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Abstract

This paper addresses the problem of sensitivity analysis for finite hori-
zon performance measures of general Markov chains. We derive closed
form expressions and associated unbiased gradient estimators for deriva-
tives of finite products of Markov kernels by measure-valued differentia-
tion (MVD). In the MVD setting, derivatives of Markov kernels, called
D-derivatives, are defined with respect to an appropriately defined class
of performance functions D, such that for any performance measure g ∈ D
the derivative of the integral of g with respect to the one step transition
probability of the Markov chain exists. The MVD approach (1) yields re-
sults that that can be applied to performance functions out of a predefined
class, (2) allows for a product rule of differentiation, that is, analyzing the
derivative of the transition kernel immediately yields finite horizon results,
(3) provides an operator language approach to differentiation of Markov
chains and (4) clearly identifies the trade-off between the generality of
performance classes that can be analyzed and the generality of the classes
of measures (Markov kernels). The D-derivative of a measure can be inter-
preted in terms of various (unbiased) gradient estimators and the product
rule for D-differentiation yields a product-rule for various gradient esti-
mators.

1 Introduction

Many real-world systems in manufacturing, transportation, communication net-
works, or finance can be modeled by general state-space Markov chains, such
as generalized semi-Markov processes. The past two decades have witnessed an
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increased attention for the study of discrete event driven systems (see [5, 6, 18]),
with the aim of finding better and more efficient control methods. In particular,
stochastic approximation methods have extended the applicability of gradient
search techniques to complex stochastic systems, but their implementation re-
quires the construction of gradient estimators satisfying certain conditions [14].
This paper addresses this problem using a general probabilistic framework to
study sensitivity analysis of finite horizon performance measures for Markov
chains.

The motivation for the present paper is to establish an unified mathematical
framework for gradient estimation of Markov chains. Our approach summarizes
the proof techniques and ideas that are known in the literature in order to
establish a meta theory of gradient estimation. In our view, such a meta theory
has to meet the following prerequisites:

(i) a general and meaningful concept of differentiation is provided,

(ii) a product rule of differentiation for this concept of differentiation holds,

(iii) statements obtained within the meta theory can be translated into unbi-
ased gradient estimators, and finally

(iv) random horizon problems can be dealt with.

The focus of this paper is on measure-valued differentiation (MVD) for gen-
eral state-space Markov chains. We will show that MVD provides the means to
establish a meta theory of gradient estimation. In particular, we address here
topics (i) to (iii). The fact the MVD is an operator language approach will prove
most helpful when going from (i) to (ii). Topic (iv) is beyond the scope of this
paper and its analysis is postponed to a follow-up paper ([11]).

The paper is organized as follows. Section 2 discusses various approaches to
the gradient estimation problem. We illustrate to what extent these methods
already have features of the intended meta theory. In Section 3, we introduce
measure-valued derivatives and we establish the key technical result, which is
the product rule of measure valued differentiation. In Section 4, we show how
the conditions of the product rule can be verified in various scenarios that are
of importance in applications. For example, when only bounded functions are
considered, then the conditions for the product rule can be expressed in a very
simple manner. While Section 4 prepares the ‘input’ of the product rule, Sec-
tion 5 is concerned with the ‘output’ of the product rule: This last section
shows how the expressions produced by the product rule (and containing signed
measures) can be turned into various types of gradient estimators leading to
estimators typically obtained from SPA, the Score function method or weak
derivatives.

2 Background and Motivation

Let {Xθ(n)}, with θ ∈ Θ ⊂ R, be a Markov Chain with (arbitrary) state
space S defined on a common probability space (Ω,F, P), where Θ is the set
of parameters (generally these are the control parameters) , such that (Ω,F, P)
is independent of θ and Xθ(n) is well defined on Θ. The problem of sensitivity
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analysis can be phrased as follows: For performance functions g : S → R find
conditions, such that for n ∈ N

d

dθ
E

[
g(Xθ(n), . . . , Xθ(1))

]
(1)

exists and can be obtained in a closed form expression. When derivatives are
defined, it is sufficient that Θ be a neighborhood of the point θ of interest. The
term sensitivity analysis is often used to refer to (unbiased) estimators, called
gradient estimators, of this derivative. The last two decades have witnessed a
great interest in the problem of finding unbiased estimators for the expression
in (1), see for example [3, 5, 6, 13, 15, 17, 18]. The methods available are legion
and even experts find it difficult to oversee the various methods and estima-
tors. However, the following three major approaches can be identified: smoothed
perturbation analysis (SPA) (we remark to the expert reader that we consider in-
finitesimal perturbation analysis (IPA) as a special case of SPA), score function
and weak derivatives, which will be described in what follows in more detail.

2.1 Smoothed Perturbation Analysis

In the sample-path analysis setting, the dependency of the expectation in the
parameter θ is expressed entirely through the performance. If the sample perfor-
mance is almost surely Lipschitz continuous in θ, then the sample path derivative
dg(Xθ(n, ω))/dθ is unbiased for the gradient (1), yielding the so-called infinitesi-
mal perturbation analysis, see [6]. In the presence of discontinuities, conditioning
can be used to integrate (or “smooth out”) such discontinuities, see [5].

Two approaches can be identified. The first seeks an estimator of the form

d

dθ
E[g(Xθ(k+1))|Xθ(k) = x] = E

[
d

dθ
E[g(Xθ(k + 1))|Xθ(k) = x,G]

∣∣∣∣Xθ(k) = x

]
,

where G is a smoothing σ-field, and H(θ) = E[g(Xθ(k + 1))|Xθ(k) = x,G] is
a.s. Lipschitz continuous. It is often very difficult to identify such conditioning
fields in practice.

The second approach [7] prescribes an analysis of a perturbed path using
the same trajectory ω for θ and for θ±Δ and conditioning on the (rare) events
where discontinuities may occur. This formulation implies that the nominal and
perturbed processes Xθ, Xθ+Δθ share a common filtration. Let g be a real valued
integrable function and call {Xθ(k, x), k ∈ N} the process started at Xθ(0) = x
and consider evaluating the sensitivities of the one-step expectation. By the
Markov property, this sensitivity is:

d

dθ

⌋
θ=θ0

E[g(Xθ(k + 1))|Xθ0(k) = x] = lim
Δθ→0

E

[
g(Xθ0+Δθ(1, x)) − g(Xθ0(1, x))

Δθ

]
,

The random variable Hx(θ) = g(Xθ(1, x)) may fail to be a.s. Lipschitz con-
tinuous, therefore it is possible to divide the state space into a set A∗

x(Δθ, θ)
containing only trajectories where Hx(θ) is Lipschitz continuous, and the so-
called critical set

Ax(Δθ, θ) = {ω : |g(Xθ+Δθ(1, x; ω)) − g(Xθ(1, x; ω))| > α Δθ} ,
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for some α > 0. It is assumed here that for each state x the limit Ax(Δθ, θ) →
Ax(θ) exists, for some measurable set Ax(θ) and that the following limit (called
critical rate)

lim
Δθ→0

P(Ax(Δθ, θ) )
Δθ

= p′θ(x) > 0

exists and is finite. This implies that for each x ∈ S limΔθ→0 P(A∗(Δθ, θ)) =
1 In addition, if the discontinuity itself is absolutely integrable, that is:
E[|g(Xθ+Δθ(1, x))−g(Xθ(1, x))| | Ax(Δθ, θ)] < ∞ then Dominated Convergence
yields:

lim
Δθ→0

E

[
g(Xθ+Δθ(1, x)) − g(Xθ(1, x))

Δθ

]

= E

[
d

dθ
Hx(θ)

]
+ E[g(Xθ+(1, x)) − g(Xθ(1, x))|Ax(θ)] p′θ(x) ,

where Xθ+(1, x) denotes the limit of Xθ+Δθ(1, x) as Δθ ↓ 0. The term inside
the first expectation is known as the IPA term and the second, as the SPA term
of the derivative estimator. The effect of conditioning on the so-called critical
events is to partially integrate the discontinuities via the critical rate p′θ. For an
example with zero IPA contribution, see [8].

In the foregoing, only one transition was affected by the perturbation of θ.
When studying the process {Xθ(n)}, the perturbations affect the entire trajec-
tories. As done in [5], the expectation is re-written in terms of Filtered Monte
Carlo, conditioning on each step. Under the assumed integrability conditions,
the overall effect of the SPA term is obtained as if only one-step transitions were
perturbed at a time, that is (assuming no IPA contribution):

d

dθ
E[g(Xθ(k + 1))]

= E

[
k∑

i=0

E

[
g(X(i)

θ (k + 1)) − g(Xθ(k + 1))
∣∣∣AXθ(i)(θ)

]
p′θ(Xθ(i))

]
, (2)

where the process {X(i)
θ (n)} is the limiting process from a perturbation θ + Δθ

at the i-th transition only. To show the validity of the expression above and to
obtain the sample path estimators, the crucial step when using the pathwise
analysis is to show that for small changes in θ, the discontinuous effect of the
perturbation of the whole trajectory is only local: discontinuities initiate at
each transition and then propagate. This can be done as in [1] by showing
that the contribution from paths with discontinuities in multiple transitions
has a vanishing effect in the limit as Δ → 0. To summarize, SPA involves a
careful pathwise analysis of the propagation of delays and their effect on a given
performance measure.

While SPA offers great flexibility, proofs of unbiasedness are often very cum-
bersome, which stems from the fact the effect of a perturbation on the entire
sample path has to be studied. Furthermore, generally the results for SPA only
hold for individual performance functions and changing the considered perfor-
mance function leads to a entirely new proof.

Under our interpretation in terms of MVD, the term p′θ in (2) represents the
derivative of a probability distribution, and calculating the overall gradient in (1)
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corresponds to applying a “product rule” of differentiation to a product measure.
In this paper we derive such a product rule of measure-valued differentiation,
which can be applied to SPA. More precisely, our product rule for measure-
valued differentiation provides the sensitivity of the entire sample path out of a
local analysis. Put another way, the analysis of the propagation of delays is not
necessary anymore.

