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Real-time System Overheads: a Literature Overview

Mike Holenderski

October 16, 2008

Abstract

In most contemporary systems there are several jobs concurrently competing for shared resources,
such as a processor, memory, network, sensors or other devices. Sharing a resource between several
jobs requires synchronizing the jobs, specifying when which job will have access to the resource.
A common synchronization method is scheduling. Executing a schedule requires switching resource
assignments between the jobs, which is usually referred to as context switching. The overheads
associated with scheduling and context switching are part of the system overheads.

Initially, in the spirit of keeping things simple, real-time systems analysis abstracted from many
details, including the overheads incurred by the operating system. This has led to inherently opti-
mistic results, i.e. accepting collections of jobs, which if executed on a real system will fail to meet
all the constraints.

In this paper we consider a less idealized platform by taking some practical aspects into account.
We present an overview of literature dealing with real-time system overheads, in particular the
scheduling and context switch overheads. We focus on sharing a single timely resource, such as a
processor, in the context of Fixed Priority Preemptive Scheduling. We treat in detail the overheads
due to preemption, and due to blocking of tasks for different resource access protocols (which is the
main contribution of this paper).
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1 Introduction

In most contemporary systems there are several jobs concurrently competing for shared resources, such
as a processor, memory, network, sensors or other devices. In the remainder of this paper we assume the
resources are mutually exclusive, i.e. at any particular time at most one job can be using the resource.

Sharing a resource between several jobs requires scheduling the jobs, specifying when which job
will have access to the resource. Executing a schedule requires switching between the jobs, which is
usually referred to as context switching. Both scheduling and context switching are taken care of by
the platform, which encompasses the real-time operating system, the underlying architecture and the
hardware resources, such as processor, memory or interconnect.

At the core of real-time systems analysis lies the question of whether a given collection of jobs is
schedulable or not, i.e. whether all the jobs will be able to execute on a given platform meeting their
real-time constraints.

Initially, in the spirit of keeping things simple, real-time systems analysis considered idealized plat-
forms and abstracted from many details, including the overheads incurred by the operating system.
This has led to inherently optimistic results, i.e. accepting collections of jobs, which if executed on a
real system will fail to meet all the constraints. A simple, though potentially expensive, solution is
over-dimensioning the system resources.

In this paper we consider a less idealized platform by taking some practical aspects into account. We
present an overview of literature dealing with real-time system overheads, in particular the scheduling
and context switch overheads. We focus on sharing a single bandwidth resource 1 (e.g. processor)
between jobs specified by a task model.

We start off with defining some terminology in Section 2. We state and motivate our goal for this
paper in Section 3 and continue with a discussion of real-time system overheads due to preemption in
Section 4 and due to blocking (which is our main contribution) in Section 5. In Section 5.6 we elaborate
on real-time system overhead due to tick-scheduling, and conclude with a summary and future work in
Section 6.

2 Some definitions

A real-time system guarantees that the tasks in the system receive their required resources on time (i.e.
before their deadline), so that the jobs can complete before their deadline. In this paper we consider the
task model, where the requirement of a job for a particular resource is specified by an abstract entity
called task. We say that jobs are generated by tasks.

2.1 Task model

A task τi is described by a phasing ϕi, (worst-case) computation time Ci and deadline Di, which means
that a job generated by task τi at time ϕi requires at least Ci time of the resource before deadline Di,
i.e. before time ϕi +Di.2

A periodic task generates jobs at regular intervals and is further described by a period Ti, with job
τij representing the job released in the jth period at time ϕi + jTi with the deadline of ϕi + jTi +Di.

A sporadic task generates jobs with a minimum inter-arrival time and is further described by a period
Ti, with job τijrepresenting the job released in the jth period at time αi(j) ≥ αi(j − 1) + Ti with the
deadline of αi(j) +Di, where αi(j) is the arrival time of the jth job of task τi.

Aperiodic tasks are those which generate a single job released at time ϕi with the deadline of ϕi +Di.
When there is no confusion we will refer to a job generated by an aperiodic task τi simply as τi.

In the remainder of this paper we assume that for all tasks Di ≤ Ti.
The i index in τi refers to the priority of the task, where smaller i represents higher priority. We

assume there is a single task per priority and that there are altogether n tasks in the task set. We further
assume that the jobs do not self-suspend.

1In contrast to spatial resources, such as memory.
2Note that here we restrict ourselves to the processor resource. The computation time requirement Ci can be generalized

to a reservation time to accommodate other timely resources as well, such as network.
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Jitter Real-time literature distinguishes several kinds of jitter. Among others

• activation jitter is the fluctuation of event arrival relative to the arrival of the corresponding task
(as specified by its period) and is defined by the environment. We ignore activation jitter in the
remaining discussion.

• release jitter is the fluctuation of task release relative to task arrival and depends on the platform,
such as ready queue management. We treat the release jitter in Section 2.2.

2.2 Platform model

In this paper we treat the platform as a composition of an operating system and the underlying hardware,
providing the necessary functionality to execute a given workload (modeled by a task set described above).
At the core of an operating system lies the kernel. A real-time operating systems is usually based on
the micro-kernel architecture, where the kernel is stripped down to the bare essentials and provides
functionality to handle: timer interrupts, external interrupts and system calls ([Liu 2000] presents a nice
overview of kernels).

