EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Towards database performance patterns (extended version)

Citation for published version (APA):
Aerts, A. T. M., Molengraft, van de, W. T., & Snijders, J. (2008). Towards database performance patterns
(extended version). (Computer science reports; Vol. 0812). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/2aced9a4-4e69-4430-9574-2a26fca5d10d

TOWARDSDATABASE PERFORMANCE PATTERNS
- EXTENDED VERSION -

A.T.M. Aerts!, W.T van de Molengraft?!, and J. Snijders?
1Technische Universiteit Eindhoven, Eindhoven, The Netherlands
2Quinity, Utrecht, The Netherlands

ABSTRACT

We explore the use of patterns as an effective madeal with recurrent performance issues imsoft development. The
benefit of this use is that one can make arguedymeshoices that have satisfactory performance gt@gs. We give a
definition of a performance pattern, and studystnecture of database performance patterns inl.détaigive an illustrative
example of the latter kind of pattern.

KEYWORDS

Performance engineering.Performance patterns, astgierformance, application design, software eeging,

1. INTRODUCTION

In order to solve recurrent design problems invearfé development, design patterns are used. Desitjerns
originate from the architectural world [AIS1977eAB79] and have been made popular for softwareneagng
by Gamma et al. [GH1995]. In the latter case padtare used during the software implementatiors@hiaor
this reason, they can be called technical desigterpa. Many technical design patterns are avalablvadays
(see, e.g., [JBP]) and many developers know hawséothem.

[GH1995] states what a pattern does: A desigtepatsystematically names, motivates, and explains
general design that addresses a recurring desigoleon, the solution, when to apply the solutiond ats
consequences. It also gives implementation hindseexamples. The solution is customized and impléetkto
solve the problem in a particular context." SiGamma et al. published their book the concept tteps as
mechanisms has spread to other domains such asebsigirocesses [Fow1996] and workflows [RH2004,]WfP
It is clear from the definition above, that patem@re abstract enough to apply to many design dmmaut
specific enough to provide hands-on guidance t@gdess and architects. Patterns also provide abwdasy for
developers to efficiently describe their solution.

The question now arises whether a pattern basecbagp will also work for the performance aspectof
software system? A software development projeainly successful when both functional and perforreanc
requirements have been met without exceeding tlwiahof money and time available. Therefore, pentorce
problems can cause a total project to fail.

Performance is frequently managed reactively: theit-fater approach. Typically, functionality is
implemented first. During the testing phase thefquerance requirements are verified. The discovefy o
performance problems leads to changes in the demigimplementation. The drawback of the fix-it-late
approach is that an unpredictable number of pedaa problems is discovered in the testing phhagjgs quite
close to the project deadline. Just as the nuntberimpact of those problems is not predictableegitSome
problems may be solvable by small adjustmentseartiplementation. Others might need a completesigde
As a result the development cycle starts all ogairawithout the guarantee that all problems walldolved next
time. Therefore the fix-it-later approach introdsicisks for both budget and time. The way out & &ppears to

be to learn from prior experience, and proactivapply these lessons at design time for systems ewher
performance is of great importance. The issue oo to make the lessons learnt available. Theoagh we
propose in this paper is the usage of performaatterps.

We'll first give a brief review of previous resehron performance patterns, and point out some Gdp
we discuss the structure of a performance patfier this we discuss several issues arising inchse of a
particular performance pattern: the database pediece pattern, and provide an illustrative exanglsuch a
pattern. Finally we discuss some issues aboutshgeuof patterns.

2. PREVIOUSRESEARCH ON PERFORMANCE PATTERNS

Smith and Williams [SW2002] introduced performangatterns as a technique to improve the software
development process. Performance patterns desgeiberic solutions for common performance problent a
can be applied during the functional and technaedign phases and the implementation phase to nireve
performance problems during the testing and praolugithase. By reusing existing solutions, time amzhey
can be saved. In this way they prevent designatslamnelopers from introducing performance problems.

Keller wrote about design patterns for an objeetdtional layer in a series of articles [KC199FE LK 997,
KEL1998]. An object / relational layer is the layer between a relational database and an objeented
programming language. His patterns both addresgifumality and performance, and may be called pevémce
aware patterns. Some are more related to perforenamd some to functionality. They all provide solu$ that
can directly be applied in several situations tadur in software development. Although Keller uaesemantic
point of view rather than a technical one, the idé@ombining performance with functionality intailwing
blocks, which can almost directly be applied dusoffware development, is quite useful.

Keller found a nice way to deal with performancéis patterns. First the problem and solution apdagned.
Afterwards he identifies a number of forces whidsatibe when the solution can be applied. Amorfysset
forces are reading speed, writing speed and stigfalSiometimes a trade-off between two aspectieicribed
(for example disk space vs. reading speed). Asualtreghe biggest advantage of performance awaterpa is
their usability. There is a concrete solution dmel most important consequences are presentedtsietredopers
can choose whether or not to use the pattern. Adthahe structure of the patterns might be uséfelapproach
to finding and using the patterns is not descrimedi the focus is on functionality rather than penfance.