2.2 Weak Derivatives

In this section, we briefly review the concept of weak differentiation of prob-
ability measures as introduced by Pflug, see [15]. Let (S,S) denote a Polish
measurable space1. For most applications, S ⊂ R

d and S represents the σ-field
of events that are Borel subsets of R

d. Let M = M(S,S) denote the set of
finite signed measures on (S,S), and M1 = M1(S,S) ⊂ M the set of probabil-
ity measures. Denote by Cb := Cb(S) the set of bounded continuous mappings
g : S → R. For any signed measure ν on (S,S) there exists a set G ∈ S, such
that [ν]+(A) := ν(A ∩ G) ≥ 0 and [ν]−(A) := −ν(A ∩ Gc) ≥ 0 for any A ∈ S,
see, for example, [12]. In particular, the set G is implicitly defined via

ν(G) = sup{A ∈ S : ν(A)} . (3)

The measures [ν+] and [ν−] are positive measures on (S,S) and the pair
([ν]+, [ν]−) is called the Hahn-Jordan decomposition of ν. The Hahn-Jordan de-
composition is unique in the sense that if Ĝ is another set, such that ν(A∩Ĝ) ≥ 0
and ν(A ∩ Ĝc) ≤ 0 for any A ∈ S, then ν(A ∩G) = ν(A∩ Ĝ) for any A ∈ S. A
signed measure is called finite if [ν]+ and [ν]− are finite measures. Integration
with respect to a signed measure is defined through∫

S

g(s) ν(ds) =
∫

S

g(s) [ν]+(ds) −
∫

S

g(s) [ν]−(ds) ,

provided that the terms on the right-hand side of the above formula are finite.
See [12] for more details.

Definition 1 A measure μθ ∈ M1 is called weakly differentiable at θ if a signed
finite measure μ′

θ ∈ M exists, such that for all g ∈ Cb it holds that

lim
Δ→0

1
Δ

(∫
S

g(s)μθ+Δ(ds) −
∫

S

g(s)μθ(ds)
)

=
∫

S

g(s)μ′
θ(ds) .

Note that μ′
θ(S) =

∫
S

μ′
θ(ds) = 0 (take g = 1), so that μ′

θ can be written
as difference between two probability measures (apply, for example, the Hahn-
Jordan decomposition).

Definition 2 A triple (cθ, μ
+
θ , μ−

θ ) is called a weak derivative of μθ, where μ±
θ ∈

M1, if for all continuous bounded functions g ∈ Cb it holds that∫
S

g(s)μ′
θ(ds) = lim

Δ→0

1
Δ

(∫
S

g(s)μθ+Δ(ds) −
∫

S

g(s)μθ(ds)
)

= cθ

(∫
S

g(s)μ+
θ (ds) −

∫
S

g(s)μ−
θ (ds)

)
. (4)

1A topological space is called separable if it contains a countable dense set. It is called
Polish if there exists a metric compatible with the topology under which the space is complete
and separable; see e.g. [4].
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The probability measure μ+
θ is called the (normalized) positive part of μ′

θ

and μ−
θ is called the (normalized) negative part of μ′

θ, respectively. Note that
the weak derivative is not unique. We illustrate this with the following example.

ExampleExample 1. Let S = [0,∞) and ηθ the exponential distribution with mean θ.
Let fθ(x) = θ exp(−θx) denote the Lebesgue density of ηθ, then it holds for any
g ∈ Cb

d

dθ

∫
g(x) ηθ(dx) =

d

dθ

∫
g(x) fθ(x) dx

=
∫

g(x)
d

dθ
fθ(x) dx

=
∫

g(x)(1 − θx)e−θx dx

=
1
θ

(∫
g(x)fθ(x) dx −

∫
g(x)hθ(x) dx

)
,

where hθ is the density of the Gamma (2,θ) distribution, denoted by Γ(2, θ).
Hence, ηθ is weakly differentiable and an instance of a weak derivative of μθ is
given by (

1/θ , ηθ , Γ(2, θ)
)

. (5)

On the other hand, the Hahn-Jordan decomposition leads to the representation
((θ e)−1, μ+

θ , μ−
θ ) with

μ+
θ (A) =

∫ 1/θ

0

1A(x) (θ − θ2x) e1−θx dx

and
μ−

θ (A) =
∫ ∞

1/θ

1A(x) (θ2x − θ) e1−θx dx ,

for any measurable set A.
÷×÷×÷×

From the definition, it is clear that weak derivatives yield results which hold
on Cb. Furthermore, a product rule of weak differentiation for products of inde-
pendent measures exist, see [15]. However, whether there also exists a product
rule of weak differentiation for conditional measures, like Markov kernels, is still
an open question.

The MVD approach that we introduce in Section 3 extends the results of
weak derivatives in two aspects: the product form is now established for the
product of Markov kernels, and also admissible performance functions are more
general, no longer requiring (piece-wise) continuity and boundedness.

2.3 Score Function

In this section, we briefly review some basic facts on the Score Function method.
For details we refer to [17, 18]. Assume that ν ∈ M exists, such that μθ is
absolutely continuous with respect to ν for all θ ∈ Θ and denote the ν-density
of μθ by fθ. If fθ is ν almost surely differentiable with respect to θ and∫

S

sup
θ∈Θ

∣∣∣∣ d

dθ
fθ(u)

∣∣∣∣ ν(du) < ∞ ,
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then for any g ∈ Cb

d

dθ

∫
g(u)μθ(du)=

∫
g(u)

d

dθ
fθ(u) ν(du)

=
∫

g(u)
d

dθ
ln(fθ(u))μθ(du) . (6)

The mapping d ln(fθ(u))/dθ is called score function.
The score function approach works on Cb. Furthermore, standard calculus

implies a product rule for the score function. The key condition for the above
approach is that fθ(u) = 0 implies dfθ(u)/dθ = 0. In other words, the measure μ′

θ

given by μ′
θ(B) =

∫
B

d
dθfθ(u) ν(du) for B ∈ S, is absolutely continuous w.r.t. ν

and μθ. As we will illustrate in section 2.4, this restricts the applicability of
the Score Function approach. In addition, the Score Function estimates suffer
typically from variance problems.

2.4 A Note on Domination

Note that, for any g ∈ Cb, if (6) holds then μθ is weakly differentiable. However,
the converse is not true. To see this, the key observation is that the above Score
Function approach requires that μθ as well as μ′

θ are absolutely continuous with
respect to the same measure ν, which is not required for the measure-valued
concept of differentiation. The following simple example illustrates this issue.

ExampleExample 2. For θ > 0, let U[0,θ] denote the uniform distribution on the interval
[0, θ]. For any continuous mapping g,

d

dθ

∫
g(x)U[0,θ](dx)=

d

dθ

(
1
θ

∫ θ

0

g(x) dx

)

=
1
θ
g(θ) − 1

θ2

∫ θ

0

g(x) dx

=
1
θ

(∫
g(x) δθ(dx) −

∫
g(x)U[0,θ](dx)

)
,

where δθ denotes the Dirac measure in θ. Hence, (1/θ, δθ,U[0,θ]) is a weak deriva-
tive of μθ. Moreover, the positive part of the weak derivative is a discrete measure
whereas the negative part is absolutely continuous with respect to the Lebesgue
measure. In other words, μ′

θ fails to be absolutely continuous with respect to
either μθ or the Lebesgue measure. The Score function method is therefore not
applicable.

÷×÷×÷×
Problems with domination can be easily dealt with by an a posteriori anal-

ysis. Indeed, the reason why the Score Function fails in the above example is
that the Dirac measure in point θ is not absolutely continuous with respect to
the uniform distribution on [0, θ]. Switching from U[0,θ] as driving probability
measure to, say, νθ = 1

2U[0,θ] + 1
2δθ solves this problem, since δθ and U[0,θ] are

now absolutely continuous with respect to the new probability measure νθ; see
[9] for more details.

7



3 Measure-Valued Differentiation

In this section, we formally present the concept of measure-valued differentiation
(MVD), inspired by the concept of weak differentiation, but as we will soon
establish, our methodology does not rely on weak topology only. The main
result of this section is the proof of the product rule for MVD. Furthermore,
using a conditioning approach, we show how the measure-valued differentiability
of a Markov kernel can be deduced from that of more elementary distributions.

3.1 Basic Concepts and Definitions

Let (S2,S2) and (S1,S1) be Polish measurable spaces. Recall that M(S2,S2)
denotes the set of finite (signed) measures on (S2,S2) and M1(S2,S2) that of
probability measures on (S2,S2).

Definition 3 The mapping P : S2 × S1 → [0, 1] is called a transition kernel on
(S2, S1) if

(a) P (·; s) ∈ M(S2,S2) for all s ∈ S1; and

(b) P (B; ·) is S1 measurable for all B ∈ S2.

If, in condition (a), M(S2,S2) can be replaced by M1(S2,S2), then P is called
a Markov kernel on (S2, S1).

Denote the set of transition kernels on (S2, S1) by K(S2, S1) and the set
of Markov kernels on (S2, S1) by K1(S2, S1). If (S2,S2) 
= (S1,S1), then the
transition (respectively, Markov) kernel is called inhomogeneous, whereas for
(S,S) := (S2,S2) = (S1,S1) it is called homogenous and P is then called a
transition (respectively, Markov) kernel on (S, S).

Consider a family of Markov kernels (Pθ : θ ∈ Θ) on (S2, S1), where Θ ⊂ R is
a compact set, and let L1(Pθ; Θ) ⊂ R

S2 denote the set of measurable mappings
g : S2 → R, such that

∫
S2

|g(u)|Pθ(du; s) is finite for all θ ∈ Θ and s ∈ S1.

Definition 4 Let Pθ ∈ K(S2, S1), for θ ∈ Θ, and let D ⊂ L1(Pθ; Θ). We call
Pθ differentiable at θ with respect to D, or D-differentiable for short, if for any
s ∈ S1 a P ′

θ(·; s) ∈ M(S2,S2) exists, such that, for any s ∈ S1 and for all g ∈ D
d

dθ

∫
S2

g(u)Pθ(du; s) =
∫

S2

g(u)P ′
θ(du; s) . (7)

If the left-hand side of equation (7) equals zero for all g ∈ D, then we say that
P ′

θ is not significant.

Recall that Cb(S) denotes the set of continuous bounded mappings from S
to R.

Lemma 1 Let Pθ ∈ K1(S2, S1) be D-differentiable. If Cb(S2) ⊂ D, then
P ′

θ(·; s) ∈ M(S2,S2) is uniquely defined for any s ∈ S1.
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Proof: Fix s ∈ S1, then P ′
θ(·; s) is a signed measure on (S2,S2) and its

Hahn-Jordan decomposition is uniquely defined. Let νθ 
= P ′
θ(·; s) be another

signed measure on (S2,S2), such that

∀g ∈ D :
d

dθ

∫
S2

g(u) νθ(du) =
∫

S2

g(u)P ′
θ(du; s) . (8)

Taking the Hahn-Jordan decomposition of νθ, it follows from (8) that

∀g ∈ D :
d

dθ

∫
S2

g(u) [νθ]±(du) =
∫

S2

g(u) [P ′
θ]

±(du; s) , (9)

where we write [·]± to indicate that the above equation holds for the posi-
tive and the negative part. Form Cb(S2) ⊂ D it follows by (9) that for any
bounded continuous mapping from S2 to R integration with respect to [νθ]±

and [P ′
θ]

±(·; s) yields the same results, hence, the measures are equal, that is,
[νθ]±(A) = [P ′

θ]
±(A; s) for any A ∈ S2. Thus νθ(·) = P ′

θ(·; s), which concludes
the proof of the lemma.

