fashion without using e.g. random
search methods. This is a great simplification in comparison to the ordinary least
squares estimator, which moreover will still tend to get trapped in local minima of
the least squares criterion function despite the fact that F is linear in its parameters.

We conclude this section by mentioning one way for possible extension of the
two-step method described in the present work. The last two decades have seen
much interest and research in estimation methods for models with high-dimensional
parameter spaces under assumptions of sparsity. Roughly speaking this means
that even though the parameter indexing the model is a high- or possibly infinite-
dimensional vector, many of its components are known to be zero. Within the
context of systems of differential equations this appears to be the case for the
so-called S-systems, see Voit (2000) for a comprehensive treatment of the theory
of S-systems. The number of parameters for a d-dimensional S-system is given
by 2d(d + 1) and it thus grows fairly fast with the dimension d. On the other
hand practical experience indicates that many of the parameters in S-systems are
equal to zero. One possible way of incorporating this information into the two-step
estimation procedure would be to use the modified criterion function

M̃w(η) =

∫ 1

0

‖x̂′(t)− F (x̂(t), η)‖2w(t)dt + λpen[η],

where pen[η] is a penalty for the size of η when choosing a specific parameter value
η, while λ > 0 is a tuning parameter that quantifies the degree of penalisation. A
typical choice for pen[η] would be the L1 norm of η,

pen[η] =

p∑

j=1

|ηj |.

A similar idea, but within the nonlinear least squares framework relying on numeri-
cal integration of (3), is explored in Kikuchi et al. (2003) on a model with simulated
data. The method proposed there, is called ‘pruning’ by the authors. The authors
however do not perform a study of the asymptotics of their estimator nor do they
propose a practical method for selection of the penalty parameter.

We intend to perform a more practically oriented study exploring these ideas in
a separate publication.
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5. Proofs

We will use the symbol ., meaning less or equal up to a universal constant
independent of index n. The symbol ≍ will denote the fact that two sequences of
real numbers are asymptotically of the same order.

Proof of Proposition 1. We first prove (8). For any positive ε by Chebyshev’s in-
equality we have

P

(
sup

t∈[δ,1−δ]

|µ̂n(t)− µ(t)| > ε

)
≤ 2

ε2

{
sup

t∈[δ,1−δ]

|E [µ̂n(t)]− µ(t)|2

+ E

[
sup

t∈[δ,1−δ]

|µ̂n(t)− E [µ̂n(t)]|2
]}

=
2

ε2
(T1 + T2).

(19)

By (36) we can write

E [µ̂n(t)]− µ(t) =

∫ 1

0

µ(s)
1

b
K

(
t− s

b

)
ds− µ(t) +O

(
1

nb2

)
.

For all n large enough, we have b ≤ δ, because b → 0. Then for all such n, if
t ∈ [δ, 1 − δ], a standard argument (cf. p. 6 in Tsybakov (2009)), namely Taylor’s
formula up to order α applied to µ and the moment conditions on the kernel K
formulated in Condition 5, yields

(20) sup
t∈[δ,1−δ]

|E [µ̂n(t)]− µ(t)| ≤ bα
‖µ(α)‖∞

α!

∫ 1

−1

|uαK(u)|du+O

(
1

nb2

)
.

Next we turn to T2. With argumentation similar to that in the proof of Theorem
1.8 of Tsybakov (2009) and setting Si(t) = (ti − ti−1)/bK((t− ti)/b), N = n2, and
sj = j/N, for j = 1, . . . , N, we have

A = sup
t∈[δ,1−δ]

|µ̂n(t)− E [µ̂n(t)]|

= sup
t∈[δ,1−δ]

∣∣∣∣∣

n∑

i=1

ǫiSi(t)

∣∣∣∣∣

≤ max
1≤j≤N

∣∣∣∣∣

n∑

i=1

ǫiSi(sj)

∣∣∣∣∣+ sup
t,t′:|t−t′|≤N−1

∣∣∣∣∣

n∑

i=1

ǫi(Si(t)− Si(t
′))

∣∣∣∣∣ .

By the mean value theorem and Condition 1 the inequality

|Si(t)− Si(t
′)| . ‖K ′‖∞

1

nb2
|t− t′|

holds for any t, t′ ∈ R, where ‖K ′‖∞ is finite. Hence by the c2-inequality

A2 ≤
(

max
1≤j≤N

∣∣∣∣∣

n∑

i=1

ǫiSi(sj)

∣∣∣∣∣+ sup
t,t′:|t−t′|≤N−1

∣∣∣∣∣

n∑

i=1

ǫi(Si(t)− Si(t
′))

∣∣∣∣∣

)2

. max
1≤j≤N

|Zj |2 +
‖K ′‖2∞
n2b4N2

(
n∑

i=1

|ǫi|
)2

,
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where Zj =
∑n

i=1 ǫiSi(sj). Therefore we have

E [A2] ≤ E

[
max

1≤j≤N
|Zj |2

]
+

‖K ′‖2∞
n2b4N2

E



(

n∑

i=1

|ǫi|
)2

 .