Smith and Williams [SW2002] present a catalog dfgsas which do not depend on a specific domairirTh
patterns are far more general than the performam@e design patterns mentioned above and based upo
performance principles [SMI1990], such as the a@rdeprinciple: “ldentify the dominant workloadrfctions
and minimize their processing". Their patterns glement and extend the principles. Each performaatern
is a realization of one or more of the performapdaciples. Performance patterns present commantisos,
which can be applied in a number of situationsaddition to patterns, they also define a numbeantifpatterns
[SW2002b] that identify common solutions, which Bkely to cause performance problems.

The major advantage of the performance patter@th et al. is that they are very general. Impletaion
details and domain knowledge have been abstramted However, the solutions described by the padtare
applicable in a wide range of situations and tlereefmore like strategies. Due to the lack of tecaindetails,
moreover, a designer has take several steps tgebitiee gap between the pattern and its applicatiarpractical
situation. No quantitative measures can be giverh® solutions to support an argued choice betyessible
alternatives. For comparison, the gap between #teenq and its use is much smaller for the tectreaign
patterns of Gamma et al., which increases thebilisa

To illustrate the level of abstraction, we comppegformance patterns to the technical design pestef
Gamma et al. Performance patterns describe steatégiavoid performance problems whereas desigarpst
address common implementation solutions. Theredodesign pattern can be used, and indeed is netied,
implement the strategy presented by a performaatterp. An example of a performance pattern idtet Path
pattern [SW2002]. It describes how response tinas lwe improved by reducing the amount of processing

required for dominant workloads. The Fast Pathgoerénce pattern can be implemented using the ptesign
pattern [GH1995].

Although the patterns of Smith are very general @anbe applied in many different contexts, itas always
clear when a pattern applies to a situation. Duthitogap between patterns and reality, usabilitthe patterns
decreases. A constant awareness of performanceame experience in applying the patterns is reduwe
developers to efficiently use the performance paste

Finally, implementation solutions describe how parfance problems can be fixed during implementation
They are needed to fix problems that appear fofithetime during implementation, or in a lateage, after the
system has been in function for a while and theopmance requirements have evolved differently than
anticipated at design time. One example of sucblatign is tuning. Tuning is part of reactive penfance
management and is part of the fix-it-later methbsl.fix-it-later is widely used, books about tuniage widely
available [GOL1993, SHA2003]. Therefore tuning fidess interest for this article.

2.1 Current status of perfor mance patter ns

The major problem with previous attempts to intmelperformance patterns was either a gap betwetsrnms
and their application in a practical situation lee focus on functionality rather than performaridewever, the
idea of using generic solutions for common perfarceaproblems works for both performance aware desig
patterns and performance patterns. Although pedoo® problems are very common in software develapme
and both approaches seem to work, very little aitterhas, to our knowledge, been paid to perforragmatterns

in literature. This has the consequence that sonp@itant aspects are currently missing. Since thmeber of
patterns available is very small, we need a waigleéatify new performance patterns. Unfortunatelyfaono
method to approach this issue is available. Thisen the availability of patterns, designers aadedopers need
to be motivated and trained to use performanceipgtt In this article we analyze the way in whiemfgrmance
patterns can be described to make them useful. &igletl to focus on a special type of performandeipes,
namely database performance patterns to deternoiweplerformance patterns can be used. Therefore ugt m
investigate the differences between normal perfacegatterns and database performance patternalas w

3. PERFORMANCE PATTERNS

We adapt the idea of patterns to the area of sadtwarformance: “Performance patterns are pattefish
document generic solutions for common performanmoblpms.” Although the definition above specifiesata
performance pattern does, it does not state how.l&aves open the level of abstraction at whiatiopmance is
addressed. Consider the approach used by Smitkvadli@ims [SW2002]. They identified seven concepihjch
result in a better performance once applied. Tras®epts have been translated into performancerpsait
Consider for example the Alternative Routes pattt®pread the demand for high-usage objects spatthht is,
to different objects or locations.” It describepexformance solution that can be reused withoutiieg the
functional usage of the demands. Therefore thederpgnce patterns are very general and they caebde as
best practices.

Another way to describe performance patterns i®das the idea that an application consists ofraéve
building blocks. This is very similar to the usagé components in software development [MIL2002].
Components implement some functionality, but thes g@eneral enough to be reused. A component is ofte
configurable by means of parameters. If we apmyidiea of components to earlier stages of the dpwent, we
get a new approach to performance patterns. Althdledler [KC1997, KEL1997, KEL1998] uses a very san
approach, his patterns are more like technicalgdesatterns that happen to discuss performancectis ey
do not focus on performance, however. Since thely tpuantitative measures of performance, they dabhao
used to compare solutions to each other. We havegen any other performance patterns using thditgii
blocks approach, so we must find a way to deal Withadditional complexity of the performance pagtars

ourselves. Building blocks are much closer to teahan best practices. They can even be instantégst
practices. By adding extra detail to the pattewesgcan be more specific about performance andapebgtween
reality and patterns becomes smaller. Furthermioeset building blocks are very similar to technidabign
patterns, so developers, who are familiar with ¢hasin use the building blocks easily. As buildgcks fit
perfectly in our development process, we will foonsthem rather than best practice patterns.

