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ON EXCESS-OF-LOSS REINSURANCE

Hansjörg Albrecher1 Jozef L. Teugels2

Abstract

We analyze the distribution of the number of claims and the aggregate claim sizes

in an excess-of-loss reinsurance contract based upon the use of point processes. We

first deal with a single excess-of-loss situation with an extra upper bound on the

coverage of individual claims. Subsequently the results are extended to a reinsurance

chain with k partners.

1 Introduction

Traditionally, an excess-of-loss reinsurance form covers the overshoot over a certain re-
tention level M for all claims whether or not they are considered to be large. Among
the insurance branches where it is used we mention in particular general liability, and
to a lesser extent motor-liability ([24]) and windstorm reinsurance ([17]). Because of its
transparency, an excess-of-loss treaty has been one of the main research objects in the
reinsurance literature right from the beginning (see for instance [3],[4]). It is clear that
excess-of-loss reinsurance limits the liability of the first line insurer but that he himself
will cover all claims below the retention M . In this form, the excess-of-loss reinsurance
treaty cover has a number of desirable theoretical properties as explained by Bühlmann
in [5] and by Asmussen e.a. in [2]. For a combination with quota-share reinsurance, see
[6].
We will look at a more general form where each claim will be considered between two
boundaries: we will call the lower retention u while the upper will be taken to be u + v,
indicating by v the range for which the treaty is used. As illustrated below, the notation
allows us to deal with any partner in an excess-loss reinsurance chain. If u and v are
depending on the claim orderings then this reinsurance form is commonly called drop-
down-excess-of-loss reinsurance. For a study of such a reinsurance form, we refer to
Ladoucette e.a. [11].
In the following we need some basic notation, first for the original portfolio.

• The epochs of the claims are denoted by T0 = 0, T1, T2, . . .. Apart from the fact that
the epochs form a non-decreasing sequence we in general do not assume anything
specific about their interdependence. The random variables defined by W0 = 0 and
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{Wi+1 := Ti+1 − Ti; i = 0, 1, . . .} are called the waiting times in between successive
claims. In some particular cases it might be useful to assume that the sequence
{Wi; i ≥ 1} consists of independent random variables all with a common distribution
V as a random variable T , i.e. P (T ≤ x) = V (x). In that case the claim epochs are
the renewal time points of a renewal process generated by T or V .

• The number of claims up to time t is denoted and defined by N(t) = sup{n : Tn ≤
t, t ≥ 0}. We denote its probabilities by pn(t) = P (N(t) = n). For the generating
function of the sequence {pn(t)} we use the notation (|z| ≤ 1)

Qt(z) :=
∞
∑

n=0

pn(t) zn = E{zN(t)}.

• The claim occurring at time Tn has size Xn. The sequence {Xi; i = 1, 2, . . .} of
consecutive claim sizes is assumed to be a renewal process, i.e. the claims are
taken to be independent with common claim size distribution F (x) = P (X ≤ x)
where X is a generic claim size. We take for granted that the claim times process
{Ti+1−Ti; i = 0, 1, . . .} and the claim sizes process {Xi; i = 1, 2, . . .} are independent.

• The total claim amount or the aggregate claim amount at time t is defined and
denoted by X(t) =

∑N(t)
i=1 Xi if N(t) ≥ 1, while X(t) = 0 if N(t) = 0. For its

distribution we write
P (X(t) ≤ x) =: Gt(x) .

Under the assumption of independent claim number and claim size processes, Gt(x) =
∑∞

n=0 pn(t)F ∗n(x) where ∗n refers to the n-th convolution of F with itself. For the
Laplace transform we then have (s ≥ 0)

Ĝt(s) = E{e−sX(t)} =

∞
∑

n=0

pn(t)F̂ n(s) = Qt(F̂ (s)) (1)

where F̂ is the Laplace transform of F .

• In the sequel we will use the same notation for the reinsured part as for the original
one but supplied with .̃ For example, the number of reinsured claims up to time t
will be denoted by Ñ(t). Whenever the time parameter t is unimportant, it will be
dropped in the sequel.

Whereas there are several papers and textbooks available in the literature dealing with
risk analysis in an excess-of-loss setup under specific model assumptions (most notably the
Sundt-Jewell class for the claim number distribution, cf. Section 2), systematic treatment
in a general framework seems to be missing. In this paper, we intend to provide a general
yet simple approach to the study of some random quantities in connection with excess-of-
loss contracts based on transparent use of point processes. In Section 2 we first deal with
the number of reinsured claims for a single reinsurer together with a wide set of examples
from the actuarial literature. In Section 3 we then turn to reinsurance chains with more
than three partners. Section 4 finally deals with the aggregate claim amounts carried by
the individual partners in the reinsurance chain.
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2 Number of Reinsured Claims

2.1 General Properties

Consider the bivariate point process with points

{(Tk, Xk), 1 ≤ k ≤ N(t)}.

