

Converting existing analysis to the EDP resource model

Citation for published version (APA):
Okwudire, C. G. U., & Bril, R. J. (2010). Converting existing analysis to the EDP resource model. (Computer
science reports; Vol. 1007). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/27b71c6c-a9f7-45d1-91af-87e1d18940a2

Converting existing analysis to the EDP resource model∗

Okwudire, C.G.U.

Technische Universiteit Eindhoven (TU/e),
Den Dolech 2, 5612 AZ Eindhoven,

The Netherlands
c.g.u.okwudire@student.tue.nl

Bril, R.J.

Technische Universiteit Eindhoven (TU/e),
Den Dolech 2, 5612 AZ Eindhoven,

The Netherlands
r.j.bril@tue.nl

Abstract

In (hard) real-time embedded systems, it is necessary to guarantee that tasks always
meet their deadlines i.e. results should neither be too early nor too late. In the context
of fixed-priority systems, this is usually done by performing schedulability analysis in which
the (best-case and) worst-case response-time of each task is computed and compared with
its (best-case) worst-case deadline to determine schedulability. Resource reservation has been
proposed as a means to provide temporal isolation between applications. Building upon this
notion, hierarchical scheduling frameworks for different resource models have been proffered
in the literature with complementary schedulability conditions. Unfortunately, these novel
ideas do not directly allow for the reuse of existing results, but rather favor derivations from
first principles. In this document, we investigate a means to reuse existing results from
non-hierarchical scheduling theory by modeling the unavailability of a resource in a two-level
hierarchical framework using two fictive tasks with highest priorities. We show that this novel
method using our unavailability model not only allows for unifying the analysis but can also
be easily applied in determining linear response-time upper bounds. For the latter, we also
consider approaches for obtaining tighter bounds for harmonic tasks.

Acknowledgements

∗This document recapitulates and builds on the results presented in [6].

1

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

Contents

List of Figures 4

List of Tables 5

1 Introduction 6
1.1 Context and motivation . 6
1.2 Problem statement . 7
1.3 Approach . 7
1.4 Contributions . 7
1.5 Organization of the document . 8

2 Real-time scheduling models 8
2.1 A basic model for FPPS . 8
2.2 A periodic server model for budgets . 9

3 Recapitulation of analysis for FPPS 10
3.1 Worst-case response-time analysis . 10
3.2 Best-case response-time analysis . 11
3.3 Jitter analysis . 12

4 Recapitulation of analysis for two-level H-FPPS 14
4.1 Worst-case response-time analysis of tasks . 15
4.2 Worst-case available capacity analysis . 16
4.3 Periodic resource model . 17
4.4 Explicit-deadline periodic (EDP) resource model 17
4.5 Other models . 18
4.6 Best-case response-time analysis of tasks . 19
4.7 Best-case available capacity analysis . 19

5 Response-time analysis by modeling resource unavailability 20
5.1 Modeling unavailability of a budget . 21
5.2 Assumptions for resource provisioning to Aα . 22
5.3 Worst-case response-time analysis . 22
5.4 Best-case response-time analysis . 22
5.5 Applying the response-time analysis to an example 23

6 Response-time upper bounds 24
6.1 Existing analysis for FPPS . 25
6.2 Applying the existing analysis to H-FPPS using the linear supply bound function

lsbfΩ(t) . 26
6.3 An alternative approach based on unavailability model 27

7 Improving response-time upper bounds 30
7.1 Improved closed-form (worst-case) response-time upper bounds for tasks having the

same period and scheduled on a shared resource 32
7.1.1 Tangent of combination approach ⊥ (

∑
FPPS) 32

7.1.2 Comparison of results . 33
7.2 Improved closed-form (worst-case) response-time upper bounds for harmonic tasks

scheduled on a shared FPPS resource . 34
7.2.1 Tangent of combination approach ⊥ (

∑
FPPS) 35

7.2.2 Comparison of results . 36

8 Conclusions 36

2 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

9 Future work 37

Acknowledgements 37

References 38

A Improved and/or faster schedulability analysis using the unavailability model 41

B Derivation of equations 44
B.1 Worst- and best-case response-time analysis using unavailability model 44
B.2 Derivation of (linear) response-time upper bounds using RUBi,α (Ω) 46
B.3 Derivation of (linear) response-time upper bounds using RUB†i (C) 47
B.4 Derivation of (linear) response-time upper bounds for tasks having the same period

(Application A4) . 47
B.4.1 Sum of tangents

∑
(⊥) approach . 47

B.4.2 Tangent of combination⊥(
∑
FPPS) approach 48

B.5 Derivation of (linear) response-time upper bounds for harmonic tasks (Application
A5) . 48
B.5.1 Sum of tangents

∑
(⊥) approach . 48

B.5.2 Tangent of combination⊥(
∑
FPPS) approach 49

/Department of Mathematics and Computer Science 3

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

List of Figures

1 Timelines showing FPPS worst- and best-case response-time analysis by construction. 11
2 Timelines showing FPPS worst- and best-case response-time analysis with activa-

tion jitter. 14
3 Worst-case assumptions for available capacity analysis of a budget for different

resource models. 16
4 Worst-case available capacity WC β(t) for periodic and EDP resource models. . . . 18
5 Best-case assumptions and the corresponding best-case available capacity BC β(t)

for the EDP resource model. 20
6 Worst- and best-case supply of an EDP resource (by construction) using the un-

availability model. 21
7 Timelines comparing worst-case response-time analysis of a task (a) on a shared

EDP resource and (b) using the unavailability model. 24
8 Timelines comparing best-case response-time analysis of a task (a) on a shared EDP

resource and (b) using the unavailability model. 24
9 Worst-case interference IOj (t) of task τj and the corresponding upper bound IUBj (t)

assuming it is the only task in the system. 25
10 Worst-case interference IO† (t) due to the combined fictive task τ† and the corre-

sponding upper bound IUB† (t). 28
11 Timeline for a critical instant of all tasks of application A3. 31
12 Timeline for a critical instant of all tasks of application A4. 32
13 Improving response-time upper bounds of lower priority tasks by combining same-

period (higher priority) tasks. 33
14 Improving response-time upper bounds of lower priority tasks by combining harmonic-

period (higher priority) tasks. 35

4 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

List of Tables

1 Task characteristics of T1 with their worst-case and best-case response-times. . . . 10
2 Characteristics of fictive tasks τ-1 and τ0. 21
3 Characteristics of T β2 (of application A2) with worst-case and best-case response-

times of tasks. 23
4 Characteristics of β2 provided to application A2. 23
5 (Upper bounds of) worst-case response-times for tasks τ1(,2) and τ2(,2) in application

A2 (Â2). 27
6 (Upper bounds of) worst-case response-times for tasks τ1(,3), τ2(,3) and τ3(,3) in

application A3 (Â3). 30
7 (Upper bounds of) worst-case response-times for tasks τ1, τ2 and τ3 in application

A4. 32
8 (Upper bounds of) worst-case response-times for tasks τ1, τ2 and τ3 in application

A5. 34
9 (Upper bounds of) worst-case response-times for tasks τ1 and τ2 in application A2

(Â2) based on proposed extension. 41

10 Characteristics of T̂ β2 with worst-case and best-case response-times of tasks. 44

/Department of Mathematics and Computer Science 5

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

1 Introduction

1.1 Context and motivation

Following the seminal work of Liu and Layland [27], many results have been achieved in the
area of fixed-priority preemptive scheduling (FPPS) of real-time tasks, producing a considerable
body of real-time analysis for scheduling of hard real-time tasks on a single, shared processor.
Although, fixed-priority pre-emptive scheduling (FPPS) has been widely accepted and is currently
the de-facto standard in industry for scheduling system with real-time constraints, this scheduling
paradigm has the major drawback that temporary or permanent faults occurring in one application
can hamper the execution of other applications. Such a situation is undesirable, particularly in
hard real-time systems where failure of tasks in an application to meet their deadlines may have
catastrophic consequences such as loss of life.

To address this problem, the notion of resource reservation has been proposed [30]. Resource
reservation provides isolation between applications, effectively guaranteeing temporal protection
of an application against other malfunctioning applications. With applications consisting of one
or more real-time tasks, resource reservation inherently requires multiple levels of scheduling, that
is, a scheduling hierarchy [36]. In this hierarchical scheduling framework (HSF), we consider a
set of independent applications that are executed on a shared resource, where each application
consists of a set of independent, periodically released, hard real-time tasks. Furthermore, temporal
isolation is achieved by allocation a dedicated budget to each application. In this document, we
consider two-level hierarchical scheduling, with FPPS for tasks and budgets.

Analytic methods for hierarchical scheduling are a topic of current research [1, 10, 14, 26, 38, 31].
The periodic resource models proposed in [38], [16] to characterize periodic resource allocations
to applications in the context of HSFs are complemented with novel schedulability conditions
and methods to abstract timing requirements in the hierarchy of schedulers. However, given the
significant amount of existing work on task scheduling on a single shared processor, it is desirable,
if possible, to re-use existing results and avoid reinventing the wheel. Unfortunately, these novel
conditions hamper reuse of existing schedulability results and encourage re-invention of results,
with the risk of introducing errors. As an example, a recent paper [41] showed that the utilization
bound for a periodic resource model under rate monotonic (RM) scheduling presented in [38] is
optimistic. Such inadvertent errors will obviously be avoided if we can adapt the schedulability
analysis of HSFs to the existing, thoroughly scrutinized analysis for single-level shared resources.
As further motivation for the proposed approach of reuse, we remark that the same paper showed
that by viewing the unavailability of the periodic resource as a deferrable server at highest priority,
existing utilization bounds for systems with a deferrable server [23], [39] can be reused. Based
on derived analysis for sporadic servers in the context of HSFs, it was already observed in [36]
that the unavailability of a resource can be modeled as a fictive task. However, that view was not
exploited to convert and unify schedulability analysis. Instead, the utilization bound presented in
that paper is derived from first principles.

Although worst-case response-time analysis for a shared resource using FPPS has been addressed
extensively in the literature, and many restrictions of the original scheduling model [27] have
been lifted in subsequent work (e.g. [2, 32, 25, 24, 37, 40, 35, 17, 42, 18, 29], amongst others), the
corresponding scheduling models for best-case response-time analysis [9, 19, 34, 7] considerably
fall behind. The divergence for two-level hierarchical scheduling is even more pronounced given
that, except for [28], we know of no other work which has addressed best-case response-time
schedulability analysis for any of the resource models we consider notably, the periodic [38] and
explicit-deadline periodic (EDP) [16] resource models. Ironically, the notion of timely response
in real-time systems typically translates to both (best-case) upper bounds and (worst-case) lower
bounds, i.e. tasks are required to be neither too early nor too late. In [7], Bril et al. identify
some examples where best-case response-time analysis of tasks becomes particularly important

6 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

due to explicit requirements on response-time lower bounds. In an attempt to extend the existing
best-case schedulability analysis, they present a conjecture for exact best-case response-times of
periodically released, independent real-time tasks with arbitrary deadlines that are scheduled by
means of FPPS.

By successfully reusing existing results for worst-case response-time analysis on a shared resource,
we expect to be able to apply the same idea in performing best-case response analysis for tasks
scheduled on a shared EDP resource, thereby making a novel contribution in the area of hierarchical
schedulability analysis.

1.2 Problem statement

Against the backdrop presented in Section 1.1 above, we, therefore, aim at developing a frame-
work which will enable the reuse of existing analysis for HSFs. In particular, we propose to unify
the existing schedulability analysis for independent applications scheduled using FPPS on a sin-
gle (shared) processor and the schedulability analysis for a corresponding two-level hierarchical
framework in which the independent applications share a periodic resource (i.e. virtual processor)
according to the EDP resource model [16] with FPPS.

1.3 Approach

Our approach to solving this problem will be to model the unavailability of the EDP resource
using two fictive tasks executing at highest priority. We consolidate the work presented in [6]
where the method was already outlined. Using sample task sets, we will show that this rather
straightforward transformation reduces the problem to single-level FPPS for which we can then
directly apply existing results. We further illustrate our method by applying it to the derivation
of linear response-time upper bounds for FPPS [4, 15].

1.4 Contributions

The main contributions of this work are as follows:

First, we propose a method for converting existing analysis to the EDP model by viewing the
unavailability of the budget as two fictive, highest priority tasks. By doing so, the analytic results
for tasks under FPPS can be directly applied to tasks of independent applications under two-level
hierarchical FPPS frameworks (H-FPPS). We provide equations for calculating the worst-case and
best-case response-times of tasks in this model taking into account activation jitter and (specific)
phasing of the fictive tasks relative to the defined critical/optimal instants. We show by means of an
example that our approach not only yields accurate results (i.e. identical to results obtained using
the EDP model directly) but also simplifies the analysis since no auxiliary (inverse) functions are
needed and the classical FPPS equations for best- and worst-case analysis can be directly reused.

To further illustrate the applicability and simplicity of our approach, we determine (linear)
response-time upper bounds of tasks in a two-level HSF by first converting the task set to an
FPPS shared resource model and subsequently applying the approach in [15]. We prove that,
again, the results obtained by our method are correct and coincide with those obtained using the
linear supply lower bound function lsbfΩ(t). Thus, our unavailability model serves as an alternative
approach for solving the problem with no significant overhead.

Finally, we show that for higher priority tasks having the same or harmonic periods, response-time
upper bounds of the lower priority tasks can be improved by first summing the interference due
to these higher priority tasks before taking their (linear) demand upper bound. Subsequently, we

/Department of Mathematics and Computer Science 7

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

derive a closed-form response-time upper bound for this approach and show that it can, but not
necessarily always will, improve on the existing bound presented in [15].

1.5 Organization of the document

The rest of this document is organized as follows. We begin with an overview of a real-time
scheduling model for FPPS in Section 2. Next, we recapitulate the analysis of tasks under FPPS
in Section 3. In Section 4, we review existing approaches for two-level H-FPPS with emphasis
on the periodic and EDP resource models. We also present the notions of worst- and best-case
available capacity which we use in the response-time analysis of tasks (schedulability analysis of
servers is not elaborated in this document). Following this, we present our unavailability model
for two-level H-FPPS in Section 5 including analyses of worst- and best-case response-times. In
Section 6 we extend the linear response-time upper bounds of tasks under FPPS with deadlines
less than or equal to periods presented in [15] and show how this analysis can be applied to two-
level H-FPPS using the model proposed in Section 5. In Section 7, we consider a special subset of
tasks namely tasks having harmonic periods for which we show how tighter response-time upper
bounds can be obtained without hampering the linear time upper bound. Finally, we conclude
the document and indicate possible directions for future work in Sections 8 and ?? respectively.

2 Real-time scheduling models

2.1 A basic model for FPPS

We assume a single processor and a set T of n periodically released, independent tasks τ1, τ2, . . . , τn
with unique, fixed priorities. At any moment in time, the processor executes the highest priority
task that has work pending.

Each task τi is characterized by a (release or activation) period Ti ∈ R+, a worst-case computation
time WC i ∈ R+, a best-case computation time BC i ∈ R+, where BC i ≤WC i, a phasing ϕi ∈ R,
a (relative) worst-case deadline WD i ∈ R+, and a (relative) best-case deadline BD i ∈ R+ ∪ {0},
where BD i ≤ WD i. The set of phasings ϕi is termed the phasing ϕ of the task set T i.e. ϕ =
{ϕ1, ϕ2, . . . , ϕn}. Also, the deadlines BD i and WD i are relative to the activations. For ease of
presentation, we assume, in all the examples, that the worst-case and best-case computation times
are identical, i.e. WC i = BC i, the best-case deadline is equal to zero, i.e. BD i = 0, and we simply
denote the computation time and worst-case deadline as Ci and Di respectively.

