
 

State fusion with unknown correlation : ellipsoidal intersection

Citation for published version (APA):
Sijs, J., Lazar, M., & Bosch, van den, P. P. J. (2010). State fusion with unknown correlation : ellipsoidal
intersection. In Proceedings of the 29th American Control Conference (ACC), June 30 - July 2, 2010, Baltimore,
Maryland (pp. 3992-3997). Institute of Electrical and Electronics Engineers.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 08. Feb. 2024

https://research.tue.nl/en/publications/0fed3ef2-5f01-4bd8-aba1-d7d8e1339c26


State fusion with unknown correlation: Ellipsoidal intersection

J. Sijs, Student Member, IEEE, M. Lazar, Member, IEEE, P.P.J.v.d. Bosch, Member, IEEE.

Abstract— Some crucial challenges of estimation over sensor
networks are reaching consensus on the estimates of different
systems in the network and separating the mutual information
of two estimates from their exclusive information. Current
fusion methods of two estimates tend to bypass the mutual
information and directly optimize the fused estimate. Moreover,
both the mean and covariance of the fused estimate are fully
determined by optimizing the covariance only. In contrast to
that, this paper proposes a novel fusion method in which the
mutual information results in an additional estimate, which
defines a mutual mean and covariance. Both variables are
derived from the two initial estimates. The mutual covariance
is used to optimize the fused covariance, while the mutual
mean optimizes the fused mean. An example of decentralized
state estimation, where the proposed fusion method is applied,
shows a reduction in estimation error compared to the existing
alternatives.

Index Terms— State fusion, decentralized state estimation.

I. INTRODUCTION

A current trend in networked systems is to disperse

estimation algorithms among the different subsystems, i.e.,

nodes, rather than running a centralized algorithm. The main

advantage of such an approach is that communication and/or

computation requirements of a single node decreases while

robustness to node-failure increases. To profit from these

advantages in the case of decentralized state-estimators, two

challenges are first to be solved. One of these challenges is

on the fusion of estimates, which is the focus of this research.

We consider estimation algorithms with a probability

density function that is described by a Gaussian. A well

known example of such an algorithm is the Kalman filter

[1]. When designing a decentralized version of this estimator

that is suitable for a sensor network, a widely accepted

solution is to perform a local the Kalman filter that uses the

node’s measurement [2]–[6]. To improve the node’s local

estimate, data can be exchanged with neighboring nodes.

An example where nodes exchange their local measurement

can be found in [3]. A drawback when exchanging mea-

surements is that each node has access to a different set

of measurements. Therefore, the estimation-result will differ

per node, which is the first challenge of decentralized state-

estimation algorithms. This can be solved when the mean of

the estimated state-vector is exchanged as well. A consensus

step between the local and the received estimated state-

vectors ensures that the mean of each node converges to the
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same value, as presented in [4]. However, in the consensus-

step accurate estimates are treated with an equal importance

as inaccurate ones. As such, the estimation-error of accurate

estimates will increase after the consensus-step. Hence, the

second challenge in decentralized estimation algorithms is

to combine two estimates into one “fused estimate”. The

main difficulty is to cope with the correlation between

two estimates that occurs when they are (partly) based on

mutual information. In case mutual information is treated as

exclusive information, the estimates become “over-confident”

and incorrect.

To that extent, in this paper we propose a novel fusion

method of two estimates with unknown mutual information.

This assumption is required for networked systems as it is

difficult to keep track of mutual information, due to the large

amount of interaction between the nodes. Firstly, a method is

derived to calculate the fused estimate. Therein, the effect of

mutual information is explicitly taken into account in terms

of a mutual mean and covariance. Secondly, a novel method

that estimates the mutual mean and covariance, by assuming

a maximum effect of the mutual information, is proposed.

A benchmark case study, i.e., temperature estimation, is em-

ployed to illustrate the improvement of current decentralized

state-estimators when using the proposed fusion method in

comparison with other existing fusion methods.

