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Abstract: As transistor dimensions of Static Random Access MemonA(@Fbecome

smaller with each new technology generation, they becocreasingly sus-
ceptible to statistical variations in their parameters.edéhstatistical varia-
tions can result in failing memory. SRAM is used as a buildihgck for
the construction of large Integrated Circuits (IC). To eestRAM does not
degrade the yield (fraction of functional devices) of ICerwlow failure
probabilities ofP,; = 10710 are strived for. For instance in SRAM memory
design one aims to get a 0.1% vyield loss for 10Mbit memoryctvimeans
that 1 in 10 billion cells fails Py < 10~19; this corresponds with an occur-
rence of—6.40 when dealing with a normal distribution).

To simulate such probabilities, traditional Monte-Carmglations are not
sufficient and more advanced techniques are required. taypm Sampling
is a technique that is relatively easy to implement and plewisufficiently
accurate results. Importance sampling is a well known tigctenin statistics
to estimate the occurrences of rare events. Rare or extreamsecan be

in environment (dikes, power plants). Recently this teghaialso received
new attention in circuit design.

Importance sampling tunes Monte Carlo to the area in pasrspace from
where the rare events are generated. By this a speed up oélsenders can
be achieved when compared to standard Monte Carlo methoelsleg¢ribe
the underlying mathematics. Experiments reveal the isittipower of the
method. The efficiency of the method increases when the diinerof the

parameter space increases.

The method could be a valuable extension to the statistagzaities of any
circuit simulator A Matlab implementation is included iretAppendix.

(© TUE Eindhoven University of Technology 2009 iii
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Conclusions:

A 0.1% yield loss for 10Mbit SRAM memory, which means that LLthbil-
lion cells fails Py < 1071%) can be efficiently estimated by Monte Carlo
methods that are tuned by Importance Sampling. Importaaro@kng brings
Monte Carlo to the area in parameter space from where thecvangs are
generated. By this a speed up of several orders can be aghiden com-
pared to standard Monte Carlo methods. The efficiency of tathod in-
creases when the dimension of the parameter space incidasaaethod
can be efficiently implemented in any circuit simulator aad e extended
to allow for adaptive tuning of the rare event density disttion.

A preliminary version of Importance Sampling has been iim@eted using
NXP Semiconductors’ circuit simulator Pstar with Matlabspprocessing
and has been demonstrated to work correctly. The methoddwasdpplied
to estimate the probability distribution of all 4 SRAM celdqameters: Static
Noise Margin (SNM), Write Margin (WM), Read Current and Bi# Leak-
age Current. A good correspondence of Importance Samplimgté/iCarlo
(ISMC) and traditional Monte Carlo simulation was shown tiog relevant
probability range.

For the SNM, it is shown that extrapolation of standard MCusations over-
estimates the yield. In addition to the benefit of ISMC sirtialss, it has
been shown that extrapolation of the Gaussian distribstiminthe individ-
ual SNM ‘eyes’ (specific enclosures of two curves) yieldsilssn accurate
yield estimation. The results of the latter method are iragrent with ISMC
simulations.

The Read Current distribution deviates strongly from a Giansdistribution
and its distribution can therefore not be extrapolated. ddweof extrapolated
distributions would result in a pessimistic Read Currert eould thus lead
to over-design of the memory cell and/or memory architectimportance
Sampling or a technique with similar statistical accuracsequired to make
correct decisions in the design process.

The WM can be estimated with extrapolated Gaussian disiisl  Al-
though a small difference of the WM #&,;; = 1010 is observed between
extrapolated MC and ISMC, this difference is not significant

To determine the SRAM Total Leakage Currents the averagermuper cell
is multiple by the number of cells in the instance. A guidelis proposed
to guarantee that Bitline Leakage Currents do not comp®BRAM func-
tionality.

We introduced Importance Sampling as a technique to efflgigrerform
failure analysis. To prove benefits over standard MontedCad applied
and extended knowledge from Large Deviation theory. Thécbas the
method can easily be implemented in a circuit simulator a ghell proce-
dure around a circuit simulator. For a refined procedureluing adaptive
sampling, we introduced a new approach. Here some intitd vesre made
using 1-dimensional functions. The real benefit must coram fproblems
with parameters in a higher dimensional space. This williregfurther re-
search.

Apart from the studied Importance Sampling we also desdriiae addi-
tional variants (weighted importance sampling, regresgigportance sam-
pling) and indicated how one may reduce the variance of &péat variant
of Importance Sampling by optimizing a parameter.

(© TUE Eindhoven University of Technology 2009
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Section 1

Importance Sampling: An SRAM
Design Perspective

Importance sampling is a well-known technique in statstacsimulate the occurrences of rare
events [17] (1964). Rare or extreme events can be assogidtedramatic costs, like in finance

or because of reasons of safety in environment (dikes, pplaets). Recently this technique

also received new attention in circuit design. For instanc@RAM memory design one aims to

get a 0.1% vyield loss for 10Mbit memory, which means that 1Gibillion cells fails Prajiure <
10~19; this corresponds with an occurrence-g§.4c when dealing with a normal distribution).
Importance sampling tunes Monte Carlo to the area in paemsgace from where the rare
events are generated (corresponding to the tails of thetdison). By this a speed up of several
orders can be achieved when compared to standard Monte @atlods. We describe the
underlying mathematics. Experiments reveal the intripsiver of the method. The efficiency
of the method increases when the dimension of the paranpee $ncreases.

The method would be a valuable extension to the statistaphcities of Pstar [42]. We also
describe a global description for an efficient implementatn Pstar. A Matlab implementation

is included in the Appendix.

1.1 YIELD AND SRAM YIELD PREDICTION

Static Random Access Memory (SRAM) is one of the main bujditocks of any digital in-
tegrated circuit (IC). A large digital IC is often referred as “System on Chip” (SoC), since
one SoC consists of a large number of system blocks, in@udiemory. For mobile phone
chips, these blocks can include data receivers/transmiffer GSM, UMTS, Bluetooth, Wifi,
etc) and digital video and audio processing. Together,fah@se blocks can add up to several
100 million transistors. Each of these transistors has &vaip correctly and has to be correctly
connected to the rest of the system.

