

Inventory control in multi-item production systems

Citation for published version (APA):
Bruin, J. (2010). Inventory control in multi-item production systems. [Phd Thesis 1 (Research TU/e / Graduation
TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR689802

DOI:
10.6100/IR689802

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR689802
https://doi.org/10.6100/IR689802
https://research.tue.nl/en/publications/82593fdf-5e10-441f-be7e-503c32217bde

Inventory control in multi-item
production systems

THOMAS STIELTJES INSTITUTE

FOR MATHEMATICS

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Bruin, Josine

Inventory control in multi-item production systems / by Josine Bruin.
A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-2337-5
NUR 919
Subject headings: multi-item production systems / queueing theory / Markov De-
cision theory

Printed by Proefschriftmaken.nl
Cover design by Myrthe Isthar Maters

Inventory control in multi-item production systems

proefschrift

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op dinsdag 12 oktober 2010 om 16.00 uur

door

Josine Bruin

geboren te Zaanstad

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. J. van der Wal

en

prof.dr. A.G. de Kok

Acknowledgements

This thesis is the result of more than four years of work in which I got support
and inspiration from a number of people who I would like to thank. It started in
2005, when Rein Nobel, supervisor of my master’s thesis, asked me whether I was
interested in starting a PhD project in Eindhoven. He and Henk Tijms introduced
me to Ton de Kok, who later became my supervisor at the department of Technology
Management. It was a curious step to cross the rivers and although I had to explain
this step to many people, I am grateful for the opportunity to live and work in the
friendly environment of Eindhoven and its university.

This environment includes the following people. First of all, my promotor Jan
van der Wal, who I want to thank for his support, patience and constructive com-
ments, especially when I was nervous to give a talk. I enjoyed the conversations
in which he shared his strong intuition for stochastic processes. I am also indebted
to Ton de Kok for his enthusiasm and inspiring ideas, and to Onno Boxma for his
guidance and pleasant collaboration that resulted in the work presented in Chapter
5. This work was a joint project with Brian Fralix, who I would like to thank for the
sometimes confusing, but lively discussions on Laplace-Stieltjes transforms and gen-
erating functions in polling systems. I also want to thank Johan van Leeuwaarden,
for the enthusiastic and fruitful discussions on the determination of the boundary
probabilities in Chapter 6.

Further I am grateful to my colleagues, especially to those who have taught
me how to play table tennis and foosball, and to Ingrid & Ingrid for the weekly
chocolate breaks. In addition, I thank the administrative staff of EURANDOM
for the perfect organization of workshops, conferences and social events like the
Sinterklaas gatherings when we got the most wonderful gifts.

Lastly, I thank my family and friends for their support and interest.

vi

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Model . 7
1.3 Structure . 11

2 Lost sales: One step improvement 13
2.1 Introduction . 13
2.2 Costs and transitions . 15

2.2.1 Successive approximations . 17
2.3 Finding a near-optimal fixed cycle 18
2.4 One step improvement approach . 18
2.5 Relative values . 19

2.5.1 Numerical example . 20
2.5.2 Evaluation . 21

2.6 Results . 22
2.7 Conclusion . 32

3 Lost sales: 2 machines 35
3.1 Model . 36

3.1.1 Costs and transition probabilities 38
3.2 Relative values . 39

3.2.1 One machine . 39
3.2.2 Two machines . 39
3.2.3 Notations . 39

3.3 The combined improvement step . 40
3.3.1 Computational complexity . 41

3.4 Results . 43
3.5 Conclusion and further research . 45

4 Backlog: An overview 47
4.1 Polling model . 48
4.2 Queue lengths and waiting times . 50

vii

viii CONTENTS

5 Backlog: Waiting times for gated queues in polling systems 55
5.1 Introduction . 56
5.2 Model Description . 58
5.3 The Cycle Time in the Branching-Type Polling Model 59

5.3.1 The Biased Cycle Length . 62
5.4 Sojourn times at a gated queue . 65

5.4.1 First Come First Served . 65
5.4.2 Last Come First Served . 67
5.4.3 Random Order of Service . 69
5.4.4 The Processor Sharing and Shortest-Job-First Disciplines . . 70

5.5 A globally gated polling regime . 78
5.5.1 First Come First Served . 79
5.5.2 Last Come First Served . 80
5.5.3 Random Order of Service . 81
5.5.4 Processor sharing . 83
5.5.5 Shortest Job First . 85

5.6 Conclusion . 87

6 Backlog: A fixed cycle 89
6.1 Introduction . 90
6.2 Cyclic production . 91
6.3 The generating function . 92

6.3.1 The limiting distribution . 93
6.3.2 The optimal base-stock level 94
6.3.3 A geometric tail approximation 95
6.3.4 Numerical results . 95

6.4 Time slot dependent base-stock levels 97
6.4.1 The boundary probabilities 99
6.4.2 Optimal value for Smax . 101
6.4.3 Numerical results . 102

6.5 The production periods . 104
6.5.1 The shortest stable fixed cycle 104
6.5.2 A local search algorithm for a good fixed cycle 105

6.6 Conclusion . 106
6.A Expectation in the first slot . 107
6.B Proof of Lemma 6.2 . 108
6.C Proof of Lemma 6.3 . 109

7 Backlog: One step improvement 111
7.1 Introduction . 111
7.2 Model and notation . 112
7.3 One step improvement approach . 112
7.4 Results . 114
7.5 Conclusion . 119

CONTENTS ix

8 Conclusions and further research 121
8.1 Results . 121
8.2 Further research . 124

Bibliography 127

Index of Symbols 134

Summary 137

Samenvatting 139

About the author 141

x CONTENTS

Chapter 1

Introduction

1.1 Problem

Multi-item production systems find many applications in industry, for instance
glass and paper production or bulk production of beers, see Anupindi and Tayur
[4]. These systems are characterized by the fact that multiple product types can
be made to stock, but have to share the capacity of a single machine. It is difficult
to decide which product type to produce next, because often the characteristics for
each product type (holding costs, production times, etc.) are different and future
demand is not known in advance. Further, production times may be stochastic, due
to possible breakdowns or human interference. More importantly, switching times
or costs can be incurred for switching from one product type to another, thereby
losing time for producing products. The production manager has to come up with a
production plan that tells us whether to produce, to switch or to idle the machine.

machine

Figure 1.1: A multi-item production system

1

2 Introduction

Objective

The objective for the production manager could, for example, be the minimiza-
tion of the holding costs under the condition that a certain service level is met, or
the minimization of the average waiting time of a customer.

In this thesis, a multi-item production system with set-up times is studied. The
production manager deals with the production of multiple items on one machine
and has to find a delicate balance between the average number of products on stock
and the average number of (arriving) customers who see no stock. Depending on
whether the system is dealing with backlogged demand or lost sales, a cost function
is considered which consists of holding and backlogging costs (per backlogged unit)
or holding and penalty costs (for every lost sale). Because of the stochasticity of the
demand, one would like to switch often so that the system quickly reacts to changes
in demand. However, a production plan with a lot of switching also means loss of
capacity, leading to more backlogged demand or lost sales.

In principle, a minimization of the average costs is possible by modeling and
solving the system as a Markov Decision Problem (MDP). Unfortunately, the com-
plexity of the MDP grows exponentially in the number of product types and the
number of product types quickly becomes so large that the optimal policy is in-
tractable. The reason for this is that the calculation of the relative values (and thus
optimal actions) requires the solution of a set of linear equations. The number of
these equations equals the number of possible states. Because the number of possi-
ble states grows exponentially in the number of product types, the calculation time
of the optimal policy also grows exponentially in the number of product types. For
the same reason, the construction or analysis of a policy in which decisions depend
on the complete state of the system becomes too complex if the system is too large.

Stochastic economic lot scheduling problem

The stochastic economic lot scheduling problem (SELSP) is the name for all
problems that consider the production of N standardized products on a single ma-
chine with limited capacity and set-up times under random demands and random
production times. Because the machine can only produce one unit at a time, the
production system we consider is an example of a stochastic economic lot scheduling
problem. In Winands et al. [93], an extensive literature overview is given on the
SELSP and different approaches are discussed which can be divided into different
categories, based on the following characteristics.

The first characteristic is the order in which the different product types are
produced. In nearly all existing policies this order is fixed, because the analysis
of a policy with a dynamic order of product types is often too complex for large
values of N . This was also seen in Sox and Muckstadt [78] and Qiu and Loulou
[69], who look for optimal and near-optimal strategies for small systems. Qiu and
Loulou [69] study a system with limited stock space and show that for a 2-item
production system the optimal decisions on production depend on the stock levels
of both product types. Although this is intuitively easy to understand, it also tells

1.1 Problem 3

us that the optimal production strategy for systems with more than 2 product types
will also depend on the stock levels of all product types.

This observation brings us to the second characteristic, which indicates whether
decisions depend on the complete state of the system or not. Following the defini-
tions in the SELSP literature overview of Winands et al. [93], we will distinguish
between global and local lot sizing policies. In a global lot sizing policy, decisions on
production depend on the complete state of the system, whereas decisions in a local
lot sizing policy only depend on the stock level of the product type currently set-up.
Besides global or local lot sizing policies, it is also possible to construct other policies
where decisions depend on more than one stock level, but not on the complete state
of the system. For example, if a fixed order of production is considered, the decision
to switch to the next product type may depend on both the stock level of the item
currently set-up and the stock level of the next item.

The third and last characteristic is the cycle length of a policy. The cycle length
of a policy is the time interval between the starts of two successive production series.
Based on this characteristic, policies with a fixed order of production can be divided
into two groups, namely one with policies with a fixed cycle length and one in which
policies have a dynamic cycle length. Notice that policies with a dynamic order
of production automatically have dynamic cycle lengths. Examples of production
strategies with a fixed order of production and a dynamic cycle length are gated and
exhaustive base-stock policies (see for example Krieg and Kuhn [54] and Federgruen
and Katalan [37]), time- and quantity-limited base-stock policies (see de Haan et al.
[30] and Eliazar and Yechiali [34]).

For both the gated and the exhaustive base-stock policy, the order of production
is fixed and all product flows are served exactly once during one cycle. The difference
between the two strategies lies in the fact that under the gated base-stock policy
one produces exactly the number of products short to the base-stock level seen by
the system just after it was set-up for the current product flow. The system then
switches to the next item, while under the exhaustive base-stock policy one produces
until the stock level equals the base-stock level before switching to the next item.

Time- and quantity-limited base-stock policies are characterized by the fact that,
according to these policies, the machine basically produces according to a gated or
exhaustive base-stock policy, but switches earlier if a certain time or production
quantity limit is reached. The gated, exhaustive and time- and quantity-limited
base-stock policies are all local lot sizing strategies, because the decisions on pro-
duction only depend on the stock level of the item currently set-up.

An example of a policy with a fixed cycle length is a fixed cycle strategy (see
for example Erkip et al. [35]). The structure of this strategy is illustrated in Figure
1.2. The order of production is fixed, but product flows may get more than one
production period in one cycle. The lengths of these production periods are fixed,
so that each of the product flows experiences a (single-item) periodic production
system.

From a practical point of view, the fixed cycle strategy has several advantages
for the production manager. For example, if the production system is just one stage

4 Introduction

1 set-up 1111 3set-up222 2 3 set-upset-up

Figure 1.2: A fixed cycle for a 3-item production system

among a series of successive stages of production, it is easy to coordinate between
the different stages if a fixed cycle strategy is followed. Furthermore, a fixed cycle
planning leads to more reliable due dates for customer orders and the strategy is
easy to implement on the production floor. However, there are some clear drawbacks
of this policy (see Dellaert [32]), of which the most important one is that the system
does not react to changes in stock levels of product types that are currently not
set-up.

Analysis

The analysis of the production system can be done with different methods, de-
pending on whether the system deals with lost sales or with backlogged demand.
For most systems with lost sales, it is hard to find analytic expressions for mea-
sures like the average number of products on stock, so the analysis of a lost sales
model often requires numerical methods like successive approximations. Systems
with backlogged demand can often be translated into queueing models with infinite
buffers. Using methods from queueing theory, like generating functions, one can
obtain analytic expressions for measures like the (average) number of customers
backlogged, the average number of units on stock, etc.

Because the two systems are analysed with different methods, the thesis is di-
vided into chapters for systems with lost sales and chapters for systems with backlog.
Systems with lost sales are studied in the first part of this thesis, while systems with
backlogged demand are studied in the second part.

Translation to a queueing system

The approaches that are used in the backlog model are often studied from a
queueing point of view, in which the focus lies on the analysis and minimization
of the queue lengths or waiting times. Queueing systems find many applications
in, for example, telecommunication systems, traffic lights and production systems.
A queueing system is characterized by the arrival process(es) of the customers,
the service time distribution(s) and the service discipline. A very basic queueing

server

Figure 1.3: A queueing model

model is a system with one server and a single queue, as is shown in Figure 1.3.
If the maximum stock levels in the production system with backlog are all equal

1.1 Problem 5

to zero, the production system becomes a queueing system with one server and
multiple queues, as is shown in Figure 1.4. Such a system is also called a polling

server

Figure 1.4: A queueing model with one server and 8 queues

model. Polling models have been widely studied in the literature (see for example
Browne and Weiss [20], Grasman et al. [45], Van der Mei and Borst[84], Resing
[71] and Van Vuuren and Winands [87]) and it is often assumed that the server
visits the queues in a cyclic order. Each queue has its own arrival process and
service time distribution and between the different queues switch-over times can be
considered. Polling models find many applications in, for example, communication
systems, traffic and manufacturing systems. Two surveys are given in Takagi [79]
and Vishnevskii and Semenova [88]. The approaches studied in this field can easily
be translated into production strategies by setting a base-stock level for each item
and considering the number of units short to these base-stock levels. This is called
the shortfall of an item and can also be seen as the number of waiting customers.

A polling model with infinite buffer sizes (as is the case in the translated backlog
model) is often analysed with a generating function approach. This approach will
be explained in more detail in Chapter 4.

The translated lost sales model is a polling model with multiple finite buffer
queues. The buffer size of each queue equals the base-stock level of that queue. The
number of waiting customers in the queueing model corresponds to the shortfall
level, but cannot become larger than the base-stock level, since customers in the
production model do not wait but are considered as lost. The characteristics of the
queueing model depend on the values of the buffer sizes and thus on the base-stock
levels. Furthermore, only very few results (see for example Takine et al. [80]) are
known on polling models with finite buffers. The processes at the different queues

6 Introduction

depend on the buffer sizes of all queues. Similarly, the processes at the different
product flows depend on all base-stock levels in the lost sales production system,
while in the backlog production system the base-stock level of a product type only
influences the process at the corresponding stock point. Therefore, the analysis of a
production system with lost sales is in that sense more complicated than the analysis
of a production system with backlog.

Traffic lights

One application of the polling system in Figure 1.4 is the control of a traffic
light. This application has a lot of similarities with a multi-item production system.
In both systems, there is a single server and multiple queues or product flows and it
takes time to switch between two queues or product types. An important difference
between the two systems is that in a production system one can make to stock
and in that way customers can be served before they arrive. So the production
manager has to decide whether or not to produce (more units) to stock, while at an
intersection all cars are waiting and cannot be served before arrival.

There exist many studies on the control of a traffic light, see for example the
works of Darroch [29], Van den Broek et al. [83] and Haijema and Van der Wal
[48]. Darroch and Van den Broek et al. study a fixed cycle control of traffic lights
at intersections, which is often used in practice for lightly loaded intersections. For
heavily loaded intersections, Haijema and Van der Wal present a two-step approach
for the construction of a dynamic control policy that can be obtained for large
systems. In the multi-item production system, the possibility of making to stock
adds an extra dimension to the problem, but a similar approach as in Haijema and
Van der Wal[48] can be used to construct a production strategy for the multi-item
production system. This brings us to the contribution of this thesis.

Contribution

In this thesis, we present the construction of a new production strategy for large
production systems in which decisions depend on the complete state of the system.
The construction of the new, global lot sizing policy is basically an approach in which
a heuristic basis policy is improved with one policy iteration step from Howard’s
policy iteration algorithm [50]. The idea for this one step improvement approach
goes back to Norman [65] and it was used in Wijngaard [92], Bhulai [10], Haijema
and Van der Wal [48] and Sassen et al. [73] for production planning, call centers,
the control of traffic lights and telecommunication systems, respectively.

The approach is a generic heuristic that starts with a smart basis policy for a
complex MDP and then performs a so called improvement step. The choice of the
basis policy is important, because for each state a so called relative value has to
be found. As was mentioned before, this is impossible if the number of states is
too large. So the basis should have a special structure that makes it possible to
determine the relative values. Further, the relative values must be easy to obtain
if needed. This often results in a very heuristic basis policy, but after one policy

1.2 Model 7

iteration, a strategy is constructed in which decisions depend on the complete state
of the system. For the production system, the same approach is used, where the
basis policy is a fixed cycle policy. As will be shown, the fixed cycle policy allows for
a decomposition of the different product flows, which makes it possible to calculate
and store the relative values per product type and perform one policy iteration.

Next, we describe how we model the production system and discuss the fixed
cycle control and one step improvement approach in more detail.

1.2 Model

For both the backlog and the lost sales production system, the number of product
types is denoted by N and the products are numbered 1 up to N . It is assumed
that demand arrives according to (compound) Poisson processes, with an average
of λi, i = 1, . . . , N per time unit. The system is modeled in discrete time and a one
step improvement approach based on a fixed cycle policy is studied. Further, the
backlog model is analysed from a queueing point of view by looking at the shortfall
levels, while the lost sales model is analysed numerically by looking at the stock
levels. Let us discuss each of these elements in somewhat more detail.

Discrete time

Decisions are taken just after a production or set-up time and therefore, we can
embed the process at the decision moments. Because we only look at the system at
these decision moments, the system is modeled as if it is in discrete time (see Figure
1.5). Time is divided into slots and because the production and set-up times can
be stochastic, the length of each slot may be stochastic. Furthermore, the lengths
of the slots can be different, but the lengths of the time slots are assumed to be
independent of the demand processes. A disadvantage of looking at the system in
discrete time is that idling the machine should also take one time slot, because the
length of the time slot may not depend on the demand processes. The advantage
is that, because of the assumption on (compound) Poisson demand processes, the
system can be modeled as a discrete time Markov process.

Production

item 1

Production

item 1

Set-

up

item 2

Produc-

tion item

2

Produc-

tion item

2

Set-up

item 1

Production

item 1

Set-up

item 1

Set-

up

item 3

Production

item 3

Production

item 3

Figure 1.5: Time is divided into slots.

If a number is assigned to each slot type, this number tells us what the distri-
bution of the slot length is and it is possible to introduce some notation for the
distribution of the demand that arrives during such a slot. Let ai,n(k) denote the
probability that demand of type i that arrives during a slot of type n equals k.

In the backlog model, a generating function approach will be used to analyse
the system. The probability generating function of the arriving demand of type i

8 Introduction

during a production or set-up time is used, which equals
∑∞
k=0 ai,n(k)z

k and will
be denoted as Ai,n(z), where n refers to a time slot, production or set-up time.

In order to fulfill the demand, the machine can make to stock. Production takes
place per product and the production of one unit of type i requires one production
time TPi . Switching to type i requires a set-up time TSi . The length of a production
or set-up time is possibly stochastic, but independent of the demand process(es)
and other production or set-up times.

State of the system

The stock level of item i is denoted by I(i), which suffices to describe the state
at product flow i in the lost sale model. However, in the backlog model customers
are backlogged if the stock level equals zero. In that case, the number of units
backlogged is denoted by B(i). Another option for the state description is the
following. If the maximum stock level, say S(i), is known, one looks at the number
of products short to this maximum stock level, denoted by X(i). Obviously, this
number is always non-negative and the inventory model is translated into a queueing
model by looking at this shortfall level X(i) = S(i)− I(i) +B(i). From a queueing
point of view, X(i) can be seen as the number of products that is waiting to be
produced. In policies for systems with backlog that apply a base-stock rule for
decisions on production, the limiting distribution of X(i) is independent of the value
of the base-stock level S(i) (or base-stock levels of other items). Furthermore, if for
a specific base-stock policy, the limiting distribution of X(i) is known, a newsvendor
type equation can be used to obtain the optimal base-stock level.

Fixed cycle policy

In a fixed cycle policy often a base-stock rule is used to take decisions on produc-
tion. Such a fixed cycle strategy is discussed in more detail and analysed in Chapters
2 and 6, and applies the following rules. All product types are produced in a fixed
order and for each item, a production period is reserved consisting of a fixed number
of production times. During this period, production takes place according to the
following rule. If the stock level is below the order-up-to level, one unit of type i
is produced. Otherwise, the machine idles during one production time. We also
consider this idle time as one time slot. If the production times are stochastic, the
idle time is thus also stochastic, with the same distribution as the production times.
Therefore, the length of an idle slot is independent from the demand process during
that slot.

Because the number of production slots per product type is fixed, one has to
number the slots in the fixed cycle and keep track of the number of the current slot.
Then, at slot boundaries, an embedded Markov chain is observed. Let C denote the
total number of slots in one cycle, nm the number of the next slot in the cycle after
a total number of m slots and X(i, nm) the shortfall of item i, i = 1, . . . , N just
before slot nm.

1.2 Model 9

Property 1.1. The process

{nm, X(1, nm), . . . , X(N,nm)}∞m=1

is a periodic embedded Markov chain with a period of C slots.

Following the rules for the fixed cycle policy, a production can only start at so-
called slot boundaries, i.e. just after a set-up, production or idle time. Obviously,
this is suboptimal, but it allows us to analyse the system in discrete time and, more
importantly, as a combination of N independent product flows.

Property 1.2. Under the fixed cycle policy, the process at each product flow i,
i = 1, . . . , N behaves independently from the processes at the other product flows.

The reason for this is the following. Consider the process at one particu-
lar product type i. It is then seen that the periodic embedded Markov chain
{nm, X(i, nm)}∞m=1 is not influenced by the processes at the other product flows,
because the time that the machine is away consists of a fixed number of set-up and
production times and is therefore independent of the processes at the different prod-
uct flows. Further, the length of the production period of item i is also independent
of the shortfall levels of all items and the number of productions in this production
period only depends on the shortfall level of item i and not on the shortfall levels
of the other items.

One step improvement

In Chapters 2 and 7, an improvement step of the policy iteration algorithm of
Howard [50] is performed that is also used to obtain the optimal policy via an MDP
approach. For this one step improvement approach, one needs a smart basis policy.
Then, for each possible state, a relative value for this basis policy is calculated. This
relative value represents the difference in expected future costs between starting in
that state and starting in a certain reference state, under the assumption that in all
states the basis policy is followed.

Because for large systems the optimal policy is intractable, the relative value
function for the optimal policy is intractable as well. In order to construct a close to
optimal production strategy, it is sometimes possible to use a different relative value
function. In some problems, this alternative relative value function can be obtained
by introducing a heuristic policy with a structure that allows for a tractable relative
value function, see for example the works of Sassen et al. [73] on the optimal
control of a queueing system and Ott and Krishnan [67] on the optimal routing of a
telephone switch. In other problems, it is possible to use the relative value function
of a simplified version of the system for which the optimal policy is tractable. The
relative value function of the optimal policy for the simplified system can then be
used as an approximation for the relative value function for the complex system, as
was done in the works of Wijngaard [92] and Bhulai [10] on production planning
and multi-skill call centers respectively.

10 Introduction

As stated before, the problem in the determination of the optimal policy is that
the relative values have to be determined and stored per state. The number of
possible states grows exponentially in the number of product types, so this becomes
impossible if N is too large. The number of possible states still grows exponentially
in the number of product types if a fixed cycle strategy is followed. However, the
decomposition property of this strategy allows to determine and store the relative
values per product type. For each product type, the number of possible states
grows only linearly in the cycle length C. Therefore, the total number of (separate)
relative values grows linearly in N ×C. The relative value for the complete state of
the system is just the sum of N separate relative values, which can be calculated at
a decision moment.

The one step improvement approach determines the relative urgencies within
the fixed cycle policy for each product flow. Based on these relative urgencies, the
one step improvement policy calculates the best decision. This decision is executed,
the new state is observed and based on the relative urgencies of the heuristic policy,
a new decision is calculated, and so on. This policy iteration step can only be
performed once, because after this step one has a global lot sizing policy which does
not allow for a decomposition of the relative values, so the curse of dimensionality
applies again.

Although the analysis for the backlog model differs from the analysis for the lost
sales model, there is a large overlap in the notation for the two models. Let us give
an overview of this notation.

Notation

Now that the system is modeled in discrete time, it is possible to express char-
acteristics like demand distributions and slot lengths in terms of the slot type. The
type of a slot will be denoted by n. This index refers to the type of the slot (a
production or set-up slot for a certain item) and therefore also to (the distribution
of) the length of the slot. The demand of item i that arrives during a slot of type n
is denoted by Dn(i). The distribution of Dn(i) is denoted by ai,n(k), which is the
probability that during a slot of type n, demand of size k arrives for item i. Now
that each slot type has an index, the (stochastic) slot lengths can also be denoted
by Tn instead of TPi and TSi . The index of a slot type can be any number, as long
as each index uniquely refers to a slot type. For example, the production slot of
type i could be of type i and a set-up slot of type i + N . If a fixed cycle strategy
is used, it is more convenient to use the slot number within the fixed cycle as an
index for the slot type. In this way, each slot type may have multiple indices, but
each index (uniquely) refers to a production or set-up slot. The one step transition
costs are also related to the type of the next slot; for each item i we define ci,n(k)
as the expected costs during the next slot of type n, if the stock level (for lost sales)
or shortfall level (for backlog) equals k.

In the analysis of the fixed cycle strategy, we will focus on just one of the product
types. Therefore, the index of the product type i can be omitted from the notation
for the stock, backlog and shortfall level. However, the Markov chain that is observed

1.3 Structure 11

(see Property 1.1) is embedded at decision moments. Because this Markov chain
is periodic, it is necessary to add an index of the slot to the stock, backlog and
shortfall level. So instead of looking at I(i), B(i) and X(i) (of item i), we look at
In, Bn and Xn (of slot n) or In(i), Bn(i) and Xn(i) (of slot n and item i). Further,
an adjusted fixed cycle policy is studied in the backlog model with a time slot
dependent base-stock level Sn.

In the fixed cycle policy, the production periods consist of a fixed number of
production times. These numbers are denoted by gi, i = 1, . . . , N . So the total
number of slots, denoted by C in a fixed cycle equals

∑N
i=1 gi plus the number

of set-up slots, which equals N if each item gets one production period per cycle.
The relative values for the fixed cycle policy are, by definition, related to the slot
type. These values are denoted by r(n, k1, . . . , kN), with n the type of the slot
and ki the stock or shortfall level of type i, i = 1, . . . , N . Because of Property 1.2,
r(n, k1, . . . , kN) can be decomposed into N individual relative values ri(n, ki), i =
1, . . . , N .

In Chapter 5, a polling model is studied in which Qi refers to a queue of type
i. This queueing system is modeled in continuous time and therefore, C will denote
the duration of a cycle instead of the number of slots within a cycle.

1.3 Structure

The structure of this thesis is as follows. In the first part, the fixed cycle and
one step improvement policy are discussed and analysed for the lost sales model. In
Chapter 2, a literature overview is given and a system with one machine is studied.
Then, in Chapter 3, we discuss how to perform the two step approach in a system
with two machines. In the second part, we continue with a literature overview
for the backlog model in Chapter 4. In Chapter 5, this overview is followed by
a study on waiting time distributions of customers in a polling system, where a
generating function approach is used to obtain more insights into the effect of the
service order at the different queues on the first two moments of the waiting time of
the customers. Chapters 6 and 7 analyse the fixed cycle and one step improvement
policy for the backlog model, respectively. Chapter 8 summarizes the insights and
results obtained for the lost sales and the backlog model, discusses the differences in
the analysis and performance of the one step improvement policy in the two models
and gives suggestions for future research.

12 Introduction

Chapter 2

Lost sales: One step improvement

The current chapter is based on the work in [22] and [25] and discusses the con-
struction of a one step improvement policy in a production system with lost sales,
based on a fixed cycle strategy. First, the fixed cycle strategy is analysed. This
strategy reserves a production period for every item i, consisting of a fixed number
of gi production slots. Because each production and set-up time represents one time
slot, one cycle consists of C =

∑N
i=1 gi+N time slots. These slots may have random

durations, but the lengths of the slot durations are independent.
The fixed cycle policy allows for a decomposition so that an improvement step

can be performed. For each product type, the relative values are determined per
slot in the fixed cycle. Then, in the one step improvement policy, at each decision
moment, the fixed cycle slot with the minimum relative value is chosen (for the
current stock levels). This approach is discussed and analysed in the last three
sections of this chapter.

2.1 Introduction

In the lost sales model, the state space of the embedded Markov chain (as de-
scribed in Property 1.1) for each product type is bounded by zero and the maximum
stock level. The state of the complete system is described by {i, I(1), . . . , I(N)},
with i the item that is currently set-up and I(j) the number of products on stock
for item j, j = 1, . . . , N .

Polling

As mentioned in the introduction of this thesis, the production system is trans-
lated into a polling model by looking at the shortfall values X(i) = S(i)− I(i), i =
1, . . . , N . Grasman et al. [45] derive the queue length distributions for such a polling
system with finite buffers and an exhaustive visit discipline. The exhaustive visit
discipline in the queueing model is equivalent to the exhaustive base-stock policy
in the production system discussed in Chapter 1. According to this discipline, the

13

14 Lost sales: One step improvement

server serves a queue until it is empty and then switches to the next queue. Grasman
et al. note that the complexity of their analysis grows exponentially in the number
of queues and the buffer sizes. Therefore, the queue length distributions for large
systems are intractable.

Chung et al. [27] and Lee and Sunjaya [56] also look at a polling system with
finite buffers, but consider a random polling order and the buffer size equals one
for all queues. Distributional results for the queue lengths and waiting times are
obtained and it is shown that their approach also works for a polling system with
buffer sizes equal to S(i). However, the number of equations that need to be solved

to analyse the system equals N
∏N
i=1(S(i) + 1), the number of possible states. This

number grows exponentially in N , so (again) for large values of N and S(i) the
analysis becomes too complex.

Production

For the production system, the optimal strategy can only be found for small
systems. The MDP approach is intractable if N is too large, which is illustrated by
the following example. Consider a production system with 6 product types. If the
maximum stock level for each product type equals 10, the number of possible states
equals 6 × 116, which is more than ten million and therefore already too much for
an MDP approach.

Therefore, alternative strategies have been studied for large systems, for example
the exhaustive base-stock policy in Krieg and Kuhn [54] and Grasman et al. [46].
Grasman et al. [46] show that an optimal solution for the values of S(i), i = 1, . . . , N
is intractable for large systems and provide a heuristic for finding the base-stock
levels. Krieg and Kuhn [54] present a method to estimate performance measures
with a decomposition based approximation method. Further, Altiok and Shiue [3]
analyse the joint behavior of the inventory levels of the different product types, which
are produced according to a priority structure. Both the exhaustive base-stock and
the priority policy are local lot-sizing policies, because decisions on production,
switching or idling only depend on the stock level of the product type currently
set-up.

Global lot sizing policies are often more difficult to analyse, because of the multi-
dimensionality of the system, particularly if N is large. But for the – local lot sizing
– exhaustive base-stock policy the same problem is encountered. Therefore, Krieg
and Kuhn [54] approximate the performance measures of this policy by decomposing
the system into N subsystems. These subsystems are assumed to be independent,
so that the system can be analysed.

But if one follows an exhaustive base-stock policy, the different product flows
are not independent. The dependence between the different product flows can be
illustrated as follows. If, for example, the production period of one item is long, the
other items are likely to have a long production period as well. The reason for this
is simple: the expected number of customers that arrive during this long production
period is higher than in a production period of average length. It is likely that
the service of more customers also takes more time, which comes down to a longer

2.2 Costs and transitions 15

production period. This effect also works the other way around, because a short
production period of one item leads – in expectation – to short production periods
of the other items. So the processes at the different product flows influence each
other, because the length of a production period of one item depends on the lengths
of the production periods of all other items.

In a fixed cycle policy, there is no dependence between the different product
flows, because each production period has a fixed length and is thus independent
of the arrival process (see Property 1.2). Therefore, the analysis of the complete
system under this strategy is exact if all product flows are analysed individually.
Furthermore, because of this property of independency between the different product
flows, the fixed cycle policy can be used as a basis for a one step improvement
approach.

In the next section, the one step transition probabilities and costs are given.
Then, it is shown how the fixed cycle can be analysed with successive approxi-
mations. With this analysis, a good fixed cycle can be found with a local search
algorithm presented in Section 2.3. For this fixed cycle, relative values are deter-
mined and an improvement step is performed, as presented in Sections 2.4 and
2.5. Results on this new strategy are given in Section 2.6, which is followed by a
conclusion in Section 2.7.

2.2 Costs and transitions

In the fixed cycle policy, the slots are numbered 1 up to C. At each slot boundary,
the stock level is observed and costs are incurred based on that stock level and the
number of the time slot. Depending on the slot number n and the stock level In(i)
of item i, these one step transition costs equal ci,n(In(i)), which are the expected
costs during the next slot.

Expected costs

At the start of each slot, the expected costs during that slot are calculated. The
expected penalty costs are just the expected number of lost sales times ci,P . The
holding costs can be incurred in continuous time or in discrete time. Incurring the
holding costs in continuous time means that holding costs are paid for each unit
during the exact time that it is on stock. Therefore, one then has to keep track of
each event during each time slot. If the holding costs are incurred in discrete time,
holding costs are paid for every unit on stock for the next slot (regardless whether
the stock level decreases or not). So one only needs to look at the system at fixed
time instants, as was also done by Fleischmann [41] for the discrete lot-sizing and
scheduling problem (DLSP).

The structure of the cost function does not essentially change under either a
continuous or a discrete time cost model assumption, because the costs still grow
linearly in both the number of products on stock and in the number of lost sales.
Because the model we look at is already in discrete time, we prefer to also incur the

16 Lost sales: One step improvement

holding costs in discrete time. However, if the lengths of the production and set-up
times (and thus time slots) are very different, it is more natural to divide the slots
into smaller slots. Therefore, we choose to incur the costs in the following way.

During each slot, the stock level is observed after each time unit. For the observed
stock level, holding costs are paid for the next time unit. If the remaining time until
the next decision moment is less than one time unit, holding costs are only paid for
the time until that moment. The length of a slot is stochastic, so at the beginning
of a slot n, the one step expected costs ci,n(k) are E (ci(k, Tn)), with

ci(k, t) =


ci,Itk + ci,PE(D(i, t)− k)+, if t ≤ 1∑k−1
l=0 P (D(i, 1) = l) (ci,P (k − l) + ci((k − l)+, t− 1))

+P (D(i, 1) ≥ k)ci(0, t− 1) + ci,Ik + ci,P (λi − k), if t > 1,

(2.1)

with D(i, t) the demand during a time interval of length t.
For deterministic slot lengths, the expected costs are exactly ci(k, Tn). If the

length of the next slot is stochastic, E (ci(k, Tn)) becomes an integral in Tn. The
total expected penalty costs can be calculated directly, with ci,PE (D(i, Tn)− k)

+
.

The expected holding costs equal

∞∑
j=0

P (Tn ≥ j)p
(j)
i,n(k, k

′)k′ci,I + E (Tn − j|j ≤ Tn < j + 1) k′ci,I ,

with p
(j)
i,n(k, k

′) the probability that during j time units, the stock level changes from
k to k′. This summation can be calculated numerically if Tn has an upperbound. If
Tn has no upperbound, one has to approximate the expected holding costs.

Transition probabilities

Let pi,n(k, k
′) denote the transition probability that the stock level of item i changes

from k at slot boundary n to k′ at slot boundary n+1 and ai,n(k) = P (Dn(i) = k).
Note that in the fixed cycle policy, slot boundary C+1 must be read as slot boundary
1. Then for production slots for item i it holds that:

In+1(i) = (In(i)−Dn(i))
+ + 1{In(i)<S(i)}.

For non productions slots for item i, one has

In+1(i) = (In(i)−Dn(i))
+.