To deal with the number of reinsured claims, let A be any Borel set in R
+ × R

+ and
denote by Ñ := Ñ(A) the number of points from the bivariate point process that fall into
the set A. To make the calculations more transparent we define

Yn :=

{

0 if (Tn, Xn) /∈ A,
1 if (Tn, Xn) ∈ A,

Hence

Ñ(t) = #{k : 1 ≤ k ≤ N(t)|(Tk, Xk) ∈ A} =

∞
∑

n=1

I{Yn = 1, N(t) ≥ n}

where I{A} refers to the indicator function of the set A.
In this section, we will choose A to be of a form A = (0, t] × (u, u + v]. The reason for
allowing arbitrariness in the second component of A is that situations vary between first
and second line insurance. For a first line insurance, u = 0 while v = M, the retention.
For the first reinsurer however, u = M while v may take any positive value. If the first
line reinsurer does not shift part of the risk to a second reinsurer, then v = ∞. If the first
line insurer also buys an excess-of-loss reinsurance at a second company, then v equals
the extra retention on top of the one for the first line reinsurance company and so on. By
not specifying u and v the treatment below applies to any company in an excess-of-loss
reinsurance chain. Of course, any reinsurer can apply the type of reinsurance of his choice,
irrespective of what the former insurer has been doing.
By the underlying assumptions about the claim number and the claim times processes we
find the following expression (t ≥ 0, n ≥ 0)

p̃n(t) := P (Ñ(t) = n) =
∞
∑

k=n

pk(t)

(

k
n

)

rn(1 − r)k−n

where we simplified the notation by introducing the abbreviation

r := r(u, v) = P{u < X ≤ u + v} = F (u + v) − F (u),

the probability of a claim size larger than the value u but not overshooting the value u+v.
Indeed, among the k claims that arrived by time t, exactly n could be called successes
when we interpret an event to be a success if the allowed time slot is (0, t] while the value
slot is (u, u + v].
An alternative expression can be obtained if we look at the generating function Q̃t(z)
of the distribution {p̃n(t)}. It is straightforward to derive that this is related to the
generating function Qt(z) of the distribution {pn(t)} by the equation

Q̃t(z) = Qt((1 − r) + rz) . (2)
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Written in this fashion, the variable Ñ(t) can be considered as a thinned version of the
original N(t). This also means that, up to the determination of the quantity r, both
contain similar statistical information. For example, if the insurer has a statistical esti-
mate of Q(z), then the same is true for the reinsurer since Q̃(w) = Q((1 − r) + rw). But

conversely, if Q̃(w) is known, then Q(z) = Q̃( z−(1−r)
r

). Hence, only the extra parameter r
needs to be known or estimated.
From the above, one can quickly derive information on the moments of Ñ(t). For any
non-negative integer k

E

(

Ñ(t)
k

)

=
1

k!
Q̃(k)(1) = rkE

(

N(t)
k

)

. (3)

In particular
EÑ(t) = r EN(t) ,

V arÑ(t) = r2 V arN(t) + r(1 − r) EN(t) .

For the measures of dispersion one has

Ĩ(t) :=
V arÑ(t)

EÑ(t)
= r I(t) + (1 − r).

Mack [12] notices that Ĩ(t)−1 = r(I(t)−1) showing that the sign of the dispersion for the
original claim number process remains the same for the reinsurance process. Moreover,
the smaller r (e.g. by lowering the height v of the layer), the closer the dispersion gets to
that of the Poisson case. This phenomenon is well-known within the context of renewal
theory. See for example [15].

2.2 Examples

Let us illustrate the above procedure for a wide set of examples traditional in the actuarial
literature. For that purpose consider the general case of holonomic generating functions
Qt(z), i.e. Qt(z) is a smooth function satisfying a linear homogenous differential equation
with polynomial coefficients

k
∑

i=0

Q
(i)
t (z)Pi(z) = 0 .

Here Q
(i)
t (z) denotes the i-th derivative (with Q

(0)
t (z) := Qt(z)) and Pi(z) =

∑di

j=0 aijz
j is

a polynomial of degree di with real coefficients aij . This class contains most of the claim
number distributions that allow for effective recursive calculations of aggregate claim
distributions, see for instance Wang & Sobrero [25] and Albrecher & Pirsic [1]). From (2)
we immediately derive

k
∑

i=0

Q
(i)
t (1 − r + rz)Pi(1 − r + rz) =

k
∑

i=0

Q̃
(i)
t (z)P̃i(z) = 0

with

P̃i(z) =

di
∑

j=0

ãij zj , where ãij = rj−i

di
∑

m=j

aim

(

m
j

)

(1 − r)m−j . (4)
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Hence the degree of each polynomial Pi is preserved when switching from the insured
to the reinsured claim numbers and as we shall see in worked out examples below, for
many special cases the type of claim number distribution is also preserved, with just the
parameters being modified.