An activation time is a time at which a task τi becomes ready for execution. Each activation of a
task is termed a job of that task. The job of task τi that is activated at time ϕi and referred to
as job zero. The activation of job k of τi therefore takes place at time aik = ϕi + kTi, k ∈ Z. The
(absolute) deadline of job k of τi takes place at dik = aik +Di. The finalization time fik of job k
of τi is the time at which τi ends the execution of that job. The response-time Rik of job k of τi is
defined as the length of the time span between the activation time of that job and its finalization
time, i.e. Rik = fik − aik.

We assume that we do not have control over the phasing ϕ, for instance since the tasks are
released by external events; so we assume that any arbitrary phasing may occur. This assumption
is common in real-time scheduling literature [20, 21, 27]. We also assume other standard basic
assumptions [27], i.e. tasks are ready to run at the start of each period and do not suspend
themselves, tasks will be preempted instantaneously when a higher priority task becomes ready
to run, a job of task τi does not start before its previous job is completed, and the overhead of
context switching and task scheduling is ignored. Finally, we assume that the deadlines are hard
meaning that each job of a task must be completed at or before its worst-case deadline and at

8 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

or after its best-case deadline. For notational convenience, we assume that the tasks are given in
order of decreasing priority, i.e. task τ1 has highest priority and task τn has lowest priority.

Given these definitions and assumptions, we define the following derived notions: The worst-case
response-time WRi and the best-case response-time BRi of a task τi are the largest and the small-
est response-time of any of its jobs under arbitrary phasing, respectively, i.e.

WRi
def= sup

ϕ,k
Rik(ϕ) and BRi

def= inf
ϕ,k

Rik(ϕ). (1)

Note that the response-time Rik has been parametrized in these equations to denote its depen-
dency on the phasing ϕ. A critical instant [27] and an optimal (or favorable) instant [9, 34]
of a task are defined to be (hypothetical) instants that lead to the worst-case and the best-case
response-time for that task, respectively. The (processor) utilization factor UT of a task set T is
the fraction of the processor time spent on the execution of that task set [27]. The fraction of
processor time spent on executing a periodic task τi with a fixed period Ti and computation time
Ci is therefore Ci/Ti, and is termed the utilization factor Uτi of task τi, i.e.

Uτi
def=

Ci
Ti
. (2)

The cumulative utilization factor UTi for periodic tasks τ1 till τi with fixed computation times is
the fraction of processor time spent on executing these tasks, and is given by

UTi
def=

∑
1≤j≤i

Uτj =
∑

1≤j≤i

Cj
Tj
. (3)

Therefore, UT is equal to the cumulative utilization factor UTn for the n periodic tasks comprising
T .

Because we distinguish best-case and worst-case computation times in this document, we get best-
case and worst-case versions of the various notions of utilization, i.e.

WU T def= WU Tn =
∑

1≤j≤n

WU τ
j =

∑
1≤j≤n

WC j

Tj
and BU T def= BU Tn =

∑
1≤j≤n

BU τ
j =

∑
1≤j≤n

BC j

Tj
.

(4)

Based on the notion worst-case response-time and the assumption that deadlines are hard, we
conclude that a set T of n periodic tasks can be scheduled if and only if

∀
i=1,...,n

(BD i ≤ BRi ∧WRi ≤WD i) . (5)

Equation (5) represents an exact schedulability condition for T . A necessary schedulability con-
dition for T is given by

WU T ≤ 1. (6)

2.2 A periodic server model for budgets

Assuming periodic servers as implementations for budgets, a periodic budget may simply be viewed
as an artificial periodic task with a fixed computation time (i.e. WC = BC), and a worst-case
(relative) deadline equal to the period (i.e. D = T). Because we also assume FPPS for budgets, all
notions and assumptions of our scheduling model for tasks can be reused for budgets. We remark
that the fact that budgets are allocated and provided to applications (and not to individual tasks,
for instance) is not important for our model for budgets.

/Department of Mathematics and Computer Science 9

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

Hence, we assume a single processor and a set B of n periodically released, independent budgets
β1, β2, . . . , βn with fixed, unique priorities. Note that we assume that the capacity of a budget
(i.e. the equivalent of a computation time of a task) is fixed, hence a budget is always entirely
consumed, and never discarded or suspended. Depletion of capacity can be done by idling the
capacity away [14], by soft tasks of the application associated with the budget [14], or by means
of ‘in-the-place-of’ spare-capacity provision to other applications [5]. However, since we only
consider hard real-time tasks in this document, we assume that any remaining capacity is idled
away [14].

We assume a one-to-one relationship between budgets and applications, i.e. budget βα is associ-
ated with application Aα with 1 ≤ α ≤ m. An application Aα is assumed to consist of nα tasks.
A necessary schedulability condition for Aα with an associated budget βα [8] is now given by

WUAα ≤ Uβα , (7)

where WUAα and Uβα denote the (worst-case cumulative) utilization factor of Aα and βα, respec-
tively.

In the remainder of this document, we assume that task sets and budget sets satisfy the necessary
worst-case schedulability condition as expressed by Equation (6). Moreover, we assume that appli-
cations satisfy the necessary schedulability condition as expressed by Equation (7). Furthermore,
we will distinguish tasks on a shared resource from those on a shared period resource by appending
a subscript to the latter to denote the application to which a task belongs e.g. τi,α denotes task
i of application Aα whose computation time, period and worst-case response-time are given by
Ci,α, Ti,α and WRi,α respectively. We will use T βα to denote the task set associated with applica-
tion Aα and scheduled on budget βα. Moreover, we will use the superscript β to distinguish the
characteristics of budgets from those of tasks e.g. Cβα denotes the capacity of budget βα. Also,
whenever we desire to explicitly mention that application Aα comprises nα tasks, we employ the
notation Aα,nα . The same also applies to notions of utilization factor.

3 Recapitulation of analysis for FPPS

In this section we recapitulate analysis of tasks under FPPS, based on [2, 9, 20, 27, 34], amongst
others. We start with worst-case and best-case response-time analysis, using an example task set
T1 with characteristics as given in Table 1 for illustration purposes. The response-time analysis is
exact under arbitrary phasing, but typically pessimistic under a specific phasing as shown in [18].
We subsequently recapitulate finalization jitter and activation jitter.

task T = D C WR BR

τ1 3 1 1 1
τ2 5 2 3 2
τ3 18 3 14 7

Table 1: Task characteristics of T1 with their worst-case and best-case response-times.

3.1 Worst-case response-time analysis

A critical instant of a task τi is assumed when τi is simultaneously released with all tasks with
a higher priority than τi [27]. Figure 1(a) shows a timeline of T1 with critical instants for all
tasks. As can be observed from the figure, the critical instant is the same for all the tasks and

10 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

coincides with their simultaneous release (cf. optimal instant in Section 3.2 which may vary per
task). Because the worst-case response-times of all tasks are smaller than their deadlines, we
conclude from this timeline that T1 is schedulable.

task τ2

task τ3

3

14

task τ1

(a)
0 5

time
10 15 20

3 3

1 1 1 1 1 1 1

2

task τ2

task τ3

task τ1

-5
time

7

2

(b)
0

11

Legend: preemptionexecution release

Figure 1: Timelines of T1 with (a) critical instants for all tasks and (b) an optimal instant for task
τ3. The numbers to the top right corner of the boxes denote the response-time of the respective
jobs.

From this notion of critical instant, it has been derived in [20] that the worst-case response-time
WRi of task τi is given by the smallest value x ∈ R+ satisfying

x = WC i +
∑

1≤j<i

⌈
x

Tj

⌉
WC j . (8)

Such a smallest value exists for task τi if and only if WU Ti−1 < 1; see, for example, [5]. Because
we assume WU T ≤ 1 and WC i > 0 for all tasks, WU Ti−1 < 1 holds for all tasks. To calculate
WRi, we can use an iterative procedure based on recurrence relationships [2].

wr
(0)
i = WC i

wr
(l+1)
i = WC i +

∑
1≤j<i

⌈
wr

(l)
i

Tj

⌉
WC j , l = 0, 1, . . .

The procedure is stopped when the same value is found for two successive iterations or when the
deadline is exceeded. In the latter case, task τi is not schedulable.

3.2 Best-case response-time analysis

An optimal instant of a task τi is assumed when the completion of τi coincides with the simulta-
neous release of all tasks with a higher priority than τi [9, 34]. Figure 1(b) shows a timeline of T1

with an optimal instant for task τ3. Unlike the critical instant which was the same for all tasks,
we observe the optimal instant may vary from one task to another. This follows directly from the
definition of an optimal instant.

The best-case response-time BRi of task τi is given by the largest value x ∈ R+ satisfying

x = BC i +
∑

1≤j<i

(⌈
x

Tj

⌉
− 1
)

BC j . (9)

Such a largest value exists for task τi if and only if BU Ti−1 < 1; see [5]. Because BU T ≤ WU T

/Department of Mathematics and Computer Science 11

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

by definition, and we assume WU T ≤ 1 and BC i > 0 for all tasks, the relation BU Ti−1 < 1 triv-
ially holds for all tasks. To calculate BRi, we can use an iterative procedure based on recurrence
relationships [2].

br
(0)
i = WRi

br
(l+1)
i = BC i +

∑
1≤j<i

(⌈
br

(l)
i

Tj

⌉
− 1

)
BC j , l = 0, 1, . . .

The procedure is stopped when the same value is found for two successive iterations or when the
deadline is exceeded. In the latter case, task τi is not schedulable.

3.3 Jitter analysis

The worst-case (absolute) finalization jitter FJ i of a periodically released task τi is defined as

FJ i
def= sup

ϕ,k,l
(fik(ϕ)− fil(ϕ)− (k − l)Ti). (10)

For a strictly periodically released task τi, this can be rewritten to

FJ i = sup
ϕ,k,l

((fik(ϕ)− (ϕi + kTi)− (fil(ϕ)− (ϕi + lTi)))

= sup
ϕ,k,l

((fik(ϕ)− aik(ϕi))− (fil(ϕ)− ail(ϕi)))

= sup
ϕ,k,l

(Rik(ϕ)−Ril(ϕ)). (11)

Because the largest and smallest response-times are not necessarily taken for the same phasing,
an upper bound on FJ i is given by

FJ i ≤ sup
ϕ,k

Rik(ϕ)− inf
ϕ,l
Ril(ϕ) = {(1)} WRi − BRi. (12)

For task τ3 of T1, we find FJ 3 ≤WR3 − BR3 = 14− 7 = 7.

We note that Equation (11) would also be a sensible definition for worst-case (absolute) response
jitter RJ i of a periodic task τi i.e.

RJ i
def= sup

ϕ,k,l
(Rik(ϕ)−Ril(ϕ)). (13)

We observe that such a definition of the notion of worst-case (absolute) response jitter RJ i differs
from the notions of absolute response-time jitter RTJabsi in [11] and absolute finishing jitter AFJ i
in [12]. In [11], absolute response-time jitter has been defined as

RTJabsi
def= max

k
Rik −min

k
Rik. (14)

The definition of absolute finishing jitter in [12] is similar. The main difference between these two
notions and our notion is that [12, 11] assume a specific phasing whereas we assume arbitrary
phasing.

12 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

Next to finalization jitter, there can also be activation (or release) jitter. In this case, the releases
of jobs of task τi do not take place strictly periodically, with period Ti, but we assume they take
place somewhere in an interval of length AJ i that is repeated with period Ti. More specifically,
the activation times satisfy

sup
k,l

(aik(ϕi)− ail(ϕi)− (k − l)Ti) ≤ AJ i, (15)

where ϕi now denotes the start of the interval of length AJ i in which job zero of task τi is activated,
rather than the time at which job zero is activated, i.e. ϕi + kTi ≤ aik ≤ ϕi + AJ i + kTi. We
now assume Di ≤ Ti − AJ i, since otherwise there may be too little time between two successive
releases to complete the job. In case of activation jitter, the analysis to derive worst-case and best-
case response-times, as well as finalization jitter, is slightly altered. For worst-case and best-case
response-times, we extend the analysis as described in [2] and [9, 34], respectively.

A critical instant of a task τi is assumed when τi is simultaneously released with all tasks with a
higher priority than τi, all those tasks with a higher priority experience a maximum release delay
at that simultaneous release and a minimum release delay at subsequent releases. The worst-case
response-time WRi of task τi of T with activation jitter AJ i is given by the smallest value x ∈ R+

satisfying

x = WC i +
∑

1≤j<i

⌈
x+ AJ j

Tj

⌉
WC j . (16)

Similar to the case without activation jitter, there exists a smallest value if and only if WU Ti−1 < 1
and the recursive equation can than be solved by means of an iterative procedure, starting with a
lower bound.

An optimal instant of a task τi is assumed when the completion of τi coincides with the simulta-
neous release of all tasks in T with a higher priority than τi, all those tasks with a higher priority
experience a maximal release delay at that simultaneous release and a minimal release delay at
previous releases. The best-case response-time BRi of task τi is given by the largest value x ∈ R+

satisfying

x = BC i +
∑

1≤j<i

(⌈
x−AJ j

Tj

⌉
− 1
)+

BC j , (17)

where the notation w+ stands for max(w, 0). Similar to the case without activation jitter, there
exists a largest value if WU T ≤ 1 and the recursive equation can than be solved by means of an
iterative procedure, starting with an upper bound.

With activation jitter, we now derive from Equation (10)

FJ i = sup
ϕ,k,l

(fik(ϕ)− fil(ϕ)− (k − l)Ti)

= sup
ϕ,k,l

((aik(ϕi) +Rik(ϕ))− (ail(ϕi) +Ril(ϕ))− (k − l)Ti)

= sup
ϕ,k,l

(aik(ϕi)− ail(ϕi)− (k − l)Ti +Rik(ϕ)−Ril(ϕ))

≤ sup
ϕi,k,l

(aik(ϕi)− ail(ϕi)− (k − l)Ti) + sup
ϕ,k

Rik(ϕ)− inf
ϕ,l
Ril(ϕ).

Given the worst-case and best-case response-times of task τi including the effect of activation jitter
of higher priority tasks, and given the release jitter of τi itself, its worst-case (absolute) finalization
jitter is therefore bounded by

/Department of Mathematics and Computer Science 13

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

FJ i ≤ AJ i + WRi − BRi. (18)

We note that for periodically released tasks with activation jitter, finalization jitter differs from
response-time jitter. We merely mention that [12, 11] do not consider activation jitter.

As an example of finalization jitter with activation jitter, consider a task set T ′1 with the same
characteristics as T1, except that task τ2 now has an activation jitter AJ 2 = 2 and a deadline
D2 = T2 − AJ 2 = 5 − 2 = 3. Since the worst-case response-time of a task is independent of its
own activation jitter, the worst-case response-times of τ1 and τ2 are independent of the activation
jitter AJ 2 of τ2 and WR2 ≤ D2, tasks τ1 and τ2 remain schedulable. Figure 2 illustrates timelines
of T ′1 with a critical instant and an optimal instant for τ3. From this figure, we conclude that the
finalization jitter FJ 3 of task τ3 is bounded by FJ 3 ≤ AJ 3 + WR3 − BR3 = 0 + 17− 4 = 13.

task τ2

task τ3

3

17

task τ1

(a)
0 5

time
10 15

3

1 1 1 1 1 1

3

AJ2 T2 T2 T2

2

task τ2

task τ3

task τ1

-5
time

4

3

(b)
0

1

AJ2 T2

1

Legend: activation jitter

Figure 2: Timelines of T ′1 with (a) a critical instant and (b) an optimal instant for task τ3.

4 Recapitulation of analysis for two-level H-FPPS

In two-level HSFs, scheduling is performed at the system and application levels by the global
and local schedulers respectively. Whereas the global scheduler determines which of the servers
(hence, the associated application) should be provided the shared resource (i.e. processor), the
local scheduler determines which task of a given application should execute once the application
has secured access to the processor via the global scheduler. Although it is possible to have
different scheduling policies at both levels, we assume system-wide FPPS for tasks and budgets.
Nonetheless, at the application level, we adhere to the principle of locality of scheduling analysis
which means that we make no assumptions about the scheduling policy of budgets or about the
characteristics of budgets other than the budget allocated to the particular application under
consideration. This principle facilitates independent design, analysis and validation of systems
but comes at the cost of pessimism of the analysis. It is adhered to by [26, 38]; thus, their results
also apply with FPPS for budgets.

