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Abstract 

 
We consider an OEM (Original Equipment Manufacturer) that has outsourced the production 

activities to a CM (Contract Manufacturer). The CM produces on a non-dedicated capacitated 

production line, i.e., the CM produces for multiple OEMs on the same production line. The CM 

requires that all OEMs reserve capacity slots before ordering and responds to these reservations by 

acceptance or partial rejection, based on allocation rules that are unknown to the OEM. Therefore, 

the allocated capacity for the OEM is not known in advance, also because the OEM has no 

information about the reservations of the other OEMs. We study this problem from the OEM's 

perspective who faces stochastic demand and stochastic capacity allocation from the contract 

manufacturer. A single-item periodic review inventory system is considered and we assume linear 

inventory holding, backorder, and reservation costs. We develop a stochastic dynamic programming 

model for this problem and characterize the optimal policy. We conduct a numerical study where we 

also consider the case that the capacity allocation is dependent on the demand distribution. For this 

case, we show the structure of the optimal policy based on a numerical study. Further, the numerical 

results reveal several interesting managerial insights, such as the optimal reservation policy is being 

little sensitive to the uncertainty of capacity allocation. In that case, the optimal reservation quantities 

hardly increase, but the optimal policy suggests increasing the utilization of the allocated capacity. 

Moreover, we show that for the contract manufacturer, to achieve the desired behavior, charging 

small reservation costs is sufficient. 
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1. Introduction 

 

Outsourcing has been defined by Chase et al. (2004, p.372) as an 'act of moving some of a 

firm's internal activities and decision responsibilities to outside providers'. In the last few 

years, many papers appeared on the development of outsourcing in many industries (Kremic 
et al., 2006). A survey in 1997 of more than 600 large companies by the American 

Management Association finds that substantial numbers of companies are now outsourcing 

in many areas: information systems, finance, accounting, manufacturing, maintenance, and 

personnel. Among manufacturing companies, more than half had outsourced at least one 

component of their production process (Bryce and Useem, 1998). 

 

Due to contractual agreements and limited information transparency, outsourcing 

complicates the order placing process for the OEM, especially when the contract 

manufacturer serves a number of OEMs on the same production line (Boulaksil and Fransoo, 

2008). It is common in practice to have a contractual agreement that obliges the OEMs to 
reserve capacity prior to ordering (Zhao et al., 2007). Capacity reservation offers several 

benefits to supply chain members such as mitigating the bullwhip effect (Lee et al., 1997), 

providing flexibility to deal with uncertain demand and helps the contract manufacturer with 

his capacity planning, i.e., to secure capacity prior to receiving orders from the OEMs (Serel 

et al., 2001).  

 

In this paper, we consider an OEM that has outsourced the production activities for a long-

term to a contract manufacturer, who is the only source of supply for that specific product. 

The contract manufacturer performs the production activities on a non-dedicated 

capacitated production line on which multiple OEMs are served. Basically, the contract 
manufacturer does not have his own product portfolio, but only produces by offering 

outsourcing services to the OEMs. 

 

According to the contractual agreement, the contract manufacturer requires from the OEM 

to reserve capacity slots in advance. Once the reservations are collected, the contract 

manufacturer plans his capacity based on allocation rules and priorities that are unknown to 

the OEM. Therefore, the available capacity for each OEM is not known in advance. Later, the 

contract manufacturer responds to the OEM with the accepted reservation quantity, which 

is the upper bound for the order quantity, which is placed by the OEM to meet the uncertain 

demand. 
 

From the OEM’s perspective, it is not obvious what the optimal strategy is to control such a 

system. Reservation secures capacity for future orders, but also increases costs. A large body 

of literature deals with production planning models and inventory systems that considers 

capacitated supply (Federgruen and Zipkin, 1986; Ciarallo et al. 1994), but does not consider 

capacity reservation in their models. Therefore, our main contribution to this line of research 

is that we include the capacity reservation problem to the production planning model in case 

of uncertain capacity and demand. 

 

We study this multi-period inventory system from the OEM’s perspective that faces 
uncertain capacity from the contract manufacturer and uncertain customer demand. The 

OEM has to decide on the reservation and order quantities (to release to the contract 

manufacturer) in order to minimize the expected costs. We develop a stochastic dynamic 

programming model for this problem and characterize the optimal policy. We also conduct a 

numerical study in which we extend the problem by considering dependency between the 

demand and capacity distributions.  