Just one single failing transistor leads to a SoC not beiryd0orrect, and can prevent it
from being sold. The profit a semiconductor company makegégttly related to the fraction
of SoC’s that are functional after fabrication. Therefdiee probability that a transistor fails
has to be very, very small. The fraction of functional chipgdmmonly referred to as yield.
Typically, the yield of a factory has to be above 70%-80%pbefit can profitably operate. For
good products, the yield is above 90%.

SRAM has a higher probability of not functioning than “nottndigital circuitry, since it
is not a purely digital design. The cell is built around a veaile trade-off. It has to be stable

(© TUE Eindhoven University of Technology 2009 1
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enough to be read without changing its data, yet unstablegintm be written when desired.

Up to half of the chip area of a SoC can be consumed by SRAMeShis is a large portion
of the chip, a lot of effort is put into reducing the size of themory cells. Reducing the size of
the memory cells increases the probability that they faitduse fluctuations in the technology
parameters have a larger impact on smaller transistorscidgdmare is taken to guarantee that
SRAM does not limit the SoC yield and functions correctly hie ppresence of these parameter
fluctuations. Currently (45 nm technology), it is assumeat #ach SoC contains 10 million
memory cells (10 Mbit) and that 1 in 1000 SoC's does not fumctiorrectly because of the
SRAM. This results in a failure probability of the memorylsedf Py = 10710,

1.2 IMPORTANCE SAMPLING MONTE CARLO SIMULATIONS

To predict SRAM failure rates, a standard Monte Carlo metisocurrently used [14]. This
method uses the physical distributions of the statistieaidistor parameters, threshold voltage
V; and (current) amplification factgt, to randomly introduce variations to each transistor. Both
V; and 8 have a Gaussian distribution. The simulator randomly dneabses forV; and for
each transistor, based on the Gaussian distribution. Bgitlefi, using a Gaussian distribution
results in most of the trials being drawn from around the n@fahe distribution. To estimate
extreme probabilities, the tails of the distribution arerenomportant than the average values.
Consequently, it is desirable to have more samples drawn fhe tail of the distribution. A
suitable distribution would be one that has higher prolitadslin its tails than a Gaussian distri-
bution. A uniform distribution is one of the simplest exasgbf such a distribution (Figure 1.1).
Using an importance sampling distributignas an input for Monte-Carlo simulations leads to

0.4

0.351

03r

0.25

021

0.15

0.1
0.05
3 -2 = 0 1 2 3

Sigma [A.U.]

Probability Density Function

A2

4

Figure 1.1: A uniform distribution has higher probabildi@ its tails than a Gaussian distribu-
tion.

a distorted distribution of the output parameter. This loelse corrected with post-processing.
Suppose we are doing Monte-Carlo analysis for the Staticdbargin of SRAM cells. For
each trial, the probability has to be calculated that thevdrealue of the input parametevy(or

) would have occurred in the (original) normal distributign This is done by integrating the

2 (© TUE Eindhoven University of Technology 2009
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distribution function, which foil; gives:

1
Iy, = / exp
oV2m

binwidth

Vi — 2
( t #) AR
g
Naturally, the original distributiorf (so in particular, the parametetsando) has to be known

to be able to do this. The binwidth is known from the unifornstdbution, as is shown in
Figure 1.2. For 1 trial, the binwidth i, ./N, with N the number of trials. So each trial has to

rang

9(x)
> <
%) Vt _range

binwidth = Vt_range / N

Figure 1.2: The probability that a trial is drawn from theeirval binwidth isg(z)binwidth. For
1 trial, the binwidth isV;,../N, with N the number of trials.

be corrected with the probability that it would occur if thgut parameterl(,) were normally
distributed. !
P (SNMyia1) = f(V2) Nm = f (V) * Viange/ N-

To make the distribution for SNM, a number of bins has to bendefi The probabilities that a
certain combination o¥;’s lead to a certain SNM have to be summed.
f (V)

Vi)
A more formal notation uses indicator functidrto count the number of occurrences in a bin
and expresses the distribution functibgnm(t):

P (SN My;p,) = Zf(vt) : VtrangJN = %Z

bin o 9 (

N
1 F (Vi

Fsnm (t) = > Iisnu<s ﬁ,
i=1 i

where
1 if SNM <t

Iisnyv<iy = { 0 else

1.3 APPLICATION OF IMPORTANCE SAMPLING

Figure 1.3 shows the Static Noise Margin (SNM) density fiomcof an SRAM cell, using a
Gaussian sampling distribution (blue) and a uniform sangpdiistribution (red). Clearly, when

(© TUE Eindhoven University of Technology 2009 3
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using a uniform density function, the result is a distorté&tMBdistribution that covers a much
wider range than the original distribution. The red disttibn in Figures 1.3 and 1.4 has to

0.014-

o
o
2
N

o

o

2
T

0.008-

0.006

Probability Density Function

o
=)
S
£

0.002

I I I L
0 0.05 0.1 25 0.3 0.35

015 0.2 0.
Static Noise Margin (mV)

Figure 1.3: Static Noise Margin density function of an SRAMI tsing a Gaussian sampling
function (blue) and a uniform sampling function (red). Thawations use 50k trials.

be corrected for using a distorted sampling function. Feéglid includes the corrected SNM
distribution (green). As is obvious, the corrected denshgws much more statistical noise
around the mean than the normal SNM density function. Thisagcally what Importance

Sampling does. It trades accuracy around the mean for moveaay in the tails. Since the tails
are more important in this case, this is acceptable behaviéigure 1.5 shows the cumulative

0.014-

o
o
2
N

o

o

2
T

0.008-

0.006

Probability Density Function
g
R

0.002

. . | A |
0 0.05 0.1 25 0.3 0.35

015 0.2 0.
Static Noise Margin (mV)

Figure 1.4: SNM density function of an SRAM cell using a Garssampling function (blue),
a uniform sampling function (red) and the corrected SNMritistion (green). The simulations
use 50Kk trials.

distribution function of the SNM, using a Gaussian sampfinction (blue) and using a uniform
sampling function (green). Using Importance Samplingdis&ibution extents to much smaller
probabilities than without Importance Sampling. The disttions with and without Importance
Sampling are on top of each other in the higher probabilitgea(down to approximateliti, =
10~%). This example shows what Importance Sampling costs and iwltan bring: increased
accuracy in the tails of the distribution at the expense aofemmise around the mean.
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=
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Importance Sampling

==Normal MC

= Extrapolated MC

=
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Figure 1.5: SNM density function of an SRAM cell using a Gaarssampling function (blue),
a uniform sampling function (red) and the corrected SNMritistion (green). The simulations
use 50k trials. The "Extrapolated MC” is not discussed hbut will be explained later in the
Sections 5 and 6.
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Section 2

Basic Statistics and Monte Carlo

Monte Carlo sampling is a well-known method to obtain estaador probabilistic quantities by
simulating appropriate random variables. After a reviewadic concepts in probability theory
and statistics, this section just summarizes some basgcasike how many sample points one
must take to assure predefined accuracy. Also, for the nodistrlbution N (0, 1) we relate
extreme probabilities to the-scale. Finally we will discuss some options for improvingie
Carlo statistics. For specific items related to statistgiagithe circuit simulator Pstar we refer
to [41, 43].