Conversely, the analyses in [1, 10, 14, 36] build upon the assumption of FPPS for budgets. More-
over, [1, 10, 14] assume arbitrary phasing of budgets, and assume that the other characteristics of
budgets are known, as well as their priorities. Although these assumptions allow for a reduction
of the pessimism in the analysis, this reduction comes at the cost of an increase in the complexity
of the analysis, whilst the analysis still remains pessimistic [10, 3].

In this section, we briefly discuss how the worst-case response-time of a task in an application can
be determined using the notion of worst-case (i.e. minimum) available budget capacity introduced

14 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

in Section 1.4. Next, we review the definition of this notion in different resource models presented
in the literature. We conclude the section by considering best-case response-time analysis of tasks
using the EDP resource model. We remark that this discussion focuses on scheduling of tasks
(i.e. local level) and does not address scheduling of budgets (i.e. global level). However, if FPPS is
employed at the global level, the analysis presented in Section 3 can be directly reused by viewing
the budgets themselves as ‘tasks’ on a dedicated resource. Likewise, the same ‘trick’ can be applied
if a different scheduling algorithm is used at the global level i.e. the response-time analysis for that
algorithm assuming a dedicated resource can be directly applied to determine schedulability of
budgets provided locality of scheduling analysis is obeyed at the local level.

4.1 Worst-case response-time analysis of tasks

Equation (8) for the worst-case response-time of a task τi of a set T assumes that the entire
processor is available to T . However, when only the capacity of a budget βα is available to the
tasks of an application Aα, we can simply replace the x at the left hand side of Equation (8) by
the worst-case (i.e. minimum) available capacity WC β

α(x), as explained in [1]. This notion is
further explained in Section 4.2. The worst-case response-time WRi,α of a task τi,α of application
Aα with associated budget βα is thus given by the smallest x ∈ R+ satisfying

WC β
α(x) = WC i,α +

∑
1≤j<i

⌈
x

Tj,α

⌉
WC j,α. (19)

For the approaches considered in subsequent sections (4.3 to 4.5), such a smallest value exists for
τi,α when WUAi−1,α < Uβα . Because we assume WUAα ≤ Uβα , WUAi−1,α < Uβα holds for all tasks of
Aα.

A critical instant of a task τi,α is assumed when (1) τi,α experiences a maximum interference
of higher priority tasks, i.e. (1a) τi,α is simultaneously released with all tasks in Aα having a
higher priority than τi,α and (1b) all those higher priority tasks experience a maximum release
delay at the simultaneous release and a minimum release delay at subsequent releases; and (2) the
simultaneous release coincides with the start of an interval with a minimum supply of resource βα.

To determine WRi,α, an auxiliary function WC β
α(y) is introduced, which is defined as

WC β
α(y) = min{x |WC β

α(x) = y}. (20)

This auxiliary function, is described as the ‘inverse of the availability function’ Ainvs (t) in [1] and
referred to as service time bound function tbfΓ(t) in [38]. The worst-case response-time WRi,α

is now given by the smallest x ∈ R+ satisfying

x = WC β
α

WC i,α +
∑

1≤j<i

⌈
x

Tj

⌉
WC j,α

 . (21)

To calculate WRτ
i,α, we can again use an iterative procedure based on recurrence relationships.

wr
(0)
i,α = WC i,α

wr
(l+1)
i,α = WC β

α

WC i,α +
∑

1≤j<i

⌈
wr

(l)
i

Tj,α

⌉
WC j,α

 , l = 0, 1, . . .

The procedure is stopped when the same value is found for two successive iterations or when the
deadline is exceeded. In the latter case, task τi,α is not schedulable.

/Department of Mathematics and Computer Science 15

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

4.2 Worst-case available capacity analysis

As seen in Equation (19), in order to determine the worst-case response-time of tasks, we need
the worst-case available capacity WC β(t) that becomes available in an interval of length t from
a budget β. The term worst-case available capacity originates from [5] and is also used in [10].
Other terms used in the literature for this notion are least supply function S∗(t) [31], characteristic
function ZS(t) of a periodic server S [26], (resource) supply bound function sbfΓ(t) for a periodic
resource Γ [38], (resource) supply bound function sbfΩ(t) for an EDP resource Ω [16], and
availability function A_S(t) of a server S [1]. We identify four classes of worst-case assumptions
that are made in the literature for this situation and illustrate them by means of an example set
B1 of three budgets. For ease of presentation, these budget characteristics (i.e. period, capacity
and for the EDP resource model, deadline) are chosen to be identical to the characteristics of our
example set T1 of tasks as shown in Table 1.

For t > 0, we may assume without loss of generality that the interval has an overlap with at least
two periods of the budget β [10]. A minimum amount of capacity becomes available in an interval
of length t > 0 when the capacity becomes available as early as possible in a first period of β
overlapping with the interval and as late as possible in the last overlapping period. The definition
of this worst-case scenario distinguishes the models discussed in the subsequent subsections.

budget β3

budget β3

budget β3

WR3

BR3

budget β3

C3

WR3

C3

C3

(a)

(b)

(c)

(d)

T3−C3

T3−C3 T3−C3 T3−C3 WS3

T3

time0 20 4010 30

time0 20 4010 30

time0 20 4010 30
C3

time0 20 4010 30

WR3

WS3

Legend: preemption releasecapacity provision

Figure 3: Worst-case assumptions for available capacity analysis for budget β3 of our example B1

for two consecutive periods of β3 according to (a) [26, 36, 38], (b) [1, 16], (c) [14], and (d) [10].

The term WS 3 in Figure 3(d) denotes the worst-case start time of budget β3 [5]. It refers to
the longest interval from the activation time to the actual start of the provision of the budget for
which the resource provision requirement (defined for the model under consideration) can be met.
If the budget is provided later than WS 3, the guarantee on resource provision will not be met
because there will be insufficient time left until the completion of the period. When applied to a
task, the notion implies that the task misses its deadline and is, therefore, not schedulable.

16 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

4.3 Periodic resource model

The periodic resource model [38], Γ = (Π,Θ) is characterized by a capacity Θ ∈ R+ and a period
Π ∈ Z+ such that it guarantees the allocation of Θ units of resource every Π time units with
no assumptions on the exact provisioning of Θ within Π. We note that the domain of Π can be
extended to R+ without any loss in generality.

Without any knowledge about scheduling at the budget level, the worst-case scenario is then
assumed to occur when the capacity of β becomes entirely available at the beginning in the first
period and at the end in the last period, as illustrated in Figure 3(a) for two consecutive periods
of β3 of our example B1. In this model, a resource supply bound function sbfΓ(t) is defined which
coincides with our worst-case available capacity WCΓ(t) i.e. the minimum resource supply of Γ
during t time units. As originally proposed by Shin and Lee [38], the required sbfΓ(t) for a
periodic resource model is given by

sbfΓ(t) =

{
yΘ +max{0, t− x− yΠ} t ≥ x
0 otherwise

, (22)

where x = 2(Π−Θ) and y =
⌊
t−(Π−Θ)

Π

⌋
. They also define a linear supply bound function lsbfΓ(t)

which gives a linear lower bound of the supply bound function sbfΓ(t). This lower bound is given
by

lsbfΓ(t) =

{
Θ
Π (t− x) t ≥ x
0 otherwise

. (23)

Furthermore, they prove that lsbfΓ(t) is actually a lower bound of sbfΓ(t). We do not repeat
the proof here but rather direct the interested reader to [38], Lemma 1 where the proof was
presented. Figure 4(a) shows the sbfΓ(t) and corresponding lsbfΓ(t) for budget β3 of our example
B1. These lines follow from the worst-case available capacity depicted in Figure 3(a) and match
the results obtainable using Equations (22) and (23) respectively.

Finally, we make the following observations: Although not explicitly stated in [38], we define
sbfΓ(t) and lsbfΓ(t) as piecewise functions because a negative capacity which could otherwise
arise for 0 < t < 2(Π−Θ) does not make any sense. For sbfΓ(t), the condition t ≥ Π−Θ may also
be used as done in [16]. This condition denotes the worst-case starting time of β. If the resource is
made available after this time within a given period, T , the guaranteed capacity according to the
periodic resource model cannot be provided. In any case, it can be clearly seen from Figure 3(a)
that sbfΓ(t) evaluates to zero in the interval Π − Θ < t < 2(Π − Θ) thus justifying our choice of
the same condition i.e. t ≥ x(= 2(Π − Θ)) in both Equation (22) and Equation (23). Secondly,
according to [38], under assumptions of no resource sharing, the condition 2Π < Tm should be
adhered to when using the period resource model for reasons of efficient implementation where
Tm corresponds to task τm having the shortest period.

4.4 Explicit-deadline periodic (EDP) resource model

The EDP resource model [16] is a generalization of the periodic model with characteristics Ω =
(Π,Θ,4) where Θ,Π ∈ R+ are defined as before i.e. capacity and period respectively, and 4 ∈ R+

is the (relative) deadline of the EDP resource with Θ ≤ ∆ ≤ Π. Hence, Θ units of resource are
guaranteed every period Π, before the deadline 4. This leads to the worst-case scenario depicted
in Figure 3(b) where the capacity of β becomes entirely available at the beginning in the first

/Department of Mathematics and Computer Science 17

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

lsbfΓ(t)

10
time

50

5

20 30 40 60 70

 sbfΓ(t)
10

0

2(T3−C3) T3 T3

(a)

WC
Γ

(t)

lsbfΩ(t)

10
time

50

5

20 30 40 60 70

 sbfΩ(t)
10

0

T3−2C3+WR3 T3 T3

(b)

WC
Ω

(t)

Figure 4: Worst-case available capacity WC β(t) in an interval of length t from a budget β3 of our
example B1 according to (a) [26, 36, 38], and (b) [1, 16].

period and by the deadline in the last period. Clearly, by setting ∆ = Π, the EDP model reverts
to the periodic model i.e. Γ(Π,Θ) = Ω(Π,Θ,Π). Furthermore, we note that the analysis in [1]
corresponds to these assumptions by choosing a so-called ‘initial latency’ equal to WRβ

3 − C
β
3 .

Similar to the period model, a resource supply bound function sbfΩ(t) defined as the minimum
resource supply of Ω during t time units and corresponding to our notion of worst-case available
capacity WCΩ(t) is given by

sbfΩ(t) =

{
yΘ +max{0, t− x− yΠ} t ≥ x)
0 otherwise

, (24)

where x = Π + ∆ − 2Θ and y =
⌊
t−(∆−Θ)

Π

⌋
. As for the periodic resource model, a linear supply

bound function lsbfΩ(t) which gives a linear lower bound of the supply bound function sbfΩ(t) is
defined as follows:

lsbfΩ(t) =

{
Θ
Π (t− x) t ≥ x
0 otherwise

. (25)

Figure 4(b) shows the sbfΩ(t) and corresponding lsbfΩ(t) for budget β3 of our example B1. We
observe that this figure is identical to Figure 4(a) for the periodic resource model except for an
offset of Π − ∆ = T3 −WR3 (in Figure 4(a) w.r.t Figure 4(b)). Herein lies the basic difference
between the two resource models. Using the EDP model, the resource β may be made available
to the application earlier, possibly resulting in improved schedulability of the application i.e. by
shortening the interval between the best- and worst-case response-times of tasks in the application.

4.5 Other models

Apart from the periodic and EDP resource models, other models are conceivable. Referring again
to Figure 3, the availability in the last period can be improved by using worst-case analysis
techniques for that period [14] leading to the situation in Figure 3(c). Finally, the availability
in the first period can be improved by using best-case analysis techniques for that period [10],
producing yet another model depicted in Figure 3(d). Nevertheless, we once again emphasize
that unlike the models in Sections 4.3 and 4.4, classes (c) and (d) deviate from the principle of
locality of schedulability analysis as they make assumptions on the characteristics of other budgets
in the system in order to derive the best- and/or worst-case response-times. Lastly, we observe
that WC β(t) gradually improves from class (a) till class (d). Unfortunately, the complexity of

18 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

the worst-case response-time analysis of tasks also increases in the same order. Moreover, the
assumptions for all four classes are pessimistic and therefore give rise to a lower bound on the
worst-case available capacity. As an example, (d) is pessimistic because the best- and worst-case
response-times are not necessarily assumed for the same phasing nor for two subsequent releases
and the definition of a critical instant for tasks presented in Section 4.1 does not apply for this
class as shown in [10]. Finally, because the worst-case response-time will typically not be assumed
for subsequent releases either, both (c) and (d) become pessimistic as soon as we consider more
than two periods, as explained in [3].

In what follows, we focus on the EDP model and when necessary show how the results can easily
be applied to the periodic model. However, before discussing the unavailability model, we briefly
address best-case response-time analysis.

4.6 Best-case response-time analysis of tasks

The same approach employed in Section 4.1 for worst-case response-time analysis of tasks can also
be used for their best-case analysis. Equation (9) for the best-case response-time of a task τi of a
set T assumes that the entire processor is available to T . However, when only the capacity of a
budget βα is available to the tasks of an application Aα, we can simply replace the x at the left
hand side of Equation (9) by the best-case (i.e. maximum) available capacity BC β

α(x). Hence, the
best-case response-time BRi,α of a task τi,α of application Aα with associated budget βα is given
by the largest x ∈ R+ satisfying

BC β
α(x) = BC i,α +

∑
1≤j<i

(⌈
x

Tj,α

⌉
− 1
)

BC j,α. (26)

For the approaches considered in preceding sections (4.3 to 4.5), such a smallest value exists for τi,α
if and only if BUAi−1,α < Uβα . Because BUAα < WUAα by definition, and we assume WUAα ≤ Uβα
and BC i,α > 0 for all tasks in any application, the relation BUAi−1,α < Uβα trivially holds for all
tasks of Aα.

An optimal instant of a task τi,α is assumed when (1) the completion of τi,α coincides with the
simultaneous release of all tasks in Aα with a higher priority than τi,α; (2) all the higher priority
tasks experience maximum delay at the simultaneous release and minimum delay in all previous
releases; and (3) the simultaneous release coincides with the end of an interval with a maximum
supply of resource βα during which its capacity Cβα is made available as early as possible in the last
period and as late as possible (i.e. at the deadline ∆ of the EDP resource) in all previous releases
within the overlapping interval [6]. Unlike the critical instant which is the same for all tasks, the
optimal instant for each task may vary following directly from the definition of an optimal instant
above.

To determine BRi,α, an auxiliary function BC β
α(y) may also be defined as done for the worst-case

analysis. However, we skip the details and now proceed to the best-case available capacity analysis
for the EDP resource model.

4.7 Best-case available capacity analysis

As seen in Equation (26), in order to determine the best-case response-time of tasks, we need the
best-case available capacity BC β(t) that becomes available in an interval of length t from a budget
β. This is the maximum capacity of the resource that can be made available to the application
within the given time interval.