II. PRELIMINARIES

R, R+, Z and Z+ define the set of real numbers, non-

negative real numbers, integer numbers and non-negative

integer numbers, respectively. For any C ⊂ R, let ZC :=
{c ∈ Z|c ∈ C }. The notation 0 is used to denote either the

null-vector or null-matrix. Its size will become clear from

the context. The transpose, inverse, determinant and trace of

a matrix A ∈ R
n×n are denoted as A⊤, A−1, |A| and tr(A),

respectively. Further, [A]i j ∈ R denotes the element on the

ith row and jth column of A. Given that A,B ∈ R
n×n are

positive definite, denoted with A ≻ 0 and B ≻ 0, then A ≻ B

denotes A−B ≻ 0. A º 0 denotes that A is positive semi-

definite. Given the square matrix A ∈ R
n×n, let νq(A) ∈ R

n

and λq(A) ∈ R denote the qth eigenvector and eigenvalue,

respectively. If νq(A) and λq(A) contain only real values,

for all q ∈ Z[1,n], then A = SADAS−1
A denotes the Jordan

decomposition of A, where:

SA := (ν1(A),ν2(A), . . . ,νn(A)) ,

DA := diag(λ1(A),λ2(A), . . . ,λn(A)) .
(1)

The probability density function (PDF) of a random vector

x ∈ R
n is denoted as p(x). The Gaussian function (shortly

noted as Gaussian) is denoted with G(x,µ,P), for some x,u∈
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R
n and P ∈ R

n×n. If p(x) = G(x,µ ,P), then by definition

it holds that E[x] = µ and cov(x) = P. Moreover, P º 0

is a symmetric matrix. Any Gaussian G(x,µ,P) can be

represented by its sub-level-set εµ,P(x) ⊂ R
n, which is an

ellipsoidal set defined as follows:

εµ ,P(x) :=
{

x

∣

∣

∣
(x−µ)T

P−1 (x−µ) ≤ 1
}

. (2)

An example of εµ ,P(x) is graphically depicted in Figure 1.

Fig. 1. Representation of the Gaussian G(x,µ,P) by its sub-level-set
εµ,P(x). The covariance-matrix P is chosen such that λ1(P) < λ2(P).

III. PROBLEM FORMULATION

Let us assume a process which is observed by a network of

sensor-nodes. The goal is to estimate the state-vector x ∈ R
n

of the process. To that extent, each node i calculates a PDF

of x at predefined sample instants k, denoted with pi(x[k]).
We assume that all these PDFs are Gaussians with mean

xi[k] ∈ R
n and covariance Pi[k] ∈ R

n×n, i.e.,

pi(x[k]) := G(x,xi[k],Pi[k]). (3)

To improve a node’s local estimate, reach consensus on the

estimates at the different nodes and be able to deal with

correlations, each node shares its local estimate with its

neighboring nodes. Therefore, if the neighboring nodes of

node i are collected in the set Ni, then node i receives the

multiple estimates p j(x[k]), for all j ∈ Ni. Fusion of the

received estimates with pi(x[k]) is done in a fusion algorithm,

which results in the fused estimate at node i, denoted with

pi f
(x[k]). The algorithm performs a fusion of two estimates

sequentially, Ni times. Each sequence incorporates the next

received estimate. This mode of operation is graphically

depicted in Figure 2.

Fig. 2. The fusion function is a part of the algorithm to fuse the local
estimate pi(x[k]) with the receiving ones p j(x[k]), for all j ∈ Ni.

The goal of this paper is to design a fusion method

that combines a local estimate pi(x[k]) with an arbitrary

received estimate p j(x[k]), j ∈Ni, into one improved estimate

pi f
(x[k]). It is assumed that the mutual information, i.e.,

correlation, between the two estimates is unknown. Further-

more, it is assumed that all estimates are described by a

Gaussian, i.e., p j(x[k]) = G(x,x j[k],Pj[k]) and pi f
(x[k]) =

G(x,xi f
[k],Pi f

[k]). An example of pi(x[k]) and p j(x[k]), with

their corresponding sub-level-sets, is shown in Figure 3(a).

A. Related work on state-fusion

Current fusion methods of two estimates with unknown

correlation are mostly based on Covariance Intersection (CI)

[6]–[8]. This method defines that, for a certain ω ∈ [0,1], the

fused estimates are a convex combination of the parameters

in pi(x[k]) and p j(x[k]), i.e.,

xi f
[k] = ωxi[k]+(1−ω)x j[k], Pi f

[k] = ωPi[k]+(1−ω)Pj[k].