�
If P ′

θ exists, then the fact that P ′
θ(·; s) fails to be a probability measure poses

the problem of sampling from P ′
θ(·; s). For s ∈ S1 fixed, we can represent P ′

θ(·; s)
by its Hahn-Jordan decomposition as a difference between two probability mea-
sures. More precisely, this Hahn-Jordan decomposition is obtained as follows.
Let

cPθ
(s) = [P ′

θ]
+(S; s) = [P ′

θ]
−(S; s) (10)

and

P+
θ (·; s) =

[P ′
θ]

+(·; s)
cPθ

(s)
, P−

θ (·; s) =
[P ′

θ]
−(·; s)

cPθ
(s)

,

then it holds, for all g ∈ D, that∫
S2

g(u)P ′
θ(du; s) = cPθ

(s)
(∫

S2

g(u)P+
θ (du; s) −

∫
S2

g(u)P−
θ (du; s)

)
. (11)

For the above line of argument we fixed s. For P+
θ and P−

θ to be Markov ker-
nels, we have to consider P+

θ and P−
θ as functions in s and have to establish

measurability of P+
θ (A; ·) and P−

θ (A; ·) for any A ∈ S2. This problem is equiv-
alent to showing that cPθ

(·) in (10) is measurable as a mapping from S1 to R.
Unfortunately, only sufficient conditions are known. If, for example, σ-field S2

has at most countably many elements (that is, if S2 is finite), then the following
lemma establishes measurability.

Lemma 2 If S2 is a countable set, then cPθ
defined in (10) is measurable as

mapping from S1 to R.

Proof: For s ∈ S1, let Gs denote a set, such that

P ′
θ(Gs; s) = sup{A ∈ S2 : P ′

θ(A; s)} .

The limit of a sequence of measurable mappings is again measurable. Hence,
for every A ⊂ S2, P ′

θ(A; ·) is a measurable mapping from S1 to R. Since the
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supremum is taken over countably many sets, it follows that P ′
θ(G(·); ·) is mea-

surable as a mapping from S1 to R. Equation (3) implies cPθ
(s) = P ′

θ(Gs; s),
which concludes the proof of the lemma. �

In applications cPθ
is calculated explicitly and its measurability is therefore

established case by case. Specifically, in most of the examples presented in this
paper, cPθ

turns out to be a constant and measurability is thus guaranteed.
As explained in [10], a general sufficient condition for P ′

θ to be a transition
kernel is the following: for all s ∈ S1 it holds that

sup
g∈Cb(S2), |g|≤1

∣∣∣∣
∫

S2

P ′
θ(du; s)g(u)

∣∣∣∣ < ∞ .

In Section 4.3 we will show that measurability of cPθ
defined in (10) holds

for general state-space S2 whenever P ′
θ is absolutely continuous with respect to

another kernel.
To conclude this section, we now introduce the notion of D-derivative, which

extends the concept of a weak derivative.

Definition 5 Let Pθ be D-differentiable. Any triple (cPθ
(·), P+

θ , P−
θ ), with P±

θ ∈
K1(S2, S1) and cPθ

a measurable mapping from S2 to R, that satisfies (11) is
called a D-derivative of Pθ. The kernel P+

θ is called the (normalized) positive
part of Pθ

′ and P−
θ is called the (normalized) negative part of Pθ

′; and cPθ
(·)

is called the normalizing factor.

D-derivatives are not unique. To see this, consider Pθ ∈ K1(S2, S1) with
D-derivative (cPθ

, P+
θ , P−

θ ) and take Q ∈ K(S2, S1) so that
∫

S2
g(u)Q(du; s) is

finite for any g ∈ D and s ∈ S1. Set

P̃+
θ =

1
2
P+

θ +
1
2
Q , P̃−

θ =
1
2
P−

θ +
1
2
Q .

Equation (11) implies for all g ∈ D and all s ∈ S1 that

d

dθ

∫
S2

g(u)Pθ(du; s)=2cPθ
(s)
(∫

S2

g(u) P̃+
θ (du; s) −

∫
S2

g(u) P̃−
θ (du; s)

)
.

3.2 The Product Rule of Measure-Valued Differentiation

For the finite horizon problem, as stated in (1), the transition kernel Pθ in Def-
inition 4 is the n step transition probability of the Markov chain {Xθ(m), m =
0, 1, . . .}. In general, it is often very hard to write down the n step transition
probability, and studying its differentiability properties is practically impossible.
However, the n step transition probability is composed out of one step transition
probabilities, that is, transition kernels, which are comparably easier to analyze.

This section establishes the main property of D-differentiable transition ker-
nels, namely, that the product of D-differentiable Markov kernels is again D-
differentiable and that the D-derivative can be expressed in terms of the D-
derivatives of the transition kernels.

Let P be a Markov kernel on (S2, S1) and Q a Markov kernel on (S1, S0),
where (S0,S0) is a measurable Polish space. The product of transition kernels
Q, P on (S2, S0) is defined as follows. For s ∈ S0 and B ∈ S2 set P Q(B; s) =
(P ◦ Q)(B, s) =

∫
S1

P (B; z)Q(dz; s). Let D2 ⊂ L1(P ) and D1 ⊂ L1(Q).

10



Definition 6 Let D2 be a set of measurable mappings g : S2 → R and let
D1 ⊂ R

S1 . Transition kernel Pθ is called (D2,D1)-mapping if

∀g ∈ D2 :
∫

S2

g(u)Pθ(du; ·) ∈ D1 .

If D = D1 = D2, then Pθ satisfying the above condition is called D-preserving.

A sufficient condition for
∫

g(u)(PQ)(du; s) to exist for any g ∈ D2 and any
s ∈ S, is that P is a (D2,D1)-mapping.

Definition 7 Let Pθ ∈ K(S2, S1) and D2 ⊂ L1(Pθ; Θ), D1 ⊂ R
S1 . We call Pθ

(D2,D1)-Lipschitz continuous if for any g ∈ D2 a Kg ∈ D1 exists, such that for
any Δ > 0 with θ + Δ ∈ Θ∣∣∣∣

∫
g(s)Pθ+Δ(ds; ·) −

∫
g(s)Pθ(ds; ·)

∣∣∣∣ ≤ Δ Kg .

If D = D2 = D1, then we call Pθ simply D-Lipschitz continuous.

The following theorem presents the key technical result of this section. The
proof is given in the Appendix.

Theorem 1 Let ((Si,Si) : 0 ≤ i ≤ n) be a sequence of Polish measurable
spaces. For 1 ≤ i ≤ n, let Pθ,i be a transition kernel on (Si, Si−1), such that
Pθ,i is Di-differentiable. Furthermore, set D0 = R

S0 .
We introduce the following assumptions: for each i, 1 ≤ i ≤ n,

(A0) if g, f ∈ Di then it holds that f + g ∈ Di,

(A1) Pθ,i is a (Di,Di−1)-mapping,

(A2) Pθ,i is (Di,Di−1)-Lipschitz continuous,

(A3) Pθ,i is Di-differentiable such that P ′
θ,i ∈ K(Si, Si−1) and P ′

θ,i is a
(Di,Di−1)-mapping.

The following statements hold true:

(i) Under Assumptions (A0), (A1) and (A2), the product
∏n

i=1 Pθ,i is
(Dn,D0)-Lipschitz continuous.

(ii) Under Assumptions (A0), (A1), (A2) and (A3) the product rule holds:(
n∏

i=1

Pθ,i

)′
=

n∑
j=1

n∏
i=j+1

Pθ,i P ′
θ,j

j−1∏
i=1

Pθ,i .

Following the line of proof of the above theorem, one obtains the following
chain rule of differentiation.

11



Corollary 1 Consider a D-differentiable Markov kernel Pθ such that P ′
θ ∈ K.

Let gθ ∈ D and assume that Kg ∈ D exists, such that for any Δ ∈ R with
θ + Δ ∈ Θ

|gθ+Δ(s) − gθ(s)| ≤ ΔKg(s) .

If gθ is differentiable at θ, then

d

dθ

∫
gθ(u)Pθ(du; s) =

∫ (
d

dθ
gθ(u)

)
Pθ(du; s) +

∫
gθ(u)P ′

θ(du; s) ,

for any s ∈ S.

Remark: When the performance function depends explicitly on θ the first term
is recognizably the so-called IPA term, and the corresponding integrability as-
sumption is given as a “weak D” Lipschitz continuity assumption. In particu-
lar, when the kernel is independent of θ the corollary recovers the usual IPA
formulation. It is worthwhile to notice that the pathwise analysis common to
SPA/IPA formulations requires explicit construction of the trajectories to eval-
uate the propagation of the perturbations: our formalism implicitly deals with
this propagation through a simple chain rule of differentiation.

Often, one is interested in evaluating expectations of an entire trajectory
rather than a particular n step transition. In terms of (1) one is interested in

d

dθ
E[g(Xθ(n), . . . , Xθ(1))] .

As the following corollary shows, the product rule of measure-valued differenti-
ation can be applied to the above problem too. However, D-differentiability of,
say, Pθ,i only controls the differentiability of functions on Si. In order to ensure
that a function of a sample path is differentiable, it is necessary to ensure that
the sample path functions are “locally” in the corresponding sets Di. To make
this precise, consider the following notation. Let Pθ,i be a Markov kernel on
(Si, Si−1), for 1 ≤ i ≤ n. For s ∈ S0, we denote the product measure on ×n

i=1Si

by (
∏n

i=1 Pθ,i) (·; s), that is, for Bi ∈ Si, with 1 ≤ i ≤ n,(
n∏

i=1

Pθ,i

)
(Bn, . . . , B1; s) =

∫
Bn

. . .

∫
B1

Pθ,n(dsn; sn−1) . . . Pθ,1(ds1; s) .

Corollary 2 Let Pθ,i be a Markov kernel on (Si−1,Si), for 1 ≤ i ≤ n, such that
Pθ,i is Di-differentiable for each i. Assume (A0), (A1), (A2) and (A3). Let
g : ×n

i=1Si → R. If, for each i ∈ {1, . . . , n} and any sj ∈ Sj (1 ≤ j ≤ n, j 
= i)

g(sn . . . , si+1, ·, si−1, . . . , s1) ∈ Di , (12)

then it holds true that

d

dθ

(∫
g(sn, . . . , s1)

(
n∏

i=1

Pθ,i

)
(dsn, . . . , s1; s)

)

=
n∑

j=1

∫
g(sn, . . . , s1)Pθ,n(dsn; sn−1) . . . P ′

θ,j(dsj ; sj−1) . . . Pθ,1(ds1; s) ,

for s ∈ S.
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Proof: See the Appendix. �

Remark: In applications, one is often interested in the sample mean as overall
performance measure, that is, one considers

g(sn, . . . , s1) =
1
n

n∑
i=1

h(si) .

for some performance function h. In this case condition (12) reduces to: h ∈
∩n

i=1Di. Moreover, if the Markov chain is homogeneous, we recover the natural
condition h ∈ D.

