

Requirements certification for offshoring using LSPCM

Citation for published version (APA):
Serebrenik, A., Mishra, A., Delissen, T., & Klabbers, M. D. (2010). Requirements certification for offshoring using
LSPCM. In 7th International Conference on the Quality of Information and Communications Technology
(QUATIC 2010, Oporto, Portugal, September 29-October 2, 2010) (pp. 177-182). IEEE Computer Society.
https://doi.org/10.1109/QUATIC.2010.30

DOI:
10.1109/QUATIC.2010.30

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1109/QUATIC.2010.30
https://doi.org/10.1109/QUATIC.2010.30
https://research.tue.nl/en/publications/f180fc9e-0c13-47d0-9c77-889792c68eeb

Requirements Certification for Offshoring using
LSPCM

Alexander Serebrenik∗, Amrita Mishra†, Thomas Delissen∗, Martijn Klabbers∗
∗Technische Universiteit Eindhoven, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

a.serebrenik@tue.nl, t.a.delissen@student.tue.nl, m.d.klabbers@tue.nl
† Capgemini, Papendorpseweg 100, 3528 BJ Utrecht, The Netherlands

Amrita.Mishra@Capgemini.com

Abstract—Requirements hand-over is a common practice in
software development offshoring. Cultural and geographical
distance between the outsourcer and supplier, and the differences
in development practices hinder the communication and lead to
the misinterpretation of the original set of requirements.

In this article we advocate requirements quality certification
using LSPCM as a prerequisite for requirements hand-over.
LSPCM stands for LaQuSo Software Product Certification Model
that can be applied by non-experienced IT assessors to verify
software artifacts in order to contribute to the successfulness
of the project. To support our claim we have analyzed require-
ments of three offshoring projects using LSPCM. Application
of LSPCM revealed severe flaws in one of the projects. The
responsible project leader confirmed later that the development
significantly exceeded time and budget. In the other project no
major flaws were detected by LSPCM and it was confirmed that
the implementation was delivered within time and budget.

Application of LSPCM to the projects above also allowed
us to refine the model for requirements hand-over in software
development offshoring.

Index Terms—requirements, certification, offshoring, quality
gate

I. INTRODUCTION

Offshoring software development activities is a popular
approach seeking to increase the value delivery of IT invest-
ment. Increasing the value delivery, however, might turn out
problematic in practice. Of particular concern are the hidden
costs of globally distributed models of working, incurred by
the demand of understanding and communicating the true
business needs across organizational and cultural boundaries.

Business needs are commonly communicated in the form of
requirements documents. Miscommunication of the original
requirements is known to be the major reason for project
failure [1], and for offshoring the second largest risk factor
according to project management professionals [2]. Cultural
differences between outsourcer and supplier, geographical
distance, differences in attitude, levels of training, frame of
reference; they form the root for failures and risks. At the
handover moments these differences cause miscommunication.
Therefore, we focus on assessing quality of offshored require-
ments documents as a quality gate; for reasons stated above
we think that requirements quality certification at requirements
hand-over is essential for offshored development.

The possible benefits of requirements certification are nu-
merous; it helps organizations to obtain certainty about or

confidence in quality of the requirements documents. A third
party trusted by both the supplier and the customer, should
be able to produce an objective and complete assessment,
i.e., requirements certification can be seen as a form of an
independent verification and validation (IV&V) [3]. It shares
similar advantages in that it provides a stable basis to solve
conflicts of interest and does not immediately suffer from a
weakened quality assurance due to time pressure, see Section
V. Provided that a well-established approach is followed, a
third-party assessment can lead to a quality certificate being
issued. A certificate can help to verify and certify legislative
compliance. Specifically, by the offshored development certi-
fication can help offshoring partners, both the outsourcers and
the suppliers, to convince the other partner that deliverables
are of acceptable quality. Therefore, in this paper we advocate
requirements quality certification by an independent third party
institute as a prerequisite for requirements hand-over.