Notice that

1

n2b4N2
E



(

n∑

i=1

|ǫi|
)2

 ≤ E [ǫ21]

N2b4
=

σ2

n4b4
= o

(
1

nb

)
.

Moreover, we have

E [Z2
j ] =

n∑

i=1

σ2(ti − ti−1)
2

(
1

b
K

(
ti − sj

b

))2

.
σ2‖K‖2∞
n2b2

n∑

i=1

1[|ti−sj |≤b]

≤ 1

nb
c1σ

2‖K‖2∞max

(
2,

1

nb

)
,

where the last inequality follows from Condition 1. Since the Zj ’s, being a linear
combination of independent Gaussian random variables, are themselves Gaussian,
Corollary 1.3 of Tsybakov (2009) and the fact that N = n2 then entail

E

[
max

1≤j≤N
|Zj|2

]
= O

(
logN

nb

)
= O

(
logn

nb

)
.

Hence

(21) E [A2] = O((log n)/(nb)).

Taking

ε = M

√(
bα +

1

nb2

)2

+
logn

nb

with an appropriate constant M yields (8) by (19), (20), and (21).
As far as the proof of (9) is concerned, it is very much similar to the proof of

(8) and is therefore omitted. This completes the proof of the proposition. �

Proof of Proposition 2. ¿From the definition ofMn,w(η) andMw(η), the elementary
inequality

|‖a1‖2 − ‖a2‖2| ≤ ‖a1 − a2‖(‖a1‖+ ‖a2‖)
and the Cauchy-Schwarz inequality we have

|Mn,w(η)−Mw(η)|

≤
{∫ 1−δ

δ

‖x̂′(t)− F (xθ(t), θ) + F (xθ(t), η)− F (x̂(t), η)‖2w(t)dt
}1/2

×
{∫ 1−δ

δ

(‖x̂′(t)− F (x̂(t), η)‖ + ‖F (xθ(t), θ) − F (xθ(t), η)‖)2w(t)dt
}1/2

=
√
T1

√
T2.

(22)
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For T1 we have that

T1 ≤ 2

∫ 1−δ

δ

‖x̂′(t)− F (xθ(t), θ)‖2w(t)dt

+ 2

∫ 1−δ

δ

‖F (xθ(t), η) − F (x̂(t), η)‖2w(t)dt.
(23)

By (11) it holds that

sup
η∈Θ

∫ 1−δ

δ

‖x̂′(t)− F (xθ(t), θ)‖2w(t)dt

=

∫ 1−δ

δ

‖x̂′(t)− x′
θ(t)‖2w(t)dt

≤
d∑

i=1

sup
t∈[δ,1−δ]

|x̂′
i(t)− x′

i,θ(t)|2
∫ 1−δ

δ

w(t)dt

P→ 0.

(24)

Moreover, by Lemma 3 from Appendix A we obtain that

(25) sup
η∈Θ

∫ 1−δ

δ

‖F (x̂(t), η) − F (xθ(t), η)‖2w(t)dt P→ 0.

Furthermore, T2 = OP (1) as n → ∞, because

(26) sup
η∈Θ

∫ 1−δ

δ

‖F (xθ(t), θ)− F (xθ(t), η)‖2w(t)dt < ∞

by compactness of Θ and Condition 4, and

(27) sup
η∈Θ

∫ 1−δ

δ

‖x̂′(t)− F (x̂(t), η)‖2w(t)dt P→ 0

by Lemma 4 from Appendix A. Combination of (22)–(27) implies that

sup
η∈Θ

|Mn,w(η)−Mw(η)| P→ 0.

The statement of the proposition then follows from this fact, the identifiability
condition (14), and Theorem 5.7 of van der Vaart (1998). �

Proof of Proposition 3. We interpret the derivative of a one-dimensional function
of θ as a row p-vector of partial derivatives and we denote the d×p-matrix of partial
derivatives ∂

∂θj
Fi(x, θ), i = 1, . . . , d, j = 1, . . . , p, by F ′

θ(x, θ).

We have

d

dθ
‖x̂′(t)− F (x̂(t), θ)‖2 = −2(x̂′(t)− F (x̂(t), θ))TF ′

θ(x̂(t), θ).