Theorem 1 establishes a product rule of measure-valued differentiation for
Markov kernels. In order to check whether a given Markov kernel satisfies the
conditions in Theorem 1, it is often helpful to separate the parts of the transition
kernel that depend on θ and those that are independent of θ. We illustrate this
conditioning approach with the following example.

ExampleExample 3. For Θ = [0, 1], let ηθ ∈ {0, 1} be Bernoulli-θ-distributed on Sη =
{0, 1}, with

P(ηθ = 0) =: μθ(0) = θ

P(ηθ = 1) =: μθ(1) = 1 − θ.

For any g = (g0, g1) ∈ R
2 it holds that

d

dθ

∫
Sη

gs μθ(ds) = g0 − g1 =
∫

Sη

gs δ0(ds) −
∫

Sη

gs δ1(ds) ,

where δy denotes the Dirac measure on y. Thus, μθ has R
2-derivative (1, δ0, δ1).

Let {Xθ(n)} denote the queue-length processes of a Markovian queueing
network. Denote the transition kernel of {Xθ(n)} by Pθ, where θ is a routing
parameter. The routing decision is made as follows. If, at the nth state transition,
a customer leaves a particular sever of the network, a Bernoulli-(θ)-distributed
random variable ηθ(n) is generated independent of everything else. For ηθ(n) = 0
the customer is routed to a particular server, say j, and for ηθ(n) = 1 he/she
is routed to a server, say j′, with j 
= j′. Using the fact that {ηθ(n)} is an
i.i.d. sequence, we can draw a sample of ηθ(n) at each transition. Let Q(·; s, ·)
denote the transition kernel of Xθ(n) given that ηθ(n) = s and let D be the set
of all g, such that for any possible queue-length vector x and s = 0, 1:

E

[
|g(Xθ(n + 1))|

∣∣∣Xθ(n) = x, ηθ = s
]

< ∞ . (13)

Then Pθ is D-differentiable. More specifically, for any g ∈ D it holds that

d

dθ

∫
g(u)Pθ(du; s)=

d

dθ

∫
Sη

∫
g(u)Q(du; η, s)μθ(dη)

=
∫

g(u)Q(du; 0, s) −
∫

g(u)Q(du; 1, s)

=
∫

g(u)P0(du; s) −
∫

g(u)P1(du; s) .
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Hence, a D-derivative of Pθ can be obtained from (1, P0, P1). Moreover, the D-
derivative is independent of θ and Pθ is thus D-Lipschitz continuous (for a proof
use the Mean Value Theorem). Linearity of the expected value in (13) implies
that for f, g ∈ D it holds that f +g ∈ D. Hence, provided that

∫
g(u)Pθ(du; ·) ∈

D for any g ∈ D and θ ∈ [0, 1], the product rule applies to Pθ.
To emphasize the potential benefits of the MVD approach, we stress that

from the simple formulas for the weak derivative of a Bernoulli random variable
it is now possible to reconstruct the MVD formulas for the routing sensitivities
in the whole network, via the product rule.

The above conditioning approach can be interpreted as a particular kind
of conditioning within the SPA setting (see Section 2.1), although MVD does
not yield a pathwise estimator, but a closed formula for the distributions. In
Section 5 we specifically deal with the construction of various estimators from
MVD formulas.

÷×÷×÷×

4 Setting The Product Rule To Work

In this section, we discuss various meaningful ways of interpreting the conditions
in Theorem 1. Simple examples will be given to illustrate the situations we have
in mind. For the sake of simplicity, consider homogeneous Markov chains and
denote the state-space by (S,S). To simplify the notation, drop the explicit
dependence on the state-space whenever this causes no confusion. For example,
we will write Cb instead Cb(S) for the set of bounded continuous functions.

4.1 Bounded Performance Functions

As a first choice for D take the set of bounded measurable mappings, denoted
by D0. Note that D0 satisfies (A0).

Lemma 3 Let Pθ be a Markov kernel that is D0-differentiable on Θ with D0-
derivative ((cPθ

(s), P+
θ (·; s), P−

θ (·; s)) : s ∈ S). If

sup
θ∈Θ

cPθ
(·) ∈ D0 ,

then

(Pn
θ )′ =

n∑
j=1

Pn−j
θ P ′

θ P j−1
θ .

Proof: Conditions (A1) and (A3) in Theorem 1 are trivially satisfied and we
turn to condition (A2): Lipschitz continuity. For any g ∈ D0,∣∣∣∣

∫
g(u)P ′

θ(du; s)
∣∣∣∣=cPθ

(s)
∣∣∣∣
∫

g(u)P+
θ (du; s) −

∫
g(u)P−

θ (du; s)
∣∣∣∣

≤cPθ
(s)
(∫

|g(u)|P+
θ (du; s) +

∫
|g(u)|P−

θ (du; s)
)

≤2 cPθ
(s) ||g||∞ ,
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where ||g||∞ = sup(|g(u)| : u ∈ S) denotes the sup-norm of g. Hence, applying
the Mean Value Theorem, it follows that for all Δ with θ + Δ ∈ Θ∣∣∣∣

∫
g(s)Pθ+Δ(ds; ·) −

∫
g(s)Pθ(ds; ·)

∣∣∣∣
≤ Δ sup

θ∈Θ

∣∣∣∣
∫

g(s)P ′
θ(ds; ·)

∣∣∣∣
≤ 2 ||g||∞ sup

θ∈Θ
cPθ

(s) ,

which is in D0 by assumption. Hence, (A2) in Theorem 1 is satisfied and proof
of the lemma follows directly from Theorem 1 (ii). �

The above lemma extends the product rule of weak differentiation of indepen-
dent measures, as established in [15], to (a) products of conditional measures,
and (b) bounded measurable performance functions (in contrast to bounded
piece-wise continuous).

ExampleExample 4. Let Xθ(n) be the discrete-time queue length process of an M/M/1
queue with arrival rate λ and service rate θ, with θ ≥ a > 0. The transition
kernel is then given in matrix form by

Pθ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0
λ

λ+θ 0 θ
λ+θ 0

0 λ
λ+θ 0 θ

λ+θ 0 · · ·
. . .

1 0

⎤
⎥⎥⎥⎥⎥⎦

Let

cPθ
(k) =

⎧⎨
⎩

0 , k = 0,
λ

(λ+θ)2 , 0 < k < m,

0 , k = m.

then a weak derivative of Pθ(·; k) can be obtained as follows. For k = 0 and
k = m,

(cPθ
(k), P+

θ (·; k), P−
θ (·; k)) = (0, Pθ(·; k), Pθ(·; k))

and for 0 < k < m

(cPθ
(k), P+

θ (·; k), P−
θ (·; k)) =

(
λ

(λ + θ)2
, δk+1(·), δk−1(·)

)
.

Since θ ≥ a > 0, supθ∈Θ cPθ
(·) ∈ Cb and Lemma 3 yields, for example, a closed

form expression for the derivative of any moment of the queue length at the nth
state with respect to the service rate.

For this setup the D-derivative can be represented in a concise form through
matrix notation. To see this, define the matrix CPθ

by

CPθ
=

⎡
⎢⎢⎢⎢⎢⎣

0
1

(λ+θ)2

. . .
1

(λ+θ)2

0

⎤
⎥⎥⎥⎥⎥⎦
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and matrices P+, P− by

P+ =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 1

. . .
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎦ P− =

⎡
⎢⎢⎢⎢⎢⎣

0 0
1 0

. . .
1 0
0 0

⎤
⎥⎥⎥⎥⎥⎦ ,

then
d

dθ
Pθ = CPθ

(
P+ − P−

)
,

and (with slight abuses of notation) the triple (CPθ
, P+, P−) may serve as

matrix-valued D-derivative of Pθ. The statement of Lemma 3 then reads

d

dθ
Pn

θ =
n∑

j=1

Pn−j
θ CPθ

P+P j−1
θ −

n∑
j=1

Pn−j
θ CPθ

P−P j−1
θ .

÷×÷×÷×

4.2 Performance Functions Bounded By A Polynomial

In applications, to assume that the sample performance is bounded (g ∈ D0) is
often too restrictive. A convenient set of performance functions is the set Dp of
polynomially bounded performance functions defined by

Dp =

{
g : S → R

∣∣∣∣∣g(x) ≤
p∑

i=0

κi ||x||i , κi ∈ R, 0 ≤ i ≤ p

}
, (14)

for some p ∈ N, where || · || denotes a norm on S (assuming that S is indeed
equipped with a norm). Most cases of interest in applications fall within this
setting. Note that Dp satisfies (A0) and that Dp ⊂ L1(Pθ : Θ) if Pθ(·; s) has
finite pth moment for any s ∈ S and θ ∈ Θ. The above definition recovers D0

as the set of bounded functions.

Lemma 4 Let p ∈ N. Consider a (homogeneous) Markov kernel Pθ, with finite
pth moment for any s ∈ S and θ ∈ Θ. Assume that Pθ is Dp-differentiable on
Θ with Dp-derivative ((cPθ

(s), P+
θ (·; s), P−

θ (·; s)) : s ∈ S).
If P ′

θ is Dp-preserving and a K(·) ∈ Dp exists, such that

sup
θ∈Θ

(
cPθ

(·)
∫

(1 + ||s||p)P±
θ (ds; ·)

)
≤ K(·) ,

then

(Pn
θ )′ =

n∑
j=1

Pn−j
θ P ′

θ P j−1
θ .

Proof: Assumption (A1) is satisfied and condition (A3) holds by assumption.
To apply Theorem 1 it remains to be shown that under the conditions in the
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lemma condition (A2) holds as well. Using the Dp-derivative of Pθ, it is easily
checked that for any g ∈ Dp and s ∈ S

sup
θ∈Θ

∣∣∣∣
∫

g(u)P ′
θ(du; s)

∣∣∣∣
≤

p∑
i=0

κi sup
θ∈Θ

{
cPθ

(s)
(∫

||u||iP+
θ (du; s) +

∫
||u||iP−

θ (du; s)
)}

.