2.1 BASIC PROBABILITY THEORY

In this section we will introduce the basic notions of probaliity theory. In particular, we
will learn about random variables, means, variances, distbution functions, densities, joint
distributions, independence and correlation

Following common usage in statistics, we will denote rand@miables (theoretical random ob-
jects) with capitals and their realizations (actual obsdrvalues) with small letters. A (real)
random variableX can be seen as a real-valued function that assumes valuasliagcto a
probability measure (weighing function}. Probabilities of the occurrence of valdeme de-
fined as integrals with respect to this measgure

b
Pla< X <b)= / dp(x). (2.2)
It is convenient to have a name and notation for probatslivé the formP(X < b). The
distribution function is the function defined by
F(z)=P(-o0o < X <z)=P(X <x). (2.2)
The link betweemnp(z) andF'(x) is given bydp(z) = dF(x).

Important properties of a random variabteinclude the mean or expectation

E(X) = /OO x dp(z) (2.3)

—00

1A mathematically more proper way would be to define an abissample spac€ with an abstract measure
on . The random variable is then a map fr@erto the real line and the probability measurenentioned above is
then the induced measurebn the real line by this map.

2The statistical jargon is event.

3The full official name is cumulative distribution function.

6 (© TUE Eindhoven University of Technology 2009
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and the variance

Var(X) = E (X — E(X))? = /OO (z — B(X))? dp(z). (2.4)

— o0

Sometimes it is convenient to expand the square in the defirand write
Var(X) = E (X?) — (E(X))*. (2.5)

In case of a discrete-valued random variables these igdggaome sums, where the outcomes
are weighted with the corresponding probabilities. Anpthwortant class of random variables
is the class of continuous random variables like the normdlwaniform distributions. For such
random variables we have the following simplification. Thetribution functionF" has a deriva-
tive f, called the density. In terms of this density functirthe above formulas can be explicitly
written as

Pla<X <b) = /ab dp(z) = /ab AF(z) = /ab (@) da, 2.6)

B(X) = /_ v () dx, 2.7)

[e.e]

Var(X) :/ (z — E(X))? f(z)dz = /Z 2 f(z) dx — (/Z  f(z) dx>2. (2.8)

—00 —

More generally, ifh is an arbitrary function, then one can prove [5] (Chapte) that

B( (X)) = / W) f(z) da. 2.9)
Note that Formulas (2.7) and (2.8) correspond to the spea&dsi(z) = x andh(z) = (x —
©)?, respectively, wherg = E(X). Itis also possible to derive the distribution of a transfed
random variable. The easiest way is to work with the distidsufunction. Ifh is invertible with
inverseh~—! and Fy is the distribution function of the random variab}& then the distribution
function F,x of the transformed random variabi€ X) equals

Frx)(@) = P(W(X) < z) = P(X <h™'(2)) = Fx(h™'(2)). (2.10)

Differentiation of this relation yields the density of thranisformed random variable.

We now extend this framework to define the joint distributadrtwo or more random vari-
ables. We illustrate this concept for two random variabtgsand X,. The joint distribution
function is defined by

Fx, xp(21,22) = P(X1 < @1, X2 < 33). (2.11)

If we moreover assume that the random variab¥gsand X, are continuous, then the joint
density is defined as

82
fX1,X2 (1'1, 1'2) = m FX17X2 (u, U) S (212)
As a consequence, we have the following generalization.6):(2
by by
Pla; < X1 <br,a2 < Xo < by) = / Ix1,x5 (71, 22) dv1 d2o. (2.13)
a2z al

(© TUE Eindhoven University of Technology 2009 7
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We may recover the marginal (one-dimension) distributiod density function ofX; by inte-
grating outX, (and vice-versa, of course):

FXl(xl) = FX17X2(X1 S xr1, —00 < X2 < OO),

1
fxi (z1) = [x1,x, (21, 22) das.
— 0o
The above notions allow us to define independence. Two randoi@bles are said to be inde-
pendent if
FXl,XQ(wl,wg) = FX1 (ml)FX2(l’2) for all 1 and:cg (2.14)

or equivalently (ifX; and X, are continuous)

le,X2 (CL’l, CL'Q) = le (acl) fX2 (xg) for all 1 andxg. (2.15)

We now define the notion of correlation. We will see that datfen and (in)dependence are
closely related, but not exactly the same. In order to defoneetation we first need multivariate

notion of mean and variance. There is a straightforward imawiate notion of mean. The

multivariate generalization of the notion of variance isslstraightforward. The covariance of
X7 and X5 is defined as

Cov (X1, X2) = E((X1 — E(X1)) (X2 — E(X2))). (2.16)

Note that if X; = X5, then (2.16) reduces to (2.4). Itis often convenient toes¢2l16) to the
interval[—1, 1]. ThecorrelationbetweenX; and X, is defined as

Cor(X1, Xp) = —XKuXa) (2.17)

\/Var(X) Var(X»)

It follows from the Cauchy-Schwarz inequality for tii€ integral inner product that the corre-
lation is indeed a number betweerl and1. The random variables are said touecorrelated
if Cov(X1,X2) = 0 or equivalentlyCor(X;, X5) = 0. It follows from expanding the brack-
ets in (2.16) that yet another equivalent way of expresdianX; and X, are uncorrelated is
thatE(X; X5) = E(X;) E(X2). Writing out the definition of expectations, we easily sest th
if X; and X, are independent, then they are also uncorrelated (and hiétizere is non-zero
correlation, then there must be dependence). The converssd irue. An easy counterexample
is taking X as a zero mean normal variable aNd = X?. Then an easy calculation shows
that Cov(X1, X2) = 0, but obviouslyX; and X, are dependent. However, X; and X, are
jointly normally distributedi.e., their joint distribution function is bivariate normal,eh a zero
correlation implies independence.
There are many well-known classes of probability distiilng like the normal distribution and
the uniform distribution. We refer to the Appendix for baficts about the most common prob-
ability distributions.