To support our claim we did a postmortem analysis on the
requirements of three offshoring projects which were not de-
ployed yet and for two first cases predicted their successfulness
using LSPCM [4], [5]. Section II describes more details about
LSPCM. Section III discusses the application of LSPCM to
three offshoring projects. Based on these projects in Section IV
we propose improvements to LSPCM. Section V reviews the
related work and Section VI concludes with the improvements
and benefits of LSPCM in the context of offshoring.

II. LSPCM

LSPCM, LaQuSo Software Product Certification Model, is
a software product certification model introduced in [4] and
further developed in [5]. The emphasis is on the quality of
the product, not the process or people. In this section we
briefly review LSPCM—the reader is referred to [4], [5] for
further details of the model. The complete model is described
in [6]. LSPCM can be seen as supporting the verification part
of the IV&V activities: it aims at “determining whether the
product at each step in the development cycle (a) fulfills all
the requirements levied on it by the previous step and (b) is
internally complete, consistent and correct enough to support
the next phase” [3]. LSPCM is partly based on the ISO/IEC
14598 and ISO 9126 standards and can therefore be compared
with these and the newer ISO/IEC 25000 (Software product
Requirements and evaluation – SQuaRE) that combines and

2010 Seventh International Conference on the Quality of Information and Communications Technology

978-0-7695-4241-6/10 $26.00 © 2010 IEEE

DOI 10.1109/QUATIC.2010.30

177

relates the two previous standards. In contrast to [3] and
[7] application of LSPCM is more efficient and can also be
used to assess more common information system development.
A more detailed comparison of LSPCM and existing IV&V
approaches can be found in Section V.

A. Structure of LSPCM

LSPCM is applicable to the wide variety of types of soft-
ware artifacts, from requirements documents to tests, known
in LSPCM as product areas. For each one of these prod-
uct areas LSPCM assesses three certification criteria (CC):
availability (CC1) of all required documents/components, their
uniformity (CC2) and conformance (CC3) of these docu-
ments/components with respect to the chosen certification
property. Certification properties considered by LSPCM per-
tain, e.g., to performance and maintainability. The confor-
mance certification criterion is the most important of all.

Furthermore, LSPCM distinguishes between different
achievement levels (AL) that can be used to ensure the certifi-
cation criteria, like uniformity. Each certification criterion has
3 levels. Availability distinguishes between required elements
(CC1.AL1), optional semi-formal (CC1.AL2) and optional
formal elements (CC1.AL3). For example, the availability
of required elements (CC1.AL1) in the product area ’user
requirements’ includes 3 elements: functional requirements,
non-functional requirements, and a glossary.

For the second criterion, uniformity, we consider unifor-
mity at the following levels; within the artifact type itself
(CC2.AL1), with respect to a company standard (CC2.AL2),
or with respect to an industry standard (CC3.AL3). Con-
formance, as the third and most important criterion, can
either be established manually (CC3.AL1), with tool support
(CC3.AL2), or by formal verification (CC3.AL3). We say that
the artifact achieves a certain level (AL1-3) if all relevant
specific criteria for that AL have been verified.

Summarizing, for each product area and for each one of
certification criteria and each one of the achievement levels
(AL1-3), LSPCM states specific criteria.

The score of the achievement levels in the assessment is
effectuated in the final certification level. The certification
level can be between 1 and 5. Level 1 represents the ”dummy”
initial level, which signals the start of the certification analysis,
but does not allow for a real certificate. Level 5 represents a
certificate for a mature system that is purely based on formal
methods. For details we refer to [5].

B. LSPCM analysis process

The analysis according to LSPCM is an iterative process
involving the following seven steps:

1) The requesting party determines certification level and
type (conformance properties).

2) We verify whether the delivered artifacts meet the entry
criteria (CC1 and CC2). If the verification fails, the
process is restarted at Step 1.