Define H : S → [0,∞) by

H(s) =
p∑

i=0

κi K(s) , s ∈ S .

where K(·) ∈ Dp by assumption. Hence,

sup
θ∈Θ

∣∣∣∣
∫

g(u)P ′
θ(du; s)

∣∣∣∣ ≤ H(s) , s ∈ S ,

and H(·) ∈ Dp, because the set Dp is closed with respect to finite summation.
The proof of the lemma follows from the Mean Value Theorem.�
ExampleExample 5. Let Xθ(n) denote the nth waiting time at a GI/Fθ/1 queue with
generally distributed inter-arrival times. Let ηθ denote the exponential distribu-
tion with mean 1/θ and Γ(2, θ) the Gamma(2, θ) distribution. The service times
are governed by the distribution

Fθ = θ ηθ0 + (1 − θ) Γ(2, θ0) , θ ∈ Θ = [0, 1] ,

that is, with probability θ the service time is exponentially distributed with
mean θ0 and with probability 1 − θ is is distributed like the sum of two inde-
pendent exponentials with mean θ0 each. We have is S = R and we take the
usual norm on R for || · ||S . Observe that Fθ is Dp-differentiable for any p and
a Dp-derivative is given by (

1 , ηθ0 , Γ(2, θ0)
)

, (15)

which is independent of θ. Let {A(n)} be the i.i.d. sequence of inter-arrival times
and {Sθ(n)} the i.i.d. sequence of service times, respectively. Lindley’s recursion
yields:

Xθ(n + 1)=max(Xθ(n) + Sθ(n) − A(n + 1), 0) , n > 1 ,

and Xθ(1) = 0. As performance function, take the pth moment of the waiting
times (which is not in D0). Let G(·) denote the distribution of the inter-arrival
time and assume that the first p moments of G are finite. For w > 0, the
transition kernel for the waiting times is given by

Pθ((0, w]; v) =
∫ ∞

0

∫ s+v

s+v−w

G(da)Fθ(ds)

=:
∫

Q((0, w]; s, v)Fθ(ds)
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and

Pθ({0}; v)=
∫ ∞

0

∫ ∞

s+v

G(da)Fθ(ds)

=:
∫

Q({0}; s, v)Fθ(ds)

For any g ∈ Dp, it then holds that
∫

g(u)Pθ(du; v) ∈ Dp and Pθ is thus Dp-
preserving.

The first step is to calculate the Dp-derivative of Pθ. For any v ≥ 0 and
g ∈ Dp,

∫
g(s)Q(dr; ·, v) is again in Dp and since Fθ is Dp-differentiable it easily

follows that Pθ(·; v) is Dp-differentiable. A Dp-derivative of Fθ is given in (15)
and a Dp-derivative of Pθ can therefore be obtained from

P+((0, w]; v) =
∫ ∞

0

Q((0, w]; s, v) ηθ0(ds) , w > 0 ,

P+({0}; v) =
∫ ∞

0

Q({0}; s, v)ηθ0(ds) ,

P−((0, w]; v) =
∫ ∞

0

Q((0, w]; s, v) Γ(2, θ0)(ds) , w > 0 ,

P−({0}; v) =
∫ ∞

0

Q({0}; s, v)Γ(2, θ0)(ds) ,

and
cPθ

= 1 .

Note that this simple calculation implies that P ′
θ = P+

θ − P−
θ is a transition

kernel.
Longer service times lead to longer waiting times, which implies the following

chain of inequalities, for any θ ∈ [0, 1],∫
(1 + u)pP+(du; v)≤

∫
(1 + u)pPθ(du; v)

≤
∫

(1 + u)pP−(du; v)

=
∫

(1 + u)pP1(du; v) ,

for v ≥ 0. Note that
∫
(1+u)pP1(du; ·) =: K(·) ∈ Dp. Hence, P ′

θ is Dp-preserving.
Moreover, elaborating on the fact that cPθ

= 1 and that P± are independent of
θ, it readily follows that

sup
θ∈Θ

∫
(1 + u)pP±(du; v) =

∫
(1 + u)pP±(du; v) ≤ K(v) .

Hence, Lemma 4 yields, for example, a closed form expression for the derivative
of the pth moment of the nth waiting time at a GI/Fθ/1 queue.

÷×÷×÷×

18



4.3 Markov Kernels With Differentiable Densities

As already illustrated in Section 2.3, the analysis of derivatives of stochastic
systems simplifies when the distributions involved have densities that are differ-
entiable as functions of θ. In this section, we will illustrate how the conditions for
the product rule of measure valued differentiation simplify under the presence
of differentiable densities.

For P, Q ∈ K1, let P be absolutely continuous with respect to Q, in symbols:
P << Q. This implies that the Radon-Nikodym derivative of P (·; s) with respect
to Q(·; s). exists for all s, and we denote it by [dP/dQ](r; s) with r, s ∈ S. If Pθ

is absolutely continuous with respect to Q, then the positive and negative part
of the D-derivative of Pθ is given through integrating the positive and negative
parts of the derivative of [dP ′

θ/dQ](r; s), and the corresponding the normalizing
factor is measurable. The precise statement is given in the following lemma.

Lemma 5 Let Pθ, Q ∈ K1, for θ ∈ Θ. Assume that

• Pθ is D-differentiable at θ, and

• P ′
θ << Q.

Then P ′
θ ∈ K and (cPθ

, P+
θ , P−

θ ), with

cPθ
(s) =

∫
S

max
(

0,

[
dP ′

θ

dQ

]
(r; s)

)
Q(dr; s) , s ∈ S ,

for any A ∈ S and s ∈ S,

P+
θ (A; s) =

1
cPθ

(s)

∫
A

max
(

0,

[
dP ′

θ

dQ

]
(r; s)

)
Q(dr; s)

and

P−
θ (A; s) =

1
cPθ

(s)

∫
A

max
(

0,−
[
dP ′

θ

dQ

]
(r; s)

)
Q(dr; s) ,

is a D-derivative of Pθ.

Proof: D-differentiability of Pθ implies that, for any g ∈ D and any s ∈ S,

d

dθ

∫
S

g(u)Pθ(dr; s) =
∫

S

g(u)P ′
θ(dr; s)

=
∫

S

g(u)
[
dP ′

θ

dQ

]
(r; s)Q(dr; s) ,

where the last equation sign follows from P ′
θ << Q. We not turn to the D-

derivative. For s ∈ S, set

cPθ
(s)=

∫
S

max
(

0,

[
dP ′

θ

dQ

]
(r; s)

)
Q(dr; s) .

Let {X(n)} denote the Markov chain associated with Q, then the above equation
can be written as follows

cPθ
(s) = E

[
max

(
0,

[
dP ′

θ

dQ

]
(X(1); X(0))

)∣∣∣∣X(0) = s

]
, s ∈ S .
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The Radon-Nikodym derivative of P ′
θ with respect to Q is measurable in both

components and all operators in the expression on the righthand side of the
above equation preserve measurability. Therefore, cPθ

is measurable as mapping
in s and furthermore P ′

θ ∈ K.
D-differentiability implies that P ′

θ(·; s) is a finite (signed) measure for any s,
which implies that cPθ

(s) < ∞ for any s. Hence, for any A ∈ S and s ∈ S,

P+
θ (A; s) =

1
cPθ

(s)

∫
A

max
(

0,

[
dP ′

θ

dQ

]
(r; s)

)
Q(dr; s)

and

P−
θ (A; s) =

1
cPθ

(s)

∫
A

max
(

0,−
[
dP ′

θ

dQ

]
(r; s)

)
Q(dr; s)

are Markov kernels. It is easily checked that (cPθ
, P+

θ , P−
θ ) is a D-derivative of

Pθ.
�

The following lemma establishes sufficient conditions for the product rule to
hold in the presence of domination.

Lemma 6 Let p ∈ N. Consider a (homogeneous) Markov kernel Pθ, with finite
pth moment for any s ∈ S and θ ∈ Θ. Assume that Pθ is Dp-preserving and Dp-
differentiable on Θ, and that P ′

θ << Pθ. If P ′
θ is Dp-preserving and a K(·) ∈ Dp

exists, such that

sup
θ∈Θ

∫
(1 + ||s||p)

∣∣∣∣
[
dP ′

θ

dPθ

]
(ds; ·)

∣∣∣∣ Pθ(ds; ·) ≤ K(·) ,

then

(Pn
θ )′ =

n∑
j=1

Pn−j
θ P ′

θ P j−1
θ .

Proof: The proof follows the same line of argument as the proof of Lemma 4
except for the way in which the Dp-Lipschitz constant is constructed. For any
g ∈ Dp and s ∈ S

sup
θ∈Θ

∣∣∣∣
∫

g(u)P ′
θ(du; s)

∣∣∣∣
≤

p∑
i=0

κi sup
θ∈Θ

∫
||u||i

∣∣∣∣
[
dP ′

θ

dPθ

]
(u, s)

∣∣∣∣ Pθ(du; s) .

By assumption K(·) ∈ Dp exists, such that for any s ∈ S

sup
θ∈Θ

∫
(1 + ||u||p)

∣∣∣∣
[
dP ′

θ

dPθ

]
(u, s)

∣∣∣∣ Pθ(du; s) ≤ K(s) .

Choose H(·) ∈ Dp such that H(·) ≥ p max(κi, 1)K(·), which is possible because
K ∈ Dp implies nK ∈ Dp for any n ∈ N. Hence,

sup
θ∈Θ

∣∣∣∣
∫

g(u)P ′
θ(du; ·)

∣∣∣∣ ≤ H(·) ∈ Dp
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and, by the Mean Value Theorem, H(·) serves as Lipschitz constant for∫
g(u)P ′

θ(du; ·). Using the fact that H(·) ∈ Dp and noting that by Lemma 5
P ′

θ is indeed a transition kernel, completes the proof. �
The key to applying Lemma 6 is to compute the Radon-Nikodym derivative

of P ′
θ with respect to Pθ. In applications, P ′

θ is typically of rather complex
structure and computing the Radon-Nikodym derivative of P ′

θ with respect to Pθ

leads to cumbersome calculations, as will be illustrated in Example 6. However,
using a conditioning argument, the assumption in Lemma 6 can be restated in
terms of verifiable conditions. We omit the details for the sake of brevity.