3 

The numerical results reveal several interesting managerial insights, such as that the 

utilization of the reservations (the order quantity divided by the accepted reservation 

quantity) is increased when the capacity uncertainty or the reservation costs increase, while 

the optimal reservation policy is little sensitive to the level of capacity uncertainty. We also 

show that the desired reservation and order behavior is achieved when small reservation 
costs are charged. Moreover, we show the structure of the optimal reservation policy in case 

of dependency between the distributions, which is characterized by two parameters. 

 

This paper is organized as follows. In section 2, we discuss the literature review and show 

our contribution to the literature. In section 3, we present the model and some analytical 

results. In section 4, we present the optimal policies. Then, in section 5, we present and 

discuss the numerical results and the managerial insights. Finally, in section 6, we draw some 

conclusions and discuss some managerial insights. 

 

2. Literature review 

 

Federgruen and Zipkin (1986) were one of the first to study a periodic review inventory 

model with a finite but certain capacity level. They proved the optimality of modified 

basestock policies. An extension of this work is that of Ciarallo et al. (1994) who study the 

stochastic demand and stochastic capacity setting. They show that in a single-period setting, 

the optimal policy is not affected by the capacity uncertainty, but in the multi-period setting, 

order-up-to policies that are dependent on the distribution of the capacity are optimal. 

Several other papers extended this problem (Güllü, 1998; Hwang and Singh, 1998; Wang and 

Gerchak, 1996; Iida, 2002; Jaksic et al., 2008). Our main contribution to this line of research 

is that we add the reservation problem to the stochastic demand and stochastic capacity 
case. 

 

In our model, the OEM makes a reservation by sharing advance demand information 

(Karaesmen et al., 2002) without knowing exactly what the supply quantity will be, which 

can be considered as a form of supply uncertainty. A large stream of papers studies the 

supply uncertainty problem (Bassok and Akella, 1991; Parlar et al., 1995; Güllü et al., 1999; 

Pac et al., 2009). Most of these papers consider completely uncertain supply quantities, 

whereas in our case, the supply uncertainty can be partly controlled by the reservation 

decisions. 

 
Another related part of the literature is about capacity reservation, which has been studied 

at both the tactical and the operational level. At the tactical level, the main objective is to 

study contract types and the conditions under which coordination in the supply chain can be 

achieved. Erkoc and Wu (2005) study the so-called deductible reservation contract, which 

means that the buyer pays a fee in advance for each reserved unit of capacity. When the 

buyer places a firm order, the reservation fee is deducted from the order payment, but the 

fee is not refundable in case the reserved capacity is not fully utilized within the specified 

time. 

 

At the operational level, many papers have studied capacity reservation (Bonser and Wu, 
2001; Hazra and Mahadevan, 2009; Serel et al., 2001; Serel, 2007; Van Norden and Van de 

Velde, 2005; Mincsovics et al., 2009). The main objective of these studies is to decide on 

getting materials supplied either at a lower price by reserving capacity in advance with the 

long-term supplier or at a higher price from the spot market (Hazra and Mahadevan, 2009) 

or making reservations to guarantee the delivery of (a portion of) the reserved quantity, 
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given the existence of the more expensive spot market (Serel et al., 2001) or given the 

uncertain availability of the item in the spot market (Serel, 2007). 

 

Serel et al. (2001) show that the existence of the spot market alternative significantly 

reduces the capacity reservation quantity from the long-term supplier. A similar case is 
considered by Hazra and Mahadevan (2009), who derive the supplier's optimal capacity 

reservation price in such a setting. Another paper that has studied capacity reservation is 

that of Jain and Silver (1995). They consider a single-period setting with stochastic demand 

and supplier’s capacity, but dedicated capacity can be ensured by paying a premium to the 

supplier. The paper shows that the cost function is not convex in the dedicated capacity, but 

an algorithm is developed for finding the best level of dedicated capacity. 