This leads to the following transition probabilities in slot n for product type i:

pi,n(S(i), k) = ai,n(S(i)− k), 0 < k ≤ S(i), (2.2)

pi,n(S(i), 0) = P (Dn(i) ≥ S(i)) = 1−
S(i)−1∑
j=0

ai,n(j). (2.3)

2.2 Costs and transitions 17

If n is a production slot, then

pi,n(k, l) = ai,n(k − l + 1), 0 < l − 1 ≤ k < S(i), (2.4)

pi,n(k, 1) = P (Dn(i) ≥ k) = 1−
k−1∑
j=0

ai,n(j), 0 ≤ k < S(i). (2.5)

For all non production slots,

pi,n(k, l) = ai,n(k − l), 0 < l ≤ k ≤ S(i), (2.6)

pi,n(k, 0) = P (Dn(i)) ≥ k) = 1−
k−1∑
j=0

ai,n(j), 0 ≤ k ≤ S(i). (2.7)

2.2.1 Successive approximations

In order to compute the expected costs per time unit one may use successive
approximations. Define vi,m(n, k) as the expected costs over the next m time slots
for item i, starting from slot boundary n with stock level k. Then

vi,1(n, k) = ci,n(k), n = 1, . . . , C,

vi,m(n, k) = ci,n(k) +

S(i)∑
l=0

pi,n(k, l)vi,m−1(n+ 1, l), n < C, m ≥ 2,

vi,m(C, k) = ci,C(k) +

S(i)∑
l=0

pi,C(k, l)vi,m−1(1, l), m ≥ 2.

For all n and k, the expected costs over one cycle (vi,m+C(n, k) − vi,m(n, k))
converge to the average costs per cycle. So for every pair n and k,

vi,m+C(n, k)− vi,m(n, k)∑C
j=1 Tj

→ ci(g, S) (m→ ∞),

where ci(g, S) denote the expected costs per time unit for item i, with g = (g1, . . . , gN)
the lengths of the production periods and S = (S1, . . . , SN) the base-stock levels.
The total expected costs per time unit equal

ctot(g, S) =
N∑
i=1

ci(g, S). (2.8)

Note that for every item i, ci(g, S) does not depend on S(j), j ̸= i and thus
also can be written as ci(g, S(i)). The optimal fixed cycle is the fixed cycle that
minimizes the total expected costs per time unit ctot. The expected costs per time
unit depend on the lengths of the production periods g1, . . . , gN and the base-stock
levels S(1), . . . , S(N).

18 Lost sales: One step improvement

2.3 Finding a near-optimal fixed cycle

We are looking for a fixed cycle that minimizes the expected costs per time
unit, i.e. we have to determine two sets of parameters; g1, . . . , gN and S(1), . . . , S(N).
This fixed cycle will be used as a basis for the one step improvement approach. First
a local search algorithm is presented in the current section to find a not necessarily
optimal, but good fixed cycle.

From Property 1.2, we know that for any combination of production periods
g1, . . . , gN , the N product flows can be analysed separately. So for a fixed combina-
tion of g1, . . . , gN , the values of S(1), . . . , S(N) can be determined per product flow.
The periodic production problem for each item i is equivalent to the well known
newsvendor problem, with the cost function being convex in the base-stock level,
see Khouja [52]. So for each item i, S(i) is increased with 1 until the expected costs
(for item i) per time unit increase. Using these base-stock levels, the minimum
expected costs per time unit can be found for any combination of g1, . . . , gN . This
still leaves the question of how to find the optimal values of g1, . . . , gN .

In Haijema and Van der Wal [48] a simple local search algorithm is used to find
(near) optimal green times for the traffic lights of the various traffic flows. They
start with a cycle of minimum length and one time slot is added (picking the best
option among all traffic flows) until for a number of steps no decrease of the average
costs per time unit is found. For the production problem, a similar approach is used
which works as follows.

Let g denote the vector (g1, . . . , gN) and ctot(g) the expected costs per time unit
for a cycle described by g and its corresponding optimal values of S(1), . . . , S(N).
In every iteration of the search algorithm, a number of N fixed cycles is constructed.
At the start, g(0), a cycle with just switch-over times (g(0) = 0) is constructed, so

all demand is lost and the expected costs per time unit equal ctot(0) =
∑N
i=1 piλi.

Secondly, for every item i, ctot(g
(0)+ei) is calculated, with ei a vector with N−1

zeroes and ei(i) = 1. Let i∗ denote the item that minimizes ctot(g
(0) + ei), then the

vector g(1) is defined as g(0) + ei∗ . The vectors g(2) up to g(N) are determined in a
similar way: g(k+1) = g(k) + ei∗k

, with i∗k = argmini ctot(g
(k) + ei).

If any of the vectors g(1), . . . , g(N) gives lower costs than g(0), g(0) is updated with
the vector corresponding to the lowest costs. Based on this new value of g(0), the
new set of vectors g(1), . . . , g(N) are found. This is repeated until no cost reduction
is obtained.

2.4 One step improvement approach

Now we come to the final step of our construction of a dynamic policy for the
multi-item production system. The approach, known as one-step improvement, is
in fact the policy improvement step in Howard’s policy iteration algorithm, see
[50]. In order to execute the improvement step, the relative values or bias terms
are needed. If the number of states is very large, these relative values cannot be

2.5 Relative values 19

computed within reasonable time, unless the structure of the stationary strategy is
very special. The fixed cycle strategy is a stationary strategy that does have the
required special form, since for any given g the ‘behavior’ of the different products
is completely independent, so that calculations can be done one product at a time.

In the improvement step one minimizes the future expected costs, under the
assumption that after this decision the original strategy, in our case fixed cycle
policy, is followed. This basically means that a decision should indicate which
time slot is performed next. This time slot is the best possible one based on the
assumption that after this slot one resumes the fixed cycle policy. The relative
values are compared to find this slot and represent the relative costs for resuming the
fixed cycle policy, starting from a certain time slot. The dynamic policy continues
computing such a best slot at the end of every slot. After the one step improvement
decision, the fixed cycle strategy just continues with the next time slot in the cycle,
while the dynamic policy chooses the best slot in the cycle again, assuming that
after this time jump the system will be controlled by the fixed cycle rule. In order
to compute the next slot we need the relative value for each of the allowed time
jumps (not all time jumps are possible as switch-over times are non-zero).

For state (n, k1, . . . , kN) the possible decisions, or slots one can jump to within
the cycle, that have to be considered in the improvement step depend on n. If n
corresponds to the start of a production slot for product j or if n is the start of the
switch-over slot from product j to product j + 1 all production slots for product
j and all set-up slots are allowed. The slot to be chosen is the one for which the
relative value is minimal.

2.5 Relative values

Let us come to the computation of the relative values. As said, in order to
compute the relative values, we can consider one product at a time. A complication
arises from the fact that the fixed cycle strategy is periodic. For a non-periodic
Markov chain, the m-period costs vm asymptotically behave as

vm = mc+ r + o(1) (m→ ∞) , (2.9)

with m the number of time units, c the average costs per time unit and r the relative
value vector.

The relative values represent the difference in costs between starting in one slot
and starting in another slot, assuming that the fixed cycle is followed. So the
relative values depend on the characteristics of the fixed cycle policy, i.e. the base-
stock levels and lengths of the production periods. But to keep the notation simple,
we do not refer to these characteristics and denote the relative value for slot n and
state (k1, . . . , kN) by r(n, k1, . . . , kN).

If the lengths of the time slots are different, one can transform the system so
that the processes at the different product flows become aperiodic embedded Markov
chains. Without loss of generality, we assume that Tn ≥ 1 for all n. Then in the
adjusted system, each slot n is executed with probability 1/Tn and the complete

20 Lost sales: One step improvement

state of the system remains the same with probability 1 − 1/Tn. The one step
transition costs are also divided by Tn, so that the expected costs before reaching
the next slot are still ci,n(k), because it takes on average Tn trials to reach the next
slot. This basically is the aperiodicity transformation introduced in Schweitzer [74].

For a periodic Markov chain with slots of unit length and cycle time C, one can
use as estimate for the relative value vector

r(m) =
1

C

(m+1)C∑
n=mC+1

vn, (2.10)

provided m is sufficiently large. Note that in the policy improvement step one does
not need the exact value of r, any vector r+ α with α an arbitrary constant vector
will do.

Now, denote for every product type i the state of the system as (n, ki), with
n the slot within the fixed cycle and ki the number of products in stock. For the
fixed cycle strategy, the relative values per state can be approximated by taking m
sufficiently large in (2.10):

r̂i(n, ki) = r
(m)
i (n, ki) =

1∑C
j=1 Tj

(m+1)C∑
l=mC+1

Tl−mC(vi,l(n, ki)−vi,j(n0, k0)). (2.11)

The overall (approximate) relative value r̂(n, k1, . . . , kN) for time slot n and state
(k1, . . . , kN) is then taken to be the sum of the relative values for the N products
and pairs (n, kj), j = 1, . . . , N :

r̂(n, k1, . . . , kN) =

N∑
i=1

r̂i(n, ki).

If the number of states is very large, registering these relative values per state
might already be a problem. However, the registration of the relative values per
product type requires only a one-dimensional array per stock value. So for N dif-
ferent product types, only N matrices of size S(i) by C are needed.

2.5.1 Numerical example

Let us illustrate this one step improvement approach in a numerical example.
Consider the following 3-item production system. For every item, the holding costs
are equal to 1 and the penalty costs are equal to 100. The production and switch-
over times are assumed to be deterministic and of unit length. Furthermore, de-
mand occurs according to Poisson processes with parameters λ1 = 0.45, λ2 = 0.27
and λ3 = 0.18. The local search algorithm gives us a presumably optimal fixed cycle
with g∗1 = 10, g∗2 = 6, g∗3 = 4, so C = 23. The optimal base-stock levels for this
fixed cycle are S∗(1) = 10, S∗(2) = 8 and S∗(3) = 6. There are 5, 4 and 3 products
on stock for respectively product types 1, 2 and 3. The relative values for this state

2.5 Relative values 21

5 10 15 20 23

5 10 15 20 23

5 10 15 20 23

Relative values for items 1, 2 and 3 respectively.

5 10 15 20 23

The total relative value function.

Figure 2.1: Three individual relative value functions and the total relative value function
for a 3-item production system with stock levels 5, 4 and 3 for items 1, 2 and 3 respectively

of the system are given in Figure 2.1.

If the cycle is in a production slot for item 1, the possible decisions are the first
ten (production) slots and the (switch-over) slots 11, 18 and 23. If the stock levels
equal 5, 4 and 3 like in Figure 2.1, the global minimum of the total relative value
function in slot 5 indicates that the fifth time slot will be executed next in the one
step improvement policy. However, if item 2 is currently set-up, it is not allowed
to execute the fifth slot. In that case, the next slot to execute according to the
dynamic policy is the (production) slot with number 16, a local minimum.

2.5.2 Evaluation

For large values of N , the number of possible states is very large and the only
way to evaluate the new dynamic strategy is by simulation. In the next section, each
simulation run has a duration of 25 million slots. For the results presented here, this
gives us standard deviations below 1% of the total average costs. A simulation goes
as follows. At the start of each slot, the state is observed and the relative values
for that state are computed as the sum of the separate relative values. Then the
time slot for which the relative costs are minimal is chosen, the expected costs for
this slot are added to the total costs and the slot is executed. Then the transition
is observed and the next decision is computed. For this decision, the expected costs
are added to the total costs, the decision is executed, the new state is observed again
and so on.

22 Lost sales: One step improvement

2.6 Results

In order to get some insights in the performance of the one step improvement
policy, results are obtained for different parameter settings. There is a large number
of parameters that can be changed. The topics that are studied in this section
include the number of product types, the load on the system, the holding and
penalty costs, the demand distributions and the lengths of the set-up times. We
think that the examples shown in this section give a representative view on the
performance of the one step improvement policy and provide a good intuition on
when this policy outperforms other existing production strategies.

Next, the effect of a suboptimal fixed cycle on the performance of the one step
improvement policy is briefly discussed.

A good fixed cycle

The fixed cycle obtained from the algorithm presented in Section 2.3 is not neces-
sarily optimal. In order to show that this is not very important for the performance
of the one step improvement policy, the results in Table 2.1 are given. The results
in the table on the left show the performance of both the fixed cycle policy (FC)
found with the local search algorithm of Section 2.3 and the one step improvement
policy (1SI) based on that fixed cycle policy. The base-stock levels of the fixed cycle
policy are decreased and based on this adjusted fixed cycle policy, an improvement
step is performed. The results for these two production strategies are shown in the
table on the right. The one step improvement step reduces the expected costs by

Optimal fixed cycle base-stock levels
λ FC 1SI

(0.15,0.15,0.15,0.15) 15.22 12.84
(0.15,0.25,0.1,0.2) 17.94 14.76
(0.1,0.1,0.1,0.2,0.2) 20.37 16.71
ci,I = 1, ci,P = 100, i = 1, . . . , N

Decreased base-stock levels
λ FC 1SI

(0.15,0.15,0.15,0.15) 16.12 12.43
(0.15,0.25,0.1,0.2) 18.97 14.52
(0.1,0.1,0.1,0.2,0.2) 22.01 16.89
ci,I = 1, ci,P = 100, i = 1, . . . , N

Table 2.1: Multi-item production systems with Poisson demand

Optimal fixed cycle base-stock levels
λ g S

(0.15,0.15,0.15,0.15) (3,3,3,3) (4,4,4,4)

(0.15,0.25,0.1,0.2) (3,6,2,5) (5,6,3,5)

(0.1,0.1,0.1,0.2,0.2) (2,2,2,5,4) (3,3,3,5,6)

ci,I = 1, ci,P = 100, i = 1, . . . , N

Decreased base-stock levels
λ g S

(0.15,0.15,0.15,0.15) (3,3,3,3) (3,3,3,3)

(0.15,0.25,0.1,0.2) (3,6,2,5) (4,5,2,4)

(0.1,0.1,0.1,0.2,0.2) (2,2,2,5,4) (2,2,2,4,5)

ci,I = 1, ci,P = 100, i = 1, . . . , N

Table 2.2: The values of g and S

around 17% for the fixed cycle policy with the optimal base-stock levels, while for
the fixed cycle policy with the decreased base-stock levels, the costs are reduced

2.6 Results 23

with approximately 23%. This tells us that the fixed cycle policy is not a good
policy.

It is also seen that for two of the examples in Table 2.1, the performance of
the one step improvement policy is better for the suboptimal fixed cycle strategies.
However, for the example with the 5-item production system, both the performance
of the fixed cycle policy and the policy of the one step improvement policy get worse
if the base-stock levels are decreased. Apparently, it is important to start with a
good fixed cycle, but also the values of the base-stock levels are important, because
they determine the maximum stock levels in the one step improvement policy.

With the decreased base-stock levels, one can also search for the optimal lengths
of the production periods for these base-stock levels. This is done with the algorithm
presented in Section 2.3, but now the base-stock levels are kept fixed. The results
are shown in Table 2.3. It is seen that compared to the results in the table on the

Adjusted production periods
λ g S FC 1SI

(0.15,0.15,0.15,0.15) (2,2,2,2) (3,3,3,3) 15.88 12.31
(0.15,0.25,0.1,0.2) (2,4,3,6) (2,4,4,5) 18.66 14.48
(0.1,0.1,0.1,0.2,0.2) (2,2,2,4,5) (2,2,2,4,5) 22.00 16.92

ci,I = 1, ci,P = 100, i = 1, . . . , N

Table 2.3: Multi-item production systems with Poisson demand

right in Table 2.1, only the costs for the first two examples are reduced. So one can
conclude that decreasing the base-stock levels does not necessarily lead to a better
one step improvement policy. Therefore, the remaining results in this section are
based on the fixed cycle policy obtained with the algorithm presented in Section
2.3.

A comparison

In order to compare the performance of the proposed one-step improvement
policy with other policies, simulation studies for 6-item and 10-item production
systems are performed.

The results in Tables 2.4 and 2.5 are based on the following parameter settings:

• All production- and set-up times are deterministic and of unit length; Tn =
1, n = 1, . . . , C.

• Demand for item i is Poisson with arrival rate λi, i = 1, . . . , N . For a 6-item
production system, λ = (0.25ρ, 0.15ρ, 0.10ρ, 0.25ρ, 0.15ρ, 0.10ρ) and for a
10-item production system, λi = 0.1ρ,∀i.

• c1,I = c2,I = . . . = cN,I = 1 and in the 6-item production system, c1,P =
c2,P = . . . = c6,P = 100. In the 10-item production system, c1,P = . . . =
c4,P = 100, c5,P = 1000, c6,P = . . . = c9,P = 100, c10,P = 1000.

24 Lost sales: One step improvement

A set-up slot is reachable from every slot in the cycle and a production slot is only
reachable from slots just after production slots of the same type or the set-up slot
for that type.

The one step improvement policy is compared with the fixed cycle policy, the
exhaustive base-stock policy (cf. [54] and [46]), and an adjusted exhaustive base-
stock policy. This policy is slightly different from the exhaustive base-stock policy,
because it skips the next item if the stock level of the next item is equal to its base-
stock level. If none of the items has a shortfall, the machine is set up for the next
item. The exhaustive base-stock policy is the most studied production strategy in
multi-item production systems. There exist other production strategies, of which
the gated base-stock policy is the most well-known policy. Besides the fact that this
strategy is harder to analyse than the exhaustive base-stock policy, the exhaustive
base-stock policy often outperforms the gated base-stock policy. We observed this
not only in the results presented in this section, but in all results that we obtained.
It is worth noting that the same observation is made by Federgruen and Katalan in
[37] for production systems with backlogged demand. By adjusting the exhaustive
base-stock policy, the performance is slightly improved.

Tables 2.4 and 2.5 show the average costs per time unit for the fixed cycle
strategy (FC), exhaustive base-stock policy (EXH), adjusted exhaustive base-stock
policy (EXH*) and the one step improvement policy (1SI). The results in the tables
are ordered according to the offered load ρ.

The order-up-to levels S(1) up to S(N) in the (adjusted) exhaustive base-stock
policy are determined in the following, heuristic way, which is similar to the proce-
dure to find g1, . . . , gN described in the previous section. A vector with base-stock
levels S(0) is defined and set equal to 1. For every item i, the average costs are
determined with a simulation study for S + ei, i.e. all values of S remain the same,
except S(i) which is increased by one. Among these N new vectors with base-stock
levels, the one with the lowest expected costs is chosen. This vector is denoted by
S(1). Following the same procedure with S(1) as input, S(2) is found, which is used
to find S(3) and so on until S(N) is found. S(0) is updated with the best vector
among S(1), . . . , S(N) if one of them gives lower costs than S(0). Based on this new
value of S(0), the new vectors S(1) up to S(N) are found and S(0) can be updated
again. These steps are repeated until no cost reduction is obtained.

For every set of base-stock levels, the expected costs per time unit are found with
a simulation study. The reason for this is that the performance of the exhaustive
base-stock control is numerically intractable if N gets large. The length of the last
simulation run is 25 million time slots, so that the calculated average costs are more
accurate.

It is seen that the adjusted exhaustive base-stock policy always outperforms the
exhaustive base-stock policy. But the one step improvement policy also outperforms
the exhaustive base-stock policy, and if ρ is high, it also outperforms the adjusted
exhaustive base-stock policy.

Even better results are obtained if the variance of the demand processes is higher
and the system has to be more responsive to changes in demand.

2.6 Results 25

ρ FC EXH EXH* 1SI
0.5 16.63 14.45 13.05 13.57
0.6 19.26 16.79 15.31 15.79
0.7 22.78 19.29 18.44 18.85
0.8 26.11 22.95 22.10 22.11
0.9 30.59 27.34 27.28 26.55

λ = (0.25ρ, 0.15ρ, 0.10ρ, 0.25ρ, 0.15ρ, 0.10ρ)
c1,I = c2,I = . . . = c6,I = 1,

c1,P = c2,P = . . . = c6,P = 100.

Table 2.4: A 6-item production system, with Poisson demand

ρ FC EXH EXH* 1SI
0.5 26.64 23.61 20.33 22.18
0.6 31.45 26.67 24.63 26.19
0.7 36.06 31.51 28.88 29.80
0.8 41.60 36.53 35.16 34.68
0.9 48.17 42.61 42.12 41.90
λ = (0.1ρ, 0.1ρ, 0.1ρ, . . . , 0.1ρ),
c1,I = c2,I = . . . = c10,I = 1,

c1,P = c2,P = c3,P = c4,P = 100, c5,P = 1000,
c6,P = c7,P = c8,P = c9,P = 100, c10,P = 1000.

Table 2.5: A 10-item production system, with Poisson demand

Variance of the demand processes

The results in Tables 2.6 and 2.7 are based on the same parameter settings as
in Tables 2.4 and 2.5, only the demand distributions are different. For each type,
demand arrives according to the following compound Poisson process. Batches arrive
according to a Poisson process with intensity λ

2 and have size 1 with probability 2
3

and size 4 with probability 1
3 . Thus the variance of each demand process is increased,

while the average number of arrivals per time unit remains the same.

ρ FC EXH EXH* 1SI
0.5 28.31 26.60 25.57 25.88
0.6 31.88 29.33 28.22 28.10
0.7 35.63 32.28 30.81 30.70
0.8 39.57 35.61 34.14 34.06
0.9 43.84 39.44 38.09 37.86

λ = (0.25ρ, 0.15ρ, 0.10ρ, 0.25ρ, 0.15ρ, 0.10ρ)

Table 2.6: A 6-item production system, with compound Poisson demand

For both the 6-item production system and the 10-item production system, the

26 Lost sales: One step improvement

ρ FC EXH EXH* 1SI
0.5 46.12 43.46 40.57 41.44
0.6 51.95 49.25 45.85 47.09
0.7 57.58 53.39 50.96 50.90
0.8 63.58 57.70 55.10 54.00
0.9 70.11 63.37 60.64 58.78

λ = (0.1ρ, 0.1ρ, 0.1ρ, . . . , 0.1ρ),

Table 2.7: A 10-item production system, with compound Poisson demand

dynamic policy gives lower expected costs than the (adjusted) exhaustive base-stock
policy for ρ ≥ 0.7. In the 6-item production system, the one step improvement policy
also outperforms the adjusted exhaustive base-stock policy for ρ = 0.6, while this
is not the case in the 10-item production system. The reason for this might lie in
the fact that the cycles in the 10-item production system are longer, which gives a
lower coefficient of variation of the demand that arrives in one cycle.

Longer set-up times

In many production systems, for example the glass manufacturing system described
in Fransoo et al. [42], set-up times take considerable time, which means a loss of
capacity. Therefore, the system should not switch too often, especially not to items
which have enough products on stock. To see what the effect of longer set-up times
is on the performance of the different production strategies, we increase the lengths
of the set-up times.

ρ FC EXH EXH* 1SI
0.5 18.78 17.11 15.80 16.09
0.6 22.20 20.03 19.11 19.25
0.7 25.98 23.77 23.27 23.04
0.8 30.48 28.11 27.80 27.64
0.9 35.48 33.52 33.46 32.95

Table 2.8: A 6-item production system, with Poisson demand, TS = 2

ρ FC EXH EXH* 1SI
0.5 30.30 26.47 25.48 26.18
0.6 35.53 32.73 31.23 30.96
0.7 41.52 37.90 37.36 37.20
0.8 47.99 44.36 44.02 42.95
0.9 55.58 51.65 51.57 50.46

Table 2.9: A 10-item production system, with Poisson demand, TS = 2

2.6 Results 27

The results in Tables 2.8 and 2.9 are based on production systems with Poisson
distributed demand. It now takes two time units to switch from one product type to
another, while the production times are still equal to one time unit. It is expected
that the dynamic one step improvement approach anticipates on these longer set-up
times and is able to save some capacity in the sense that it does not switch to an
item if it is not really necessary. Whereas the adjusted exhaustive base-stock policy
only skips an item if the stock level equals the base-stock level, the dynamic policy
will also skip an item if the stock level is somewhat less.

The dynamic policy performs best for ρ ≥ 0.7 in the 6-item production system,
while for the 10-item production system this is already the case for ρ ≥ 0.6. This
observation is explained by the fact that in the 10-item production system the
machine spends more time on switching during one cycle than in a 6-item production
system. Therefore, the actual load in the 10-item production tends to be higher than
in the 6-item production system.

For systems with both longer set-up times and compound Poisson distributed
demand, the results in Tables 2.10 and 2.11 are obtained. The compound Poisson
distributions are the same as the ones used for Tables 2.6 and 2.7.

ρ FC EXH EXH* 1SI
0.5 29.49 28.07 26.88 26.86
0.6 33.63 31.46 29.94 30.06
0.7 37.72 35.16 33.59 33.72
0.8 42.13 39.02 37.87 37.78
0.9 47.05 43.58 42.65 42.46

Table 2.10: A 6-item production system, with compound Poisson demand, TS = 2

ρ FC EXH EXH* 1SI
0.5 48.28 46.55 42.38 43.95
0.6 54.60 52.00 48.91 49.08
0.7 60.96 57.33 54.64 54.46
0.8 68.08 63.06 61.00 59.52
0.9 75.48 69.70 68.27 65.58

Table 2.11: A 10-item production system, with compound Poisson demand, TS = 2

In the 6-item production system, the difference between 1SI and EXH* is small.
In the 10-item production system, however, the difference is considerable for ρ ≥ 0.7.

Summarizing the results so far, we see that particularly for systems with higher
loads and more random demand, the one step improvement policy outperforms the
exhaustive base-stock policy. Apparently, the fact that the (adjusted) exhaustive
base-stock policy does not react to all stock levels becomes a problem if the load
on the system is high. If there is a high probability that one or more stock levels
quickly decrease, the system should be able to react. Therefore, the performance of

28 Lost sales: One step improvement

the one step improvement policy is very well if the load on the system is high or if
the demand is stochastic.

The production order

If all set-up times are equal, like in all examples in this section, the order of produc-
tion is not important for the performance of the fixed cycle policy. The reason for
this is that the production order does not influence the length of a production or
vacation period once the number of production times for each item is set. Because
the production period of an item may start in another slot if the production order is
changed, the relative value function for this item might be shifted as well. Because
the structure of the fixed cycle remains the same, the structure of the relative value
function per item also remains the same. However, for different production orders,
the sum of the individual relative value functions is different.

This effect is illustrated in Figures 2.2, 2.3 and 2.4. Figures 2.2 and 2.3 show the
individual relative value functions for two empty systems with the same parameter
settings, but a different production order. The first graph shows the relative values
for the production order of Table 2.4, while the second graph shows the relative
values for the production order of Table 2.12. The parameters in the two systems
are the following: Both production and set-up times are of unit length. The demand
processes are all Poisson, with λ = (0.125, 0.075, 0.05, 0.125, 0.075, 0.05) for system 1
and λ = (0.125, 0.125, 0.075, 0.075, 0.05, 0.05) in system 2. The holding costs are all
equal to 1, penalty costs are all equal to 100 and the lengths of the production periods
in the fixed cycles are g = (3, 2, 1, 3, 2, 1) for the first system, and g = (3, 3, 2, 2, 1, 1)
for the second system.

It is seen that 4 of the 6 individual relative value functions are shifted and
therefore, the sum of the relative values is different (but not shifted!), which is
shown in the third graph. Because of the difference in the relative value function,
we also expect a difference in performance of the one step improvement policy.

Tables 2.12 and 2.13 show the performance of the one step improvement policy
for a system with the same parameter settings as in Tables 2.4 and 2.6 respectively,
but with a production order as in Figures 2.2 and 2.3. The different production
order also has an effect on the individual product flows in the (adjusted) exhaustive
base-stock policies, which might lead to lower or higher average costs. The following
example illustrates one of the effects of a different order of production on the process
at product flow 1.

Consider the 6-item production system of Figure 2.4 and number the items such
that λ = (0.125, 0.125, 0.075, 0.075, 0.05, 0.05). The order of production in the first
system is then 1, 3, 5, 2, 4, 6, while in the second system the order is 1, 2, 3, 4, 5, 6.
Further assume that the stock levels of all items are equal to the base-stock levels
of these items. The time period between two successive production periods of item
1 consists of set-up times and production periods of other items. The length of
each of the production periods depends on the production order. On average, the
production periods of the items with a high demand rate are longer than the other

2.6 Results 29

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

Figure 2.2: Individual relative values for system 1

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

4 6 8 10 12 14 16 18
time slot

2 4 6 8 10 12 14 16 18
time slot

Figure 2.3: Individual relative values for system 2

6 8 10 12 14 16 18
time slot

6 8 10 12 14 16 18
time slot

Figure 2.4: Relative value functions for 6-item production systems

production periods. If item 2, with λ = 0.125, is the last item to produce before
the machine returns to item 1, it takes more time before the machine is set-up for
item 2. Therefore, more demand can arrive during this time. The production period
for item 2 will thus, in distribution, take longer than if item 2 is the next item to
produce.

So a different order of production has some effect on the different processes
at the different product flows. Therefore, results for EXH* are obtained for the
different production orders as well. The results with the new production order are
shown in the tables on the left, the results from Tables 2.4 and 2.6 are shown in
the tables on the right. The standard deviation for the results in Table 2.13 is at

ρ FC EXH EXH* 1SI
0.5 16.63 14.45 13.05 13.56
0.6 19.26 16.78 15.30 15.81
0.7 22.78 19.29 18.44 18.90
0.8 26.11 22.95 22.10 22.18
0.9 30.59 27.33 27.05 26.59
λ = (0.25ρ, 0.25ρ, 0.15ρ, 0.15ρ, 0.10ρ, 0.10ρ)

ρ FC EXH EXH* 1SI
0.5 16.63 14.45 13.05 13.57
0.6 19.26 16.79 15.31 15.79
0.7 22.78 19.29 18.44 18.85
0.8 26.11 22.95 22.10 22.11
0.9 30.59 27.34 27.28 26.55
λ = (0.25ρ, 0.15ρ, 0.10ρ, 0.25ρ, 0.15ρ, 0.10ρ)

Table 2.12: A 6-item production system, with Poisson demand

most 0.01, so for many examples, the difference in average costs is significant. It is
seen that, although the differences are small, for the system with Poisson demand,
the performance of 1SI seems best for the first choice of the production order. On

30 Lost sales: One step improvement

ρ FC EXH EXH* 1SI
0.5 28.31 26.61 25.56 25.85
0.6 31.88 29.33 28.22 28.18
0.7 35.63 32.28 30.77 30.64
0.8 39.57 35.60 34.02 34.10
0.9 43.84 39.44 38.10 37.81
λ = (0.25ρ, 0.25ρ, 0.15ρ, 0.15ρ, 0.10ρ, 0.10ρ)

ρ FC EXH EXH* 1SI
0.5 28.31 26.60 25.57 25.88
0.6 31.88 29.33 28.22 28.10
0.7 35.63 32.28 30.81 30.70
0.8 39.57 35.61 34.14 34.06
0.9 43.84 39.44 38.09 37.86
λ = (0.25ρ, 0.15ρ, 0.10ρ, 0.25ρ, 0.15ρ, 0.10ρ)

Table 2.13: A 6-item production system, with compound Poisson demand

the other hand, the system with compound Poisson distributed demand gives the
impression that it is quite random which of the two production orders is best.

Further, the average costs for the (adjusted) exhaustive base-stock policy are in
some cases also significantly different for a different order of production. Unfortu-
nately, it is not possible to state that if EXH* performs best for a specific order
of production, the one step improvement policy performs best for that production
order too. A counter example is found in Table 2.13 for ρ = 0.8, where EXH*
outperforms EXH* in Table 2.6, but 1SI of Table 2.13 does not outperform 1SI of
Table 2.6. For this counter example, the costs for the adjusted exhaustive base-
stock policy are lower than for any of the one step improvement policies in Tables
2.6 and 2.13. But for ρ = 0.6, 0.7 and 0.9, the one step improvement policy does
outperform the adjusted exhaustive base-stock policy. This is remarkable, but we
see no explanation for this observation.

For the system studied in Tables 2.4 and 2.12, results are also obtained for
the production orders with λ = (0.25ρ, 0.25ρ, 0.10ρ, 0.10ρ, 0.15ρ, 0.15ρ) and λ =
(0.25ρ, 0.10ρ, 0.15ρ, 0.25ρ, 0.10ρ, 0.15ρ) in Table 2.14. It is seen that, after comparing
all four different orders of production, the production order in the table on the right
hand side gives the best results for the one step improvement policy for ρ ≤ 0.8 and
the production order in the table on the left hand side is best for ρ = 0.9.

ρ FC EXH EXH* 1SI
0.5 16.63 14.45 13.05 13.47
0.6 19.26 16.78 15.30 15.76
0.7 22.78 19.28 18.44 18.78
0.8 26.11 22.94 22.10 22.08
0.9 30.59 27.34 27.05 26.72
λ = (0.25ρ, 0.10ρ, 0.15ρ, 0.25ρ, 0.10ρ, 0.15ρ)

ρ FC EXH EXH* 1SI
0.5 16.63 14.45 13.05 13.50
0.6 19.26 16.78 15.30 15.82
0.7 22.78 19.27 18.44 18.95
0.8 26.11 22.94 22.10 22.17
0.9 30.59 27.34 27.05 26.62
λ = (0.25ρ, 0.25ρ, 0.10ρ, 0.10ρ, 0.15ρ, 0.15ρ)

Table 2.14: A 6-item production system, with Poisson demand

Summarizing the results on the different production orders, we can conclude
that a different production order can lead to significantly lower or higher costs.
However, it is not possible to get a good intuition for the best production order

2.6 Results 31

from the results obtained here.

An extra production period

Another way of changing the production order is by adding an extra production
period for items with a high demand rate or high penalty costs. In this way, the
vacation periods for these items get shorter and one might need lower safety stocks.
On the other hand, the load on the system gets higher, because more time is spent
on switching per cycle, which results in higher safety stocks. Production systems
with and without an extra production period for the first item are compared in
Table 2.15. In this table, the demand rates are all equal, but the distributions of
the demand processes are different. First, a Poisson process is considered, then two
compound Poisson processes are studied. The first compound Poisson process is as
in Tables 2.6, 2.7, 2.10, 2.11 and 2.13. The second compound Poisson process has
batch arrivals with rate λ/3. These batches have size 9 with probability 1/4 and
size 1 with probability 3/4. So the second compound Poisson process has a higher
variance and thus a higher coefficient of variation than the first compound Poisson
process. The holding costs are all equal to 1, the penalty costs are all equal to 100.
The fixed cycle, adjusted exhaustive base-stock and one step improvement policy
with an extra production period for item 1 are denoted by FC2, EXH*2 and 1SI2
respectively. The order of production is then 1, 2, 3,1, 4, 5 instead of 1, 2, 3, 4, 5.

Demand process FC FC2 EXH* EXH*2 1SI1 1SI2
Poisson 18.29 18.24 14.70 14.70 14.98 14.75
Compound Poisson 1 29.57 29.07 25.64 25.62 26.13 25.78
Compound Poisson 2 40.43 40.10 38.33 38.29 38.49 38.31

λ = (0.4, 0.1, 0.05, 0.05, 0.1), h = 1, p = 100

Table 2.15: A 5−item production system with different demand processes

It is seen that, for the three systems studied in Table 2.15, the systems where
item 1 gets two production periods per cycle results in lower costs per time unit
for both the adjusted exhaustive base-stock policy and the one step improvement
policy.

In Tables 2.16 and 2.17, we look at the effect of an extra production period for
an item with relatively high penalty costs. The demand rates are now all equal,
but the penalty costs for the first item are much higher than for the other items.
The production orders 1, 2, 3, 4, 5 and 1, 2, 3,1, 4, 5 are compared for the fixed cycle,
adjusted exhaustive base-stock strategy and for the 1SI policy. It is seen that none
of the fixed cycles gives lower costs with the extra production period. However,
the one step improvement policy performs better with the extra production period
for the Poisson demand process and the second compound Poisson demand process.
On the other hand, for the first compound Poisson demand process, the production
order 1, 2, 3, 4, 5 gives the lowest costs for the one step improvement policy. These
observations show that it is difficult to get a good intuition for the right order of

32 Lost sales: One step improvement

Demand process FC FC2 EXH* EXH*2 1SI1 1SI2
Poisson 16.40 16.65 12.66 12.66 13.72 13.30
Compound Poisson 1 29.68 29.75 25.30 25.28 25.22 25.36
Compound Poisson 2 44.35 44.53 42.59 42.55 42.69 42.35

λ = (0.1, . . . , 0.1), h = 1, p = (500, 100, 100, 100, 100)

Table 2.16: A 5−item production system with different demand processes

Demand process FC FC2 EXH* EXH*2 1SI1 1SI2
Poisson 24.88 25.05 20.28 20.28 20.40 20.06
Compound Poisson 1 39.92 39.97 33.03 33.04 32.71 32.85
Compound Poisson 2 59.20 59.20 54.99 54.97 52.47 52.33

λ = (0.15, . . . , 0.15), h = 1, p = (500, 100, 100, 100, 100)

Table 2.17: A 5−item production system with different demand processes

production, because an increase in the variance of the demand processes can have
both a negative and a positive effect on the performance of the one step improvement
policy if an extra production period is added to the fixed cycle.