With this in mind and interchanging the order of integration and differentiation,
we find that the derivative of Mn,w from (12) with respect to θ is given by

−2

∫ 1−δ

δ

(x̂′(t)− F (x̂(t), θ))TF ′
θ(x̂(t), θ)w(t)dt.
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Since θ is an interior point of Θ, there exists ε > 0, such that ball(θ, ε), the open
ball of radius ε around θ, is contained in Θ. Take

Gn = {|θ̂n − θ| < ε/2}

and notice that by consistency of θ̂n we have P (Gn) → 1 as n → ∞. If θ̂n is a point
of minimum of Mn,w, then necessarily

1Gn

∫ 1−δ

δ

(x̂′(t)− F (x̂(t), θ̂n))
TF ′

θ(x̂(t), θ̂n)w(t)dt = 0,

where 0 at the righthand side denotes now a row p-vector with all its entries equal
to zero. The latter display can be rearranged as

1Gn

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T × {(x̂′(t)− x′
θ(t))

+ (F (xθ(t), θ)− F (x̂(t), θ)) + (F (x̂(t), θ)− F (x̂(t), θ̂n))}w(t)dt = 0,

where now 0 on the righthand side denotes a column p-vector with its entries equal
to zero. Note that we have

F (x̂(t), θ) − F (x̂(t), θ̂n) =

∫ 1

0

F ′
θ(x̂(t), θ̂n + λ(θ − θ̂n))dλ (θ − θ̂n).

Hence

1Gn

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T

∫ 1

0

F ′
θ(x̂(t), θ̂n + λ(θ − θ̂n))dλw(t)dt (θ̂n − θ)

= 1Gn

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T (x̂′(t)− x′
θ(t))w(t)dt

+ 1Gn

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T (F (xθ(t), θ)− F (x̂(t), θ))w(t)dt

(28)

holds. By the fact that x̂ converges in probability as a random element on [δ, 1− δ]

to xθ, see (10), consistency of θ̂n, continuity of F ′
θ, continuity of integration and the

continuous mapping theorem, see Theorem 18.11 in van der Vaart (1998), we have

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T

∫ 1

0

F ′
θ(x̂(t), θ̂n + λ(θ − θ̂n))dλw(t)dt

P→
∫ 1−δ

δ

(F ′
θ(xθ(t), θ))

TF ′
θ(xθ(t), θ)w(t)dt = Jθ,

(29)

where Jθ is nonsingular by assumption (15). Therefore, the asymptotic behaviour

of θ̂n − θ is given by

(30) J−1
θ

(∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T (x̂′(t)− x′
θ(t))w(t)dt

+

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T (F (xθ(t), θ)− F (x̂(t), θ))w(t)dt

)
.
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It thus remains to be shown that this expression in fact reduces to the righthand
side of (16). First of all, notice that

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T (x̂′(t)− x′
θ(t))w(t)dt

=

∫ 1−δ

δ

(F ′
θ(xθ(t), θ))

T (x̂′(t)− x′
θ(t))w(t)dt

+

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ))
T (x̂′(t)− x′

θ(t))w(t)dt

= −
∫ 1−δ

δ

(
d

dt
[F ′

θ(xθ(t), θ)w(t)]

)T

(x̂(t)− xθ(t))dt

+

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ))
T (x̂′(t)− x′

θ(t))w(t)dt,

(31)

where the last equality follows by integration by parts and the fact that w(δ) =
w(1−δ) = 0. The first term at the righthand side of (31) appears also in the leading
term Γ(x̂)−Γ(xθ) of (16). We will now show that the other term at the righthand
side of (31) is negligible, i.e.

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ))
T (x̂′(t)− x′

θ(t))w(t)dt = oP (n
−1/2).

By the Cauchy-Schwarz inequality
∥∥∥∥∥

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ))
T (x̂′(t)− x′

θ(t))w(t)dt

∥∥∥∥∥

≤
{∫ 1−δ

δ

‖F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ)‖2w(t)dt
}1/2

×
{∫ 1−δ

δ

‖x̂′(t)− x′
θ(t)‖2w(t)dt

}1/2

,

where ‖ · ‖ denotes the Frobenius or the Hilbert-Schmidt norm of a matrix (recall
that it is submultiplicative). By (11) we have

{∫ 1−δ

δ

‖x̂′(t)− x′
θ(t)‖2w(t)dt

}1/2

= OP (1)

√(
bα−1 +

1

nb3

)2

+
logn

nb3
.

Furthermore,
∫ 1−δ

δ

‖F ′
θ(x̂(t),θ̂n)− F ′

θ(xθ(t), θ)‖2w(t)dt

≤ 2

∫ 1−δ

δ

‖F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ̂n)‖2w(t)dt

+ 2

∫ 1−δ

δ

‖F ′
θ(xθ(t), θ̂n)− F ′

θ(xθ(t), θ)‖2w(t)dt

= 2T1 + 2T2.

(32)

Denote F ′
θ(x, θ) = A(x, θ) = (ai,j(x, θ))i,j . For T1 we have
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T1 =
∑

i,j

∫ 1−δ

δ

(ai,j(x̂(t), θ̂n)− ai,j(xθ(t), θ̂n))
2w(t)dt

=
∑

i,j

∫ 1−δ

δ

(∫ 1

0

∂

∂x
ai,j(xθ(t) + λ(x̂(t)− xθ(t)), θ̂n)dλ (x̂(t)− xθ(t))

)2

w(t)dt

≤
(

sup
t∈[δ,1−δ]

‖x̂(t)− xθ(t)‖2
)

×
∑

i,j

∫ 1−δ

δ

∫ 1

0

∥∥∥∥
∂

∂x
ai,j(xθ(t) + λ(x̂(t)− xθ(t)), θ̂n)

∥∥∥∥
2

dλw(t)dt.