3.1 Ingredients of a perfor mance pattern

In order to describe our performance solutions istractured manner, we define a pattern templagger@l
pattern templates exist for functional [SNI2004datechnical design patterns. We start creating itatda
template using one proposed by Smith and WilliaB4/2002] that contains all essential parts of agoerénce
pattern. Since our patterns are more specific tharones defined by them, we adapted the way afritdésy
consequences as presented by Keller [KC1997]. &umibre the use of the building block approach tesola
functionality-based problem description that mawehaseveral solutions depending on the performance
requirements. We describe two pattern templatesdas the number of solutions described by thepatt

3.1.1 Single solution structure

The single solution structure describes a tempgtateerformance patterns that consist of one smutwhich
solves the entire problem. Each performance pattensists at least of a situation and a solutiam. Usability
reasons, the pattern is given a name, an examptidid to the problem, the consequences of appdysajution
are described and relations to similar problems swidtions are discussed. An outline of the basittepn
structure is presented in Figure 1.

Pattern name

Problem
| Goal ‘

| situation |

| Example ‘

Solution
| Description \

| Consequences ‘

‘ Relations ‘

Figure 1 Basic performancepattern structure

The exact meaning and contents of all elements@sissed below:

Name: In order to talk about a pattern, it must haveaee. The pattern name covers the contents ofntiire e
pattern and can therefore be used to select pattermvell. If necessary a short explanation ohirae
can be added as well.

Problem: The problem consists of a goal, a situation anéxample. The goal describes the purpose of arpatt
It introduces the design problems that are adddessel consists of a few sentences at most. The
situation describes some stage in the developnfestftware. It must be written such that developers
can verify whether or not they can apply the pattertheir own problem. Finally, the example presd
a situation in which the problem occurs.

Solution: The solutions consists two elements: a descriptb the solution itself and an analysis of the
consequences. These consequences are trade-dffsethiger of the pattern should make when applying

it. At least the consequences for performance &speast be covered. Consequences that influence
other quality attributes of the software (e.g. nt@imability or portability) can be described as wel

Rdations: The relations section discusses any relationsdest the pattern itself and other known problents an
solutions (e.g., other patterns, algorithms). Tdlation section can be used by developers in daler
find additional information or to find alternatigelutions.

3.1.2 Multiple solutions structur e

Some properties of a situation change over time €&m think, in the case of a database performaradgem,
of the number of rows in a table. We cannot ch@oselution for a problem unless we make assumpfarthe
values of these properties. Since these values ahayge over time, we introduce multiple solutionsiol
specify solutions that solve the problem underatertonditions. By introducing multiple solutionse can
describe strategies to solve a range of problemststally rather than describing solutions fortamces of
problems separately.

An updated overview of the pattern structure ipldiged in figure 2. In addition to the basic saluti
structure, each solution consists of a notion opliapbility and optionally relations to other sobrts.
Furthermore we add a summary of all solutions ltmathe savvy user to quickly select the right siolo

Pattern name

Problem
| Goal ‘
| situation |
| Example ‘
Partial solution 1 Partial solution N
Applicability L ennnen Applicability
Summary
Relations

Figure2 Templatefor multiple solutions structure

4. DATABASE PERFORMANCE PATTERNS

Database performance patterns are special perfeemazatterns. They only address database actiomsdiirch
queries. This section extends the previous one dewptifying the database specific aspects of databas
performance patterns.

Designers and developers perform several typestmng on a database. They can search for infoomaiti
update information in a relational database usimgS®L query for instance. The most important aspéxt
determine database performance are the structihe ofata and the structure of the query. If wé laiothis SQL

query as a database action, we can define dataleafeemance as the degree to which actions perfibromea
database system meet their objectives for timedigesen the structure of the data.

In this context we can measure response timesngiesiactions to express performance. We assume a
relational database that takes an SQL query andniet table of results. The response time of @iorats the
time that elapses between the moment a query sratéhe database and the table of results isbsekt The
biggest problem with the response times descriliiede is that many different measurement methodsbean
used. One can for instance choose to measurespense times locally using the database itselfoickahe time
elapsed between arrival of a query and sendinghef results. Alternatively, one can use a tool which
communicates with the database via a database diiteough the use of a driver is more realistiies network
between the tool and the database system andittee dray influence the measurement. It is importarthoose
an appropriate way for each specific situation.

4.1 Perfor mance parameters

Performance patterns are intended to define soBitihat perform well. Therefore we must include all
characteristics of a solution that influence itsrfgenance into a performance pattern. We call these
characteristics performance parameters. The settimghese parameters determine a particularisalut

Unlike functional and technical design patternsyfgyenance solutions extend beyond the first three
development phases (i.e. functional design, teahmesign and implementation). Some characteristiche
usage of a solution can influence performance dk Weese characteristics make performance depérteits
environment even after the implementation phassolAtion can for example perform well if the numbérows
in a table is small, but as the amount of rowsdases, performance may get worse. We distinguisheba
fixed and environment dependent performance pammet

4.1.1 Fixed per for mance par ameters

Fixed performance parameters are aspects of titidnal design, technical design and implementagpibase of
the software development process that influencedrmrmance of a solution and cannot be changadgithe
production and testing phase. By describing howuitd a solution during these three phases, wefigaheir
influence. New performance parameters can be fautiterature about database tuning [COR1993, SH320
and by analyzing the relation between the diffeemtects of the three development phases and thewesies
are processed. A list of these parameters is prebbelow.