 

The literature on capacity reservation considers a single-period (or two-period) dual sourcing 

setting. We contribute to this line of research by considering a multi-period setting where 

the reservation problem is integrated with the inventory control problem. The paper that is 
the closest to our work is that of Costa and Silver (1996). A multi-period inventory problem is 

considered where the supplier capacity and the customer demand are uncertain. In that 

paper, the decision maker has the option to reserve some capacity for one or more periods, 

but the reservations have to be made prior to the start of the planning horizon, whereas in 

our model, the reservations can be done in each period of the planning horizon, based on 

more updated information. Furthermore, we characterize the optimal policy for our setting. 

 

3. Model 

 
Table 1. Notation 

T number of periods in the planning horizon 

h inventory holding cost per unit per period 

b backorder cost per unit per period 

s reservation cost per unit per period 

xt inventory position in period t before ordering 
yt inventory position in period t after ordering 

rt reservation quantity in period t for period t+1 

zt reservation position in period t after reserving 

at actual accepted reservation quantity in period t 

At (random) accepted reservation quantity in period t 

qt order quantity in period t 

Dt (random) demand in period t 

ft(dt) probability density function of the demand in period t 

dt actual demand in period t 

Ct (random) capacity in period t 
ct actual capacity in period t 

α discount factor (0 < α ≤ 1) 

 
As discussed earlier, we consider an OEM that has outsourced the production activities for a 

long-term to a contract manufacturer who serves a number of OEMs on the same 

production line. The contract manufacturer is the only source of supply for the product. 
According to the contractual agreement, the OEM reserves capacity before ordering. The 

reservations are needed by the contract manufacturer for his capacity planning and the 

contract manufacturer responds to a reservation ���� one period later by the accepted 

reservation quantity ��. 
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At the moment of reservation, the OEM does not know what the actual allocated capacity �� 
will be, because the contract manufacturer decides on the capacity allocation based on rules 

and priorities that are unknown to the OEM. Further, the OEM also has no information 

about the reservations of other OEMs. Therefore, from the OEM’s perspective, �� is the 

minimum of ���� and the uncertain allocated capacity �� at the contract manufacturer. 
 

Once �� is announced, the reservation costs are charged, which are equal to ��� with s being 

the unit reservation cost. These costs are introduced by the contract manufacturer to avoid 

that the OEMs inflate their reservations. The OEM is not charged for each unit reserved ��, 
as this would be ‘unfair’ if part of the reservation is rejected. In essence, our reservation cost 

structure is similar to the deductible reservation fee of Erkoc and Wu (2005), as in both 

cases, a premium is also paid for reservations that are not utilized. After knowing ��, the 

OEM decides on the order quantity 	� to meet the uncertain demand 
�. The order quantity 	� cannot exceed �� and is delivered by the contract manufacturer just before the real 

demand �� is observed. 
 

To model this finite-horizon planning problem, we use a stochastic dynamic programming 

approach with two state variables: the inventory position before ordering �� and ��, which 

forms an upper bound on 	�. These state variables are needed to make decisions on �� and 	�. We assume a periodic review inventory system with stochastic demand and stochastic 

capacity. As far as the model is concerned, we do not need any assumptions on the 

probability distributions of 
� and ��. However, to show some optimality results in section 4, 

we assume that the distributions of 
� and �� are independent of each other. In section 5.2, 

we relax this assumption and investigate the effects of dependency between the 

distributions. 
 

We consider the following sequence of events. At the start of period t, the decision maker 

reviews �� and ��, where ��  ��������, ���. Then, the reservation costs are incurred: ���. 
Based on the current state of the system ��� , ���, the decision maker decides on �� � 0. The 

decision maker also decides on 	�, which raises the inventory position to ��  �� � 	�, 
where 0 � 	� � ��. Then at the end of period t, 	� that was ordered at the beginning of 

period t arrives and �� is observed and satisfied as much as possible from inventory; 

unsatisfied demand is backordered. Then, inventory holding and backorder costs are 

incurred. 

 
The state variables of the dynamic programming model ��� , ��� are updated at the start of 

period t+1 in the following way: 

 ����  �� � 	� � �� (1) 

 ����  ������, ����� (2) 

 

We assume linear inventory holding, backorder and reservation costs. Let �����, ��� denote 

the minimum expected cost function, optimizing the cost over the finite planning horizon T 

from t onward and starting in the initial state ��� , ���. Then, we have the following DP 
recursion: 

 �����, ���  ��� ���� �� !"�#$�#"�%&�'(���� � )*+�,,�%-.������� � 
�, /����01, 1 � 3 � 4  (3) 

 

where 
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(����  56��� � ���7��������
8�
9

� : 6��� � ���7��������;
8�

 (4) 

and 

 /���  ������, ����� (2’) 

 

The last part of (3) is the expected future cost, which is derived by taking the expectation 

over 
� and ����. Further, the stopping condition is �<���·�  0. 
 