System calls can be regarded as non-preemptive subjobs and we ignore these for the time being in
our discussion of Fixed Priority Preemptive Scheduling (FPPS). We also omit external interrupts and
focus on the timer interrupts. Scheduling external interrupts is discussed in [Zhang and West 2006].

A platform is responsible for managing resources shared between several tasks. It therefore has to
schedule these tasks on the resources, avoiding conflicts. One of the key questions is when the scheduling
takes place.

Non-preemptive scheduling In a non-preemptive system (also called co-operative [Audsley et al. 1996])
resources can be reassigned to jobs only at job boundaries. When a job completes, the scheduler checks
whether new periodic or sporadic tasks have arrived and schedules the next job, according to some policy.

Event-triggered scheduling In an event-triggered preemptive system scheduling decisions are taken
whenever an external event releases a sporadic task, an internal clock event releases a periodic task or a
previously running job completes or blocks. This is implicitly assumed in most of the standard literature
dealing with FPPS [Buttazzo 2005], together with the assumption of negligible scheduling overhead.

Time-trigerred scheduling If we assume tick scheduling as described in [Liu 2000] (also referred to
as time-trigerred scheduling), then the scheduling decisions are only taken at regular intervals, called
clock interrupts (also referred to as clock ticks). A clock interrupt can be regarded as a special timer
interrupt. When an even occurs in-between clock interrupts, then the even handler is delayed until the
next scheduler invocation. Section 5.6 takes a closer look at what exactly happens when an event occurs
and how the additional delays can be accounted for in the response time analysis.

2.3 Feasibility analysis

In real-time systems one is usually interested in whether a given task set can be executed on time on a
given configuration (of resources). There are several feasibility analysis methods, e.g. utilization based
Liu & Layland test [Liu and Layland 1973] and Hyperbolic Bound [Bini et al. 2003] analysis for Rate
Monotonic scheduling, and Worst Case Response Time analysis [Audsley et al. 1993] for Fixed Priority
Preemptive Scheduling in general (with Di ≤ Ti).

2.3.1 Utilization based analysis

is usually easiest to perform. It involves computing a polynomial function in utilization factors Ui =
Ci/Ti of all tasks and comparing the result to a specific bound. E.g. [Liu and Layland 1973]

n∑
i=1

Ui ≤ n(21/n − 1)
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or [Bini et al. 2003]
n∏

i=1

(Ui + 1) ≤ 2

It is usually pessimistic, in that it only provides a sufficient condition, which may cause poor processor
utilization and sometimes reject task sets which could actually be scheduled.

2.3.2 Response time analysis

(also referred to as time demand analysis [Liu 2000]) accepts a task set if for all tasks their response time
is smaller or equal to their deadline.

The response time of a job τij is given by

Rij = Ci +Bij + Iij (1)

where Bij and Iij represent the time τij is active but cannot execute due to blocking and preemption,
respectively.

Worst Case Response Time analysis is more complicated than utilization based analysis, but it can
provide a less pessimistic bound. It involves, for every task, finding the worst possible response time
and comparing it to the deadline. The worst case response time occurs at a critical instant. Since the
Worst Case Response Time analysis focuses on job τijat the critical instance only (ignoring the cases
with smaller Rij), the j index is usually ignored and Equation 1 becomes

WRi = Ci +Bi + Ii (2)

where WRi is the Worst Case Response Time of task τi. The analysis deals with finding the values for Bi

and Ii. Most literature deals with estimating the contribution of the Ii term, i.e. the total preemption
time of job τij . The standard method for computing Ri (assuming fixed Bi) is given by the iterative
equation [Joseph and Pandya 1986, Burns 1994]

WR0
i =

∑
j∈hp(i) Cj

WRn+1
i = Ci +Bi +

∑
j∈hp(i)

⌈
WRn

i

Tj

⌉
Cj

(3)

where hp(i) is the set of tasks with priority higher than i, until WRn
i > Di (meaning the task set is not

schedulable) or WRn
i = WRn+1

i (meaning the task set is schedulable).

2.4 Scheduling overhead vs. context switch overhead

Litereature distinguishes two kinds of overhead [Audsley et al. 1995]:

Scheduling overhead (also referred to as real-time clock overhead [Burns et al. 1993b]) models the
overhead incurred by the clock interrupt handler which is responsible for scheduling, i.e. moving
newly arrived and preempted jobs between the queues and selecting the running job. It also includes
managing timing services, accounting for CPU usage and initiating preemption for the sake of
multitasking [Liu 2000]. It is influenced by the (implementation of) the scheduling algorithm, e.g.
Fixed Priority Scheduling experiences less scheduling overhead, than Dynamic Priority Scheduling.

The scheduling complexity is at most linear in the number of tasks, but it can be smaller with
appropriate hardware support.

Context switch overhead represents the overhead associated with preempt- ing current job, saving
its context, loading the context of the next job and resuming the next job. The context switch
into task τi is performed at the kernel (i.e. highest) priority level, but only when task τi is ready
to execute [Klein et al. 1993]. The context switch into τi behaves as follows:

1. A zero length action is executed at priority i.3

3This “virtual” step makes sure that the context switchoverhead is included in the worst-case computation time of task
τi.
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2. The context switch is executed at priority 0 (i.e. kernel).