The optimal value of ω is found by minimizing tr(Pi f
), due

to which ω only depends on the trace (or determinant) of Pi

and Pj. Therefore, both xi f
and Pi f

depend only on the limited

information of tr(Pi) and tr(Pj). Moreover, for any amount

of mutual information it is proven that Pi f
¹ Pi and Pi f

¹ Pj

[9], which yields the property ε0,Pi f
(x) ⊆ ε0,Pi

(x)∩ ε0,Pj
(x).

Therein it was also proven that this property does not hold

for CI, as it is illustrated in Figure 3(b).
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(a) The level-sets of the
two initial estimates.
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(b) ε0,Pi f
(x) of CI for 3 values of

ω in solid lines (xi = x j = 0).

Fig. 3. An example of two estimates pi(x[k]) and p j(x[k]).

To ensure this property the scalars ω and (1 − ω) are

replaced with some matrices Wi and Wj, respectively, as

proposed in [9]. However, both matrices are computed with

an iterative algorithm to minimize tr(Pi f
), which requires

significant processing power. Also, xi f
is fully defined when

optimizing tr(Pi f
), instead of formulating an optimization

depending on xi f
. A different (heuristic) state-fusion method,

in which Pi f
is optimized, was proposed in [10].

To conclude, the objective of all current fusion methods is

to optimize Pi f
or its trace/determinant. However, optimizing

the fusion result is not a desirable objective. Instead, the

actual problem is determining the effect of the mutual infor-

mation to such an extent that pi(x[k]) is updated only with

exclusive information from p j(x[k]). Additionally, current

methods do not optimize xi f
. This indicates that the fused

mean is of less importance than the fused covariance is. This

is not suitable for most control methodologies as they rely

on x rather than on P. To solve these issues, the next section

presents a novel fusion method centered around an estimation

of the state-vector based on the mutual information.

IV. ELLIPSOIDAL INTERSECTION

The goal of Ellipsoidal Intersection (EI) is to use only

exclusive information of p j(x) to update pi(x) by separating

their mutual information first. To that extent a new estimate

of x is defined, which is based on the mutual information

of pi(x) and p j(x) only. The PDF of this new estimate
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is modeled as a Gaussian with a mutual mean γ and a

mutual covariance Γ. We will first show how xi f
and Pi f

are determined in case the mutual information, i.e., γ and Γ,

is known. After that a method is presented to estimate both

Γ and γ . As correlation is unknown, we will estimate Γ and

γ by assuming a maximum effect of the mutual information.

A. Fusion with mutual information

The estimates pi(x) and p j(x) are based on information

which could be (partly) mutual. Let us denote their mutual

information as dγ ∈ R
n and their exclusive information as

di ∈ R
n and d j ∈ R

n for pi(x) and p j(x), respectively. With

this, pi(x) and p j(x) can be rewritten as a conditional PDF,

which can be further derived by applying Bayes’ rule [11]:

pi(x) := p(x|dγ ,di) =
p(x|dγ)p(di|x)

∫ ∞
−∞ p(x|dγ)p(di|x)dx

, (4a)

p j(x) := p(x|dγ ,d j) =
p(x|dγ)p(d j|x)

∫ ∞
−∞ p(x|dγ)p(d j|x)dx

. (4b)

The exclusive information within p j(x) is d j. Therefore, the

fused PDF becomes pi f
(x) := p(x|dγ ,di,d j), i.e.,

pi f
(x) =

p(x|dγ ,di)p(d j|x)
∫ ∞
−∞ p(x|dγ ,di)p(d j|x)dx

, (5a)

=
pi(x)p(d j|x)

∫ ∞
−∞ pi(x)p(d j|x)dx

. (5b)

As the PDFs of the initial estimates are Gaussian, let

us model p(d j|x) and p(x|dγ) as Gaussians as well, i.e.,

p(d j|x) := G(µ j,x,U j) and p(x|dγ) := G(x,γ,Γ), for some

µ j,γ ∈ R
n and U j,Γ ∈ R

n×n.