For t > 0, we may assume without loss of generality that the interval has an overlap with at
least two periods of the budget β [10]. A maximum amount of capacity becomes available in an

/Department of Mathematics and Computer Science 19

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

budget β3

C3

(a)

T3−C3WR3

T3

time0 20 4010 30

(b)

time0 2010 30

BC
Ω

(t)

5

10

T3T3−WR3

lbsbfΩ(t)
 bsbfΩ(t)

Figure 5: (a) Best-case assumptions leading to the (b) best-case available capacity BC β(t) in an
interval of length t from a budget β3 of our example B1 assuming the EDP resource model.

interval of length t > 0 when the capacity becomes available as late as possible in a first period
of β overlapping with the interval and as early as possible in the last overlapping period. For
the EDP resource model, we can then define a best-case resource supply bound function bsbfΩ(t)
which coincides with our best-case available capacity BCΩ(t) i.e. the maximum resource supply
of Ω during t time units as follows:

bsbfΩ(t) =

t 0 ≤ t ≤ Θ
Θ Θ ≤ t ≤ x
(z + 1)Θ +max{0, t− x− zΠ} t ≥ x

, (27)

where x = Θ + (Π−∆), y = 2Θ−∆ and z =
⌊
t−y
Π

⌋
. Similar to the worst-case available capacity

analysis (Section 4.4), we define a linear best-case supply bound function lbsbfΩ(t) which gives a
linear upper bound of the best-case supply bound function bsbfΩ(t) is defined as follows:

lbsbfΩ(t) =
Θ
Π

(t− (2Θ + Π−∆)) + 2Θ. (28)

Figure 5(a) depicts the best-case assumptions for resource availability leading to the best-case
supply in Figure 5(b) which shows the bsbfΩ(t) and corresponding lbsbfΩ(t) for budget β3 of our
example B1 as defined by Equations (27) and (28) respectively. In [28], a maximum supply func-
tion, ZmaxΠ (t), which corresponds to the best-case resource supply bound function for a periodic
resource is defined in the context of hierarchical scheduling for dependent applications. However,
the function ZmaxΠ (t) was only defined in words with no corresponding mathematical equation.
Likewise, at the time of writing, we are unaware of any best-case analysis for the EDP resource
model. Therefore, the analysis presented in this and the previous section is novel.

To conclude this section, we remark that for the periodic resource model, the best-case assumption
for available capacity can be obtained by letting WR3 go to T3 in Figure 5(a).

5 Response-time analysis by modeling resource unavailability

In this section, we show how a two-level H-FPPS on a shared EDP resource can be converted to
single-level FPPS on a shared resource by viewing the resource unavailability as interference by
two highest priority fictive periodic tasks, τ-1 and τ0 respectively. Next, we derive equations for
the worst- and best-case response-time analysis according to this unavailability model.

20 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

5.1 Modeling unavailability of a budget

We will now show by means of construction that the worst-case and best-case unavailability of
Ω can be modeled as worst-case and best-case interference of two fictive tasks, a periodic task
τ0 with activation jitter and a strictly periodic task τ-1. Task τ0 is characterized by T0 = Π,
AJ 0 = Θ, a fixed computation time C0 = BC 0 = WC 0 = ∆ − Θ, and BD0 = WD0 = C0. Task
τ-1 is characterized by T-1 = Π, a phasing ϕ-1 = ∆−Θ relative to the end of the activation interval
of task τ0 (which has an arbitrary phasing), a fixed computation time C-1 = BC -1 = WC -1 =
Π −∆, and BD -1 = WD -1 = C-1. These task characteristics are summarized in Table 2 for easy
reference. The utilization Uτ0 of τ0 and Uτ-1 of τ-1 are given by Uτ0 = C0/T0 = (∆ − Θ)/Π and
Uτ-1 = C-1/T-1 = (Π −∆)/Π, respectively. Hence, Uτ0 + Uτ-1 = (Π −Θ)/Π = 1− Uβα , where Uβα is
the utilization of Aα. This clearly shows that by including these two fictive tasks, the processor
is fully utilized (i.e. Uτ-1 + Uτ0 + Uβα = 1).

(fictive) task T C = D AJ ϕ

τ-1 Π Π−∆ 0 ∆−Θ
τ0 Π ∆−Θ Θ -

Table 2: Characteristics of fictive tasks τ-1 and τ0.

A situation with a worst-case (i.e. minimum) resource supply of Ω in an interval starting at time
tS (and extending till the end of the subsequent period without loss of generality) [16] is shown
in Figure 6(a). The same figure also illustrates that the unavailability of Ω in that interval can be
modeled by the worst-case interference of τ-1 and τ0.

Π

Θ Π−Θ∆−Θ ∆

timetE

AJ0 C0

T0

τ0

Π Π

Θ

C0

T0T0

Ω

AJ0

C-1

τ-1

ϕ-1T-1

(b)

Π

Θ Π−Θ ∆−Θ ∆

time

AJ0

T0

τ0

Π Π

Θ

C0

T0T0

Ω

AJ0

C-1

τ-1

ϕ-1 T-1

tS

AJ0

(a)

Legend: resource supply worst-case interference
by other EDP resources

activation jitter execution activation

Figure 6: A situation with (a) a worst-case (i.e. minimum) resource supply of an EDP resource Ω in
an interval starting at time tS, (b) a best-case (i.e. maximum) resource supply of an EDP resource
Ω in an interval ending at time tE, and two periodic tasks τ0 and τ-1 modeling the unavailability
of Ω.

Similar to the worst-case, a situation with a best-case (i.e. maximum) resource supply of Ω in an
interval ending at time tE (and starting at the beginning of the previous period without loss of
generality) is shown in Figure 6(b). The same figure also illustrates that the unavailability of Ω
in that interval can be modeled by the best-case interference of τ-1 and τ0. We note that tasks τ-1
and τ0 always execute in disjoint intervals of time. Furthermore, when the deadline ∆ of the EDP
resource Ω is equal to its period Π, the computation time of τ-1 becomes zero, i.e. C-1 = Π−∆ = 0,
and the resulting situation models a periodic resource. Finally, we note that when Ω is equal to
the entire resource, it is always available and the computation times C0 and C-1 of τ0 and τ-1
respectively both become zero, i.e. C0 = Π−Θ = C-1 = Π−Π = 0.

/Department of Mathematics and Computer Science 21

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

For the analysis of the tasks of (generic) application Aα, we consider an extension Âα of Aα
with the fictive tasks τ0 and τ-1 at the two highest priorities i.e. T̂ βα = T βα ∪ {τ0, τ-1}, Under two
dedicated assumptions for resource provisioning to Aα, the analytical results for the tasks of Aα
when executed on a shared EDP resource are identical to the results for those tasks of Âα when
executed with τ0 and τ-1 on a shared resource.

We start with the two dedicated assumptions for resource provisioning to application Aα based
on the resource supply of the EDP resource βα. Worst-case response-time analysis and best-case
response-time analysis are subsequently addressed.

5.2 Assumptions for resource provisioning to Aα

For worst-case analysis of the tasks of an application Aα, it is required that the minimum amount
of resources that is guaranteed to Aα is known. We therefore assume that the capacity Θ of a
budget βα is entirely available to its associated application Aα, similar to the [16].

Similarly, for best-case analysis of the tasks of Aα, it is required that the maximum amount of
resources that is provided to Aα is known. We therefore assume that only the capacity Θ of a
budget βα is available to its associated application Aα, similar to hard resource reservations [33].

We note that by assuming (idling) periodic servers and a 1-to-1 relationship between applications
and budgets, the capacity of a budget becomes entirely and exclusively available to an application.

5.3 Worst-case response-time analysis

Worst-case response-time analysis of tasks with activation jitter on a single processor under FPPS
has been addressed in [40], amongst others. For worst-case deadlines at most equal to periods
minus activation jitter, i.e. WD i ≤ Ti − AJ i, the worst-case response-time WRi of task τi of Âα
is given by the smallest value x ∈ R+ that satisfies

x = WC i +
⌈
x− ϕ-1

T-1

⌉
WC -1 +

⌈
x+ AJ 0

T0

⌉
WC 0 +

∑
1≤j<i

⌈
x+ AJ j

Tj

⌉
WC j . (29)

This equation is similar to Equation (16), the only new parameter being ϕ-1 which models the
(fixed) phase of task τ-1. We also remark that this equation only holds for this specific case where
we use these two fictive tasks to represent the unavailability of the EDP resource model. It can be
applied (i.e. holds for this specific case) because we know the critical instant from the unavailability
model conversion.

To calculate WRi, we can use an iterative procedure based on recurrence relationships as outlined
in Section 3.1, starting with a lower bound, e.g. WC i. The worst-case response-time WRi,α of
τi,α of Aα is equal to WRi of τi of Âα.

We remark that Equation (29) completely eliminates the need for an auxiliary (inverse) function
needed in Equation (21). Therefore, this analysis using the unavailability model approach is
simplified compared to the supply bound function-based approach described in Section 4.1. The
same observation holds for the best-case response-time analysis presented next.

5.4 Best-case response-time analysis

Best-case response-time analysis of tasks on a single processor under FPPS has been addressed in
[9, 34, 7], amongst others. For WD i ≤ Ti−AJ i, the best-case response-time BRi of task τi of Âα
is given by the largest x ∈ R+ that satisfies

22 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

x = BC i +
(⌈

x+ ϕ-1

T-1

⌉
− 1
)

BC -1 +
(⌈

x−AJ 0

T0

⌉
− 1
)+

BC 0 +
∑

1≤j<i

(⌈
x−AJ j

Tj

⌉
− 1
)+

BC j .

(30)
Here, the notation w+ stands for max(w, 0), which is used to indicate that the number of pre-
emptions of tasks with a higher priority than τi cannot become negative. Again, we observe that
Equation (30) closely matches Equation (17) except that here, the (fixed) phase ϕ-1 of task τ-1
has been taken into account.

To calculate BRi, we can again use an iterative procedure based on recurrence relationships,
starting with an upper bound, e.g. the worst-case response-time WRi of task τi. The best-case
response-time BRi,α of τi,α of Aα is equal to BRi of τi of Âα.

5.5 Applying the response-time analysis to an example

To conclude this section, we apply the unavailability model presented above to an example. We
derive the worst- and best-case response-times by construction and show that they are identical
to the results obtained using Equations (29) and (30) respectively. We consider an application
A2 consisting of two tasks (task set T β2) whose characteristics are presented in Table 3. We
assume that this application is associated with budget β2 of our previous example set B1 whose
characteristics correspond to those of task set T1 in Table 1. For the sake of convenience, we
repeat the characteristics of β2 in Table 4 using the notation introduced in Section 4.4 for the
EDP model.

task T = D C WR BR

τ1,2 7 1 5 1
τ2,2 20 4 20 10

Table 3: Characteristics of T β2 (of application A2)
with worst-case and best-case response-times of
tasks.

server Π Θ ∆*

β2 5 2 3

Table 4: Characteristics of β2

*∆ = worst-case response-time of β2

in B1.

Now, we convert A2 on a shared EDP resource to Â2 on an FPPS shared resource by defining τ-1
and τ0 whose characteristics (derived from Table 2) are: T0 = T-1 = 5, C-1 = D-1 = 2, ϕ-1 = 1,
C0 = D0 = 1, and AJ 0 = 2.

Figure 7(a) shows a timeline of T β2 with a critical instant for task τ2,2 and a(n) (EDP) worst-case
scenario for β2 as defined in Sections 4.1 and 4.4 respectively. Similarly, Figure 7(b) depicts a

timeline of T̂ β2 where the unavailability model is used to calculate the worst-case response-times of
τ1,2 and τ2,2. As seen, both timelines yield the same results namely, WR1,2 = 5 and WR2,2 = 20.
Unsurprisingly, the results obtained using Equation (29) are also identical to those presented in
Figure 7. The actual derivation of the analytic results is presented in Appendix B.1.

We repeat the same procedure to obtain the best-case response-times of all tasks in T β2 summarized
in Table 3. The timelines in Figure 8 depict an optimal instant for τ2,2 (refer to Section 3.3)
which we use to determine the best-case response-times of τ1,2 and τ2,2 by construction. In these
timelines, we also assume an EDP best-case scenario for β2 in which the simultaneous release of
τ2,2 and all higher priority tasks coincides with the completion of budget β2 whose capacity is
available as early as possible in that period and as late as possible in all previous releases of β2.
The derivation analytically using Equation (30) is presented in Appendix B.1. We simply state
here that the graphical and analytic approaches yield exactly the same results.

/Department of Mathematics and Computer Science 23

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

task τ1

task τ2

20

5

(b)

3 1

task τ0

task τ−1
AJτ2,0

φτ2,−1

0 5 10 15 20 time

task τ1,2

task τ2,2

20

5

budget β2

(a)

3 1

0 5 10 15 20 time

Figure 7: Timelines for a critical instant of task τ2,2 for (a) budget β2 and application A2 according
to [1, 16] and for (b) an extension Â2 of A2 with fictive tasks τ-1 and τ0.

task τ1,2

task τ2,2

time

10

4

budget β2

(a)
-10 -5 0

2

task τ1

task τ2

time

10

(b)
-10 -5 0

4 2

task τ0

task τ-1 AJτ2,0

φτ2,-1

Figure 8: Timelines for an optimal instant of task τ2,2 for (a) budget β2 and application A2 and
for (b) an extension Â2 of A2 with fictive tasks τ-1 and τ0.

Having described the unavailability model, we proceed in the next section to apply it in deriving
linear response-time upper bounds for two-level H-FPPS.

6 Response-time upper bounds

Response-Time Analysis (RTA) is a method widely used in fixed priority systems to determine
schedulability of tasks by comparing their worst-case response-times to their deadlines. It has been
addressed in preceding sections of this document for the real-time scheduling model considered
(see Sections 2, 3 and 4). Unfortunately, exact response-time analysis is known to be pseudo-
polynomial in complexity [2, 20]. Thus, it is sometimes desirable to use linear response-time
upper bounds to check on a task-by-task basis whether an exact response-time calculation is
required. This is especially the case in open systems where it might be necessary to have run-time
admission tests or in development tools [15]. Linear response-time upper bounds constitute a
sufficient condition which, although pessimistic, has been shown in [13] to significantly improve
the efficiency of exact schedulability tests.

In this section, we derive closed form upper bounds for sets of independent tasks with deadlines
less than or equal to their periods, activation jitter and arbitrary phasing scheduled using FPPS.
We build upon the work presented in [4] and [15]. We begin by recapitulating the response-time
upper bound presented in [15] for a shared resource. Subsequently, we describe how this method
can be applied to a shared EDP resource using the (resource) supply bound function sbfΩ [16]
from which we derive a linear supply lower bound lsbfΩ in the manner employed in [38] for the
periodic resource model. To enable this conversion to the EDP resource model, we also extend the

24 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

analysis by considering the specific phasing of fictive task τ-1 relative to fictive task τ0. Finally,
we show that by converting the shared EDP resource to a shared resource using the unavailability
model described in Section 5, the analysis in [15] can be directly reused. Furthermore, we prove
that by first summing the interference due to the fictive tasks before taking their interference
upper bound, the two methods are equivalent.

6.1 Existing analysis for FPPS

Similar to the approach outlined in Section 4.1 of [15], we now derive response-time upper bounds
for tasks scheduled under FPPS. However, we do not consider tasks with arbitrary deadlines as
is the case in that paper. Rather, we assume that for each task, τi, the relation Di ≤ Ti − AJi
holds (since otherwise there may be too little time between two successive releases to complete
the task). The other assumptions in our real-time model for FPPS hold (see Section 2).

P(t0,y0)

y

t

AJj AJj

Tj Tj

Tj - AJj

Cj

I
UB
j (t) (Linear bound)

IO
j (t)

Figure 9: Worst-case interference IOj (t) of task τj and the corresponding upper bound IUBj (t)
assuming it is the only task in the system.

Let Ij(t) be the worst-case interference due to task τj , i.e. the total time the processor spends
executing τj during the interval [0, t) in the worst-case scenario. Task τj experiences a maximum
release delay upon activation and a minimum delay at subsequent releases. Let IOj (t) denote the
worst-case interference due to task τj when it is the only task in the system, from which the
following relation directly holds: IOj (t) ≥ Ij(t), ∀ t.

Given that τj is the only task in the system, the processor will, in general, execute the first job of
τj followed by an interval of idleness (= Tj − Cj − AJ j) after which it subsequently executes Cj
every Tj . This situation is depicted in Figure 9.