2.2 BASIC STATISTICAL THEORY

In this section we introduce the basic statistical conceptsin particular, we will discuss
estimators, parameters, unbiasedness, efficiency

The previous section described the basic probabilistiménaork. We now turn to the statistical
side of it. In practice one often uses classes of probaldigyributions like the normal distri-
butions. Such classes depend on one or more parameterghdt igsk of statistics to choose
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and validate choice of classes of probability models andrgauch a choice, to extract as good
as possible information on these parameters from data.ndesalindependent identically dis-
tributed observations(;, £k = 1,..., N (such a set of random variables is called sample in
statistics). We denote their common mean and variangednydo?, respectively. The (sample)
meanfiy* is defined by

N
R 1
AN = ;Xk. (2.18)

It is sometimes useful to compute the sample mean sequegracdording to the recursive for-
mula

~ 1 ~
pn = 5 (N = Din-1+ Xn). (2.19)
Sincejiy depends on the random sample, ..., X, it is a random variable too. A random

variable (or random vector in a multidimensional settinge [z that is constructed to get an
idea of a theoretical, unknown parameter (heyés called an estimator. The observed value of
an estimator is called estimate (hence, an estimate is aeruonlin a multidimensional setting
a vector). Note the difference between the daily use of thb estimate and the statistical
use here. For any sample from a distribution with a finite méaa estimator is always.¢,,

not depending on the actual probability law of thg's as long as all expectations are finite)
unbiased meaning,

~ 1Y 1 Y 1
E(iy) =E N;Xk =N;E<Xk>=NNu=u. (2.20)

The expectation shows whether there is a systematic davittom the true, unknown mean. In
order to assess the accuracy (fluctuations) of an estinvataneed to consider the variance too

N
L 1 ! 1, o
Var (fiy) = Var (NkZ:le> = > Var (X) = Vo' =+ (2.21)

The ideal estimator is unbiased (expectation equal to tigettgarameter) with minimal vari-
ance. The statistical literature yields results to derstem@tors and to check whether they have
minimal variance (Cramér-Rao Lower Bound, sag [3, Chapter 9]).

If Y is a random variable, then expansion of brackets in the diefinvVar(Y) = E(Y —
E(Y))? yields thatE(Y?) = Var(Y) + (E(Y))? = 02 4 ;2. Hence,

N N N
E <Z(Xk: - ﬂN)2> =E ( (X7 — 208 X + ﬁ?v)) = E <Z Xii - Nﬁ?v)
k k=1

k=1 =1

N 2
=3 (2 4 0?) —N<u2+%> — (V-1
k=t (2.22)

We now introduce thesample variance;?V as estimator for the varianee® (in the statistical
literature the sample variance is usually denotedby
?—;NX—A 2 (2.23)
O’N—N_lk:l( k ,uN) . .

“In statistics, this estimator is usually denotedXs. The common usage is to use Greek letters only for
theoretical, true quantities like the mean and variance.
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The use ofV — 1 instead ofNV is explained by the following consequence of (2.22)

e N
E(ﬁJ::N£1E<Z;u%_ﬁNP>ZEV%TQV_UUZZJ? @24)

Clearly;]?\\, is unbiased. Note that unbiasedness of the sample variaese bt hold for its
square root, the sample standard deviation. In gefefaly) # o. From the recursion (2.19)
we observe that

(N-1)(an — in—1) = XN — [in, (2.25)
N(ign — in-1) = XN —fin-1. (2.26)

With this we obtain a practical recursive formula fof;, which can be viewed as a parallel to
the recusrion for mean values (2.19)

5 N—-2 55— (XN—ﬂN)(XN—ﬂN—l).

oy = = 0Ox_1 T N1

N (2.27)

All formulas presented so far are valid for arbitrary distitions as long as all integrals are finite.
In case a distribution for the samplé,, ..., Xy is known, then one may obtain more specific
results. For example, if the sample is from a normal distidouwith mean.: and variancer?,
then the sample mean is again normally disﬂbuted with meand variancer? /N (cf. (2.20)

and (2.21)), while the sample varian@® — 1)o%,/0? has ay-squared distribution wittv — 1
degrees of freedom. This yields the extra information

) ot (N — 1);5 ot 204
Var (O']2V) = )2 Var < N — 2 (N - 1) =

(N -1 o2 (N —1)2 N-1

One may also prove under normality tHa{oy) is a constant times, where the constant
depends on the sample sixebut not on the mean.

There are several ways to check whether a sample followsea giass of probability distri-
butions. There are graphical checks like quantile-quauptibts (for normal distributions, this is
often called the normal probability plot), but also so-edljoodness-of-fit tests. For the normal
distributions, there are dedicated tests like the Shapfitks test (see.g., [18, Section 7.2.1.3]).

We now present an example of an estimator for a parametehvidicot related to means
and variances. Here we sample from a uniform distributioaromtervall0, 6], where the right-
end of the interval is unknown and must be estimated from &8, ..., Xy. An obvious
estimator here i := max (X1,...,XnN). Itfollows from independence that

Fg(r) = P(max (X1,...,Xny) <2)=P(X; <2)...P(Xy <z) = (z/0)N  for0 <z <.

Hence,fg(z) = F§(z) = N (£)N~" 1 for 0 < x < 6 and thus

E(@):/09:Uf@(ac)d:ﬂ:/oea:N(%)N_I%dx:/:N <g>N dw:NLHH'

It now immediately follows tha® := © is an unbiased estimator fér

5 (6) =2 e 6) = o
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It is not surprising to see thahax (X1,..., Xy) is systematically underestimatirdy but it
is surprising that there is a factor depending on the samipéeé only that may be used to
compensate for this.

There is a huge amount of literature on estimation theoryokllfe briefly mention that there
are systematic approaches for developing estimators (ilaxi Likelihood, moment methods,
entropy methods). Maximum Likelihood is popular because @&symptotically optimal in the
sense that asymptotically ML estimators are unbiased awel imnimum variance. There are
also methods to investigate for finite sample sizes whethembiased estimator has minimal
variance (Cramér-Rao lower bound for variances, see [8pteh 9], Lehmann-Scheffé theorem,
see [3, Chapter 10]).