3. The rest of τi is executed at priority i.

In a non-preemptive system, where resources can be reassigned to jobs only at job boundaries, the
scheduler is only invoked at the end of a job (assuming the interrupts are disabled).

In an event-triggered preemptive system the scheduling overhead can be incurred whenever an event
occurs. The scheduler is usually associated with the event interrupt handler. A drawback of this approach
is that the scheduler has to be executed at every scheduling point. In real systems where the scheduler
overhead is not negligible, a frequently executing scheduler can deplete the available resources.4

In a time-triggered preemptive system the scheduling overhead is incurred at a regular interval. The
scheduler is usually associated with a timer handler and is invoked periodically. As a disadvantage a
task arriving in between the scheduler invocations will experience release jitter [Audsley et al. 1996].

As mentioned in Section 2.2, in this paper we consider time-triggered systems. Figure 1 illustrates
the scheduling and context switch overheads in a time-triggered preemptive system.

Figure 1: Scheduling (s) and context switch (c) overheads in a time-triggered preemptive system

It shows two tasks: τ1 with C1 = 10 and τ2 with C2 > 17 (the exact value is not relevant here).
Furthermore, the clock interrupt handler is invoked regularly (indicated by the lightning) with period
T0 = 8 and computation time C0 = 1. The execution of task τ2 is regularly preempted by the clock
handler. Somewhere before the second clock tick τ1 is released. During the second clock interrupt handler
invocation the scheduler notices the newly arrived τ1 and switches from τ2 to τ1. After executing for 10
time units, τ1 is finished and releases the processor until the next clock tick. During the next scheduler
invocation the processor is switched back to τ2.

Note the idle gap between the time τ1is finished and the next clock tick. It is there because we
assume idling scheduling. This guarantees that the scheduler will be invoked at regular intervals, which
is assumed in the following sections.

3 Goal for this paper

The goal of this paper is to identify which parts of the real-time system overheads domain are already
sufficiently covered in the literature and where are the gaps and potential research opportunities. We
proceed by identifying the key research questions and subsequently discussing the results found in the
literature.

3.1 Research questions

The main research questions regarding scheduling and context switch overheads deal with

• Modeling

– How can we model the overheads? As a high priority task or extend the computation time?

– When does the context switchin the model occur? At the beginning or end of the task?
4[Mok 1983]introduced sporadic tasks to bound the inter-arrival time between the jobs of the same task and therefore

bound the depletion.
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– Which job should be charged the overhead cost, i.e. which task should have its computation
time C increased with the the context switchcost?

– How many context switches occur during runtime?

– How long is each context switch?

• Reducing the number of context switches

– by design

– by modification of existing system

In the following sections we will address these research questions, in the context of Fixed Priority
Preemptive Scheduling (FPPS) on a single CPU resource.

3.2 Motivation

We motivate our work with references to case studies in the literature exposing the system overheads
in real systems. As the real-time system overheads have been addressed in literature before, the main
contribution of this paper is a summary of these results.

3.2.1 Performance

Scheduling overhead In their experimental results (based on sorting an array under Linux on various
Intel platforms) [Tsafrir 2007] show an overall 0.5% - 1.5% slowdown due to scheduling overhead.

A different study of interrupt servicing overheads in Linux on an ARM platform [David et al. 2007]
shows an average increase of only 0.28% - 0.38% of the total running time of the tasks.

Context switch overhead A study of average context switch overheads in Linux on an ARM platform
[David et al. 2007] shows only 0.17% - 0.25%.

FPGAs give the possibility to reconfigure the hardware during runtime, which can be regarded as
a context switch. The delays, however, run into milliseconds, with Virtex II taking 25ms for complete
reconfiguration [Butel et al. 2004]. The newer models hope to reduce the latency through partial recon-
figuration, allowing to reconfigure smaller parts of the FPGA independently. However, it proves difficult
due to strongly intertwined layout of the components on the FPGA.

It is important to notice that the percentages mentioned above refer to the average scheduling and
context switch overheads. [Burns et al. 1994] show that the worst-case overhead can be much larger
and present analytical results based on the data from a real Olympus satellite control system, showing
a worst-case scheduling and context switch overhead (together) of upto 10.88% of the total utilization.

In certain type of applications, e.g. multimedia applications, the system may exhibit very high context
switch cost, due to high latency of the I/O devices [Echague et al. 1995]5. Therefore, given the relatively
high worst-case overheads, it makes sense to consider these overheads in systems where the computation
time estimates are accurate and the utilization needs to be maximized close to 100%.

3.2.2 Maintenance

Switching context on a DSP, where there is no platform support for context switching, includes manually
(i.e. by the programmer) storing and loading all affected registers, which is complicated and error-prone.

5Note that it highly depends on the chosen operating system.
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4 Real-time system overheads due to preemption

In this section we focus on two real-time system overheads: the scheduling overhead discussed in Section
4.1 and the context switching overhead discussed in Section 4.2.

4.1 Scheduling overhead

As mentioned in Section 2.2, different scheduling strategies are possible. Let us take a look from the
perspective of an operating system at what happens when a task arrives, either due to an external
interrupt for aperiodic or sporadic tasks, or due to a clock interrupt for a periodic task. We introduce a
common terminology, which will allow us to relate the existing literature on scheduling overheads.