1. The Sundt-Jewell class.
This very popular set of claim number distributions has been introduced in 1981 by
Jewell and Sundt [20]. It is based on the simple recursion

pn =

(

a +
b

n

)

pn−1 , n ∈ {2, 3, . . .} (5)

where the quantities a and b may depend on the time variable t (since the time
parameter is not important in this example, we omit it throughout). The above
class has been introduced in an attempt to gather a variety of classical claim number
distributions under the same umbrella. Later Willmot [27] reconsidered the equation
and added a number of overlooked solutions. Note that the recursion does not specify
the quantities p1 and p0. Nevertheless the requirement

∑∞
n=0 pn = 1 eliminates one

of the latter two parameters. As a result the Sundt-Jewell class may be used as a
three parameter class (a, b, p0) for data-fitting. As will be shown in a later section,
the recursion is also instrumental in the numerical calculation of the distribution of
the total claim amount Gt(x).

The solution of the above relation (5) can be obtained in a variety of ways. We use
generating functions. Then (5) turns into the first order differential equation

(1 − az) Q′(z) = (a + b) Q(z) + p1 − (a + b)ρ (6)

where ρ := p0 = P (N = 0). Solving this equation with the side condition Q(1) = 1
is standard. Note that apart from the quantities a and b, the other two parameters
can be retrieved from ρ = Q(0) and p1 = Q′(0).

We turn to the reinsured quantities. Clearly, (6) is a special case of (4) (just dif-
ferentiate (6) w.r.t. z to see that Q(z) is holonomic, but (4) can also be applied to
(6) directly). Hence it is easily calculated that (after normalization) P̃1(z) = 1− ãz
and P̃0(z) = ã + b̃, where

ã :=
a r

1 − a(1 − r)
& b̃ :=

b r

1 − a(1 − r)
. (7)

For the inhomogeneous term, we have ρ̃ := p̃0 = Q̃(0) = Q(1 − r) while p̃1 :=
Q̃′(0) = rQ′(1 − r) . Inserting z = 1 − r in (6) it follows that the differential
equation for Q̃(.) is also given by

(1 − ãz) Q̃′(z) = (ã + b̃) Q̃(z) + p̃1 − (ã + b̃)ρ̃, (8)

which imitates (6) perfectly. Comparing (6) with (8) we conclude that the proba-
bilities for the reinsured quantity {p̃n} satisfy a relation of the form (5), i.e.

p̃n =

(

ã +
b̃

n

)

p̃n−1 , n ∈ {2, 3, . . .}
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with new parameters ã and b̃ defined above.

Let us look at a number of special cases of the relations (5) and (6).

• Case 1: a = ã = 0
This case is rather easy and leads quickly to the well-known observation that
a thinned (shifted) Poisson variable is again (shifted) Poisson

pn =
1 − ρ

1 − e−b
e−b bn

n!

where the quantity b is replaced by b̃ = br.

• Case 2: a 6= 0, ã 6= 0.
It is advantageous to use the auxiliary quantity ∆ := 1 + b/a = 1 + b̃/ã that
remains invariant under thinning.

– Subcase (a): ∆ 6= 0
Here we find the shifted Pascal (negative binomial) distributions

pn =
1 − ρ

(1 − a)−∆ − 1

(

∆ + n − 1
n

)

an , n ≥ 1 (9)

and the same for {p̃n} with a replaced by ã and ρ by ρ̃.

– Subcase (b): ∆ = 0
Now the solution is the shifted logarithmic distribution

pn =
1 − ρ

− log(1 − a)

an

n
, n ≥ 1 (0 < a < 1) (10)

again with the same for {p̃n} with a replaced by ã and ρ by ρ̃.

A few observations are in order.

(i) The cases a = ã = 0 and ∆ = 0 are the natural limits of the general case of
the shifted Pascal distributions.

(ii) Apart from the above three distributions, also other cases are invariant under
reinsurance thinning.

– If ∆ = −m, a negative integer, then we run into the shifted binomial
distribution both for the original and for the thinned process.

– If ∆ = −θ ∈ (−1, 0) a similar calculation yields a shifted Engen distribution
(see [27])

pn =
1 − ρ

1 − (1 − a)θ

anΓ(n − θ)

n!Γ(1 − θ)
, n ≥ 1

with the same expression for {p̃n} with a replaced by ã and ρ by ρ̃.

(iii) It turns out that in all of these cases the generating function Q(z) can be
written in the form Q(z) = ρ + (1 − ρ)R(z) where R(z) is again a generating
function of a discrete probability distribution {qn; n ∈ N}. The effect of the
parameter ρ is to introduce an eventual extra weight at the point 0. This
is often done by truncation in the sense that ρ = P (N = 0) while R(z) is
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the generating function of the probabilities P (N = n|N > 0). If we shift
the distributions and take ρ = 0 then we of course get the classical unshifted
distributions. By the above, this remark also applies to the thinned process of
the reinsured claims.

