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Multi-objective optimization of RF circuit blocks
via surrogate modelsand NBI and SPEA?2
methods

L. De Tommasi, T.G.J. Beelen, M.F. Sevat, J. Rommes and Etdr\Maten

Abstract Multi-objective optimization techniques can be categediglobally into
deterministic and evolutionary methods. Examples of suethods are the Normal
Boundary Intersection (NBI) method and the Strength PaEstmutionary Algo-
rithm (SPEAZ2), respectively. With both methods one exm@drade-offs between
conflicting performances. Surrogate models can replaceresige circuit simula-
tions so enabling faster computation of circuit performemads surrogate models
of behavioral parameters and performance outcomes, wedenrieok-up tables
with interpolation and Neural Network models.

1 Introduction: Multi-Objective Optimization Problem

The design parameters (inputand performances, or performance parameters, (out-
put) f are assumed to be in the Design Sp&end the Performance Spacg,
respectively. We assume thatis feasible, i.e., alk € & satisfy the imposed con-
straints (reflected by inequalities for a functiofx)). Also thef € & can be con-
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strained (reflected by inequalities for a functigi(f)). We define? and.#? by

2 = {xeR"Mc(x) <0}, with c(x) € RY,
P = {feR"Feq f=F(x), g(f) <O}, with g(f) € RP.

The design problem is a multi-objective optimization peohl| i.e. a constrained
simultaneous minimization of several performantgg)

f1(x)
Minimize, - o f(x) = : such thag(f) <O0.
fn(x)

A simple single-objective optimization can be done by cised minimizing a
weighted sum of performances

Minimize, » ¢ f(x) = Zk‘ - fi(x) suchthag(f) <O0.

Here obvious problems arise. The multi-objective probletmigs multiple solu-
tions, whereas the single objective problem admits isdlatdutions. No rigorous
criteria exist to choose the weighftk }. In practice, several optimization runs (with
different{k;}) are needed to find a suitable solution of the design problare
basically, in general, there is no single desiga & that can minimize all perfor-
mancesfy, k =1,...,n simultaneously. The set of solutions of the multi-objeetiv
optimization problem are Pareto optimal, i.e. it is only gibke to improve one
performance at the cost of others. This leads to the condepbminance’. Let
a,b € R", thena= (ay,...,an) dominated = (by,...,by) if and only if

a<b Vi ny(@ <bi)AJicgr. (@ < hbi).

A performance vectof* is said to be Pareto-optimal if it is non-dominated within
P, i.e.~Fc 2 [f < *]. The set of all Pareto-optimal pointsi# is called thePareto
Front of &2. The corresponding set iz is called thePareto Source.

2 Surrogate M odeling

Recently several techniques emerged to compute the Pan@tb Fhe most obvi-

ous one deals with trade-off analysis from available datndé (in principle) no

new simulations are needed. The search for Pareto optinrakge done by apply-

ing non-dominated sorting. An efficient implementation by Yi Cao [2] is found on
the MATLAB central website (mex function).

An alternative is to perfornerformance Space Exploration. Here one builds one
or more surrogate models, each of them derived by a set eficgicnulations (sam-

ples), starting from an initial design. With adaptive saimplthe models are im-
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proved [10], which requires accessibility of a (circuitinsilator. The models can
be generated by several techniques (including look-ugs$ablth interpolation and
neural network models). The approach can also be appliegrieedsymbolic mod-
els, that may include a new trade-off problem between Ft(gsproximation error)
and Complexity [5]. In practice, in both cases, the numbgrasmeters is still re-
stricting (up to 6-10). Here interesting progress is detirsing a nearly orthogonal
and space-filling Latin Hypercube [1, 3].

Writing x = (x),x(?)) one may reduce the parameter dependency in the surrogate
modeling and consider behavioral paramekbersb(x(), followed by performance
computations = f(b,x(?)) using algebraic expressions. Error amplification fiom
tof may occur (see [7] for the 11P2 performance of a Low Noise Aifrgy).

Clearly, when the surrogate models are available one cathese in the forward
modeling in more cheaply generating additional data forroumg trade-off anal-
ysis. However, the models can also be used in reverse mgdékn in applying
them to dedicated Pareto Front methods like NBI (Normal Biauy Intersection
method [4, 9]) and SPEA2 (Strength Pareto Evolutionary Atgom 2 [11]).

3 NBI - Normal Boundary Intersection Method

f2(x)

1. Determine a minimizex*® of eachfy(x). Let f*K = f(x**). This is a global opti-
mization problem for eacffi(x) and critical for the next step. MATLABBEMIn-
con.m allows nonlinear constraints. It implementdagal optimization proce-
dure: it starts from a user-specified point and may stop ical lminimum. More
robust wadlirect.m [8] which provides global optimization using Lipschitzian
optimization. It only allows domain boundary constraints.

2. Determine the straight lin&” (convex hull of the individual minima) in”? be-
tweenf*! andf*2,

3. Determine the normal to this line in direction of decreasirfgNext

e Original [9]: SeleciN pointsfy = Af* 4 (1 — A )f*?, Ak € [0,1] on ..

e Modification: SelecN pointsxy = Ax* 4 (1 — A)x*2, A¢ € [0,1] on¥, line
in 2. For convexXt we havefy, = f(xx) < fx = redefinefy = min(fy, fy, ).