4. The optimal order and reservation policy 

 

In this section, we characterize the optimal solution of (3) by assuming that the demand (Dt) 

and capacity (Ct) are identically and independently distributed across periods and are 

independent of each other. We prove the optimality of a state-dependent reservation policy 

and a modified basestock policy. 

 

Let 5���� , ���  (���� � )*+�,,�%-.������� � 
�, /����0 denote the cost-to-go function in 

period t. Accordingly, the minimum expected cost function ���. � can be rewritten as  

 �����, ���   ��� ���� �� !"�#$�#"�%&�5����, ���, 1 � 3 � 4 (3’) 

 

In order to describe the optimal reservation policy, we introduce the ”reservation position”: @�  �� � ��. Let ��A� , @̂�� be the unconstrained minimizers of 5���� , ��� for given state 

variables ���, ���. We first show the convexity results that allow us to find the structure of 

the optimal policy. Note that the loss function (���� is convex in �� (Porteus, 2002). The 

optimal decisions at any period t ��� , @�� are made by minimizing 5��·� over the feasible 

region. 

 

Theorem 1: 

a. For any period 1 � 3 � 4, �����, ��� and 5���� , ��� are (jointly) convex functions.  

b. For any period 1 � 3 � 4, the optimal order policy is given by: 

 

��C  D�� � ���A��� E    �7�7�7    
�� F �A� � ���A� � �� � �� � �A��� G �A�  (5) 

 

c. For any period 1 � 3 � 4, the optimal reservation policy is given by: @�C����  H@̂�������     �7�7    �� � @̂������� G @̂�����E   (6) 

See appendix A for the proof. 

 

The optimal order policy (5) is a modified basestock policy, as the order quantity is bounded 

by �� if �� F �A� � ��. The optimal reservation policy (6) is a state-dependent reservation-up-

to policy. This policy implies that at a given ��, the reservation quantity should bring the 

reservation position @�  �� � �� to the optimal reservation position @̂����� if �� � @̂�����. 
Otherwise, @�C����  ��, which means to reserve nothing. 

 

To summarize, the inventory system can be optimally controlled by two critical parameters: 

the optimal order-up-to level ��C and the optimal reservation-up-to level @�C���� according to 
policies (5) and (6). 
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5. Numerical study 

 

In this section, we present and discuss a numerical study that we conducted by solving the 

stochastic dynamic programming formulation given in (3). We construct a number of 

experiments and we are mainly interested in the effects of: 
- different levels of demand and capacity uncertainty and different reservation costs 

in case of stationary distributions (section 5.1), and 

- dependency between the demand and capacity distributions (section 5.2) 

on the optimal decisions and the system performance. 

 

The following parameters are set at fixed values: T=12, α=0.99, h=1, and b=10. Furthermore, 

we assume a Gamma distribution for the demand and a Uniform distribution for the capacity 

(Burgin, 1975). 

 

5.1. Stationary demand and capacity availability 

 

In this section, we consider different levels of demand and capacity uncertainty and we vary 

the unit reservation cost. In experiments 1-24 (see Table 2), *.
�0  *.��0 = 5, but we vary: 

- the coefficient of variation of the demand CV(Dt) between 0.5, 1, 1.5, 2, and 3; 

- the coefficient of variation of the capacity CV(Ct) between 0.28 and 0.52; 

- the unit reservation cost between 0, 2, 5, and 10. 

 

Table 2 shows the results of these experiments, where @̂����� is shown as a vector in ��IIIIJ. 
Moreover, the expected costs are shown for ��� , ���  �0,6�, as this is a feasible state for all 

experiments. 
 