By (10), as well as consistency of θ̂n, Condition 4 and the continuous mapping
theorem, the righthand side in the last inequality is of order

OP (1)

{(
bα +

1

nb2

)2

+
logn

nb

}
.

By a similar argument, the inequality

T2 =

∫ 1−δ

δ

‖F ′
θ(xθ(t), θ̂n)− F ′

θ(xθ(t), θ)‖2w(t)dt

≤ ‖θ̂n − θ‖2
∑

i,j

∫ 1−δ

δ

∫ 1

0

∥∥∥∥
∂

∂θ
ai,j(xθ(t), θ + λ(θ̂n − θ))

∥∥∥∥
2

dλw(t)dt

holds. Here with some natural abuse of notation we first differentiate ai,j with re-
spect to its second argument θ and only afterwards evaluate the obtained derivative

at xθ(t) and θ + λ(θ̂n − θ). Since the integrals in the last inequality in the above
display are bounded in probability, we then get

(33)

{∫ 1−δ

δ

‖F ′
θ(xθ(t), θ̂n)− F ′

θ(xθ(t), θ)‖2w(t)dt
}1/2

= OP (‖θ̂n − θ‖).

Now notice that (30) yields

‖θ̂n − θ‖ ≤ OP (1)

(∥∥∥∥∥

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T (x̂′(t)− x′
θ(t))w(t)dt

∥∥∥∥∥

+

∥∥∥∥∥

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T (F (xθ(t), θ)− F (x̂(t), θ))w(t)dt

∥∥∥∥∥

)
.

The Cauchy-Schwarz inequality then gives

‖θ̂n − θ‖ ≤ OP (1)

{∫ 1−δ

δ

‖F ′
θ(x̂(t), θ̂n)‖2w(t)dt

}1/2

×
{∫ 1−δ

δ

‖x̂′(t)− x′
θ(t)‖2w(t)dt

}1/2

+OP (1)

{∫ 1−δ

δ

‖F ′
θ(x̂(t), θ̂n)‖2w(t)dt

}1/2
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×
{∫ 1−δ

δ

‖F (xθ(t), θ)− F (x̂(t), θ)‖2w(t)dt
}1/2

.

By a by now standard argument, i.e. (10), (11), and the continuous mapping theo-
rem, the righthand side can be further bounded to obtain

(34) ‖θ̂n − θ‖ ≤ OP (1)





√(
bα−1 +

1

nb3

)2

+
logn

nb3
+

√(
bα +

1

nb2

)2

+
logn

nb



 .

Summarising the above results, we finally get that the second term at the righthand
side of (31) satisfies

∥∥∥∥∥

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ))
T (x̂′(t)− x′

θ(t))w(t)dt

∥∥∥∥∥

≤ OP (1)

√(
bα−1 +

1

nb3

)2

+
logn

nb3

×





√(
bα−1 +

1

nb3

)2

+
logn

nb3
+

√(
bα +

1

nb2

)2

+
logn

nb





= oP (n
−1/2),

where the last equality follows from our conditions on b. Here we also see that the
condition α ≥ 3 is needed for the conclusion to hold.

To conclude the proof, it remains to consider the second term within brackets in
(30). We have

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n))

T (F (xθ(t), θ) − F (x̂(t), θ))w(t)dt

=

∫ 1−δ

δ

(F ′
θ(xθ(t), θ))

T (F (xθ(t), θ) − F (x̂(t), θ))w(t)dt

+

∫ 1−δ

δ

(F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ))
T (F (xθ(t), θ)− F (x̂(t), θ))w(t)dt.

(35)

This can be analysed in a by now routine fashion, but we provide proofs. We first
study the first term at the righthand side. By a standard argument we have

∫ 1−δ

δ

(F ′
θ(xθ(t), θ))

T (F (xθ(t), θ)− F (x̂(t), θ))w(t)dt

=

∫ 1−δ

δ

(F ′
θ(xθ(t), θ))

T

∫ 1

0

F ′
x(xθ(t) + λ(x̂(t)− xθ(t)), θ)dλ (x̂(t)− xθ(t))w(t)dt

=

∫ 1−δ

δ

(F ′
θ(xθ(t), θ))

TF ′
x(xθ(t), θ)(x̂(t)− xθ(t))w(t)dt

+

∫ 1−δ

δ

(F ′
θ(xθ(t), θ))

T

∫ 1

0

[F ′
x(xθ(t)+λ(x̂(t)−xθ(t)), θ)−F ′

x(xθ(t), θ)]dλ (x̂(t)−xθ(t))w(t)dt

= T3 + T4.