Besides the parameter settings that are changed for the results in this section,
one can also look at the lengths of the production times, the distributions of the
production and set-up times and item dependent set-up times. Unfortunately, the
simulations that are needed to obtain accurate results can be time consuming. This
is no problem if only a few examples need to be studied. But especially the time
that is needed to find the optimal base-stock levels for the exhaustive base-stock
strategy becomes a problem if one wants to look at a large number of examples.
Therefore, the effect of the lengths of the production times and other parameter
settings are left for future research.

2.7 Conclusion

A dynamic policy for the control of a production system is obtained by perform-
ing an improvement step on a fixed cycle strategy. This fixed cycle strategy has
a special structure which allows for a decomposition of the relative value function
that is used to perform the improvement step. Therefore, the dynamic policy can
be obtained for systems with a large number of product types as well, while in these
situations the optimal policy is intractable.

The performance of the new strategy is compared with the exhaustive and ad-
justed exhaustive base-stock policy. The one step improvement policy seems to be
very well suited for the dynamic control of more random systems, systems with a
high load, large set-up times and different demand rates or penalty costs. Further-
more, the one step improvement strategy performs well if the number of different
product types is large, which is exactly the area where we were looking for a good

2.7 Conclusion 33

dynamic strategy. It is also seen that the order of production has some influence
on the performance of both the exhaustive base-stock strategy and the one step im-
provement policy. Although the performance of the fixed cycle policy is equal for all
production orders in which each item gets one production period and set-up times
are all equal, the relative value function for each of the fixed cycles is different which
leads to a different performance of the one step improvement policy. It was seen
that spreading the items with the highest demand rate equally has a positive effect
on the performance of the dynamic policy. Further, ordering the items according
to decreasing demand rates or penalty costs also has a positive effect on the cost
reduction.

If for one item the demand rate is relatively high, it might be rewarding to
insert an extra production period for this item in the fixed cycle. Even though
the average costs for the fixed cycle policy do not necessarily decrease with this
extra production period, the one step improvement policy can profit from this extra
production period, if the demand is very random. Similarly, if for one item the
penalty costs are relatively high and the demand is very random, the average costs
for the one step improvement policy can decrease with an extra production period
for this item.

The next chapter discusses the one step improvement approach based on a fixed
cycle policy in a multi-item production system with 2 machines.

34 Lost sales: One step improvement

Chapter 3

Lost sales: 2 machines

For the single machine multi-item production system, the one step improvement
approach gave nice results in systems with higher load and more random demand.
A more complex, but also very practical model is a similar system with 2 or more
machines. The current chapter focusses on this multiple machine multi-item pro-
duction problem and builds on the work in Chapter 2. As before, the production
system can be translated into a queueing system. This queueing system has multi-
ple servers and multiple queues. Because of the complexity of multi-server queueing
systems, there are only a few studies on production systems with multiple machines
so far and they all concern systems with backlog instead of lost sales.

For systems with backlog, Morris and Wang [64] studied a queueing system with
multiple servers that are assumed to visit the queues independently of each other,
but according to a fixed cyclic order. If these orders are equal, it turns out that
the servers tend to cluster. In order to avoid this clustering effect, they suggest to
use two different, ’dispersive’ routes for the two servers. Levy et al. [58] propose
reversed polling orders to prevent clustering of the servers. Further, they suggest to
reverse the directions of two servers when they collide.

Browne and Weiss [20] is one of the few studies in which multiple servers are
coupled in a multi-queue system. In their study, the servers visit the queues to-
gether and they extend the analysis of a multi-server queueing system to a polling
model with c coupled servers. Borst [13] also looks at polling systems with cou-
pled servers and focusses on the distributional results of the waiting time and queue
lengths at polling epochs, where each queue gets gated or exhaustive service and
service times are exponential or deterministic. Van der Mei and Borst [84] analyse
a more general polling model with a power-series algorithm, with which the waiting
times and queue lengths of many of these multi-queue models can be analysed and
minimized. More recently, de Haan [30] introduced an exhaustive exponential time
limited strategy, in which two servers serve each queue during a maximum time or
until the queue is empty. This maximum time is stochastic and sampled from an
exponential distribution.

For a system with two queues, Osogami et al. [66] look at a system with one

35

36 Lost sales: 2 machines

server for a beneficiary queue and one server for a donor queue. The server of the
donor queue switches to the beneficiary queue if the donor queue is empty and the
number of customers in the beneficiary queue is above a certain threshold level.
The server of the donor queue switches back as soon as the number of customers
in the donor queue exceeds another threshold level. The mean sojourn time of the
customers is minimized and optimal values of the two threshold levels are derived.
The analysis can be extended to a system with multiple donor queues, but a model
with multiple beneficiary queues seems to be too complex.

As the above studies point out, the analysis and optimization of large multi-
server polling models is very complex, due to the lack of structure and curse of
multi-dimensionality. And just as for the single machine problem, the analysis for
a system with two machines is more complex if we consider a system with lost
sales. Although the number of states in such a system is smaller (there are no
queues), the different base-stock levels influence the performance measures of all
other product flows, as was already seen in the previous chapter. Furthermore, a
generating function approach, which is also used in Borst [13] and Browne and Weiss
[20], does not lead to explicit expressions for a system with lost sales.

The corresponding queueing model of the production system with lost sales is
a polling model with two servers and a finite buffer for each queue. For queueing
models with buffers, analytic results depend on the buffer sizes of all queues. Marsan
et al. [60, 61, 62] look at a multiserver queueing system with finite buffers and
present a method to obtain exact numerical values for performance measures like
customers’ waiting times, but restrict the system to be small enough in the total
number of possible states. The same problem arises if one tries to find the optimal
production strategy (via an MDP approach) in a production system with a (too)
large number of product types. The complexity of the system grows even faster in
the number of product types than the complexity of the production system with a
single machine. And if the complexity gets too large, the optimal policy becomes
intractable.

However, the construction of a dynamic policy with a one step improvement
approach could be a way to deal with the multi-dimensionality problem that is also
encountered in the backlog systems. Furthermore, the complication with the base-
stock levels is then also solved, because of the independence of the product flows
when a fixed cycle strategy is used. This leaves the question of how to extend the
one step improvement approach so that it can be applied in a system with multiple
machines. The current chapter answers this question for two machines.

3.1 Model

Just as in Chapter 2, we consider N product types for which demand arrives
according to (compound) Poisson processes. All types are made to stock and for
each item, the one step transition costs are as in Equation (2.1). To make these
product types one uses two identical machines. In the previous chapter, set-up and

3.1 Model 37

production times can be of different lengths. If that is also the case in the production
system with two machines, decisions are not (always) taken simultaneously. So if
on one machine, a set-up or production time is finished and the other machine
is still busy with a production or set-up, one needs to know how much time is
needed to finish that production or set-up in order to calculate the future expected
costs for that machine. So unless all production and set-up times are exponentially
distributed, one has to keep track of the time that has passed since the last decision
moment for each machine, which makes the analysis more complicated. Thus, in
this study it is assumed that all set-up times and all production times of the two
machines are deterministic and equal to 1, so that decisions for the two machines
are always taken simultaneously. The system is controlled as follows. Every time
unit (or decision moment) the state of the system, i.e. the inventories of all product
types and the items set-up at the two machines, is inspected and then a combined
decision is taken about what to do on the two machines.

As we have already seen in Chapter 2, if the number of product types is somewhat
larger, the curse of dimensionality makes it impossible to determine the optimal pro-
duction and inventory strategy. For the one-machine problem we already developed
a one step improvement policy in the previous chapter. For a production system
with two machines, a similar approach is now used, which works as follows.

For both machines, a fixed cycle strategy is constructed so that the complete
system can be analysed as N independent subsystems. The product types are
divided into two disjoint sets, one for each machine. The number of product types
in the two sets are denoted by N1 and N2, for machines 1 and 2 respectively.
Then, a fixed cycle scheme is found for each of the two sets. Like in the previous
chapter, the state of the system with a fixed cycle control is described by the tuple
(n1, n2, k1, . . . , kN), where ki is the inventory of type i and n1 and n2 the slots
within the cycles. At every decision moment, one may decide to jump to another
slot in the fixed cycle. In that way, two separate one step improvement policies
are constructed. But for each item, it is allowed to produce it on both machines.
So both machines can also produce the product types that are normally (i.e. in
the fixed cycle policy) produced on the other machine and therefore, it is possible
to start a so called visit period to one of the product types of the other machine.
That product type is called the visited product type. The fixed cycle of the visiting
machine is interrupted, which can be seen as a breakdown or vacation period. For
the other machine, it is assumed that the fixed cycle continues and therefore, only
the visited product type is influenced by the visit period. If such visit periods are
allowed, an extra state variable is needed for each machine to indicate which product
type is currently set-up on that machine and how many slots of the visit period are
left (zero if there is no visit period).

For the new visit decisions, relative values must be calculated. Fortunately, the
decomposition property mentioned in Property 1.2 still holds, so the relative values
can be determined per product type. Furthermore, the relative values for the visit
decisions can be expressed in terms of the relative values of the fixed cycles. The
exact expressions for the relative values are given in Section 3.2.

38 Lost sales: 2 machines

The constructed production strategy with visit periods will be called a combined
one step improvement policy instead of the one step improvement policy that still
refers to the production strategy discussed in the previous chapter. The two policies
are compared in Section 3.4.

Let us now first discuss the costs and transition probabilities.

3.1.1 Costs and transition probabilities

The costs and transition probabilities are basically the same as in the previous
chapter. However, new assumptions in the production model lead to some slight
changes in the notation for the costs and transition probabilities. For example, new
transition probabilities need to be introduced, because a visited product type can
be produced by two machines simultaneously.

First, the slot index is omitted from the one step transition costs. The reason for
that is that it is assumed that all time slots are of unit length. Therefore, the one
step transition costs no longer depend on the slot type. So we can define c(i)(k) as
the one step transition costs for type i if the current stock level of that type equals
k. Using the notation of Equation (2.1), we denote ci(k) = ci(k, 1) as the expected
costs for a slot starting with an inventory of k.

Similarly, D(i) is defined as the random variable denoting the demand for type
i in a slot (time unit) and ai(k) = P (D(i) = k). For the transition probabilities
pi,n(k, k

′), Equations (2.2) up to (2.7) still hold for the case that the other machine
is not set-up for type i. In these equations, Dn(i) must be read as D(i) and ai,n(k)
as ai(k).

However, if the other machine is set-up for type i, it is – at least theoretically
– possible that both machines work on this type simultaneously. Therefore, new
transition probabilities have to be defined. Now, let p+i,n(k, k

′) denote the transition
probability that I(i) changes from k to k′ during slot n, given that the next slot on
the other machine is reserved for a production of item i. Then, if k ≥ S(i) − 1 or
n is not a production slot for item i, p+i,n(k, k

′) = pi,n′(k, k′), with n′ a production
slot of item i. If n is a production slot for item i,

p+i,n(k, k
′) = ai(k − k′ + 2), 0 < k < S(i)− 1 , k′ = 3, . . . , k

and

p+i,n(k, 2) = P (D(i) ≥ k) = 1−
k−1∑
j=0

ai(j), 0 < k < S(i)− 1.

With the one step transition costs and probabilities, the relative values can be
defined.

3.2 Relative values 39

3.2 Relative values

3.2.1 One machine

The relative values of the fixed cycle policies are already calculated in the pre-
vious chapter. With Equation (2.11), one easily obtains the (approximate) relative
values r̂i(n, ki) for each product type i with stock level ki for time slot n, for in-
stance with successive approximations. The total relative value for slot n for one

machine is then equal to ˆr(m)(n, k) =
∑Nm

i=nm
r̂i(n, ki). Here, k = (k1, . . . , kN), m

the number of the machine and ki the inventory for type i.

In the improvement step for one machine, one looks for the best reachable n′,

that is the reachable slot within the cycle that minimizes ˆr(m)(n′, k).

3.2.2 Two machines

Recall that at the start, each product type has been allocated to one of the
machines. In the combined improvement step, each machine can start a visit period
to another product type. For such a decision, a relative value must be calculated.
This relative value can be found with the relative values for the fixed cycle policy.
In order to limit the number of possible decisions, we do not allow the two machines
to visit a product type at the same time. So at most one of the two machines is
allowed to work on a product type that normally is not produced on it. Below we
show how the decision to help is taken.

3.2.3 Notations

We will use an index P to indicate that a product type is produced on its
Preferred machine (the one it is normally produced on) and V if is it (also) produced
on the other machine, the non-preferred or Visiting one. Now we can write rPi for
the ordinary relative values obtained for the fixed cyclic scheme for the machine
product type i is normally produced on. The values rVi will denote the relative
values for a product type that is produced on its non-preferred machine.

In case one of the machines starts a visit period other relative values are needed,
for the product type that is visited as well as for the product types that are pro-
duced on their preferred machine, but now are interrupted by an intruding product
type from the other machine. For the product types that are interrupted, only the
(residual) duration of the interrupt matters.

Interrupted product types

Let us denote rPi (l, k;n) as the relative value for product type i that is produced
on its preferred machine, which now is interrupted for the next l time units, given
that there are k items of type i left and assuming that at the end of the interrupt
the cycle resumes in slot n and the visiting machine returns to its own fixed cycle.

40 Lost sales: 2 machines

These relative values are computed recursively, as follows

rPi (l, k;n) = ci(k) +
∑
k′

pi,0(k, k
′)rPi (l, k

′;n− 1)− c(i) ,

with

rPi (l, k; 0) = rPi (l, k)

and c(i) the average costs per time unit for product type i in the fixed cycle policy.

The interrupting product

For the product type that is causing the interrupt we have to distinguish between
the situation that the first slot is needed for set-up and the case that it can be used
for production. Also the slot in which the machine is interrupted is not relevant for
this type. What is relevant is the slot the cycle of its preferred machine is in. We
will use n to denote this slot and the notations rVi (n, k; l, S) and r

V
i (n, k; l, P) with

S indicating the set-up slot and P a production slot. Since only the first slot of the
interrupt is needed for set-up we get the following recursions:

rVi (n, k; l, S) = ci(k) +
∑
k′

pi,n(k, k
′)rVi (n, l; l − 1, P)− c(i) ,

rVi (n, k; l, P) = ci(k) +
∑
k′

p+i,n(k, k
′)rVi (n, l + 1; l − 1, P)− c(i),

with

rVi (n, k; 0, P) = rPi (n, k).

The values of c(i) and rPi (n, k) can be found with successive approximations, as
described in the previous chapter.

3.3 The combined improvement step

Now that the relative values are available, we can calculate the decisions in the
combined one step improvement policy. In order to only consider the decisions that
are possible, one has to distinguish between the following two situations.

1. In the first one all product types are allocated to their preferred machines.
Given the slots the two cycles are in and the inventories for all product types
one has to find the best decisions. Then there are two possibilities to consider.

(a) All product types stay on their preferred machines. The optimal decision
pair of time slots is computed per machine, just as in the case of the
one-machine situation.

3.3 The combined improvement step 41

(b) One of the product types interrupts the cycle of its non-preferred ma-
chine. Then there are four decision elements to consider.

i. Which product type is interrupting,

ii. How many items will be produced (this number plus 1 for the set-up
is the duration of the interrupt),

iii. Which slot is next for the preferred machine,

iv. In which slot will the interrupted machine resume its cycle.

2. In the second situation there is an interrupt on one of the machines, i.e., the
machine is set-up to produce a product type from the other machine. Then
there are two options:

(a) Terminate the interrupt and then treat the situation as if all product
types are on their preferred machines.

(b) Continue the interrupt for a number of slots. This requires three deci-
sions:

i. For how many slots to continue,

ii. In which slot will the interrupted machine resume its cycle, and

iii. Which slot is next for the preferred machine.

3.3.1 Computational complexity

With respect to the complexity one has to distinguish two aspects: 1) how
much time is needed to compute a decision, but also, 2) how much time is needed to
obtain a fairly good estimate of the performance of the strategy obtained by applying
Howard’s policy improvement step. For the latter preferably about a million slots
need to be simulated. Let us investigate what is needed.

First note that the values rPi (n, k; l) can be computed beforehand for every
quadruple i, k, l, n. With 10 product types, a maximum value for k of 20, l at most
10 and n at most 5 (the number of set-up slots), the number of such quadruples is
about 10000. Computing all of them thus costs less than 1 second. The same holds
for the values r̂Ni (n, k; l, S) and r̂Ni (n, k; l, P). So this computational work can be
done in advance.

The next question is, how many decisions are possible in a state. Let us consider
the possible situations sketched above.
With respect to 1(b)i, there are N possible decisions, because each product type can
interrupt the fixed cycle of its non-preferred machine. For 1(b)ii, there is only one
fixed number of production slots in a planned visit period that we consider. In that
way, there is only one option for this decision element. Once a visit has started, it
is possible to change the length of the visit (at a future decision moment), but for
now it is enough to know whether the expected cost reduction of the planned visit
period is larger than the expected extra costs for the items that are interrupted.
The number of planned production slots must be sufficiently large to compensate
the set-up slots that are needed to start and end the visit period. On the other

42 Lost sales: 2 machines

hand, the visit period should not be too long, taking the lost sales costs of the
interrupted items into account. Looking at only one fixed number of production
slots is probably not always optimal, so one might not start a visit period, while an
(expected) cost reduction could be obtained with a visit period if another number
of production slots was considered. Fortunately, it is not necessary to use exactly
the optimal number of production slots to improve the two separate 1SI policies.
Such an improvement can be obtained with any reasonable number of slots. It is
also possible to consider several lengths of the visit period.

Concerning 1(b)iii, we only look at the set-up slots in the fixed cycle, because the
machine first has to switch back to one of the preferred items before continuing its
fixed cycle. This gives us N1 or N2 options (depending on which of the machines is
the machine that is interrupted). The number of options for decision element 1(b)iv
is the number of reachable slots for the interrupted machine, which is at most the
number of slots in one cycle of that machine.

The options for decision element 2(a) are only the set-up slots of the correspond-
ing machine, which comes down to a number of N1 or N2 options. With respect to
decision element 2(b)i, we choose the best option among a finite number of values,
where the minimum value is at least 1 (the option of zero slots is already treated in
2(a)). While in 1(b)ii, one has to look at a sufficiently large number of production
slots during the visit period, here the option of adding just one production slot
should always be considered. The reason for this is that no set-up time is inserted
for this production slot, so there is no need to compensate the costs for this set-up
time.

Concerning 2(b)ii, again only the set-up slots are considered, while for decision
element 2(b)iii, every reachable slot is an option to continue the fixed cycle.

With these options for the different decision elements, the number of possible
decisions tends to be very large. For example, in a system with 10 different product
types, the number of possible decisions might well be in the order of one thousand.
Finding the improved decision for a specific state will thus take in the order of a
millisecond. A consequence of that is that, depending on the required accuracy, the
simulation of the improved strategy might become time consuming. There are a
few ways to reduce the number of possible decisions, for example with the following
restrictions. If the total shortfall level of one of the machines is higher than the
total shortfall level of the other machine or than a certain threshold level, it can
not start a visit period. Further, if the shortfall level of one item is below a certain
threshold level, it does not interrupt the fixed cycle of its non-preferred machine.
It is also possible to restrict the system not to work on one product type with two
machines simultaneously. In that case, it is also not possible to start a visit period
of length l if it is assumed that within l slots, the same product type will be set-up
on the other machine.

3.4 Results 43

3.4 Results

The assumed length of a visit period, l must be chosen in such a way that it is
not too short and therefore too unattractive to start the visit period. On the other
hand, if the number of production slots in the visit period is too high, the calculation
of the relative value for the visit period takes too long, because the calculation time
grows exponentially in l. For the results in this section, we take the value of l equal
to the minimum of 4 and gi, the number of slots in a regular production period for
item i. The value of l is at most 4, so that the calculation time of the relative values
is limited. Note that the actual length of the visit period is not necessarily equal to
l, because it is possible to stop or continue the visit period at any slot boundary.
Further, the remaining number of slots of a started visit period is the number of
slots between zero and min(gi, 4) that gives the minimum relative value. The fixed
cycle slot that is executed after the visit period is assumed to be the switch-over
slot that gives the minimum relative value.

At the end of the previous section, a number of restrictions is discussed to limit
the number of possible decisions. Although these restrictions probably speed up the
simulation runs, they are not used for the results in this section.

Further, we want to note that the division of the product types is not necessarily
optimal. It is not our goal to look for the optimal sets of product types, but to
get some insights into the performance of the C1SI compared to the two separate
improvement steps. A set of examples is shown to illustrate the effect of different
parameter settings on the performance of the C1SI and 1SI policies. Unfortunately,
there was not enough time available to do a more extensive study.

Equal loads

In the production systems studied in Tables 3.1 and 3.2, the different items
are divided over the two machines in such a way that the load on the machines
is the same, 0.8. For these examples, two different demand processes are used.
The first one is a Poisson demand process with intensity λ, the second one is a
compound Poisson demand process. In the compound Poisson demand process,
batches arrive according to a Poisson process with rate λ/2 and have size 1 with
probability 2/3 and size 4 with probability 1/3. The combined improvement step is
denoted by C1SI, the two separate improvement steps are denoted by 1SI. It is seen
that with the combined one step improvement policy a significant cost reduction can
be obtained compared to the 1SI policy. However, it is also seen from Table 3.1 that
the combined improvement step does not necessarily lead to a better result than the
two separate improvement steps. A natural question is in which cases the combined
improvement policy outperforms the two separate improvement steps. This is an
interesting question that is left open for future research.

44 Lost sales: 2 machines

demand process FC EXH* 1SI C1SI
Poisson 54.30 43.29 43.70 40.76

Compound Poisson 86.92 70.16 70.42 69.21
λ = {0.5, 0.10, 0.10, 0.05, 0.05, 0.4, 0.15, 0.10, 0.10, 0.05},
h = 1, p = {300, 300, 300, 300, 300, 100, 100, 100, 100, 100}

Table 3.1: A 10−item 2 machine production system with different demand processes

demand process FC EXH* 1SI C1SI
Poisson 55.90 44.06 44.60 42.56

Compound Poisson 88.40 71.42 72.38 73.49
λ = {0.5, 0.10, 0.10, 0.05, 0.05, 0.4, 0.15, 0.10, 0.10, 0.05},
h = 1, p = {100, 100, 100, 100, 100, 300, 300, 300, 300, 300}

Table 3.2: A 10−item 2 machine production system with different demand processes

Different loads

If the load on machine 1 is high, while the load on machine 2 is low, the second
machine visits machine 1 quite often. The obtained cost reduction compared to the
two 1SI strategies is almost 7.5% for the case with Poisson demand and 3.68% for
compound Poisson demand. In both cases, the combined improvement step even
outperforms the adjusted exhaustive base-stock policy, while the two separate one
step improvement policies perform worse than EXH*.

demand process FC EXH* 1SI C1SI
Poisson 37.02 29.05 31.14 28.82

Compound Poisson 60.88 52.28 52.48 50.55
λ = {0.15, 0.15, 0.15, 0.15, 0.15, 0.1, 0.1, 0.1, 0.1, 0.1},

h = 1, p = {100, 100, 100, 100, 100, 100, 100, 100, 100, 100}

Table 3.3: A 10−item 2 machine production system with different demand processes

Different costs

The examples in this subsection consider two machines with exactly the same
demand distributions, but different penalty costs. So the loads on the two machines
are equal, but a lost sale of an item on machine 1 is much more expensive than a lost
sale of an item on machine 2. The results in Table 3.4 give the same picture as the
results in Tables 3.3, where the combined one step improvement policy outperforms
EXH*, while two separate 1SI policies give higher costs than EXH*. In all examples
seen so far, the obtained cost reduction with the combined one step improvement
policy is higher if the demand processes are more stochastic. Further, it is seen that
better results are obtained if the loads on the different machines are different or the
costs for the items on one machine are higher than the costs for the items on the

3.5 Conclusion and further research 45

other machine. However, it is often possible to construct two fixed cycles in such a
way that the expensive items are equally spread over the machines or the loads on
the two machines are similar.

demand process FC EXH* 1SI C1SI
Poisson 56.24 44.59 45.49 42.83

Compound Poisson 91.34 73.82 74.02 73.39
λ = {0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15},
h = 1, p = {300, 300, 300, 300, 300, 100, 100, 100, 100, 100}

Table 3.4: A 10−item 2 machine production system with different demand processes

demand process FC EXH* 1SI C1SI
Poisson 38.82 28.78 32.36 31.97

Compound Poisson 72.97 58.73 61.52 60.95
λ = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1},

h = 1, p = {500, 500, 500, 500, 500, 100, 100, 100, 100, 100}

Table 3.5: A 10−item 2 machine production system with different demand processes

3.5 Conclusion and further research

A dynamic control strategy is constructed which allows machines to visit product
types that are normally only produced on another machine. This control strategy
turned out to reduce the expected costs that are obtained with the one step improve-
ment policy discussed in the previous chapter. Especially in the case of asymmetric
costs, different demand rates and different loads, the C1SI performs well. A com-
parison with other strategies is needed to indicate in which cases the C1SI policy
outperforms existing strategies like the reversed polling policy of de Levy et al. [58].

The one step improvement approach has now been applied in both a production
system with a single machine and a production system with two machines. A logical
next step would be to construct a similar dynamic production strategy in a system
with three or more machines.

46 Lost sales: 2 machines

Chapter 4

Backlog: An overview

The backlog model does not have the advantage that the state space is limited (as
in the lost sales model), because there is no bound on the number of backlogged
customers. On the other hand, backlogging has the advantage that, as we will
show, it allows for a generating function approach to analyse the system. First,
the system is translated into a queueing system by looking at the shortfall level
of each product type. The shortfall levels are defined as in Chapter 1: X(i) =
Si − I(i) + B(i), i = 1, . . . , N . So in the queueing system, each outstanding order
in product flow i is considered as a waiting customer in queue i. The values of
X(i) are all non-negative, because the stock level I(i) can not exceed the maximum
stock level Si. Although the values of Si, i = 1, . . . , N play an important role in the
expected costs in the production system, they play no role in the queueing processes
X(1), . . . , X(N). Therefore, the analysis of these queueing processes is the same for
every set of base-stock levels.

Looking at the system from this queueing point of view, the production system
is basically translated into a polling model, which is already discussed briefly in
Chapter 1.

Server

Q
i+1

Q
1

Q
2

Q
i

Q
N

Figure 4.1: A polling model

47

48 Backlog: An overview

4.1 Polling model

Figure 4.1 shows an example of a polling model, in which eight (N) queues,
denoted by Q1, . . . , QN , are served by a single server. The stochastic arrival pro-
cesses at the different queues are independent from each other and each customer
requires a (stochastic) service time. These service times are also independent from
each other, (per queue) identically distributed, and independent from the arrival
processes. Switching from one queue to the next may require a (possibly stochastic)
set-up time.

A time interval between two consecutive switches is called a visit period for the
queue for which the server is then set-up. A vacation time is defined as a period
in which the server is away. For every queue, a vacation time consists of the visits
to the other queues and the switch-over times, see Figure 4.2. The number of
customers served during a visit period of a certain queue depends on the number
of customers present at that queue. But if the server spends more time at queue
1, during this time more customers arrive at queues 2 up to N , so the length of
the vacation depends on the length of the visit period. The key complicating factor
in the analysis of a polling system is this dependency between the lengths of the
visit periods of the different queues. Furthermore, the lengths of two successive visit
periods at the same queue are also dependent.

Visit to Q1

Set

-up
Visit to Q2

Set

-up
Visit to Q3

Set

-up

Visit to

Q4

Set

-up

Visit

to Q5

Set

-up

VACATION

Visit

to Q1

Figure 4.2: A vacation period of the first queue.

Visit disciplines

It was already mentioned in the introduction of this thesis that polling models
have been widely studied in the literature. In these polling models, a visit discipline
determines which customers are served during a visit period to a certain queue and
a service policy determines the order in which those customers are served. The
visit and service policies may vary per queue. The most commonly used service
policy is First-Come-First-Served and the most well-known visit policies are the
exhaustive, gated and k-limited policies. These visit disciplines are equivalent to
the exhaustive, gated and quantity-limited base-stock policies discussed in Chapter
1 for the production system. Just like in the lost sales model (see Chapter 2), the
server serves a queue until it is empty according to the exhaustive visit discipline.
According to the gated visit discipline, it serves exactly those customers present
upon arrival of the server (i.e. a gate is placed behind the last customer if the
server has just been set-up for Qi). According to the k-limited visit discipline,
the server serves a queue according to an exhaustive visit discipline, but switches

4.1 Polling model 49

earlier if k customers are served. The exhaustive and gated visit disciplines belong
to the so-called branching-type disciplines. If all queues are served according to a
branching-type visit discipline, the system can be analysed in a quite elegant way
(see Resing [71]) with probability generating functions (p.g.f.’s) and Laplace-Stieltjes
transforms (LST’s).

For discrete random variables, a probability generating function fully determines
the distribution of that variable, say X, and equals E

(
zX
)
. A Laplace-Stieltjes

transform is the equivalent of a p.g.f. for a continuous random variable, say Y , and
equals E

(
e−ωY

)
. Probability generating functions and Laplace-Stieltjes transforms

are often used in the field of queueing theory to determine distributions of queue
lengths or waiting times. The key property which makes the exhaustive and gated
disciplines branching type disciplines is the following:

Property 4.1. (Branching-type visit disciplines) If the server arrives to Qi to
find qi customers there, then during the course of the server’s visit, each of these
qi customers will effectively be replaced in an i.i.d. manner by a random population
having (say) p.g.f. hi(z1, . . . , zN) which can be any N -dimensional p.g.f.

In the exhaustive policy, the random population that replaces a customer present
at queue i at a polling instant is in distribution equal to the number of customers
that arrives during a busy period of this queue (this is the time that is needed to
go from k customers in Qi to k − 1 customers in Qi).

In the gated policy, the server serves only those customers that are present upon
arrival of the server. Therefore, the number of customers that replaces each of these
customers is in distribution equal to the number of customers that arrives during
a service time of a customer in Qi (this is the time that is needed to go from k
customers in front of the gate to k − 1 customers in front of the gate). So for both
the exhaustive and the gated policy, the customers present upon arrival of the server
are all independently replaced by a random population of new customers during the
server’s visit.

Following the k-limited strategy, the server serves a queue until it is empty or
k customers are served. This means that if the number of customers at a queue
seen upon arrival is greater than k, some of these customers will not be effectively
replaced by a random population. Therefore, this policy does not belong to the class
of branching type disciplines. Van Vuuren and Winands [87] present an iterative
algorithm to approximate the queue length distributions for this policy.

Using a generating function approach, it is possible to determine the limiting
distribution of the queue length or the waiting time distribution at polling epochs for
the gated and exhaustive discipline (see Resing [71]). From these distributions, one
can derive explicit expressions for the generating functions of the stationary queue
length distributions. In a similar way, the stationary queue length distributions can
be derived for the fixed cycle policy, which is done in Chapter 6.

50 Backlog: An overview

Base-stock policies

For the production system, the determination of the queue length or shortfall
distribution is very useful for the minimization of holding and backlogging costs.
Using a newsvendor type result (see for example Porteus [68]), the optimal base-
stock level can be obtained from this distribution. In this way, exhaustive and gated
base-stock strategies can be constructed for the production system.

Federgruen and Katalan [37, 38, 39] introduce a combination of these two strate-
gies, where products are produced according to either an exhaustive or a gated
base-stock policy. Before each switch-over time, a fixed idle time can be inserted.
Because they also consider switching costs, the total costs per time unit can be
reduced with these extra idle times. They show in [37] that the total average costs
only depend on the total idle time inserted in one cycle and using the results from
a previous paper on the corresponding polling model [36], they obtain the optimal
total idle time with a numerical procedure. The optimal production sequence is
constructed in [39].

Wagner and Smits [77] analyse the production system with an iterative method
of De Kok [31] for the following periodic base-stock production strategy. For every
product type, a fixed review period is set. At the end of every review period, the de-
mand in that review period is placed in a queue. The machine produces the demand
that is placed in the queue in a FIFO manner, in which the arrival moments are the
review instants. So the machine produces batches for each product type and then
switches to the next product type. The size of each batch has a general distribution,
because it is exactly the demand that arrives during one review period. Therefore,
the length of each production period is independent of the demand processes at the
other product flows. The production sequence follows from the review periods. The
lengths of the review periods of the different product types may be different, but it
is assumed that the review periods are such that the production sequence is cyclic.
In Smits et al. [89], the minimization of set-up and holding costs is considered,
under the condition that a certain fill-rate is satisfied. A local search algorithm is
presented to obtain the optimal review periods.

In Chapter 6, a fixed cycle strategy is studied for the production system. Just
as in Chapter 2, there is no dependency between the lengths of the different visit
periods if this strategy is followed for a polling model. Therefore, the analysis for
this policy can be done per queue, see Property 1.2. For the same reason, the relative
value function based on the fixed cycle strategy can also be found per product type
and just as in Chapter 2, an improvement step is performed to obtain a dynamic
production strategy in Chapter 7.

4.2 Queue lengths and waiting times

While in a production system one is interested in the minimization of holding and
backlogging costs, in queueing systems often the average queue length or expected
waiting time is minimized. Although the objective functions of these problems are

4.2 Queue lengths and waiting times 51

different than the cost function we are looking at, the complexity is similar and
results on queue lengths or waiting times in polling systems can be translated into
results on shortfall levels or lead times in the production problem.

Further, it is good to mention that the waiting time in the queueing system
can be seen as the lead time of a product in the production system, because this
is exactly the time between the moment an order (or customer) arrives and the
moment that the corresponding product is finished. Therefore, the minimization of
the average waiting time in a polling system comes down to the minimization of the
average lead time in a production system.

There are several studies on the minimization of the queue lengths. For example,
the minimization of the total number of customers in a queueing system is a special
case of the problem that Baras et al. [9] look at. They consider a discrete time
queueing system with two queues, geometric service times, no switch-over times
and a preemptive service discipline. For each waiting customer of queue i, costs of
ci are incurred per time unit and the arrival processes are independent of the state
of the system. Without any assumptions on the arrival processes, they prove that
the minimum expected costs are obtained by following a cµ rule, with µi, i = 1, 2 the
service rate of queue i. Following this rule, the class of customers with the highest
value of ciµi gets priority. The minimization of the total number of customers can
be obtained by choosing ci equal to 1 for all queues. If, for all queues ci is the
same, the queue with the highest service rate gets priority. It is intuitively easy to
understand that this rule minimizes the total number of customers in the system,
because there are no switch-over times, so in this way, the server always chooses
the fastest way to go from k to k − 1 customers in the system. If the values of ci
are not all equal, the cµ rule can be seen as reducing the total costs at maximum
speed: The value of ciµi represents the average costs per time unit that is saved by
serving queue i, if at least one customer is present. An extension of the work in
[9] is given in Baras et al. [8] and in the work of Buyukkoc et al. [26] for systems
with an arbitrary number of customer classes. Cox and Smith [28] already proved
that this rule is optimal for a system with Poisson arrivals, an arbitrary number of
customer classes and a general service time distribution.