Other, more involved holonomic functions Q(z) will be discussed in the framework
of mixed Poisson processes below. Note that Q(z) satisfying (4) generalize (5) by
allowing recursions for {pn} of higher order and by replacing the factor a + b/n by
general rational functions (see also [18], [22], [29] and more recently [8]).

2. The mixed Poisson process
A far reaching generalization of the ordinary Poisson process is obtained when the
parameter λ is replaced by a random variable Λ with mixing or structure distribution
H . In particular we can think of situations where the counting process consists of
various subprocesses that individually behave as a Poisson process with a specific
parameter value. For a textbook treatment, see [7]. We get the following character-
istics:

pn(t) =

∫ ∞

0

e−λt (λt)n

n!
dH(λ)

which yields

Qt(z) =

∫ ∞

0

e−λt(1−z) dH(λ).

If we look at the reinsurance process then by (2) clearly,

Q̃t(z) =

∫ ∞

0

exp{−λt(1 − ((1 − r) + rz))}dH(λ)

=

∫ ∞

0

exp{−λtr(1 − z)}dH(λ) = Qrt(z), (11)

This simple relation shows that we only need to replace the time-variable t by
rt. Other quantities related to the original mixed Poisson process transform in an
analogous fashion. In particular,

E

(

Ñ(t)
k

)

=
(rt)k

k!
E{Λk}.

As an example, consider H to be a gamma distribution with parameters α and b,
then we end up with the Pascal process, originally introduced by Thyrion in [23].
Here

p̃n(t) =

(

α + n − 1
n

)(

b

rt + b

)α(
rt

rt + b

)n

, (12)

which is another way of writing (9).

Whereas from a conceptual point of view, the identity (11) is simple and transpar-
ent, it still leaves the question in what way the resulting distribution changes for
the reinsured quantities, once the mixed Poisson distribution is calibrated to a given
data set. One can either answer this question by investigating the structure of the
mixing density directly or use the approach via holonomic functions: Each of the
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following examples of mixed Poisson distributions (taken from Wilmott [28]) has a
holonomic generating function. Therefore (4) can be applied to show that, due to
the uniqueness of the probability generating function, for many concrete cases the
time-shift (and hence reinsurance thinning) leaves the claim number distribution
invariant with just the involved parameters adjusted accordingly. Here are a set of
concrete examples.

(i) When the mixing distribution is generalized inverse Gaussian with density

f(x) =
µ−λxλ−1 exp(−(x2 + µ2)/(2βx))

2 Kλ(µβ−1)
, x > 0, (µ, β > 0, λ ∈ R),

we obtain the Sichel distribution characterized by

2βz Q′′(z) + µ2 Q(z) + 2β(λ + 1) Q′(z) − (1 + 2β)Q′′(z) = 0

and from (4) it is readily verified that Q̃(z) satisfies the same equation with
β̃ = β r and µ̃ = µ r.

(ii) If the mixing distribution is a Beta distribution with density

f(x) =
Γ(α + β)

Γ(α)Γ(β)

xα−1(µ − x)β−1

µα+β−1
, 0 < x < µ, (α, β, µ > 0),

then Q(z) satisfies

(1 − z) Q′′(z) + Q′(z) (zµ − (α + β + µ)) + µα Q(z) = 0,

and correspondingly Q̃(z) satisfies the same equation with µ̃ = µ r, α̃ = α and
β̃ = β.

(iii) If the mixing distribution is a transformed Beta distribution with density

f(x) =
Γ(α + β)

Γ(α)Γ(β)

c µα xcβ−1

(µ + xc)α+β
, x > 0, (α, β, µ > 0, c ∈ N)

then Q(z) satisfies

(z − 1) Q(c+1)(z) + c(1 − α)Q(c)(z) + µ(z − 1) Q′(z) + cβµ Q(z) = 0.

From (4) we immediately deduce that Q̃(z) is of the same form with parameters
µ̃ = µ rc, α̃ = α and β̃ = β. Note that this example is fairly general, since
for c = 1 we retrieve the case of a generalized Pareto mixing distribution (and
further the Pareto case if in addition β = 1), and the Burr mixing distribution
for β = 1 (and further the log-logistic distribution if in addition α = 1).

(iv) If the mixing distribution is a transformed Gamma distribution with density

f(x) =
µα c xcα−1 e−µxc

Γ(α)
, x > 0, (µ, α > 0, c ∈ N)
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then Q(z) satisfies

(z − 1) Q′(z) + cα Q(z) − µc Q(c)(z) = 0.

Correspondingly, Q̃(z) is of the same form with µ̃ = µ/rc and α̃ = α. Again,
several well-known cases are contained in this example as the Weibull case
(α = 1) and the Gamma mixing distribution (c = 1) leading to the Pascal
distribution for pn (cf. (12)).