Recalling (17), we see that T3 appears in the leading term Γ(x̂)−Γ(xθ) in (16) and
completes it together with the first term at the righthand side of (31). Next we
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consider T4. Introduce the notation F ′
x(x, θ) = B(x, θ) = (bi,j(x, θ))i,j . We have

∥∥∥∥
∫ 1

0

[F ′
x(xθ(t) + λ(x̂(t)− xθ(t)), θ)− F ′

x(xθ(t), θ)]dλ (x̂(t)− xθ(t))

∥∥∥∥

≤
(

sup
t∈[δ,1−δ]

‖x̂(t)− xθ(t)‖
)

×
∫ 1

0

‖F ′
x(xθ(t) + λ(x̂(t)− xθ(t)), θ)− F ′

x(xθ(t), θ)‖dλ

≤
(

sup
t∈[δ,1−δ]

‖x̂(t)− xθ(t)‖
)

×
∫ 1

0

∑

i,j

|bi,j(xθ(t) + λ(x̂(t)− xθ(t)), θ) − bij(xθ(t), θ)|dλ

≤
(

sup
t∈[δ,1−δ]

‖x̂(t)− xθ(t)‖
)

×
∑

i,j

∫ 1

0

∥∥∥∥
∫ 1

0

∂

∂x
bij(xθ(t) + κλ(x̂(t)− xθ(t)), θ)dκλ(x̂(t)− xθ(t))

∥∥∥∥ dλ

≤
(

sup
t∈[δ,1−δ]

‖x̂(t)− xθ(t)‖2
)

×
∑

i,j

∫ 1

0

∫ 1

0

∥∥∥∥
∂

∂x
bij(xθ(t) + κλ(x̂(t)− xθ(t)), θ)

∥∥∥∥ dκdλ,

where in the last inequality we used the fact that 0 ≤ λ ≤ 1. Since by convergence
in probability of x̂ to xθ, Condition 4 and the continuous mapping theorem the
integrals on the righthand side of the above display are bounded in probability, it
follows from (10) that ‖T4‖ is

OP (1)

{(
bα +

1

nb2

)2

+
logn

nb

}
.

This in turn is oP (n
−1/2) because of the conditions on b. Finally, we treat the

second term at the righthand side of (35). By the Cauchy-Schwarz inequality, its
norm can be bounded by

{∫ 1−δ

δ

‖F ′
θ(x̂(t), θ̂n)− F ′

θ(xθ(t), θ)‖2w(t)dt
}1/2

×
{∫ 1−δ

δ

‖F (xθ(t), θ)− F (x̂(t), θ)‖2w(t)dt
}1/2

.

Each of the terms at the righthand side have already been treated above, see (32)
and (34), and it follows that the lefthand side of the last display is oP (n

−1/2). This
concludes the proof of Proposition 3. �
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Proof of Proposition 4. By a standard decomposition, we have

E [(∆(µ̂n)−∆(µ))2] = (E [∆(µ̂n)]−∆(µ))2 + Var [∆(µ̂n)]

= T 2
1 + T2.

The statement of the theorem will follow from Chebyshev’s inequality, provided we
show that the righthand side of the above display is O

(
n−1

)
. For T1 we have

|T1| =
∣∣∣∣
∫

R

v(t)k(t)(E [µ̂n(t)]− µ(t))dt

∣∣∣∣

≤ sup
t∈[δ,1−δ]

|E [µ̂n(t)]− µ(t)|
∫

R

|v(t)k(t)|dt

= O

(
bα +

1

nb2

)
,

where the last equality follows from (20). Taking 1/(2α) ≤ γ ≤ 1/4 gives that T1

is O
(
n−1/2

)
. We next consider T2. By independence of the ǫi’s and the fact that

maxi |ti − ti−1| . n−1, we have

T2 = Var

[
n∑

i=1

(ti − ti−1)Yi

∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− ti
b

)
dt

]

.
σ2

n

n∑

i=1

(ti − ti−1)

(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− ti
b

)
dt

)2

=
σ2

n

∫ 1

0

(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− s

b

)
dt

)2

ds

+
σ2

n

{
n∑

i=1

(ti − ti−1)

(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− ti
b

)
dt

)2

−
∫ 1

0

(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− s

b

)
dt

)2

ds

}

= T3 + T4.