We conclude this section with an example of an estimator fanetion rather than a param-
eter. The empirical distribution function of a samplg, ..., X is the estimator

N
1 , 1

Fn(z) = N {#i| Xi <z} = N ; Iix,<ay- (2.28)
In fact, the empirical distribution function is the disuiiion function of the discrete probability
distribution (see also Appendix D) with massesV at the pointsey, ..., zy. Itis easy to see
that NV Fy(x) ~ Bin(NV, F(z)) (a binomial distribution with/V trials and success probability
F(x)), from which it directly follows thatFy(x) is an unbiased estimator fdr(z) for any
distribution functionF'. The famous Glivenko-Cantelli Theorem shows that the eogidistri-
bution function uniformly converges to the true distrilutifunctionF’ of the X, ..., Xy (NB:
sup Iis a generalized form ahax):

lim sup |Fy(z) — F(z)| = 0.
N—oco zcR

The empirical distribution function is implicitly playingn important role in Monte Carlo simu-
lations. MATLAB offers the proceduresifplot andecdf to plot and compute the empirical
distribution function.

2.3 GENERATION OF RANDOM VARIABLES

In this section we briefly describe how to generate non-unifon random variables. In
particular, we discuss the Inverse Transform Method and Aceptance-Rejection Method.

In a Monte Carlo simulation the value$, must be randomly chosen according to some distri-
bution density functiory. There are several general approaches to achieve this.

For continuous distributions the distribution functiéf{iz) = [*_ f(u)du is strictly in-
creasing and thus invertible. In practice one starts witara@eYs, . .., Yy taken uniformly
from [0,1]. By settingX}, := F~!(Y}) one obtains? (X < z) = P(F~1(Y}) < z) = P(Y} <
F(z)) = F(x). Thus theX} are chosen according to the density functitinThis procedure
(usually referred to as the Inverse Transform Method) werkH if there is a closed-form ex-
pression for the distribution functioft' (like for the exponential distribution with distribution
function1 — exp(—x/#). Numerical inversion should be avoided, since we then hawntrol
on the obtained distribution function. Especially when animterested in far-away tails like in
SRAM simulation, it is very dangerous to use numericallyemed distribution functions. For a
normal density functiorf = N(u, o), f(x) is defined by

1 _1(@-w?

flx) = e 2 o7, (2.29)
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Generating a normal density functigifz) can be done by an efficient version of the Box-Muller
method [7] (see also [6] and [18]). The monographs [1], [XR8] 6] are good general sources
for simulation from the statistical point of view. The momagh [6] is a thorough treatment of
simulation geared towards using large deviation theorydoe event simulation.

A nice method is the\cceptance-Rejection Methodt assumes knowledge of a majorant
functior? ¢ with ¢(2) > p(z) and known integral valué¢ = [ ¢(z) dz. Theng(z) = @ is also
a probability density function. The procedure takes eaule tiwo random value& andY with
Z according tay andY” according to a uniform density df, 1]. Then

a(2) (2.30)

reject z if 0<f1%<y<1.

{ accept z if 0<y< 22
When z is accepted take;, = z, otherwise repeat the procedure. This method is very gen-
eral and applies to many distributions (especially distrdns with bounded densities and finite
support), but the drawback is that it may not be very efficient
A good library for random generators is provided by [50] whis based on [36]. For
further reference see also [35]. The StatLib webditpf//www.lib.stat.cmu.edu )

also provides many algorithms.

2.4 MONTE CARLO SIMULATION

In this section we show the basics of Monte Carlo simulation.We show how to obtain
estimates of probabilities by generating random variables We discuss ways to determine
the minimally required number of simulation runs, in partic ular using the Central Limit
Theorem, Chebyshev’s inequality and Large Deviation Theoy.

In this section we explain the basic limit theorems in prolitgitheory that make Monte Carlo
simulations work. The aim with Monte Carlo is to take samplgs. .., X and to estimate
andag. A basic question then is how accurate these estimationg\&se by checking if for a set
A X}, € Aone can estimat®(A). WhenA = (—oo, z) one estimate® (X < ).

Assume thatXy, ..., Xy are independent, identically distributed random variabigh finite
meany and variancer?. This setup is more general than it looks at first sight. Ofseusam-
pling from a given well-known probability distribution ia¢luded €.g, the uniform distribution
on an interval). The setup also allows probabilities of évdry choosing

1 ifY,eA
X; = Ity =
ried} {o ifY; ¢ A.
for given sampled7, ..., Yy from a given probability distribution and a sdt(e.g, the setA

may be a one-sided intervial oo, t) or the complement of a specification inter¢alSL, U SL)®).
Random variables lik&; are called indicator random variables and they have a Bélirdis-
tribution (see also Appendix D). The mean of these last &tdicrandom variables is the prob-
ability P(A) = P(Y € A). The Central Limit Theorem says that the standardized &m
converges in distribution to a standard normal distributice.,

N ~
N X, N . -
lim P (M < ac) = lim P <MN B < m) = ®¢(x), (2.31)

N—oo g\/ﬁ N—oo g/\/ﬁ -

°A majorant functiory of a functionh has values such tha{z) > h(zx).
SLower Specification Limit and Upper Specification Limit, pestively.
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a 10712107 | 1079101081077 |10°%|10°®|107*| 1073|1072 | 107!
2o | 7.03 | 6.71 | 6.36 | 6.00| 561 | 520 | 4.75| 426 | 3.72 | 3.09 | 2.33 | 1.28

Table 2.1: Typical values of quantiles of the standard nérhsdribution (o-scale).

2
where®(z) = [* ﬁ e~z dy is the cumulative distribution function of the standardmat
distribution, e.g, the normal distribution with mean 0 and variance 1. In fits theorem holds
under much weaker conditions, but this is usually not imgartvhen performing simulations.
Note that® is monotonically increasing and that, because of the symyneét®(z) aroundo,
we haved(—z) =1 — &(z).