ExampleExample 6. Let Xθ(n) denote the n-th waiting time at a GI/M/1 queue.
Let {A(n)} be the sequence of inter-arrival times and {Sθ(n)} the sequence
of exponentially distributed service times with mean 1/θ, respectively. Let
Θ = [a, b] ⊂ (0,∞). Denote the distribution of Sθ(n) by ηθ and the correspond-
ing Lebesgue density by fS

θ (x) = θe−θx. Let A(n) have a finite pth moment and
let fA denote the Lebesgue density of the inter-arrival times. As performance
measures of interest, consider the pth moment of the waiting time. Let Pθ denote
the transition kernel of {Xθ(n)}. Following the line of thought in Example 5,
for any w > 0, v ≥ 0, the transition kernel for the waiting times is given by

Pθ((0, w]; v) =
∫ ∞

0

∫ v+x

v+x−w

fA(a) fS
θ (x) da dx =:

∫ ∞

0

R((0, w]; x, v) fS
θ (x) dx ,

Pθ({0}; v) =
∫ ∞

0

∫ ∞

v+x

fA(a) fS
θ (x) da dx =:

∫ ∞

0

R({0}; x, v) fS
θ (x) dx .

The exponential distribution is Dp-differentiable for any p (see Example 1).
Differentiating Pθ with respect to θ yields

P ′
θ ((0, w]; v) =

∫ ∞

0

R((0, w]; x, v) (1 − θx)fS
θ (x) dx , w > 0 ,

and
P ′

θ ({0}; v) =
∫ ∞

0

R({0}; x, v) (1 − θx)fS
θ (x) dx .

A Dp-derivative of Pθ can be obtained from setting cPθ
= 1/θ and, for any

measurable set A

P+
θ (A; v) =

∫ ∞

0

R(A; x, v) fS
θ (x) dx = Pθ(A; v)

and for w > 0

P−
θ ((0, w]; v) =

∫ ∞

0

R((0, w]; x, v)hS
θ (x) dx =

∫ ∞

0

∫ v+x−w

v+x

fA(a)hS
θ (x) da dx,

P−
θ ({0}; v) =

∫ ∞

0

R({0}; x, v)hS
θ (x) ds =

∫ ∞

0

∫ ∞

v+x

fA(a)hS
θ (x) da dx ,

where hθ denotes the density of the Gamma(2,θ) distribution. Let Θ = [a, b],
with a > 0.
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We now show that the product rule of measure-valued differentiation applies
to Pθ. For any g ∈ Dp it holds that

Hg(x, v) =
∫ ∞

0

g(u)R(du; x, v) =
∫ ∞

v+x

g(v + x − a) fA(a) da ,

assuming for the sake of simplicity that g(0) = 0. Because the inter-arrival times
have finite pth moment (by assumption) it is easily verified that for g ∈ Dp the
mapping

∫
Hg(x, ·)fS

θ (x)dx is in Dp and Pθ is hence D-preserving. Following
the same line of argument, it is easily seen that

∫
Hg(x, ·)hS

θ (x)dx is in Dp for
any g ∈ Dp and thus P ′

θ = 1
θ (P+

θ − P−
θ ) is Dp-preserving.

Note that η′
θ << ηθ for any θ ∈ Θ = [a, b]. Then, replacing ηθ by the corre-

sponding density fS
θ , it follows

sup
θ∈[a,b]

∫ ∞

0

(1 + up)

∣∣∣∣∣
d
dθfS

θ (u)
fS

θ (u)

∣∣∣∣∣ fS
θ (u) du ≤ 1

a

∫ ∞

0

(1 + up)(1 + bu)fS
a (u) du ,

which is finite for any p ∈ N. In accordance with Lemma 4, for any g ∈ Dp,
with p ∈ N, the product rule applies to Pθ and yields a closed-form expression
for the derivative of the pth moment of the waiting time.

÷×÷×÷×

4.4 The Influence Of The Normalizing Factor

In general, cPθ
is a function on the state-space and introducing it may lead to

problems with respect to integrability. For example, if only the first p moments
of Pθ(·; s) are finite for any s but cPθ

is a polynomial of degree larger than
p, then

∫
cPθ

(u)Pθ(du; s) fails to be bounded. In the previous sections, cPθ
(s)

turned out to be bounded in all examples. We conclude this section with an
example of the case where cPθ

(s) is only polynomial bounded.
Unbounded normalizing constants typically stem from the fact that a random

variable, say, X(n) that is independent of θ is taken as input of a function
hθ in order to form a new random variable hθ(X(n)). If the derivative of hθ

is unbounded as a function of X(n), one obtains an unbounded normalizing
constant. We explain this concept with the following academic example.

ExampleExample 7. Let {X(n)} be an i.i.d. sequence with X(n) ∈ [0,∞) defined on
an underlying probability space (Ω,F , P). Let Θ = [a, b], with a < b, and define
{Yθ(n)}, with Yθ(n) ∈ {0, 1}, as follows

P(Yθ(n) = 0 |X(n− 1))=
1
2

+
1
4

sin(θ2(X(n − 1))m)

= 1 − P(Yθ(n) = 1 |X(n− 1)) ,

for n ≥ 1. Consider the Markov process Zθ(n) = (Yθ(n), X(n)) with transition
kernel

Pθ( η × [0, w); (x, y) ) = P(Yθ(n) = η |X(n − 1) = x) P(X(n) ≤ w ) ,

for η ∈ {0, 1} and x ≥ 0. From

d

dθ
P(Yθ(n) = 0 |X(n− 1) = x ) =

1
2
θxm cos(θ2xm)
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d

dθ
P(Yθ(n) = 1 |X(n− 1) = x ) = −1

2
θxm cos(θ2xm),

the derivative of Pθ( η × [0, w); Zθ(n − 1)) can be written as(
1
2
θ(X(n − 1))m cos(θ2X(n − 1)m) , δ0(η) P(X(n) ≤ w ) , δ1(η) P(X(n) ≤ w )

)
,

(16)
with normalizing constant

cPθ
(x) =

1
2
θxm cos(θ2xm) ,

which is not uniformly bounded in x. Fix p ≥ 0 and consider the set Dp, see (14)
for a definition. Assumptions (A0) and (A1) are trivially satisfied. If the first
p moments of X(n) are finite, then assumption (A2) in Theorem 1 is satisfied
and we turn to the Dp-differentiability condition (A3). For any g ∈ Dp∣∣∣∣

∫
g(z)P ′

θ(dz; (y, x))
∣∣∣∣ ≤ θxm cos(θ2xm)

p∑
i=0

κi

∫
ηi μ(dη) ,

where μ denotes the distribution of X(n). Since the first p moments of X(n)
are finite, the sum of integrals on the right-hand side of the above expression
equals some number d ∈ [0,∞). This yields, for any g ∈ Dp

sup
θ∈[a,b]

∣∣∣∣
∫

g(z)P ′
θ(dz; y, x)

∣∣∣∣ ≤ bxm d ,

for b ∈ R. The expression on the right-hand side of the above inequality lies in
Dp if m ≤ p. In case m > p we extend the polynomial in the definition of Dp up
to the mth power, that is, we take p = k. Hence, if the first max(m, p) moments
of X(n) are finite, then Theorem 1 applies.

÷×÷×÷×
In Example 7, the first max(p, m) moments of X(n) must be bounded in

order to obtain the sensitivities of performance functions that are bounded by
a polynomial of degree p. This is in contrast to the situation in Example 5,
where only the existence of the first p moments is required. The obvious reason
for this difference is that the normalizing factor in Example 7 is a polynomial
in X(n − 1). One obtains the following rule of thumb: If g is bounded by a
polynomial of degree p in X(n) and the normalizing constant is bounded by a
polynomial of degree m in X(n− 1), then the first max(p, m) moments of X(n)
have to exist in order to satisfy the conditions in Theorem 1. In particular,
if one is interested in measurable bounded performance functions, then p = 0
is sufficient, but because the normalizing factor is bounded by a polynomial of
degree m, it is now necessary that the first m moments of X(n) be finite in order
to apply the product rule of measure-valued differentiation. This exemplifies the
tradeoff between generality with respect to the performance functions and that
with respect to the transition probabilities.

5 Gradient Estimation

While MVD offers a methodology that helps to establish a closed formula for
(1), in practice one wishes to construct an estimator based on observations (or
simulations) of the underlying Markov process.
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Let (Pθ,i : 1 ≤ i ≤ n) be a family of D-differentiable Markov kernels on
(S,S). The product rule of measure-valued differentiability yields

d

dθ
E[g(Xθ(n), . . . , Xθ(1))] =

d

dθ

∫
g(sn, . . . , s1)

n∏
i=1

Pθ,i(dsi; si−1)

=
n∑

j=1

∫∫∫
g(sn, . . . , s1)

n∏
i=j+1

Pθ,i(dsi; si−1)P ′
θ,j(dsj ; sj−1)

j−1∏
i=1

Pθ,i(dsi; si−1) ,

with s0 ∈ S. How to transform the above into an unbiased estimator?

5.1 Phantom Estimators

In this section, we establish sufficient conditions for phantom type estimators to
be unbiased. Let the conditions in Theorem 1 be in force. Then one can express
P ′

θ(dsj ; sj−1) in terms of the normalized difference between two expectations, or
(cPθ

(sj−1), P+
θ,j(dsj ; sj−1), P−

θ,j(dsj ; sj−1)). The product form can be rewritten
in terms of the processes as follows:

d

dθ
E[g(Xθ(n), . . . , Xθ(1))] =

n∑
j=1

(
E

[
cPθ

(Xθ(j − 1)) g(X+
θ,j(n), . . . , X+

θ,j(1))
]

−E

[
cPθ

(Xθ(j − 1)) g(X−
θ,j(n), . . . , X−

θ,j(1))
])

, (17)

where the processes {X±
θ,j(i)} are the Markov chains that follow the transition

kernels Pθ,i(dsi; si−1), i 
= j and where P(X±
θ,j(j) ∈ ·|X±

θ,j(j − 1) = sj−1) =
P±

θ,j(·; sj−1). The chains {X±
θ,j(i)} are called phantoms in the literature.

Equation (17) has the following interpretation: the processes {X±
θ,j(n), j =

1, . . . , N} follow the transition kernel of the process {Xθ(n)} up to n = j − 1.
Next, P(X±

θ,j(j) ∈ ·|X±
θ,j(j−1) = x) follows the kernel P±

θ (·; x). After this tran-
sition, again the one step transition kernel of the processes X±

θ,j follow Pθ(·; x).