4.1.1 Event-triggered scheduling

Figure 2: Event handling with event-triggered scheduling

t0: An event occurs and is detected by a sensor. The sensor dispatches an interrupt.

t1: The corresponding hardware interrupt handler is dispatched on the CPU and the interrupt handler
(also called scheduler or immediate interrupt service) starts executing, Cint representing the fixed
overhead of every clock handler invocation. The delay between t0 and t1 depends on the platform
and the operating system (e.g. bus availability).

t2: The interrupt handler requires Cq time to insert the new task (i.e. the corresponding scheduled
interrupt handling routine) into the ready queue. Note that during Cint and Cq a higher priority
interrupt may arrive. Two strategies are possible:

• Interrupts disabled at t1 and enabled at t3, giving rise to non-preemptive interrupts. The
drawbacks include longer latency for higher priority interrupts and possibly missing inter-
rupts (if the new interrupts are not queued) [Schoen et al. 2000]. The interrupt handler may
experience blocking due to a non-preemptive lower priority interrupt handler.

• Interrupt handlers are split into two phases: prologue and epilogue [Schoen et al. 2000]. The
Prologue is short and non-preemptive, while the main work of the interrupt handler is per-
formed by the preemptive epilogue. Reducing the length of non-preemptive sections of the
interrupt handler serves the purpose of interrupt transparency. The interrupt handler may
experience blocking due to a lower priority handler or preemption due to higher priority han-
dlers, however the blocking duration is shorter than in the case of non-preemptive interrupts.

t3: Depending on the task selected to run by the scheduler, either the running task is resumed or a new
task is switched in.

Since the scheduler is invoked upon every task arrival, this may lead to a large overhead.

4.1.2 Time-triggered scheduling

In time-triggered systems the scheduling overhead is incurred at periodic intervals. Depending on the
period of the scheduler relative to the inter-arrival time of tasks, this can lead to a higher or lower
overhead compared with event-triggered scheduling.
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Periodic task arrival The time-triggered scheduling models systems where periodic tasks execute a
”delay until” kernel routine at the end of their computation, upon which the task is placed in the pending
queue (also referred to as the delay queue). The periodically invoked scheduler (also referred to as clock
handler by the literature on tick-scheduling) polls for the release of any task, by inspecting the pending
queue. It can be modeled by the following pseudo-code:

now := kTclk

while pending-queue.head.release-time ≤ now do
insert pending-queue.head in ready-queue
end
k := k + 1

Where k is the clock invocation counter. The first line updates the real-time clock. The while loop
releases any pending tasks which were scheduled to be released before the current time and places them
in the ready queue. The last line selects the next task to run. Figure 3 depicts periodic event handling
with tick scheduling.

Figure 3: Periodic event handling with tick scheduling

t0: A periodic event was scheduled to occur.

t1: The clock interrupt handler (or scheduler) starts executing, Cint representing the fixed overhead of
every clock handler invocation, including updating the real-time clock.

t2: All tasks which were scheduled to arrive before the current real-time clock value are moved from the
delay queue to the ready queue, taking Cq time. Similarly to the event triggered scheduling, during
Cint and Cq the interrupt handler may be interrupted by higher priority handlers or blocked by
lower priority handlers.

t3: Depending on the task selected to run by the scheduler, either the running task is resumed or a new
task is switched in.

Periodic tasks experience a release delay between their intended release and the time when they are
actually “noticed” by the scheduler, of 0 ≤ t1 − t0 ≤ Tclk.

Sporadic task arrival Tick scheduling is usually used in the context of periodic tasks. We can
generalize it to include sporadic tasks, where upon arrival a sporadic task inserts itself into the pending
queue, where it waits until the next scheduler invocation. In this way both periodic and sporadic tasks
are handled by the scheduler in the same way. Sporadic tasks experience a release delay between the
release of the corresponding interrupt handler and the time when they are actually “noticed” by the
scheduler, of 0 ≤ t2 − t1 ≤ Tclk.

t0: An event occurs.

t1: The corresponding hardware interrupt handler is dispatched and corresponding job is placed in the
pending queue, which takes Cp time. The delay between t0 and t1 depends on the platform and
the operating system.

t2: The clock interrupt handler (or scheduler) starts executing, Cint representing the fixed overhead of
every clock handler invocation.

9



Figure 4: Sporadic event handling with tick scheduling

t2: The clock handler requires Cq time to move all jobs, which have arrived since the last clock tick,
from the pending queue to the ready queue.

t3: Depending on the task selected to run by the scheduler, either the running task is resumed or a new
task is switched in.

Simplifying tick-scheduling with discrete time model assumption For simplicity reasons, some
literature assumes a discrete time model, where the time for an event to be registered by the platform
is negligible (i.e. for sporadic tasks t1 − t0 = 0), the environment is discrete and synchronized with the
system (i.e. events occur at multiples of clock ticks, and consequently for periodic tasks t1 − t0 = 0
and for sporadics t2 − t0 = 0), and the associated jobs can be placed directly into the ready queue (i.e.
Cint = Cp = Cq = 0). In this case the resource requirements can be expressed in terms of the number
of clock ticks, i.e. ϕi, Ci, Di, Ti ∈ N. Note that under the discrete time model, event-triggered and
time-triggered scheduling are equivalent.