3) When the artifacts fulfill the entry criteria, they can be
transformed into a representation that is easier to ana-
lyze. E.g. natural language requirements can be exported
to plain text and checked automatically for keywords.

4) The transformed artifacts are assessed on the confor-
mance properties.

5) The results of the assessment are interpreted and re-
ported. Errors and omissions can be immediately pointed
out, other aspects can give insights for further assess-
ments (Steps 3 and 4).

6) The analysis report pinpoints the defects that either must
be solved (Back to Step 3) or explained by sufficiently
sound reasons.

7) If the software artifacts meet the pre-selected criteria,
a LaQuSo software product certificate is handed over
to the party applying for certification. This certificate is
public and shows both the followed approach as well as
resulting report.

C. Requirements certification in LSPCM

As indicated in the Introduction we concentrate on user
requirements. Hence we focus on specific criteria for the user
requirements product area, described below, discussing criteria
for availability and uniformity, and dedicated to conformance.
Content and numbering of the specific criteria follows the
original technical document [6] as we used it for the assess-
ments. For reasons of conciseness the description of some of
the specific criteria are shortened or left out.

D. Availability (CC1)

• AL1 Required Elements:
– SC1.1b Non-functional requirements i.e., quality re-

quirements are described.
– SC1.1c Glossary defines the entities that have to be

represented in the system.
• AL2 Semi-formal Elements:

– SC1.2a Data dictionary or object model that con-
tains data elements’ definitions and representations
including semantics for data elements. The semantic
components focus on creating precise meaning of
data elements.

– SC1.2c Flowcharts of processes are schematic repre-
sentations of a process, including all possible paths
between start- and end point, inputs, outputs, as well
as the decisions between paths.

• AL3 Formal Elements:
– SC1.3c Behavioral properties specifications are ex-

pressed in a formal language. If they e.g. have a
temporal aspect, temporal logic can be used.

E. Uniformity (CC2)

• AL1 Compliance within project:
– SC2.1a Elements and documents of the same type

have the same style;
• AL2 Compliance with Company Standards:

178

– SC2.2a All elements and documents comply with
company standards;

• AL3 Compliance with Industry Standards (like
ERD,UML).

F. Conformance (CC3)

For conformance we distinguish between internal consis-
tency and external consistency. By internal consistency we
understand consistency properties that can be established by
considering functional requirements alone. External consis-
tency involves additional information, e.g., non-functional
requirements or additional behavioral properties.

We start by presenting the checks covering internal correct-
ness aspects.

• AL1 Manual Correctness Checks
– SC3.1a No two requirements or use cases contradict

each other.
– SC3.1b No requirement is ambiguous. All stakehold-

ers should be able to interpret the meaning of the
requirement in the same way.

– SC3.1j Use case diagrams correspond to use case
text.

– SC3.1l The use-cases or functional requirements
detail the environment description in the context de-
scription (no contradictions). Each step in a business
process that involves the system has been included
in the requirements. Each task that the system should
fulfill for its environment has been included in the
requirements. All actors of the context description
have been included in the requirements.

• AL2 Automated Correctness Checks
– SC3.2a Requirements are stored in a requirements

management tool which uniquely identifies them.
• AL3 Formally Verified Correctness

– SC3.3c Check data model diagram for normal form.
For the external consistency, LSPCM lists the following

specific criteria.
• AL1 Manual Consistency Checks:

– SC3.1q The use case or functional requirements do
not conflict with the non-functional requirements.

• AL2 Automated Consistency Checks:
– SC3.2b Requirements and glossary/objects are stored

in a requirement management tool showing the re-
quirements, scenarios, actors, and objects relations.

• AL3 Formally Verified Consistency:
– SC3.3d/e Verify use case scenario models for e.g.

compliance with behavioral properties and non-
functional requirements.