The Central Limit Theorem yields that we may use the follayapproximative confidence
interval for ;.. Let Z be a standard normal variable. In the sequel we will assuatevth: 1/2.
We definez, to be the unique number such tia¢Z > z,) = 1—®(z,) = a. Note thatz, > 0
andP(|Z] > z,) = 2®(z,) = 2a. To give a feeling for the values that assumes for typical
values ofa, we provide indicative values in Table 2.4. Combining thasation with (2.31), we
obtain

: o o . BN —
lim P —z240—< — U< Zy/0—— = lim P —2z4/0 < ——= < 2,
Neooo < /2 \/N unN Y /2 m) Neoo < /2 O’/\/N /2)
= lim P(— Z =1-—a.
Nl—H>1c>o ( Za/Q < < Zoz/Z) «
If we wish to estimatg. within absolute accuracy with 100(1 — «)% confidence, thedv >
23/2 o2 /2. This result is not useful in practice, since we usually dokmow o. Although
(2.31) also holds withr replaced byo (this is not trivial, it requires Slutsky’s Lemma ([3,
Section 7.7])), this only helps a posteriori.
In the special case of indicator random variables, we mayheséllowing approach. Here
we exploit an explicit expression for. We writep = P(X € A) and define

YN X #{ilYieA}

~ ¥ (2.32)

p=

Note thatNp ~ Bin(N,p), i.e., Np is binomially distributed withV trials and success proba-
bility p (see Appendix D). Hence,

E(p) = %szn (2.33)
Stand. dep) — %\/Np(l—p): w. (2.34)

Since a binomial distribution is a sum of independent Belthcandom variables, the Central
Limit Theorem yields

P — pl ~y
p(1-p)

N

P(lp—p|l>¢e)="P ~ 20 (—y), (2.35)

wherey = ¢/ p(l—]\f”). We need to solvéV from the inequality2® (—y) < «, wheree and
« determine the required accuracy. Using the definitiorr pfrom above, we obtainv >
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z 2 . . .
p(l—p) (“T/Q> . This lower bound forNV cannot be used directly, since we do not knaw

Before we suggest three approaches to overcome this prolatus look at a simple numerical
example to get a feeling for the order of magnitude\oin relation top and«. Fora = 0.05,
we havez, , ~ 2. We consider the following cases for= vp, wherev = 0.1.

1. If there is an “intelligent guesg™ for p (order of magnitude), then use

vepaon (2SR em

We get thatV' > 55 lp%”. Forp = 10710, we haveN > 4.10'2.

2. If there is no “intelligent guess” fas, then use worst-cage= 1/2 (note that because of
symmetry,p(1 — p) is maximal forp = 1/2), so

1 Za/2 2 1 Za/2 2
N>-(—=) == 2+ . 2.37
4 ( € > 4 < vp > ( )

For the extreme example above, this would yigld> 1022,

3. If the above returns a value of for which the Central Limit Theorem does not apply,
use Chebyshev’s inequality (2.38) for suitable This inequality is valid for any random
variableU with finite meary and variancer:

2

P(U=-ul> g)gz—z. (2.38)
Proof of (2.38)
7 = Var(U) = [ (u=pPdpla)
R
> [ wePdle) 22 [ dp(e) = Pl > £)0
{lu—pl>e} {lu—pl>e}

However, the Chebyshev inequality is very conservativedy easily yield unnecessarily
large values ofV. We takeU = YV, X;/N with X; Berouillily distributed with
success change’. Hence we have(X;) = p*, 0?(X;) = p*(1 — p*) andu(U) = p*
ando?(U) = £p*(1 — p*). RequiringP (| U — u |> €) < «, we obtain

a*(U) p*(1—p*) p*(1-pY) 1 1
< - > > = .
e % T Ne2 e Nz ae? or N_4a52 4o v? p?
(2.39)

In our extreme example above, it requires that> 10%4.

In all cases above, because of the required relative agcaracvp, we see thatv — oo when
plO0.

We now present a method to obtain more refined bounds. Thisothés based on the so-called
Large Deviations theory developed by Cramér and refinecitmgng others, Ellis and Gartner
(see [6] for a detailed exposition). We will apply this madhin Section 3 as well.
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Lete = vp > 0 be the wantediccuracy for example if we want our approximation to
coincide withp in the first fourrelevantdigits, we have to consider the probability of failure

| N
P (‘NZXk —p| > w) :
k=1
where we may choose ~ 10~ or any other typical value.

As a short summary of the Large Deviations theory: Pgtthe probability distribution of
the random variable

1 N
ZN ::N;Xk,

where theX, are independent indicater random variables that test wheéfl is in some set
A. Thus theX} have a Bernouilli distribution with success changeThen Py = Py (A) and

1(Pn) = p.
The sequence of these probability distributidhg satisfy aLarge-Deviation Principle mean-
ing that there is someate function’ 7 : R — R U {—o0, +00} such that

(i) limsupy_. & In Py(C) < —infzec () for all closed subsets' C R,
(i) liminfy oo & In Py(G) > —infyeq I(x) for all open subset&’ C R.

The name rate function will be explained later, after (2.44)
Let X be a Bernouilli variable with success change The logarithmic moment generating
functionfor X (see Appendix D) is given by

In (E [eAXD —Tn (q + e>‘p> ,
where as usual = 1 — p. We define the following function
J(x,)\) = Mr—In (E [eAX]) (2.40)
= Az —In(g+e'p) (2.41)

wherez, A € R. We note that an optimum value must satisfy

0J per”
e — = 0, hence
O\ v q+ pe ’
qxr
A = In , and
(p(l - w))
pet = I and g+pe = L (2.42)
1—=x 1—x

In our case, the rate function can be shown to be equal to

_ _ *) — ar Tl %
I(x) —ilelgj(w,)\) =J(z,\*) =zln (p(l —x)) In (1_$> , (2.43)

a function which is continuous on the interyél 1). Assuming now tha€’' = [p—wvp, p+vp| C
(0,1) we takeG = R\ C, we obtain from the Large-Deviation principle above that

> I/p) =— inf I(x).

|z—p|>vp

1 1 &
Jim P ('N;X’“_p
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From the identities

I(x) = zln <%> —Ing+zlnhz+ (1 —2x)In(1 —2),

I'(z) = In (%) +Inz —In(l — ),

1

'@ = ey

we see thaf”(x) > 0, which implies sthaf’ is increasing and that is convex Also 7(0") =
—1In(q) > 0andI(17) = In(¢/p) € R. ClearlyI can be extended continuously at bath= 0
andxz = 1. Furthermorel (p) = 0 andI’(p) = 0. Hencel (p) = 0 is a global minimum. This
implies that actually the infimum adfon {z : |x — p| > vp} is assumed on the boundary of the
interval [p — vp, p + vp| (see [6, Appendix A]), hence

|z_i;1‘f>yp1(w) = min{I(p —vp), I(p +vp)}.