For queueing systems with switch-over times between different queues, we can
refer to the works of Takagi [79], Hofri and Ross [49], Boxma et al. [16], Liu et al.
[59], Boxma et al. [18], Koole [53], Lefeber and Rooda [57]. Hofri and Ross made
one of the first attempts to optimize a polling system. They consider a system with
two queues and conjecture that the policy that minimizes the sum of discounted
switch-over costs and queueing costs is exhaustive service in a nonempty queue
and of threshold type for switching from an empty queue to another. Distributional
results for this policy are obtained by Boxma et al. in [18]. A similar policy is shown
to be optimal for a deterministic queueing system by Lefeber and Rooda [57] who
study a fluid system with deterministic production and set-up times. Furthermore,
the (continuous) demand process is constant. They look at the minimization of the
total queueing costs, where each unit of work in queue i brings costs ci per time
unit. They show that the optimal policy is the following: Both queues are served

52 Backlog: An overview

exhaustively, but the server idles at the most important queue if it is empty and the
amount of work at the other queue does not exceed a certain threshold level. Given
the optimal policy, the state of the system eventually follows a steady state pattern,
because everything is deterministic. Lefeber and Rooda [57] are mainly interested
in the optimal path towards this pattern if the current state does not belong to the
(bounded) set of optimal steady states.

Koole [53] also looks at a system with two queues, where the arrival processes are
Poisson and the service times are exponential with rates depending on the queues.
He minimizes the sum of switching and queueing costs and studies the limiting
behavior of the switching curve. The optimal policy is compared with the threshold
policy to show how complex the optimal policy is. The optimal policy turns out to
be a mixture between the threshold policy and the cµ rule. In this strategy, actions
depend on both queue lengths and the machine switches to the other queue if the
number of customers at that queue exceeds a certain threshold level. This threshold
level depends on the number of customers present at the current queue and may be
greater than zero if the current queue is empty, even if the server is set-up for the
least important queue.

In a system with two queues, one can thus determine these threshold levels,
which only depend on the queue length of the other queue. However, in a system
with more than two queues such threshold levels depend on the queue lengths of all
other queues. Otherwise, it is not clear to which queue the server should switch if
two or more queues exceed their threshold levels. But if the threshold levels depend
on the lengths of all other queues, the determination of the optimal threshold levels
becomes very complex for systems with a large number of queues.

Liu et al. [59] looked at the structure of the optimal policy for a system with an
arbitrary number of queues and only partial knowledge of the state of the system is
available. They assume that the service policy is non-preemptive and their objective
is the minimization of the amount of work or the number of waiting customers. They
decompose this problem into three subproblems. The first one is the determination
of the optimal action at a nonempty queue (serve, switch, idle) and they show that
in that case, under some fairly general conditions, the server should never idle. The
second subproblem is to determine the optimal action (switch or idle) if the server is
at an empty queue. They show that under certain conditions either idling is always
optimal or switching is always optimal. The third subproblem concerns the optimal
routing policy: Which queue is next if one decides to switch? They show that
for symmetric polling systems, the optimal routing policy belongs to the class of
Stochastically Longest Queue (SLQ) policies. If complete information is available,
this means that the server always switches to the queue with the highest amount of
work.

The minimization of the average number of waiting customers in a queueing
system is equivalent to the minimization of the average waiting time of an arbitrary
customer in a queueing system in the sense that both objectives lead to the same
optimal policy. In general, Little’s law can be applied, which gives a linear relation
between the average queue length and the mean waiting time and immediately shows

4.2 Queue lengths and waiting times 53

why the two minimizations lead to the same optimal policy. The minimization of the
average waiting time is also studied by Boxma et al. in [16]. They derive efficient
visit frequencies for polling tables, using an approximation method based on the
pseudo conservation law for mean waiting times in polling systems given by Boxma
et al. in [15].

However, an arbitrary customer waiting in queue i is not only interested in the
visit discipline or frequency of the server (gated, exhaustive, k-limited for example)
at each queue, but also in the service discipline of the server at queue i which
determines the position of the customer within a queue. The limiting distribution
of the waiting time of an arbitrary customer depends on both the visit and the service
discipline, so by choosing the right service discipline one can minimize the variance
of the waiting time for a given visit discipline. The following chapter discusses the
waiting time distribution for different visit and service disciplines. The analysis
in this chapter focusses on the gated and globally gated visit disciplines, and uses
an approach with Laplace Stieltjes transforms and generating functions to derive
distributional results on the sojourn time distributions. Furthermore, mathematical
tools are developed to give some better insight into the effect of service order in
polling systems.

54 Backlog: An overview

Chapter 5

Backlog: Waiting times for gated
queues in polling systems

In this chapter, the lead time distribution of a product type with a gated base-stock
policy is analysed. Because the lead time distribution is exactly the same as the
waiting-time distribution in the corresponding polling model, it is more convenient
to study this distribution directly from a queueing point of view. The same polling
model was already studied by Wierman et al. [91], where expressions for the mean
waiting times for several service and visit disciplines are derived.

So the production system is translated into a polling system with N queues,
which are cyclically visited by a single server. For every set of base-stock levels, the
corresponding polling system behaves exactly the same. Translating the production
system to a polling system, each product flow becomes a queue, but one can still
look at this queue as if it is a product flow by setting the base-stock level to zero.
Then, each outstanding order is called a customer. Each of these customers requires
a service time, which is equal to a production time. The arrival process of each
queue is exactly the same as the demand process of the corresponding product flow.
The service times are still generally distributed, but the arrival processes are now
independent Poisson processes, whereas in the previous chapters we also consider
compound Poisson processes. The reason for this assumption is just analytical: The
assumption on Poisson arrivals makes the analysis somewhat more elegant, so that
the focus of this study lies on the derivation of the waiting-time distribution in
general. However, it is also possible to extend the analysis presented here to also
find the waiting-time distribution for compound Poisson arrival processes.

When the server visits queue i, i = 1, . . . , N , it serves a number of customers
according to a certain visit discipline. This discipline is assumed to belong to the
class of branching-type disciplines, which includes gated and exhaustive service.
Although in a production system the order of service at a certain queue or product
flow is often First Come First Served (FCFS), one may also consider a Last Come
First Served (LCFS) service policy or Random Order of Service (ROS), where all
customers (or production orders) present at the current queue (product flow) are

55

56 Backlog: Waiting times for gated queues in polling systems

equally likely to get served next. Because the service times are stochastic, the order
of service can also depend on the service requirements of the present customers.
One may for example first serve the customers with the shortest service time. This
policy is called a Shortest Job First (SJF) service policy.

In production systems, the machine can only produce one product at a time. In
the polling system, this is equivalent to a server that can only serve one customer at
a time. However, there also exist polling systems in which a server is able to serve
multiple customers at the same time. Examples of such polling systems are the
802.11 (see Lam et al. [55]) and Bluetooth (see Miorandi et al. [63]) protocols, and
scheduling policies at routers and I/O systems in web servers. In such applications,
often featuring high service time variability, it may be advantageous to give non-
FCFS service. For these systems, one can also think of a Processor Sharing (PS)
service policy, in which all jobs are served simultaneously.

The special feature of our study is that, within each queue, we do not restrict
ourselves to service in order of arrival (FCFS); we are interested in the effect of dif-
ferent service disciplines. After a discussion of the joint distribution of the numbers
of customers at each queue at visit epochs of the server to a particular queue, we
determine the Laplace-Stieltjes transform of the cycle-time distribution, viz., the
time between two successive visits of the server to a certain queue, say queue 1.
This yields the transform of the joint distribution of past and residual cycle time,
w.r.t. the arrival of a tagged customer at the first queue. Subsequently concen-
trating on the case of gated service at the first queue, we use that cycle-time result
to determine the (Laplace-Stieltjes transform of the) waiting-time distribution at
queue 1. Next to locally gated visit disciplines, we also consider the globally gated
discipline. Again, we consider various non-FCFS service disciplines at the queues,
and we determine the (Laplace- Stieltjes transform of the) waiting-time distribution
at an arbitrary queue. This chapter is based on Boxma et al. [19].

5.1 Introduction

We consider a polling system of N queues Q1, . . . , QN , cyclically visited by a
single server. Customers arrive at these queues according to independent Poisson
processes, requiring generally distributed service times. In polling system design
several decisions need to be made, for instance one needs to decide on (i) the order
of service of the queues, (ii) the visit disciplines, and (iii) the service disciplines.
Regarding (i), a fixed cyclic order is usually assumed, but random polling orders and
polling tables have also been studied. With regard to (ii), many polling disciplines
have been considered. Well-known polling disciplines are the exhaustive discipline,
the gated discipline, and the k-limited discipline, as described in Chapter 4. Hardly
any attention has been given to (iii). It is almost invariably assumed that the
order of service within each queue is FCFS (First Come First Served). However,
in Wierman et al. [91] several other service disciplines are considered, like PS
(Processor Sharing), ROS (Random Order of Service), LCFS (Last Come First

5.1 Introduction 57

Served), SJF (Shortest Job First), and fixed priorities. Using the recently developed
MVA (Mean Value Analysis) approach for polling systems of Winands et al. [94],
the mean sojourn times at the various queues are obtained, for the case of cyclic
polling and either the exhaustive or the gated polling discipline at each queue. It is
demonstrated in Wierman et al. [91] that one can quite easily determine the mean
sojourn times in this case, and that the effect of the service order may be rather
profound, in particular in the case of exhaustive service.

The present chapter builds upon [91]. Our goal is to determine the LST (Laplace-
Stieltjes transform) of the sojourn-time distributions at the various queues of a
cyclic polling system, for several service disciplines. This allows us to study the
effect of different service disciplines on the sojourn time. We assume the polling
disciplines at the various queues belong to the class of branching-type disciplines (see
Resing [71]), which includes gated and exhaustive service but which does not include,
e.g., 1-limited service. However, we restrict the determination of the sojourn-time
distribution at some queue to the case that the polling discipline at that particular
queue is gated. In a future study we intend to tackle the more difficult problem of
deriving the sojourn-time distribution at a queue with exhaustive service.

Next to locally gated polling disciplines, we also consider the globally gated
discipline, which operates as follows: When the server arrives at Q1, a gate is closed
for all queues simultaneously. In the next cycle, the server serves exactly those
customers who are located before the gate, i.e., those who were already present when
the server arrived at Q1. Again, we consider various non-FCFS service disciplines at
the queues, and we determine the LST (Laplace-Stieltjes transform) of the sojourn-
time distribution at an arbitrary queue.

Our approach is as follows. In the case of a branching-type polling discipline
at all the queues, Resing [71] has obtained the joint distribution of the number of
customers at each queue at visit epochs of the server to a particular queue. His
result is easily seen to remain valid when the service order at a queue is not FCFS.
Using this queue-length result, we determine the LST of the cycle-time distribution,
viz., the time between two successive visits of the server to, say, Q1. This yields the
transform of the joint distribution of past and residual cycle time, w.r.t. the arrival
of a tagged customer at Q1. Finally, we use that cycle-time result to determine the
(LST of the) sojourn-time distribution at Q1. Manipulation of this transform gives
sojourn-time moments, generalizing the mean sojourn-time results recently obtained
via Mean Value Analysis in Winands et al. [91].

This chapter is organized as follows. Section 2 contains a model description. In
Section 3 we study the cycle time in the cyclic polling system with a branching-type
polling discipline at each queue. These results are then used in Section 4, which
contains an analysis of the sojourn time distribution in a gated queue, for various
service orders like FCFS, LCFS, PS, ROS and SJF. We then show, in Section 5,
how our ideas can be applied to polling systems that are served in a globally gated
fashion. Finally, Section 6 contains some concluding remarks and mentions topics
for further research.

58 Backlog: Waiting times for gated queues in polling systems

5.2 Model Description

A single server visits N queues Q1, . . . , QN in cyclic order. Customers arrive at
these queues according to independent Poisson processes {Ni(t), t ∈ R} with arrival
rate λi at Qi, i = 1, . . . , N . The service requirements of customers at Qi, to be called
type-i customers, are i.i.d. (independent, identically distributed) random variables,
with distribution Bi(·) and LST βi(·), i = 1, . . . , N ; Bi will denote a generic service
time at Qi. Since we will be interested in deriving the sojourn-time distributions
of customers that arrive to the system during steady-state, it is notationally more
convenient to define stationary versions of our processes on the entire real line R.
Hence, each arrival process Ni consists of points {Ti,n}n∈Z, where Z denotes the set
of integers, and T0 ≤ 0 < T1. Associated with each point is its service time Bi,n;
thus, the points (Ti,n, Bi,n) define a marked Poisson process on R2. The switch-over
times of the server from Qi to Qi+1 (QN+1 denoting Q1) have distribution Si(·)
and LST σi(·), i = 1, . . . , N ; Si will denote a generic switch-over time from Qi.
The server even switches among queues when all queues are empty. All interarrival
times, service times and switch-over times are assumed to be independent.

When the server visits Qi, it serves a number of customers according to a certain
polling discipline. We first concentrate on polling disciplines that belong to the class
of branching-type disciplines, as introduced in Resing [71]. This class is characterized
by the fact that each queue satisfies Property 4.1. Important examples of branching-
type disciplines are Exhaustive service (the server visits a queue until it has emptied
the queue) and Gated service (during a visit to a queue, the server serves exactly
those customers who were present at the beginning of that visit). 1-limited service
(the server serves just one customer during a visit, if there is at least one customer
present at the beginning of the visit) does not belong to the class of branching-type
disciplines. Borst [13] gives a slight extension of Property 4.1 that is also held by a
globally gated polling system:

Property 5.1. If there are ki customers present in Qi at the beginning of a visit
to Qπ(i) with π(i) ∈ {1, . . . , N}, then during the course of the visit to Qi, each
of these ki customers will effectively be replaced in an i.i.d. manner by a random
population having probability generating function hi(z1, z2, . . . , zN), which may be
any N -dimensional probability generating function.

When we begin to discuss globally gated polling disciplines, as introduced in
Boxma et al. [17], it will be clear that Property 5.1 is satisfied. Under this discipline
the server, in a cycle starting at Q1, only serves the customers that are present at
a polling instant at Q1.

Resing [71] has shown that, if Property 4.1 holds at each queue, the joint queue-
length process at polling instants of a fixed queue is a so-called multi-type branching
process (MTBP) with immigration. The theory of MTBP (see Athreya and Ney [5]
or Resing [71]) now leads to an expression for the generating function of the joint
queue length process at polling instants.

For a given polling discipline, we still have to specify the service discipline during

5.3 The Cycle Time in the Branching-Type Polling Model 59

the visit to a queue. As was already mentioned, we are interested in the effect of
different service disciplines on the sojourn times of customers.

Define ρi := λiEBi the traffic intensity at Qi, and denote by ρ :=
∑N
i=1 ρi the

total traffic intensity. We restrict ourselves to the case ρ < 1. For the class of polling
systems discussed here, this condition guarantees that the vectors of queue lengths
at polling epochs and at arbitrary epochs have steady-state distributions.

5.3 The Cycle Time in the Branching-Type Polling Model

In this section we determine the LST of the cycle time C for Q1, i.e., the time
between two successive visits of the server to Q1. Notice that C now denotes the
length of a time interval instead of the number of slots in one cycle, as was done in
the previous chapters on the production system with lost sales. The reason for this
is that in this chapter, a polling system is modeled in continuous time and C is the
most natural choice to denote the cycle length.

In Theorem 5.1 we compute the LST of the conditional cycle time, given the
numbers of customers present at all buffers in the polling system at the beginning of
the cycle. By unconditioning, the cycle time transform is obtained (Corollary 5.1).
But first we present some results from Resing [71], which will be used in the sequel.

In Section 5.2 we mentioned the class of branching-type polling disciplines (Resing
[71]); see Property 4.1. We assume that each queue in our polling system satisfies
this property, with generating function hi(z1, . . . , zN) at Qi, i = 1, . . . , N . For gated
service at Qi,

hi(z1, . . . , zN) = βi(
N∑
j=1

λj(1− zj)). (5.1)

For exhaustive service at Qi, with πi(·) denoting the LST of the busy period of
M/G/1 queue Qi in isolation, i.e., an M/G/1 queue with arrival rate λi and service
time distribution Bi(·):

hi(z1, . . . , zN) = πi(
∑
j ̸=i

λj(1− zj)). (5.2)

Resing [71] has proven the following. Let P (z1, . . . , zN) denote the GF of the steady-
state joint distribution of the numbers of customers X(1), . . . , X(N) in Q1, . . . , QN
at an arbitrary visit beginning of the server at Q1. Then

P (z1, . . . , zN) =

∞∏
n=0

g(fn(z1, . . . , zN)). (5.3)

60 Backlog: Waiting times for gated queues in polling systems

The functions fn(z1, . . . , zN) are defined inductively by

f0(z1, . . . , zN) = (z1, . . . , zN),

fn(z1, . . . , zN) =

(f (1)(fn−1(z1, . . . , zN)), . . . , f (N)(fn−1(z1, . . . , zN))), (5.4)

where the off-spring GFs f (i)(z1, . . . , zN), i = 1, . . . , N , are given by

f (i)(z1, . . . , zN) =

hi(z1, . . . , zi, f
(i+1)(z1, . . . , zN), . . . , f (N)(z1, . . . , zN)). (5.5)

The immigration GF g(z1, . . . , zN) is given by

g(z1, . . . , zN) =
N∏
i=1

σi(

i∑
k=1

λk(1− zk) +

N∑
k=i+1

λk(1− f (k)(z1, . . . , zN))). (5.6)

Let us now turn to the cycle time. Denoting the visit time (time spent in a queue
by the server) of Qi by Vi, i = 1, . . . , N , we have

C =

N∑
k=1

(Vk + Sk). (5.7)

Let θi(ω) represent the LST of the time that the server spends at Qi due to the
presence of one customer there. In the case of gated service, θi(ω) = βi(ω), the
service time LST; in the case of exhaustive service, θi(ω) = πi(ω), the busy-period
LST. We also need to introduce the following functions: ψi(ω) = ω + λi(1− θi(ω)),
i = 1, . . . , N , and ψi,N (ω) = ψi+1(ψi+2(...(ψN (ω)))), i = 1, . . . , N ; here ψN,N (ω) =
ω.

Theorem 5.1. The LST of the cycle time C, conditional on the numbers of cus-
tomers in all queues at the beginning of the cycle, is given by:

E(e−ωC |X(i) = mi, 1 ≤ i ≤ N) =

N∏
i=1

σi(ψi,N (ω))θmi
i (ψi,N (ω)). (5.8)

Proof.
In the formulas below, the condition “m1, . . . ,mk” denotes X(1) = m1, . . . , X(k) =
mk.

E(e−ωC |m1, . . . ,mN) = E(e−ω
∑N

j=1(Vj+Sj)|m1, . . . ,mN) (5.9)

= σN (ω)θmN

N (ω)E
(
e−(ω+λN (1−θN (ω)))

∑N−1
j=1 (Vj+Sj)|m1, . . . ,mN−1

)
= σN (ω)θmN

N (ω)σN−1(ψN (ω))θ
mN−1

N−1 (ψN (ω))

× E
(
e−ψN−1(ψN (ω))

∑N−2
j=1 (Vj+Sj)|m1, . . . ,mN−2

)
.

5.3 The Cycle Time in the Branching-Type Polling Model 61

Repeating the above iteration procedure finally yields the statement of the theorem.

Deconditioning immediately gives the cycle time LST for Q1:

Corollary 5.1.

E
(
e−ωC

)
=

N∏
i=1

σi(ψi,N (ω))

× P (θ1(ψ1,N (ω)), . . . , θi(ψi,N (ω)), . . . , θN (ψN,N (ω))). (5.10)

A similar type of expression can be given for polling systems that satisfy Prop-
erty 5.1. Notice that the state of the polling system at the embedded instants when
the server begins its visit at Q1 forms a MTBP, either with or without immigration,
depending on the setup times. Unlike Resing’s property, however, this is not true
at any of the other visit epochs in a globally gated polling discipline. Even so, in
the globally gated case one can still easily compute the steady-state distribution at
any other epoch by knowing the steady-state distribution at Q1.

Our derivation of the LST of C shows that the distribution of C is only depen-
dent on the polling discipline at each queue, and not on the scheduling discipline
used within each queue. Indeed, we know from Resing [71] that the steady-state
generating function P given in Corollary 5.1 only depends on the polling disciplines,
and it is clear that the same is true for the conditional transform found in Theorem
5.1.

We should also point out that, if the service discipline at Q1 is gated, the LST of
C has an even simpler form. In particular, while the system is in steady-state, the
number of customers X(1) found at Q1 at the moment the server switches to Q1

is equal in distribution to a randomized Poisson random variable (due to C being
random) with parameter λ1C. Hence, we have the following corollary.

Corollary 5.2. If the service discipline at Q1 is gated, then for 0 < z < 1, the
generating function of X(1) is as follows:

E
(
zX(1)

)
= E

(
e−λ1(1−z)C

)
. (5.11)

This allows us to relate all of the moments of C to the factorial moments of X(1)
(at the beginning of a visit period) in the following way: for each integer n ≥ 1,
E ((X(1))n) = λn1E (Cn), where for x ∈ R, (x)n = x(x− 1) · · · (x− n+ 1).

Moreover, there do exist efficient algorithms that are designed to compute the
factorial moments of X(1), at the beginning of a visit period. Resing also discusses
a possible method of computing these moments in Section 6 of [71], which involve
successively taking derivatives of the following equation (equation (11) in [71]):

P (z1, . . . , zn) = g(z1, . . . , zn)P (f1(z1, . . . , zn)).

Notice that this can be used to see why equation (5.3) holds above.

62 Backlog: Waiting times for gated queues in polling systems

5.3.1 The Biased Cycle Length

Throughout this chapter, we will be interested in the distribution of various
components of the steady-state cycle time, given that a particular type of customer
arrived during such a cycle. Knowing that such an arrival occurred will bias the
length of the cycle, and this must be accounted for.

Our cycles will always begin at the moment the server begins to work on jobs
present at Q1, due to the fact that the polling discipline at Q1 will always be of
a “gated” nature; either Q1 will behave in a gated fashion, or the system will be
globally gated with Q1 being the queue that governs the opening and closing of all
gates in the system. Assuming that a customer arrives to Q1 during a cycle, let
C∗, Cp and Cr denote the total biased cycle length, the amount of time between
the beginning of the cycle and the arrival of the tagged customer to Q1, and the
amount of time between the arrival of such a tagged customer and the end of the
cycle, respectively. Clearly C∗ = Cp + Cr, and the tagged customer will not be
served until the next cycle begins. C∗ will also be referred to throughout parts
of the chapter as the cycle time of the tagged customer. When we look at the
globally gated case, we will assume that all gates in the system are synchronized
with the gate at Q1, and so this same choice of cycles will be appropriate when we
are interested in the sojourn time distribution of customers that arrive at Qi, for
1 ≤ i ≤ N .

Our goal is to now relate their distributions to the distribution of C, which
is the steady-state unbiased cycle-length. It is known that, conditional on C∗,
the distribution of Cp is uniform on [0, C∗]. Furthermore, it is also known in the
literature (see, for example, Thörisson [81]) that

dP (C∗ ≤ x) =
xdP (C ≤ x)

E(C)
. (5.12)

From this result, it is then immediately clear that

E(C∗) =
E(C2)

E(C)
,

E(Cp) = E(Cr) =
E(C2)

2E(C)
.

Moreover, we can use (5.12) to compute the joint LST of Cp and Cr:∫ ∞

t=0

∫ ∞

u=0

e−ate−budP (Cp ≤ t;Cr ≤ u) =
E[e−aC]− E[e−bC]

(b− a)E(C)
. (5.13)

This joint LST can be used to show that

E(CpCr) =
E((Cr)2)

2
(5.14)

which gives some insight into the correlation between Cp and Cr.

5.3 The Cycle Time in the Branching-Type Polling Model 63

The derivation of these last results is known, and also beyond the scope of
the chapter so a discussion of their derivation has been omitted. To appease the
interested reader, we will mention that these results can be derived through the use
of Palm theory, which can be used to capture the biases that are mentioned above.
The Palm framework allows us to work with the fact that, under the Palm measure
induced by the point process consisting of the times at which a cycle begins, the
sequence of cycle lengths formed in the stationary version of this polling system
forms a stationary sequence, but does not form an i.i.d. sequence. If this were
true, we could instead have made use of well-known results from renewal theory:
for instance, the reader may recognize that E (Cr) has the same form as the first
moment of the stationary residual lifetime from a renewal process. References on
Palm theory are numerous: examples of more recent references include Baccelli and
Brémaud [7] and Serfozo [75] (both focus on applications in queueing), along with
Thörisson [81].

Throughout our analysis, we will also make use of what is known in the literature
as the stationary-excess operator R (see, for instance, Abate and Whitt [1]), which
is defined in the following way: for a given nonnegative random variable X,

P (RX ≤ t) =
1

E(X)

∫ t

0

P (X > s)ds, t ≥ 0.

We will also be applying this operator multiple times to a given random variable,
and to denote this we will use the abbreviation RX,n, where RX,0 = X, RX,1 = RX ,
and for any n ≥ 0, RX,n+1 = RRX,n .

The reader should note that for cycle times, RC and Cr will both be used
throughout various parts of the chapter, even though they both have the same
distribution. The former will typically be used within computations, while the
latter will exclusively be used to represent a particular residual cycle time observed
by a tagged customer.

Now we are ready to state the following lemma, which will prove to be useful
while computing the first and second moments of many of the types of sojourn times
considered in this chapter.

Lemma 5.1. For a, b ≥ 0, a ̸= b,

E(e−aC)− E(e−bC)
(b− a)E(C)

= (−a)n+1E(R
n+1
C)

(n+ 1)!

[
E(e−aRC,n+1)− E

(
e−bRC,n+1

)
(b− a)E(RC,n+1)

]

+
n∑
k=0

(−a)k
E
(
RkC
)

k!
E
(
e−bRC,k+1

)
. (5.15)

Proof. The LST of RC is known, and can be found in, for instance, Abate and Whitt
[1]:

E(e−ωRC) =
1− E(e−ωC)
ωE(C)

. (5.16)

64 Backlog: Waiting times for gated queues in polling systems

Equation (5.15), for n = 0, then follows from (5.13) and (5.16):

E(e−aC)− E(e−bC)
(b− a)E(C)

=
1− E(e−bC)
(b− a)E(C)

− 1− E(e−aC)
(b− a)E(C)

=
b

b− a
E(e−bRC)− a

b− a
E(e−aRC)

= E(e−bRC)− aE(RC)
[
E(e−aRC)− E(e−bRC)

(b− a)E(RC)

]
(5.17)

At this point we begin to see a pattern: if we apply (5.16), but with C and RC
being replaced with RC and RC,2, respectively, to the fraction found in (5.17), and
then repeat accordingly, we see that for any n ≥ 1,

E
(
e−aC

)
− E

(
e−bC

)
(b− a)E(C)

=
n∑
k=0

(−a)k
 k∏
j=1

E (RC,j)

E
(
e−bRC,k+1

)

+ (−a)n+1

n+1∏
j=1

E (RC,j)

[E (e−aRC,n+1
)
− E

(
e−bRC,n+1

)
(b− a)E (RC,n+1)

]
, (5.18)

where products of the form
∏0
j=1 will be understood to equal 1.

The proof will be complete once we compute each of the products found in
(5.18); such product computations have been observed before (see Whitt [90] and
the references given there, for instance), but for the reader’s convenience we will
also provide a proof. Notice that

E
(
e−ωC

)
= 1− ωE(C)E

(
e−ωRC

)
= 1− ωE(C) + ω2E(C)E (RC)E

(
e−ωRC,2

)
= . . .

=

n∑
k=0

(−ω)k
k−1∏
m=0

E (RC,m) + (−ω)n+1

[
n∏

m=0

E (RC,m)

]
E
(
e−ωRC,n+1

)
for each n ≥ 1. Therefore

k−1∏
m=0

E(RC,m) =
E
(
Ck
)

k!
, (5.19)

so for each k ≥ 1, we conclude from both (5.19) and (5.12) that

k∏
m=1

E(RC,m) =
E
(
Ck+1

)
(k + 1)!E(C)

=
E
(
RkC
)

k!
.

This proves (5.15).

5.4 Sojourn times at a gated queue 65

We would also like to point out to the reader that, in the work of Winands et
al. [94], Mean Value Analysis was used to derive a system of equations which, once
solved, allow for the computation of both the expected number of customers at a
given buffer in steady-state, along with the expected waiting time of a customer at a
given buffer. Moreover, the solution to these equations also allows us to numerically
compute the first moment of RC .

5.4 Sojourn times at a gated queue

In this section we will be interested in the sojourn time distribution of a tagged
customer that visits a gated queue, at a time when the system is in steady-state. It
should be emphasized here that the polling disciplines used at all other buffers in
the system can be of a branching-type; we do not need to assume that all of them
also operate under the gated discipline.

5.4.1 First Come First Served

We begin by computing the LST of the sojourn time of a tagged customer that
visits a queue, whose customers are served in accordance to a FCFS scheduling
policy. It is clear that

TFCFS = Cr +B1 +
∑

T1,k∈(−Cp,0)

B1,k.

Here TFCFS represents the sojourn time of a tagged customer (bringing an amount
of work B1 to the system) that arrives to Q1 while the system is in equilibrium. The
reader should also notice that we are assuming that the tagged customer arrives at
time zero, which is a quite standard assumption in the queueing literature: indeed,
it is often implicitly used in many studies found in the literature on queues. Notice
that we have suppressed the fact that we are referring to Q1 in our notation for
TFCFS , and we will continue to do so throughout the rest of this section. The
reason why we will follow this practice is because, for gated systems, the gate at
Q1 only moves at the moment the server begins working there. This allows us to
conclude that the waiting-time distribution has the same form for all other Qi that
operate under a gated scheme; the only difference would involve considering cycles
that begin at the moment the server begins working at Qi instead of Q1.

After conditioning on the past and residual cycle lengths, we see that

66 Backlog: Waiting times for gated queues in polling systems

E(e−ωTFCFS) = E
(
e
−ω

(
Cr+B1+

∑
T1,k∈(−Cr,0) B1,k

))
=

∫ ∞

0

∫ ∞

0

e−ωu
∞∑
n=0

β1(ω)
n+1 (λ1t)

ne−λ1t

n!
dP (Cp ≤ t, Cr ≤ u)

= β1(ω)

∫ ∞

0

∫ ∞

0

e−ωue−λ1(1−β1(ω))tdP (Cp ≤ t, Cr ≤ u)

= β1(ω)

[
E
(
e−λ1(1−β1(ω))C

)
− E

(
e−ωC

)
E(C) (ω − λ1(1− β1(ω)))

]
(5.20)

= β1(ω)E
(
e−ωDFCFS

)
,

where DFCFS denotes the delay of the tagged customer. Throughout this chapter,
for an arbitrary scheduling discipline Γ we will typically let DΓ denote the steady-
state sojourn time of a tagged customer minus its service time.

The first moment of TFCFS is well-known, and can be found in many places
throughout the polling literature (see, for instance, Boxma [14] or Takagi [79]):

E(TFCFS) = E(B1) + E(Cr)(1 + ρ1).

We will now show how to efficiently use (5.20) to compute both the first and
second moment of TFCFS . By applying Lemma 5.1 to (5.20), we see that for each
n ≥ 1, when ω ↓ 0,

E(e−ωDFCFS) =
n∑
k=0

(−1)k(λ1(1− β1(ω)))
kE
(
RkC
)

k!
E
(
e−ωRC,k+1

)
+O

(
ωn+1

)
.

Due to the fact that

λ1(1− β1(ω)) = ρ1ω − λ1
E
(
B2

1

)
2

ω2 +O(ω3), ω ↓ 0

we find that the LST of DFCFS can also be expressed in the following way: as ω ↓ 0,

E
(
e−ωDFCFS

)
= E(e−ωRC)− λ1(1− β1(ω))E (RC)E

(
e−ωRC,2

)
+ (λ1(1− β1(ω)))

2E
(
R2
C

)
2

E
(
e−ωRC,3

)
+O

(
ω3
)

= 1− E (RC) (1 + ρ1)ω + λ1
E
(
B2

1

)
2

E (RC)ω
2

+
E
(
R2
C

)
2

[
1 + ρ1 + ρ21

]
ω2 +O

(
ω3
)
.

5.4 Sojourn times at a gated queue 67

Thus,

E
(
D2
FCFS

)
= λ1E

(
B2

1

)
E (RC) + E

(
R2
C

) (
1 + ρ1 + ρ21

)
,

which also implies that

E
(
T 2
FCFS

)
= E

(
B2

1

)
+ E (RC)

(
2(1 + ρ1)E(B1) + λ1E

(
B2

1

))
+ E

(
R2
C

) [
1 + ρ1 + ρ21

]
.

5.4.2 Last Come First Served

The LST of the sojourn time TLCFS of a tagged customer under the Last Come
First Served (LCFS) discipline has a form that is similar to the LST of TFCFS .
Under LCFS, all of the workload that arrives to Q1 after the tagged customer, yet
during the cycle time of the tagged customer, will be processed before him, and so

TLCFS = Cr +B1 +
∑

T1,k∈(0,Cr)

B1,k.

By performing a sequence of calculations that is similar to what was done in the
FCFS case, we see that the LST of TLCFS is just

E
(
e−ωTLCFS

)
= E

(
e
−ω(Cr+B1+

∑
T1,k∈(0,Cr) B1,k)

)
=

∫ ∞

0

e−ωt
∞∑
n=0

β1(ω)
n+1 (λ1t)

ne−λ1t

n!
dP (Cr ≤ t)

= β1(ω)E
(
e−(ω+λ1(1−β1(ω)))C

r
)

= β1(ω)

[
1− E

(
e−(ω+λ1(1−β1(ω)))C

)
E(C) (ω + λ1(1− β1(ω)))

]
= β1(ω)E

(
e−ωDLCFS

)
. (5.21)

Given the form of (5.21), we see that Lemma 5.1 is not useful here, since the
delay transform can be explicitly stated in terms of a single Cr transform. Clearly,

ω + λ1(1− β1(ω)) = (1 + ρ1)ω − λ1
E
(
B2

1

)
ω2

2
+O

(
ω3
)
, ω ↓ 0

and this simple fact will allow us to rewrite the LST of DLCFS in the following way:

68 Backlog: Waiting times for gated queues in polling systems

E
(
e−ωDLCFS

)
=

∞∑
n=1

(−1)n−1

(
(1 + ρ1)ω − λ1

E
(
B2

1

)
2

ω2

)n−1
E (Cn)

n!E(C)

= 1−

(
(1 + ρ1)ω −

λ1E
(
B2

1

)
ω2

2

)
E (RC)

+

(
(1 + ρ1)ω −

λ1E
(
B2

1

)
ω2

2

)2
E
(
R2
C

)
2

+O
(
ω3
)

= 1− (1 + ρ1)E (RC)ω

+

[
λ1

E
(
B2

1

)
E (RC)

2
+ (1 + ρ1)

2E
(
R2
C

)
2

]
ω2 +O(ω3), ω ↓ 0.

Hence, the first two moments of this random variable are just

E(DLCFS) = (1 + ρ1)E (RC)

and

E
(
D2
LCFS

)
= λ1E

(
B2

1

)
E(RC) + (1 + ρ1)

2E
(
R2
C

)
.

From this, we can now compute the first and second moments of the sojourn time:

E(TLCFS) = E(B1) + E(RC)(1 + ρ1) = E(TFCFS),

and

E
(
T 2
LCFS

)
= E

(
B2

1

)
+ E(RC)

(
2(1 + ρ1)E(B1) + λ1E

(
B2

1

))
+ E

(
R2
C

)
(1 + ρ1)

2

= E
(
T 2
FCFS

)
+ ρ1E

(
R2
C

)
.

Thus, we see that the second moment of TLCFS is larger than the one of TFCFS ,
which proves that the sojourn time under LCFS is actually more variable than
its FCFS counterpart. This ordering between the second moments was already
established on pgs. 283-284 of Wolff [96] (see also Shanthikumar and Sumita [76],
whose result is mentioned on pg. 257 of Fuhrmann and Iliadis [44]), but in this case
we are able to prove it by giving an explicit calculation. Moreover, this difference
between the second moments of TFCFS and TLCFS is not surprising, as this is
basically due to the simple fact that (cf. (5.14))

E (CpCr) =
E
(
(Cr)

2
)

2
< E

(
(Cr)

2
)
.

5.4 Sojourn times at a gated queue 69

In other words, large values of Cr intuitively imply that many jobs will enter the
system during Cr, and similarly for small Cr; thus, TLCFS should exhibit more
variability than TFCFS .