Our goal is to derive the linear upper bound, IUBj (t), on IOj (t) shown as a dashed line in Figure 9.
The slope of this line equals the utilization Uτj of task τj given by Equation (2). Hence, we can
determine the equation of the line once we have the coordinates of any point lying on it. We
select point P (t0, y0) in Figure 9 which represents the smallest value of t for which IOj (t) = IUBj (t)
(assuming that AJj > 0).

Since there can be only two invocations of the task1 before point P (t0, y0), its y-coordinate is
given by

y0 = 2Cj . (31)

1Note that this follows from our assumption of deadlines less than or equal to periods which, in turn, simplifies
the analysis. In particular, the following derivation only holds if Ci < Di ≤ Ti−AJ i. For a more general derivation
covering the case where deadlines may exceed periods, we refer the interested reader to [15].

/Department of Mathematics and Computer Science 25

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

From Figure 9, the t-coordinate of point P (t0, y0) is simply

t0 = (Tj −AJj) + Cj . (32)

Combining Equations (32) and (31), the desired equation for the linear bound is

IUBj (t) = Uτj t+ Uτj AJj + Cj(1− Uτj), (33)

where Uτj is the utilization of task τj .

To obtain an upper bound on the total interference of task τi in the time interval [0, t) due to
higher priority tasks, we sum the interference from all the higher priority tasks i.e.∑

1≤j<i

IUBj (t) = t ·
∑

1≤j<i

Uτj +
∑

1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
. (34)

The upper bound on the demand of the processor due to task τi and higher priority tasks is then
obtained by adding the computation time Ci of task τi to Equation (34) i.e.

y = Ci + t ·
∑

1≤j<i

Uτj +
∑

1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
. (35)

We note that Equation (35), which gives an upper bound on the total demand at level-i i.e. the
worst-case interference due to higher priority tasks combined with the computation time of task
τi, may be considered as the demand upper bound function denoted by ldbf(t) (cf. [38]).

Let OUBi (Ci) be an upper bound on the longest time that the processor takes to execute task
τi and all higher priority tasks. It is given by the intersection of the line y = t and the line in
Equation (35) as follows:

OUBi (Ci) =
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
1−

∑
1≤j<i U

τ
j

. (36)

Equation (36) gives an upper bound on the worst-case response-time of any task scheduled on a
single shared resource using FPPS. If this resulting value of OUBi (Ci) is less than Di, we conclude
that task τi is schedulable. Otherwise, another method must be adopted to determine schedula-
bility e.g. an exact schedulability analysis.

The interested reader is directed to [15] where a proof that Equation (36) is actually an upper
bound on the worst-case occupied time Oi(Ci) [5] due to the interference of task τi and all higher
priority tasks is provided. For notational convenience, we will use RUBi instead of OUBi (Ci) in the
rest of this document as the former suggests (mnemonically that it concerns the) response-time
upper bound.

6.2 Applying the existing analysis to H-FPPS using the linear supply bound
function lsbfΩ(t)

The response-time upper bound presented in Section 6.1 assumes the entire processor is available
to our task set T . We now discuss how this result can be applied in the context of a shared EDP
resource. The approach we adopt is the same as was used in Section 4.1 when we converted the
worst-case response-time analysis of a single level FPPS to a two-level H-FPPS. What we require
is a linear supply bound function lsbfΩ(t) which gives the minimum resource supply of Ω in the
interval [0, t). Such a (tight) lower bound on an EDP resource supply was defined in Section 4.4
by considering the worst-scenario for resource provisioning (see Equation (25)). A task arriving
just after the depletion of the budget’s capacity Cβα(= Θ) experiences maximum starvation of

26 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

(Π−Θ) + (∆−Θ) after which Θ units of resource is guaranteed to βα every Π units of time. The
slope of this lower bound is the utilization Uβα of βα i.e. Θ

Π , with an intercept on the time axis
equal to the maximum starvation. The intersection between the lines in Equations (25) and (35)
gives the desired equation for calculating the worst-case response-time upper bound for tasks on
a shared EDP resource and is presented in Equation (37) i.e.

RUBi,α (Ω) =
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ Uβα (Π + ∆− 2Θ)

Uβα −
∑

1≤j<i U
τ
j

. (37)

We denote this bound as RUBi,α (Ω) to highlight the dependence on parameters from the EDP
resource, Ω and also append a subscript α to show that task τi,α is associated with application
Aα.

At this juncture, we revisit our previous example of the application A2 and its associated budget
β2 whose characteristics were presented in Tables 3 and 4 respectively. Applying Equation (37)
to the example, we obtain worst-case response-time upper bounds of 6.5 and 25.11 for τ1,2 and
τ2,2 respectively (see Appendix B.2 for the calculations) from which we conclude that whereas
task τ1,2 is schedulable, an exact schedulability test is required for task τ2,2. These results are
summarized in Table 5. The results in the last column of that table come from the alternative
approach described next.

task T = D C WR RUBi,2 (Ω) R̂UBi

τ1(,2) 7 1 5 6.5 7.5
τ2(,2) 20 4 20 25.11 26.67

Table 5: (Upper bounds of) worst-case response-times for tasks τ1(,2) and τ2(,2) in application A2

(Â2).

Finally, we remark that by checking tasks in priority order, highest priority first, the summation
terms in Equations (36) and (37) can be computed incrementally. Hence, this sufficient schedula-
bility test can be computed in linear time with respect to the number of tasks.

6.3 An alternative approach based on unavailability model

In Section 5 we showed that the unavailability model provides a means to convert a shared EDP
resource to a shared resource. Our motivation for this approach was to enable reuse of existing
results. However, in order to do this, we first need to extend Equation (36) by taking the fixed
phase ϕ-1 of task τ-1 into account. In deriving the linear upper bound of the interference due to
task τ-1, we follow the same method outlined in Section 6.1, the only difference being that we add
ϕ-1 to the right hand side of Equation (32). The resulting linear bound is therefore given by:

IUB-1 (t) = Uτ-1t− ϕ-1U
τ
-1 + C-1(1− Uτ-1). (38)

Equation (33) can be directly used for task τ0. Hence, the worst-case response-time upper bound
for tasks using the unavailability approach is as follows:

R̂UBi =
Ci +

∑
−1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
− ϕ-1U

τ
-1

1−
∑
−1≤j<i U

τ
j

. (39)

We do not include the phasing term in the summation in the numerator of Equation (39) because
including specific phasing of the non-fictive tasks is more involved as our assumption of a critical
instant no longer holds in general and the analysis is far from trivial (see, for example, [29]).

/Department of Mathematics and Computer Science 27

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

Nevertheless, the approach works for task τ-1 for the following two reasons: (1) τ-1 and τ0 execute
in distinct periods i.e. they do not interfere with each other; and (2) their characteristics are
completely independent of the actual task set but solely depend on the characteristics of budget
βα which we assume to be known a priori.

Referring to our leading example, the modified task set T̂ β2 with additional fictive tasks τ-1 and
τ0 whose characteristics were outlined in Section 5.5 was used to obtain worst-case response-time
upper bounds of 7.5 and 26.67 for tasks τ1 and τ2 respectively. From these results, no conclusion
can be drawn about the schedulability of either task (since they both fail to meet the sufficient
condition). Thus, an exact schedulability analysis is required. This is in contrast to the results
obtained using RUBi,2 (Ω) from which we could directly conclude schedulability of task τ1,2.

From a computational standpoint, using the unavailability method does not result in any significant
improvement given the fact that Equations (37) and (39) are very similar. Moreover, the results
in Table 5 clearly show that the unavailability method as presented so far is more pessimistic.
This follows from the fact that the pessimism in calculating response-time upper bounds by the
method outlined in Section 6.1 can only increase with the number of tasks in the application and
the unavailability model invariably increases this number by two.

However, we can improve on the response bound obtained using the unavailability model by first
combining the two fictive tasks τ-1 and τ0 before calculating the (worst-case) interference due this
new, combined task, say τ†. In other words, for these two fictive tasks, we lift the assumption
of determining the worst-case interference of a task assuming it is the only task in the system.
Instead, we find the combined interference due to these two tasks simultaneously present in the
system as described next.

P(t0,y0)

tC-1+2C0 Θ C-1+C0

C-1+2C0

C-1+C0

IO(t)

I
UB

(t) (Linear bound)
d

y

Figure 10: Worst-case interference IO† (t) of task τ† and the corresponding upper bound IUB† (t)
assuming it is the only task in the system where τ† is the sum of τ-1 and τ0.

Determining IUB† (t) is done in exactly the same way as we outlined in Section 6.1 i.e. we determine
the coordinates of the first point P (t0, y0) satisfying the condition IO† (t) = IUB† (t). The worst-case
interference due to combined fictive task τ† in an interval beginning at time t = tS is illustrated in
Figure 6(a) by viewing τ-1 and τ0 as a single task τ†. We observe an initial processor occupancy
of duration 2C0 + C-1 followed by an idle period of duration Θ before subsequently executing
C† = C-1 + C0 = Π−Θ every Π units of time; see Figure 6(a). From Figure 10, we observe that
the desired point has equal t- and y-coordinates i.e. P (t0, y0) = P (t0, t0) where t0 is

28 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

t0 = 2C0 + C-1 = ∆ + Π− 2Θ = y0. (40)

The slope of the linear bound equals the utilization of τ† i.e. Uτ† = Uτ-1 +Uτ0 =
Π−Θ

Π
. Hence, the

linear upper bound of τ† is given by

IUB† (t) = Uτ† (t− x) + x, (41)

where x = ∆ + Π− 2Θ.

With reference to Figure 10, we denote the largest difference between IO† (t) and IUB† (t) as d which
can be determined at t1 = t0 + Θ as follows:

d = IUB† (t1)− IO† (t1)

=
(
C†
T†

(t1 − y0) + y0

)
− y0

=
(

Π−Θ
Π

)
Θ

= Θ− Θ2

Π
. (42)

From Equation (42), we observe that d can be increased by choosing a large Π. Also, by equating
the first derivative of d (w.r.t. Θ) to zero we deduce that d attains a maximum value when we
choose Θ = Π

2 . These observations can be useful at the design stage in the event we have control
over the values of Π and/or Θ.

The upper bound on the total interference of task τi in the time interval [0, t) due to higher priority
tasks is now given by the summation of Equation (34) (interference due to all real higher priority
tasks) and Equation (41) (interference due to the combined fictive task τ†). R

UB†
i naturally follows

as the intersection of Equation (41) and the line y = t and is given by the following equation:

RUB†i =
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ x(1− Uτ†)

1− Uτ† −
∑

1≤j<i U
τ
j

. (43)

Using Equation (43) the new worst-case response-time upper bounds for tasks τ1 and τ2 are found
to be 6.5 and 25.11 respectively. An interesting observation is that these values are the same as
those obtained using lsbfΩ(t) reported in Table 5! This result is not a coincidence as we show in
the following theorem.

Theorem 1 RUBi (Ω)and RUB†i are equivalent methods for calculating response-time upper bounds
for tasks sharing an EDP resource2.

2Essentially, the proof simply involves substituting x = ∆ + Π− 2Θ and UΩ = 1− Uτ† = Θ
Π

into Equation (43)
to obtain Equation (37).

/Department of Mathematics and Computer Science 29

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

Proof

RUB†i =
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ x(1− Uτ†)

1− Uτ† −
∑

1≤j<i U
τ
j

=
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ (∆ + Π− 2Θ)(1− Π−Θ

Π)

(1− Π−Θ
Π)−

∑
1≤j<i U

τ
j

=
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ (∆ + Π− 2Θ)(Θ

Π)

(Θ
Π)−

∑
1≤j<i U

τ
j

=
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ Uβα (Π + ∆− 2Θ)

Uβα −
∑

1≤j<i U
τ
j

= RUBi,α (Ω)

For the example considered, we conclude that the approach of first combining the fictive tasks
τ-1 and τ0 before taking the linear upper bound of the interference due to the combined task
yields better results than summing the interference upper bounds of the individual tasks τ-1 and
τ0. We refer to these approaches as tangent of combination and sum of tangents respectively.
In the next section, we extend this idea to real tasks and investigate whether the tangent of
combination approach dominates the sum of tangents approach in general for tasks having the
harmonic periods.

7 Improving response-time upper bounds

In Section 6.3, we saw that we could improve on the response bound obtained using the unavail-
ability model by first combining the fictive tasks τ-1 and τ0 before calculating the interference due
to the combined task τ† without jeopardizing the linear computation time bound. Intuitively, it
should also be possible to apply this approach to the real tasks in task set T βα having harmonic3

periods, thereby improving on the response-time upper bounds of lower priority tasks. This may
result in significant improvements in the effectiveness of the sufficient schedulability condition for
applications having several tasks with the same (harmonic) period(s). We begin with an example
application on an EDP resource for which we illustrate the idea and the potential improvements it
offers. Subsequently, we revert back to tasks scheduled on a single FPPS shared resource for which
we consider both sum of tangents and tangent of combination approaches and derive equations for
them starting with two tasks and generalizing to n tasks having the same period. We then extend
this idea to harmonic tasks.

task T = D C WR R̂UB†i R̂UB‡i

τ1(,3) 14 1 5 6.5 6.5
τ2(,3) 14 2 9 13.78 13.78
τ3(,3) 33 2 21 33.62 32.08

Table 6: (Upper bounds of) worst-case response-times for tasks τ1(,3), τ2(,3) and τ3(,3) in application
A3 (Â3).

Consider application A3 consisting of three tasks with the two highest priority tasks having the
same period. The characteristics of the task set are summarized in Table 6. The associated
budget remain β2 from our previous example. We note that the utilization of the task set is

3A precise (mathematical) definition of harmonic tasks is given in Section 7.2

30 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

UA3 = 127/462 < Uβ3 = 2/5. Thus, the application A3 satisfies the necessary conditions stipulated in
Equations (6) and (7).

Figure 11 shows the derivation of the response-times of tasks in task set T β3 by construction,
assuming a critical instant for all tasks scheduled on a shared EDP resource using FPPS. From
this figure, we obtain WR1,3 = 5, WR2,3 = 9 and WR3,3 = 21 from which we conclude that the
application A3 is schedulable since the worst-case response-times of all its tasks do not exceed
their deadlines.

0 5

task τ2,3

task τ3,3

time

21

9

budget β2

10 15 20

task τ1,3

5 1

6

Figure 11: Timeline for a critical instant of all tasks for budget β3 and application A3 according
to [1, 16].

We convert A3 to Â3 using the unavailability model transformation and apply Equation (43) to
obtain the worst-case response-time upper bounds of 6.5, 13.78 and 33.62 for tasks τ1, τ2 and
τ3 respectively from which we conclude that whereas tasks τ1 and τ2 are schedulable since they
satisfy the sufficient condition, an exact schedulability test is required for τ3 (see Appendix B.3
for derivations).

Now, we attempt to improve the response-time upper bound of task τ3 by first combining tasks
τ1 and τ2 to obtain task τ‡ and then calculating the interference due to the combined task since
they have a common period. Assuming τ‡ is the only task in the system, we obtain a situation
in which C‡ = C1 + C2 = 3 executes every T‡ = T1 = T2 = 14 time units. The slope of the line
equals the utilization of τ‡ i.e. Uτ‡ = Uτ1 + Uτ2 = 3/14. Also, point P (t0, t0) lies on the line where
t0 = C‡. Thus, the linear upper bound of τ‡ is given by

IUB‡ (t) = Uτ‡ (t− t0) + t0 =
3
14

(t− 3) + 3. (44)

The worst-case response-time of task τ3 is then calculated as follows:

R̂UB‡3 =
C3 + t0(1− Uτ‡) + x(1− Uτ†)

1− Uτ‡ − Uτ†

=
2 + 3(1− 3

14) + 4(1− 3
5)

1− 3
14 −

3
5

=
417
13

= 32.08,

where x = ∆ + Π − 2Θ = 4. We observe that using this improved response-time upper bound,
we can directly conclude that τ3 is schedulable and it is no longer necessary to perform an exact
schedulability analysis which is pseudo-polynomial in time complexity. Of course, the response-
time upper bounds for tasks τ1 and τ2 remain unchanged. However, the result illustrates the
potential of this approach to improve the effectiveness of response-time upper bound calculations.
Next, we apply the idea to a task set scheduled on a shared resource.