G. Hypotheses for offshoring

Although LSPCM is not designed for the offshoring context,
we expected that it would have extra benefits in the demanding
offshoring context; that the offshored requirements must be ex-
plained in more detail and more accurate than non-outsourced

requirements to bridge the gap caused by geographical dis-
tances and cultural differences between onshore and offshore
team. The artifacts produced in offshored development are not
that different from non-outsourced development. Therefore, we
also assumed that the specific criteria above were sufficiently
sensitive to detect all relevant defects.

III. CASE STUDIES

While LSPCM has been successfully applied in the past
to assess quality of user requirements [4], it had yet to be
applied to offshored development. To assess the applicability
of LSPCM to offshored development we have used it in a num-
ber of comparable case studies; industrial offshored software
development projects which are discussed in Sections III-A
through III-C. Involved development teams were comparable,
the requirements effort ratio was similar, and also the software
itself had an average complexity for all 3 cases.

We also want to demonstrate that LSPCM can be applied
by non-experienced IT assessors. To this end a group of 6
students, including the second and third author, were invited
to enrol in the research. They were asked to do a tutorial as-
sessment before independently analyze the industrial projects
that were acquired for this research. Before applying LSPCM
to the projects these students did not have any experience in
quality assessment or LSPCM in particular.

For each project we briefly describe the project context,
documents analyzed and results of the LSPCM application.
For all 3 cases we used the criteria as stated in Section II.

A. Case study 1: Lead assignment system

The first project concerned a lead assignment system de-
veloped for a financial institute. The institute has decided to
integrate the functionality of two separate software systems
used for lead assignment in a new system. The assignment of
advisors are assigned to leads (interested customers) should
be effective and fair to the advisors in the number of leads
assigned. Finally, the system should calculate the advisor’s
income based on the serviced customer requests.

The software development followed the rational unified
process development model [8]: the inception and part of the
elaboration phase took place on-site in the Netherlands, while
the rest was done offshore in India. The project was almost
closed at the moment of the assessment; its successfulness was
not known to the assessor, in this case, the second author.

For the sake of an assessment we have obtained lists
of functional and non-functional requirements, collection of
business rules, description of five major use-cases as well
as the software development plan. Application of LSPCM to
these documents conducted by the second author and a fellow
student produced an extensive defects list with defects ranging
from inconsistencies resulting from mixing Dutch and English
terms to ambiguities, omissions and contradictions. It took the
two self educated assessors about 20 hours each to analyse the
requirements of the 23.000 person hour project.

The analysis resulted in the following contradictions:

179

• whether zip code and address are mandatory for direct
booking [SC3.1a];

• whether appointments can be created solely by the advi-
sors, or can this be done by other roles as well [SC3.1b];

• whether the user interface should be composed of three
(or more) screens or of three interacting panes [SC3.1b];

• mandatory functionalities in the use case diagrams that
get no attention in the detailed use case descriptions
[SC3.1j].

More severe were the detected omissions. Those included:
• total absence of the performance, reliability and main-

tainability requirements [SC1.1b];
• references within requirements to non-existing business

rules in the context description [SC3.1l];
• lack of an appropriate glossary and a Dutch/English list

of terms for user interface [SC1.1c].
After the assessment, the defects found have been con-

firmed by the project leader. Furthermore, the project leader
also stated that numerous clarification questions have been
posed by the offshore developers during the implementation
phase. Abundance of clarification questions can be traced back
to ambiguities, omissions and contradictions as detected by
applying the LSPCM. The project leader has confirmed that
deadline delays and customer dissatisfaction that ultimately
lead to the project being terminated could have been avoided
by timely addressing the defects identified by LSPCM. After
renegotiations with the customer, the project was restarted
again. The same defects that were found in the LSPCM
assessment were repaired and the customer was satisfied.

In this case two assessors have analyzed the complete
project’s documents on all relevant properties except for
readability. The readability property was only checked on a
small random sample of 20 pages. This reduced the amount
of work considerably while preserving valid conclusions.