RDBMS (Relational Database Management System): Althahghsteps in query processing are roughly the
same for each RDBMS, the efficiency of a componienbne RDBMS may differ from others.
Performance is influenced by optimizer decisiond #me way data is stored on disk for instance.
Furthermore some databases offer specific solutmimmprove performance or add extra features. This
is how these software products distinguish theneseli#or instance, hierarchical queries are supgorte
in Oracle SQL [GEN2001] but not in PostgreSQL [PO&3].

OS (Operating System): An RDBMS does not work withaatOS. The OS provides network protocols, memory
management, and much more. The database procesbamaterrupted by another process if the OS
decides that this other process has a higher prifoi instance. Choosing another OS can therefore
influence performance.

Database hardware This is the hardware on which the database sysedocated. As can be seen from the
specifications of the Transaction Processing Cdumeechmarks [TPC], the choice of the combination
of hardware, OS, and RDBMS is a delicate one wittual dependencies.

SQL Query formulation No perfect query optimizer exists and the way @t §uery is formulated influences
the time it takes the DBMS to answer it. Some degalmanagement systems offer a better optimizer
than others. Query optimization is still a thriviregsearch area [SE1979, CH1998, CB2007]. The prope
query formulation therefore is database dependémte different database systems will transform the

same SQL query into different access plans (whjgdtiéy the procedures by which the result table is
constructed).

Data modd: The data model is part of the functional desipase. It describes how data is organized in tables
and how those tables relate to each other. Perfarendepends on the structure of the data, which is
represented by the data model. We can for instdacile to denormalize to improve read performance
of a specific action. The consequence of denormu#diz is a loss of write performance, so we caneanak
performance decisions while designing the data mode

Indexes: Indexes are ancillary data structures that impn@ad performance, but are not functionally nexgss
Therefore they are part of the technical desigrth@it indexes, we would (worst case) have to scan a
entire table to find one single record. Severaksypf indexes exist. Each type of index has its own
advantages with respect to read performance.

Next to the improvement of the read performanceéexes may decrease performance as well. Indexes
store redundant information and therefore they tadditional storage space on disk and in the cache.
Because of this, data may no longer be cached lar@fore the read performance of an arbitrary
solution can deteriorate. Furthermore the introduciof indexes leads to additional updates and
therefore results in a deterioration of the wrigefprmance.

4.1.2 Environment dependent perfor mance parameters

Environment dependent performance parameters grectasof the usage of the solution that influertse i
performance. Although we know a range of possikblemeter values during the design and implementatial
we can take that into account when choosing aisaluive cannot determine one exact value for pevdorce
due to these external parameters. The existeneavifonment dependent parameters makes it hardscrile
database performance patterns since we cannotag@aduny possible combination of parameter values. W
identified the environment dependent performancamaters listed below.

Data statistics: A cost based optimizer estimates the costs fouery using statistics about the data in a
database. These statistics are based on the awiodata and the availability of auxiliary structsria
the database itself. As the amount and the coniposif the data changes, the performance of a
solution changes.

Database and OS cache: Both OS and RDBMS keep results in cache so tteatubntly used results can be
accessed directly instead of retrieving them froisk dor computing them anew. This improves
performance. An RDBMS caches frequently used redrdim queries and from the optimizer. When a
query is submitted sufficiently frequently, the RBSE may recognize this fact and reuse a previously
computed access plan or the access plan of a dirstauctured query.

Also query results are stored in cache by the da&lf many queries are applied to the same ttidge,
same data must be accessed from disk each timstogg the most frequently used data in memory
database performance can be improved significavidyanother type of cache is the OS cache. The OS
cache is very similar to the database cache. flestiiequently accessed blocks from disk in memory.
The OS makes its own choices about caching andatadase cannot directly manipulate the OS cache.

Disk fragmentation: Database systems use the hard disk to storecamedsainformation. Besides the hardware
aspects like the number of cycles per minute amtheaize of the hard disk, the way data is stored
influences performance as well [SKS2005]. If theadaquested is not clustered in an easily acdessib
part of the disk, it takes more time to read dimation.

System load: An increase of the system load can influencegperéince in many ways. If the system load is high
for example, a query may have to wait some timeoreefesources are available to execute it.
Furthermore the number of context switches (frotivating and deactivating processes) increases and
therefore performance decreases even more.

Infrastructure: Depending on the infrastructure, external aspeets influence the performance as well.
Suppose that the database server process is logatdte same (hardware) server as the application

server process. Then the communication speed sEsefno network delays), but the amount of
resources must be shared amongst the databasea®ivapplication server.

The values of each of these parameters may chamgetime. In order to allow the pattern user toasethe
right solution, a range of parameter values hasetdested for each solution for each applicablerenment
dependent performance parameter. As a result we dascribe these values and the values for whieh th
solution was tested in the applicability, conse@esrand summary sections of our pattern.