Proposition IV.1 [1], [12] Let there exist two Gaussian

PDFs of random vectors x,w ∈ R
n defined with v ∈ R

n and

W,V ∈ R
n×n; p(x|v) = G(x,v,V ) and p(w|x) = G(w,x,W ). If

p(x|v) and p(w|x) are uncorrelated, then they satisfy:

p(x|v,w) =
p(x|v)p(w|x)

∫ ∞
−∞ p(x|v)p(w|x)dx

= G(x,z,Z) ,

where Z =
(

V−1 +W−1
)−1

, z = Z
(

v−1v+W−1w
)

.

Due to the fact that d j is exclusive information, it

follows that p(d j|x) and pi(x) are uncorrelated. There-

fore, applying Proposition IV.1 in (5b), by substitut-

ing G(x,v,V ) = G(x,xi,Pi), G(w,x,W ) = G(µ j,x,U j) and

G(x,z,Z) = G(x,xi f
,Pi f

), gives that:

Pi f
=

(

P−1
i +U−1

j

)−1

, xi f
= Pi f

(

P−1
i xi +U−1

j µ j

)

. (6)

In case we assume that γ and Γ are known, then µ j and U j

are derived by applying Proposition IV.1 in (4b). In that case

the substitution implies G(x,v,V ) = G(x,γ,Γ), G(w,x,W ) =
G(µ j,x,U j) and G(x,z,Z) = G(x,x j,Pj) and results in:

Pj =
(

Γ−1 +U−1
j

)−1

, x j = Pj

(

Γ−1γ +U−1
j µ j

)

, (7a)

⇒U−1
j = P−1

j −Γ−1, µ j = U j

(

P−1
j x j −Γ−1γ

)

. (7b)

Substituting the results of (7b) into equation (6) gives the

fused mean xi f
and covariance Pi f

, which now depend on

the mutual mean γ and mutual covariance Γ, i.e.,

Pi f
=

(

P−1
i +P−1

j −Γ−1
)−1

,

xi f
= Pi f

(

P−1
i xi +P−1

j x j −Γ−1γ
)

.
(8)

Notice the difference of these fusion equations compared to

the ones of CI. In the case of CI the expression resembles to

an agreement, i.e., it is a convex combination of pi(x) and

p j(x). In contrast to that, equation (8) is an update of pi(x)
with the exclusive information of p j(x).

Equation (8) shows how xi f
and Pi f

are determined if the

mutual mean and covariance, i.e., γ and Γ, are known. The

next step is to estimate their corresponding values.

B. Mutual covariance

The goal is now to find a value for Γ such that the mutual

information between pi(x) and p j(x) is maximized. This

means that the modeled accuracy of the estimation due to

the mutual information only, i.e., λq(Γ) for all q ∈ Z[1,n],

is as “small” as possible. However, notice that U j is a

covariance matrix, i.e., U j ≻ 0. Therefore, it should satisfy

U−1
j º 0, which, if applied in (7b), gives that Γ º Pj.

Similarly Γ º Pi must also hold. Let ε0,Pi
(x), ε0,Pj

(x) and

ε0,Γ(x) denote the ellipsoidal sub-level-sets that correspond

to these three covariances. Then, the above conditions are

attained if ε0,Pi
(x)∪ ε0,Pj

(x) ⊆ ε0,Γ(x).

Definition IV.2 Let pi(x) and p j(x) be given. If their mutual

information is assumed to be maximum, then their mutual

covariance is defined as Γmax := argminϒ∈Rn×n ∑n
q=1 λq(ϒ),

subject to the condition ε0,Pi
(x)∪ ε0,Pj

(x) ⊆ ε0,ϒ(x).

Definition IV.3 [13] Let C ⊂ R
n be a bounded set and let

ΓL ∈ R
n×n be defined as:

ΓL := arg min
ϒ∈Rn×n

log |ϒ| (9a)

subject to x⊤ϒ−1x ≤ 1, ∀x ∈ C . (9b)

Then ε0,ΓL
(x) is the Löwner− John ellipsoid (LJE) of C .

Theorem IV.4 Let pi(x) and p j(x) be given. If we substitute

C = ε0,Pi
(x)∪ ε0,Pj

(x) in Definition IV.3, then Γmax = ΓL.

The proof is presented in Appendix A. Notice that Theo-

rem IV.4, together with Definition IV.2 and Definition IV.3,

yields Γ = Γmax = ΓL. Before deriving an explicit solution for

Γ, let us first prove that the LJE scales and rotates linearly

in case of a transformation on its vector-space.