If LSPCM had been used as a quality gate in this project,
it would have been most effective after finishing and shipping
each use case. The total amount of effort for all 5 use cases,
would have been taken 200 person hours; an investment of
less than one percent, enabling a fairly early detection of all
defects above, and hence with a much happier customer.

B. Case study 2: Unification of different ERP systems

Similarly to the previous case, our second case study
involved replacement of multiple systems by a unified one.
Also here, the successfulness of the project was unknown to
the assessors. The customer was a large international company
having organizational units all around the globe. Each one of
the units has its own business processes supported by its own
ERP system. The unification project aimed improvement and
harmonization of the business processes of different units by
providing a globally supported unified ERP.

The second author, together with a fellow student, applied
LSPCM to all documents specifying functional requirements
for the system. Functional requirements were presented as
textual descriptions augmented with flowcharts.

Application of LSPCM required approximately the same
amount of time (24 hours) per person for a much bigger
project (67.000 person hour). Even with 10 assessments the
total investment effort would be less than one percent. The
applied assessment revealed only ambiguities:

• numerous inconsistencies between the textual and graphi-
cal representations of the same information. For instance,
when a textual description required three inputs, the
flowchart showed only two inputs [SC3.1j];

• the lack of common notation and semantics for differ-
ent flowchart elements: optional inputs were marked as
“optional” in some cases and completely absent from the
flowcharts in some other cases. [SC2.1a].

The assessment did not reveal any omissions or large defects.
The documents were compliant with company standards. The
project quality analyst confirmed later that the project met its
deadlines and was successful for both customer and supplier.

C. Case study 3: Replacing a budget distribution system
The third project was analyzed by the third author together

with three other students. The project was a 4.900 person hour
project aimed at replacing an existing governmental budget
distribution system. It consisted of three mostly independent
parts. The user requirements were formulated in a set of
detailed use cases. They were translated from Dutch to English
and sent to the service provider in India. The service provider
implemented and tested the system in two separate teams,
based on the translated use cases. Finally, the system was
successfully acceptance tested by the customer.

Beforehand, the project was described as very successful
by the both customer and supplier (Netherlands/India). In
this case our goal was to see whether there were superfluous
specific criteria that could be identified within LSPCM; criteria
that did not help predicting the successfulness of the project,
but were rather too sensitive for warning for possible failure
factors. Our first goal was to detect the defects and to find out
why they did not affect the project’s successfulness.

The first assessment on the requirements’ original first part
took 20 hours for one assessor. The investment effort for an
LSPCM quality gate would require three assessments of 20
hours. The total amount would be, again, around the 1 percent.
It resulted in the following defects (highest severity first):

• missing documents, e.g., an extended glossary [SC1.1c];
• ambiguous use case descriptions [SC3.1b];
• incomplete and ill-maintained traceability matrix

[SC3.1l];
• missing high level documents, such as object model

[SC1.2a] and process model [SC1.2c]);
• the company standard was not adhered to [SC2.2a].
The problems which would normally result from such

defects were the risks of low understandability (ambiguity)
and low maintainability. Our hypotheses on why these defects
did not result in problems were tested and confirmed by means
of interviewing all stakeholders in the project.

First of all, the target system had a straightforward archi-
tecture. The necessity for high level models and documents

180

such as an extended glossary was, hence, low. This was also
compensated by a large communication investment; offshore
and onshore team met each other face-to-face several times
and spoke each other almost daily through video conferencing
or a chat channel. Ambiguities could be resolved instantly.

Second, the use cases included many details, which made
it hard to understand for the customer. However, it did result
in a very efficient document for the on- and offshore supplier.

The maintainability risk was not resolved, but created an
almost certain vendor lock-in and advantage for the supplier.
The consultancy firm chose a very basic maintainability stan-
dard despite the fact that the customer had requested to be
able to change supplier; the firm has been contracted to do
the system’s maintenance as well.