The analysis based on the discrete time model assumption is inherently optimistic, since in a real
system the handler of an event occurring in between two invocations of the scheduler can be delayed for
up to almost one clock tick, until the next scheduler invocation. Consequently, if the scheduler does not
take the delay into account, the event handler may miss its deadline.

4.1.3 Mix of event- and time-triggered scheduling

Many real-time systems manage a mixture of event triggered sporadic tasks and time-triggered periodic
tasks.

4.1.4 Modeling as reduced resource capacity

[Burns et al. 1993b] suggest to reduce the processor capacity to accommodate the real- time clock over-
head, but they do not mention by how much. [Buttazzo 2005] suggests a similar approach by adding
Ut = τ0/T0 to the total utilization of the task set, where τ0 and T0 are the worst-case computation time
and the period of the clock interrupt handler, and use the utilization based analysis to compute the
feasibility of the task set.

4.1.5 Modeling as extended computation time

[Burns and Wellings 2001] includes the Cq overhead of moving the task τi from the pending queue to
the ready queue in Ci. Since the overhead may depend on the size of the queue, the worst-case overhead
must be added to Ci.

They do not take into account the overhead of selecting the highest priority task. If the ready-queue
is kept sorted, then the additional overhead is a small constant and can be either ignored or added to
Ci.

4.1.6 Modeling as a single high priority task

A simple way to account for the scheduling overhead is to extend the task set with a highest priority task
τ0 with period T0 = Tclk and computation time C0 = Cclk, where Tclk is the clock period and Cclk =

10



Cint +Cq is the worst-case computation time required by the clock interrupt handler [Burns et al. 1995,
Liu 2000]. It can be then included in the response time analysis by extending Equation 1 with:

R′i = Ri +
⌈
R′i
Tclk

⌉
Cclk (4)

[Tindell and Clark 1994, Audsley et al. 1996] provide a finer grained definition of the Cclk term,
namely

Cclk = MCint +MCsingle + (N −M)Cmulti (5)

where N is the number of actual tasks in the system, Cint includes the time needed to update the system
clock, Csingle and Cmulti are the costs of moving the first and subsequent tasks to the ready queue, and
M is the number of clock ticks that fit within the shortest task period Tmin, given by

M =
⌈
Tmin

Tclk

⌉
[Burns et al. 1995] present results obtained form the Olympus space satellite case study, where Cint =
16µs, Csingle = 88µs, and Cmulti = 40µs. Therefore, the clock overhead can have large variation,
depending on whether no task is moved to the ready queue and when 20 tasks are moved.

The MCint term in Equation 5 is an example of preemption, since the clock is updated at the highest
priority. The remaining terms may be due to blocking, since a lower priority task can be responsible for
the delay when the clock handler needs to move it to the ready queue, leading to priority inversion (see
Section 5).

4.1.7 Modeling as multiple high priority tasks

Immediately after introducing Equation 4, [Burns et al. 1995] show an example, where this model leads
to a very pessimistic utilization bound, since to guarantee schedulability Cclk has to be the worst-case
scheduling overhead. They present a more detailed model, differentiating between the longest time to
move a task to the ready queue Cq and the fixed time Cint needed by the scheduler, e.g. for incrementing
the clock. They extend the task set with notional tasks corresponding to the real tasks, with the same
period and computation time Cq, and extend the response time Ri with:

R′i = Ri +
∑
j∈Γp

⌈
R′i
Tj

⌉
Cq +

⌈
R′i
Tclk

⌉
Cint (6)

where Γp is the set of all periodic tasks in the system.
[Burns and Wellings 2001] extend the response time of a task with the overhead due to the interrupt

handlers (executing at highest priority) responsible for handling the arrival of sporadic tasks, by extending
the response time Ri with

R′i = Ri +
∑
k∈Γs

⌈
R′i
Tk

⌉
Cq (7)

where Γs is the set of sporadic tasks. They ignore the Cint overhead, or assume event-triggered scheduling
with the Cint overhead included in Cq. However, if the additional term in Equation 7 is added to the
Equation 6, then the interrupt handler overhead is taken into account.

[Burns et al. 1995] continue refining their model by the number of periodic task arrivals which are
noticed by the polling time-triggered scheduler. They claim that the number of times the scheduler must
move a periodic task from the delay queue to the ready queue during time interval t is bounded by:

K(t) =
∑
j∈Γp


⌈

t
Tclk

⌉
Tclk

Tj

 (8)

assuming ∀j ∈ Γp : Tj < Tclk. They also bound the number of times the scheduler will be invoked during
interval t by

L(t) =
⌈

t

Tclk

⌉
(9)
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They combine these and extend the response time for task τi by

R′i = Ri + L(Ri)Cint + min(K(Ri), L(Ri))Csingle + max(K(Ri)− L(Ri), 0)Cmulti (10)

where Csingle and Cmulti are the costs of moving the first and subsequent tasks to the ready queue,
respectively.