Lemma IV.5 Let A,B,Γ ≻ 0, the rotation matrix S (satis-

fying S = S−⊤) and the diagonal matrix D ≻ 0 be given.

Let x be transformed into x̂ := DSx and let Â := DSAS−1D,

B̂ := DSBS−1D and Γ̂ := DSΓS−1D. If ε0,Γ̂(x̂) is the LJE of

ε0,Â(x̂)∪ ε0,B̂(x̂), then ε0,Γ(x) is the LJE of ε0,A(x)∪ ε0,B(x).
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The proof is presented in Appendix B. To minimize process-

ing demand, we focus on deriving an explicit solution that

corresponds to finding the LJE. As such, the next theorem

presents the solution of the mutual covariance Γ from two

initial PDFs pi(x) and p j(x). To that extent, let us define

Si,S j ∈ R
n×n and the diagonal matrices Di,D j ∈ R

n×n, such

that:

Pi = SiDiS
−1
i and D−0.5

i S−1
i PjSiD

−0.5
i = S jD jS

−1
j . (10)

Theorem IV.6 Let Pi,Pj ≻ 0 be given with their correspond-

ing Si, Di, S j and D j according to (10). Let

Γ := SiD
0.5
i S jDΓS−1

j D0.5
i S−1

i , (11a)

with [DΓ]qr :=

{

max([D j]qr,1) if q = r,

0 if q 6= r.
(11b)

Then ε0,Γ(x) is the LJE of ε0,Pi
(x)∪ ε0,Pj

(x).

The proof is presented in Appendix C by first considering a

transformation on x. The transformed matrices of Pi and Pj,

denoted with P̂i and P̂j, are diagonal and P̂i = I. Then the

LJE of the transformed set ε0,P̂i
(x̂)∪ ε0,P̂j

(x̂), denoted with

ε0,DΓ
(x̂), is determined and transformed from x̂ back into x

to define ε0,Γ(x). An example of this transformation, in case

Pi =
(

2 −1
−1 1

)

and Pj =
(

1/3 0
0 2

)

, is graphically depicted in

Figure 4. This figure also shows the result of the mutual

mean Γ and that ε0,P̂i
(x̂) is the unit circle.
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0
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0,P
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ε0,Pj

ε
0,P

i
ε

0,P
j

ε0,Γ

Fig. 4. The sub-level-sets ε0,Pi
(x) and ε0,Pj

(x) with their corresponding

transformed ones, i.e., ε0,P̂i
(x̂) and ε0,P̂j

(x̂), and their LJE ε0,Γ(x).

Earlier it was stated that a proper fusion method must

result in Pi f
¹ Pi and Pi f

¹ Pj. Let us prove this property for

EI before we continue with finding γ .

Lemma IV.7 Let ε0,Γ(x) be defined as the LJE of ε0,Pi
(x)∪

ε0,Pj
(x). Then Pi f

¹ Pi and Pi f
¹ Pj.

Proof: A property of the LJE is that Pi ¹ Γ and Pj ¹ Γ.

Notice that the latter inequality gives that P−1
j º Γ−1 and

thus P−1
j −Γ−1 º 0. Adding P−1

i on both sides results in

P−1
i +P−1

j −Γ−1 ºP−1
i . From (8) it follows that the left hand

side of this inequality equals P−1
i f

. Therefore P−1
i f

º P−1
i and

thus Pi f
¹ Pi. Pi f

¹ Pj can be proven similarly. ¥

C. Mutual mean

The mutual mean γ represents an estimated mean of x

on which both initial estimates pi(x) and p j(x) “agree on

most”. As such, we aim at deriving a cost-function J(α),
whose minimum corresponds to the “most-agreed” value of

x, i.e., γ = argminα∈Rn J(α). A standard method to find the

most-agreed vector α of the two vectors xi and x j is to

minimize the distance between xi and α and between x j

and α . However, as xi and x j have a different accuracy each

distance should be weighted accordingly. Hence, let us define

J(α), for some Wi,Wj ≻ 0, as follows:

J(α) := (α − xi)
⊤Wi(α − xi)+(α − x j)

⊤Wj(α − x j). (12)