The most important benefit of using LSPCM on this project
was to make explicit which risks the customer and the consul-
tancy firm were taking during the development of the system.
If the missing documents such as the object model and process
model had been created and if the ambiguities in the use cases
were resolved, these risks would have been reduced and the
system would have been easier to maintain. The customer was
not aware of the benefits of these documents, and had to rely
on the benevolence of the consultancy firm.

IV. FUTURE LSPCM
Based on the findings in the case studies we have observed

that LSPCM can be fine-tuned to improve:
• objectivity and consistency: assessment should be made

less dependent on assessor’s experience,
• speed and iterations: assessment time should be reduced

also in iterative approaches,
• context sensitivity: specific criteria should be made do-

main and conformance property sensitive.
1) Objectivity and consistency: While LSPCM already rep-

resents an important step towards an objective assessment by
standardizing which specific criteria should be met, assessment
of whether these criteria have been met, still depends partly
on the specific knowledge and experience of the assessor.
To address this we propose to extend LSPCM, whenever
possible, by specifying metrics reflecting the extent of the
specific criteria being met. Furthermore, LSPCM should con-
sider non-functional requirements as a mandatory part of
the requirements document and incorporate the appropriate
specific criteria. Finally, specific criteria should be consistently
applied across different representations of requirements. For
instance, specific criteria pertaining to consistency of use cases
should also be included for process models.

2) Speed and iterations: LSPCM-based certification ne-
cessitates minutieus analysis of the requirements document
and as such can be a time-consuming process. The use of
metrics suggested in the preceding paragraph should provide
for better automation of the assessment of the individual
specific criteria. A number of existing tools could help this
process already [9]. Moreover, prioritization of the certification
properties considered should allow the assessors to gradually
refine the assessment, which is especially the case in an

incremental or agile software development process. Finally, as
indicated in Section II-B a certification process is iterative in
its nature: based on the defects found, requirements engineers
can improve the requirements document and submit the revised
version for another certification attempt. Recognition of the
iterative nature of certification calls for an iterative version
of the assessments: e.g., one should be able to restrict the
assessment solely to the requirements that have been modified.

3) Context sensitivity: The current version of LSPCM does
not distinguish between different kinds of software, while
both the choice of the specific criteria and their relative
importance (suggested in Section IV-1) might depend on the
specifics of the application domain, results of the gap analysis
or the way the system should be implemented. In relation
with the domains LSPCM recognizes a number of confor-
mance properties. However, customers interested in certifying
their requirements documents may need conformance with
respect to additional certification properties, e.g., imposed by
international standards such as [10]. Therefore, we believe
that the subsequent releases of LSPCM should provide the
assessor with means of dynamically selecting the specific
criteria corresponding to a specific conformance property.

V. RELATED WORK

Creating a quality system is a major scientific and engi-
neering challenge. The increasing complexity of hardware,
software, and communication does not allow for an easy
definition of the quality in software systems. For this reason
we think it is likely that only a small number of these quality
systems has been published. The majority of these models
measures the quality at the end product [11], [12], [13] and
only few can measure the influence of the artifacts either in
relationship with each other [14] or independently, but only
on a specific property like security [15]. Our certification
approach can be used to assess quality of system-related
artifacts both independently and in relation with other artifacts.

Again, our certification approach focuses on software ar-
tifacts rather than on the software development process that
produces these artifacts. Assessment of the software develop-
ment process is intensively studied in the literature including,
e.g., [8], [16], [7]. Assessment of software artifacts by third-
party assessors is known as independent verification and
validation or IV&V [3]. Moreover, as mentioned in Section II,
LSPCM supports the verification activities of ISO 25000
in general and IV&V specifically. Unfortunately, existing
IV&V approaches often either present high-level tasks to
be carried out: e.g., “perform criticality and risk assessment
of requirements” [3]; or focus on one specific verification
technology, such as model checking using SPIN [17]. LSPCM
fills the gap created by this dichotomy and proposes a middle
path solution. LSPCM checks focus on technical aspects of
software artifacts, but leaves the assessor freedom to determine
the appropriate way of implementing them. Therefore, specific
verification technologies can be integrated in LSPCM to
support the assessment, while the results of an LSPCM-based
assessment can be used to support the high-level verification.