(v) As another example in this context, we mention the Inverse Gamma mixing
distribution with density function

f(x) =
µα x−(α+1) e−µ/x

Γ(α)
, x > 0, (µ, α > 0),

leading to
(z − 1) Q′′(z) + (1 − α) Q′(z) + µ Q(z) = 0,

which also holds for Q̃(z) with µ̃ = µ r and α̃ = α.

(vi) Finally, for an Exponential-inverse Gaussian mixing distribution with density

µ(1 + 2βx)−1/2 e
µ
β

(1−(1+2βx)1/2), x > 0, (µ, β > 0),

we have

2β (1 − 2z + z2) Q′(z) + (z2 − (2 − β)z − (µ2 + β − 1)) Q(z) = µ − µ2 − µz.

The solution of the latter equation is also holonomic (since the inhomogeneous
term can be removed by differentiating twice) and hence we can again apply
formula (4) to deduce that (p̃n) has the same distribution as pn with µ̃ = µ/r
and β̃ = β/r.

3. Infinitely Divisible Processes
If the claims are arriving with stationary and independent increments then the
resulting claim number process is an infinitely divisible process. The representation
of the corresponding probability generating function looks as follows:

Qt(z) = e−λt(1−g(z))

where g(z) is the probability generating function of a discrete random variable -say
G- with masses on the strictly positive integers gn = P (G = n). As such the counting
process could also be called a discrete compound Poisson process. The probabilities
are given in the form

pn(t) =

∞
∑

k=0

e−λt (λt)k

k!
g∗k

n

where {g∗k
n ; n = 1, 2, . . .} is the k-fold convolution of the distribution {gn} with

probability generating function g(z) = E(zG). For an interesting interpretation in
an actuarial context, see [10]. Needless to say that the explicit evaluation of the
above probabilities is mostly impossible because of the complicated nature of the
convolutions.
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We again look at what happens with the reinsurance process. From (2) we get

Q̃t(z) = e−λt(1−g((1−r)+rz))

which can be rewritten in the form

Q̃t(z) = e−λ̃t(1−g̃(z))

where λ̃ = λ(1 − g(1 − r)) and

g̃(z) =
g((1 − r) + rz) − g(1 − r)

1 − g(1 − r)
.

It takes little extra to see that g̃(z) = E(zG̃) where (m > 0)

g̃m := P (G̃ = m) =
1

1 − g(1 − r)

∞
∑

n=m

(

n
m

)

(1 − r)n−mrm P (G = n).

The latter formula can in itself be interpreted as a thinning of the original variable
G. We therefore see that the thinned process remains infinitely divisible.

Here are a few more explicit cases that have appeared in the actuarial literature.

(i) If g(z) = z then we arrive at the Poisson process which appeared already in
the Sundt-Jewell example.

(ii) As a further particular case one finds a generalized Poisson-Pascal process
introduced by [9] where g(z) = (1 − β(z − 1))−α is the generating function of
a Pascal variable. Again g̃(z) is of (shifted) Pascal type with β̃ = rβ.

(iii) If g(z) = (eθz−1)/(eθ−1) , then G is truncated Poisson and the corresponding
claim process is of Neyman-type A. The filtered process is of the same type but
needs θ̃ = rθ as new parameter.

(iv) If g(z) = ((1 − θ)z)/(1 − θz) with 0 < θ < 1, then G is truncated geometric.
The generating function is

Qt(z) = exp

{

−λt

(

1 −
(1 − θ)z

1 − θz

)}

.

The probabilities can be evaluated in terms of Laguerre-polynomials

pn(t) = P{N(t) = n} =

{

e−λt if n = 0,

e−λt θnL−1
n

(

−λt(1−θ)
θ

)

if n ≥ 1.

The latter counting process is called the Pólya-Aeppli process. The reinsurance
process is again of the same type with θ̃ = θr

1−θ(1−r)
.

4. The Sparre Andersen model.
In renewal theory filtering occurs when one deletes each time point of the renewal
process with a fixed probability, independently of the renewal process. The thinned
process is a counting process that jumps at the time points T1 = inf{i ≥ 1 : Yi = 1}
and for n ≥ 1, Tn+1 = inf{i > Tn : Yi = 1}. It is worthwhile to remark that the
thinned process {W̃j := Tj − Tj−1; j ∈ N} with T0 = 0 is also a renewal process but
now generated by the mixture

P{W̃1 ≤ x} =

∞
∑

j=1

r(1 − r)j−1 F ∗j(x) .
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3 An Excess-of-Loss Chain