5.4.3 Random Order of Service

The next policy that we will analyse in this chapter is known as the Random
Order of Service (ROS) policy. Unfortunately, the LST of the sojourn time under
this policy isn’t as nice as the previous cases, as the reader will see from the deriva-
tion below. To compute the LST, let us assign to each customer that arrives at time
Ti,n a mark Ui,n, where Ui,n is a uniform random variable on [0, 1]. We assume that
these new marks are independent of all other random elements in the space. Once
the server visits Qi, the order at which it serves the customers currently waiting
there is determined by the Ui,n marks; we will assume that the customer with the
smallest U mark is served first, the second-smallest served second, and so on. In
the work of Fuhrmann and Iliadis [44], this type of service discipline is known as
the Randomly Assigned Priorities (RAP) discipline, but in our system it is clearly
equivalent to the ROS discipline. Throughout the rest of this chapter, we will refer
to the U marks as ordering marks.

We first compute the LST of TROS , conditional on x being the ordering mark of
the tagged customer. Due to classical thinning properties of Poisson processes, we
see that

TROS(x)
d
= Cr +B1 +

∑
T1,x,k∈(−Cp,Cr)

B1,k

where T1,x,k correspond to the arrival points of a new Poisson process with rate λ1x.
Thus,

E
(
e−ωTROS(x)

)
= E

(
e
−ω

(
Cr+B1+

∑
T1,x,k∈(−Cp,Cr) B1,k

))
= β1(ω)E

(
e−λ1x(1−β1(ω))C

p−(ω+λ1x(1−β1(ω)))C
r
)

= β1(ω)

[
E
(
e−λ1x(1−β1(ω))C

)
− E

(
e−(ω+λ1x(1−β1(ω)))C

)
ωE(C)

]
.

Now we see that the transform is of the same form as before, and so we can apply
Lemma 3.1 to compute the conditional first and second moments. In this case, we
see that the conditional first moment is just

E(TROS(x)) = E[B1] + (1 + 2ρ1x)E(RC)

and the second conditional moment is

70 Backlog: Waiting times for gated queues in polling systems

E
(
T 2
ROS(x)

)
= 2λ1E

(
B2

1

)
x+ (3ρ21x

2 + 3ρ1x+ 1)E
(
R2
C

)
+ 2(1 + 2ρ1x)E(B1)E(RC) + E

(
B2

1

)
.

Finally, the unconditional moments of TROS can be computed by integrating out
x with respect to a uniform density on [0, 1]. Thus, the first moment is

E(TROS) = E(B1) + E(RC)(1 + ρ1).

The second moment is just

E
(
T 2
ROS

)
= E

(
B2

1

)
+ E(RC)

(
2(1 + ρ1)E(B1) + λ1E

(
B2

1

))
+

E
(
R2
C

)
2

(
2 + 3ρ1 + 2ρ21

)
= E

(
T 2
FCFS

)
+
ρ1
2
E
(
R2
C

)
.

The term ρ1E(R2
C)/2 is explained by the fact that, under ROS, the amount of

work in Q1 that is served before the tagged customer partly depends on Cr. Under
the FCFS discipline, this amount of work only depends on Cp. From (5.14) we know
that E(ρCrCp) = ρE

(
R2
C

)
/2, while E (ρCrCr) = ρE

(
R2
C

)
. Taking the product of

the amount of work served before the tagged customer and the residual cycle length
results in 2E(

∑N
k=1B1,kC

r), where N depends on either Cp (FCFS) or both Cp and
Cr (ROS). Hence, for ROS we get ρE

(
R2
C

)
, while for FCFS it is just ρE

(
R2
C

)
/2.

The difference between E
(
T 2
LCFS

)
and E

(
T 2
ROS

)
is exactly the same and can be

explained in an analogous manner.
Clearly E

(
T 2
LCFS

)
> E

(
T 2
ROS

)
> E

(
T 2
FCFS

)
. Moreover, we have also estab-

lished that the second moment of TROS is precisely in between the second moments
of TFCFS and TLCFS . We should again point out that such an ordering is already
known (see Shanthikumar and Sumita [76]) for more general types of queues. The
main point is to show that the moments can, in fact, be calculated.

5.4.4 The Processor Sharing and Shortest-Job-First Disciplines

The next two policies that we consider in this section are the Shortest Job First
(SJF) and the Processor Sharing (PS) policies. Suppose that when the server arrives
to Q1, it orders the jobs in increasing order, i.e., let B1,(k) denote the kth-smallest
job in Q1, where 1 ≤ k ≤ N1 (−Cp, Cr). Then it is clear that, if U denotes the
position of the tagged customer among the ordered (from smallest to largest) list
of service times of customers waiting in Q1 at the moment they begin to receive
service, then

TPS = Cr +
U∑
k=1

(N1 (C
p) +N1 (C

r) + 1− k + 1)

×
(
B1,(k) −B1,(k−1)

)
(5.22)

5.4 Sojourn times at a gated queue 71

and

TSJF = Cr +
U∑
k=1

B1,(k). (5.23)

Here we use the convention that B1,(0) = 0 with probability one.
Unfortunately, working with order statistics is often a cumbersome task; conse-

quently, we will not be able to explicitly compute the LST of either TPS or TSJF , for
an arbitrary service time distribution. The reader may notice, however, that if the
services are exponentially distributed, then TPS is equal in distribution to TROS .
This follows from the following simple property of exponential random variables
(see, for instance, page 19 of Feller [40]):

Proposition 5.1. Let X1, X2, . . . , Xn denote a collection of n independent and
identically distributed exponential random variables with rate α. If X(k) denotes

the kth-smallest random variable among the population, then the n variables X(k) −
X(k−1), 1 ≤ k ≤ n (set X(0) = 0) are independent and X(k)−X(k−1) is exponentially
distributed with rate (n− k + 1)α.

Even in this case, however, the distribution of TSJF is still difficult to handle. To
get around this dilemma, we will need to condition on the service time of the tagged
customer. Throughout the rest of this subsection we assume that the service time
distributions of all customers in the system are absolutely continuous (i.e. they
have a density). If not, two customers at Q1 that are served in the same cycle
could possibly bring exactly the same amount of work to the system, and such cases
have to be carefully handled. However, this is not difficult, and we leave it to the
interested reader to calculate.

Conditioning on the service time

Suppose that a tagged customer arrives to Q1 with an amount of work x. Then the
sojourn time of the customer depends on three things: the remaining amount of time
it takes for the server to reach Q1, and the amounts of work brought by customers
that arrived before, and after, the tagged customer to Q1. For a given scheduling
policy Γ, let TΓ(x) denote the sojourn time of a tagged customer, conditional on the
amount of work it brings to the system. Under many policies, this random variable
can be written in the following way:

TΓ(x) = x+ Cr +
∑

T1,k∈(−Cp,0)

g1 (B1,k, x) +
∑

T1,k∈(0,Cr)

g2(B1,k, x). (5.24)

Here gi : [0,∞) × [0,∞) → R, i = 1, 2 are functions that capture how the tagged
customer’s sojourn time is affected by customers that arrive before and after him,
respectively. For example, if Γ represents the FCFS policy, g1(y, x) = y and

72 Backlog: Waiting times for gated queues in polling systems

g2(y, x) = 0, since all customers arriving ahead of the tagged customer will be
served first, and no customer arriving afterward will affect the sojourn time. The
reader should of course keep in mind that gi could depend on x as well (such as
when analyzing the SJF case), which is why we allow gi to depend on x. This idea
of using equation (5.24) to model various service disciplines was used in Winands
et al. [91] to compute the mean sojourn times: we will show throughout the rest of
this section that it can be used to calculate transforms as well.

Modeling the sojourn times in this manner will allow us to easily compute the
LST of TΓ(x). For ω ≥ 0, we find that

E
(
e−ωTΓ(x)

)
=

e−ωxE
(
e
−ω

(
Cr+

∑
T1,k∈(−Cp,0) g1(B1,k,x)+

∑
T1,k∈(0,Cr) g2(B1,k,x)

))
= e−ωx

∫ ∞

0

∫ ∞

0

e−ωve−λ1(1−ϕ1(ω,x))u

× e−λ1(1−ϕ2(ω,x))vdP (Cp ≤ u,Cr ≤ v) ,

where ϕi(ω, x) = E(e−ωgi(B1,x)), for i = 1, 2, and Bϕ,i denotes a random variable
with LST ϕi. Therefore,

E
(
e−ωTΓ(x)

)
=

e−ωx
E
(
e−λ1(1−ϕ1(ω,x))C

)
− E

(
e−(ω+λ1(1−ϕ2(ω,x)))C

)
E(C) (ω + λ1(ϕ1(ω, x)− ϕ2(ω, x)))

. (5.25)

Showing that the SJF policy fits within this framework is simple: just set g1(y, x) =
g2(y, x) = y1(y ≤ x). This follows from the fact that all, and only all, jobs present
that are of a size smaller than x will be served before the tagged customer.

The PS discipline can also be modeled in this manner, if we choose g1(y, x) =
g2(y, x) = min(y, x). It is simple to verify that these functions correctly model the
processor-sharing phenomenon.

Processor Sharing

Now we are ready to analyse the sojourn time of a tagged customer at Q1, which
utilizes the processor-sharing rule while it is serving customers waiting in front of
the gate.

It should be noted that similar models, for the single-queue case, have been
studied in the literature before. Rege and Sengupta [70], for instance, derive various
performance measures for what is known as a gated M/M/1 queue, which operates
as follows: the server provides service to at most m ≥ 1 customers, in a processor-
sharing fashion. Once a group has been served, the server then begins serving
the next (up to) m waiting customers, and so on. The works of Avi-Itzhak and

5.4 Sojourn times at a gated queue 73

Halfin [6] and Rietman and Resing [72] focus on various extensions of this model.
In particular, [6] considers a gated M/G/1 queue, and they consider not only the
processor-sharing discipline, but other “conservative” scheduling disciplines, which
include FCFS, LCFS, and ROS. They also analyse the same type of model in [72],
but they go a step further by deriving the joint distribution of both the amount of
time a customer spends on both sides of the gate, and the number of customers on
both sides of the gate.

We will now begin our calculation of the conditional LST of the sojourn time
under PS. From (5.25), we see that

E
(
e−ωTPS(x)

)
=

e−ωx
E
(
e−λ1(1−ϕ(ω,x))C

)
− E

(
e−(ω+λ1(1−ϕ(ω,x)))C

)
ωE(C)

, (5.26)

where ϕ(ω, x) = E
(
e−ωmin(Bk,x)

)
. This expression is nice, in that it is given in

terms of the LST of the cycle time. To find the unconditional LST of TPS , we only
need to integrate with respect to the service time distribution, however in many
cases this transform will not be tractable.

We will now use this transform to calculate the first and second moments. For
first moments, we see that an application of Wald’s equality can be used to compute
the first moment of TPS(x) by using (5.24), and it can also be found in Winands et
al. [91].

In this case,

E(TPS(x)) = x+ E (Cr) (1 + 2ρ1,PS(x)),

where ρ1,PS(x) = λ1E[min(B1, x)] = λ1E[Bϕ]. One can easily check that this result
also agrees with the first moment calculation found in Avi-Itzhak and Halfin [6],
where they essentially look at the special case of a polling system with zero setup
times, and only one buffer.

At first glance, the LST of TPS(x) doesn’t look like a nice function to differ-
entiate, but it is still not too difficult to make use of it in order to compute the
first and second moment. By applying Lemma 5.1 to (5.26), we find that since
DPS(x) = TPS(x) − x (recall the discussion of the use of the D-notation below
(5.20))

E
(
e−ωDPS(x)

)
=

n∑
k=0

(−(1− ϕ(ω)))kλk1
E
(
RkC
)

k!

× E
(
e−(ω+λ1(1−ϕ(ω)))RC,k+1

)
+O

(
ωn+1

)
, ω ↓ 0.

Furthermore, since

1− ϕ(ω) = E(Bϕ)ω −
E
(
B2
ϕ

)
2

ω2 +O
(
ω3
)
, ω ↓ 0,

74 Backlog: Waiting times for gated queues in polling systems

and

ω + λ1(1− ϕ(ω)) = (1 + ρ1,PS(x))ω

− λ1
E
(
B2
ϕ

)
2

ω2 +O
(
ω3
)
, ω ↓ 0,

we have for ω ↓ 0:

E
(
e−ωDPS(x)

)
= 1− E(RC) (1 + 2ρ1,PS(x))ω + λ1E

(
B2
ϕ

)
E(RC)ω2

+
E
(
R2
C

)
2

(
1 + 3ρ1,PS(x) + 3ρ21,PS(x)

)
ω2 +O

(
ω3
)
.

This expression shows that the first and second moments of the conditional delay
are just

E(DPS(x)) = E(RC) (1 + 2ρ1,PS(x))

and

E
(
D2
PS(x)

)
= 2λ1E

(
B2
ϕ

)
E(RC)

+ E
(
R2
C

) (
1 + 3ρ1,PS(x) + 3ρ21,PS(x)

)
.

Before we compute the unconditional moments, let us first consider the finite
collection of i.i.d. random variables {B1,k}nk=1, where B1,1 is equal in distribution
to a typical amount of work that is brought by the customer that visits Q1. Then,
if we let B1,k:n denote the kth smallest value among this collection of size n, we see
that

∫ ∞

0

ρ1,PS(x)dB1,1(x) = λ1

∫ ∞

0

E (min(B1,1, x)) dB1,1(x)

= λ1E(B1,1:2),

λ1

∫ ∞

0

E
(
min(B1,1, x)

2
)
dB1,1(x) = λ1E

(
B2

1,1:2

)
,

and

∫ ∞

0

ρ21,PS(x)dB1,1(x) = λ21

∫ ∞

0

E (min(B1,1, x))
2
dB1,1(x)

= λ21E (min(B1,1, B1,3)min(B1,2, B1,3))

= λ21

[
2E (B1,1:3B1,2:3)

3
+

E
(
B2

1,1:3

)
3

]
.

5.4 Sojourn times at a gated queue 75

Thus, we see that the unconditional first moment of the delay is

E(DPS) = E(RC)(1 + 2λ1E(B1,1:2))

and the second moment is just

E
(
D2
PS

)
= 2λ1E

(
B2

1,1:2

)
E(RC)

+ E
(
R2
C

) (
1 + 3λ1E(B1,1:2) + λ21

[
2E(B1,1:3B1,2:3) + E

(
B2

1,1:3

)])
.

After a few more quick calculations, the reader will find that the first and second
moments of the sojourn time are as follows:

E(TPS) = E(B1,1) + E(RC)(1 + 2λ1E(B1,1:2)),

E
(
T 2
PS

)
= E

(
B2

1,1

)
+ E(RC)

(
2(1 + ρ1)E(B1,1) + 4λ1E

(
B2

1,1:2

))
+ 2E(RC)λ1E (B1,1)

2
+ E

(
R2
C

)
(1 + 3λ1E(B1,1:2))

+ E
(
R2
C

)
λ21
[
2E(B1,1:3B1,2:3) + E

(
B2

1,1:3

)]
.

Remark It may be of interest to find all values x where E(TPS(x)) ≤ E(TFCFS(x)),
and where E(TPS(x)) ≥ E(TFCFS(x)). If we assume that the distribution of B1 is
absolutely continuous (i.e. has a density), an application of the dominated conver-
gence theorem shows that the set of points where E(TPS(x)) ≥ E(TFCFS(x)) is of
the form [xPS ,∞), where xPS is the solution to the equation

E(min(B1, x)) = E(B1)/2.

After some simple manipulations, we see that xPS satisfies∫ xPS

0

B1(t)dt = E(B1)/2,

with B1(t) = P (B1 > t). This implies that xPS is the median of the residual service
time distribution. Notice that if B1 is exponential, then this is just the median of
an exponential distribution, and so we can conclude that in this case, half of all
customers that arrive to the system will experience a shorter expected sojourn time
if the system operates under FCFS, and the other half will experience a shorter
expected sojourn time under PS.

The exact difference between the second moments of TPS and TFCFS is just

E
(
T 2
PS

)
− E

(
T 2
FCFS

)
= E(RC)λ14E

(
B2

1,1:2

)
+ E

(
R2
C

) (
3λ1E (B1,1:2)− ρ1 + 2λ21E (B1,1:3B1,2:3)

)
+ E

(
R2
C

) (
λ21E

(
B2

1,1:3

)
− ρ21

)
.

The term E(RC)λ14E
(
B2

1,1:2

)
is explained by the fact that, under the PS service

discipline, the effect an arriving customer has on the waiting time of the tagged

76 Backlog: Waiting times for gated queues in polling systems

customer (i.e. an arriving customer adds an additional min(B1,1, B) to the delay)
and the service time of the tagged customer are dependent. Therefore, we get the
following term:

2E

N(−Cp,Cr)∑
k=1

min (B1,kB1)B1

 =

E (RC)
(
2λ1E

(
B2

1,1:2

)
+ 2λ1E (B1)

2
)
.

Under FCFS, there is no dependence between the waiting time due to an arriving
customer and the service time of the tagged customer. Furthermore, only the cus-
tomers who arrive during Cp cause a delay for the tagged customer. Therefore, we

only need to subtract 2E
(∑N(−Cp,0]

k=1 B1,kB1

)
= 2E (RC)λ1E (B1)

2
in the equation

above. An extra term of 2λ1E (RC)E
(
B2

1,1:2

)
appears, because an average number

of 2E (RC)λ1 customers arrive during (−Cp, Cr) who cause a delay for the tagged
customer with second moment E

(
B2

1,1:2

)
.

The second term, E
(
R2
C

)
(3λ1E (B1,1:2)− ρ1), is just the difference between

E
(
Cr
∑N(−Cp,Cr)
k=1 B∗

1,k

)
and E

(
Cr
∑N(−Cp,0)
k=1 B1,k

)
, with B∗

1,k representing the

amount of work brought by customer k that influences the delay of the tagged cus-
tomer. Under PS, this amount of time is the minimum of two service times, while
under FCFS it is one complete service time. Furthermore, TPS is influenced by cus-
tomers that arrive during both Cp and Cr, while under FCFS it is only influenced
by customers that arrive during Cp, which explains why λ1E (B1,1:2) is multiplied
by a factor 3 (see (5.14)).

Similarly, the third term E
(
R2
C

) (
2λ21E(B1,1:3B1,2:3) + λ21E

(
B2

1,1:3

)
− ρ21

)
corre-

sponds to the difference

E

N(−Cp,Cr)∑
k=1

B∗
1,k

N(−Cp,Cr)∑
j=1,j ̸=k

B∗
1,j

− E

N(−Cp,0)∑
k=1

B1,k

N(−Cp,0)∑
j=1,j ̸=k

B1,j

 .

Let B∗
1,kB

∗
1,j denote the product of two different (parts of) service times for which

the tagged customer has to wait. Now, with probability 1/3, B1 is smaller than both
B∗

1,k andB
∗
1,j , and in that caseB∗

1,kB
∗
1,j = B1,1:3B1,1:3. In all other cases, B∗

1,kB
∗
1,j =

B1,1:3B1,2:3 (either B∗
1,k or B

∗
1,j is the minimum among the three service times). Un-

der the PS discipline, the number of customers that influence the service time of the
tagged customer is N (−Cp, Cr), and its second factorial moment equals 3λ21E

(
R2
C

)
.

Multiplying both results gives us exactly E
(
R2
C

)
λ21
(
2E (B1,1:3B1,2:3) + E

(
B2

1,1:3

))
.

One can check that under FCFS, this term is just ρ21.

Shortest Job First

Now we will present the LST for the sojourn time of a tagged customer that visits
Q1 under the Shortest Job First policy. Due to the fact that g1 = g2 under this
policy as well,

5.4 Sojourn times at a gated queue 77

E
(
e−ωTSJF (x)

)
= e−ωx

E
(
e−λ1(1−ϕ(ω,x))C

)
− E

(
e−(ω+λ1(1−ϕ(ω,x)))C

)
ωE(C)

,

but in this case ϕ(ω, x) = E
(
e−ωB11(B1≤x)

)
. At this point, we can manipulate the

transform for this sojourn time in precisely the same manner as was done for the
processor-sharing case given above, because we never made explicit use of the form
of ϕ. Therefore, the first and second moment of DSJF (x) are as follows:

E (DSJF (x)) = (1 + 2ρ1,SJF (x))E(RC)

and

E
(
DSJF (x)

2
)

= 2λ1E
(
B2
ϕ

)
E(RC)

+ E
(
R2
C

) (
1 + 3ρ1,SJF (x) + 3ρ21,SJF (x)

)
,

however in this case ρ1,SJF (x) = λ1E(B1,11(B1,1 ≤ x)). The unconditional mo-
ments can also be computed, as in the PS case. Indeed,

∫ ∞

0

E (B1,11(B1,1 ≤ x)) dB(x) = E (B1,11(B1,1 ≤ B1,2))

=
E (B1,1:2)

2
,∫ ∞

0

E
(
B2

1,11(B1,1 ≤ x)
)
dB(x) =

E
(
B2

1,1:2

)
2

,∫ ∞

0

E (B1,11(B1,1 ≤ x))
2
dB(x) =

E (B1,1:3B1,2:3)

3
,

and so by inserting these expressions into our conditional moments, we find that

E(TSJF) = E(B1,1) + E(RC) (1 + λ1E(B1,1:2)) ,

E
(
T 2
SJF

)
= E

(
B2

1,1

)
+ E(RC)

(
2(1 + ρ1)E(B1,1) + λ1E

(
B2

1,1:2

))
+ E

(
R2
C

)(
1 + 3λ1

E (B1,1:2)

2
+ λ21E (B1,1:3B1,2:3)

)
.

It was shown in Winands et al. [91] that E(TSJF) is the smallest first moment
among all first sojourn time moments considered. Furthermore, we also find that
E
(
T 2
SJF

)
≤ E

(
T 2
FCFS

)
if E (B1,1:2) ≤ (2/3)E(B1,1:2). Such an inequality is satisfied

when the service time distribution is DFR (i.e. has a decreasing failure rate); see
pg. 1014 of Winands et al. [91].

In particular, for exponential service times it is easy to show that

E
(
T 2
SJF

)
< E

(
T 2
FCFS

)
< E

(
T 2
ROS

)
< E

(
T 2
LCFS

)

78 Backlog: Waiting times for gated queues in polling systems

and E
(
T 2
ROS

)
= E

(
T 2
PS

)
.

It is also important to note that we can establish meaningful comparisons be-
tween E

(
T 2
SJF

)
and E

(
T 2
FCFS

)
, that are similar to those found at the end of Section

5.4.4. We note that under SJF, the number of customers that arrived in (−Cp, Cr)
and are served before the tagged customer is just N1 (−Cp, Cr). Furthermore, each
arrival in (−Cp, Cr) influences the amount of time a tagged customer has to wait
with the amount B1,k(< B1), with probability 1/2. Therefore, one can look at the
queue as if customers arrive with rate λ/2 and bring waiting times (for the tagged
customer) distributed as service times that are smaller than B1, the service time
of the tagged customer. The terms λ1E

(
B2

1,1:2

)
E(RC) and E

(
R2
C

)
3λ1E(B1,1:2)/2

are both explained if you combine these two remarks with the result in (5.14). In
order to explain the term E

(
R2
C

)
λ21E (B1,1:3B1,2:3), we consider two customers who

are served before the tagged customer and let their service times be B1,j and B1,k.
It then holds that E(B1,jB1,k) = E(B1,1:3B1,2:3), because both service times are
smaller than the service time of the tagged customer.

5.5 A globally gated polling regime

In this section, we compute the LST of the sojourn time TΓ,i of an arbitrary type-
i customer in a globally gated polling system that serves customers at Qi according
to policy Γ. In such a polling system, the server serves only the customers who
are present at the start of the cycle, i.e. a gate is placed behind every queue just
before the server polls the first queue. This polling regime is not within the class of
branching type polling disciplines, but it satisfies Property 5.1, which allows us to
decompose TΓ,i into the sum of four parts which only depend on the total and the
residual length (C∗ and Cr) of the cycle in which a tagged customer arrives. For
such a tagged customer in steady-state, these four parts are defined by:

1. the residual cycle length Cr,

2. the service times of all customers of type j = 1, . . . , i − 1 that arrive during
Cp and Cr, where the sum of all type j customers arriving in (−Cp, Cr) form
the visit time Vj at Qj , j = 1, . . . , i− 1,

3. Ri, the time interval between the polling epoch of Qi in the following cycle,
and the departure epoch of the tagged customer,

4. the switch-over times S1, . . . , Si−1.

The LST of the total cycle time is derived in Boxma et al. [17] and satisfies

γ(ω) = E(e−ωC) =
∞∏
i=1

σ(δ(i)(ω)),

5.5 A globally gated polling regime 79

with

σ(ω) = E(e−ω
∑N

i=1 Si) =

N∏
j=1

σj(ω),

δ(0)(ω) = ω,

δ(i)(ω) = δ(δ(i−1)(ω)),

δ(ω) =

N∑
j=1

λj(1− βj(ω)).

In the same chapter, the LST of the waiting time inQi with a FCFS service discipline
is derived. This result will be discussed in the following section.

5.5.1 First Come First Served

In Boxma et al. [17], the LST of the sojourn time in Qi of a globally gated
system with a FCFS service discipline is given:

E(e−ωTFCFS,i) =

i−1∏
j=1

σj(ω)


× 1

EC

γ
(∑i

j=1 λj(1− βj(ω))
)
− γ

(∑i−1
j=1 λj(1− βj(ω)) + ω

)
ω − λi(1− βi(ω))

.

The first and second moment of Ti in FCFS can be derived with Taylor series
approximations in the numerator and the denominator. We find

E (TFCFS,i) = E (Bi) +
i−1∑
j=1

E (Sj)

+ E (RC)

2

i−1∑
j=1

ρj + ρi + 1

 (5.27)

80 Backlog: Waiting times for gated queues in polling systems

and

E
(
T 2
FCFS,i

)
= E

(
B2
i

)
+ E


i−1∑
j=1

Sj

2
+ 2E (Bi)

i−1∑
j=1

E (Sj)

+ E (RC)

2 (ρi + 1)E (Bi) + λiE
(
B2
i

)
+ 2

i−1∑
j=1

λjE
(
B2
j

)
+ E (RC)

4 i−1∑
j=1

ρjE (Bi) +

4
i−1∑
j=1

ρj + 2ρi + 2

 i−1∑
j=1

E (Sj)


+ E

(
R2
C

)3

i−1∑
j=1

ρj

2

+ ρi (ρi + 1)


+ E

(
R2
C

)1 + 3
i−1∑
j=1

ρj (ρi + 1)

 , (5.28)

where RC is equal in distribution to Cr, as pointed out in Section 5.3.1. The
result for the second moment of TFCFS can be compared with the results in the
following subsections, but these comparisons would be similar to the ones discussed
in Section 5.4. It is easily seen that the amount of time a customer has to wait before
the server visits its queue does not depend on the service discipline. Therefore, the
differences between the second moments are only caused by terms that include the
amounts of work brought by customers that arrive to Qi during the cycle (−Cp, Cr)
(including the tagged customer), which was also the case in the system with gated
visit disciplines. For a comparison of the second moments of the sojourn times, we
thus refer to the previous section.

5.5.2 Last Come First Served

In the LCFS policy, Ri consists only of the service times of the customers who
arrive during the residual cycle and the service time of the tagged customer. So we
get

E
(
e−ω(TLCFS,i−

∑i−1
j=1 Sj)

)
=

∫ ∞

t=0

∫ ∞

u=0

∞∑
ki=0

e−λiu
(λiu)

ki

ki!
e−ωu

×
i−1∏
j=1

e−λj(1−βj(ω))(t+u)E
(
e−ωRi |ki arrivals in Cr

)
dP (Cp ≤ t;Cr ≤ u) .

5.5 A globally gated polling regime 81

Clearly, E
(
e−ωRi |ki arrivals in Cr

)
= βki+1

i (ω), the LST of the sum of ki+1 service
times. So

E
(
e−ω(TLCFS,i−

∑i−1
j=1 Sj)

)
=

βi(ω)

∫ ∞

t=0

∫ ∞

u=0

∞∑
ki=0

e−λiu
(λiuβi(ω))

ki

ki!
e−ωu

× e−
∑i−1

j=1 λj(1−βj(ω))(t+u)dP (Cp ≤ t;Cr ≤ u)

= βi(ω)

∫ ∞

t=0

∫ ∞

u=0

e−λi(1−βi(ω))ue−ωu

× e−
∑i−1

j=1 λj(1−βj(ω))(t+u)dP (Cp ≤ t;Cr ≤ u) .

Using (5.13), we get:

E
(
e−ω(TLCFS,i−

∑i−1
j=1 Sj)

)
= βi(ω)

γ (Xi(ω))− γ (Xi+1(ω) + ω)

(λi(1− βi(ω)) + ω)EC
.

The first moment of TLCFS,i is exactly the same as in (5.27):

E (TLCFS,i) = E(Bi) + E (RC)

2
i−1∑
j=1

ρj + ρi + 1

+
i−1∑
j=1

E (Sj) .

However, the second moment is larger than E
(
T 2
FCFS,i

)
and can be found with

Taylor expansions or Lemma 5.1:

E
(
T 2
LCFS,i

)
= E

(
B2
i

)
+ E


i−1∑
j=1

Sj

2
+ 2E (Bi)

i−1∑
j=1

E (Sj)

+ E (RC)

2 (ρi + 1)E (Bi) + λiE
(
B2
i

)
+ 2

i−1∑
j=1

λjE
(
B2
j

)
+ E (RC)

4 i−1∑
j=1

ρjE (Bi) +

4

i−1∑
j=1

ρj + 2ρi + 2

 i−1∑
j=1

E (Sj)


+ E

(
R2
C

)3
i−1∑
j=1

ρj

2

+ (ρi + 1)
2
+ 3

i−1∑
j=1

ρj (ρi + 1)

 . (5.29)

Hence E
(
T 2
LCFS,i

)
= E

(
T 2
FCFS,i

)
+ ρiE

(
R2
C

)
. This should not come as a surprise,

based on what we have previously seen in the gated section.

5.5.3 Random Order of Service

For generally distributed service times and a ROS discipline, we derive the LST
of the sojourn time of a random customer. The time between the polling epoch of

82 Backlog: Waiting times for gated queues in polling systems

Qi and the departure of a tagged type-i customer (Ri) depends on the total number
of type-i customers that arrived during C∗, say ki. Although we previously used
random indicators Ui,n to determine how many customers are served before the
tagged customer, it is also easily seen that this number is uniformly distributed on
{0, . . . , ki−1}. Therefore, Ri is the sum of li service times, with li randomly chosen
from {1, . . . , ki}.

Because the switch-over times are independent of Cr, Ri and the service times
of all other customers that arrive during C∗, we can focus on just these three parts
of the sojourn time of a tagged customer, TROS,i −

∑i−1
j=1 Sj . Because each of these

parts only depends on C∗ and/or Cr, we condition on the residual cycle length Cr

and the preceding cycle length Cp (C∗ = Cp + Cr):

E
(
e−ω(TROS,i−

∑i−1
j=1 Sj)

)
=

∫ ∞

t=0

∫ ∞

u=0

∞∑
ki=0

e−λi(t+u)
(λi(t+ u))

ki

ki!
e−ωu

×
i−1∏
j=1

e−λj(1−βj(ω))(t+u)E
(
e−ωRi |ki others

)
dP (Cp ≤ t;Cr ≤ u) .

Using the result in (5.13), we get

E
(
e−ω(TROS,i−

∑i−1
j=1 Sj)

)
=

βi(ω)

E(C) (1− βi(ω))

1

λi

∫ Xi+1(ω)

Xi(ω)

γ(y)− γ(y + ω)

ω
dy, (5.30)

with

Xi(ω) =

i−1∑
j=1

λj (1− βj(ω)) .

For the first and second moment of TROS,i, we differentiate (5.30) by using a Taylor
series development in ω and find:

E (TROS,i) = E (Bi) +
E
(
C2
)

2E(C)

2

i−1∑
j=1

ρj + ρi + 1


+

i−1∑
j=1

E (Sj) . (5.31)

Indeed, the mean sojourn time consists of the mean service time of the tagged
customer, the mean residual cycle time, the mean work arriving at Q1, . . . , Qi−1

during the past and residual cycle time

(
2× E(C2)

2E(C)

)
, half of the average work

arriving at Qi during the past and residual cycle time and the mean switch over

5.5 A globally gated polling regime 83

times E (S1) , . . . ,E (Si−1). Furthermore, the first moment is again exactly the same
as in (5.27).

For the second moment, we find

E
(
T 2
ROS,i

)
= E

(
B2
i

)
+ E


i−1∑
j=1

Sj

2
+ 2E (Bi)

i−1∑
j=1

E (Sj)

+ E (RC)

2 (ρi + 1)E (Bi) + λiE
(
B2
i

)
+ 2

i−1∑
j=1

λjE
(
B2
j

)
+ E (RC)

4 i−1∑
j=1

ρjE (Bi) +

4

i−1∑
j=1

ρj + 2ρi + 2

 i−1∑
j=1

E (Sj)


+ E

(
R2
C

)3
i−1∑
j=1

ρj

2

+ ρ2i +
3

2
ρi + 1 + 3

i−1∑
j=1

ρj (ρi + 1)

 .
Note that the mean sojourn time of a type-i customer can be larger than the

mean sojourn time of a type-(i+ 1) customer, because E (TROS,i+1) ≤ E (TROS,i) if

E (Bi) ≥ E (Bi+1) +
E
(
C2
)

2E(C)
[λi+1E (Bi+1) + λiE (Bi)] + E (Si) .

Furthermore, notice that, as is true in the gated case and in Avi-Itzhak and Halfin
[6], the second moments are such that E

(
T 2
FCFS,i

)
< E

(
T 2
ROS,i

)
< E

(
T 2
LCFS,i

)
.

The differences are again as follows:

E
(
T 2
LCFS,i

)
− E

(
T 2
ROS,i

)
= E

(
T 2
ROS,i

)
− E

(
T 2
FCFS,i

)
=

E
(
R2
C

)
ρi

2
.

5.5.4 Processor sharing

The derivation of the LST of the sojourn time in the case of the PS service
discipline is different from the one in ROS, because the sojourn time now heavily
depends on the required service time of the tagged customer. However, for expo-
nentially distributed service times, the analysis is the same as for ROS, because of
Proposition 5.1.

Now suppose that the service times are generally distributed. As the reader
would guess, it will again be to our advantage to condition on the amount of service
brought to Qi by a tagged customer during steady-state. If such a customer brings

84 Backlog: Waiting times for gated queues in polling systems

an amount of work x to Qi, then its sojourn time minus x is just

DPS,i(x) = Cr +
i−1∑
j=1

(Vj + Sj) +
∑

Ti,m∈(−Cp,0)

min (Bi,m, x)

+
∑

Ti,n∈(0,Cr)

min (Bi,n, x) .