4.2 Usability and limitations

The major difference between database performaatterps and functional and technical design patterithat
the performance of a solution is environment depahdA change of environment dependent performance
parameters may result in a change of the perforenaica solution after implementation. Although wenc
specify some values for which we know that the tiarfuis likely to perform well, we cannot take apgssible
combination of parameter values into account agdesme when creating a pattern. This means thexpected
things still can happen to solutions after impletagan.

Although this might seem to be a big problem, we deal with it. Our problems are based on many know
situations in real life and therefore we can eshlthat the solutions will work in most situatiof@ccasionally
we end up in a situation that a solution does eofopm according to the description in the pattdims situation
was not explored before and also without a patterrwould have had to deal with it. In both casesdeeided
on a badly performing solution and we need to fambther one. We can use this experience to imptteee
performance pattern and thereby prevent the problamhappening again.

5. EXAMPLE PATTERN: SUBTREE

We illustrate the use of database performance rpattey means of a number of aspects of the database
performance pattern, dealing with the subtree mrmabNote that this description is illustrative. & more detail
could be added, tests as well as alternatives. Henyvéhe present example should give an accepiaiplession

of what information is recorded. We use the tengpfadm Figure 2.

5.1 Problem

Goal The goal is to retrieve a list of entities frorhiararchical data structure, which are locateth@ésubtree of

a given root entity.

Situation A collection of entities is ordered in a numbédrhierarchies. We want to store these entities in a
relational database such that we can determirgt aflientities located in the subtree of a givent emtity. An
example of such a collection of entities and theeponding subtrees can be found in Figure 3.

Example Users are structured in a hierarchy. A udés allowed to view his own information and infortioa of
users who are placed below him in the hierarchyrtter to verify that) is allowed to view some information,
we generate the list of users in the subtree with W and check if the information belongs to any ofdkers in
that list.

Data structure Subrees

root Subtree
n 1 1,3,4,6 7, 8

2 25

3 3

A A

f f

7 7
oJo s

Figure 3 Exampledata structureand subtreesfor theroot entities

5.2 Partial solution 1: Recursive Structure

The solution ‘recursive structure’ describes a sofufor the subtree problem. First we discussapplicability
of this solution. Then we describe the solution disguss the consequences of applying the solution.

5.2.1 Summary of applicability:

* Recursive queries are database specific and npbsigpl by all database systems.

» Portability decreases if this solution is applied.

* No redundant information is used and thereforentti® performance and maintainability are good and
storage space is minimal.

Entity

PK | entityld

parentEntityld

Figure4 Data modd solution recursve gructure

5.2.2 Solution description

We add one columparentEntityld which refers to the parent of an entity to tHaa&ntity. The corresponding
data model is displayed in figure 4. The valuehid field iSNULL, if no parent exists. An example of a structure
with two hierarchies and their representation etdbleEntity is displayed in figure 5.

Structure Representation in Entity

entityld parentEntityfd
° MULL
- MIULL

Figure5 Example of therepresentation of a sructure

00| =) O (| 5| 0J) k) —
| | | | = —

In addition to the data model as described abdus, dolution requires a recursive query. Althougime
database systems support this type of queries,dieepot part of the SQL:1999 standard. An Oraelsion of
such a query is (the Id of the entity indicating thot of the subtree is entered@sot Ent i t yl d) :

SELECT entityld

FROM Entity

CONNECT BY PRIOR entityld = parentEntityld

START WTH entityld = @ootEntityld

Here in order to support this query the Entity éaBhould be enhanced with an index on (parentHshtity
entityld). The query then will be answered from théex alone. Note that the Entity table in genevil have
additional columns.

5.2.3 Consequences

Read performance One of the aspects that influence the read pedooa of this solution is the number of
entities in the subtree defined by a root entitye @eated a number of tests to investigate thaantie of this
number on the read performance. We found a lingation between the number of entities and the it
time. The resulting graph is displayed in figure 6.

Write performance Since there is no redundant information and theuarhof indexes is small, the write
performance of this solution is good.

Functionality No functional restrictions exist for this solution

Storage space No redundant information is used in order to stheesubtree. Therefore the amount of storage
space required is optimal.

Portability Recursive queries are not supported by defaultQh. Some databases offer special constructions
[GEN2001] and others do not support recursive gaeat all [POS2006]. Therefore the portabilityraf fuery in
this solution is poor.

1,200

1,000

- /.
0600 /'/

0400

0,200

0,000 -/.// ‘ . . ‘ ‘

0 20000 40000 B0000 a0ooo 100000 120000
Mumber of rows in result set

Execution time in seconds

‘ Average measurement with empty cache m Average measurement with operational cache ‘

Figure6 Influence of thenumber of entitiesin a subtree on the execution time
5.2.4 Relations

This is an isolated example. The only solutionsilalvke are the alternatives. They are related & pghesent
solution by the problem description that they share

10

5.3 Partial solution 2: Flat Structurein Rows

The solution ‘flat structure in rows’ describesalternative solution for the subtree problem.
5.3.1 Summary of applicability

* The read performance of this solution is bestdogé subtrees. If subtrees are small, other sakitoe
more suitable.

e The goal of this solution is to improve read perfance. As a result write speed decreases and more
storage space is needed.