We extend the above procedure to a reinsurance chain where, depending on the size of
the individual claims, a participating company takes up part of the responsibility. Let

u0 := 0 < u1 < u2 < . . . < uk−1 < ∞ := uk

be a sequence of values that break up the positive halfline in k disjoint pieces. Put
a+ := max(a, 0). Assume that a claim of size X occurs. The first line insurer takes up
min(X, u1), the second line insurer min((X−u1)+, u2−u1), etc.; the last is responsible for
(X −uk−1)+. Although for each participant in the chain, the number of claims to face can
be calculated by the method of the previous section by choosing the appropriate value of
r, we now extend this analysis to see how the N(t) claims distribute over the k partners
within the reinsurance chain. Let Ni(t) (i = 1, . . . , k) denote the number of claims for
which the claim size ends up in the interval (ui−1 , ui]. For any claim, the probability that
this happens is equal to

ri := F (ui) − F (ui−1) , i = 1, 2, . . . , k .

The results of the previous section correspond to u1 = u, u2 = u + v and k = 3. Note that
∑k

i=1 ri = 1.
In the argument of Section 2 we replace the binomial distribution by a multinomial dis-
tribution to see that the probability generating function of the vector ~N(t) := (N1(t),
N2(t), . . . , Nk(t)) is given by

Q̃t(z1, z2, . . . , zk) := E[

k
∏

i=1

z
Ni(t)
i ] = Qt(z1r1 + z2r2 + . . . + zkrk) = Qt(~z · ~r) (13)

where ~z · ~r denotes the inner product of the two vectors ~z = (z1, z2, . . . , zk) and ~r =
(r1, r2, . . . , rk) . As before it is easy to derive the first few moments of the quantities
{Ni(t)}. We have

ENi(t) = ri EN(t) ,

V ar(Ni(t)) = r2
i V ar(N(t)) + ri(1 − ri) EN(t) ,

and for i 6= j
Cov(Ni(t), Nj(t)) = ri rj [V ar(N(t)) − EN(t)] . (14)

Recall that for the multinomial distribution covariances are negative. Here however the
additional variability caused by the counting process N(t) has an influence on the sign of
the covariances. If the counting process is underdispersed then the variance V arN(t) is
lower than the expectation EN(t) and so one is more certain about the overall number
of claims. The subdivision onto the various layers is such that a high number in one
layer forces a low number in the other one to make up for the over-all almost fixed sum
and hence the covariances remain negative. On the other hand, in the over-dispersed
case where V arN(t) > EN(t) the variability of the overall number of claims is so large
that the realization of the sum N(t) determines the scale of the subdivision and large
values in one layer come together with large values in the other layer. In some sense, the
change-point for the dominance of one effect over the other is just the Poisson case. Since
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we are only capturing dependence using the first two moments, the phenomenon is, while
not fully surprising, simple and explicit.
Turning to examples, the corresponding adaptations are readily made. If we restrict
attention to Ni of the single layer i, then Q̃i(zi) := Q̃(1, 1, . . . , zi, . . . , 1) and, due to

~z · ~r = r1 + r2 + . . . + ri−1 + zi ri + ri+1 + . . . + rk = 1 − ri + zi ri

in this case, we are back in the binomial case of Section 2 with r = ri.

Since the i-th partner in the chain in fact faces a claim as soon as the individual claim
exceeds ui−1, the total number of claims for partner i is given by

Ñi(t) =
k
∑

l=i

Nl(t).

Using the abbreviation r′j :=
∑k

l=j rl, we immediately see that Ñi(t) can be identified

with Ñ(t) from Section 2 with r = r′i = 1 − F (ui) (just put z1 = z2 = . . . = zi = 1
and zi+1 = . . . = zk = z in the generating function (13)) and all the corresponding
distributional results carry over. In particular,

E(Ñi(t)) = r′iE(N(t)) and V ar(Ñ(t)) = r′2i V ar(N(t)) + r′i(1 − r′i)E(N(t)).

Moreover, the covariance between two partners i and j (j > i) in the chain can be
determined:

Cov(Ñi(t), Ñj(t)) =

k
∑

l=j

V ar(Nl) +

k
∑

l=i

k
∑

m=j

m6=l

Cov(Nl, Nm)

= r′j(r
′
i − rj−1) V ar(N(t)) + r′j(1 − r′i + rj−1) E(N(t))

= r′j(r
′
i − rj−1) [V ar(N(t)) − E(N(t))] + r′j E(N(t)).

The last line shows the influence of the quantities r′j in the aggregate case.