ExampleExample 8. Consider a standard periodic review inventory model with backlog.
Consecutive demands {D(n)} are assumed continuous with Lebesgue density
f(·), so that the inventory level {Xθ(n)} at the review epochs is Markovian,
Xθ(0) = 0 and for n ≥ 0:

Xθ(n+1) =
{

Xθ(n) − D(n + 1) if Xθ(n) − D(n + 1) ≥ θ
S otherwise

{D(n)} i.i.d. ∼ F

and θ represents the threshold for the ordering policy. Clearly this is a Markov
chain in R

+. Call Pθ the corresponding kernel. The cost per period is:

g̃(Xθ(n), D(n))=h(X̃θ(n) − D(n))1{D(n)<X̃θ(n)} + p(D(n) − X̃θ(n))1{D(n)>X̃θ(n)}
+K1{D(n)>X̃θ(n)−θ} ,

where h is unit holding cost, K is ordering cost and p is a backlog penalty.
Define the integrated cost per period at state Xθ(n) = x by g(Xθ(n)) =
E[g̃(Xθ(n), D(n))|Xθ(n)]. The finite horizon cost is:

J(θ) =
N∑

n=1

E[g(Xθ(n))] ,
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This cost function is not a.s. Lipschitz continuous. Moreover, because θ is a
threshold parameter then actually

d

dθ
g(Xθ(n)) = 0 a.s. ,

so that

E

[
N∑

n=1

d

dθ
g(Xθ(n))

]

= d

dθ

N∑
n=1

E

[
g(Xθ(n))

]
.

The problem has been studied using the SPA pathwise methodology, see [5, 20].
It is clear that for any bounded and continuous function g ∈ D0, and all x ∈
(θ, S]

E[g(Xθ(n + 1))|Xθ(n) = x] =
∫ x−θ

0

g(x − y) f(y) dy + g(S) (1 − F (x − θ))

where f is the Lebesgue density of the demand Dn. The derivative is calculated
directly, yielding:

d

dθ
E[g(Xθ(n + 1))|Xθ(n)]=f(Xθ(n) − θ) (g(S) − g(θ))

=cθ(Xθ(n)) E[g(X+
θ (n + 1)) − g(X−

θ (n + 1))],

where cθ(x) = f(x− θ) for x ∈ R and the random variables X±
θ (n + 1) are con-

centrated at the mass points S and θ respectively (note that cθ(·) is measurable).
Because

sup
θ∈[0,S]

cθ(·) = sup
θ∈[0,S]

f((·) − θ) ∈ D0

the product rule of measure-valued differentiation applies to Pθ, see Lemma 3.
Specifically, the product rule for D-differentiability prescribes defining the pro-
cesses {X±

θ,j(i)} as follows: the first j − 1 transitions are governed by the kernel
Pθ as the inventory process itself. Next X+

θ,j(j) = S, X−
θ,j(j) = θ and the rest of

the transitions are again governed by Pθ. The product rule of D-differentiation,
see Theorem 1, yields

d

dθ
J(θ) =

=
N∑

j=1

∫
· · ·
∫ N∑

n=1

g(xn)
N∏

i=j+1

Pθ(dxi; xi−1)P ′
θ(dxj , ; xj−1)

j−1∏
i=1

Pθ(dxi; xi−1)

= E

⎡
⎣ N∑

j=1

cθ(Xθ(j − 1))
N∑

n=1

(
g(X+

θ,j(n)) − g(X−
θ,j(n))

)⎤⎦

= E

⎡
⎣ N∑

j=1

cθ(Xθ(j − 1))
N∑

n=j

(
g(X+

θ,j(n)) − g(X−
θ,j(n))

)⎤⎦ .

The SPA formulation yields an estimator which is an instance of the above
processes, using common random variables for the past history up to transition
j. In this example, decoupling occurs because f(Xθ(j) − θ) is independent of
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X±
θ,j(i), i > j, which allows for several implementations. Two implementations

have been proposed: one where the future of the processes X±
θ,j(i), i > j is

simulated “off line”, and one where the same underlying demands are used to
drive all parallel processes (called “phantom estimation”). Let

gN
j (θ, x) = E

⎡
⎣ N∑

n=j

g(Xθ(n))

∣∣∣∣∣∣Xθ(j) = x, D(j + 1), . . . , D(N)

⎤
⎦

the phantom method of [20] uses the estimator:

d

dθ
J(θ)=

N∑
j=1

E

[
cθ(Xθ(j − 1))

(
gN

j (θ, S) − gN
j (θ, θ)

)]
.

Derivation of this formula via SPA takes about three to four pages of careful
analysis of critical events and evaluation of the critical rates. We believe that
the product rule provides here a method that is easier to implement. As well,
coupling via the use of common random variables has been shown in [20] to
decrease both variance as well as computational effort.

÷×÷×÷×
Section 4.1 and Section 4.2 studied different choices for the space functions

D. Obviously, the minimal condition on D is absolute integrability with respect
to Pnμ for any n, where μ is the initial distribution of the Markov chain.

Consider a Markov chain {Xθ(n)} with transition kernel Pθ, and use the no-
tation Pn

θ to indicate the n-step transition probability. In what follows, assume
that the initial distribution μ of the Markov chain is fixed. Let

Dμ =
{

g : S → R

∣∣∣ ∀n ∈ N ∀θ ∈ Θ :
∫

|g(u)|(Pn
θ μ)(du) < ∞

}
,

or, in terms of random variables

Dμ =
{

g : S → R

∣∣∣∀n ∈ N ∀θ ∈ Θ :
∫

Es[|g(Xθ(n))| ] μ(ds) < ∞
}

,

where Es denotes the expected value conditioned on the event X(0) = s, for
s ∈ S. In the presence of domination it is possible to state a sufficient condition
for the product rule to hold on Dμ.

Lemma 7 Let {Xθ(n)} be a homogeneous Markov chain with transition kernel
Pθ, where Θ is a neighborhood of θ∗ and assume that Pθ << Pθ∗. Let Pθ be
Dμ-differentiable, such that P+

θ , P−
θ << Pθ∗ .

If, for s ∈ S,

(a) Es[ |g(Xθ(n))| ] < ∞ ,

for any n, and

(b) Es

[
sup
θ∈Θ

|g(Xθ(n))|
∣∣∣∣dP ′

θ

dPθ
(Xθ(j), Xθ(j − 1))

∣∣∣∣
]

< ∞ ,

for any j and any n, then

d

dθ
Es[g(Xθ(n))] =

n∑
j=1

Es

[
cPθ

(Xθ(j − 1))
(
g(X+

θ,j(n)) − g(X−
θ,j(n))

)]
(18)
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Proof: Notice that Dμ satisfies (A0) and that condition (A3) is satisfied by
assumption. In order to apply Theorem 1 it then suffices to verify the conditions
(A1) and (A2).

We now turn to condition (A1). For any k, m ∈ N, assumption (a) implies
that ∫

|g(u)| (P k+mμ)(du) =
∫ ∫

|g(u)|P k(du; s)(Pmμ)(ds) < ∞ .

Taking k = 1 = m this implies that
∫ |g(u)|P (du; ·) is absolutely integrable

with respect to Pμ and thus in Dμ.
Consider now the Lipschitz continuity condition (A2). To apply the Mean

Value Theorem it suffices to show that under the conditions of the lemma

sup
θ∈Θ

∣∣∣∣
∫

g(u)P ′
θ(du; ·)

∣∣∣∣ ≤ K(·) ∈ Dμ .

Assumption (b) implies that for any n ∈ N it holds that

Es

[
sup
θ∈Θ

|g(Xθ(n + 1))|
∣∣∣∣
[
dP ′

θ

dPθ

]
(Xθ(n + 1), Xθ(n))

∣∣∣∣
]

≤ sup
θ∈Θ

∫
Es

[
sup
θ∈Θ

|g(Xθ(n + 1))|
∣∣∣∣
[
dP ′

θ

dPθ

]
(Xθ(n + 1), x)

∣∣∣∣
∣∣∣∣ Xθ(n) = x

]
Pn

θ μ(dx) ,

which implies for any θ0 ∈ Θ that∫
sup
θ∈Θ

∫
g(u)P ′

θ(du; s) (Pn
θ0

μ)(ds) < ∞

and thus
sup
θ∈Θ

∫
g(u)P ′

θ(du; ·) ∈ Dμ ,

which concludes the proof of the lemma. �

5.2 Single Run Estimation

Consider a family (Pθ,i : 1 ≤ i ≤ n) of D-differentiable Markov kernels on
(S,S), such that P ′

θ,i is absolutely continuous with respect to Pθ,i, in symbols,
P ′

θ,i << Pθ,i for any θ ∈ Θ and 1 ≤ i ≤ n. Under uniform integrability conditions,
using the same arguments as in Lemma 6 it can be shown that

d

dθ
E[g(Xθ(n), . . . , Xθ(1)) |Xθ(0) = s0] =

d

dθ

∫
g(sn, . . . , s1)

n∏
i=1

Pθ,i(dsi; si−1)

=
n∑

j=1

∫∫∫
g(sn, . . . , s1)

n∏
i=j+1

Pθ,i(dsi; si−1)P ′
θ,j(dsj ; sj−1)

j−1∏
i=1

Pθ,i(dsi; si−1)

=
n∑

j=1

∫∫∫
g(sn, . . . , s1)

dP ′
θ,j

dPθ,j
(sj , sj−1)

n∏
i=1

Pθ,i(dsi; si−1)

= E

⎡
⎣ g(Xθ(n), . . . , Xθ(1))

n∑
j=1

dP ′
θ,j

dPθ,j
(Xθ(j); Xθ(j − 1))

∣∣∣∣∣∣Xθ(0) = s0

⎤
⎦ ,
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with s0 ∈ S. Note that

n∑
j=1

dP ′
θ,j

dPθ,j
(·; ·) =

n∑
j=1

d

dθ
ln (Pθ,j(·; ·)) ,

which recovers the estimator called the Score Function, see Section 2.3.
It is worth noting that a single-run estimator can also be constructed if P ′

θ,i

fails to be dominated by Pθ. In such a case on can take Qθ = 1
3P+

θ,i+
1
3P−

θ,i+
1
3Pθ,i

as Markov kernel. Then, P±
θ,i, Pθ,i << Qθ and single-run estimator of the above

type can be found, see [9] for details. However, manipulating the underlying
Markov kernel in the above way is not always feasible and increases the variance
of the estimator.

6 Discussion and Further Research

Building an estimator from the measure-valued differentiation formulas can be
performed in a number of ways, depending on the implementation chosen. The
estimator should

1. be easy to implement,

2. have low variance, and

3. have a low computational effort.

Item (1) is often a matter of taste, while the two remaining criteria determine
the efficiency of an estimator in simulation, and are often problem dependent.

Two measures μ, ν on (S,S) are orthogonal if A ∈ S exists, such that
μ(A) = 0 and ν(Ac) = 0; in symbols μ ⊥ ν. Applying the Hahn-Jordan de-
composition for the D-derivative of each of the one-step transition kernels P ′

θ,
the resulting measures are orthogonal: P+(·; s) ⊥ P−(·; s) for all s ∈ S. For an
example of such an orthogonal derivative, see Example 4. There is no guarantee
that an orthogonal representation is always the one with the smallest variance:
see Example 4.12 on page 238 in [15]. However, as numerical examples show,
see e.g. [15] Example 4.28 on page 250, it is safe to say that the orthogonal rep-
resentation usually has a small variance (and in many cases indeed minimizes
the variance).