Minimizing J(α) equals to finding α for which it holds

that δJ(α)/δα = 0. With Proposition 10.6.1 of [14], i.e.,

δ (a⊤Aa)/δa = a⊤(A + A⊤) holds for any square matrix

A and vector a of suitable dimensions, we can determine

δJ(α)/δα and thus γ , i.e.,

δJ

δγ
= 2(α − xi)

⊤
Wi +2(α − x j)

⊤
Wj, (13a)

⇒ γ = (Wi +Wj)
−1 (Wixi +Wjx j) . (13b)

The last step is to define the values for Wi and Wj. Let us

start by choosing Wi = U−1
j and Wj = U−1

i . These weights

will result in a γ that will be closer to xi than to x j, if

the ellipsoid ε0,Ui
is larger and the ellipsoid ε0,U j

is smaller.

Notice that this corresponds to a situation where x j has more

exclusive information compared to the exclusive information

of xi. Hence, node j has more unique information to update γ
into x j, as shown in (7a). An issue with Wi = U−1

j and Wj =

U−1
i is that one cannot guarantee that Wi,Wj ≻ 0 but only

Wi,Wj º 0. Therefore, we add ηI to both U−1
j = P−1

j −Γ−1

and U−1
i = P−1

j −Γ−1, for some η > 0. Hence, equation (13b)

gives that:

γ :=
(

P−1
i +P−1

j −2Γ−1 +2ηI
)−1

×
((

P−1
j −Γ−1 +ηI

)

xi +
(

P−1
i −Γ−1 +ηI

)

x j

)

.
(14)

To minimize the effect of η on γ , its value must be as small

as possible. Therefore, with H := P−1
i + P−1

j − 2Γ−1 and

λ0+(H) ∈ R+ defined as the smallest non-zero eigenvalue

of H, let us define η as follows:

η :=

{

0 if |H| 6= 0

c ≪ λ0+(H) if |H| = 0.
(15)

Now that both Γ and γ can be estimated, let us present

a fusion example. Figure 5 shows the sub-level-sets of

two initial estimates pi(x) and p j(x), of the estimate due

to mutual information, i.e., G(x,γ,Γ), and of their fused

estimate pi f
(x). Here, xi = (1,−2)⊤, Pi =

(

3 0
0 0.4

)

, x j =

(−2,−1)⊤, Pj =
(

2 −0.8
−0.8 1

)

. Figure 6 shows the result of

fusion according to CI, with the same initial estimates. Notice

that the latter one resembles more to mutual agreement.
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Fig. 5. The two initial, mutual and fused estimates according to EI.
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Fig. 6. The two initial and fused estimates according to CI.

V. SIMULATION CASE STUDY

In this section the fusion method EI is used in a decen-

tralized Kalman filter and tested in terms of the achieved

performance in estimation error. The benchmark process,

graphically depicted in Figure 7, is the heat transfer of a

bar which is starting at 300 [K]. The bar is divided into

11 segments and the temperature Tm of each segment m

is estimated, i.e., the state-vector is x = (T1,T2, · · · ,T11)
⊤.

The process-model of heat transfer, in continuous time (t),

is defined with δT1(t)/δ t = 0, δT11(t)/δ t = 0 and

500Ṫ6(t) = 2T5(t)−4T6(t)+2T7(t)+50,

500Ṫm(t) = 2Tm−1(t)−4Tm(t)+2Tm+1(t), ∀m ∈ Z[2,10]\{6}.

Notice that the bar is heated at the 6th segment with 50[W ].
The temperature distribution is estimated by a network of

5 nodes that are placed at the segments 2, 4, 6, 8 and 10,

respectively. Each node is connected to its direct neighbor(s)

only. A node i measures the temperature of its own segment,

i.e., C2 = (0,0,0,1,0,0,0,0,0,0,0). A local estimation algo-

rithm estimates the global state-vector at its local node i,

denoted with xi. Its local, discrete-time state-space model,

derived from the continuous model, is described as:

xi[k] = Axi[k−1]+w[k−1], with p(w[k]) := G(w[k],0,Q),

yi[k] = Cixi[k]+ vi[k], with p(vi[k]) := G(vi[k],0,Ri).

Fig. 7. Heat transfer of a bar, measured with a networked system.