/Department of Mathematics and Computer Science 31

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

7.1 Improved closed-form (worst-case) response-time upper bounds for tasks
having the same period and scheduled on a shared resource

Consider application A4 consisting of three tasks scheduled on a single shared processor using
FPPS. The characteristics of the task set are summarized in Table 7. The two highest priority
tasks τ1 and τ2 both have the same period of 10. By combining the interference due to these
tasks, we show that it is possible to obtain tighter bounds for task τ3.

task T = D C WR RUBi ,
∑

(⊥) RUBi ,
⊥ (
∑
FPPS)

τ1 10 4 4 4 4
τ2 10 3 7 9 9
τ3 21 2 9 21.67 13.67

Table 7: (Upper bounds of) worst-case response-times for tasks τ1, τ2 and τ3 in application A4.

Figure 12 shows the derivation of the response-times of tasks in task set T4 by construction,
assuming a critical instant for all tasks. From this figure, we obtain WR1 = 4, WR2 = 7 and
WR3 = 9 from which we conclude that the application A4 is schedulable since the worst-case
response-times of all its tasks do not exceed their deadlines.

Using Equation (36), we directly determine the worst-case response-time upper bounds of 4, 9
and 21.67 for tasks τ1, τ2 and τ3 respectively according to the approach proposed in [15] and
discussed in Section 6.1. We refer to this method as the sum of tangents,

∑
(⊥), approach since

the total interference of higher priority tasks is derived by summing the linear upper bounds of
the interference of each task (i.e. tangents of the demand bound functions), assuming it is the only
task in the system. We now consider another approach4.

task τ3

task τ2

0 5 time10 15 20

7

25 30

task τ1

4 4 4

7 7

9 8

Figure 12: Timeline for a critical instant of all tasks of application A4.

7.1.1 Tangent of combination approach ⊥ (
∑

FPPS)

We can go a step further to derive tighter upper bounds by applying FPPS to determine the worst-
case interference of the same-period higher priority tasks relative to one another before taking the
upper bound. We call this approach tangent of combination and add a subscript to denote that our
‘summation’ is based on FPPS analysis. The interesting observation here is that since these tasks
have the same period, we do not need to use the recursive Equation (8) presented in Section 3.1
but a (simplified) linear equivalent of it. Graphically, the approach is illustrated in Figure 13(a)
for task τ3 in our leading example in Table 7. We now derive an equation for the upper bound
by the tangent of combination approach for two tasks and then generalize to n tasks having the
same period.

4Derivation of the response-time upper bounds for both approaches are presented in Appendix B.4

32 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

0 5 time10 15

5

10

15

20

(b) Comparison of both methods for task τ3

tangent of combination: 10y = 7t + 41

sum of tangents 10y = 7t + 65

Legend:

IUB
hp(3)(t)

IO
hp(3)(t)

RUB
3

y = t

0 5 time10 15

task τ1

4

5

10

15

task τ2

7

20

(a) Tangent of combination

4

7

C3

y y

Figure 13: Linear worst-case response-time upper bound of task τ3 of application A4 using (a)
tangent of combination including (b) a comparison of the two approaches discussed.

Assume tasks τx and τy are the two (higher priority) tasks having the same period. Then point
(C, C) lies on the desired line where C = Cx +Cy. The slope of the line is given by the utilization
of both tasks combined. Therefore, Equation (45) results:

∑
j∈hp(i)

IUBj (t) =
C

T
(t− C) + C + t ·

∑
k∈Nhp(i)

Uk +
∑

k∈Nhp(i)

Ck(1− Uk), (45)

where T = Tx = Ty, hp(i) denotes all tasks with higher priority than task τi and Nhp(i) is the set
of higher priority tasks other than τx and τy (if any) i.e. hp(i) = Nhp(i) ∪ {τx, τy}.

The total occupancy due to task τi and all its higher priority tasks, OUBi (Ci), is then given by the
intersection of the lines y = Ci +

∑
j∈hp(i)

IUBj (t) and y = t.

Supposing there are m higher priority tasks τ ′1, . . . , τ ′m ∈ Nhp(i)c with the same period. Then
point (C ′, C ′) lies on the desired line whose slope is the combined utilization of all the m tasks
and C ′ = C ′1 + . . .+ C ′m. Thus, we obtain Equation (46):

∑
j∈hp(i)

IUBj (t) =
C ′

T
(t− C ′) + C ′ + t ·

∑
k∈Nhp(i)

Uk +
∑

k∈Nhp(i)

Ck(1− Uk), (46)

where T ′ = T ′1 = · · · = T ′m, hp(i) denotes all tasks of higher priority than task τi of which Nhp(i) is
a subset of those tasks having a period different from T with its complement denoted by Nhp(i)c
i.e. hp(i) = Nhp(i) ∪Nhp(i)c.

7.1.2 Comparison of results

Comparing the results in the last two columns of Table 7, we observe improvements in the worst-
case response-time upper bounds for task τ3 by combining tasks τ1 and τ2 using tangent of combi-

/Department of Mathematics and Computer Science 33

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

nation as opposed to using sum of tangents. Furthermore, comparing the corresponding equations
for these approaches namely Equation (34) for sum of tangents and Equation (45), we notice that
in both cases, the slope of the resulting upper bound is the same. The improvement, therefore,
corresponds to a lowering of the intercept with the vertical axis, leading to an earlier intersection
with the line y = t. Therefore, we come to the conclusion that in general for tasks having the same
period, tangent of combination dominates the original sum of tangents approach. By dominating,
we imply that the results obtained using the dominant class are at least as good as (but typically
better than) those of the dominated class. This clearly holds for task τ3 in our example application
A4 as shown in Figure 13(b).

Finally, we remark that one important feature of the tangent of combination approach described
in Section 7.1.1 is that it results in better schedulability analysis without hampering the linear
time bounds. This claim is obvious from the equations which we derived for this approach.

7.2 Improved closed-form (worst-case) response-time upper bounds for har-
monic tasks scheduled on a shared FPPS resource

We now extend the idea presented in Section 7.1 to harmonic tasks and show that it is possible
to improve the response-time of lower priority tasks by combining the interference due to higher
priority harmonic tasks. A (sub-)set of tasks is said to be harmonic if and only if for any pair
of tasks τi and τj from the set, one is the multiple of the other. Mathematically, this can be
expressed in terms of their least common multiple as follows:

∀
i,j∈S

lcm(Ti,Tj) ∈ {Ti, Tj},

where S is the set of harmonic tasks5, Ti and Tj are the periods of tasks τi and τj from S, and
lcm(Ti,Tj) is the least common multiple of their periods i.e. the smallest positive integer that is a
multiple of both Ti and Tj . An algorithm to extract such subsets from a task set is presented in
[22].

task T = D C WR RUBi ,
∑

(⊥) RUBi ,
⊥ (
∑
FPPS)

τ1 5 2 2 2 2
τ2 10 3 5 7 7
τ3 17 2 9 17.67 13.67

Table 8: (Upper bounds of) worst-case response-times for tasks τ1, τ2 and τ3 in application A5.

We consider yet another example application A5 consisting of three tasks whose characteristics
are presented in Table 8 along with the corresponding response-time upper bounds6 based on
the two approaches discussed in Section 7.1. Tasks τ1 and τ2 are harmonic according to the
definition of harmonic tasks above. The tangent of combination approach is illustrated graphically
in Figure 14(a) for task τ3 of application A5. Next, we derive closed-form equations for this
approach.

5We consider only one set of harmonic tasks. The case involving multiple sets of harmonic tasks is a subject of
future work.

6Derivation of the response-time upper bounds for both approaches are presented in Appendix B.5

34 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

0 5 time10 15

2 2 2

5

10

15

5

20

5

2

(a) Tangent of combination

0 5 time10 15

5

10

15

20

(b) Comparison of both methods for task τ3

tangent of combination: 10y = 7t + 41

sum of tangents 10y = 7t + 53

C3

y y

Legend:

IUB
hp(3)(t)

IO
hp(3)(t)

RUB
3

y = t

task τ1

task τ2

Figure 14: Linear worst-case response-time upper bound of task τ3 of application A5 using (a)
tangent of combination including (b) a comparison of the two approaches discussed.

7.2.1 Tangent of combination approach ⊥ (
∑

FPPS)

Assume tasks τx and τy are the two (higher priority) harmonic tasks e.g. tasks τ1 and τ2 in
Figure 14(a). Let lcm(Tx, Ty) be as previously defined. Then point (C,C) lies on the desired line,
the slope of which is given by the utilization of both tasks combined within lcm(Tx, Ty) where C
is the combined demand of tasks τx and τy within lcm(Tx, Ty) given by:

C =
lcm(Tx, Ty)

Tx
Cx +

lcm(Tx, Ty)
Ty

Cy. (47)

Therefore, Equation (48) results:

∑
j∈hp(i)

IUBj (t) = U(t− C) + C + t ·
∑

k∈Nhp(i)

Uk +
∑

k∈Nhp(i)

Ck(1− Uk), (48)

where U = Cx
Tx

+ Cy
Ty

= CxTy+CyTx
lcm(Tx,Ty) , hp(i) denotes all tasks with higher priority than task τi and

Nhp(i) is the set of higher priority tasks other than τx and τy (if any) i.e. hp(i) = Nhp(i)∪{τx, τy}.
The total occupancy due to task τi and all its higher priority tasks, OUBi (C), is then given by the
intersection of the lines y = Ci +

∑
j∈hp(i)

IUBj (t) and y = t.

Now suppose we have m higher priority harmonic tasks τ ′1, . . . , τ ′m ∈ S. The point (C ′, C ′) lies
on the desired line whose slope is the combined utilization of all the m tasks. Thus, we obtain
Equation (49):

∑
j∈hp(i)

IUBj (t) = U ′m(t− C ′) + C ′ + t ·
∑

k∈Nhp(i)

Uk +
∑

k∈Nhp(i)

Ck(1− Uk), (49)

/Department of Mathematics and Computer Science 35

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

where C ′ = lcm(T ′
1,...,T

′
m)

T ′
1

C ′1 + . . .+ lcm(T ′
1,...,T

′
m)

T ′
m

C ′m = lcm(T ′1, . . . , T
′
m) · U ′m, U ′m = C′

1
T ′

1
+ . . .+ C′

m

T ′
m
,

hp(i) denotes all tasks of higher priority than task τi and Nhp(i) denote a subset of those tasks
not belonging to the set S of harmonic tasks.

Clearly, (49) is linear in the number of tasks.

7.2.2 Comparison of results

As seen in last two columns of Table 8, the results show an improvement from sum of tangents
to tangent of combination as was the case for tasks having the same period. We observe that
the definition of harmonic tasks as presented in Section 7.2 ensures that the greatest continuous
demand for the resource corresponds to the beginning of every hyperperiod. Therefore, the points
used to derive Equation (49) are guaranteed to always lie on the linear upper bound.

Combining two harmonic tasks leads to a pessimistic response-time bound, if computational load
is shifted upfront, i.e. by summing up computation times. The existing approach is dominated by
our novel approach when the off-set of our interference function is lower, i.e. given T ′2 = k ·T ′1 and
k ∈ N+:

C ′1(1− U ′1) + C ′2(1− U ′2) > (kC ′1 + C ′2)(1− U ′1 − U ′2)
kC ′1U

′
2 + C ′2U

′
1 > (k − 1)(1− U ′1)C ′1

2C ′1C
′
2/T

′
1 > (k − 1)(1− U ′1)C ′1

C ′2 >
1
2

(k − 1)(T ′1 − C ′1) (50)

For k = 1 we get C2 > 0, so that the tangent of the combination dominates the sum of tan-
gents [15]. We can guarantee that the combined task of two harmonic tasks leads to the tightest
possible interference bound, if the following condition holds: (k−1)C ′1 +C ′2 ≥ (k−1)T ′1. This con-
dition holds by construction for our combined, fictive task τ†. As a result, when the period of a task
is harmonic with its budget, our unavailability approach together with the tangent-of-combined-
tasks approach may lead to improved response-time upper bounds. We leave investigations to
exploit this novelty to generate timing interfaces [38, 16] as a future work.

Furthermore, we remark that although Equation (49) is linear, we cannot directly conclude that
linear time complexity is preserved as the time required to determine which tasks are harmonic
also needs to be taken into account (future work).

8 Conclusions

In this document, we considered two-level hierarchical scheduling of independent applications using
FPPS for tasks and budgets. Our goal was to unify the analysis with that for single-level FPPS
which has been extensively studied. By reusing existing results, we avoid reinventing the wheel as
well as the inherent risk of errors as pointed out in some recent works.

We presented an overview of real-time analysis for scheduling of hard real-time tasks using FPPS
both in single- and two-level hierarchical frameworks. For the latter, we briefly reviewed existing
approaches for which we compared the worst-case (i.e. minimum) available capacity WC β(t) of a
budget β in an interval of length t. Using the EDP resource model as a reference, we presented
the unavailability model which converts an application on a shared periodic resource to one on
a shared resource by viewing the unavailability of the period resource as the interference due to
two fictive highest priority tasks. We derived worst- and best-case response-times for this model
and showed both by means of construction and conventional analytical approaches that the model
therein presented is not only accurate but equally allows for direct reuse of existing results.

36 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

Furthermore, we illustrated the applicability of this novel model by considering the linear response-
time upper bound analysis as described in [15]. First, we extended the approach in [15] to also
cater for the EDP resource model. Next, we showed that it is equally possible to derive response-
time upper bounds by applying the unavailability model. Finally, we proved that the results
obtained by both approaches are identical.

In addition, our analysis provided us with useful insights on means to improve response-time
upper bounds for tasks with the same period. For a two-level HSF, we illustrated this idea using
the unavailability model transformation (though it can easily be applied directly to the EDP
model). Moreover, we applied the same approach to a shared resource for which we discussed
a new approach for improving worst-case response-time upper bounds of lower priority tasks by
combining the interference due to higher priority tasks having the same or harmonic periods. We
derived a condition for which our novel tangent of combination approach dominates the sum of
tangents approach proposed in [15], and illustrated this effect by means of examples. Moreover,
for tasks with the same periods our approach always improves on the existing approach.

9 Future work

In Section 7, we investigated means to improve response-time upper bounds for both tasks sched-
uled on a shared EDP resource and those scheduled on a shared resource. An interesting extension
will be to incorporate activation jitter into the analysis and subsequently, investigate whether the
(dominance) relationship established between the two methods is preserved. If that no longer
holds, means to select the optimal method for a given scenario can be studied.

Lifting the assumption of a single set of harmonic tasks in Section 7.2 to allow for multiple sets of
harmonic tasks and determining the time complexity and criteria to choose the best combination
of harmonic tasks in the case where a task belongs to more than one set are also conceivable
extensions.

Next to these, another possible direction of future work is to investigate the generation of timing
interfaces for the periodic and/or EDP resource model(s) using the unavailability model and
tangent of combination approach based on the idea sketched in Section 7.2.2.

Finally, further investigation and consolidation of the observations made in Appendix A are also
subjects for future work.

Acknowledgments

We thank Mike Holenderski and Martijn M.H.P. van den Heuvel for discussions and reviews of
the manuscript of this document. We also acknowledge the management of the Faculty of Mathe-
matics and Computer Science, Technische Universiteit Eindhoven, for initiating the “Honor in the
Master” program in which context this research work was conducted.

/Department of Mathematics and Computer Science 37

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

References

The page numbers where the references occur (i.e. back references) have been included at the end
of each entry.