Again, because the switch-over times are independent of all other quantities present
in our representation of DPS,i(x), we will focus on computing the LST of DPS,i(x)−∑i−1
j=1 Sj . If we let ϕi(ω, x) denote the LST of min (Bi, x), then

E
(
e−ω(DPS,i(x)−

∑i−1
j=1 Sj)

)
=

∫ ∞

t=0

∫ ∞

u=0

e−ωue−λi(1−ϕi(ω,x))(t+u)

×
i−1∏
j=1

e−λj(1−βj(ω))(t+u)dP (Cp ≤ t, Cr ≤ u)

=
γ (Xi(ω) + λi (1− ϕi(ω, x)))− γ (Xi(ω) + λi (1− ϕi(ω, x)) + ω)

ωE[C]
,

where the second equality follows from (5.13).
By applying Lemma 5.1, it follows that

E

DPS,i(x)−
i−1∑
j=1

Sj

 =

E (RC)

1 + 2

i−1∑
j=1

ρj + 2λiE (min(Bi, x))

 (5.32)

and

E


DPS,i(x)−

i−1∑
j=1

Sj

2
 =

E (RC)

2 i−1∑
j=1

λjE
(
B2
j

)
+ 2λiE

(
min (Bi, x)

2
)

+ E
(
R2
C

)1 + 3

i−1∑
j=1

ρj + 3λiE (min(Bi, x))

+ 3

i−1∑
j=1

ρj + λiE (min (Bi, x))

2
 . (5.33)

5.5 A globally gated polling regime 85

Finally, after combining the switch-over times and the service time x of the tagged
customer with (5.32) and (5.33), and integrating with respect to dB1(x), we get

E (TPS,i) = E (Bi) +
i−1∑
j=1

E (Sj)

+ E (RC)

1 + 2

i−1∑
j=1

ρj + 2λiE (Bi,1:2)

 (5.34)

and

E
(
T 2
PS,i

)
= E

(
B2
i

)
+ E


i−1∑
j=1

Sj

2
+ 2E (Bi)

i−1∑
j=1

E (Sj)

+ E (RC)

2 i−1∑
j=1

λjE
(
B2
j

)
+ 2λiE

(
B2
i,1:2

)
+ 2E (RC)

E (Bi) + 2E (Bi)
i−1∑
j=1

ρj + 2λi

[
E (Bi,1)

2
+ E

(
B2
i,1:2

)]
+ 2E (RC)

1 + 2

i−1∑
j=1

ρj + 2λiE (Bi,1:2)

 i−1∑
j=1

E (Sj)

+ E
(
R2
C

)1 + 3

i−1∑
j=1

ρj + 3λiE (Bi,1:2) + 3

i−1∑
j=1

ρj

2

+ 6

i−1∑
j=1

ρjλiE (Bi,1:2) + λ2i
(
2E(Bi,1:3Bi,2:3) + E

(
B2
i,1:3

)) . (5.35)

5.5.5 Shortest Job First

Now we will compute the first and second moments of the sojourn time under
the SJF policy. In this case it is clear that, conditional on the service time of the
tagged customer being x,

DSJF,i(x) = Cr +
i−1∑
j=1

(Vj + Sj) +
∑

Ti,m∈(−Cp,0)

Bi,m1 (Bi,m ≤ x)

+
∑

Ti,m∈(0,Cr)

Bi,n1 (Bi,n ≤ x) .

86 Backlog: Waiting times for gated queues in polling systems

If we mimic the above derivation of the LST of the conditional delay for the PS
case, we see that

E
(
e−ω(DSJF,i(x)−

∑i−1
j−1 Sj)

)
=

γ (Xi(ω) + λi (1− ϕi(ω, x)))− γ (Xi(ω) + λi (1− ϕi(ω, x)) + ω)

ωE(C)
,

where in this case ϕi(ω, x) is the LST of Bi1 (Bi ≤ x).
Just as before, we get

E

DSJF,i(x)−
i−1∑
j=1

Sj

 =

E (RC)

1 + 2
i−1∑
j=1

ρj + 2λiE (Bi1 (Bi ≤ x))

 (5.36)

and

E


DSJF,i(x)−

i−1∑
j=1

Sj

2
 =

E (RC)

2 i−1∑
j=1

λjE
(
B2
j

)
+ 2λiE

(
B2
i 1 (Bi ≤ x)

)
+ E

(
R2
C

)1 + 3

i−1∑
j=1

ρj + 3λiE (Bi1 (Bi ≤ x))

+ 3

i−1∑
j=1

ρj + λiE (Bi1 (Bi ≤ x))

2
 . (5.37)

Therefore, the first and second moments of the sojourn time are as follows:

E (TSJF,i) = E (Bi) +
i−1∑
j=1

E (Sj)

+ E (RC)

1 + 2

i−1∑
j=1

ρj + λiE (Bi,1:2)

 (5.38)

5.6 Conclusion 87

and

E
(
T 2
SJF,i

)
= E

(
B2
i

)
+ E


i−1∑
j=1

Sj

2
+ 2E (Bi)

i−1∑
j=1

E (Sj)

+ E (RC)

2 i−1∑
j=1

λjE
(
B2
j

)
+ λiE

(
B2
i,1:2

)
+ E (RC)

2E (Bi) + 4
i−1∑
j=1

ρjE (Bi,1) + 2λiE (Bi,1)
2


+ 2E (RC)

1 + 2
i−1∑
j=1

ρj + λiE(Bi,1:2)

 i−1∑
j=1

E (Sj)

+ E
(
R2
C

)1 + 3
i−1∑
j=1

ρj +
3

2
λiE (Bi,1:2) + 3

i−1∑
j=1

ρj

2


+ E
(
R2
C

)3λiE (Bi,1:2)
i−1∑
j=1

ρj + λ2iE (Bi,1:3Bi,2:3)

 . (5.39)

5.6 Conclusion

The production system is translated to a cyclic polling system. For this polling
system, we have obtained the (LST of the) sojourn time distribution in a gated
queue, for various service orders within that queue. This sojourn time distribution
is equal to the corresponding lead time distribution in the production system. The
first two moments of the sojourn time also have been obtained, allowing us to study
the impact of the service order.

The following ordering results were already obtained by Winands et al. [91],
with respect to the average lead time:

E(TSJF) ≤ E(TPS) ≤ E(TFCFS) = E(TLCFS) = E(TROS),

if 2E(B1,1:2) ≤ E(B1) and

E(TSJF) ≤ E(TFCFS) = E(TLCFS) = E(TROS) ≤ E(TPS),

if 2E(B1,1:2) ≥ E(B1).
For the second moment, the ordering was, just like in Shanthikumar and Sumita

[76], as follows:

E
(
T 2
LCFS

)
> E

(
T 2
ROS

)
> E

(
T 2
FCFS

)
.

88 Backlog: Waiting times for gated queues in polling systems

Further,

E
(
T 2
SJF

)
≤ E

(
T 2
FCFS

)
if E (B1,1:2) ≤ (2/3)E(B1,1:2), i.e. if the service time distribution is DFR (i.e. has
a decreasing failure rate). For a Processor Sharing service policy, the ordering is a
bit more complicated, but for exponential service times it is easily seen that

E
(
T 2
PS

)
= E

(
T 2
ROS

)
.

One could also investigate whether or not there exists a sort of ordering among
the distributions of the sojourn times considered here.

The gated polling discipline turns out to be very tractable, thanks to the fact
that the sojourn times of the customers who are being served during a visit are not
affected by later arrivals which take place in that visit period. We expect exhaustive
service to be more complicated. This is a topic for further research. The case of
fixed priorities within a queue of a polling system also receives attention in Boon et
al. [11] and Boon [12].

The results obtained for the waiting times in a polling model can now easily be
interpreted as distributional results for the lead time in the production system as
well. The sojourn time in the queueing system represents the lead time (including
the production time) in the production system. For the distribution of the lead time
excluding the production time, one just looks at the waiting time distribution in the
queueing system.

Chapter 6

Backlog: A fixed cycle

The results for the first two moments of the waiting times of customers in a polling
system with a gated or globally gated visit discipline depend on the parameter
settings of all queues, which causes no numerical problems. However, in order to
find the average costs for these visit disciplines in a production system, one needs the
distributional results of the queue lengths. As was seen in the previous chapter, the
Laplace-Stieltjes transform of the waiting time in a certain queue contains an infinite
product, because of the branching type structure of the (gated and exhaustive) visit
disciplines. The same infinite product also appears in the probability generating
function of the queue length, see Resing [71]. This infinite product contains an
N -dimensional immigration function, see Equation (5.6). In order to find the exact
value of this immigration function, a recursive procedure is required that causes
numerical problems for large values of N . The complexity of the calculation lies
in the fact that the processes at the different queues depend on each other, which
results in a complex recursive procedure to obtain the exact value of the immigration
function.

So the multi-dimensionality of the system causes numerical problems for all
branching type base-stock control policies. Fortunately, the analysis of the fixed
cycle policy does not encounter these numerical problems, because of Property 1.2.
This property tells us that the processes at the different product flows behave in-
dependently. This chapter presents the analysis of the fixed cycle policy for a pro-
duction system with backlog. It was already mentioned in Chapters 1 and 2 that
under the fixed cycle strategy, the system can be decomposed into N subsystems.
Therefore, this chapter considers a cyclic, single-item production system with which
we can analyse each of these subsystems. In each subsystem, a periodic embedded
Markov chain is observed in the shortfall level at slot boundaries. This embedded
shortfall process is analysed using generating functions. Then, the optimal base-
stock level is derived from a newsvendor type relation. The model is also extended
to one with time slot dependent base-stock levels. This chapter is based on [21] and
[23].

89

90 Backlog: A fixed cycle

6.1 Introduction

We look at the fixed cycle strategy and decompose the system intoN subsystems.
Each subsystem is analysed as a queueing model and an optimal base-stock level is
derived. Then, a local search algorithm is presented to find a close to optimal fixed
cycle that can serve as a basis for the one step improvement approach in the next
chapter. Güllü et al. [47] also study the fixed cycle production scheme and present
two heuristic algorithms to find the lengths of the production periods of the different
items. Both algorithms are (partly) based on a deterministic model. Further, the
optimal decision level is derived for a single period model. In Erkip et al. [35], a
similar model is studied, in which all time slots have the same length and demand
distributions are equal for each time slot. A matrix analytic method is used to find
the optimal decision level for the infinite horizon model. Van den Broek et al. [83]
also look at a fixed cycle control scheme for a queueing system, with as application a
traffic light. They present several bounds and approximations for the queue lengths
in heavy traffic systems that do not require any numerical procedures. They also
assume that vehicles which arrive at an empty queue during an active (or green)
period, pass through the system without any delay. Darroch [29] studied this traffic
light system with a different arrival distribution if the queue is empty and geometric
distributed service times. He gives a generating function for the number of waiting
cars at slot boundaries and derives some inequalities for the expected queue length
and the expected delay per vehicle.

A more general queueing model with vacations is studied in Fuhrmann and
Cooper [43]. They give a decomposition result for the distribution of the number
of customers present in a queueing model with vacations which holds under certain
conditions. These conditions include: Customers arrive according to a Poisson pro-
cess, the customers are served in an order that is independent of their service times
and the number of customers that arrive during a vacation is independent of the
number of customers present just before the start of that vacation. The decompo-
sition consists of the number of customers present in a standard M |G|1 queue and
the number of customers who arrive during a residual vacation. Unfortunately, the
fixed cycle model does not satisfy all necessary conditions, because if the base-stock
level is reached during a production period, the system idles during one production
time. This idling time is also a vacation and therefore, the number of customers
that arrive during a vacation is not independent of the number of customers present
in the system when the vacation began. Fortunately, the limiting distribution of the
shortfall (which can be seen as the queue length distribution of items that need to
be produced) can be found in a more direct way, without using the decomposition
result of Fuhrmann and Cooper [43].

In this study, the optimal decision levels for a given fixed cycle are derived from
a newsvendor type equation in Subsection 6.3.2 and an approximation is given to
address numerical problems. Further, a fixed cycle scheme with time slot dependent
decision levels is analysed in Section 6.4 and again a newsvendor type equation is
given. Section 6.5 presents an algorithm to find a near-optimal fixed cycle scheme.

6.2 Cyclic production 91

A summary is given in Section 6.6.

6.2 Cyclic production

The fixed cycle policy for a production system with backlog applies the same
rules as the fixed cycle policy for a production system with lost sales, which is already
discussed in Chapter 2. For ease of reference, we also give a short description of the
fixed cycle policy in this chapter.

The fixed cycle policy reserves a production period of fixed length for every item
i. This production period consists of a number of gi production times, each with a
length TPi . The order of production is fixed and the decision to produce or not to
produce a product is based on the base-stock level S(i). If the stock level of item
i equals this level just before the start of a production slot of type i, the system
idles during the next slot. Every queue can be seen and analysed as a single-item
production system with periodic vacations, which is done in the first part of this
chapter. Because the analysis focuses on only one of the N product types, the index
i is omitted in the notation.

So, we consider a single-item cyclic production system where each cycle starts
with g production times and is concluded by a vacation. This vacation period con-
sists of the reserved production periods for the other items and the total time spent
on switching. The total expected time spent on switching in one cycle is denoted by
σ. Production and vacation times are possibly random, but independent. Demand
arrives according to a (compound) Poisson process. The system is embedded on the
instances corresponding to the start of a production time or the start of a vacation.
The time intervals in this chain will be called slots, where each cycle consists of g
production slots and 1 vacation slot. Whether a production slot is used for produc-
tion or for idling is read from a base-stock level S. If at the start of a production
slot the stock level is less than S, then the slot is used to produce exactly one item.
Given the assumptions about the demand process and the production rule we obtain
an embedded periodic (cyclic) Markov chain at slot boundaries.

The state of this chain is described by the number of products short to the
level S at the beginning of a slot and the slot number within the cycle. Using this
formulation, the limiting behavior of the Markov chain is independent of the value
of S. Linear cost functions are considered for the number of items on stock and
the backlog. Then, as we will show, if the distribution of the number of products
short to the base-stock level S is known, an expression for the optimal value S∗ can
be derived from a newsvendor type equation. This stock-out distribution will be
determined via a generating function approach.

To this end, first some notation is introduced. The generating function for the
demand in a production slot is denoted by AP (z) =

∑∞
k=0 aP (k)z

k, with aP (k) the
probability that the demand in a production slot is equal to k. Similarly, AV (z) and
aV (k) are defined for the vacation slot. The length of the vacation slot is denoted
by TV . Further, λ denotes the mean demand per time unit and X is defined as the

92 Backlog: A fixed cycle

number of products short to the base-stock level S. In the following subsection an
expression is derived for Gn(z), the generating function of X at slot boundary n.

6.3 The generating function

Define Xn,m as the value of X at slot boundary n in cycle m for n = 1, . . . , g+1.
Now consider the limiting random variable

Xn = lim
m→∞

Xn,m, n = 1, . . . , g + 1.

The distribution of Xn is well-defined if the Markov chain {Xn,m,m = 1, 2, . . .} is
aperiodic and irreducible (which is immediate from the (compound) Poisson demand
assumption) and provided the system is stable, i.e. if the number of arrivals per cycle
is less than the available number of production slots, so if λ

(
gE
(
TP
)
+ E

(
TV
))
< g.

We assume this is the case and denote the distribution of Xn by

p(k, n) = P (Xn = k), k ≥ 0, n = 1, . . . , g + 1

and the generating function of Xn by

Gn(z) =
∞∑
k=0

p(k, n)zk, n = 1, . . . , g + 1.

Let now Dn denote the demand that occurs in time slot n. Then, one has

X1 = Xg+1 +Dg+1,

Xn = Xn−1 +Dn−1 − I{Xn−1>0}, n = 2, . . . , g + 1.

From these equations one gets

G1(z) = Gg+1(z)AV (z),

Gn(z) =
1

z
AP (z) [Gn−1(z) + p(0, n− 1)(z − 1)] , n = 2, . . . , g + 1.

As one easily verifies, this leads by iteration to

G1(z) =

∑g
m=1 A

g+1−m
P (z)AV (z)(z

m − zm−1)p(0,m)

zg −Ag
P (z)AV (z)

, (6.1)

Gn(z) =

(
AP (z)

z

)n−1

G1(z) +

n−1∑
m=1

p(0,m)(z − 1)

(
AP (z)

z

)n−m
,

n = 2, . . . , g + 1. (6.2)

The generating function of X1 is of indeterminate form, but the g boundary
probabilities p(0, n), n = 1, . . . , g, can be determined by considering the zeros of
the denominator in (6.1) that lie on or within the unit circle. The following Rouché
type lemma is taken from Adan et al. [2] and is specialized to our case.

6.3 The generating function 93

Lemma 6.1. If the effective load ρeff :=
λ(gE(TP)+E(TV))

g < 1 and AV (0)Ag
P (0) ̸=

0, then zg = Ag
P (z)AV (z) has g roots on or within the unit circle.

Denote the g roots of zg = Ag
P (z)AV (z) in |z| ≤ 1 by z0 = 1, z1, . . . , zg−1.

Since the function G1(z) is finite on and inside the unit circle, the numerator of the
right-hand side of (6.1) needs to be zero for each of the g roots, i.e., the numerator
should vanish at the exact points where the denominator of the right-hand side of
(6.1) vanishes. Lemma 6.1 and (6.1) together lead to g equations in terms of the g
boundary probabilities, from which the latter can be determined. The roots can be
determined using methods from Janssen and Van Leeuwaarden [51]. It is assumed
that these g roots are all different. If roots with multiplicity greater than one occur,
the derivatives (up to the number of multiplicity) of the numerator of (6.1) can be
set to zero to obtain sufficiently many equations. For the root z = 1, l’Hôpital’s
rule is applied to obtain one equation from G1(1) = 1.

6.3.1 The limiting distribution

In principle, the probabilities p(k, n) can be found by numerically inverting
Gn(z). However, in this case, the probabilities can be derived directly from the
g boundary probabilities.

In order to find all limiting probabilities p(k, n) from the probabilities p(0, n),
n = 1, . . . , g (obtained via Lemma 6.1), the balance equations are used:

p(k, 1) =

k∑
j=0

p(j, g + 1)av(k − j), (6.3)

p(k, n) =
k+1∑
j=1

p(j, n− 1)ap(k + 1− j) + p(0, n− 1)ap(k),

n = 2, . . . , g + 1. (6.4)

Using (6.3) with k = 0, the probability p(0, g + 1) can be obtained from

p(0, g + 1) =
1

av(0)
p(0, 1).

Next let us rewrite equation (6.4) for n = 2, . . . , g + 1 as

p(k + 1, n− 1) =
1

ap(0)

p(k, n)− k∑
j=1

p(j, n− 1)ap(k + 1− j)

−p(0, n− 1)ap(k)

 . (6.5)

Then, starting with k = 0, we first find the probabilities p(1, n), n = 2, . . . , g + 1.
The probability p(1, 1) can then be obtained from equation (6.3). Continuing in this
way, one recursively gets the probabilities p(k, n), k ≥ 2.

94 Backlog: A fixed cycle

6.3.2 The optimal base-stock level

In this section the optimal base-stock level will be determined for the case of lin-
ear holding and backlogging costs. These costs will be computed from the expected
number of products on stock or backlogged at slot boundaries.

In the original, multi-item production model, the vacation period consists of
set-up times and production times of other items. So the length of this period is
typically much longer than the length of a production slot. The costs are only
calculated at slot boundaries, while in the vacation period the stock or backlog level
is more variable than during a production slot. Therefore, the vacation period is
divided into a number of vacation slots, say gV , such that the slots are small enough
to get a good approximation for the expected costs per time unit.

If the length of the vacation period is stochastic, it is not necessarily possible
or evident how to divide the vacation period into a number of slots. However, the
vacation period consists of a number of production times for other product types and
set-up times, so the most natural choice would be to choose the slots corresponding
to these production and set-up slots. Further, this structure of the vacation period
guarantees us that the division of the vacation period is always possible.

The length of vacation slot n equals Tn. Because the demand distribution is as-
sumed to be (compound) Poisson, the stock-out distribution at the new slot bound-
aries can easily be found, using the stock-out distribution at slot boundary g (which
was already found in the previous section).

The expected stock-out at slot boundary g+ n, n = 2, . . . , gV is just E(Xg+1) +

λ
∑g+n
m=g+1 Tm. The p.g.f. of Xg+n equals Gg(z)

∏g+n
m=g+1 Ag+n(z), with Ag+n(z)

the p.g.f. of the arriving demand in slot g+ n. Now define the following linear cost
function, with weights based on the average slot duration:

c(S) =

g∑
n=1

E
(
TP
)

gE (TP) + E (TV)
(cIES(In) + cBES(Bn))

+

g+gV∑
n=g+1

E (Tn)

gE (TP) + E (TV)
(cIES(In) + cBES(Bn)) , (6.6)

where In is the number of items on stock and Bn the backlog at slot boundary
n. Further, ES(In) and ES(Bn) denote the expected stock and backlog level if
base-stock level S is used. Because the cost function is a weighted sum of costs at
different time slots, we also look at the corresponding weighted limiting distribution:

p(k) =

g∑
n=1

E
(
TP
)

gE (TP) + E (TV)
p(k, n) +

g+gV∑
n=g+1

E (Tn)

gE (TP) + E (TV)
p(k, n) .

The optimal base-stock level S∗ for this ‘newsvendor problem’ (see for example

6.3 The generating function 95

Porteus [68]) is now readily obtained as:

S∗ = min

{
S

∣∣∣∣∣
S∑
k=0

p(k) >
cB

cI + cB

}
. (6.7)

6.3.3 A geometric tail approximation

The probabilities p(k) in (6.7) can be found using the recursive method from
Subsection 6.3.1. However, we have experienced numerical problems with this pro-
cedure for large values of k. If the load on the system is high and S gets larger than
20, the recursive method gives numerically unstable results. Therefore we propose
to use the following approximation for p(k) if S∗ gets large.

Van Eenige [85] and Van Mieghem [86] encounter the same numerical problems
and use an approximation from Tijms and Van de Coevering [82] for the tail prob-
abilities that is based on the following asymptotic behavior

lim
k→∞

p(k)

p(k + 1)
= γ,

with γ the unique root of zg − Ag
P (z)AV (z) in (1,∞). This root can easily be

computed with bisection.
Let us use the direct computation of pk up to K and the tail approximation for

k > K. (The choice of K can be made during the direct computation. If either
the geometric behavior seems to have started or one seems to lose the numerical
stability, one switches to the geometric tail behavior.)

So, we use

P (X = k) ≈ κγ−k, k = K + 1, . . . , (6.8)

where κ is the normalization constant which can be expressed in terms of P (X ≤ K):

κ =
(
1− γ−1

)
(1− P (X ≤ K)) γK+1.

Upon substituting (6.8) into (6.7), and assuming that S∗ > K, so that the tail
approximation is accurate, one gets the following approximative value for S∗:

S̃ =

⌈
−ln(cI) + ln(cI + cB) + ln(κ)− ln(γ − 1)

ln(γ)

⌉
, (6.9)

with ⌈x⌉ the smallest integer that is greater than or equal to x.
In order to see whether (6.9) results in a good approximation, we give some

numerical results comparing the approximation with the exact method.

6.3.4 Numerical results

For various parameters settings, for which we can determine the exact value of
S∗ numerically, the results for S∗ and S̃ are presented in Tables 6.1, 6.2 and 6.3.

96 Backlog: A fixed cycle

cI = 1, cB = 10, g = 5, TP = 1, TV = 5
ρeff EI EB S∗ costs S̃ costs
0.50 1.26 0.12 2 2.50 2.12 2.58
0.60 1.92 0.11 3 2.98 2.65 2.98
0.70 2.48 0.14 4 3.89 3.59 3.89
0.80 3.65 0.21 6 5.78 5.54 5.78
0.90 7.32 0.44 12 11.68 11.48 11.68
0.95 14.74 0.89 24 23.62 23.45 23.62

Table 6.1: The values of EI, EB, S∗ and S̃. λ = 1
2
ρeff .

cI = 1, cB = 10, g = 10, TP = 1, TV = 10
ρeff EI EB S∗ costs S̃ costs
0.50 1.89 0.14 3 3.30 3.69 3.37
0.60 2.48 0.13 4 3.81 4.07 4.00
0.70 2.96 0.17 5 4.62 4.85 4.62
0.80 4.04 0.22 7 6.27 6.63 6.27
0.90 7.62 0.43 13 11.91 12.40 11.91
0.95 15.00 0.88 25 23.71 24.29 23.71

Table 6.2: The values of EI, EB, S∗ and S̃. λ = 1
2
ρeff .

These results are based on a fixed cycle scheme with deterministic time slots of unit
length and a Poisson demand process. The values of S̃ from (6.9) are given without
taking the ‘ceiling’ to show the real difference with the value of S∗.

One sees that the approximation S̃ is correct for nearly all parameter settings,
except for ρeff = 0.5 in the first table and ρeff = 0.5, 0.6 in the second table. For
these systems, the minimum value K for which the approximation in Equation (6.8)
is accurate is relatively high, because the systems are lightly loaded. Apparently,
the optimal base-stock level is below this value K.

For higher values of ρeff , the approximation is equal to S∗, which is just what we
want, because the numerical problems occur if ρeff is high. Further, it is observed

cI = 1, cB = 10, g = 3, TP = 1, TV = 9

ρeff EI EB S∗ costs S̃ costs
0.50 1.31 0.10 2 2.29 1.86 2.29
0.60 2.00 0.09 3 2.85 2.42 2.85
0.70 2.58 0.12 4 3.79 3.37 3.79
0.80 3.78 0.19 6 5.71 5.33 5.71
0.90 7.46 0.42 12 11.66 11.29 11.66
0.95 14.89 0.87 24 23.57 23.26 23.57

Table 6.3: The values of EI, EB, S∗ and S̃. λ = 1
4
ρeff .

6.4 Time slot dependent base-stock levels 97

5 6 7 8 9 10 11 12 13 14
3

4

5

6

7

8

9

10

11

12

13

S*

g

Figure 6.1: The optimal decision level S∗ decreases as g increases
TP = 1, TV = 4, λ = 0.5, cI = 1, cB = 10.

that the approximation of S∗ is less accurate if S∗ is low, because it is based on
(6.8), which is only an approximation for the tail probabilities. But for low values
of S∗, there are no numerical problems, so this is (again) not a problem.

Figure 6.1 gives the effect of g on the value of S∗ and shows that S∗ increases
if g decreases. This is explained by the fact that the effective utilization, λTFC

g ,
increases if g decreases.

It is also seen that S∗ decreases very slowly for large values of g. The length of
the production period may become so large that the base-stock level is just the stock
level that one would like to have to cover the vacation period. On the other hand, if
g is even larger and the vacation period is (relatively) so small that the production
period completely dominates the stock process, S∗ converges to the optimal base-
stock level for a production system without vacation periods.

Another point is that if g is somewhat longer, one needs the safety stock for the
vacation period only at the end of the production period. This suggests that a cost
reduction can be obtained with a base-stock level that is lower at the beginning of
a production period and increases towards the end of the production period.

6.4 Time slot dependent base-stock levels

So, let us now consider the system in which the base-stock levels are time slot
dependent. Denote the different base-stock levels by S1, . . . , Sg, with Sn the base-
stock level for time slot n, see Figure 6.2. In the sequel, particularly the analysis in
Subsection 6.4.1, we will often use the following two assumptions:

Assumption 6.1.

Sn ≤ Sn+1, n = 1, . . . , g.

98 Backlog: A fixed cycle

Assumption 6.2.

Sn+1 ≤ Sn + 1, n = 1, . . . , g.

For most realistic settings, these assumptions will hold, but it might be possible
to construct counterexamples for this based on the following intuition.

Assumption 6.1 might be violated in the following situation. If the production
times are highly variable and the non-production slots are not, then one might need
a higher safety stock at the beginning of the production period than near the end
of it.

With respect to Assumption 6.2 the following could occur. At the end of the
production period one wants a higher base-stock level because of the coming long
vacation period. However, because of the holding costs, one does not want to invest
in this higher stock in the production slots before the final one. On the other hand,
if less than expected demand arrived during the last cycle and there are still Sg−1+1
products on stock at the start of the g−th production slot, then one might be willing
to produce one more product, which would mean Sg > Sg−1 + 1.

1 5432

S
max

= S(5)

0 6

S(1)

S(2)

S(3) = S(4)

Figure 6.2: The base-stock levels of 5 production slots.

In order to find the optimal values of S1, . . . , Sg, we slightly adapt the model de-
scription from Section 6.2. With different base-stock levels (and compound Poisson
demand) in every slot the stock level can reach the maximum of S1, . . . , Sg, so in
some slot(s) n the actual stock can be larger than the base-stock level Sn.

This is shown in Figure 6.3, where the stock level just before the first production
slot in the second cycle is higher than S1.

Therefore, define Smax as max{S1, . . . , Sg} and let X̃n denote the number of
products short compared to Smax at slot boundary n.

As before, if ρeff < 1 the limiting distribution of X̃n exists and it will be denoted
by

p̃(k, n) = lim
t→∞

P (X̃n,t = k), n = 1, . . . , g + 1, k ≥ 0,

with generating function

G̃n(z) =
∞∑
k=0

p̃(k, n)zk, n = 1, . . . , g + 1.

6.4 Time slot dependent base-stock levels 99

1 5432

S
max

= S5

0
6

S1

S2

S3 = S4

1 5432 6

Figure 6.3: The inventory level during two cycles.

Define

δn := Smax − Sn, n = 1, . . . , g.

In the same way as in Subsection 6.3, we get

G̃1(z) =∑g
m=1

∑δm
k=0 p̃(k,m)(zk+m − zk+m−1)Ag+1−m

P (z)AV (z)

zg −Ag
P (z)AV (z)

, (6.10)

G̃n(z) = G̃1(z)

(
AP (z)

z

)n−1

+
n−1∑
m=1

δm∑
k=0

p̃(k,m)(zk − zk−1)

(
AP (z)

z

)n−m
,

n = 2, . . . , g + 1, (6.11)

The expressions for G̃1(z), . . . , G̃g+1(z), however, still contain the unknown bound-
ary probabilities p̃(k, n), k = 0, . . . , δn, n = 1, . . . , g. Lemma 6.1 gives g equations.
Since there are more than g unknowns, we will have to construct a larger set of
balance equations for these boundary probabilities. A similar problem is discussed
in Denteneer et al. [33]. In the next subsection we will follow the approach used
there to find these boundary probabilities.

6.4.1 The boundary probabilities

The boundary probabilities we are looking for only concern probabilities from
the production period. For ease of notation we combine the last production slot and
the vacation period into one production slot.

With a∗g(k), k ≥ 0, denoting the distribution of the total demand in time slots

100 Backlog: A fixed cycle

g and g + 1 together, the set of balance equations becomes:

p̃(k, n) =

k+1∑
m=δn−1+1

p̃(m,n− 1)ap(k + 1−m)

+

δn−1∑
m=0

p̃(m,n− 1)ap(k −m),

2 ≤ n ≤ g, k ≥ δn−1, (6.12)

p̃(k, n) =

k∑
m=0

p̃(m,n− 1)ap(k −m),

2 ≤ n ≤ g, 0 ≤ k < δn−1, (6.13)

p̃(k, 1) =
k+1∑

m=δg+1

p̃(m, g)a∗g(k + 1−m)

+

δg∑
m=0

p̃(m, g)a∗g(k −m), k ≥ δg, (6.14)

p̃(k, 1) =
k∑

m=0

p̃(m, g)a∗g(k −m), 0 ≤ k < δg. (6.15)

Under the assumption that Sn ≤ Sn−1 + 1 for all n (see Assumption 6.2), it would
be enough to look at the equations described by (6.13), (6.15) and the equations
from Lemma 6.1. However, if this assumption does not hold, then for one or more
equations described by (6.13) and (6.15) the probability on the left hand side does
not appear in the expression for G1(z). Therefore, below an algorithm is given
that results in a set of balance equations which, combined with the equations from
Lemma 6.1 gives us the boundary probabilities that appear in (6.1).

The algorithm below uses two sets: a set of unknown probabilities (variables), U ,
and a set of equations, E, from which the unknowns have to be obtained. Initially
we define U = {p̃(k, n); k = 0, . . . , δn, n = 1, . . . , g} and we let E contain the
g equations from Lemma 6.1 plus the equations described by (6.13) and (6.15).
The balance equation with left-hand side p̃(k, n) will be labeled with (k, n). So
at the start U contains the variables p̃(k, n), k = 0, . . . , δn, and E the equations
(k, n), k = 0, . . . , δn−1 − 1. Then the number of equations in E (including the ones
from Lemma 6.1) and the number of unknowns in U are both equal to

∑
n δn + g.

However, not all the probabilities that appear in the equations in E are in U . For
each of these probabilities, an equation will be added to E.

We start with the slot just after the one with the lowest decision level, thus the
largest δn. Let n be the current production slot. For each (k, n) ∈ E for which
p̃(k, n) is not yet in U the variable p̃(k, n) is added to U .

Next, for each of these variables an extra balance equation is added to E, namely
equation (k − 1, n+ 1) (where g + 1 is to be read as 1). All probabilities appearing

6.4 Time slot dependent base-stock levels 101

at the right-hand side of this new equation are already in U and at most one extra
unknown probability appears at the left-hand side.

Then we move to the next slot, n+1. Again each variable that appears in E but
is not in U is added to U , and in the same way as before, for a new variable p̃(k, n)
equation (k− 1, n+1) is added to E. Continue until all slots have been considered.
In the last step (step g), the slot with the highest value of δn is reached. Therefore,
the probabilities on the left-hand side of all equations added in the previous step
are already in U , because k can not exceed max{δ1, . . . , δg}. This means that
the construction ends with |E| = |U | and the variables in U being the only ones
appearing in E.

Assuming that all equations from the roots, from l’Hôpital’s rule, and obtained
via this algorithm are linearly independent, the unknowns in U can be found.

6.4.2 Optimal value for Smax

Denote the number of products short compared to Smax at ‘weighted’ random
slot boundaries by X̃. The generating function of X̃ is defined as

G̃(z) =
∞∑
k=0

p̃(k)zk.

So

G̃(z) =
g∑

n=1

E
(
TP
)

gE (TP) + E (TV)
Gn(z) +

g+gV∑
n=g+1

E (Tn)

gE (TP) + E (TV)
Gn(z),

with

p̃(k) =

g∑
n=1

E
(
TP
)

gE (TP) + E (TV)
p(k, n)+

g+gV∑
n=g+1

E (Tn)

gE (TP) + E (TV)
p(k, n), k ≥ 0.

The limiting distributions of X̃, X̃1, . . . , X̃g can be found by inverting G̃(z) and
G̃n(z), n = 1, . . . , g. The distribution of X̃ depends on δ1, . . . , δg, but not on S

max.
Therefore, a newsvendor type equation can be given for the optimal value of Smax.
For a given vector (δ1, . . . , δg), the optimal value of Smax is given by

Smax∗ = min

{
Smax

∣∣∣∣∣
Smax∑
k=0

p̃(k) >
cB

cI + cB

}
. (6.16)

We emphasize that the distribution of X̃ depends on all elements in the vector
(δ1, . . . , δg) and thus Smax∗ does as well. Furthermore, there is no expression for
the optimal value of every individual Sn, n = 1, . . . , g.
In order to also find the expected costs c(S1, . . . , Sg) for a given vector (S1, . . . , Sg),

102 Backlog: A fixed cycle

one can write

c(S1, . . . , Sg) = cI

Smax∑
k=0

p̃(k)(Smax − k) + cB

∞∑
k=Smax

p̃(k)(k − Smax)

= (cI + cB)
Smax∑
k=0

p̃(k)(Smax − k) + cB(EX̃ − Smax), (6.17)

where the weights
E(TP)

gE(TP)+E(TV)
and E(Tn)

gE(TP)+E(TV)
are now hidden in p̃(k) and EX̃.

The finite sum
∑Smax

k=0 p̃(k)(Smax− k) is obtained from the equilibrium probabil-

ities. For EX̃ we use E(X̃1), . . . ,E(X̃g+1). For the derivation of E(X̃1), we refer to

Appendix 6.A. The expressions for E(X̃n), n = 2, . . . , g + 1 are then obtained with

X̃n = X̃n−1 +Dn−1 − IX̃n−1>δn−1)
, n = 2, . . . , g + 1,

with Dn−1 the number of arrivals in time slot n− 1 and IX̃n−1>δn−1
the production

indicator of time slot n− 1. The result is:

E(X̃1) =
1

g − λ (gE (TP) + E (TV))

×

(
g∑

m=1

δm∑
k=0

p̃(k,m)
[(
gE
(
TP
)
+ E

(
TV
))
λ+ k +m− 1

]
− 1

2

[
g(g − 1)−

(
gE
(
TP
)
+ E

(
TV
))2

λ2
] ,

E(X̃n) = E(X̃1) + λ
(
gE
(
TP
)
+ E

(
TV
))

−
n−1∑
m=1

δm∑
k=0

p̃(k,m), n = 2, . . . , g + 1.

6.4.3 Numerical results

Some numerical results are presented to compare the expected costs per time
unit for fixed cycles with a constant decision level with the costs for fixed cycles
with time slot dependent decision levels. The lengths of the set-up and production
slots in this section are again deterministic and of unit length.

Recall that given the vector (δ1, . . . , δg) the distribution of X̃ does not depend
on Smax and that the corresponding Smax∗ is given by (6.16).

In order to limit the number of possible vectors δ, Assumptions 6.1 and 6.2 are
used. The number of different values for δ then equals 2g−1. In the numerical results
below, the presented optimal values S1, . . . , Sg are the optimal ones given these two
restrictions.