The sampling time is 10 [s] and the model runs for 250

[s] after which three different local estimation algorithms

are compared. The first algorithm, decentralized Ellipsoidal

Intersection (DEI), contains two steps. The first one is a

Kalman filter that uses the node’s local measurement only.

After this step, each node exchanges its estimate. The second

step consists of the fusion algorithm EI, as presented in

Section IV, in which c of (15) equals 10−10. As such, the DEI

algorithm at node i at sample instant k can be summarized

as follows:

Step 1: local Kalman filter

Mi = APi f
[k−1]AT +Q;

Pi =
(

M−1
i +CT

i R−1
i Ci

)−1
;

xi = Pi

(

M−1
i Axi f

[k−1]+CT
i R−1

i yi[k]
)

;

Step 2: local fusion

for each received p j(x[k]), do

x j = x j[k], Pj = Pj[k];

Γ = MutualCovariance(Pi,Pj) : (10)∧ (11);

γ = MutualMean(Pi,Pj,Γ,xi,x j) : (14)∧ (15);

xi =
(

P−1
i +P−1

j −Γ−1
)−1 (

P−1
i xi +P−1

j x j −Γ−1γ
)

;

Pi =
(

P−1
i +P−1

j −Γ−1
)−1

;

end

xi f
[k] = xi, Pi f

[k] = Pi. 2

The second state-estimator performs the same operations

as the DEI, with the difference that the CI [7] method is

employed in the local fusion step instead of EI. As such, the

second estimator is denoted with decentralized Covariance

Intersection (DCI). In contrast to sending states, the third

state-estimator sends measurements, i.e., yi and Ri, which

are then processed in a local Kalman filter (LKF) [3]. For all

estimators let us define that xi[0] = (300, · · · ,300)⊤, Pi[0] =
10I, Q = 1000I and Ri = 1. The results of the DEI, DCI and

LKF, for node 3 and 5 are presented in Figure 8.
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Fig. 8. Results of the estimated state-vector at node 3 (left) and node 5
(right) according to the DEI, DCI and LKF.

Figure 8 shows that local state-estimation based on local

measurements limits the information that is available in

the network. This is mainly noticed in the estimate of

node 5, to which only information about the temperature

in segment 8 and 10 is available. Node 5 of the DCI has an

improved estimate compared to the LKF. However, due to
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the fact that only tr(Pi) and tr(Pj) are used for state-fusion,

uncertain estimates are weighted equally as accurate ones.

As a result, the temperature distributions of the nodes 3

and 5 are somewhat averaged. The DEI on the other has a

good estimate of the temperature distribution in both nodes.

Moreover, whereas the estimates of the LKF and DCI in

node 3 and 5 differ, the DEI also performs consensus on

the state-estimates of the different nodes. Therefore the DEI

outperforms both the LKF as well as the DCI.

VI. CONCLUSIONS

Current fusion methods of two estimates tend to bypass the

mutual information and directly optimize the fused estimate.

In contrast to that, this paper proposed a novel fusion method

in which the mutual information results in an additional

estimate, which defines a mutual mean and covariance. Both

variables are derived from the two initial estimates. The

mutual covariance was used to optimize the fused covariance,

while the mutual mean was employed to optimize the fused

mean. An example of decentralized state estimation, where

the proposed fusion method is applied, showed a reduction

in estimation error compared to the existing state fusion

alternative algorithms.
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APPENDIX

A. Proof of Theorem IV.4

Let us first prove that ε0,Pi
(x)∪ ε0,Pj

(x) ⊆ ε0,ϒ(x) implies

x⊤ϒ−1x ≤ 1, for all x ∈ ε0,Pi
(x)∪ ε0,Pj

(x), i.e., implies (9b).

Let Y := {ϒ ∈ R
n×n|ε0,Pi

(x)∪ ε0,Pj
(x) ⊆ ε0,ϒ(x)}. Given a

x ∈ ε0,Pi
(x)∪ ε0,Pj

(x), then it holds that x ∈ ε0,ϒ(x), for all

ϒ ∈ Y and thus, x⊤ϒ−1x ≤ 1 for all ϒ ∈ Y .