On the other hand, simplifying this a bit using Taylor expans
! 1 1" 2 3
I(p+h) = 1(p) + hI'(p) + SI"(p)h” + O(h"),

which is feasible since is rather small. Here we note that

” B 1 B 1 B N
PW) =070 = g = Vartzy)

We obtain

I(p— vp) V24003 = 2%% + oW,

P
~ Var(Zy)
_ N, 3y _ P 2 3

I(p+vp) = 2Var(ZN)V +0(v°) = 2—q1/ +O(v°).

Thus from part (i) of the Large Deviation Principle, we obt#éie so-called binomial case of the
Cramér bound:

1 N
(e

for all NV with a possible exception of finitely many.

—N inf I(z) —ﬂlﬂ —Np 2
>vp| <e |lz—p|>vp ~e MValEN)T =¢ 2 | (2.44)

Remark 1. The upperbound in (2.44) decreases exponentially Wittvhich is better than the
one obtained by the Chebyshev inequality (2.38)

e <o = N> 2Ly, (2.45)
pv e}

However, one still has thalv is large for small values op. If for instancep ~ 10~3 and

v = 107, theng ~ 1 and the exponent iss —10~''N/2. For the extreme case discussed

above we have = 0.1, p = 10~'? and an upper bound.05 for the probability in (2.44). The

Large Deviation principle yields tha¥ > 210'2? In(1/0.05) ~ 6102, which is quite close to

the value if we would have an intelligent choice for the unkmp (cf. page 14).
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Remark 2. Part (ii) from the Large Deviation principle states that tegponential bound for
the probability in (2.45) is also valid from below. Thus, irat sense, the bound is sharp and
convergence can not be faster than with the speed given alnte that the Large Deviation
estimate does not take into account fluctuations of loganithordero(1/N).

Remark 3. The conclusion is that Monte Carlo needs% simulations to obtain an estimate
with a guaranteed relative accuraey We also see that an extkath decimal inv increasesV
with a factork?.

2.5 IMPROVEMENT OF RESULTS

In this section we describe some ways to improve the basic Mg Carlo Method as de-
scribed in the previous section. We briefly discuss antithét variables, control variates,
matching moment technique, and stratification.

The Monte Carlo Method of the previous section is the basimf¢sometimes called crude
Monte Carlo). There are several general techniques to wepitus method. It depends on the
case at hand, whether a given improvement technique cangderimanted and is more efficient
(i.e., requires less samples because the variances are sntaderihe original method. In this
subsection we only briefly mention the most important gdnienarovements methods. For
more information, we refer to [1], [7] and [46].

e By using antithetic variablesapart fromXy,..., Xy, we also generate another sam-
ple Y7,...,Yxy such thatCov(Xg,Y;) < 0. The rationale behind this method is that
Var(Xj, + Yy) = Var(Xy) 4+ Var(Yy) +2Cov (X}, Y). Hence, ifCov (X, Y;) < 0, then
we may gain in efficiency if this negativity overcompensateseffort for generating the
additionalYy,. In [7] this is demonstrated for a normal density usiig= —Xj. More
general, ifX;, = G(0X},), whereX}, are normally distributed, than

X = G(oXy) = G(0) + G'(0)o X}, + O(c?).

The mean of the linear term is zero. However, in the MontedCgi). X, sum, the linear
terms will not cancel exactly. By additionally taking. = G(—oX}) into account, the
linear terms do cancel. Then the remaining error really apprtional tos?.

e By using control variatest.et X look like X (via a coarse approximation using a limited
MC-run, or from a previously obtained result, and some pukation) and that it uses
the same probability density functioghas X (when using parameter-dependency this is
automatically satisfied by requiring that and X depend on the same parameters).
Assume that we want to estimatel = [z f(z)dz and that we knowM = [z f(Z)dz.

[At first glance this may look strange. However, when dealwith functions in a pa-
rameter space, things look more natural. Then we hetve= [ z(p)f(p)dp and M =

[ Z(p)f(p)dp. HereX (p) and X (p) can be different functions.]

Then usings? = Var(Y) = E[Y?] — (E[Y])? for X(p) and X (p) with p distributed

(© TUE Eindhoven University of Technology 2009 17



TUE-CASA-2009

18

Y =X - AX + AM we obtain
Bgoam = [l AT A (@)do — (ELY))
_ /[(x = M) = AG = M)+ M2 f(2)da — M?
- [{e-
2[(z —

X

M)? = 2X(z — M) (T — M) + X2(T — M) +

M) = \& = M)|M + M} f (z)da — M

= 0% — 2AB[(X — M)(X — M)] + A%0% + 2E[Y — M| M

= 0% —2\y + /\20}, (2.46)
where~ involves the correlation. Note th&[Y” — M] = 0. The error in the mean of

X — AXj can be much smaller than jn  The expression (2.46) has a minimum for
A = -2 resulting in

202"
X
2 2 " 2
1 ~ — = - < . .
miny o'y ¢\ ox 3 = 0X (2.47)
X

This indicates a possible improvement. In practice onestakene chosen values far

By a matching moment techniquBrescribe the matching moments = [ zF(z)dz
andms = [ 2% f(x)dz (for some, desired, density functigh). Let 1, (X) = + >, X7,
wheren > 0, be the empirical moments (thd&u; (X)] = w). We consider the trans-
formed quantity

X —m

Y = +omy, with (2.48)
&

2
Y il (2.49)
M2 — p7

After also transformingXy, to Y;, we see that,,(Y) = m,, for n = 1,2. Hence, the two
first moments match. Note, however, that ijeare not independent (the transformation
usesu; andus). This affects Monte Carlo error estimates (the CentraltLFhieorem is
not directlty applicable) and the method may be biased.

By stratification: Stratification combines randomness with the benefits ofda gri

The basic idea is to partition the spacelif blocks (2, and to sample in eac-th
block randomly distributed point&;* k = 1,..., N/M (with N being a multiple ofi/).
Let M., = Q7! Jo, #f(z)dx be the local mean of,,. Then the error in: (now
expressed in a so-called ‘stratified sum’) is

o2 = Z/m[w—/\/{m]2f(x)dx < Z/m[w—M]zf(x)dx = of2.50)

Clearly, we needV >> 1 trials, which can be rather large, but there always helds .