Table 2. Results with varying demand uncertainty, capacity uncertainty, and reservation cost 

Exp L.MN0 OP�MN� L.ON0 OP�ON� Q RST UAT�VT� E[Cost] 

1 5 0.5 5 0.28 0 19 36 306.32 

2 5 0.5 5 0.28 2 22 {20,…,16} 425.00 

3 5 0.5 5 0.28 5 25 {19,…,15} 598.52 

4 5 0.5 5 0.28 10 28 {18,…,14} 882.65 

5 5 1 5 0.28 0 30 59 573.06 

6 5 1 5 0.28 2 33 {30,..,26} 690.27 

7 5 1 5 0.28 5 35 {27,…,23} 860.26 

8 5 1 5 0.28 10 38 {24,…,20} 1136.68 

9 5 1.5 5 0.28 0 37 77 704.83 

10 5 1.5 5 0.28 2 39 {36,…,32} 820.01 

11 5 1.5 5 0.28 5 41 {31,…,27} 985.60 

12 5 1.5 5 0.28 10 43 {27,…,23} 1250.49 

13 5 0.5 5 0.52 0 22 39 379.69 

14 5 0.5 5 0.52 2 28 {25,…,17} 495.67 

15 5 0.5 5 0.52 5 36 {25,…,17} 663.92 

16 5 0.5 5 0.52 10 45 {24,…,16} 937.70 

17 5 1 5 0.52 0 32 60 614.62 

18 5 1 5 0.52 2 38 {34,…,26} 729.24 

19 5 1 5 0.52 5 43 {33,…,25} 892.21 

20 5 1 5 0.52 10 49 {32,…,24} 1154.19 

21 5 1.5 5 0.52 0 38 78 735.05 

22 5 1.5 5 0.52 2 43 {40,…,32} 847.08 

23 5 1.5 5 0.52 5 47 {37,…,29} 1003.41 

24 5 1.5 5 0.52 10 51 {34,…,26} 1251.89 
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The results from Table 2 show that higher demand uncertainty increases �A�, @̂����� and 

leads to higher costs. However, the higher the unit reservation cost s, the lower the effect of 

an increase of the demand uncertainty, because the incremental increase of the optimal 

reservation quantities decreases. Figure 1 shows the optimal order-up-to and reservation-

up-to levels for different unit reservation cost and different levels of demand uncertainty. 
From the results, we see that when s increases, the optimal order-up-to level increases 

much more than the reservation quantities. In other words, when the unit reservation costs 

increases, it is optimal to increase the order quantity (much more than the reservation 

quantity) such that a larger part of the accepted reservation is utilized, instead of increasing 

the reservation quantities. See Figure 2 that confirms this insight by showing the optimal 

ratio 
W�8�. 

 

 
Figure 1. Order-up-to (yt) and reservation-up-to (zt) levels for different levels of demand uncertainty 

and reservation cost and the intersection line. 

 

From the other side, the contract manufacturer would prefer a situation where the 

difference between the reservation and order quantities is minimal, ideally zero. In Figure 1, 

we show that these ideal situations are reached at small unit reservation cost. The 

intersection line that connects the intersection points is almost vertical, which means that 

the optimal � is independent of the level of demand uncertainty. This means that the 
contract manufacturer should incorporate small unit reservation cost in the contract to 

avoid large discrepancies between the reservation and order behavior. 

 

 
Figure 2. The optimal ratio zt/yt at different unit reservation cost and different levels of demand 

uncertainty. 
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Another insight from Table 2 is that the higher the demand uncertainty, the lower the effect 

of an increase of capacity uncertainty on the optimal cost (see Figure 3, where ΔCost is given 

by (7)). 

 

∆�Y�3  *.�Y�3|�[����  1.50 � *.�Y�3|�[����  0.50*.�Y�3|�[����  0.50  (7) 

 

 
Figure 3. Relative cost increase due to increased capacity uncertainty. 

 
The explanation for this effect is that when the capacity uncertainty increases, @̂����� 
increases little compared with �A�, i.e., the order quantity increases much more than the 

reservation quantity (see Figure 5.4). Therefore, when the capacity uncertainty increases, it 

is optimal to increase the order-up-to level much more than the reservation-up-to level. 

Therefore, when the capacity uncertainty increases, the optimal ratio 
W�8� decreases. 

 

 
Figure 4. Relative change in yt and zt due to increased capacity uncertainty (when s=2). 