[Tindell and Clark 1994] investigate scheduling tasks with release jitter. They come up with the same
equation for the time triggered scheduling overhead as in Equation 10, but with the following term for
K(t):

K(t) =
∑

j∈hp(i)

⌈
t+ Ji

Tj

⌉
(11)

where Ji is the release jitter of task τi.

4.1.8 Modeling the release delay

In case of time-triggered scheduling, the release delay (t2− t0 in Figure 4 and t1− t0 in Figure 3) can be
modeled by adding the clock handler period Tclk to the response time, to cover the case when a pending
task is scheduled to arrive just after a clock handler invocation. In event triggered scheduling the release
delay is 0.

Note that the question about the granularity of the clock interrupt leads to a trade-off: for a short
clock tick the response delay for an event will be short, but the overall overhead due to a frequent clock
handler will be larger (assuming Cint is independent of the number of pending jobs).

4.1.9 Reducing the scheduling overhead

The scheduling overhead can be reduced in two ways: by reducing the number of scheduler invocations
and by reducing the cost of individual scheduler invocations. The latter deals with architectural issues,
such as cache and memory management, interconnect, topology etc. and is outside of our scope. In this
section we focus on reducing the number of scheduler invocations.

Reducing the number of scheduler invocations In FPPS a higher priority task can arrive at an
arbitrary moment in time and the scheduler should allow it to preempt the running task immediately.

In event-triggered scheduling the scheduler is invoked immediately after an event occurred.
In the time-triggered approach, pending tasks are placed in the ready queue and the running task

is selected at the frequency of the scheduler task. If the scheduler period is longer than the average
inter-arrival time of tasks, then time-triggered approach can reduce the number of scheduler invocations.

In FPNS a higher priority task cannot preempt the running task. If tasks are made non-preemptive
by turning off the interrupts, then the whole scheduling overhead is incurred at task boundaries. If the
operating system intercepts all interrupts and postpones the scheduling until after the running task has
finished, then the task is inserted into the ready queue directly upon arrival, and scheduled only at task
boundaries.

4.2 Context switch overhead

The basic assumption states that a context switch occurs at the beginning and end of each preemption.
The context switch overhead is charged to the higher priority task. For example, a job i preempting job
j will be charged the context switch overhead at the beginning and the end of each preemption. Note
that, since we assume jobs cannot suspend them selves, each job preempts at most one other job.

4.2.1 Modeling as extended computation time

The most common way of accounting for context switch overhead is to increase the computation time of
each job by the overhead. The computation time for task τi becomes:

Ci := Ci + Cin + Cout
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where Cin and Cout are the worst-case context switch times in and out of any task [Katcher et al. 1993,
Burns et al. 1993a, Audsley et al. 1996], including the cost of storing the registers. In a less general
case, [Klein and Ralya 1990, Burns et al. 1993b] assume the in and out overheads are equal and thus
use

Ci := Ci + 2Ccs

[Davis 1993, Audsley et al. 1994, Burns et al. 1994] note that this model is pessimistic. When a task
is released with a priority not higher than the currently running task, then the context switch into the
preempting task is no longer required, as it is accounted for in the context switch out of a higher priority
task. 6 [Burns et al. 1994] claim in their case study an average gain of 2.4% in resource capacity by
ignoring the obsolete switching overhead into the preempting task.

Another approach is to charge the preempted task (rather than the pre- emptee) [Buttazzo 2005].
The number of context switches is equal to twice the number of times the job will be preempted. This
model is equivalent (scheduling wise) to the one charging the preempting task at the beginning and the
end.

[Burns et al. 1993a, Gerber and Hong 1993] observe that the context switch out of the job happens
after the last observable event. Therefore the context switch out of the job can occur after the deadline.
The formula for WRi becomes

WRn+1
i = CD

i +Bi +
∑

j∈hp(i)

⌈
WRn

i

Tj

⌉
CT

j

where CD
i is the computation time up to the last observable event (includes only the context switch into

the job), and CT
i is the total computation time including both context switches. Bi includes the context

switch times for the lower priority tasks blocking τi. Note that CD
i + Cout ≤ CT

i , because a task τi
may do some house-keeping activities between the last observable event and its completion (the context
switch).

[Gerber and Hong 1993] provide a language with primitives allowing to specify real-time con- straints,
and a set of compiler optimizations which aim at reorganizing the code in such a way that the observable
events will be executed as early as possible, leaving the unobservable events for after the deadline.

4.2.2 Modeling as wrapping tasks

Context switch overhead can also be expressed as two jobs wrapping the charged job. In case of periodic
tasks, the context switch tasks have priorities i− 1 and i+ 1 and the same phasing as task τi.

It is easily seen that under Fixed Priority Scheduling this model corresponds with the extended
computation time model for context switch overhead, i.e. the context switches occur at the same time
in both models. It also does not influence the design choices.

In the context of hierarchical scheduling, modeling switching overhead as wrapping tasks allows
charging the context switch overhead to a different budget, for example the system budget. In case
of extended-computation-time model the context switch overhead is always charged to the preempting
job. On the down side, the wrapping tasks model introduces two additional tasks per existing task,
complicating the schedulability analysis, compared to the extended computation time model.