4 The Incurred Claims

We now turn to the claim amounts that the individual partners in the reinsurance chain
are carrying. An alternative to the approach of the previous section, where a separate
claim number process for each partner in the chain was considered, is to partition each
claim of the original process according to its contribution to the respective layers. For a
claim Xj, call Yj,i the part that is shifted to the i−th partner in the chain. This gives rise

to a vector ~Yj := (Yj,1, Yj,2, . . . , Yj,k) where

Yj,i = min((Xj − ui−1)+ , ui − ui−1) , 1 ≤ i ≤ k

with our interpretation u0 = 0 and uk = ∞. It is easy to check that Xj =
∑k

i=1 Yj,i. We

derive an expression for the vector Laplace transform of ~Yj. Let ~s := (s1, s2, . . . , sk). Then

12



E{e−~s· ~Yj}

=

∫ uk

0

E{e−s1Yj,1−s2Yj,2−...−skYj,k |X = v} dF (v)

=

∫ u1

0

E{e−s1Xj |Xj = v} dF (v) +

∫ u2

u1

E{e−s1u1−s2(Xj−u1)|Xj = v} dF (v)

+ . . . +

∫ ∞

uk−1

E{e−s1u1−s2(u2−u1)−...−sk−1(uk−1−uk−2)−sk(Xj−uk−1)|Xj = v} dF (v)

=
k
∑

i=1

exp

{

−
i−1
∑

r=1

sr(ur − ur−1)

}

∫ ui

ui−1

e−si(v−ui−1) dF (v) .

4.1 The Aggregate Claim Amount in a Reinsurance Layer

Let now

Xi(t) =

N(t)
∑

j=1

Yj,i (15)

denote the total claim amount for the i-th partner. Then for ~X(t) := (X1(t), X2(t), . . . ,Xk(t))

~s · ~X(t) =

k
∑

i=1

siXi(t) =

N(t)
∑

j=1

k
∑

i=1

si Yj,i

and hence by a conditioning argument

E{e−~s· ~X(t)} = Qt(E{e−~s·~Y }) .

It is easy to check that by taking s1 = s2 = . . . = sk = s one retains (1). If we restrict
attention to the i−th partner then

E{e−si Xi(t)} = Qt(F̂i(si)) (16)

where F̂i(·) is the Laplace transform

F̂i(s) = F (ui−1) +

∫ ui

ui−1

e−s(v−ui−1) dF (v) + (1 − F (ui)) e−s(ui−ui−1) . (17)

With our conventions u0 = 0 and uk = ∞ the above expression is also valid for the first
and for the last partner in the chain. We perform an integration by parts in (17) and
obtain

F̂i(s) = 1 − s

∫ vi

0

(1 − F (ui−1 + y)) e−sy dy (18)

where vi := ui −ui−1 denotes the span of the range for which the i−th partner carries the
responsibility. The last expression suggests to introduce an equilibrium distribution

Fi(x) :=
1

EYi

∫ x

0

(1 − F (ui−1 + y)) dy
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with Laplace transform

F̂i(s) =
1 − F̂i(s)

s EYi
.

For then

F̂i(s) = 1 − EYi s

∫ vi

0

e−sydFi(s) .

As an alternative to (15) with its distribution determined by (16) and (18), we can also
write the total claim amount for the i-th partner (i < k) as

Xi(t) =

Ni(t)
∑

j=1

X̆j + vi Ñi+1(t) , (19)

where X̆j = Xj − ui−1 | ui−1 < Xj ≤ ui and it depends on the distribution F of the claim
size Xj how tractable this alternative expression is.

4.2 The Sundt-Jewell Class

For simplicity we return to the binomial case of Section 2. In [14] Panjer used the Sundt-
Jewell recursion (5) to derive recursions for the total claim distribution. If the individual
claim size distribution F has a derivative f , then the density gt(x) = g(x) is determined
by the sum

g(x) =
∞
∑

n=0

pnf ∗n(x).

He showed that the following equation holds

g(x) =

∫ x

0

g(x− y){a + b
y

x
} f(y)dy + δf(x) (20)

where δ = p1 − (a + b) ρ .
In the general case for F , there is always the possibility of a jump at the origin since

Gt(0) = lim
x↓0

∞
∑

n=0

pn(t)F ∗n(x) =

∞
∑

n=0

pn(t)F n(0) = Qt(F (0)).

Apart from that and as proved in [16], the distribution G satisfies the integral equation

G(x) =

∫ x

0

dF (y)

∫ x−y

0

{a +
by

y + z
} dG(z) + δF (x).

If F happens to have a density f then we fall back on the Panjer equation. If F has a
discrete distribution then we find a discrete analogue of the Panjer equation.
Let us turn to the reinsured total claim amount. There is a possibility that the reinsurer
does not incur any claims in which case G̃t(0) = Q̃t(F̃ (0)) = Qt(1− r). Referring to other
results above we can infer that the total reinsured amount can be calculated recursively
as

G̃(x) =

∫ x

0

dF̃ (y)

∫ x−y

0

{ã +
b̃y

y + z
} dG̃(z) + δ̃ F̃ (x) (21)
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where δ̃ = p̃1− (ã+ b̃)p̃0 . Here F̃ is the conditional distribution of X given that the claim
exceeds u. More precisely

F̃ (x) = P (min(X − u, v) ≤ x | u < X) .