 

5.2. Dependency between the distributions 

 

In this section, we show the results of a numerical study in which we consider dependency 
between the demand and capacity distributions. In particular, we assume that the capacity 

allocation �� of the contract manufacturer is dependent on the OEM’s demand 
� and 

therefore, the results of section 4 do not hold anymore. We consider both the situations 

where the dependency is positive (section 5.2.1.) and negative (section 5.2.2.). We also show 

the structure of the optimal policy for these two situations. In appendix B, we show how the 

conditional probability distributions are determined. 
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5.2.1. Positive dependency 

 

In this section, we consider the case where the contract manufacturer is allocating more 

capacity when the OEM’s demand is higher. The idea is that when the OEM’s demand is 

higher, the OEM will request more (in terms of reservations and orders) and the contract 
manufacturer is then willing to allocate more capacity to the OEM to avoid the OEM 

searching for another source of supply. This situation is also possible when the OEMs’ 

demand quantities are negatively correlated, which means that the more the OEM reserves 

and orders the less the other OEMs reserve and order, the more capacity is available for the 

OEM. This could happen when the total demand of all OEMs is relatively stable due to a 

fixed market size and an increase in the OEM’s demand represents an increased market 

share. 

 

First, we show the structure of the optimal policy as we observed during the numerical 

studies. Then, we discuss the numerical results and compare them with non-correlated case. 
Based on the numerical studies, we observed that the optimal order policy remains a 

modified basestock policy with the same structure as (5). However, the reservation policy 

does not remain the same. Figure 5 shows the structure of the optimal reservation policy in 

case of positive dependency, as we observed in our numerical study. The policy can be 

characterized by two optimal reservation-up-to levels, where the second level is lower than 

the first one. When the (starting) inventory position exceeds some point, it is optimal to 

target for a lower reservation-up-to level, i.e., to reserve much less. Due to the positive 

dependency, less has to be reserved (which also limits the reservation costs) to get the same 

amount of capacity allocated. 

 

 
Figure 5. The structure of the optimal reservation policy in case of positive dependency 

 

Table 3 shows the numerical results for 9 experiments that we conducted with positive 

dependency between the demand and capacity distributions. The results show that for all 

experiments, the expected cost is lower than in case with no dependency (on average 20.6 

%). Due to the positive dependency, less has to be reserved with lower risk of getting too 

high accepted reservations, which results in lower (reservation) costs. 

 

This result suggests that it is worthwhile to collect market information of the competitors 

(that produce at the same contract manufacturer) and to assess the dependency between 
the own demand and that of the competitors. In case of a negative dependency between 

OEMs’ demand (which means there is a positive dependency between the own demand and 

the available capacity at the contract manufacturer), which is for example the case when the 

competitors operate in different market sectors, it is wise to adapt the reservation policy 

towards the contract manufacturer. 
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Table 3. Results with positive dependency 

Exp L.MN0 OP�MN� L.ON0 OP�ON� Q RST E[Cost] 

25 5 0.5 5 0.28 0 17 234.74 

26 5 0.5 5 0.28 2 20 358.88 

27 5 0.5 5 0.28 5 24 538.13 

28 5 0.5 5 0.28 10 28 830.40 

29 5 1 5 0.28 2 31 598.66 

30 5 1.5 5 0.28 2 38 717.91 

31 5 0.5 5 0.52 2 25 370.53 

32 5 1 5 0.52 2 35 554.45 

33 5 1.5 5 0.52 2 40 684.23 

34 5 2 5 0.28 2 41 750.22 

35 5 2 5 0.52 2 45 769.50 

36 5 3 5 0.28 2 42 787.79 

37 5 3 5 0.52 2 54 864.16 

 

5.2.2. Negative dependency 

 

In this numerical study, we consider the negative dependency case. Such a situation is likely 

when the different OEMs who all reserve and order at the same contract manufacturer 

operate in the same market, which results in a positive correlation between the demand 
� 
of the different OEMs. That means that all OEMs will increase their reservations and orders 

in case of a demand increase and vice versa. In such a situation, the contract manufacturer 

faces increased demand from all OEMs simultaneously, which results in a smaller capacity 
allocation for each OEM. Based on the results of the numerical studies, we observe that the 

optimal order policy remains the same as (5), but the structure of the reservation policy 

changes and is shown in Figure 6. 

 

 
Figure 6. The structure of the optimal reservation policy in case of negative dependency 

 
Like in the positive dependency case, the optimal policy can be characterized by two optimal 

reservation-up-to levels, but the second one is now higher than the first one. When the 

starting inventory position exceeds some point, it is optimal to target for a higher 

reservation-up-to level to get less capacity allocated and consequently not facing too high 

reservation and inventory holding costs. 