5.3.2 Solution description

This solution was designed to improve the readgperdnce. The recursive solution as described iptaeious
section requires the database to access the Ealitly multiple times. This solution was designed to fithis
amount to one. Therefore we introduce redundaeteates in our data model.
We use two tables to store the hierarchical stracflihe structure itself is stored EmtityStructand the data

is stored irEntity. For each entity we store references to all ptessiéots of subtrees in which the entity occurs
in the fieldEntityStruct.rootEntityld To be more precisepotEntityld contains the following references for each
entityE:

* Reference t& itself;

» Reference to any entity which is placed abBve the hierarchical structure.

EntityStruct Entity

PK rootEntityld [g PK |entityld
PK,FK1 | entityld

Figure 7 Data model solution flat structurein rows

This means that an entity with two entities abogeues three times in the tatitityStruct The corresponding
data model is displayed in figure 7. An examplehaf representation of a structure in the tdtridityStructis
displayed in figure 8. Note that we assume thal esmtity occur only once in the structure by definthe fields
rootEntityld and entityld to be the primary key dEntityStruct Only a simple query is needed to retrieve the
required subtree:

SELECT entityld

FROM EntityStruct

WHERE rootEntityld = @ootEntityld

When the query needs to produce more Entity relatedmation, an inner join with the Entity tableeds to
performed.

Just as in the case of the recursive structurdignjwe want to make use as much as possible wickx to
avoid the access of the table itself. Since wecsele the rootEntityld column and require the efditcolumn as
output and possibly as join column for retrievinfprmation from the Entity table, and index on (Ewmtityld,
entityld) is indicated. Since this combination isoadesignated as the primary key, an index oretbekimns
will already be present. One has to make sureeoptbper order of the columns though.

11

Structure Representation in EntityStruct

% entityld rootEnGty Rl

Figure 8 Example of therepresentation of a sructure

00| 00| | ~=df ~=af | | oo n| el e | oo Lo po] =
L] e I B | e I) lm) e B A T s By TR Il Y]

[==]

5.3.3 Consequences:

Read performance One of the aspects that influences the read peafoee of this solution, is the number of
entities in the subtree defined by a root entitye @eated a number of tests to investigate thaantie of this
number on the read performance. We found a lingation between the number of entities and the it
time. The resulting graph is displayed in figure 9.

Write performance The write performance of this solution is influedcby the existence of redundant
information. Each time the structure of a hierarchghanged, the redundant information needs topdated as
well. The amount of updates required depends opdbkgion in the structure.

Functionality It is not always possible to retrieve the exacelawmber. There is no difference for instance
between a hierarchy consisting of one entity atlleme and a hierarchy consisting of one entitewl 3 unless
we know that there is only one root at level 1hef entire structure. This can be necessary if ifferent levels
have a different meaning (e.g. country, city, $jre®ne additional column to store the level calvesdhis
problem, but this requires some additional mainteaa

0,070

0,080

0,050

0,040

0,030 —

———

Execution time (s)

0,020

0,010 u_n

0,000 T T T T T)
] 20000 40000 60000 a0o0o 100000 120000

Number of rows in result set

‘ Awerage measurement with empty cache m Average measurement with operational cache |

Figure9 Influence of thenumber of entitiesin a subtree on the execution

12

Maintenance As mentioned earlier, the redundant rows neediadditupdates and therefore the complexity of
maintenance increases.

Storage space The additional space for the redundant informatiepends on the levels the entities are located
on. An entity at levek requiresx rows and therefore, the number of rows in theetdbrtityStruct becomes
O(#entitiesx #Hlevels.

Portability No database specific properties are used for thigisn, so portability is good.

5.3.4 Relations
This is an isolated example. The only solutionsilalke are the alternatives. They are related & glesent
solution by the problem description that they share

5.4 Partial solution 3: Flat Structure in Columns

The solution ‘flat structure in columns’ descritzethird solution for the subtree problem.
5.4.1 Summary of applicability

* The maximum number of levels in the structure nwesknown in the implementation phase.

* Read performance is average for both small ané Isutrees.

e The goal of this solution is to improve read parfance. Thereby the write performance decreases and
the storage space required increases.

5.4.2 Solution description

Similar to the previous solution, the goal of te@ution is to enable the database to retrievestigree by
scanning the table Entity only once and therebyawe the read performance. Therefore we introdadandant
information in our data model as well.

For each entity we store references to all rootsudftrees in which the entity occurs. This is dbye
introducing one column for each level in the stuet In the column of leved a reference to the root at level
must be stored. If no root exists at that leves, walue isNULL. Now if we know at what level an entify is
located, we can find all elements of its subtreesbgnning the column corresponding to the levet.oThe
corresponding data model is displayed in figureTt& columrievelis used to store the level on which the entity
is located in the structure.