Notice that by a change of the integration variable (t− s)/b = u we have
∫ 1−δ

δ

∣∣∣∣v(t)k(t)
1

b
K

(
t− s

b

)∣∣∣∣ dt =
∫ (1−δ−s)/b

(δ−s)/b

|v(s+ bu)k(s+ bu)K(u)| du

≤
∫ 1

−1

|v(s+ bu)k(s+ bu)K(u)| du

. sup
z∈[δ,1−δ]

|v(z)k(z)|,

where we used the fact that 0 ≤ s ≤ 1, which implies |s + bu| ≤ 1 + b, as well as
the fact that K is supported on [−1, 1], while k has support on [δ, 1 − δ]. It then
follows that T3 = O

(
n−1

)
. To complete the proof, it remains to bound T4. By a

standard argument we get

|T4| =
σ2

n

∣∣∣∣∣

n∑

i=1

∫ ti

tj−1

(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− ti
b

)
dt

)2

ds
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−
n∑

i=1

∫ ti

tj−1

(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− s

b

)
dt

)2

ds

∣∣∣∣∣

≤ σ2

n

n∑

i=1

∫ ti

tj−1

∣∣∣∣∣

(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− ti
b

)
dt

)2

−
(∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− s

b

)
dt

)2∣∣∣∣∣ds

≤ 2σ2‖vk‖∞‖K‖∞
nb

n∑

i=1

∫ ti

tj−1

∣∣∣∣∣

∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− ti
b

)
dt

−
∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− s

b

)
dt

∣∣∣∣∣ds.

Now notice that for s ∈ [tj−1, ti] by continuous differentiability of K
∣∣∣∣∣

∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− ti
b

)
dt−

∫ 1−δ

δ

v(t)k(t)
1

b
K

(
t− s

b

)
dt

∣∣∣∣∣

≤
∫ 1−δ

δ

|v(t)k(t)|
∣∣∣∣
1

b
K

(
t− ti
b

)
− 1

b
K

(
t− s

b

)∣∣∣∣ dt

. ‖K ′‖∞
∫ 1−δ

δ

|v(t)k(t)|dt 1

nb2

holds. Hence T4 is O
(
n−2b−3

)
. Next n/(n2b3) → 0 if γ < 1/3, and thus certainly

if γ ≤ 1/4. Consequently, T4 = o
(
n−1

)
. This completes the proof of Proposition

4. �

Proof of Theorem 1. The result is an easy consequence of Propositions 3 and 4. �

Appendix A

The proof of Proposition 1 is based on the following two lemmas, which pro-
vide integral approximations to the bias and variance of the estimator µ̂n and its
derivative µ̂′

n at a point t.

Lemma 1. Let µ and K be continuously differentiable and let K be supported on
the interval [−1, 1]. For any t ∈ [0, 1]

(36) E [µ̂n(t)] =

∫ 1

0

µ(s)
1

b
K

(
t− s

b

)
ds+O

(
1

nb2

)

holds in the regression model (6). The order bound on the remainder term in (36)
is uniform in t ∈ [0, 1].

Proof. The proof is based on the Riemann sum approximation of the integral. Since
E [ǫi] = 0, we have

E [µ̂n(t)] =

∫ 1

0

µ(s)
1

b
K

(
t− s

b

)
ds

−
∫ 1

0

µ(s)
1

b
K

(
t− s

b

)
ds+

n∑

i=1

(ti − ti−1)µ(ti)
1

b
K

(
t− ti
b

)
.
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The first term at the righthand side of this expression is the first term of (36). We
will now establish an upper bound on the difference of the other two terms. Using
continuous differentiability of µ and K and the fact that maxi |ti− ti−1| = O(n−1),
we have
∣∣∣∣∣

∫ 1

0

µ(s)
1

b
K

(
t− s

b

)
ds−

n∑

i=1

(ti − ti−1)µ(ti)
1

b
K

(
t− ti
b

)∣∣∣∣∣

=

∣∣∣∣∣

n∑

i=1

∫ ti

tj−1

{
µ(s)

1

b
K

(
t− s

b

)
− µ(ti)

1

b
K

(
t− ti
b

)}
ds

∣∣∣∣∣

≤
n∑

i=1

∫ ti

tj−1

∣∣∣∣µ(s)
1

b
K

(
t− s

b

)
− µ(s)

1

b
K

(
t− ti
b

)∣∣∣∣ ds

+

n∑

i=1

∫ ti

tj−1

∣∣∣∣µ(s)
1

b
K

(
t− ti
b

)
− µ(ti)

1

b
K

(
t− ti
b

)∣∣∣∣ ds

.
1

nb2
‖µ‖∞‖K ′‖∞ +

1

nb
‖µ′‖∞‖K‖∞,

which is of order n−1b−2. This establishes (36). �

The second lemma can be proved along the same lines as the previous one and
therefore we omit its proof. The existence of the second derivative of K is needed
in the proof of this lemma.

Lemma 2. Let µ be continuously differentiable and let K be twice continuously
differentiable and be supported on the interval [−1, 1]. For all t ∈ [0, 1]

(37) E [µ̂′
n(t)] =

∫ 1

0

µ(s)
1

b2
K ′

(
t− s

b

)
ds+O

(
1

nb3

)

holds in the regression model (6). Furthermore, if b ≤ δ and t ∈ [δ, 1 − δ], then
integration by parts yields

(38) E [µ̂′
n(t)] =

∫ 1

−1

µ′(t− bu)K(u)du+O

(
1

nb3

)
.

The order bounds on the remainder terms in (37) and (38) are uniform in t.

The following lemma is used in the proof of Proposition 2.