4.2.3 Reducing the context switch overhead

The context switch overhead can be reduced in two ways: by reducing the number of context switches
and by reducing the cost of individual context switches. The latter deals with architectural issues, such
as cache and memory management, interconnect, topology etc. and is outside of our scope. In this
section we focus on reducing the number of context switches by reducing the number of preemptions.

Reducing number of preemptions on task level A task set can be divided into tasks with timing
characteristics defined by the environment (e.g. interrupt arrival time for sporadic tasks), and tasks with
some freedom in choosing some of the timing characteristics. The latter tasks can be assigned arbitrary

6The lowest priority task never preempts another task, hence the context switch into the lowest priority task can always
be ignored.
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phasings, as long as their deadlines are met. These unrestricted tasks can be assigned phasing which will
reduce the number of preemptions between the tasks.

[Davis 1993] suggest to exploit slack time to reduce the number of preemptions. When a lower priority
task is preempted by a higher priority task, and there is slack time available, then the lower priority
task can be allowed to continue until the slack is exhausted or the lower priority task has completed, in
which case one context switch due to preemption is saved. This is an example of deferred preemption.

Reducing number of preemptions on budget level According to [Bril 2007], budgets are design
artifacts and offer freedom in choosing the budget parameters, such as their period, phasing and capacity.
Hence preemptions can be avoided by carefully choosing these parameters.
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5 Real-time system overheads due to blocking

So far we have regarded only systems where tasks require only a single resource, typically a processor.
Now we move to systems where tasks may require additional logical resources, leading to more compli-
cated synchronization issues with respect to sharing a single processor. These resources are typically
granted on a non-preemptive and mutually exclusive basis [Liu 2000]. The part of the task accessing such
a resource is referred to as a critical section .

A system with non-preemptive critical sections can experience a situation first described in [Lampson and Redell 1980]
which was later named the priority inversion problem [Sha et al. 1990]. It refers to the situation when
a high priority task is blocked on a shared resource (other than the scheduled processor) locked by a
lower priority task, e.g. a system call, where the kernel behaves like a shared resource locked by the task
[Burns et al. 1995]. This can lead to “unbounded” blocking time (see the remark below), when middle
priority tasks execute after a high priority task blocks, or even deadlock, when several locks are nested
in reverse order between the high and low priority tasks.

There are several strategies which aim at controlling priority inversion. They trade off progress
(prevent deadlock) against performance (limit the time a high priority task is blocked by a low priority
task). All these strategies change the priority of the lower priority task, which holds a lock on the resource
blocking the higher priority task. The difference between them lies in when the priority is changed and
to which level. In all cases the priority is switched back at the end of the critical section. Note that since
the clock interrupt handler does not share critical sections with other tasks, under all protocols below
the scheduling task never blocks.

Remark on the “unbounded” priority inversion [Sha et al. 1990, Rajkumar 1991, Klein et al. 1993,
Liu 2000] state that the blocking time can be uncontrolled, indefinite, arbitrarily long or unbounded and
imply that it can be infinitely long.

“Unfortunately, a direct application of synchronization mechanisms like the Ada rendezvous,
semaphores, or monitors can lead to uncontrolled priority inversion: a high priority job being
blocked by a lower priority job for an indefinite period of time.” [Sha et al. 1990]

They must implicitly assume that the task set is already not schedulable without the critical sections,
or the presence of high priority aperiodic tasks.

Otherwise, if we assume a schedulable task set with resource utilization U ≤ 1 and only periodic and
sporadic tasks, the blocking time is bounded by at most the hyper period. This can be shown using the
standard example for arguing that priority inversion is unbounded [Sha et al. 1990].

Suppose that τ1, τ2, and τ3 are three tasks arranged in descending order of priority. We assume that
tasks τ1 and τ3 contend for the same shared resource S. Assume a situation where once τ3 has obtained
a lock on S, τ1 interrupts τ3 and subsequently attempts to lock S and blocks. [Sha et al. 1990] argue
that task τ2 may possibly lead to infinitely long blocking of task τ1.

However, if the utilization of the given task set is U ≤ 1, then, since tasks τ1 and τ3 have non zero
computation times, task τ2 (or in fact any arbitrary subset of “middle” tasks with intermediate prior-
ities) will have utilization of Umiddle < 1. This guarantees that there will be gaps in the execution of
the middle tasks. In those gaps τ3 will be able to make progress and thus eventually unlock S. At that
moment τ1 will continue, since it is ready and has the highest priority.

The remainder of this section deals with the Bi term in Equation 2 and how different priority inversion
protocols influence the real-time system overheads.

5.1 Non-preemptive critical sections

In case of non-preemptive critical sections, once a job enters a critical section it will have to complete it
before a high priority job can interrupt it. This can be implemented as either

• promoting the low priority job to the highest priority of all tasks as soon as it enters a critical
section

• switching off all interrupts until the critical section is completed, including the scheduler timer
interrupt.
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The introduced delay defines the minimum latency of interrupts and tasks. Note that the amount of
time spent in the longest non-preemptable critical section is the shortest scheduling latency that can be
guaranteed.

Scheduling overhead If non-preemptive critical sections are implemented by promoting the priority
of the task accessing a critical section, one needs to decide which level to promote it to. If it is promoted
to the highest level among user-tasks, then the scheduler task with a higher priority than any user-task
may still preempt a task in its critical section.