Tables 6.4 and 6.5 show numerical results for TV = 5, while in Tables 6.6 and
6.7, TV = 25. In Tables 6.4 and 6.6 we have the results for cI = 1, cB = 10, while in

6.4 Time slot dependent base-stock levels 103

Table 6.4

cI = 1, cB = 10, λ = 1
2ρeff , g = 5, TP = 1, TV = 5

ρeff S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 5 4.642 [4 4 5 5 5] 4.608 0.716
0.8 6 5.782 [5 5 6 6 6] 5.762 0.334
0.85 8 7.731 [7 7 8 8 8] 7.716 0.195
0.9 12 11.682 [11 11 12 12 12] 11.672 0.089
0.95 24 23.630 [23 23 24 24 24] 23.625 0.023

Table 6.5

cI = 1, cB = 20, λ = 1
2ρeff , g = 5, TP = 1, TV = 5

ρeff S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 6 5.807 [4 5 6 6 6] 5.699 1.869
0.8 8 7.262 [7 7 8 8 8] 7.239 0.324
0.85 10 9.794 [9 9 10 10 10] 9.769 0.248
0.9 15 14.749 [15 15 15 15 15] 14.749 0.000
0.95 30 30.000 [29 30 30 30 30] 29.963 0.110

Tables 6.5 and 6.7 cB = 20. For almost every value of ρeff < 0.95, Tables 6.6 and
6.7 show a larger cost reduction than Tables 6.4 and 6.5. Apparently, the length
of the vacation period has a positive effect on the attainable cost reduction, while
the value of ρeff and the fraction cI

cI+cB
have a negative effect on it. The first

observation can be explained by the fact that the average demand that arrives in a
production slot decreases if TV increases. So there is relatively more time to get a
high stock level at the end of the production period. Therefore, the decision levels
at the beginning of the production period can be lower. The second observation
is easy to explain: If the load on the system increases, the system should use its
full capacity to get Smax∗ products on stock. The last observation is explained by
the fact that if the backlogging costs are relatively high, one wants to prevent the
system to create backlog. Therefore, the decision levels are all close to Smax∗.

It is seen that the last decision level can be higher than the optimal constant
decision level. This is a good example of the effect of multiple decision levels: By
increasing the last decision level, one saves possible backlogging costs during the
vacation period, but the lower decision levels at the beginning of the production
period save the holding costs that are incurred with a constant decision level. The
optimal values of δ are more difficult to find than Smax∗. The main problem here
is that the number of possible vectors is too large. Therefore, time slot dependent
base-stock levels will not be discussed in more detail.

104 Backlog: A fixed cycle

Table 6.6

cI = 1, cB = 10, λ = 1
6ρeff , g = 5, TP = 1, TV = 25

ρeff S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 5 4.984 [3 4 5 5 6] 4.933 1.024
0.8 7 6.039 [4 5 6 7 7] 6.006 0.551
0.85 9 7.931 [6 7 8 8 9] 7.902 0.365
0.9 12 11.816 [10 11 11 12 13] 11.798 0.150
0.95 24 23.692 [22 23 23 24 24] 23.688 0.015

Table 6.7

cI = 1, cB = 20, λ = 1
6ρeff , g = 5, TP = 1, TV = 25

ρeff S∗ costs [S1, S2, S3, S4, S5] costs cost reduction in %
0.75 7 6.118 [4 5 6 6 7] 5.976 2.329
0.8 8 7.448 [6 6 7 7 8] 7.425 0.309
0.85 11 9.961 [9 9 10 11 11] 9.894 0.670
0.9 16 14.946 [14 14 15 16 16] 14.856 0.604
0.95 31 30.029 [29 30 30 31 31] 29.987 0.140

6.5 The production periods

The (close to) optimal lengths of the production periods can be determined with
the local search algorithm presented in Subsection 6.5.2. Although this algorithm
can deal with both constant and time slot dependent base-stock levels, we will focus
on constant base-stock levels. (As we have seen, the search for an optimal vector
of base-stock levels is time consuming and the difference in costs with the constant
base-stock level is limited.)

In the remainder of the chapter, a fixed cycle will be described by the vector
g = (g1, . . . , gN), a vector with the lengths of the production periods. With TPi
denoting the average length of a production slot of item i, the average duration of
the cycle, denoted as TFC(g), satisfies TFC(g) =

∑
i giT

P
i +σ. Such a cycle is stable

if for every item the number of production slots in it suffices, i.e, if λiTFC(g) < gi
for all i.

6.5.1 The shortest stable fixed cycle

The local search algorithm presented in Subsection 6.5.2 starts with a stable
cycle of minimum length.

Lemma 6.2. If ρ =
∑N
i=1 λiT

P
i < 1, there exists a unique stable fixed cycle of

minimum length.

A proof of this lemma is found in Appendix 6.B.

6.5 The production periods 105

This cycle will be referred to as the shortest stable fixed cycle and will be denoted
by gmin = (gmin

1 , . . . , gmin
N), with TminFC =

∑N
i=1 g

min
i TPi + σ the length of this cycle.

The next algorithm produces this shortest fixed cycle.

Algorithm 6.1.

Step 1: Set n = 0 and g(0) = (1, 1, . . . , 1) (or alternatively g
(0)
i = λi

σ
1−ρ for all i,

see Appendix 6.C), then g(0) ≤ gmin.

Step 2: Compute TFC(g
(n)) =

∑N
i=1 g

(n)
i TPi + σ. If the system is stable, i.e.,

λiTFC(g
(n)) < g

(n)
i for all i, then the minimal fixed cycle has been found:

gmin = g(n). Otherwise go to Step 3.

Step 3: Compute: g
(n+1)
i =

⌊
λi

(∑N
i=1 g

(n)
i TPi + σ

)
+ 1
⌋
, with ⌊x⌋ the largest inte-

ger less than or equal to x. Set n = n+ 1 and go back to Step 2.

Lemma 6.3. Algorithm 6.1 gives the shortest stable fixed cycle for any polling
system with N queues.

A proof of this lemma is found in Appendix 6.C.

6.5.2 A local search algorithm for a good fixed cycle

In order to find a good fixed cycle, we will start with gmin and apply a local search
algorithm, which works as follows. In each cycle improvement step we lengthen the
cycle for one of the product types, the one for which lengthening given the largest
reduction in costs. However, there will be two complicating factors. First of all,
lengthening the cycle for one type might result in an unstable system for one or
more of the other types; this will be solved by lengthening the production period
for those product types as well. And second, it is possible that a longer production
period for only one product gives an increase in costs, whereas a longer production
period for two or more products gives a decrease in costs. This will be taken care
of using a special termination criterion; stop only if for a number of improvement
steps no improvement has been found. This number is chosen equal to N , so that
for each product type simultaneously a production slot can be added.

Algorithm 6.2.
Step 1: Start with the shortest stable fixed cycle that can be obtained with Algorithm

6.1 and define g(1,0) = gmin.

Step 2: In improvement step n, starting with the cycle g(n,0) try lengthening the
production period of every product type. For item i, add a production slot
for this type obtaining the cycle g(n,0)+ei, make this cycle stable, denote this
stable cycle by g(n,i) and calculate the expected costs c(g(n,i)). Determine
i∗ such that c(g(n,i

∗)) = mini c(g
(n,i)) and define g(n+1,0) = g(n,i

∗). Set
n := n+ 1.

106 Backlog: A fixed cycle

Step 3: If in the last N steps no improvement has been found, i.e., if c(g(n−N,0)) ≤
c(g(n−l,0)) for l = 0, . . . N − 1, then terminate.
The best cycle found is g(n−N,0). Otherwise, return to Step 2.

6.6 Conclusion

A fixed cycle policy is analysed for a multi-item production system. The struc-
ture of this policy allows for a decomposition of the system into N independent
periodic subsystems, one for each product type. Then an analysis is performed
per product type and the optimal base-stock level is found for a given fixed cycle.
The analysis is extended to allow for slot dependent base-stock levels. The optimal
base-stock levels are obtained from newsvendor type expressions.

A local search algorithm is presented that produces a (close to) optimal fixed
cycle policy. This strategy will later be used to construct a good dynamic strategy
by means of a single policy improvement step. Because of the decomposition of the
system in independent subsystems the size of the problem in terms of product types
only plays a minor role.

6.A Expectation in the first slot 107

Appendix

6.A Expectation in the first slot

We obtain the mean value of X̃1 by taking the first derivative of the generating

function G̃1(z). To keep the notation simple, we rewrite G̃1(z) as
N (z)
D(z) , with

N (z) =

g∑
m=1

δm∑
k=0

p̃(k,m)(zk+m − zk+m−1)Ag+1−m
P (z)AV (z)

and
D(z) = zg −A∗(z).

Here, A∗(z) = Ag
P (z)AV (z), the generating function of the total demand during

one cycle.
G̃′
1(1) can now be rewritten as

N ′(z)D(z)−D′(z)N (z)|z=1

D2(z)|z=1
=

N ′(z)−D′(z)G̃1(z)|z=1

D(z)|z=1
.

Since G̃1(1) =
N ′(1)
D′(1) by l’Hôpital and D(1) = 0, we can use l’Hôpital again:

G̃′
1(1) =

N ′′(z)−D′′(z)G̃1(z)−D′(z)G̃′
1(z)|z=1

D′(z)|z=1

Using G̃1(1) = 1 and rearranging terms gives us:

G̃′
1(1) =

N ′′(1)−D′′(1)

2D′(1)
,

with

D′(1) = g −
(
λ(gE

(
TP
)
+ E

(
TV
))
,

N ′′(1) = 2

g∑
m=1

δm∑
k=0

p̃(k,m)
[(
gE
(
TP
)
+ E

(
TV
))
λ+ k +m− 1

]
,

D′′(1) =
[
g(g − 1)−A∗′′

(1)
]
.

108 Backlog: A fixed cycle

6.B Proof of Lemma 6.2

If ρ =
∑N

i=1 λiT
P
i < 1, there exists a unique stable fixed cycle of min-

imum length.

Proof: The proof is twofold. First it is shown – with an example – that a sta-
ble fixed cycle exists. Then the uniqueness of the shortest stable fixed cycle is
shown by contradiction.
In order to construct a stable fixed cycle, consider the following system of linear
equations:

gi = λiTFC , i = 1, . . . , N, (6.18)

TFC =
N∑
i=1

giT
P
i + σ. (6.19)

The solution of this system is unique and (by substitution of the first equation into
the second) easily seen to be TFC = σ

1−ρ , gi = λi
σ

1−ρ , i = 1, . . . , N . Based on this
solution, a stable fixed cycle is now constructed. For the constructed fixed cycle, it
should hold that gi < λiTFC . The total set-up time is equal for all cycles, because
the production order is the same. Therefore, we have to increase the lengths of the
production periods, so that the fraction of time spent on switching goes down.

Denote the solution of Equations (6.18) and (6.19) by x = {x1, . . . , xN} and look
at the fixed cycle described by ĝ(K) = (⌈Kx1⌉, . . . , ⌈KxN⌉), with K an integer and

T̂FC(K) =
∑N
i=1⌈Kxi⌉TPi + σ the cycle length. Then, the number of production

times for item i satisfies

ĝi(K) = ⌈Kxi⌉ ≥ Kxi = Kλi

σ +
N∑
j=1

xjT
P
j

 ,

while the total cycle time is

T̂FC(K) = σ +
N∑
j=1

⌈Kxj⌉TPj ≤ σ +
N∑
j=1

(Kxj + 1)TPj .

So the difference between ĝi(K) and λiT̂FC(K) is at least

λi

(K − 1)σ −
N∑
j=1

TPj

 .

Now let K satisfy (K − 1)σ >
∑N
i=1 T

P
i . Then ĝi(K) − λiT̂FC(K) > 0 for all i.

Hence ĝ(K) describes a stable fixed cycle.

6.C Proof of Lemma 6.3 109

In order to prove the uniqueness, assume that there are two different stable fixed
cycles of minimum length, described by g(1) and g(2), and as both represent minimal

cycles, the lengths of these cycles, say T
(1)
FC and T

(2)
FC , are equal. Notice that the

cycle lengths T
(1)
FC and T

(2)
FC do not denote the number of slots in the cycles, but the

actual length of the cycles.

Now construct a new cycle by taking the minimum of the two: gmini = min{g(1)i , g
(2)
i },

for i = 1 . . . N . Since the cycles were different, the new cycle must be shorter, i.e.,

TminFC < T
(1)
FC = T

(2)
FC . But for all i the number of production slots gmini for type i

is already sufficient in a longer cycle (with duration T
(1)
FC or T

(2)
FC), so the cycle gmi

is stable as well. But this is a contradiction, because it was assumed that g(1) and
g(2) describe a stable fixed cycle of minimum length. Therefore, the shortest stable
fixed cycle is unique.

6.C Proof of Lemma 6.3

Algorithm 6.1 produces the shortest stable fixed cycle for a polling
system with N queues.

Proof: The proof is based on induction.

Assume that for n ≥ 0, g(n) ≤ gmin, thus T
(n)
FC ≤ TminFC . Then we have for all i

that

g
(n+1)
i = ⌊λiT (n)

FC + 1⌋ ≤ ⌊λiTminFC + 1⌋ = gmini ,

so g(n+1) ≤ gmin.
As long as g(n) is not stable g(n+1) will have at least one production slot more
than g(n) and then Tn+1

FC > TnFC . However, if g(n) is stable then one must have
g(n) = g(n+1) = gmin.

It now remains to prove that g(0) ≤ gmin.

If one chooses g
(0)
i = 1 for all i, then obviously (assuming λi > 0) one has g

(0)
i ≤

gmini , since for any stable cycle one has gi ≥ 1. This completes the proof: starting
with g(0) = (1, . . . , 1) the cycles g(n) monotonically increase until the minimal cycle
has been found.

One may speed up the algorithm a little by choosing a different vector for g(0).
In order to see this, assume that T is the duration of some stable fixed cycle. Then
the corresponding gi must satisfy gi > λiT for all i. Thus

∑
i giT

P
i >

∑
i λiTT

P
i ,

or T − σ > ρT , so T > σ
1−ρ . Now define g

(0∗)
i =

⌊
λi

σ
1−ρ

⌋
for all i. One easily sees

that g
(0∗)
i ≤ gmini (since T

(0∗)
FC < TminFC), and g

(1)
i > g

(0∗)
i for the g(1) constructed

from g(0∗) along the lines of the algorithm.

110 Backlog: A fixed cycle

Chapter 7

Backlog: One step improvement

This chapter is the continuation of the previous chapter on a fixed cycle control in
a multi-item production system. This fixed cycle control policy serves as a basis
for the one step improvement approach. Using this approach, a dynamic policy is
constructed. Numerical results are presented that indicate that the performance is
quite good compared to other policies, such as exhaustive base-stock control. This
chapter is based on [24].

7.1 Introduction

As was mentioned before, the multi-item production system that we consider, has
a resemblance with an intersection controlled by traffic lights. At these intersections,
one very often sees a fixed cyclic scheme in which (combinations of) traffic flows
receive green, not only in a fixed order but also during a fixed time. In case the
intersection is lightly loaded, for instance late in the evening, a dynamic control
resembling FCFS is found. For heavily loaded intersections, the dynamic control of
a traffic light by a two-step approach is studied in Haijema and van der Wal [48].
In the first step an (in some sense) good completely fixed cyclic control scheme is
constructed and in the second step a policy is constructed that takes decisions on
producing, idling or switching based on an evaluation of the ‘relative urgencies’ of
the different traffic streams in the fixed cycle scheme. This approach is also used in
Chapter 2 for the multi-item production system with lost sales. In this chapter, the
approach is used for the multi-item production system with backlog.

For the construction of a good fixed cycle policy, we use the results from Chapter
6. This fixed cycle policy is used as a basis for the one step improvement approach.
The chapter is structured as follows. First, we start with a good stable fixed cycle
policy, found with Algorithm 6.2 from the previous chapter. This fixed cycle policy
is not necessarily optimal. But, just as for the lost sales model, we obtain results
that show that the performance of the fixed cycle policy is not too important for the
performance of the one step improvement policy that is based on that fixed cycle
policy.

111

112 Backlog: One step improvement

The fixed cycle scheme is used as a basis for the one step improvement approach
in Section 7.3. This approach and its resulting dynamic policy are discussed in
Sections 7.3 and 7.4. In Section 7.5 a conclusion and some suggestions for further
research are given.

7.2 Model and notation

The objective function we consider is the linear cost function c(·) in Equation
(6.6) in the previous chapter. The demand process of every item i is (compound)
Poisson with parameter (mean) λi. It is assumed that the total load of the system,

ρ :=
∑N
i=1 λiT

P
i < 1. Next we compute a good, stable, fixed cycle according to

Algorithm 6.2, see Chapter 6, with (constant) order-up-to levels S(i), i = 1, . . . , N .
With a fixed cycle policy the system becomes a combination of N independent
queues and the relative value function is decomposed into N individual relative
value functions.

7.3 One step improvement approach

In this section we show how the fixed cycle policy can serve as a basis for the
one step improvement approach. To execute the improvement step, the relative
values (or bias terms) have to be known. The calculation of these values is usually
too complex, because of the multi-dimensionality of the system. However, for the
fixed cycle policy these relative values can be computed per product type, as the
system simplifies to N independent product flows. For each product type one just
has a one-dimensional periodic Markov chain. The number of states is still infinite,
but this problem can be solved by introducing (large) maximal stock-out levels
Mi, i = 1, . . . , N . (These maximal stock-out levels Mi are chosen such that this
value is hardly ever reached. The relative values for larger shortfall levels can then
be approximated, for instance by extrapolation.) Each of the N periodic chains
can then be analysed numerically using successive approximations to compute the
n−period costs for type i given initial state ki, with ki the shortfall.

In the improvement step the decision one looks for is ‘what to do next’, but
this can be seen as looking for the best slot to continue with within the fixed cycle,
assuming that after this slot the fixed cycle strategy is followed again.

Therefore, the relative values are calculated for every time slot within the fixed
cycle. For time slot n, the relative value for state (k1, . . . , kN is denoted by r(n, k1, . . . , kN)
and, as mentioned in Chapter 1, it is just the sum of the N relative values, one for
each item:

r(n, k1, . . . , kN) =
N∑
i=1

ri(n, ki). (7.1)

In order to compute ri(n, ki), we need to be aware of the fact that the fixed cycle

7.3 One step improvement approach 113

strategy is periodic. Also note that these relative values ri(n, ki) only have to tell
the difference in expected costs between starting in one slot and starting in another
slot.

Determination of the relative values

In the calculation of the relative values, it is assumed that arriving demand that
finds a shortfall of Mi is lost. The n−period costs vn and relative value vector r for
a periodic Markov chain can be found with Equations (2.9) and (2.10) from Section
2.5.

For product type i, denote the state of the system as (n, ki), with n the slot
within the fixed cycle and ki the number of items short compared to S(i). For the
periodic fixed cycle strategy, we get the following (approximate) relative value for
item i and state (n, ki):

r̂i(n, ki) =
1∑C
j=1 Tj

(m+1)C∑
j=mC+1

Tj−mC vi,j(n, ki),

with Tl the (average) length of slot l and m sufficiently large. The formula is exactly
the same as in Equation (2.11), but the value of ki is now the shortfall value instead
of the number of items on stock. The overall relative value r(n, k1, . . . , kN) for time
slot n and state (k1, . . . , kN) is approximated by the sum of the approximate relative
values for the N products and pairs (n, kj), j = 1, . . . , N , see Equation (7.1).

Base-stock levels

The base-stock levels that are used in the fixed cycle policy are optimal for that
policy. Although the relative values are calculated with these base-stock levels, one
can set new base-stock levels based on the equilibrium distribution of the shortfall
levels in the one step improvement policy. If the relative values are linked to the
shortfall levels, they remain the same for the new set of base-stock levels. So de-
cisions depend on the shortfall levels of the different items. Therefore, changing
the base-stock levels would not change the processes of the shortfall levels. New
base-stock levels can be found with the newsvendor type result in Equation (6.7).
The limiting shortfall distribution can be estimated with a simulation study after
which the newsvendor type result in Equation (6.7) is applied to set the base-stock
levels for the one step improvement policy.

Good fixed cycle

The fixed cycle obtained from Algorithm 6.2 is not necessarily optimal. But just
as in Chapter 2, results show that better fixed cycles do not necessarily result in
better one step improvement policies.

In Table 7.1, an example is shown for which two fixed cycle strategies result in a
different performance of the one step improvement policy. For fixed cycles that are
almost unstable, i.e. the load for one or more items is above 0.96, the calculation

114 Backlog: One step improvement

Optimal and adjusted production periods
λ g cFC c1SI

(0.2, 0.2, 0.2, 0.2) (12, 12, 12, 12) 61.19 30.38
(0.2, 0.2, 0.2, 0.2) (14, 14, 14, 14) 59.18 32.67

ci,I = 1, ci,B = 50, i = 1, . . . , N

Table 7.1: A 4-item production system with Poisson demand

of the relative values becomes time consuming. The reason for this is the following.
For the calculation of the relative values, one has to determine the n−period costs
vn, with n so large that vn+C − vn equals the average costs per cycle. If the load on
the system is high, vn+C − vn converges very slowly to the average costs per cycle.

Especially for large shortfall levels, the relative values are not accurate if n is not
sufficiently large. This problem can be solved by approximating the relative values,
for instance by extrapolation. This method is also used for the calculation of the
relative values for shortfall levels that exceed the maximum shortfall level. However,
it is already seen that the performance of the fixed cycle is not too important for
the performance of the one step improvement policy. So to avoid time consuming
calculations of relative values, we restrict the load in the fixed cycle policy to be at
most 0.96. This only requires a small adjustment in Algorithm 6.1; the condition

λiTFC(g
(n)) < g

(n)
i for all i becomes λiTFC(g

(n)) < 0.96g
(n)
i for all i. Another

adjustment must be made in Step 2 of Algorithm 6.2. Here, ‘make this cycle stable’
is changed into ‘lengthen the production periods until the load for every product
type is at most 0.96’.

7.4 Results

In this section, we give an overview of the results of the fixed cycle policy and the
one step improvement approach and compare them with the results for a number of
other policies. For a policy Γ, cΓ will denote the expected costs per time unit. The
fixed cycle policy (FC), gated base-stock policy (G), exhaustive base-stock policy
(EXH), adjusted exhaustive base-stock policy (EXH*) and one step improvement
policy (1SI) are compared, just as in Chapter 2. Because the optimal base-stock
levels for the gated base-stock policy are relatively easy to determine in a production
system with backlog (compared to the lost sales system), the gated base-stock policy
(G) is also analysed. However, in all examples studied here, the gated base-stock
policy performs worse than both the exhaustive and the adjusted exhaustive base-
stock policy.

In the examples studied in this section, the holding costs per time unit are all
equal to 1 and backlogging costs equal 50. Furthermore, all production and set-up
times are deterministic and equal to 1. The arrival processes at the different stock
points are either Poisson with intensity λ or compound Poisson. In the case of
a compound Poisson arrival process, batches with customers arrive with intensity

7.4 Results 115

λ/2 and each batch is of size 4 with probability 1/3 and of size 1 with probability
2/3. The average batch size is then equal to 2, so the average number of arriving
customers per time unit equals λ.

The one step improvement policy is compared with a gated, exhaustive and an
adjusted exhaustive base-stock policy. The exhaustive and gated base-stock policies
set base-stock levels for all items and produce the different items in a fixed, cyclic
order. The server switches if the base-stock level of the item currently set up is
reached or if the shortfall seen upon arrival is produced, otherwise it produces
another unit of this type. In this way, the server never idles and decisions only
depend on the stock level of the item currently set-up. The adjusted exhaustive
base-stock policy applies the same rules as the exhaustive base-stock policy, but
skips an item if, just before the switch to this item, the stock level of this type is
equal to the base-stock level of this type. If all stock levels equal their base-stock
levels, the server switches to the next item.

Just as in the lost sales model, the lengths of the production periods are depen-
dent if a gated or an (adjusted) exhaustive base-stock policy is used. But unlike the
lost sales model, in the production model with backlog, the expected shortfall at
the start of a production period increases – in expectation – linearly in the length of
the period in which the machine is away. So the expected length of the production
period also grows linearly in the length of the period in which the machine is away.
Therefore, the dependence between the lengths of the different production periods
is stronger than in the production system with lost sales, where the shortfall levels
are at most equal to the base-stock levels.

The gated, exhaustive and adjusted exhaustive base-stock policies are analysed
as follows. First, all base-stock levels are set to zero, then a simulation is performed
to find the limiting distribution of the shortfall levels. These distributions are not
influenced by any of the N base-stock levels, so the newsvendor equation can be
used to obtain the optimal base-stock levels. It is seen that in all examples the
(adjusted) exhaustive base-stock policy outperforms the gated base-stock policy.

In many realistic settings for multi-item production systems, about 80 percent
of the demand is for only 20 percent of the product types. This is also the case in
the paper of Winands et al. [95], where 12.5% of the product types is responsible
for 67% of the demand. Therefore, the settings for Tables 7.2 and 7.3 are similar:
A low percentage (20%) of the product types is responsible for a high percentage
(80− 90%) of the demand.

λ cFC cG cEXH cEXH∗ c1SI
(0.56, 0.03, 0.05, 0.02, 0.04) 65.79 21.85 17.79 15.93 15.16
(0.60, 0.02, 0.04, 0.01, 0.03) 29.69 29.48 16.08 13.90 15.36

(0.63, 0.02, 0.015, 0.025, 0.01) 43.24 20.22 14.85 12.72 12.76

Table 7.2: Poisson demand

Table 7.2 shows results for a 5-item production system with Poisson arrivals,

116 Backlog: One step improvement

λ cFC cG cEXH cEXH∗ c1SI
(0.56, 0.03, 0.05, 0.02, 0.04) 85.24 45.53 41.16 38.18 35.92
(0.60, 0.02, 0.04, 0.01, 0.03) 84.39 45.64 38.68 36.26 33.51
(0.63, 0.02, 0.015, 0.025, 0.01) 79.26 44.92 36.53 34.51 32.07

Table 7.3: Compound Poisson demand

where the first item is responsible for 80 − 90% of the total demand. The total
load on the system is 0.7, which is the sum of the arrival intensities of the demand
processes. Table 7.3 shows results for a 5-item production system with compound
Poisson arrivals, all other settings are the same as in Table 7.2. It is seen that in 4
out of 6 cases 1SI performs better than EXH*. Particularly if the demand variation
is larger (Table 7.3) 1SI clearly outperforms EXH*. For the systems with Poisson
demand, it is seen that 1SI always outperforms EXH. However, in the EXH* policy
the machine often skips items, because the demand rates of items 2 up to 5 are
relatively low. This leads to a large cost reduction, compared to the EXH policy. In
2 out of 3 examples, the EXH* policy outperforms the 1SI policy. The two examples
in which EXH* outperforms 1SI are the systems with the lowest demand rates for
items 2 up to 5.

We want to note that it is very important to adjust the order-up-to levels when
moving from the fixed cycle system to the dynamic system: the base-stock levels
are considerably decreased and the difference in costs is huge (around 70 percent).

Number of product types

Tables 7.4 and 7.5 show results for completely symmetric production systems
with Poisson and compound Poisson distributed demand, respectively. The load
in the system is equal to 0.7, with N = 5, 6, 7 so the average number of arriving
customers is 0.7/N per time unit for each product flow. Although these settings
are not realistic, the results are illustrative for the performance of the one step
improvement policy. It is seen that for compound Poisson demand, in all cases 1SI
outperforms EXH*. Moreover, the performance of 1SI is better if N is larger.

N cFC cG cEXH cEXH∗ c1SI
5 47.51 25.69 24.10 23.84 28.26
6 58.03 29.84 28.27 27.98 32.32
7 70.04 33.78 32.45 32.14 35.67

Table 7.4: Poisson demand, λ = (0.7/N, . . . , 0.7/N)

7.4 Results 117

N cFC cG cEXH cEXH∗ c1SI
5 128.85 53.62 52.02 50.00 47.73
6 161.36 61.66 59.34 57.08 53.88
7 199.78 69.02 67.00 63.37 59.75

Table 7.5: Compound Poisson demand, λ = (0.7/N, . . . , 0.7/N)

Production order

Just as in Chapter 2, the relative value function of the fixed cycle policy depends
on the order of production. This effect is illustrated in Figure 7.1 for an empty
3-item production system with Poisson demand processes and demand intensities
λ = (0.25, 0.15, 0.10) and λ = (0.25, 0.10, 0.15). Holding costs are all equal to 1 and
backlogging costs are 50 for all items. The production periods of the fixed cycle are
equal to g = (6, 4, 3) and the base-stock levels are S = (6, 5, 4). Because the relative

2 4 6 8 10 12 14 16

1 switch1111 3switch222 2 3 switch1 3 1 switch1111 3switch22 2 3 switch1 3 3

2 4 6 8 10 12 14 16

Figure 7.1: Relative value functions for two empty 3-item production systems with
λ = (0.25, 0.15, 0.10) and λ = (0.25, 0.10, 0.15).

value function is different for different production orders, the decisions in the 1SI
policy can also be different for different production orders. This leads to a different
performance as well.

For 6-item production systems, the effect of the production order is shown in
Tables 7.6 up to 7.9. Results are shown for production systems with Poisson demand
in Tables 7.6 and 7.7 and for production systems with compound Poisson demand in
Tables 7.8 and 7.9. The order of production does have an effect on the performance

ρ cFC cG cEXH cEXH∗ c1SI
0.70 57.01 29.30 28.23 27.20 30.74
0.75 76.74 34.57 33.23 32.74 32.92
0.80 123.37 42.49 40.69 40.49 38.78

Table 7.6: Poisson demand, λ = ρ(0.25, 0.15, 0.10, 0.25, 0.15, 0.10), b = 50

of the one step improvement policy, but it seems quite random which of the two
studied production orders is best. So just as in Chapter 2, it is difficult to give a
good intuition for the best order of production.

118 Backlog: One step improvement

ρ cFC cG cEXH cEXH∗ c1SI
0.70 57.01 29.30 28.23 27.21 30.90
0.75 76.74 34.58 33.25 32.73 32.96
0.80 123.37 42.51 40.65 40.47 38.96

Table 7.7: Poisson demand, λ = ρ(0.25, 0.25, 0.15, 0.15, 0.10, 0.10), b = 50

ρ cFC cG cEXH cEXH∗ c1SI
0.70 159.74 61.11 59.37 55.90 52.61
0.75 224.64 70.91 68.81 66.38 62.29
0.80 441.63 84.86 83.28 81.43 79.61

Table 7.8: Compound Poisson demand, λ = ρ(0.25, 0.15, 0.10, 0.25, 0.15, 0.10), b = 50

ρ cFC cG cEXH cEXH∗ c1SI
0.70 159.74 61.12 59.38 55.89 52.54
0.75 224.64 70.87 68.79 66.33 62.09
0.80 441.63 84.84 83.18 81.44 78.76

Table 7.9: Compound Poisson demand, λ = ρ(0.25, 0.25, 0.15, 0.15, 0.10, 0.10), b = 50

7.5 Conclusion 119

Load, backlogging costs and stochasticity

Although we were not able to get a good intuition for a good production order
in the fixed cycle policy, the obtained results in Tables 7.6 up to 7.9 give us a lot
of information on the performance of the one step improvement policy. The results
show that the one step improvement policy performs better if the load on the system
is higher, which was also seen from the results in Tables 7.4 and 7.5.

ρ cFC cG cEXH cEXH∗ c1SI
0.70 65.83 33.50 32.03 31.12 34.27
0.75 88.35 39.28 37.96 37.55 36.63
0.80 162.82 48.12 46.41 46.24 44.04

Table 7.10: Poisson demand, λ = ρ(0.25, 0.15, 0.10, 0.25, 0.15, 0.10), b = 100

ρ cFC cG cEXH cEXH∗ c1SI
0.70 187.15 70.93 68.99 65.66 59.73
0.75 266.42 82.10 80.49 77.85 70.92
0.80 665.25 98.61 97.28 95.56 91.36

Table 7.11: Compound Poisson demand, λ = ρ(0.25, 0.15, 0.10, 0.25, 0.15, 0.10), b = 100

Tables 7.10 and 7.11 show results for 6-item production systems with backlogging
costs of 100 for all items. All other parameter settings are the same as in Tables 7.6
and 7.8 and it is seen that increasing the backlogging costs has a positive effect on
the performance of 1SI. The fact that the new strategy is able to react to sudden
changes in demand also leads to good results, because the one step improvement
policy performs better if demand is more stochastic, as in Tables 7.8, 7.9 and 7.11.

7.5 Conclusion

A multi-item production system is analysed in which demand is backlogged if
it can not be satisfied from stock. For every type, holding and backlogging costs
are considered and in order to minimize the total expected costs per time unit, we
analysed a one step improvement policy. This one step improvement policy is con-
structed by starting with a good fixed cycle control and then performing one policy
iteration of Howard’s policy iteration algorithm [50]. After this policy iteration, the
limiting distributions of the shortfall levels are estimated with a simulation study
and the base-stock levels are adjusted by applying the newsvendor type result in
Equation (6.7). The expected costs are then calculated with the estimated shortfall
distributions.

Numerical and simulation results are given to compare the fixed cycle policy, the

120 Backlog: One step improvement

gated and exhaustive base-stock control policy and the new one step improvement
policy. An adjusted exhaustive base-stock control policy is constructed by changing
the switching rule in the exhaustive base-stock control policy.

It is shown that the one-step improvement approach leads to a very good dynamic
control of the production system, particularly for systems with a large number of
product types, systems with a high load, systems with high backlogging costs and
systems with stochastic demand. These factors make it difficult to control the
production system and apparently, in these systems the one step improvement policy
is a good production strategy.

Chapter 8

Conclusions and further research

8.1 Results

Construction of a dynamic production strategy

In this thesis, a multi-item production system is considered in which N product
types share the capacity of a single machine. Two different models are studied, in
which we distinguish between backlog and lost sales. First, a production system
with lost sales is studied in which the objective is the minimization of the holding
and penalty costs. In the production system with backlog, the objective is the
minimization of the holding and backlogging costs.

It is seen that the number of possible states in multi-item production systems
grows exponentially in the number of product types. Therefore, an MDP approach
to obtain the optimal production strategy quickly becomes intractable if the num-
ber of product types gets (too) large. Because of this curse of dimensionality, the
construction of a dynamic production strategy is often also too complex. How-
ever, for both the backlog and the lost sales production system, a dynamic policy is
constructed using a one step improvement approach. In this approach, one policy
iteration is performed on a fixed cycle policy. The fixed cycle policy is chosen as a
basis policy, because it allows for a decomposition of the different product flows. In
Chapter 3, the same approach is used for the construction of a dynamic production
strategy in a multi-item production system with two machines and lost sales.

Fixed cycle policy

In a fixed cycle policy, each product flow experiences a periodic production
model with production periods and vacation periods. The lengths of these periods
are independent of the demand processes. Therefore, each product flow is analysed
individually and the total relative value function for the fixed cycle policy is the
sum of N individual relative value functions.

In order to find a good fixed cycle, a local search algorithm is presented. The
performance of the fixed cycle policy is analysed with successive approximations (for

121

122 Conclusions and further research

lost sales) or a generating function approach (for backlog). The fact that the result-
ing fixed cycle is not necessarily optimal is not very important for the performance
of the one step improvement policy based on this fixed cycle scheme. We have seen
at the beginning of Section 2.6 that better fixed cycles do not always lead to better
one step improvement policies. The reason for this probably lies in the fact that the
base-stock levels for the fixed cycle policy are too high for the dynamic production
strategy. In the dynamic production strategy, the system is able to react to changes
in demand and therefore, the stock levels are much more stable than in the fixed
cycle policy. So the shortfall distribution changes, which has a direct effect on the
optimal base-stock levels. For the backlog model, this direct effect is immediate
from the newsvendor result in Equation (6.7).

The shortfall distributions in the fixed cycle policy in the backlog model are
independent from the base-stock levels. Because of this property, the newsvendor
type equation of Equation (6.7) is used to determine the optimal base-stock levels.
In the lost sales model, this equation can not be used, because the base-stock levels
determine the shortfall distributions. This is easily seen, after observing that the
probability of having no stock is always greater than zero. This is exactly the same
as having a shortfall level that equals the base-stock level, which has a probability
of zero for policies with a lower base-stock level. However, it is possible to find good
base-stock levels with a local search algorithm. Assuming that the cost function is
convex in the base-stock levels, these base-stock levels are optimal.