Lemma 3. Let the stochastic process X = (Xn,η)η∈Θ be defined as

X = (Xn,η)η∈Θ =

(∫ 1−δ

δ

‖F (x̂(t), η)− F (xθ(t), η)‖2w(t)dt
)

η∈Θ

.

Then under the conditions of Proposition 2 we have X
P→ 0, where 0 at the righthand

side denotes the zero process on Θ and convergence is understood as convergence
for random elements with values in the space C(Θ) of continuous functions on Θ,
which is equipped with the supremum norm.

Proof. To prove the lemma, we will verify the conditions of Theorem 18.14 of
van der Vaart (1998). By (10) and the continuous mapping theorem, see Theorem
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18.11 in van der Vaart (1998), for every fixed η it holds that

(39)

∫ 1−δ

δ

‖F (x̂(t), η) − F (xθ(t), η)‖2w(t)dt P→ 0.

Consequently, for any positive integer k and any η1, . . . , ηk ∈ Θ we have

(Xn,η1
, . . . , Xn,ηk

) (0, . . . , 0︸ ︷︷ ︸
k

)

and hence condition (i) of Theorem 18.14 in van der Vaart (1998) is satisfied. In-
troduce

G =

d⋂

j=1

{
sup

t∈[δ,1−δ]

|x̂j(t)− xθj(t)| ≤ β

}

and notice

Gc =

d⋃

j=1

{
sup

t∈[δ,1−δ]

|x̂j(t)− xθj(t)| > β

}
.

For any positive ε and β and any partition Θ1, . . . ,Θm of Θ we have

P

(
sup
ℓ

sup
η,ζ∈Θℓ

|Xn,η −Xn,ζ| ≥ ε

)

≤ P

(
sup
ℓ

sup
η,ζ∈Θℓ

|Xn,η −Xn,ζ | ≥ ε;G

)
+ P (Gc) .

(40)

By (10) we know that

(41) lim
n→∞

P (Gc) ≤ lim
n→∞

d∑

j=1

P

(
sup

t∈[δ,1−δ]

|x̂j(t)− xθj(t)| > β

)
= 0.

We will now show that for arbitrarily small positive ρ and ε there exists a partition
Θ1, . . . ,Θm of Θ, such that

lim sup
n→∞

P

(
sup
ℓ

sup
η,ζ∈Θℓ

|Xn,η −Xn,ζ| ≥ ε;G

)
≤ ρ.

Together with (40) and (41) this will imply condition (ii) of Theorem 18.14 in
van der Vaart (1998) and hence also the fact that X converges weakly to zero.
The statement of the lemma will then be a simple consequence of the fact that
convergence in distribution and in probability are equivalent for constants, see
Theorem 18.10 of van der Vaart (1998).

Notice that

|Xn,η −Xn,ζ |

≤
∫ 1−δ

δ

‖F (x̂(t), η)− F (xθ(t), η)− F (x̂(t), ζ) + F (xθ(t), ζ)‖

× (‖F (x̂(t), η)− F (xθ(t), η)‖+ ‖F (x̂(t), ζ)− F (xθ(t), ζ)‖)w(t)dt

≤
{∫ 1−δ

δ

‖F (x̂(t), η) − F (xθ(t), η)− F (x̂(t), ζ) + F (xθ(t), ζ)‖2w(t)dt
}1/2
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×
{∫ 1−δ

δ

(‖F (x̂(t), η) − F (xθ(t), η)‖ + ‖F (x̂(t), ζ) − F (xθ(t), ζ)‖)2w(t)dt
}1/2

=
√
T3

√
T4.

For T3 we have

T3 ≤ 2

∫ 1−δ

δ

‖F (x̂(t), η)− F (x̂(t), ζ)‖2w(t)dt

+ 2

∫ 1−δ

δ

‖F (xθ(t), η) − F (xθ(t), ζ)‖2w(t)dt.

Restricting ω’s from the sample space Ω to the set G, we get by Taylor

T3 ≤ 2

∫ 1−δ

δ

∫ 1

0

‖F ′
θ(x̂(t), ζ + λ(η − ζ))‖2dλ ‖η − ζ‖2w(t)dt

+ 2

∫ 1−δ

δ

∫ 1

0

‖F ′
θ(xθ(t), ζ + λ(η − ζ))‖2dλ ‖η − ζ‖2w(t)dt

≤ 4‖η−ζ‖2
∫ 1−δ

δ

w(t)dt sup
‖xj‖≤‖xθj‖∞+β,j=1,...,d

ν∈Θ

‖F ′
θ(x, ν)‖ = C(β,w, θ,Θ)‖η−ζ‖2

on the set G. Notice that C(β,w, θ,Θ) is a finite constant, because ‖F ′
θ(x, ν)‖ is

continuous and its supremum is taken over a compact set. By similar techniques one
can show that T4 ≤ C′(β,w, θ,Θ) for some constant C′(β,w, θ,Θ) which depends
only on β,w, θ, and Θ. Consequently,

P

(
sup
ℓ

sup
η,ζ∈Θℓ

|Xn,η −Xn,ζ | ≥ ε;G

)

≤ P

(
sup
ℓ

sup
η,ζ∈Θℓ

√
C(β,w, θ,Θ)C′(β,w, θ,Θ) ‖η − ζ‖ ≥ ε

)
.