181

Hence, LSPCM’s structure is more balanced and offers a more
effective solution for independent verification (Section VI).

In addition to general quality models several approaches
specifically target user requirements. Popular approaches to re-
quirements quality assessment include checklists and question-
naires originating from requirements engineering books [18],
[19], [20], or guidelines and standards [7], [21], [22], [23],
[24]. Thus, the theory of writing high quality requirements
is well-established. In practice, however, the quality of re-
quirement specifications is poor, the requirements are ambigu-
ous, incomplete, unverifiable, and mutually inconsistent [25],
[19], [26]. Therefore, more systematic approaches should
be sought. An important line of research that can be seen
as complementary to our work bases requirements analysis
techniques on natural language analysis techniques [9], [27],
[28]. These techniques, however, do not address complexity
and intricate interplay between requirements expressed using
different techniques, e.g., natural language, use cases and
process models. Nor do they include the relationship between
user requirements and high level design or tests.

VI. CONCLUSION

Miscommunication about the requirements is a well-known
challenge in offshoring [2]. To address this challenge we
advocate in this paper the use of requirements quality cer-
tification as a prerequisite for requirements hand-over. For
the certification assessment we have applied the flexible
and generic LaQuSo Software Product Certification model
(LSPCM). Certified requirements should provide both the
offshoring company and the supplier with confidence in quality
of the requirements transferred.

We have shown the benefits of application of requirements
certification in three cases of offshored development. The
relatively low investment (around 1 % of the total project time)
of LSPCM showed an efficient way to successfully identify
relevant defects in one of the projects. Later the project has
been confirmed as not delivering the desired functionality
within the given time and budgetary constraints. Applying
LSPCM to other projects showed less significant defects. The
in-depth interviews revealed how project managers addressed
these defects during project run. Still, even in the milder inter-
pretations of the latest Chaos reports [29] applying LSPCM
as a quality gate looks like a solid return on investment.

As LSPCM was not designed with offshoring in mind,
application of LSPCM to the offshoring projects showed to
be sufficiently sensitive and very suitable. It also allowed us
to suggest a number improvements. These improvements will
be integrated in the subsequent releases of LSPCM.

While LSPCM as presented in [4], [5] covers all types of
software artifacts, so far for offshoring only requirements have
been considered. As the future work we plan to apply LSPCM
to additional software artifacts used at hand-over moments in
the offshoring projects, e.g., high-level design and code.

VII. ACKNOWLEDGMENTS

We thank the Platform Outsourcing Netherlands (PON) for
the financial support. We would also like to thank the compa-

nies and people involved who entrusted us to scrutinize their
personal work. Finally, our gratitude goes to the assessors: A.
Sree Kumar, S. Bhat, S. L. Moorthy, and N. S. Shetty.

REFERENCES

[1] B. W. Boehm and V. R. Basili, “Software defect reduction top 10 list,”
IEEE Computer, vol. 34, no. 1, pp. 135–137, 2001.

[2] C. L. Iacovou and R. Nakatsu, “A risk profile of offshore-outsourced
development projects,” Commun. ACM, vol. 51, no. 6, pp. 89–94, 2008.

[3] R. O. Lewis, Independent verification & validation: a life cycle engi-
neering process for quality software. John Wiley & Sons, Inc., 1992.

[4] P. Heck and P. Parviainen, “Experiences on analysis of requirements
quality,” in ICSEA. IEEE Computer Society, 2008, pp. 367–372.

[5] P. Heck, M. Klabbers, and M. van Eekelen, “A software product
certification model,” Softw. Qual. J., vol. 18, no. 1, pp. 37–55, 2010.