Under the fixed cycle policy, each product flow is analysed as a periodic produc-
tion model. In the backlog model, an extension of this periodic production model is
studied in which the base-stock levels are time slot dependent. It turned out that
compared to the production model with a constant base-stock level, a small cost
reduction can be obtained by increasing the base-stock level during the production
period. It is expected that similar results can be obtained for the lost sales model.
However, for the backlog model it is already difficult and time consuming to deter-
mine the optimal vector of base-stock levels, because of the large number of possible
vectors. The backlog model has the advantage that it can be analysed with a gen-
erating function approach and a newsvendor type equation can be derived. This is
not the case in the lost sales model, so although introducing time slot dependent
base-stock levels could lead to lower expected costs in the fixed cycle policy, the time
it takes to find these base-stock levels is very time consuming in both the backlog
and the lost sales model.

One step improvement approach

At each decision moment, the state (j, k1, . . . , kN) is observed, with j the type
currently set-up and ki the stock or shortfall level of type i, i = 1, . . . , N . Depending
on the state, one searches for the minimum relative value and executes the corre-
sponding slot. Then, the state is observed again and the next decision is computed.
The obtained strategy is analysed by means of simulation. For large systems, the
relative value function of the new strategy does not have a special structure that
makes it possible to determine the relative values if needed, like the decomposition

8.1 Results 123

property of the fixed cycle policy. So for large systems, the new strategy does not
allow for another policy improvement.

Performance

The new production strategy is compared with existing production strategies like
gated and exhaustive base-stock control and results for the two different models
were similar. For both the lost sales and the backlog model, results showed that
the new production strategy performs well, particularly for highly loaded systems,
systems with high penalty or backlogging costs and systems with a large number of
product types.

It was also seen that the performance of the one step improvement policy is
influenced by the order of production in the fixed cycle. It is difficult to get a good
intuition for the optimal order of production, but the performance of the one step
improvement policy can be significantly different for different production orders.

The base-stock levels that are optimal for the fixed cycle policy are not necessar-
ily optimal for the one step improvement policy as well. It is seen that in some cases
the one step improvement policy performs better if the values of the base-stock lev-
els are set somewhat lower than the base-stock levels that are optimal for the fixed
cycle policy, see for example the results in Table 2.1 in Section 2.6.

For production systems with lost sales, it is also seen that if one of the items has
a relatively high demand rate, an extra production period in the fixed cycle policy
for this item has a positive effect on the performance of the one step improvement
policy. For production systems with backlog, it is expected that an extra production
period for items with a relatively high demand rate also has a positive effect on
the performance of the one step improvement policy. So increasing the number of
production periods for one or more product types increases the load on the system
for the fixed cycle policy, but for asymmetric systems, this can have a positive effect
on the performance of the one step improvement policy.

Apparently, it is important to choose a fixed cycle that performs well, but it
should also have the characteristics of a good production strategy. The base-stock
levels and lengths of the production periods that are optimal for the fixed cycle policy
are not equal to the maximum stock levels and visit periods that are expected in
the one step improvement policy. Further research is needed to determine how to
tune the characteristics of the fixed cycle policy so that the one step improvement
policy performs best.

Two machines

The one step improvement approach is also used to construct a dynamic pro-
duction strategy in a system with 2 identical machines that can both produce all N
items. In such a model, hardly any other dynamic production strategies are known.
In Chapter 3, it is assumed that production and set-up times are all deterministic
and of unit length, so that decisions are taken simultaneously. It is also possible to
relax these assumptions, because the relative values for this model can still be calcu-

124 Conclusions and further research

lated per product type. Although the analysis and notation become more complex,
a similar procedure as in Chapter 3 can be used. Decisions are not taken simultane-
ously and for the calculation of the relative values, one has to calculate the expected
costs until the next decision moment for the machine that is still producing or being
set-up for one of the product types.

The results for the model in Chapter 3 are promising, but more results are needed
in order to draw conclusions on the performance of the strategy compared to other
strategies.

Lead times

It was already mentioned that in the backlog model, a generating function ap-
proach is used to analyse the system. Using this ’queueing‘ approach, distributional
results are derived for the shortfall levels. The corresponding queueing system is a
polling model with one server and N queues. For such a system, the waiting time
distribution for (globally) gated queues is found in Chapter 5. Looking at these
results from a production point of view, one observes the lead time distributions for
product types that are produced according to a gated base-stock policy. It is easily
seen that these distributions are, just as the shortfall distributions, independent of
the base-stock levels. The first and second moment of the lead time are found for
different service (or production) disciplines, like FCFS, LCFS and ROS. The results
for the first moment that were already obtained by Winands et al. [91], tell us
that for all service time distributions, the Shortest Job First (SJF) policy gives the
minimum expected lead time. A comparison between the second moments tells us
that, if the service time distribution has a decreasing failure rate, the variance of the
lead time under this policy is also lower than under the FCFS, LCFS and Random
Order of Service (ROS) service disciplines.

A comparison between the gated and globally gated visit discipline comes down
to a comparison between the cycle time distributions.

8.2 Further research

Combinations of slots

The constructed one step improvement policy is dynamic and therefore, a second
improvement step is intractable for large systems. However, it is possible to improve
the new production strategy by looking two time slots ahead. This works as follows.
Just like in the one step improvement approach, a good fixed cycle is found and the
relative values are calculated per product type. Then, for each decision one considers
every possible combination for the next two slots, after which it is assumed that the
fixed cycle is followed again.

8.2 Further research 125

1 set-up1111 3set-up222 2 3 set-up

Figure 8.1: A fixed cycle for a 3-item production system

Example

Consider a 3-item production system, for which the fixed cycle of Figure 8.1 is found.
The possible combinations of time slots that are considered if item 1 is set-up, are
the following:

• Two consecutive production slots of item 1,

• One production slot of item 1 and a set-up slot for item 1 (which can be seen
as idling),

• One production slot of item 1 and a set-up slot for item 2,

• One production slot of item 1 and a set-up slot for item 3,

• A set-up slot for item 1 and one of the production slots of item 1,

• A set-up slot for item 2 and one of the production slots of item 2,

• A set-up slot for item 3 and one of the production slots of item 3.

For each combination, the costs for the first slot are calculated and, taking the one
step transition into account, the relative value for the second slot is added. So, for
a production slot of item 1 and followed by the set-up slot for item 3 (i.e. slot 11),
one gets the following relative costs for item 1:

c1,1(k1) +

k1+1∑
k′1=0

p1,1(k1, k
′
1)r1(11, k

′
1),

where k1 denotes the current shortfall level of item 1 and slot 11 is the set-up slot for
item 3 (see Figure 8.1). Although a decision is calculated for 2 slots simultaneously,
first one of the two slots is executed. Then, a new decision is computed, etc.

Some combinations are also considered in the one step improvement policy stud-
ied in this thesis. For example, for the combination of one production slot of item
1 and a set-up slot of item 2 one can look at the relative value of slot 5. However,
the second and fifth combinations are new, so the number of possible combinations
is larger than the number of possible slots in the standard one step improvement
policy.

Because the improvement step with the combined slots looks more slots ahead,
it is expected that the constructed strategy outperforms the one step improvement
policy. It is also possible to look at every combination of the next three or more
slots. However, the number of combinations grows exponentially in the number of
combined slots. So there is a limit to this number, especially if N is large.

126 Conclusions and further research

Production order

Using a simple trick, it is possible to change the assumed order of production
in the fixed cycle. Because the lengths of the set-up slots do not depend on the
preceding product type, the lengths of the production periods remain the same
if the production order is changed. Each product type still experiences the same
periodic production and because the relative values are stored per product type, one
just has to renumber the slots in the cycle if the production order is changed, see
Figure 8.2. Therefore, the relative values only need to be calculated and registered

1 set-up1111 3set-up222 2 3 set-up

1 set-up1111 3 set-up222 23 set-up

Figure 8.2: Two fixed cycles for a 3-item production system

once, for one order of production. Then, for each order of production, it is possible
to look at the reachable time slots and determine the relative value. The slot with
the minimum relative value is executed.

If N is large, there is a large number of possible production orders to consider,
because the number of possible production orders equals the factorial of N . A small
number of production orders can be considered that are chosen on the basis of the
shortfall levels, demand intensities and holding and penalty costs.

Bibliography

[1] J. Abate and W. Whitt. An operational calculus for probability distributions
via laplace transforms. Adv. Appl. Prob, 28:75–113, 1996.

[2] I. J. B. F. Adan, J. S. H. van Leeuwaarden, and E. M. M. Winands. On
the application of Rouché’s theorem in queueing theory. Operations Research
Letters, 34:355–360, 2006.

[3] T. Altiok and G. A. Shiue. Single-stage, multi-product production/inventory
systems with lost sales. Naval Research Logistics, 42:889–913, 1995.

[4] R. Anupindi and S. Tayur. Managing stochastic multi-product systems: Model,
measures and analysis. Operations Research, 46(3):98–111, 1998.

[5] K. Athreya and P. Ney. Branching Processes. Springer, Berlin, 1972.

[6] B. Avi-Itzhak and S. Halfin. Response times in gated M/G/1 queues: the
processor-sharing case. Queueing Systems, 4:263–279, 1989.

[7] F. Baccelli and P. Brémaud. Elements of Queueing Theory: Palm-Martingale
Calculus and Stochastic Recurrences. Springer, New York, 2003.

[8] J. S. Baras, D. J. Ma, and A. M. Makowski. Competing queues with geometric
service requirements and linear costs; the µ c-rule is always optimal. Technical
Research Report SSR-83-9, Electrical Engineering Department, University of
Maryland, College Park, 1983.

[9] J. S. Baras, A. J. Dorsey, and A. M. Makowski. Two competing queues with
linear costs and geometric service requirements: The µ c-rule is often optimal.
Advances in Applied Probability, 17(1):186–209, 1985.

[10] S. Bhulai. Dynamic routing policies for multi-skill call centers. Probability in
the Engineering and Informational Sciences, 23:101–119, 2009.

[11] M. A. A. Boon, I. J. B. F. Adan, and O. J. Boxma. A two-queue polling model
with two priority levels in the first queue. Proceedings ValueTools, 2008.

[12] M. A. A. Boon, I. J. B. F. Adan, and O. J. Boxma. A polling model with
multiple priority levels. Performance Evaluation, 67(6):468–484, 2010.

127

128 BIBLIOGRAPHY

[13] S. C. Borst. Polling systems. PhD thesis, CWI, Amsterdam, The Netherlands,
1994.

[14] O. J. Boxma. Workloads and waiting times in single-server systems with mul-
tiple customer classes. Queueing Systems, 5:185–214, 1989.

[15] O. J. Boxma, W. Groenendijk, and J. Weststrate. A pseudoconservation law for
service systems with a polling table. IEEE Transactions on Communications,
38:1865–1870, 1990.

[16] O. J. Boxma, H. Levy, and J. A. Weststrate. Efficient visit frequencies for
polling tables: minimization of waiting cost. Queueing Systems, 9(1–2):133–
162, 1991.

[17] O. J. Boxma, H. Levy, and U. Yechiali. Cyclic reservation schemes for effi-
cient operation of multiple-queue single-server systems. Annals of Operations
Research, 35:187–208, 1992.

[18] O. J. Boxma, G. M. Koole, and I. Mitrani. Polling models with threshold
switching. Quantitative Methods in Parallel Systems, pages 129–140, 1995.

[19] O. J. Boxma, J. Bruin, and B. Fralix. Waiting times in polling systems with
various service disciplines. Performance Evaluation, 66(11):621–639, 2008.

[20] S. Browne and G. Weiss. Dynamic priority rules when polling with multiple
parallel servers. Oper. Res. Lett., 12:129–137, 1992.

[21] J. Bruin. Cyclic multi-item production systems. Proceedings Analysis of Man-
ufacturing Systems, 2007.

[22] J. Bruin and J. van der Wal. A dynamic control strategy for multi-item pro-
duction systems. Proceedings Stochastic Models of Manufacturing and Service
Operations, 2009.

[23] J. Bruin and J. van der Wal. A cyclic production scheme for multi-item pro-
duction systems with backlog; part 1. Submitted to Annals of OR, 2010.

[24] J. Bruin and J. van der Wal. A dynamic control strategy for multi-item pro-
duction systems with backlog; part 2. Submitted to Annals of OR, 2010.

[25] J. Bruin and J. van der Wal. A dynamic control strategy for multi-item pro-
duction systems with lost sales. Submitted to Annals of OR, 2010.

[26] C. Buyukkoc, P. Varaiya, and J. Walrand. The cµ rule revisited. Advances in
Applied Probability, 17(1):237–238, 1985.

[27] H. Chung, C. Un, and W. Jung. Performance analysis of Markovian polling
systems with single buffers. Performance Evaluation, 19(4):303–315, 1994.

[28] D. R. Cox and W. L. Smith. Queues. Chapman and Hall, London, 1961.

BIBLIOGRAPHY 129

[29] J. N. Darroch. On the traffic light queue. Annals of Mathematical Statistics,
35:380–388, 1964.

[30] R. de Haan, A. M. Al Hanbali, R. J. Boucherie, and J. C. W. van Ommeren. A
transient analysis of polling systems operating under exponential time-limited
service disciplines. Memorandum 1894, Department of Applied Mathematics,
University of Twente, Enschede, (ISSN 1874-4850), 2009.

[31] A. G. de Kok. A moment-iteration method for approximating the waiting-
time characteristics of the GI/G/1 queue. Probability in the Engineering and
Informational Sciences, 3:273–287, 1989.

[32] N. P. Dellaert. Production to order: models and rules for production planning.
Lecture Notes in Economics and Mathematical Systems 333, 1989.

[33] D. Denteneer, J. S. H. van Leeuwaarden, and I. J. B. F. Adan. The acquisition
queue. Queueing Systems, 56:229–240, 2007.

[34] I. Eliazar and U. Yechiali. Polling under the randomly timed gated regime.
Stochastic Models, 14(1-2):79–93, 1998.

[35] N. Erkip, R. Güllü, and A. Kocabiyikoglu. A quasi-birth-and-death model to
evaluate fixed cycle time policies for stochastic multi-item production/inventory
problem. Proceedings of MSOM conference, Ann Harbor, 2000.

[36] A. Federgruen and Z. Katalan. Approximating queue size and waiting time
distributions in general polling systems. Queueing Systems, 18:353–386, 1994.

[37] A. Federgruen and Z. Katalan. The stochastic economic lot scheduling problem:
cyclical base-stock policies with idle times. Management Science, 42(6):783–
796, 1996.

[38] A. Federgruen and Z. Katalan. Customer waiting-time distributions under base-
stock policies in single-facility multi-item production systems. Naval Research
Logistics, 43:533–548, 1996.

[39] A. Federgruen and Z. Katalan. Determining production schedules under base-
stock policies in single facility multi-item production systems. Operations Re-
search, 46(6):883–898, 1998.

[40] W. Feller. An Introduction to Probability Theory and its Applications, volume 2.
Wiley, 1971.

[41] B. Fleischmann. The discrete lot-sizing and scheduling problem. European
Journal of Operational Research, 44(3):337–348, 1990.

[42] J. C. Fransoo, V. Sridharan, and J. W. M. Bertrand. A hierarchical approach for
capacity coordination in multiple products single-machine production systems
with stationary stochastic demands. European Journal of Operations Research,
86:57–72, 1995.

130 BIBLIOGRAPHY

[43] S. W. Fuhrmann and R. B. Cooper. Stochastic decomposition in an M/G/1
queue with generalized vacations. Operations Research, 33:11–17, 1985.

[44] S. W. Fuhrmann and I. Iliadis. A comparison of three random disciplines.
Queueing Systems, 18:249–271, 1994.

[45] S. E. Grasman, T. L. Olsen, and J. R. Birge. Finite buffer polling models with
routing. European Journal of Operations Research, 165(3):794–809, 2005.

[46] S. E. Grasman, T. L. Olsen, and J. R. Birge. Setting basestock levels in mul-
tiproduct systems with setups and random yield. IIE Transactions, 40(12):
1158–1170, 2008.

[47] R. Güllü, N. Erkip, and S. Hafizogullari. Fixed cycle time policies for the
stochastic multi-item production/inventory problem. Working paper, 2010.

[48] R. Haijema and J. van der Wal. An MDP decomposition approach for traffic
control at isolated signalized intersections. Probability in the Engineering and
Informational Sciences, 22(4):587–602, 2008.

[49] M. Hofri and K. W. Ross. On the optimal control of two queues with server
set-up times and its analysis. SIAM J. Comput., 16:399–420, 1987.

[50] R. Howard. Dynamic Programming and Markov Processes. The MIT Press,
Cambridge, Mass., 1960.

[51] A. J. E. M. Janssen and J. S. H. van Leeuwaarden. Analytic computation
schemes for the discrete-time bulk service queue. Queueing Systems, 50:141–
163, 2004.

[52] M. Khouja. The single-period (news-vendor) problem: literature review and
suggestions for future research. Omega, 27(5):537–553, 1999.

[53] G. Koole. Assigning a single server to inhomogeneous queues with switching
costs. Theoretical Computer Science, 182:203–216, 1997.

[54] G. N. Krieg and H. Kuhn. A decomposition method for multi-product kanban
systems with setup times and lost sales. IIE Transactions, 34(7):613–625, 2002.

[55] R. Y. W. Lam, V. C. M. Leung, and H. C. B. Chain. Polling-based protocols
for packet voice transport over IEEE 802.11 wireless local area networks. IEEE
Wireless Communications, 13:22–29, 2006.

[56] T. Y. S. Lee and J. Sunjaya. Exact analysis of asymmetric random polling sys-
tems with single buffers and correlated Levy input process. Queueing Systems,
23(3-4):131–156, 1996.

[57] A. A. J. Lefeber and J. E. Rooda. Controller design for flow networks of
switched servers with setup times: the Kumar-Seidman case as an illustrative
example. Asian Journal of Control, 10(1):55–66, 2008.

BIBLIOGRAPHY 131

[58] H. Levy, G. Mahalal, and M. Sidi. Multi server polling systems: The bang bang
policies. In Proc. Experts on Networks Workshop, UCLA, June 1994, 1994.

[59] Z. Liu, P. Nain, and D. Towsley. On optimal polling policies. Queueing Systems,
11:59–83, 1992.

[60] M. A. Marsan, G. Balbo, and G. Conte. A class of generalized stochastic Petri
nets for the performance analysis of multiprocessor systems. ACM Transactions
on Computer Systems, 2(2):93–122, 1984.

[61] M. A. Marsan, G. Balbo, and G. Conte. Performance Models of Multiprocessor
Systems. MIT Press, Cambridge, USA, 1986.

[62] M. A. Marsan, S. Donatelli, and F. Neri. GSPN models of Markovian multi-
server multiqueue systems. Performance Evaluation, 11(4):227–240, 1990.

[63] D. Miorandi, A. Zanella, and G. Pierobon. Performance evaluation of bluetooth
polling schemes: an analytical approach. Mobile Networks and Applications, 9:
63–72, 2004.

[64] R. J. T. Morris and Y. T. Wang. Some results for multi-queue systems with
multiple cyclic servers. Performance of Computer-Communication Systems, In:
eds. W. Bux and H. Rudin (North-Holland, Amsterdam), pages 245–258, 1984.

[65] J. M. Norman. Heuristic procedures in dynamic programming. Manchester
University Press, Manchester, 1972.

[66] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle stealing
with switching times and thresholds. Performance Evaluation, 61(4):347–369,
2005.

[67] T. Ott and K. Krishnan. Separable routing: A scheme for state-dependent
routing of circuit switched telephone traffic. Annals of Operations Research, 35
(1):43–68, 1992.

[68] E. L. Porteus. Foundations of Stochastic Inventory. Stanford University Press,
Stanford, 2002.

[69] J. Qiu and R. Loulou. Multiproduct production/inventory control under ran-
dom demands. IEEE Transactions on Automatic Control, 40(2):350–356, 1995.

[70] K. M. Rege and B. Sengupta. A single server queue with gated processor-sharing
discipline. Queueing Systems, 4:249–261, 1989.

[71] J. A. C. Resing. Polling systems and multitype branching processes. Queueing
Systems, 13:409–426, 1993.

[72] R. Rietman and J. A. C. Resing. AnM/G/1 queueing model with gated random
order of service. Queueing Systems, 48:89–102, 2004.

132 BIBLIOGRAPHY

[73] S. A. E. Sassen, H. C. Tijms, and R. D. Nobel. A heuristic rule for routing
customers to parallel servers. Statistica Neerlandica, 51(1):107–121, 1997.

[74] P. J. Schweitzer. Iterative solution of the functional equations of undiscounted
Markov renewal programming. Journal of Mathematical Analysis and Applica-
tions, 34(4):494–501, 1971.

[75] R. Serfozo. Introduction to Stochastic Networks. Springer, New York, 1999.

[76] J. G. Shanthikumar and U. Sumita. Convex ordering of sojourn times in single-
server queues: extremal properties of FIFO and LIFO service disciplines. Jour-
nal of Applied Probability, 24:737–748, 1987.

[77] S. R. Smits, M. Wagner, and A. G. de Kok. Determination of an order-up-to
policy in the stochastic economic lot scheduling model. International Journal
of Production Economics, 90(3):377–389, 2004.

[78] C. R. Sox and J. A. Muckstadt. Optimization-based planning for the stochastic
lot scheduling problem. IIE Transactions, 29(5):349–357, 1997.

[79] H. Takagi. Analysis of Polling Systems. MIT Press, 1986.

[80] T. Takine, Y. Takahashi, and T. Hasegawa. An analysis for interdeparture
process of a polling system with single message buffer at each station. Trans.
Inst. Electron. Znf. Commun. Eng., 70-B(9):989–998, 1987.

[81] H. Thörisson. Coupling, Stationarity and Regeneration. Springer, New York,
2000.

[82] H. C. Tijms and M. C. T. van de Coevering. A simple numerical approach for
infinite-state Markov chains. Probability in the Engineering and Informational
Sciences, 5:85–295, 1991.

[83] M. S. van den Broek, J. S. H. van Leeuwaarden, I. J. B. F. Adan, and O. J.
Boxma. Bounds and approximations for the fixed-cycle traffic light queue.
Transportation Science, 40(4):484–496, 2006.

[84] R. van der Mei and S. C. Borst. Analysis of multiple-server polling systems by
means of the power-series algorithm. Stochastic Models, 13(2):339–369, 1997.

[85] M. J. A. van Eenige. Queueing Systems with Periodic Service. PhD thesis,
Technical University Eindhoven, Eindhoven, 1996.

[86] P. van Mieghem. The asymptotic behavior of queueing systems: Large devia-
tions theory and dominant pole approximation. Queueing Systems, 23:27–55,
1996.

[87] M. van Vuuren and E. M. M. Winands. Iterative approximation of k-limited
polling systems. Queueing Systems, 55(3):161–178, 2007.

133

[88] V. Vishnevskii and O. Semenova. Mathematical methods to study the polling
systems. Automation and Remote Control, 67:173–220, 2006.

[89] M. Wagner and S. R. Smits. A local search algorithm for the optimization
of the stochastic economic lot scheduling problem. International Journal of
Production Economics, 88:391–402, 2004.

[90] W. Whitt. The renewal-process stationary-excess operator. Journal of Applied
Probability, 22:156–167, 1985.

[91] A. Wierman, E. M. M. Winands, and O. J. Boxma. Scheduling in polling
systems. Performance Evaluation, 64(9–12):1009–1028, 2007.

[92] J. Wijngaard. Decomposition for dynamic programming in production and
inventory control. Engineering and Process Economics, 4:385–388, 1979.

[93] E. M. M. Winands, I. J. B. F. Adan, and G. J. van Houtum. The stochastic
economic lot scheduling problem: A survey. BETA WP, (133), 2005.

[94] E. M. M. Winands, I. J. B. F. Adan, and G. J. van Houtum. Mean value
analysis for polling systems. Queueing Systems, 54:45–54, 2006.

[95] E. M. M. Winands, A. G. de Kok, and C. Timpe. Case study of a batch-
production/inventory system. Report BASF, 2007.

[96] R. W. Wolff. Stochastic Modeling and the Theory of Queues. Prentice Hall,
London, 1989.

Index of Symbols

ai,n(k), 7
aP (k), 91
Ai,n(z), 8
AP (z), 91
AV (z), 91

B(i), 8
B1,(k), 70
B1,k:n, 74
Bi, 58
Bn, 94

ci(g, S), 17
ci,n(k), 10, 16
ctot(g), 18
C∗, 62
C, 8, 59
Cp, 62
Cr, 62

δn, 99
DΓ, 66
Dn, 92
Dn(i), 10

g, 18
gi, 11
γ(ω), 79
Gn(z), 92
G̃n(z), 99

I(i), 8
In, 94

λ, 91
λi, 7

N , 7
N1, 37
N2, 37

pi,n(k, k
′), 16

p+i,n(k, k
′), 38

p(k, n), 92
p̃(k, n), 98
ϕi(ω, x), 84
P (z1, . . . , zN), 59
Policies

1SI, 22
C1SI, 43
EXH, 24
EXH*, 24
FC, 22
G, 114

Qi, 48

r(n, k1, . . . , kN), 11
rPi , 39
rPi (l, k;n), 39
rVi , 39
rVi (n, k; l, S), 40
ρ, 24
RX , 63

σ, 91
S(i), 8
Si, 58
Si(·), 58
Smax, 98
Sn, 97

TΓ(x), 71

134

INDEX OF SYMBOLS 135

Tn, 10
TPi , 8
TSi , 8
TV , 91

vi,m(n, k), 17

X, 91
X̃, 101
X(i), 8
Xn, 92
X̃n, 98

136 INDEX OF SYMBOLS

Summary

This thesis focusses on the analysis and construction of control policies in multi-
item production systems. In such systems, multiple items can be made to stock,
but they have to share the finite capacity of a single machine. This machine can
only produce one unit at a time and if it is set-up for one item, a switch-over or
set-up time is needed to start the production of another item. Customers arrive
to the system according to (compound) Poisson processes and if they see no stock
upon arrival, they are either considered as a lost sale or backlogged. In this thesis,
we look at production systems with backlog and production systems with lost sales.
In production systems with lost sales, all arriving customers are considered lost if
no stock is available and penalty costs are paid per lost customer. In production
systems with backlog, arriving customers form a queue if they see no stock and
backlogging costs are paid for every backlogged customer per time unit.

These production systems find many applications in industry, for instance glass
and paper production or bulk production of beers, see Anupindi and Tayur [4]. The
objective for the production manager is to minimize the sum of the holding and
penalty or backlogging costs. At each decision moment, the manager has to decide
whether to switch to another product type, to produce another unit of the type that
is set-up or to idle the machine. In order to minimize the total costs, a balance must
be found between a fast switching scheme that is able to react to sudden changes in
demand and a production plan with a little loss of capacity. Unfortunately, a fast
switching scheme results in a loss of capacity, because switching from one product
type to another requires a switch-over or set-up time.

In the optimal production strategy, decisions depend on the complete state of
the system. Because the processes at the different product flows depend on these
decisions, the processes also depend on the complete state of the system. This means
that the processes at the different product flows are not independent, which makes
the analysis and construction of the optimal production strategy very complex. In
fact, the complexity of the determination of this policy grows exponentially in the
number of product types and if this number is too large, the optimal policy becomes
intractable. Production strategies in which decisions depend on the complete system
are defined as global lot sizing policies and are often difficult to construct or analyse,
because of the dependence between the different product flows.

However, in this thesis the construction of a global lot sizing policy is presented
which also works for production systems with a large number of product types. The

138 SUMMARY

key factor that makes the construction possible is the fact that it is based on a fixed
cycle policy. In Chapter 2, the fixed cycle policy is analysed for production systems
with lost sales and in Chapter 6, the fixed cycle policy is analysed for production
systems with backlog. The fixed cycle policy can be analysed per product flow and
this decomposition property allows for the determination of the so called relative
values. If it is assumed that one continues with a fixed cycle control, the relative
values per product type represent the relative expected future costs for each decision.
Based on these relative values, an improvement step (see Norman [65]) is performed
which results in a ‘one step improvement’ policy. This policy is constructed and
analysed in Chapters 2 and 7 for production systems with lost sales and production
systems with backlog, respectively.

This global lot sizing policy turns out to perform well compared to other, heuris-
tic production strategies, especially in systems with a high load and demand pro-
cesses with a high variability. A similar approach as for the production system with
a single machine is performed in a system with two machines and lost sales in Chap-
ter 3. Results show that in some cases the constructed strategy works well, although
in some systems two separate one step improvement policies perform better.

Examples of more heuristic production strategies are gated and exhaustive base-
stock policies. In these ’local lot sizing‘ policies, decisions depend only on the stock
level of the product type that is set-up. But even in these policies, the processes at
the different product flows are dependent. This makes the analysis difficult, but for
production systems with backlog a translation can be made to a queueing system
by looking at the number of products short to the base-stock level. So the machine
becomes a server and each product flow becomes a queue. In these queueing systems,
also known as polling systems, gated and exhaustive base-stock policies become
gated and exhaustive visit disciplines. For polling systems, an exact analysis of the
queue length or waiting time distribution is often possible via generating functions
or Laplace-Stieltjes transforms. In Chapter 5, the determination of the sojourn time
distribution of customers in a polling system with a (globally) gated visit discipline
is presented, which comes down to the determination of the lead time distribution
in the corresponding production system.

Samenvatting

In dit proefschrift wordt de analyse en constructie van productie strategieën be-
sproken in multi-item productie systemen. In zulke systemen kunnen verschillende
items worden geproduceerd en voor ieder item kan voorraad gehouden worden. Er
is echter maar één machine die één product tegelijk kan maken, en bovendien kost
het tijd om van het ene product type naar het andere product type om te schakelen.
Klanten arriveren bij het systeem volgens (compound) Poisson processen en als zij
geen voorraad aantreffen, worden zij of als verloren beschouwd of zij vormen een
rij. Er worden in dit proefschrift twee modellen beschouwd, namelijk productie-
systemen met lost sales (verloren klanten) en productiesystemen met backlog. In
productiesystemen met lost sales worden alle klanten die geen voorraad treffen als
verloren beschouwd en per verloren klant worden boetekosten betaald. In produc-
tiesystemen met backlog sluiten alle klanten die geen voorraad treffen aan in een rij
en per wachtende klant worden wachtkosten per tijdseenheid betaald.

In de praktijk komen deze productie systemen veel voor, bijvoorbeeld in de glas-
en papierindustrie of bij de productie van bier (zie Anupindi en Tayur [4]). Het doel
van de manager van deze systemen is het minimaliseren van de voorraad- en boete-
of wachtkosten. Er moet hierbij steeds gekozen worden voor een nieuwe productie,
een omschakeling of het tijdelijk stilzetten van de machine. In een strategie waarin
veel omgeschakeld wordt, gaat capaciteit verloren omdat het omschakelen een set-
up of switch-over tijd vereist. Deze capaciteit is nodig om genoeg producten te
kunnen maken. Om de kosten te minimaliseren moet daarom gezocht worden naar
een balans tussen een strategie waarin veel omgeschakeld wordt zodat gereageerd
kan worden op plotselinge veranderingen in de vraag, en een productieplan waarin
weinig capaciteit verloren gaat.

In de optimale productie strategie zijn beslissingen afhankelijk van de volledige
toestand van het systeem. De processen bij de verschillende voorraadpunten hangen
weer af van deze beslissingen, dus deze processen zijn ook weer afhankelijk van
elkaar. Dit maakt de analyse en in het bijzonder het vinden van de optimale strategie
zeer complex. De complexiteit van het vinden van de optimale strategie groeit zelfs
exponentieel in het aantal verschillende product types. Dit betekent dat het aantal
product types al snel te groot wordt om de optimale strategie te kunnen bepalen.
Door deze complexiteit is het ook lastig om een strategie waarin beslissingen van
de volledige toestand van het systeem afhangen, te bedenken of te analyseren voor
productie systemen met een groot aantal product types.

140 SAMENVATTING

In dit proefschrift laten we zien dat met behulp van een éénstapsverbeterings-
techniek van Norman (zie [65]), een productie strategie geconstrueerd kan worden
voor grote systemen die kijkt naar de volledige toestand van het systeem. Bij deze
éénstapsverbeteringstechniek worden relatieve kosten bepaald per toestand en be-
slissing, in de veronderstelling dat na deze beslissing een bepaalde basis strategie
wordt gevolgd. De keuze van de basis strategie is hier belangrijk, omdat in prin-
cipe het berekenen van de relatieve kosten per toestand niet mogelijk is voor (te)
grote systemen. Maar in een strategie met een vaste cyclus (fixed cycle strategie)
kunnen alle product types apart geanalyseerd worden, omdat de processen van de
product types onderling onafhankelijk zijn bij deze strategie. Hierdoor kunnen ook
de relatieve waarden per product type berekend en opgeslagen worden. Dit wordt
voor productiesystemen met lost sales laten zien in hoofdstuk 2 en voor produc-
tiesystemen met backlog in hoofdstuk 6. Op basis van de relatieve kosten wordt
een nieuwe productie strategie bepaald, die ’one step improvement’ strategie wordt
genoemd. Deze strategie wordt in hoofdstuk 2 geanalyseerd voor productiesystemen
met lost sales. Hoofdstuk 7 behandelt de analyse en constructie van deze strategie
voor systemen met backlog.

De nieuwe strategie blijkt goed te werken in vergelijking met andere, meer heuris-
tische productie strategieën, in het bijzonder voor systemen met een hoge bezettings-
graad en vraag processen met een hoge variantie. Een zelfde aanpak is gebruikt voor
productie systemen met twee machines en lost sales in hoofdstuk 3 en leidt tot goede
resultaten, hoewel er ook systemen zijn waarin twee aparte éénstapsverbeteringen
lagere kosten geven.

Voorbeelden van meer heuristische productie strategieën zijn gated en exhaustive
base-stock strategieën. In deze strategieën hangen beslissingen alleen af van het
voorraadniveau van het product type waarop de machine ingesteld is. Omdat ook
bij deze strategieën de processen bij de verschillende voorraadpunten afhankelijk
zijn van elkaar, is de analyse van deze processen vaak erg complex. Voor productie
systemen met backlog kan een vertaling gemaakt worden naar wachtrij systemen
door per product type te kijken naar het aantal producten tekort ten opzichte van
het base-stock niveau. Deze wachtrij systemen hebben dan één bediende en meerdere
wachtrijen, en staan ook wel bekend als polling modellen. Een exacte analyse van
bijvoorbeeld de rijlengte verdelingen is vaak mogelijk met behulp van genererende
functies en Laplace-Stieltjes getransformeerden. In hoofdstuk 5 is voor zulke polling
modellen de verdeling van de verblijftijd van een klant afgeleid, waarbij aangenomen
wordt dat de bediende de rijen bedient volgens een (globale) gated strategie. De
verblijftijd van een klant in een polling model komt overeen met de doorlooptijd van
een product in het corresponderende productie systeem.

About the author

Josine Bruin was born on August 15, 1983 in Zaanstad, the Netherlands. She grad-
uated from grammar school (Sint Michael College, Zaandam) in June 2001. In
November 2005 she received her Master’s degree in Econometrics and Operations
Research from Vrije Universiteit Amsterdam. In May 2006, she started a PhD
project under the supervision of Jan van der Wal, Ton de Kok and Onno Boxma,
at research institute Eurandom, in Eindhoven. This project also took place at the
faculties of Mathematics & Computer Science and Industrial Engineering & Innova-
tion Sciences at Eindhoven University of Technology. On October 12, 2010, Josine
defends her PhD thesis at Eindhoven University of Technology. As of September
2010 she will be working as a consultant at Quintiq in Den Bosch.

	Acknowledgements
	Contents
	1. Introduction
	2. Lost sales: One step improvement
	3. Lost sales: 2 machines
	4. Backlog: An overview
	5. Backlog: Waiting times for gated queues in polling systems
	6. Backlog: A fixed cycle
	7. Backlog: One step improvement
	8. Conclusions and further research
	Bibliography
	Index of Symbols
	Summary
	Samenvatting
	About the author