Apart from the particular decomposition, D-derivatives offer a further “de-
gree of freedom”. A D-derivative only describes the marginal distribution of
(X+

θ,j(i), X
−
θ,j(i)) but not the joint distribution. A particular implementation

of the estimation is to use the same underlying random variables to drive the
evolution of each of the pairs {X±

θ,j(i), i = 1, 2, . . .}, thus making these adapted
to the natural filtration. Use of common random numbers for these processes
further simplifies the estimation into:

d

dθ
E[g(Xθ(n), . . . , Xθ(1))] =

=
n∑

j=1

E

[
cPθ

(Xθ(j − 1))
(
g(X+

θ,j(n), . . . , X+
θ,j(1)) − g(X−

θ,j(n), . . . , X−
θ,j(1))

)]
.
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Coupling via common random numbers is not necessarily optimal (in terms
of variance reduction) for every performance function g. Nonetheless, examples
abound where the “difference processes” g(X+

θ,j) − g(X−
θ,j) can be calculated

recursively via the so-called modified Lindley equations ([2], [19]). The resulting
estimators can have extremely low computational overhead, thus rendering very
efficient estimation.

Lastly, it is not obvious when to choose a single-run estimator and when
to implement a phantom estimator. For a given gradient estimation problem it
generally depends on the particular problem which type of estimator is more
efficient in terms of computation time. A thorough analysis of the trade-off
between the two types of estimators in topic of further research.
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The Appendix

Proof of Theorem 1

We give a proof by induction. Let n = 2 and for the sake of simplicity denote
Pθ,2 = Pθ, Pθ,1 = Qθ and D2 = DP , D1 = DQ. We first address the second part
of the theorem: result (ii).

To establish the induction hypothesis, it suffices to show that

(PθQθ)′ = PθQ
′
θ + P ′

θQθ .

Let g ∈ DP . By calculation,

1
Δ

∣∣∣∣
∫ ∫

g(u)Pθ+Δ(du; r)Qθ+Δ(dr; s) −
∫ ∫

g(u)Pθ(du; r)Qθ(dr; s)
∣∣∣∣

≤ 1
Δ

∣∣∣∣
∫ ∫

g(u)Pθ(du; r)Qθ+Δ(dr; s) −
∫ ∫

g(u)Pθ(du; r)Qθ(dr; s)
∣∣∣∣︸ ︷︷ ︸

(a)
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+
1
Δ

∣∣∣∣
∫ ∫

g(u) (Pθ+Δ(du; r) − Pθ(du; r)) (Qθ+Δ(dr; s) − Qθ(dr; s))
∣∣∣∣︸ ︷︷ ︸

(b)

+
1
Δ

∣∣∣∣
∫ ∫

g(u)Pθ+Δ(du; r)Qθ(dr; s) −
∫ ∫

g(u)Pθ(du; r)Qθ(dr; s)
∣∣∣∣︸ ︷︷ ︸

(c)

.

We first deal with expression (a) and show that

lim
Δ→0

(a) =
∫ ∫

g(u)Pθ(du; r)Qθ
′(dr; s) .

By assumption (A1),
∫

g(u)Pθ(du; ·) =: gP ∈ DQ, and D-differentiability of Qθ

yields ∣∣∣∣
∫ ∫

g(u)Pθ(du; r)Qθ+Δ(dr; s) −
∫ ∫

g(u)Pθ(du; r)Qθ(dr; s)
∣∣∣∣

≤ Δ
∫

gP (r) |Qθ+Δ(dr; s) − Qθ(dr; s)|

≤ Δ KQ
gP (s) ,

with KQ
gP ∈ D0, see assumption (A2). Moreover, DQ-differentiability of Q im-

plies that the limit of (a) as Δ tends to zero is

lim
Δ→0

1
Δ

∣∣∣∣
∫ ∫

g(u)Pθ(du; r)Qθ+Δ(dr; s) −
∫ ∫

g(u)Pθ(du; r)Qθ(dr; s)
∣∣∣∣

=
∫ ∫

g(u)Pθ(du; r)Q′
θ(dr; s) .

We now turn to (b). Assumption (A2) implies∣∣∣∣
∫

g(u) (Pθ+Δ(du; s) − Pθ(du; s))
∣∣∣∣ ≤ Δ KP

g (s) , (19)

with KP
g (·) ∈ DQ. Hence,∣∣∣∣

∫ ∫
g(u) (Pθ+Δ(du; r) − Pθ(du; r)) (Qθ+Δ(dr; s) − Qθ(dr; s))

∣∣∣∣
≤
∣∣∣∣
∫ ∫

g(u) (Pθ+Δ(du; r) − Pθ(du; r))Qθ+Δ(dr; s)
∣∣∣∣

+
∣∣∣∣
∫ ∫

g(u) (Pθ+Δ(du; r) − Pθ(du; r))Qθ(dr; s)
∣∣∣∣

≤ Δ
∫

KP
g (r)Qθ+Δ(dr; s) + Δ

∫
KP

g (r)Qθ(dr; s)

≤ 2Δ
∫

KP
g (r)Qθ(dr; s) + Δ

∣∣∣∣
∫

KP
g (r) (Qθ+Δ(dr; s) − Qθ(dr; s)

∣∣∣∣
≤ ΔK(s) (20)
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for Δ sufficiently small, with K ∈ D0. Moreover, (20) implies that

lim
Δ→0

1
Δ

∣∣∣∣
∫ ∫

g(u) (Pθ+Δ(du; r) − Pθ(du; r))Qθ+Δ(dr; s) − Qθ(dr; s)
∣∣∣∣ = 0 .

Turn now to the expression (c). Recall (see (19)) that a KP
g (·) ∈ DQ exists,

such that ∣∣∣∣
∫

g(u)Pθ+Δ(du; ·) −
∫

g(u)Pθ(du; ·)
∣∣∣∣ ≤ Δ KP

g (·) ∈ DQ .

Using assumption (A1) on the measure Qθ, and the fact that KP
g (·) ∈ D1, it

follows ∣∣∣∣
∫ (∫

g(u)Pθ+Δ(du; r) −
∫ ∫

g(u)Pθ(du; r)
)

Qθ(dr; ·)
∣∣∣∣

≤ Δ
∫

KP
g (r)Qθ(dr; ·)

= ΔKQ
KP

g
(·) ,

with KQ
KP

g
(·) ∈ D0. Thus,

∫
Kg(r)Qθ(dr; s) is finite for all s, and the Dominated

Convergence Theorem gives

lim
Δ→0

(c) =
∫

d

dθ

(∫
g(u)Pθ(du; r)

)
Qθ(dr; s) .

Differentiability of the transition kernels (assumption (A3)) yields (PQ)′ =
PQ′ +P ′Q, which concludes the proof of the induction hypothesis for the result
(ii) of the theorem.

Under Assumption (A0), D0 is closed with respect to finite summation,
which implies that∣∣∣∣

∫ ∫
g(u)Pθ+Δ(du; r)Qθ+Δ(dr; ·) −

∫ ∫
g(u)Pθ(du; r)Qθ(dr; ·)

∣∣∣∣
≤ Δ

(
KQ

gP (·) + KQ
KP

g
(·)K(·)

)
∈ D0 ,

which concludes the proof of the induction hypothesis for the result (i) of the
theorem. Now suppose that the statement (i) has already been shown for n > 2.
We show that the product rule also applies to n + 1. Applying the induction
hypothesis to

∏n
i=1 Pθ,i yields (Dn,D0)-Lipschitz continuity of this transition

kernel. Applying the induction hypothesis again to Pθ,n+1 and
∏n

i=1 Pθ,i yields
(Dn+1,D0)-Lipschitz continuity of

∏n+1
i=1 Pθ,i, which establishes the result (i).

To conclude the proof of the statement (ii), it suffices now to show Dn+1-
differentiability of

∏n+1
i=1 Pθ,i. Apply the induction hypothesis to the transition

measures
∏n

i=1 Pθ,i and Pθ,n+1:(
n+1∏
i=1

Pθ,i

)′

= Pθ,n+1

(
n∏

i=1

Pθ,i

)′
+ P ′

θ,n+1

(
n∏

i=1

Pθ,i

)
.
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Since the product rule is assumed to hold for the first n terms, then(
n+1∏
i=1

Pθ,i

)′

= Pθ,n+1

(
n∏

i=1

Pθ,i

)′
+

n∑
i=1

P ′
θ,n+1

n∏
i=j+1

Pθ,i P ′
θ,j

j−1∏
i=1

Pθ,i ,

which concludes the proof of the Theorem 1.

6.1 Proof of Corollary 2

Call {Xθ(m), m = 1, . . . , n} the Markov chain governed by the kernels Pθ,i and
let Yθ(i) = (Xθ(i), . . . , Xθ(1)) ∈ Si, then for any g : Si → R

g(Xθ(i), . . . , Xθ(1)) = g(Yθ(i)) .

Denote the transition kernels from Yθ(i) to Yθ(i + 1) by PY
θ,i+1, given by

P

(
Yθ(i + 1) ∈ ×i+1

j=1Bj |Yθ(i) = (yi, . . . , y1)
)

= PY
θ,i+1

(
×i+1

j=1 Bj ; (yi, . . . , y1)
)

= 1(yi,...,y1)∈×n
j=1Bj

Pθ,i+1

(
Bi+1; yi

)
.

From the assumptions on Pθ,i it is straightforward to show that (A1) and (A2)
are satisfied by PY

θ,i. Indeed, for g : ×n
i=1Si → R we obtain

∫
g(sn, . . . , s1)

(
n∏

i=1

Pθ,i

)
(dsn, . . . , ds1; s)

=
∫

g(y)PY
θ,n(dy; s)

=
∫

g(yn)

(
n∏

i=1

PY
θ,i

)
(dyn, . . . , dy1; s) . (21)

Set

D̃i = {g : Si → R | ∀(si−1, . . . , s1) ∈ Si−1 : g(·, si−1, . . . , s1) ∈ Di} .

Then, for any g ∈ D̃i, it holds

d

dθ

∫
g(y)PY

θ,i(dy; ŷ)=
d

dθ

∫
g(u, ŷi−1, . . . , ŷ1)Pθ,i(du; ŷi−1)

=
∫

g(u, ŷi−1, . . . , ŷ1) (Pθ,i)
′ (du; ŷi−1) .

Di-differentiability of Pθ,i (see (A3)) therefore implies that PY
θ,i is D̃i-

differentiable. Applying Theorem 1 to the product in (21) and substituting Yθ(i)
by the vector (Xθ(i), . . . , Xθ(1)) concludes the proof of Corollary 2.
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