[1] L. Almeida and P. Peidreiras. Scheduling with temporal partitions: response-time analysis
and server design. In Proc. of the 4th ACM International Conference on Embedded Software
(EMSOFT), pages 95 – 103, September 2004. 6, 14, 15, 16, 18, 24, 31

[2] N.C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993. 6, 10, 11, 12, 13, 24

[3] P. Balbastre, I. Ripoll, and A. Crespo. Exact response time analysis of hierarchical fixed-
priority scheduling. Proc. 15th Int’l Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 315–320, August 2009. 14, 19

[4] E. Bini and S.K. Baruah. Efficient computation of response time bounds under fixed-priority
scheduling. In Proc. 15th Int’l Conference on Real-Time and Network Systems (RTNS), pages
95–104, March 2007. 7, 24

[5] R.J. Bril. Real-time scheduling for media processing using conditionally guaranteed bud-
gets. PhD thesis, Technische Universiteit Eindhoven (TU/e), The Netherlands, July 2004.
http://alexandria.tue.nl/extra2/200412419.pdf. 10, 11, 16, 26

[6] R.J. Bril. Towards pragmatic solutions for two-level hierarchical scheduling - part I: A basic
approach for independent applications. Technical Report CS Report 07-19, Department of
Mathematics and Computer Science, Technische Universiteit Eindhoven (TU/e), The Nether-
lands, August 2007. http://www.win.tue.nl/ rbril/publications/CSR-07-19.pdf. 1, 7, 19

[7] R.J. Bril, L. Cucu-Grosjean, and J. Goossens. Exact best-case response time analysis of
real-time tasks under fixed-priority pre-emptive scheduling for arbitrary deadlines. In Proc.
Work-in-Progress (WIP) session of the 21st Euromicro Conference on Real-Time Systems
(ECRTS), pages 1–4, July 2009. 6, 22

[8] R.J. Bril and P.J.L Cuijpers. Analysis of hierarchical fixed-priority pre-emptive scheduling
revisited. Technical Report CS Report 06-36, Department of Mathematics and Computer
Science, Technische Universiteit Eindhoven (TU/e), The Netherlands, December 2006. 10

[9] R.J. Bril, E.F.M. Steffens, and W.F.J. Verhaegh. Best-case response times and jitter analysis
of real-time tasks. Journal of Scheduling, 7(2):133–147, March 2004. 6, 9, 10, 11, 13, 22

[10] R.J. Bril, W.F.J. Verhaegh, and C.C. Wüst. A cognac-glass algorithm for conditionally
guaranteed budgets. In Proc. 27th IEEE Real-Time Systems Symposium (RTSS), pages 388–
397, December 2006. 6, 14, 16, 18, 19

[11] G. Buttazzo and A. Cervin. Comparative assessment and evaluation of jitter control methods.
In Proc. 15th International Conference on Real-Time and Network Systems (RTNS), pages
163–172, March 2007. 12, 14

[12] G.C. Buttazzo. Hard real-time computing systems - predictable scheduling algorithms and
applications (2nd edition). Springer, 2005. 12, 14

[13] R. I. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests for fixed priority
real-time systems. IEEE Transactions on Computers, 57(9):1261–1276, September 2008. 24

[14] R.I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. In Proc. 26th

IEEE Real-Time Systems Symposium (RTSS), pages 389–398, December 2005. 6, 10, 14, 16,
18

38 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

[15] R.I. Davis and A. Burns. Response time upper bounds for fixed priority real-time systems.
In Proc. 29th IEEE Real-Time Systems Symposium (RTSS), pages 407–418, December 2008.
7, 8, 24, 25, 26, 32, 36, 37, 41, 42

[16] A. Easwaran, M. Anand, and I. Lee. Compositional analysis framework using EDP resource
models. In Real-Time Systems Symposium, 2007. RTSS 2007. 28th IEEE International, pages
129–138, December 2007. 6, 7, 16, 17, 18, 21, 22, 24, 31, 36, 41

[17] M. González Harbour, M.H. Klein, and J.P. Lehoczky. Fixed-priority scheduling with varying
execution priority. In Proc. 12th IEEE Real-Time Systems Symposium (RTSS), pages 116–
128, December 1991. 6

[18] J. Goossens and R. Devillers. The non-optimality of the monotonic priority assignments for
hard real-time offset free systems. Real-Time Systems, 13(2):107–126, September 1997. 6, 10

[19] P.K. Harter. Response times in level-structured systems. ACM Transactions on Computer
Systems, 5(3):232–248, August 1987. 6

[20] M. Joseph and P. Pandya. Finding response times in a real-time system. The Computer
Journal, 29(5):390–395, 1986. 8, 10, 11, 24

[21] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González Harbour. A Practitioner’s
Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems.
Kluwer Academic Publishers, 1993. 8

[22] T.-W. Kuo and A.K. Mok. Load adjustment in adaptive real-time systems. In Proc. 12th
IEEE Real-Time Systems Symposium (RTSS), pages 160–170, December 1991. 34

[23] John P. Lehoczky, Lui Sha, and Jay K. Strosnider. Enhanced aperiodic responsiveness in
hard real-time environments. In Proc. 8th IEEE Real-Time Systems Symposium (RTSS),
pages 261–270, December 1987. 6

[24] J.P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In
Proc. 11th IEEE Real-Time Systems Symposium (RTSS), pages 201–209, December 1990. 6

[25] J.Y.T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling of periodic,
real-time tasks. Performance Evaluation, 2(4):237–250, December 1982. 6

[26] G. Lipari and E. Bini. Resource partitioning among real-time applications. In Proc. 15th

Euromicro Conference on Real-Time Systems (ECRTS), pages 151–158, July 2003. 6, 14, 16,
18

[27] C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a real-time
environment. Journal of the ACM, 20(1):46–61, January 1973. 6, 8, 9, 10

[28] J.L. Lorente, G. Lipari, and E. Bini. A hierarchical scheduling model for component-based
real-time systems. In Proc. 20th International Conference on Parallel and Distributed Pro-
cessing Symposium (IPDPS), page 8 pp., April 2006. 6, 20

[29] J. Mäki-Turja and M. Nolin. Fast and tight response-times for tasks with offsets. In Proc.
17th Euromicro Conference on Real-Time Systems (ECRTS), pages 127–136, July 2005. 6,
27

[30] C. Mercer, R. Rajkumar, and J. Zelenka. Temporal protection in real-time operating systems.
In Proc. 11th IEEE Workshop on Real-Time Operating Systems and Software (RTOSS), pages
79–83, May 1994. 6

[31] A.K. Mok, X.A. Feng, and D. Chen. Resource partition for real-time systems. In Proc. 7th

Real-Time Technology and Applications Symposium (RTAS), pages 75–84, May 2001. 6, 16

/Department of Mathematics and Computer Science 39

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

[32] A.K.-L. Mok. Fundamental design problems of distributed systems for the hard-real-
time environment. Phd thesis, Massachusetts Institute of Technology, May 1983.
http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-297.pdf. 6

[33] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource kernels: A resource-centric
approach to real-time and multimedia systems. In Proc. SPIE, Vol. 3310, Conference on
Multimedia Computing and Networking (CMCN), pages 150–164, January 1998. 22

[34] O. Redell and M. Sanfridson. Exact best-case response time analysis of fixed priority scheduled
tasks. In Proc. 14th Euromicro Conference on Real-Time Systems (ECRTS), pages 165–172,
June 2002. 6, 9, 10, 11, 13, 22

[35] J. Regehr. Scheduling tasks with mixed preemption relations for robustness to timing faults.
In Proc. 23rd IEEE Real-Time Systems Symposium (RTSS), pages 315–326, December 2002.
6

[36] S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein. Analysis of hierarchical fixed-
priority scheduling. In Proc. 14th Euromicro Conference on Real-Time Systems (ECRTS),
pages 152–160, June 2002. 6, 14, 16, 18

[37] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: an approach to
real-time synchronisation. IEEE Transactions on Computers, 39(9):1175–1185, September
1990. 6

[38] I. Shin and I. Lee. Periodic resource model for compositional real-time guarantees. In Proc.
24th IEEE Real-Time Systems Symposium (RTSS), pages 2–13, December 2003. 6, 14, 15,
16, 17, 18, 24, 26, 36

[39] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time environments. IEEE Transactions on Computers,
44(1):73–91, January 1995. 6

[40] K.W. Tindell, A. Burns, and A.J. Wellings. An extendible approach for analyzing fixed
priority hard real-time tasks. Real-Time Systems, 6(2):133–151, 1994. 6, 22

[41] A.M. van Renssen, S.F. Geuns, J.P.H.M. Hausmans, W. Poncin, and R.J. Bril. On utilization
bounds for a periodic resource under rate monotonic scheduling. In Proc. Work-in-Progress
(WiP) session of the 21st Euromicro Conference on Real-Time Systems (ECRTS), pages
25–28, July 2009. 6

[42] Y. Wand and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In Proc.
6th International Conference on Real-Time Computing Systems and Applications (RTCSA),
pages 328–335, December 1999. 6

40 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

A Improved and/or faster schedulability analysis using the unavailability
model

In Sections 6.1 and 6.3, we presented two methods for calculating response-time upper bounds
of tasks which we subsequently showed to be equivalent. In applying the method based on the
unavailability model, we can take advantage of the fact that the characteristics of the fictive tasks
depend solely on the characteristics of the budget βα to further reduce pessimism in calculating the
worst-case interference due to τ† as follows: Rather than using the (linear) worst-case interference
upper bound IUB† (t), we use the exact worst-case interference IO† (t) for the combined fictive task τ†,
both depicted in Figure 10, again noting that this worst-case scenario is based on the assumption
that the task is the only one in the system just as in [15].

The procedure is outlined as follows:

Step 1: Using Equation (37) on Aa (or Equation (43) on Âa since they are equivalent), we
determine the worst-case occupied time of task τi, say t0.

Step 2: Using Equation (51), we calculate the exact worst-case interference due to task τ† at
the time t0 determined in step 1. This can be determined in a manner similar to the
supply bound function in [16] and based on Figure 10 is given by:

IO† (t) =

{
t 0 < t ≤ x
x+ y(Π−Θ) +max{0, t− x− yΠ−Θ} otherwise

, (51)

where x = C-1 + 2C0 = (Π−∆) + 2(∆−Θ) = Π + ∆− 2Θ and y =
⌊
t−x
Π

⌋
.

Step 3: Next, we recalculate the worst-case occupied time of task τi using the following equa-
tion in which we now use the exact worst-case interference of τ† with the unavailability
model from Step 2:

R̂UB†i (t) =
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ IO† (t)

1−
∑

1≤j<i U
τ
j

, (52)

Step 4: (Optional) Iteratively apply steps 2 and 3 until two consecutive values of R̂UB†i (t) are
the same.

In essence, referring again to Figure 10, the gain resulting from this method corresponds to the
region between the two curves i.e. IUB† (t)− IO† (t) which is always greater than zero except at the
points where the two curves intersect. Given a system of several applications, Π � Θ and the
gain becomes even more significant (cf. Equation (42)).

We now apply this idea to our previous example application A2 whose characteristics were sum-
marized in Table 5 (and reproduced in Table 9). The application is served by budget β2 having
parameters as follows: Π = 5, Θ = 2 and ∆ = 3.

task T = D C WR RUBi (Ω) R̂UB†i (t)

τ1 7 1 5 6.5 5.5
τ2 20 4 20 25.11 24.33

Table 9: (Upper bounds of) worst-case response-times for tasks τ1 and τ2 in application A2 (Â2)
based on proposed extension.

In step 1, we calculate RUB1 (Ω) = 6.5 and RUB2 (Ω) = 25.11 using Equation (37). Next, we
determine IO† (6.5) = 4.5 and IO† (25.11) = 4 + 12 + 0 = 16 as stipulated in step 2. Finally,

/Department of Mathematics and Computer Science 41

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

using Equation (52) in step 3, we get response-time upper bounds of 5.5 and 24.33 for τ1 and
τ2 respectively. The results show that the proposed method produces tighter bounds in general
and in the worst case, coincides with RUBi (Ω) (i.e. at points where IUB† (t) = IO† (t) such as point
P (t0, y0) in Figure 10).

However, the results also indicate that by terminating the procedure at step 3, we only reduce the
pessimism due to the fictive tasks. Otherwise, being the highest priority task, the response-time

upper bound of task τ1, R̂
UB†
1 (t), ought to coincide with the exact worst case response-time. But

owing to the fact that we start the procedure using lsbfΩ(t), the value of t obtained in step 1
may be larger than the actual demand due to task τ1 (and the higher priority fictive tasks) and
therefore results in some residual pessimism.

To further reduce the pessimism due to the fictive tasks, we apply step 4 as described previously.
In the second iteration for task τ1, we calculate IO(2)

† (5.5) = 4. Substitution this value into

Equation (52), we obtain R̂UB†1

(2)

(t) = 5. Repeating steps 2 and 3 again, we calculate IO(3)
† (5) = 4;

R̂UB†1

(3)

(t) = 5 at which point the procedure terminates, giving the expected result i.e. the exact
worst-case response-time of task τ1. The same approach can be performed to task τ2 and all lower
priority tasks in general though we note that it will not yield the exact worst-case response-time for
those tasks due to the pessimism resulting from approximating the interference of higher priority
tasks by the linear upper bound function given by Equation (38). Unfortunately, the complexity of
the analysis increases and perhaps it may be better to revert to the classical response-time analysis
at this stage especially because this refinement may not work in which case an exact analysis will
still be required.

Given the duality of application Aα on a shared EDP resource and the corresponding application
Âα using the unavailability model, we expect an equivalent or comparable method (when iterative
step 4 is included) using the supply bound function sbfΩ(t) and the original task set T βα of
application Aα. The proposed method involves finding the intersection between the line y =
sbfΩ(t) and Equation (35) which can be obtained by a recursive relation as sketched in Section 4.1.
Nonetheless, whereas the method based on the unavailability model approaches the improved
response-time upper bound from above (as shown in the preceding example), the sbfΩ(t) method
approaches it from below. Therefore, it may be the case that the unavailability approach will
require fewer iterations since the process might terminate early when, for instance, the sufficient
condition is met after the first iteration of step 3 (i.e. without having to perform step 4 at all).
However, we note that the unavailability model is not guaranteed to yield the tightest (i.e. smallest)
upper bound. For instance, in the example in Table 9, the sbfΩ(t) approach yields a tighter bound
of 21 (obtained by construction) compared to 24.33 using the unavailability approach. Therefore,
there may be a trade off between quicker schedulability analysis for the latter and tighter bounds
for the former.

In summary, this discussion reveals two important points:

1. By performing steps 1 to 3 only, we can obtain tighter response-time upper bounds (compared
to the original approach in [15]) in linear time which may not be paralleled by using the
conventional (l)sbfΩ(t) method without hampering the linear time bound.

2. By including the optional step 4, an iterative procedure is required. However, the unavail-
ability method may outperform the (l)sbfΩ(t) method in terms of the number of iterations
required to establish schedulability.

We present this discussion in an appendix as it is not yet sufficiently developed. Further investi-
gations, particularly of the two claims above, are possible directions for future work. To conclude,

we outline the steps performed in determining R̂UB†2 (t).

Step 1: RUB2 (Ω) = 25.11

42 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

Step 2: I
O(1)
† (25.11) = 4 + 12 + 0 = 16

Step 3: R̂UB†2

(1)

(t) =
4 + 1(1− 1

7) + 16
1− 1

7

= 146
6 = 24.33

Step 4(2b): IO(2)
† (24.33) = 4 + 12 + 0 = 16

Step 4(3b): R̂UB†2

(2)

(t) =
4 + 1(1− 1

7) + 16
1− 1

7

= 146
6 = 24.33

/Department of Mathematics and Computer Science 43

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

B Derivation of equations

This appendix contains the derivation of (some of) the results presented in this document.