The next step is to show that Γmax = argminϒ ∑q λq(ϒ). As

λq(ϒ) > 0 for all q ∈ Z[1,n], it holds that argminϒ ∑q λq(ϒ) =

argminϒ ∑q log(λq(ϒ)). Then, applying Fact 5.11.28 of [14],

i.e., for any ϒ ≻ 0 it holds that |ϒ| = ∏q λq(ϒ), one can

derive that ∑q log(λq(ϒ)) = log
(

∏q λq(ϒ)
)

= log |ϒ|, which

completes the proof. ¥

B. Proof of Lemma IV.5

Let Γ̂ = arg minϒ̂ log |ϒ̂| and Γ = arg minϒ log |ϒ|, where

ϒ̂,ϒ ∈ R
n×n. As ϒ = S−1D−1ϒ̂D−1S, the claim is proven if:

(i) argminϒ̂ log |ϒ̂| = argminϒ̂ log |ϒ| and (ii) x̂ϒ̂−1x̂≤ 1 for all

x̂ ∈ ε0,Â(x̂)∪ε0,B̂(x̂), implies xT ϒ−1x ≤ 1 for all x ∈ ε0,A(x)∪
ε0,B(x).

Let us start with (ii). By applying Proposition 2.6.9
of [14], i.e., (EF)−1 = F−1E−1 for any invertible matri-

ces E and F , and the fact that S = S−⊤ one can derive

that x⊤A−1x = x⊤(S−1D−1ÂD−1S)−1x = x⊤S−1DÂ−1DSx

= x⊤S⊤DÂ−1DSx. Hence, x⊤A−1x = x̂⊤Â−1x̂ and similarly

x⊤B−1x = x̂⊤B̂−1x̂ and x⊤ϒ−1x = x̂⊤ϒ̂−1x̂. Therefore, if

x̂ ∈ ε0,Â(x̂) ∪ ε0,B̂(x̂) then also x ∈ ε0,A(x) ∪ ε0,B(x) and if

x̂⊤ϒ̂−1x̂ ≤ 1 then also x⊤ϒ−1x ≤ 1, which proves (ii).
The proof of (i) starts with log |ϒ| = log |S−1D−1ϒ̂D−1S|.

Applying Proposition 2.7.3 and Corollary 2.7.4 of [14], i.e.,

|EF | = |E||F | and |E−1| = |E|−1 holds for any nonsingular

matrices E,F , gives that log |S−1D−1ϒ̂D−1S| = log |ϒ̂| +
2log |D|−1. Hence, argminϒ̂ log(ϒ) = argminϒ̂ log(ϒ̂) +
log |D|−1 = argminϒ̂ log(ϒ̂), which completes the proof. ¥

C. Proof of Theorem IV.6

Let us define the transformation x̂ := S−1
j D−0.5

i S−1
i x

and similarly P̂i := S−1
j D−0.5

i S−1
i PiSiD

−0.5
i S j and P̂j :=

S−1
j D−0.5

i S−1
i PjSiD

−0.5
i S j. Notice that each column of Si is

an eigenvector of Pi. As Pi is a symmetric matrix, Corol-

lary 5.4.8 of [14] gives that all its eigenvectors are orthogonal

to each other, i.e., S⊤i Si = I and Si = S−⊤
i . Similarly, S j = S−⊤

j

also holds. Hence, we can apply Lemma IV.5 with DΓ =
S−1

j D−0.5
i S−1

i ΓSiD
−0.5
i S j. The last step of the proof is to show

that ε0,DΓ
(x̂) is the LJE of ε0,P̂i

(x̂)∪ ε0,P̂j
(x̂).

From (10) it follows that P̂i = I and P̂j = D j are both

diagonal matrices. Hence, let us search for the LJE ε0,DΓ
(x̂)

such that DΓ is a diagonal matrix as well. The condition of

this LJE, i.e., ε0,I(x̂)∪ ε0,D j
(x̂) ⊆ ε0,DΓ

(x̂), originates from

the inequalities DΓ º I and DΓ º D j and thus:

λq(DΓ) ≥ 1 and λq(DΓ) ≥ λq(D j), ∀q ∈ Z[1,n]. (16)

Therefore, minimization of ∑q λq(DΓ) while satisfying (16)

implies that λq(DΓ) := max(λq(D j),1), for all q ∈ Z[1,n]. As

D j and DΓ are diagonal matrices it follows that λq(DΓ) =
[DΓ]qq and λq(D j) = [D j]qq, which completes the proof. ¥

3997