Formula (21) is helpful in dealing with the burning cost problem. It should be clear that
the key problem lies in the determination of the distribution F̃ . Four cases seem to emerge
naturally.

1. For the reinsurer the worst case scenario is that he gets no information whatsoever
neither on the counting process {N(t)} nor the claim sizes {Xi}. In this situation
the reinsurer faces exactly the same problems as the first insurer. This means that
the reinsurer has to estimate ã, b̃ and F̃ from the claims that are passed on to him
by the first insurer.

2. If the insurer provides information on {N(t)}, then the reinsurer knows the quan-
tities a and b and he can therefore use the expressions (7) if he knows the quantity
r. But by (2) both insurer and reinsurer have the same kind of information on
the counting process once the value of r is known. If the reinsurer has sufficient
experience with the practical aspects of the portfolio, then he might be able to get
an estimate for r from relations of the type (3). Of course, the main assignment
remains to get a reliable estimate of F̃ . Again, experience and comparisons with
similar portfolios should be helpful here. Of course, the reinsurer should realize that
he can rely only on fewer data than the first insurer as the only available data are
those that fall above the retention u.

3. If the first insurer passes on information on the claim sizes {Xi}, then the estimation
of F̃ should be simplified. However he will not gain too much insight into the process
{Ñ(t)} since the only information on {N(t} that is available will be its value at the
time of the transaction. Also here, familiarity with the portfolio under consideration
or similarity with other portfolios might provide crucial help in the estimation of ã
and b̃. In the latter quantities the crucial quantity r appears too and so r needs to
be estimated from the observed claim sizes.

4. In the unlikely situation that the insurer passes on all information on both {N(t)}
and {Xi}, then also the estimation of the F̃ boils down to a standard actuarial
activity.

4.3 Some Remarks on Asymptotics

In practice, it may not always be easy to evaluate the distribution of Xi(t) through (15)
(together with (16) and (18)) or, alternatively, through (19). However, asymptotic results
for the tail of Xi(t) can often be determined in a simple way using general analytic
methods. For the last (i.e. k-th) partner in the chain, the ultimate tail of the distribution
remains into play and we refer to the standard literature for the treatment of light and
heavy tailed claim sizes. For i < k, the Laplace transform F̂i(s) is an entire function of
s and we always end up in the light-tailed case. As surveyed in [16], such a condition is
useful in a vast number of claim counting situations. As a concrete example, consider the
Pascal process (12) that appeared both as a mixed Poisson process and as a special case
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of the Sundt-Jewell class. Following [16], one can show that, for the i-th partner (i < k),
asymptotically for x → ∞

P (Xi(t) > x) ∼

(

b

t|F̂ ′
i (θi)|

)α
1

|θi|Γ(α)
e−|θi|xxα−1

where θi < 0 depends on t and is the unique value that satisfies F̂i(θi) = 1 + b
t
. Similarly,

under the logarithmic distribution (10) from the Sundt-Jewell class one derives that for
x → ∞

P (Xi(t) > x) ∼ (− log(1 − a(t))|θi|)
−1 e−|θi|x x−1

where θi < 0 depends on t and is the unique solution of F̂i(θi) = 1/a(t).
For the above examples one can derive some more explicit information on the quantities
|θi|. Assume that we have to solve the equation F̂i(θi) = c for c > 1. Then from (18) one
derives for s < 0 that

1 − (1 − e−svi)(1 − F (ui)) ≤ F̂i(s) ≤ 1 − (1 − e−svi)(1 − F (ui−1)) .

This then quickly leads to the inequalities

log
c − F (ui−1)

1 − F (ui−1)
≤ |θi| vi ≤ log

c − F (ui)

1 − F (ui)
.

Of course, one cannot expect these inequalities to be sharp. Nevertheless they are quite
instructive as they show how the unknown quantities |θi| vi are ordered by the quantities

τi := log c−F (ui)
1−F (ui)

that are either given or estimated from given data. Hence, τi−1 ≤ |θi|vi ≤

τi and the maximal length σi of the interval in which |θi| is located is given by

σi ≤
1

vi

(τi − τi−1) ≤
c − 1

vi

ri

(1 − F (ui))2
.

In practice, there is often an upper limit of coverage in terms of m reinstatements of
the i-th partner in the reinsurance chain, i.e. the actual coverage is given by Xi(t) =
min{Xi(t), m vi} with m ∈ N. Most of the results in the literature on fair pricing of
reinstatement contracts are based on the assumption that the claim number process N(t)
is in the Sundt-Jewell class (see for instance Sundt [21] or Mata [13]). The results in
this paper in principle allow to extend this type of analysis to more general situations.
Moreover, the asymptotic results given above are particularly well-suited to determine
the remaining risk for the i-th layer (i < k) staying at the first-line insurer in a contract
with reinstatements, since the relevant value of x will then typically be large.
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