B.1 Worst- and best-case response-time analysis using unavailability model

In Section 5, we presented equations to calculate the worst- and best-case response-times of tasks
using the unavailability model. We now apply these equations to our example task set whose
characteristics were presented in Table 3. For the sake of convenience, we reproduce that task set
including the fictive tasks τ-1 and τ0 in Table 10. The server characteristics are Π = 5, Θ = 2 and
∆ = 3 as presented in Table 4.

task T D C AJ ϕ WR BR

τ-1 5 2 2 0 1 - -
τ0 5 1 1 2 - - -
τ1 7 7 1 0 - 5 1
τ2 20 20 4 0 - 20 10

Table 10: Characteristics of T̂ β2 with worst-case and best-case response-times of tasks.

For worst-case response-time analysis, we use Equation (29), i.e.

wr
(l+1)
i = WC i +

⌈
x− ϕ-1

T-1

⌉
WC -1 +

⌈
x+ AJ 0

T0

⌉
WC 0 +

∑
1≤j<i

⌈
x+ AJ j

Tj

⌉
WC j .

We use WC i as a starting value for the iteration.

Task τ1:

wr
(0)
1 = 1

wr
(1)
1 = 1 +

⌈
1− 1

5

⌉
2 +

⌈
1 + 2

5

⌉
1 = 1 + 0 + 1 = 2

wr
(2)
1 = 1 +

⌈
2− 1

5

⌉
2 +

⌈
2 + 2

5

⌉
1 = 1 + 2 + 1 = 4

wr
(3)
1 = 1 +

⌈
4− 1

5

⌉
2 +

⌈
4 + 2

5

⌉
1 = 1 + 2 + 2 = 5

wr
(4)
1 = 1 +

⌈
5− 1

5

⌉
2 +

⌈
5 + 2

5

⌉
1 = 1 + 2 + 2 = 5

WR1 = 5 < 7(= D1). Hence, task τ1 is schedulable.

44 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

Task τ2:

wr
(0)
2 = 4

wr
(1)
2 = 4 +

⌈
4− 1

5

⌉
2 +

⌈
4 + 2

5

⌉
1 +

⌈
4
7

⌉
1 = 4 + 2 + 2 + 1 = 9

wr
(2)
2 = 4 +

⌈
9− 1

5

⌉
2 +

⌈
9 + 2

5

⌉
1 +

⌈
9
7

⌉
1 = 4 + 4 + 3 + 2 = 13

wr
(3)
2 = 4 +

⌈
13− 1

5

⌉
2 +

⌈
13 + 2

5

⌉
1 +

⌈
13
7

⌉
1 = 4 + 6 + 3 + 2 = 15

wr
(4)
2 = 4 +

⌈
15− 1

5

⌉
2 +

⌈
15 + 2

5

⌉
1 +

⌈
15
7

⌉
1 = 4 + 6 + 4 + 3 = 17

wr
(5)
2 = 4 +

⌈
17− 1

5

⌉
2 +

⌈
17 + 2

5

⌉
1 +

⌈
17
7

⌉
1 = 4 + 8 + 4 + 3 = 19

wr
(6)
2 = 4 +

⌈
19− 1

5

⌉
2 +

⌈
19 + 2

5

⌉
1 +

⌈
19
7

⌉
1 = 4 + 8 + 5 + 3 = 20

wr
(7)
2 = 4 +

⌈
20− 1

5

⌉
2 +

⌈
20 + 2

5

⌉
1 +

⌈
20
7

⌉
1 = 4 + 8 + 5 + 3 = 20

WR2 = 20 = D2. Hence, task τ2 is (exactly) schedulable.

Likewise, for best-case response-time analysis, we use Equation (30), i.e.

br
(l+1)
i = BC i+

(⌈
x+ ϕ-1

T-1

⌉
− 1
)

BC -1+
(⌈

x−AJ 0

T0

⌉
− 1
)+

BC 0+
∑

1≤j<i

(⌈
x−AJ j

Tj

⌉
− 1
)+

BC j

We use WRi as a starting value for the iteration.

Task τ1:

br
(0)
1 = 5

br
(1)
1 = 1 +

(⌈
5 + 1

5

⌉
− 1
)

2 +
(⌈

5− 2
5

⌉
− 1
)+

1 = 1 + 2 + 0 = 3

br
(2)
1 = 1 +

(⌈
3 + 1

5

⌉
− 1
)

2 +
(⌈

3− 2
5

⌉
− 1
)+

1 = 1 + 0 + 0 = 1

br
(3)
1 = 1 +

(⌈
1 + 1

5

⌉
− 1
)

2 +
(⌈

1− 2
5

⌉
− 1
)+

1 = 1 + 0 + 0 = 1

Therefore, BR1 = 1.

/Department of Mathematics and Computer Science 45

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

Task τ2:

br
(0)
2 = 20

br
(1)
2 = 4 +

(⌈
20 + 1

5

⌉
− 1
)

2 +
(⌈

20− 2
5

⌉
− 1
)+

1 +
(⌈

20
7

⌉
− 1
)+

1 = 4 + 8 + 3 + 2 = 17

br
(2)
2 = 4 +

(⌈
17 + 1

5

⌉
− 1
)

2 +
(⌈

17− 2
5

⌉
− 1
)+

1 +
(⌈

17
7

⌉
− 1
)+

1 = 4 + 6 + 2 + 2 = 14

br
(3)
2 = 4 +

(⌈
14 + 1

5

⌉
− 1
)

2 +
(⌈

14− 2
5

⌉
− 1
)+

1 +
(⌈

14
7

⌉
− 1
)+

1 = 4 + 4 + 2 + 1 = 11

br
(4)
2 = 4 +

(⌈
11 + 1

5

⌉
− 1
)

2 +
(⌈

11− 2
5

⌉
− 1
)+

1 +
(⌈

11
7

⌉
− 1
)+

1 = 4 + 4 + 1 + 1 = 10

br
(5)
2 = 4 +

(⌈
10 + 1

5

⌉
− 1
)

2 +
(⌈

10− 2
5

⌉
− 1
)+

1 +
(⌈

10
7

⌉
− 1
)+

1 = 4 + 4 + 1 + 1 = 10

Therefore, BR2 = 10.

B.2 Derivation of (linear) response-time upper bounds using RUB
i,α (Ω)

We present the analytical derivation of the response-time upper bounds for the task set presented
in Table 5 using the linear supply bound function approach defined by Equation (37) i.e.

RUBi,α (Ω) =
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ Uβα (Π + ∆− 2Θ)

Uβα −
∑

1≤j<i U
τ
j

,

for Π = 5, Θ = 2 and ∆ = 3.

Task τ1:

RUB1,2 (Ω) =
1 + 2

5 (5 + 3− 2(2))
2
5

=
13
2

= 6.5

Task τ2:

RUB2,2 (Ω) =
4 + 1(1− 1

7) + 2
5 (5 + 3− 2(2))

2
5 −

1
7

=
226
9

= 25.11

For the unavailability approach, we use Equation (39) i.e.

RUBi =
Ci +

∑
−1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
− ϕ-1U

τ
-1

1−
∑
−1≤j<i U

τ
j

.

Task τ1:

R̂UB1 =
1 +

(
2(1− 2

5)
)

+
(

1
5 (2) + 1(1− 1

5)
)
− 1

(
2
5

)
1− 2

5 −
1
5

=
15
2

= 7.5

46 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

Task τ2:

R̂UB2 =
4 +

(
2(1− 2

5)
)

+
(

1
5 (2) + 1(1− 1

5)
)

+ 1(1− 1
7)− 1

(
2
5

)
1− 2

5 −
1
5 −

1
7

=
240
9

= 26.67

B.3 Derivation of (linear) response-time upper bounds using RUB†
i (C)

We present the analytical derivation in of the response-time upper bounds for the task set presented
in Table 6 using Equation (43) from the transformation to the unavailability model as described
in Section 6.3 i.e.

RUB†i =
Ci +

∑
1≤j<i

(
Uτj AJj + Cj(1− Uτj)

)
+ x(1− Uτ†)

1− Uτ† −
∑

1≤j<i U
τ
j

,

where x = ∆ + Π− 2Θ, Π = 5, Θ = 2 and ∆ = 3.

Task τ1:

R̂UB†1 =
1 + 4(1− 3

5)
1− 3

5

=
13
2

= 6.5

Task τ2:

R̂UB†2 =
2 + 1(1− 1

14) + 4(1− 3
5)

1− 3
5 −

1
14

=
317
23

= 13.78

Task τ3:

R̂UB†3 =
2 + 1(1− 1

14) + 2(1− 2
14) + 4(1− 3

5)
1− 3

5 −
1
14 −

2
14

=
437
13

= 33.62

B.4 Derivation of (linear) response-time upper bounds for tasks having the
same period (Application A4)

This appendix contains the analytic derivation of the (worst-case) response-time upper bounds for
tasks in application A4 whose characteristics were presented in Table 7 along with a summary of
the results.

B.4.1 Sum of tangents
∑

(⊥) approach

Task τ1: Since task τ1 is the highest priority task, RUB1 = WR1= C1= 4.

Task τ2:

/Department of Mathematics and Computer Science 47

Technische Universiteit Eindhoven CS-Report 10-07, August 2010

IUB1 (t) = U1t+ C1(1− U1) = 4
10 t+ 24

10

ldbf2(t) = IUB1 (t) + C2 = 4
10 t+ 54

10

RUB2 : t = 4
10 t+ 54

10 ⇒ t = 9

Task τ3:

IUB1 (t) = U1t+ C1(1− U1) = 4
10 t+ 24

10

IUB2 (t) = U2t+ C2(1− U2) = 3
10 t+ 21

10

ldbf3(t) = IUB1 (t) + IUB2 (t) + C3 = 7
10 t+ 45

10 + 2

RUB3 : t = 7
10 t+ 65

10 ⇒ t = 21.67

B.4.2 Tangent of combination⊥(
∑

FPPS) approach

Tasks τ1 and τ2: Same as in sum of tangents.

Task τ3: From Figure 13(a), points p1(7, 7) and p2(17, 14) lie on the required line IUB{1⋃ 2}(t);
gradient = 7

10 .

IUB{1
⋃

2}(t) = 7
10 (t− 7) + 7 = 7

10 t+ 21
10

ldbf3(t) = IUB{1
⋃

2}(t) + C3 = 7
10 t+ 41

10

RUB3 : t = 7
10 t+ 41

10 ⇒ t = 13.67

B.5 Derivation of (linear) response-time upper bounds for harmonic tasks
(Application A5)

This appendix contains the analytic derivation of the (worst-case) response-time upper bounds for
tasks in application A5 whose characteristics were presented in Table 8 along with a summary of
the results.

B.5.1 Sum of tangents
∑

(⊥) approach

Task τ1: Since task τ1 is the highest priority task, OUBi (C) = WR1= C1= 2.

Task τ2:

IUB1 (t) = U1t+ C1(1− U1) = 2
5 t+ 6

5

ldbf2(t) = IUB1 (t) + C2 = 2
5 t+ 21

5

RUB2 : t = 2
5 t+ 21

5 ⇒ t = 7

48 /Department of Mathematics and Computer Science

CS-Report 10-07, August 2010 Technische Universiteit Eindhoven

Task τ3:

IUB1 (t) = U1t+ C1(1− U1) = 2
5 t+ 6

5

IUB2 (t) = U2t+ C2(1− U2) = 3
10 t+ 21

10

ldbf3(t) = IUB1 (t) + IUB2 (t) + C3 = 7
10 t+ 33

10 + 2

RUB3 : t = 7
10 t+ 53

10 ⇒ t = 17.67

B.5.2 Tangent of combination⊥(
∑

FPPS) approach

Tasks τ1 and τ2: Same as in sum of tangents.

Task τ3: From Figure 14(a), points p1(7, 7) and p2(17, 14) lie on the required line IUB{1⋃ 2}(t);
gradient = 7

10 .

IUB{1
⋃

2}(t) = 7
10 (t− 7) + 7 = 7

10 t+ 21
10

ldbf3(t) = IUB{1
⋃

2}(t) + C3 = 7
10 t+ 41

10

RUB3 : t = 7
10 t+ 41

10 ⇒ t = 13.67

/Department of Mathematics and Computer Science 49

Index

EDP resource model, 17
Linear supply bound function, 18
Supply bound function, 18

FPPS, 8, 10
Best-case response-time analysis, 11, 13
Critical instant, 9, 10, 13
Jitter analysis, 12
Optimal instant, 9, 11, 13
Schedulability conditions, 9
Utilization, 9
Worst-case response-time analysis, 10, 13

H-FPPS, 14
Best-case available capacity of a(n) EDP

budget, 19
Best-case response-time analysis of tasks,

19
Critical instant, 15
Global scheduler, 14
Local scheduler, 14
Locality of scheduling analysis, 14
Optimal instant, 19
Worst-case available capacity of a budget,

16
Worst-case response-time analysis of tasks,

15
Worst-case start time of a budget, 16

Improved response-time upper bounds, 30
Harmonic tasks, 34
Least common multiple, 34
Same-period tasks, 32
Tangent of combination approach, 32

Periodic resource model, 17
Linear supply bound function, 17
Supply bound function, 17

Response-time upper bounds, 24
FPPS, 25
H-FPPS

Linear supply bound function, 26
Unavailability model approach, 27

Unavailability model, 20
Assumptions for resource provisioning, 22
Best-case response-time analysis, 22
Worst-case response-time analysis, 22

50

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and motivation
	1.2 Problem statement
	1.3 Approach
	1.4 Contributions
	1.5 Organization of the document

	2 Real-time scheduling models
	2.1 A basic model for FPPS
	2.2 A periodic server model for budgets

	3 Recapitulation of analysis for FPPS
	3.1 Worst-case response-time analysis
	3.2 Best-case response-time analysis
	3.3 Jitter analysis

	4 Recapitulation of analysis for two-level H-FPPS
	4.1 Worst-case response-time analysis of tasks
	4.2 Worst-case available capacity analysis
	4.3 Periodic resource model
	4.4 Explicit-deadline periodic (EDP) resource model
	4.5 Other models
	4.6 Best-case response-time analysis of tasks
	4.7 Best-case available capacity analysis

	5 Response-time analysis by modeling resource unavailability
	5.1 Modeling unavailability of a budget
	5.2 Assumptions for resource provisioning to A
	5.3 Worst-case response-time analysis
	5.4 Best-case response-time analysis
	5.5 Applying the response-time analysis to an example

	6 Response-time upper bounds
	6.1 Existing analysis for FPPS
	6.2 Applying the existing analysis to H-FPPS using the linear supply bound function lsbf(t)
	6.3 An alternative approach based on unavailability model

	7 Improving response-time upper bounds
	7.1 Improved closed-form (worst-case) response-time upper bounds for tasks having the same period and scheduled on a shared resource
	7.1.1 Tangent of combination approach (FPPS)
	7.1.2 Comparison of results

	7.2 Improved closed-form (worst-case) response-time upper bounds for harmonic tasks scheduled on a shared FPPS resource
	7.2.1 Tangent of combination approach (FPPS)
	7.2.2 Comparison of results

	8 Conclusions
	9 Future work
	Acknowledgements
	References
	A Improved and/or faster schedulability analysis using the unavailability model
	B Derivation of equations
	B.1 Worst- and best-case response-time analysis using unavailability model
	B.2 Derivation of (linear) response-time upper bounds using Ri,UB()
	B.3 Derivation of (linear) response-time upper bounds using RiUB(C)
	B.4 Derivation of (linear) response-time upper bounds for tasks having the same period (Application A4)
	B.4.1 Sum of tangents () approach
	B.4.2 Tangent of combination(FPPS) approach

	B.5 Derivation of (linear) response-time upper bounds for harmonic tasks (Application A5)
	B.5.1 Sum of tangents () approach
	B.5.2 Tangent of combination(FPPS) approach