 

Table 4 shows the numerical results of the experiments that we conducted with negative 

dependency between the demand and capacity distributions. The results show that for all 

experiments, the costs are higher than in case with no dependency. Due to the negative 

dependency, the probability of not getting enough supplied to meet the demand increases, 
which increases the backorder costs. 
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Like in the positive dependency case, it is worthwhile to assess whether there is dependency 

between the own demand and that of the competitors, by which the dependency between 

the own demand and the contract manufacturer’s available capacity level can be estimated. 

If the latter dependency appears to be negative, it is recommended to take measures to 

eliminate the negative dependency, as this leads to higher costs. The elimination can be 
done by keeping some safety stock to avoid backorders or by agreeing (contractually) on 

paying slightly more to make an appeal to (in case needed) a fixed amount of the contract 

manufacturer’s production capacity. 

 
Table 4. Results with negative dependency 

Exp L.MN0 OP�MN� L.ON0 OP�ON� Q RST E[Cost] 

38 5 0.5 5 0.28 0 20 395.51 

39 5 0.5 5 0.28 2 22 507.63 

40 5 0.5 5 0.28 5 25 673.77 

41 5 0.5 5 0.28 10 28 947.42 

42 5 1 5 0.28 0 32 719.15 

43 5 1 5 0.28 2 35 825.08 

44 5 1.5 5 0.28 2 41 953.94 

45 5 0.5 5 0.52 0 24 575.52 

46 5 0.5 5 0.52 2 29 681.81 

47 5 1 5 0.52 2 40 983.23 

48 5 1.5 5 0.52 2 46 1116.38 

49 5 2 5 0.28 2 44 999.53 

50 5 2 5 0.52 2 50 1163.27 

51 5 3 5 0.28 2 48 1040.79 

52 5 3 5 0.52 2 53 1207.47 

 

6. Conclusions 

 

In this paper, we consider the case where a manufacturing company has outsourced the 

production activities to a contract manufacturer. The contract manufacturer produces on a 

non-dedicated production line on which multiple OEMs are served. For capacity planning 

purposes, the contract manufacturer requires that the OEM reserves capacity before 

ordering and responds to the reservations by acceptance or partial rejection based on rules 
that are unknown to the OEM. Therefore, the allocated capacity to the OEM is not known in 

advance. 

 

We study this problem from the OEM’s perspective who faces stochastic customer demand 

and stochastic capacity allocation from the contract manufacturer and who has to decide on 

the reservation and order quantities under uncertainty. We develop a stochastic dynamic 

programming model for this problem and we characterize the optimal reservation and order 

policies. The optimal reservation policy is a state-dependent policy, as the optimal target 

reservation-up-to level is dependent on the accepted reservation quantity. The optimal 

order policy is a modified basestock policy; the order quantity is bounded by the accepted 
reservation quantity. 

 

We conduct a numerical study which reveals several interesting (managerial) insights. First, 

in case the unit reservation cost or the capacity uncertainty increases, it is optimal to 

increase the order quantity (much more than the reservation quantity) and so, the utilization 

of the accepted reservation quantity. This might be counterintuitive, as one would expect to 

mainly increase the reservation quantities in case the capacity uncertainty increases to 

hedge against the uncertainty faced from the contract manufacturer. Another insight is that 
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the effect of an increase of the capacity uncertainty decreases substantially when the 

demand uncertainty increases. When the demand uncertainty increases, the optimal order 

quantities increase, by which the order will be (closely) equal to the accepted reservation 

quantity. The action of increasing the order quantity is also required when the capacity 

uncertainty increases, and therefore, we see that the effect of an increase of the capacity 
uncertainty is very little when the demand uncertainty increases. 

 

Another managerial insight follows from the fact that from the contract manufacturer’s 

perspective, it is desired to have the reservation equal to the order quantity. We have seen 

that this can be achieved when little reservation costs are charged. This optimal unit 

reservation cost is independent of the level of demand uncertainty. Charging no reservation 

costs leads to over reservation and charging higher reservation costs leads to under 

reservation. This managerial insight is helpful when having contract negotiations with the 

OEMs on setting the reservation cost, which is a contract parameter. 