Entity

PK | entityld

level1RootEntityld

levelNRootEntityld
level

Figure 10 Data modd solution flat structurein columns

Consider for example the structure as displayefigire 11. This structure consists of three levsts,three
columns are used to store the structure. The ehigycontained in two subtrees: the subtree vath t at level 1
and the subtree with root 4 at level 2. Since pdtiis at level 2, no subtree exists at level 3nére complicated
example can be found in figure 12.
The query that goes with this datamodel assumestihaevel of the root entity is known:

SELECT entityld

FROM EntityStruct

WHERE | evel xRoot Entityld = @ootEntityld
In this solution single column indices on all lexRbotENtityld columns are required.

13

Level 1 Subtree levell

_.__Subtree level 2
Level 2

Level 3

Figure 11 Subtreesin which the entity 4 occurs

Structure Representation in Entity

entityld | fevelTiRoot | level2Root | levelZRoot
0 Entityid Entityfd Entityfd
1 MLILL MNULL
2 ML NULL
e 1 3 MNULL
1 NLILL
2 MNLILL
1 1
ololo 1 i
1

[

0| 4| o r| fea| of P3| =]
| | |] e

Figure 12 Example of therepresentation of a sructure

5.4.3 Consequences

Read performance One of the aspects that influence the read pedocm of this solution, is the number of
entities in the subtree defined by a root entitye @eated a number of tests to investigate thaantie of this
number on the read performance. We found a lingation between the number of entities and the it
time. The resulting graph is displayed in figure A3 can be seen, the execution time is almosttanhor this
solution.

0,05
0,04
=
£ 003
=
]
3 002
&
w
0,01
f | I |]]
0,00 = T T T T T]
1] 20000 40000 g0000 80000 100000 120000
Number of entities in result set
| Awerage measurement with empty cache m Average measurement with operational cache |

Figure13 Theinfluence of thenumber of entriesin a subtree on the execution time

14

Write performance Each time the position of an entity in the struetisrchanged all redundant columns must be
updated as well.

Functionality Since each level in the structure is represented loplumn in the data model, the maximum
number of levels must be known at design time. Late additional levels can only be created by &dgphe
data model.

1,000
0,800
0,800
0,700
0,600
0,500
0.400
0,300
0,200
0,100 ¥

D,DDD . T T T T T !
0 20000 40000 60000 20000 100000 120000

Number of results

Execution time in seconds

| + Recursive structure = Flat structure in rowws -+ Flat structure in columns |

Figure 14 Influence of the number of entitiesin a subtree on the execution timefor different solutions

Maintenance Each time the structure of a hierarchy is charajecdundant references must be updated as well.
The data model does not guarantee that all refeseae functionally correct, so this has to be dpne query
and as a result, maintenance becomes more coneglicat

Storage space Since each entity contaifevelsreferences whereas one would suffice, the amolstocage
space reserved for redundant referenc@q{#develsx #entities.

Portability No database specific properties are used for thigisn, so portability is good.

5.4.4 Relations

This is an isolated example. The only solutionsilabbie are the alternatives. They are related &ophesent
solution by the problem description that they share

5.5 Summary of the solutions

In this section, we summarize the results fromtlalee solutions. The read performance of the smistis
displayed graphically in figure 14. A summary df@nsequences is displayed in table 1.

Agpect Parameter Recursive Flat in rows Flat in columns
Read performan Number of entities | Suitable for Not suitable fol Average for all
in subtree numbers < N numbers < N, best | numbers
for numbers > N’ (>
N)

15

Write performanc | Redundan None, optimal write | Multiple row Multiple column
information performance updates for changes updates for changes
in structure in structure
Indices
Functionality Maximum numbe | None May need ar Must be known ir
of levels additional level implementation
number to be stored phase
Maintenanc Redundan None Correctnesmust be | Correctness must t
information guaranteed in code| guaranteed in code
Storage spat Redundan None Number of rows ir | Number of
information EntityStruct additional
O(#entitiesx references in
#levelg columnsO(#entities
x #level9
Portaility Database depende | Recursive quel None None
queries

Table1 Decision tablefor the choice of solutionsfor the subtree pattern

6. DISCUSSION AND OUTLOOK

In the previous sections we discussed the conckpt database performance pattern. In an actual
application, many more aspects come into play.asaveé have only considered patterns for databases
on a problem by problem basis. Of course, the &piorkload for an application will involve many
different types of queries and updates the perfoomaf which will have to be guaranteed. These
different types will entail conflicting requiremeantOne will therefore have to choose which quénes
favor over which others. In such a situation orngdglly will apply the centering principle [SW2002]
which states that one should allocate most ressuacthose tasks for which they have the most effec
In extreme cases, workloads comprising thousandsffefent database actions need to be optimized.
In such cases, another approach using automatésl gach as discussed in [CGL2003] will be
needed.

In the discussion of performance patterns we sohtare considered only the functional and
technical design and implementation phases of ggrolo allow discrimination between alternative
solutions we have made use of tests, e.g. to findhe values of N and N’ in table 1. Such testslza
used again in the testing phase to validate théemmgntation of the database against its requiresnent
A useful extension of the pattern template theeefpears to be the inclusion of the test desoripti
and datasets.