(42)

Now take a partition Θ1, . . . ,Θm of Θ such that for all ℓ = 1, . . . ,m

0 < diamΘℓ <
ε√

C(β,w, θ,Θ)C′(β,w, θ,Θ)

holds, where diamΘℓ denotes the diameter of the set Θℓ. Observe that since Θ ⊂ R
p

is compact, there indeed exists a finite m for which this is satisfied. The righthand
side of (42) for such a partition is zero and consequently the conditions (i) and (ii)
of Theorem 18.14 of van der Vaart (1998) hold. This completes the proof of the
lemma. �

In a similar fashion one can prove the following lemma, which is also used in the
proof of Proposition 2. We omit the proof.

Lemma 4. Let the stochastic process X = (Xn,η)η∈Θ be defined as

X = (Xn,η)η∈Θ =

(∫ 1−δ

δ

‖x̂′(t)− F (x̂(t), η)‖2w(t)dt
)

η∈Θ

.

Then under the conditions of Proposition 2 we have X
P→ 0, where 0 at the righthand

side denotes the zero process on Θ and convergence is understood as convergence
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for random elements with values in the space C(Θ) of continuous functions on Θ,
which is equipped with the supremum norm.

Appendix B

Here we state and prove a modification of Proposition 1 for the case when the
ǫi’s are bounded.

Proposition 5. In the regression model (6) replace the assumption of Gaussianity
of the ǫi’s by |ǫi| ≤ C for some constant C > 0 and suppose Condition 5 holds.

(i) If µ is α ≥ 1 times continuously differentiable and b → 0 as n → ∞, then

(43) sup
t∈[δ,1−δ]

|µ̂n(t)− µ(t)| = OP



√(

bα +
1

nb2

)2

+
logn

nb


 .

(ii) If µ is α ≥ 2 times continuously differentiable and b → 0 as n → ∞, then

(44) sup
t∈[δ,1−δ]

|µ̂′
n(t)− µ′(t)| = OP



√(

bα−1 +
1

nb3

)2

+
logn

nb3




is valid. Moreover, µ̂n and µ̂′
n are consistent on [δ, 1− δ], if nb3/ logn → ∞ holds

additionally.

Proof. The proof of (43) follows the same steps as the proof of (8). The only
difference is that we need to show that

(45) E

[
max

1≤j≤N
|Zj|2

]
= O

(
logn

nb

)

holds also for bounded ǫi’s and not only for the Gaussian ǫi’s. To this end we will
use some results from Chapter 2.2 of Wellner and van der Vaart (1996). Let η be a
nondecreasing and convex function on [0,∞), such that η(0) = 0. The Orlicz norm
‖X‖η of a random variable X is defined as

‖X‖η = inf

{
C > 0 : E

[
η

( |X |
C

)]
≤ 1

}
.

A particular η that we will use is ηp(x) = ex
p −1 for p ≥ 1. Since the ǫi’s have mean

zero and are bounded, for any x > 0 Hoeffding’s inequality, see Hoeffding (1963),
implies

P (|Zj | > x) ≤ 2 exp

(
−2x2/

(
n∑

i=1

C2(Si(sj))
2

))
.

By Condition 1 it holds that

C2
n∑

i=1

(Si(sj))
2 . C2‖K‖2∞

1

n2b2

n∑

i=1

1[|sj−ti|≤b]

≤ 1

nb
C2‖K‖2∞c1 max

(
2,max

n

1

nb

)
=

1

C0nb
.

Thus the inequality

P (|Zj | > x) ≤ 2 exp(−2C0nbx
2)
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is valid. By Lemma 2.2.1 of Wellner and van der Vaart (1996) it then follows that

(46) max
j

‖Zj‖η2
≤ C1√

nb
,

where C1 depends on C0 only. Let ‖X‖2 denote the L2 norm of a random variable

X, i.e. ‖X‖2 =
√
E [X2]. Notice that the inequality

(47) ‖X‖2 ≤ ‖X‖η2
,

holds, because of ex
2−1 ≥ x2. The inequalities (46) and (47) combined with Lemma

2.2.2 of Wellner and van der Vaart (1996) yield that
√
E

[
max

1≤j≤N
|Zj|2

]
≤ C3√

nb
η−1
2 (N),

where the constant C3 is independent of N. Now notice that for N ≥ 4

η−1
2 (N) =

√
log(N + 1) ≤

√
log(N2) = 2

√
logn.

Hence (45) holds and this completes the proof of (43). Formula (44) can be proved
in a similar fashion. �
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