 
Finally, we studied the case where the capacity allocation of the contract manufacturer 

depends on the OEM’s demand distribution. When the distributions are dependent, the 

structure of the optimal order policy is the same as in the independent case, but the optimal 

reservation policy changes to a policy with two optimal target reservation-up-to levels. 

Dependent on whether the dependency is positive (or negative), the second optimal 

reservation-up-to level is lower (or higher) than the first one by which the model adapts its 

reservation quantities to the higher (or lower) capacity allocation. We have seen that the 

expected cost decreases when the dependency is positive and increases when the 

dependency is negative. These results suggest that it is worthwhile to collect market 

information of the competitors (that produce at the same contract manufacturer) to assess 
the dependency between the own demand and the available capacity at the contract 

manufacturer. In case the dependency is positive, it is wise to adapt the reservation policy 

towards the contract manufacturer to save costs. In case of negative dependency, one can 

think of measures like keeping safety stocks to hedge against the little capacity allocation of 

the contract manufacturer or agreeing on paying an additional premium to ensure (in case 

needed) a fixed amount of capacity from the contract manufacturer. Of course, these 

measures should be cheaper than the extra cost due to the negative dependency. 
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Appendix A. Proof of theorem 1 

 

Let �����, ���  ��� �� !"�#$�#"�&�'��� � (���� � )*+�,,�.������� � 
�, /��01 ��� �� !"�#$�#"�&����� � 5���� , ����  ��� � �����, ��� 
 

- The functions �����, ��� and 5���� , ��� are jointly convex functions for any 3 ].1, 40. We prove this by induction. �<���·�  0 and is convex. Assume that 5����·� is 

also convex. Then, the function 5����, ���  (���� � )*+�,,�.������� � 
�, /��0 is 

also convex, because: 

o (���� is a convex funtion; 
o *.������� � 
�, /��0 is convex due to the convexity of the expected value 

operator. Rule: If 7:_` a _ is convex, then the function ���� *b�7�� � c�� is also a convex function, where c is a random vector in _`, 

provided that the expected value is finite for every � ] _`  (Bertsekas, 

2005); 

o the linear combination of two convex functions remains convex. Rule: Let d 

be a non-empty index set, e a convex set, and for each f ] d let 7g�·� be a 

convex function on e and let hg � 0. Then ∑ hg7g���g]j , � ] e is a convex 

function on any convex subset of e, where the sum takes finite values 
(Heyman and Sobel, 2004). 

 

- �����, ���  ��� �� !"�#$�#"�&��5���� , ���� is also convex when 5���� , ��� is convex. Rule: 

Let e be a non-empty set with /k a non-empty set for each � ] e. Let � ���, ��: � ] /k , � ] e�, let l be a real-valued function on �, and define 7��� ��7�l��, ��: � ] /k�, � ] e. If � is a convex set and l is a convex function on �, then 7 is a convex function on any convex subset of eC  ��: � ] e, 7��� G �∞� 
(Heyman and Sobel, 2004). 

- The function �����, ���  ��� � �����, ��� is then also convex. 
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Appendix B. Conditional probability distribution 

 

In part of the numerical studies, we consider the case where the capacity allocation �� by 

the contract manufacturer is positively or negatively dependent on OEM’s demand 
�. 
Therefore, we adapt the probability mass function of �� to a conditional probability mass 
function in which �� is conditioned on 
�: n���  �|
�  ��. This function is basically the 

matrix o of size � p �, where �  �qrk (the maximum demand) and �  �qrk � �qs` � 1 

(where �qs` and �qrk are the bounds of the capacity distribution). 

 

In case of positive dependency, elements oq,�  o�,` = 0 and o�,�  oq,`  tù  �7 � � 21 �7 �  1E. 
 
Then, the rows and columns are filled by a linear decrease/increase from 0 to o�,� or oq,`. 

Finally, the probabilities are rescaled, such that distribution sums up to 1. 

 

o 
wx
xyo�,� 2�� � 2���� � 1� 2�� � 3���� � 1� { 2��� � 1� 0| } |0 … … { oq,` ��

�� 
 

In case of negative dependency, the same procedure is applied, but now o�,�  oq,`  0 

and  oq,�  o�,`   tù  �7 � � 21 �7 �  1E. 
 

o  � 0 { o�,`| } |oq,� { 0 � 
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