Switching off all interrupts avoids the periodic scheduler overhead, but may also cause a faulty task
to fail the entire system. The scheduler overhead is incurred only on critical section boundaries. Also,
the system needs an accurate (hardware) clock to update the real-time clock after a critical section has
finished.

Context switch overhead Non-preemptive critical sections avoid context switches due to blocking.

5.2 Priority Inheritance Protocol

For a description of the protocol see [Sha et al. 1990].

Scheduling overhead Priority Inheritance Protocol does not influence the scheduling overhead.

Context switch overhead Under priority inheritance protocol a task τi can be blocked by at most
one critical section of each lower priority task τj which can block τi. Therefore the number of context
switches for task τi with N − i tasks with priority lower than i is bounded by 2(N − i), where N is the
total number of tasks (one for context switch into and one out of the blocking task).

5.3 Priority Ceiling Protocol

For a description of the protocol see [Sha et al. 1990].

Scheduling overhead Priority Ceiling Protocol does not influence the scheduling overhead.

Context switch overhead With priority ceiling protocol a job can be blocked by at most a single
critical section of a lower priority job [Sha et al. 1990, Rajkumar 1991, Sha et al. 1994]. Therefore the
number of context switches due to blocking of task τi is bounded by 2: in and out of the lower priority
task locking a critical section with a higher priority ceiling.

5.4 Highest Locker

For a description of the protocol see [Klein et al. 1993].

Scheduling overhead Highest Locker does not influence the scheduling overhead.

Context switch overhead ighest locker protocol guarantees that a job can be blocked at most one
time by a lower priority job and that this blocking can occur only at the beginning, before the job starts
executing, which is already included in the context switch cost due to preemption. Therefore the context
switch overhead due to blocking can be ignored.

5.5 Stack Resource Policy

For a description of the protocol see [Baker 1991].

Scheduling overhead Stack Resource Policyr does not influence the scheduling overhead.
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Context switch overhead Since no job can be blocked after it starts [Baker 1991, Buttazzo 2005],
the context switch overhead due to blocking can be ignored. All the context switches are accounted for
during preemption.

5.6 Adjusting the response time analysis due to tick-scheduling

As mentioned in Section 2.2, tick-scheduling gives rise to a delay between the time an event occurs and
the time it’s handler starts executing. So far we have ignored this extra overhead in the discussion, which
assumed event-triggered scheduling. [Liu 2000] suggests to include the B and C overhead in the analysis
by extending the worst-case response time analysis for task τi with the following:

1. add the time needed to move each higher priority job from the pending to the ready queue

2. add the time needed to move each lower priority job from the pending to the ready queue

3. adjust the blocking time due to non-preemptive critical sections to an integral number of clock
periods (see Section 5)

Moving higher priority jobs form the pending queue to the ready queue can be modeled by extending
the computation time of every higher priority task τj ∈ hp(i) by Cp, where Cp is the time needed to
move a single job from the pending queue to the ready queue.

Moving a lower priority job τj ∈ lp(i) form the pending queue to the ready queue can be modeled by
adding a task τk to the set of higher priority tasks, with Tk = Tj and Ck = Cp

Let θk be the maximum execution time of critical sections in lower priority task τk, and let us assume
that Bi = θk. To adjust the blocking time due to lower priority jobs to an integral number of clock
periods, we substitute Bi with:

B′i = Tclk +
⌈

max
k∈lp(i)

θk/Tclk

⌉
Tclk

The first Tclk term represents the delay when a job of τi arrives just after the (x−1)th clock interrupt.
The second term adjusts the blocking time due to lower priority jobs by considering the situation when
a lower priority task arrives just before the xth clock interrupt and finishes just after yth clock interrupt
(x ≤ y), and the job of τi has to wait for an additional (y − x)Tclk between xth and yth clock interrupt
and Tclk after the yth clock interrupt, as shown in Figure 5.

Figure 5: Overhead due to tick-scheduling
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6 Conclusion

We have presented a literature overview dealing with system overheads in the context of Fixed Priority
Preemptive Scheduling on a single timely resource. We have focused on the cost of scheduling and
context switching. We presented different modeling techniques, covering the number and duration of
the overheads and accountability for the overhead, and techniques for reducing the overheads. Given
experimental and analytical results of worst-case system overheads, the research into these overheads is
still relevant for hard real-time systems, whenever high utilization is required.

6.1 Future work

In this paper we have focused on traditional non-hierarchical FPPS. It would be interesting to investigate
system overheads in the context of hierarchical systems, in particular how the scheduling and context
switch overheads influence the granularity of the budgets.

We have limited our discussion to FPPS scheduling on a single CPU resource. We expect that
scheduling and context switching overheads are even more relevant in multi resource systems and leave
it for future research.

In this paper we have looked into some practical aspects of real-time scheduling. We have assumed
FPPS, where jobs can be preempted at arbitrary moments in time. However, this is not the case in real
systems, where some subjobs, e.g. system calls, are not preemptable. This calls for an alternative to
FPPS and Fixed Priority with Deferred Preemption seems a promising approach. There is the question
of how the system overheads influence the granularity of non-preemptable subjobs, and how to deal
with situations where it can be more efficient to avoid a context switch by letting a subjob execute
non-preemptively.
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