Assumef = (fl(x)) . 9 — 2. The Algorithm [4, 9] looks like

4. For eaclfy determing € & that maximizes the distantelongn, starting in
fx. Without constraints thegs are on the Pareto Front. We solve

max t, subjectto p(x) =F+tn,
(t,X)eRx (2Nt 1(2))

whereF is a point of the convex hull of the individual minima. Not&at x
has to be feasible. Also these are global optimization okl but less critical.
Here the starting point allows fmincon to provide good ressihen during the
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maximization process a constraintif is encountered this process is stopped,
say with performance vectdr This does not necessarily mean thé located

on the Pareto Front: there may be a vedterf that also satisfies that constraint.
We apply a refinement procedure. et 2 with f = f(X). Next

Determine four neighboring poinfgy, Xg,Xs,Xw at a small distance frok
and calculaté(Xx ) (K =N, E, S W). Compare step 6 of the SPEA2 Algorithm
in Section 4.

Replacef by the best performance vector (based on the dominancéeorglat
out of the seff,f(Xn),...,f(Xw)}.

This still does not guarantee a point on the Pareto Fronisitgives an improve-
ment. In general a more sophisticated approach is needed.

4 SPEA2 - Strength Pareto Evolutionary Algorithm 2

The SPEA2 Algorithm [11] allows constraints both#hand in 2. It looks like

e Initialize an internal# and and externaf set of points inZ (last being approx-
imations of Pareto Front).
e lteration loop

1.
2.

3.
. Selectindividuals fron#/, randomly based,; ‘fitter’ points have a higher prob-

7.
8.

&C =copy®). = 9 UEC.

Determine fitness of individuals i [‘fitter’ when not dominated in2Z and
not too close to each other; impose constraint$4h

Updates” with fittest individuals fromZ/ .

ability in being chosen.

. Recombine selected individuals. This exploits conyexiing a randomly

chosen weighting.

. Mutate recombined individuals. By properly defining thielmbility density

function in mutating the result (f.i. after a gradient caddtion) one can push
the convex hull in# to the Pareto front.

Repopulates with mutated individuals.

Verify iteration termination criterion.

e Outputé as best approximation found to the source of the Pareto.front

5 Examples

A good testing example appeared tofoe= f1(x,y) =x° + (y—1)2, q:= fa(x,y) =
(x—2)%+y? for (x,y) € [x,xu] x [y, yu] and(p,q) € [pc, pu] x [aL,qu]. Observe
thatf is convex. By considering the mapping of vertical and hartablines in2
into 2 one can obtain impressions of the Pareto Front to check tttemes of the
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algorithms. One can also observe the effect of constraints.
A more realistic example is provided by a weakly nonlinearrowband Low Noise
Amplifier (LNA)

e Design parameters'Y) = (W, L, Ls,Lm, f,Vgs).
e Extra circuit parametens? = (Zs,Z,).
e Typical circuit performancel= f(x(),x@) = (P, A, 5, 11P2,11P3,NF).

Fig. 1 A weakly nonlinear,
narrowband , low noise am-
plifier (LNA) [6, 7]. Design
parametersw, L are transis-
tor width and lengthlg, L
are inductancesyss is the
gate-source bias voltage dif-
ference;f is the frequency.
Zs,Z, are the source and load
impedances. Performances:
power P, voltage gainA,,
input reflectionl, 2nd or-
der and 3rd order linearity
11P2,11P3, noise figureNF.

We considered reverse modeling using look-up table modasalytic expressions,
both with constrained optimization.

e Normalized design constraints<OW, < 1 and 0< Ly, < 0.6.
e Performance constraintd; > 13 dB,; < —10 dB, min(11P2,11P3) > 0 dBm.
e (O1) MinimizeP and maximize|P3 and (02) maximizé, and maximize|P2.

For (O1) NBI and SPEA2 worked successfully using surrogabelets based on
neural networks. For (O2) we used look-up table models. kezeNBI method
(using fmincon) failed in finding a global minimum. Fig 2 shethe SPEA2 result.

6 Conclusions

Direct modeling of performances was more robust than mogdedf intermediate
‘behavioral’ parameters. We considered look-up tables applied interpolation.
Also the size of tables was investigated. Neural network eteodiere accurate, but
expensive in generating.

The NBI method was improved in several ways. DIRECT providedbust global
optimizer for the start. Also the start of the directionatiopzation step was im-
proved. Without constraints it covers the whole Paretotfionice detail. However,
with constraints, as above in (O2), still more work has to teed

SPEAZ2 is more robust than NBI. Constraints can be appliedtmdesign variables
and on performances (including those not involved in thegraff). The results were
confirmed by considering a Low Noise Amplifier.
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Pareto Source Pareto Front
0.65 — 20
0.6 X% 18"x*
*x 16}
0.55 oo *,
05 xn ] "o
c o~ 127 "‘x
£ 045 x o
- = 10t x )
0.4 x Fig. 2 Pareto Front deter-
x 81 x mined by SPEA2 for (O2).
0.35 X 6l % ] This involved reverse model-
* % ing using look-up table mod-
03 x ] 4t x ] els (100x100 meshpoints).
025 ‘ ‘ ‘ 2 Here NBI (using fmincon)
0 02 04 06 08 13 135 14 145 failed in finding a g|oba|
Wn Av minimum.
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