[6] P. Heck and M. van Eekelen, “The LaQuSo software product certifi-
cation model: LSPCM,” Technische Universiteit Eindhoven, Eindhoven,
Netherlands, TUE Computer Science Reports 0803, 2008.

[7] J. Bøegh, “A new standard for quality requirements,” IEEE Software,
vol. 25, pp. 57–63, 2008.

[8] P. Kruchten, The Rational Unified Process: an introduction, 3rd ed.
Addison-Wesley Longman Publishing Co., Inc., 2003.

[9] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “The linguistic approach
to the natural language requirements quality: Benefit of the use of an
automatic tool,” in 26th Annual NASA Goddard Software Engineering
Workshop. IEEE Computer Society, 2001, pp. 97–105.

[10] IEC, “Functional safety of electrical/electronic/programmable electronic
safety-related systems,” IEC, IEC/TR 61508-0, 2005.

[11] J. Nastro, “A software product maturity model,” CrossTalk, vol. 10, no. 8,
1997.

[12] E. Wegner, “Quality of software packages: the forthcoming international
standard,” Computer standards & interfaces, vol. 20, no. 4–5, pp. 349–
354, 1999.

[13] A. Alvaro, E. S. de Almeida, and S. L. Meira, “Towards a software com-
ponent certification framework,” in QSIC ’07: International Conference
on Quality Software. IEEE Computer Society, 2007, pp. 298–303.

[14] D. Welzel and H.-L. Hausen, “Practical concurrent software evaluation
for certification,” J. Syst. Softw., vol. 38, no. 1, pp. 71–83, 1997.

[15] S.-W. Lee, R. A. Gandhi, and S. Wagle, “Towards a requirements-driven
workbench for supporting software certification and accreditation,” in
Third International Workshop on Software Engineering for Secure
Systems. IEEE Computer Society, 2007, p. 8.

[16] R. Bamford and W. J. Deibler, “ISO 9001;2000:for software and systems
providers: an engineering approach,” Reference Engineering Quality
Standards, pp. 0511–1193, 2003.

[17] S. M. Easterbrook and J. R. Callahan, “Formal methods for verification
and validation of partial specifications: A case study,” Journal of Systems
and Software, vol. 40, no. 3, pp. 199–210, 1998.

[18] R. R. Young, The Requirements Engineering Handbook. Artech House,
2004.

[19] K. E. Wiegers, Software Requirements, 2nd ed. Microsoft Press, 2003.
[20] I. Sommerville and P. Sawyer, Requirements Engineering: A Good

Practice Guide. New York, NY, USA: John Wiley & Sons, Inc., 1997.
[21] IEEE-SA Standards Board, “IEEE guide for developing system require-

ments specifications,” IEEE, IEEE Standard 1233, 1998.
[22] ——, “IEEE recommended practice for software requirements specifi-

cations,” IEEE, IEEE Standard 830, 1998.
[23] ——, “IEEE standard for a software quality metrics methodology,”

IEEE, IEEE Standard 1061, 1998.
[24] ——, “IEEE guide for information technology system definition concept

of operations (ConOps) document,” IEEE, IEEE Standard 1362, 1998.
[25] S. Robertson and J. Robertson, Mastering the Requirements Process.

Addison-Wesley Longman Publishing Co., Inc., 2006.
[26] K. E. Wiegers, More About Software Requirements: Thorny Issues and

Practical Advice. Microsoft Press, 2005.
[27] V. Gervasi and B. Nuseibeh, “Lightweight validation of natural language

requirements,” Softw., Pract. Exper., vol. 32, no. 2, pp. 113–133, 2002.
[28] E. Kamstis, “Understanding ambiguity in requirements engineering,”

in Engineering and Managing Software Requirements, A. Aurum and
C. Wohlin, Eds. Springer-Verlag New York, Inc., 2005.

[29] R. L. Glass, “The Standish report: does it really describe a software
crisis?” Commun. ACM, vol. 49, no. 8, pp. 15–16, 2006.

182