In addition to the performance of the databaseysibm, the performance of an application also
will depend on the performance of other the comptmeén the system. For instance, in a web
application, performance patterns can cover elesngath as client, application server, database and
communication between client and application semebetween application server and database.
Since the performance of a solution is influencgdphrameters from all elements covered by the
solution, it is easier to describe solutions foe alement only than for a combination of elements.
Therefore we also envisage application, client, aachmunication performance patterns. Probably
performance patterns that cover multiple elemehtsnae exist as well. We have not seen the use of
those in practice however. Furthermore it will baam harder to describe them in terms of building
blocks since the problem space is much largerfibratine single element patterns.

In this paper we have proposed a mechanism to adawowledge about (database) performance
patterns and demonstrated how to use it. To re#tiedull benefit from performance patterns in the

16

software development life cycle, steps need tonkegrated to structurally identify new performance
patterns, and update available ones. This top@uisently under study. Of course, such steps will
involve the creation of awareness and motivatiordedigners and developers to use performance
patterns.

7. REFERENCES

[Ale1979] C. Alexander, 1979. The Timeless Wayaflding. Oxford University PresdfNew York.

[AIS1977] C. Alexander, S. Ishikawa, and M. Silmers, 1977. A Pattern Language: Towns,
Buildings, ConstructionOxford University PresfNew York.

[CB2007] B. Cao and A. Badia, 2007. SQL Query optation through nested relational algebra.
ACM transactions on database systems, Vol. 323Naticle 18 pp. 1-46.

[CGN2003] S. Chaudhuri, P. Ganesan, V. Narasay§@3 2Primitives for Workload Summarization
and Implications for SQLRProceedings of the 29th VLDB ConferenBerlin, Germany.

[CH1998] S. Chaudhuri, 1998. An overview of quepfimization in relational systemBroceedings
of the ACM PODS conferencgeattle, pp. 34-43.

[COR1993] P. Corrigan and M. Gurry, 1993. ORACLEfpenance tuningD'Reilly & Associates,
Inc.

[Fow1996] M. Fowler, 1996. Analysis Patterns : Rehle Object ModelsAddison-WesleyBoston.

[Fow2003] M. Fowler, 2003. Patterns of EnterpriggpAcation ArchitectureAddison-WesleyBoston,
2003.

[GEN2001] J. Gennick, 2001. New CONNECT BY feature®racle database 10Qracle Magazine

[GH1995] E. Gamma, R. Helm, R. Johnson, and Js\es, 1995. Design Patterns: Elements of
Reusable Object-Oriented Softwafeldison-Wesley

[JBP] http://java.sun.com/reference/blueprirtgsited 15 december, 2007)

[KC1997] Wolfgang Keller and Jens Coldewey, 199&laonal database access layers -- A pattern
languageijn Robert C. Martin, Dirk Riehle, Frank Buschmg(ius.): Pattern Language of
Program Design 3, Addison-Wesley

[KEL1997] Wolfgang Keller, 1997. Mapping objectstables - A pattern languadesoc. of European
conference on pattern languages of programmingerente (EuroPLOP)97, Bushman, F.
and Riehle, D. (eds)rsee, Germany.

[KEL1998] Wolfgang Keller, 1998. Object / relatidreccess layers: A roadmap, missing links and
more patterns’ln 3rd European conference on pattern languaggeogramming and
computing (EuroPLoP'98Bad Irsee, Germany.

[MIL2002] Hafedh Mili, Ali Mili, Sherif Yacoub, andedward Addy, 2002. Reuse based software
engineering: Techniques, orgtanization, and measemgJohn Wiley & Sons

[POS2006] The PostgreSQL Global Development Gra0p6. PostgreSQL 8.2.0 Documentation.

[RH2004] N. Russell, A.H.M. ter Hofstede, D. Edmoadd W.M.P. van der Aalst, 2004.Workflow
Data Pattern®QUT Technical report, FIT-TR-2004-01, Queenslandversity of Technology
Brisbane.

[SE1979] G. P. Selinger et al., 1979. Access palitton in a relational database management
systemProceedings of the ACM Sigmod international confeeson management of dafp.
23-34.

[SHA2003] D. Shasha and P. Bonnet, 2003. Datahasied: principles, experiments, and
troubleshooting techniquesglorgan Kaufmann Publishers Inc

[SKS2005] A. Silberschatz, H. F. Korth, and S. Satan, 2005. Database system concepts, 5th
Edition, McGraw-Hill Book Company

17

[SM1990] Connie U. Smith, 1990. Performance engjiimg of software systemaddison-Wesley
[SW2002] Connie U. Smith and Lloyd G. Williams, 20Performance solutions: a practical guide to
creating responsive, scalable softwaédison Wesley Longman Publishing Co., Inc.
[SW2002b] Connie U. Smith and Lloyd G. Williams,020 New software performance antipatterns:
More ways to shoot yourself in the foah; Proceedings of the 28th International Computer
Measurement Group Conferengp. 667-674.

[TPC] http://www.tpc.org/default.asp (visited 15d@enber 2007)

[WIP] http://www.workflowpatterns.comiV. van der Aalst en A. ter Hofstede (visited 18efaber,
2007)

18