An interesting option arises if we can obtain a ché@apressionof the distribution of
the X" without actually calculating them. For instance, assunag we know in some
way thatn,, hits fall within ,,,, thenN = %" n,,, and the locain-th density equals
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fm = ny/N. We can now actually re-sample (and evaluate) only K poffy;t‘sin each
Q,, and determine

= ZZ)N(,?‘%” (2.51)
m k

If M x K < N this may become beneficial (for instant¥e= 10,000 andM x K = 250).

The idea can easily be applied in a parameter space thattisquead in M blocks(2,,.
Then X" = X(p}) is the result ofX at distributed parametegs”. In these cases the
fm are derived from the densities of the parameter space: dndieey may be known in
advance, otV >> 1 parameterg;; may be generated in advance by a simulation program
and can be made output before actually calculafiiffy = X (p) ’. Note that also after
obtaining the sampled;’-s we may define thé/ blocks2,, to our convenience. We
easily obtainf,, (for instance by using a histogram). After this, we re-samuhly K
pointsp;* in each(,, with M x K < N and evaluateX(.) only at these last sample
points X" = X (p;*) and apply

i o= ZZX,?%’”. (2.52)
m k

The result is that

— less populated intervals are sampled more;
— more populated intervals are sampled less.
Stratification can easily be combined with Importance Samgp(see below) if we can

obtain an impression of the distribution of thg". The procedure also offers options for
refinement (hierarchically, or by Kriging, etc).

e Byimportance samplingVote thatM = fx%g(m)dm and calculatgi = % S Xk f(XQ.
The error infi, using pointsX, with distributiong, has

_ / [w% —/\/lrg(x) iz | (2.53)

One can thus emphasize areas wheiglarge. Details are described in Section 3.

In [7] techniques with control variates, or with antithetariables are shown to reduce the error
(an order). Combining the techniques result in further rereduction (half an order). Using
Quasi-Monte Carlo techniques the error is slightly imprbie each case, but is much faster
obtained.

"In the circuit simulator Spectre the sampled paramatfrsnay be generated with the ‘iterVsValue’ command:
in fact this is a parameter distribution scan.
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Section 3

Importance Sampling

When we wish to estimate extreme probabilities of the fdhX < ¢) using the indicator
random variables like in (2.32), we need a lot of samples Umxa is then very small (cf.
(2.36). The reason is that most of oi,'s are larger thart and do not directly contribute.
The main idea behind importance sampling is to circumveastghenomenon by sampling from
another distribution which has high probability to be larfenc in such a way that we may
conveniently translate the results back to the originaiguired probability. In this section we
first introduce the theory behind Importance Sampling inseabons 3.1 and 3.2 and show
explicit examples in Subsection 3.3. In the remaining sciimes we describe some variants of
Importance Sampling.

3.1 BACKGROUND OF IMPORTANCE SAMPLING

In this section we describe Importance Sampling, a method toncrease accuracy of simu-
lation by changing the distribution from which is sampled and suitably correcting for this
change.

Suppose we are interested in probabilities of the farm= P(Y < t), whereY follows a
probability distribution with density functiorf and distribution function®’. The Monte Carlo
approach of Section 2.4 is based on samplkg ..., Xy from f and using the following
estimator:

N
1
FMO) = = D Tixicry - (3.1)
=1

It follows directly from (2.33) and (2.34) that

E; (FNC(1)) = F(t) = p andVar; (FMC(t)) = % F(t) (1 — F(t)) = %p(l —p). (3.2)

For Importance Samplingve use an additional probability distribution with dendityction g,
sog(z) >0, [ g(x)dz = 1. Clearly, whery(z) > 0 for z € (—oo,t):

Py <=r0) = [ swar=[ T (3.3)

On purpose we changed the dummy variables fyaimz. The above formula should be read as
follows: the first integral is with respect to sampling frafmwhich densityf, while the second
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integral is weighted sampling from another random varidbleith densityg, the weights being
f(X)/g(X). Importance Sampling is based on transforming the aboséoelinto an estimator
in the following way:

[{X <t} (3.4)

PS4 = %Z

=1 ‘g

with the X; chosen according to the densityrather than tof. Note thatF'S(¢) is anunbiased
estimator forP(Y < ¢):

6 < e ol
_ flx)
= N Z/ {:c <ty TN 9(z1) g(z;) dx;

1
= ¥ Z Er(Iix,<p)
i=1

| N
= 2 F0
i=1
= F(t).
Note that this re-sampling may already be a benefit: samplegrding to a known and simple
g may be more efficient than sampling according to a dersttyat involves more calculations.
However, we will now compute the variance of this estimatorstudy whether it is indeed

more efficient than the crude Monte Carlo presented in Se&ié. To derive an expression for
Var (F'5(t)), we use (2.5) and observe that

(

- /_Z <I{rz‘<t} §(§:;>29(%) dx; — F2(t)
/_Z (I{:c<t} % — F(t)>2g(:1:) de. (3.5)

SinceX; and.X; are independent far# j , we also have thal v, ., andl;x, . are indepen-
dent. Hence, becausé(t) = [*__ f(x)dz = [ Iipepy f(2)da

N )
Var, (Fls(t)) = Var (% ZI{Xz‘<t} %)
i=1 !

_ % < /_ C: <1{m<t} % - F(t)>2 g(@) dm) (3.6)
- = < /_ Z It % dz — 2F(#) /_ Z Tpenyf (@)dz + F2(1) /_ C: g(m)dm)
_ % </_Z Liaer % dz — F2(t)> (3.7)
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Hence

N Var, (FIS(t)) =

[ 8w [ o [T P
/_too % - F(t)>29(w) dx + 2F (t) /_:O F(z) de —

/too F*(t)g(z) dx — /_too F2(t)g(z) da — /too F2(t)g(x) dx
/ 2

") o) 1 2P0
<g(x) F(t)> g(x)dx + 2F*(t)

—00

2 </t F2(t)g(x) dm+/oo F2(t)g(x) dx> +/°o F2(t)g(x) dx

/;:(% - F(t)>2 g(x) dz + /too F*(t)g(x) d. (3.8)

Here (3.6)-(3.8) are three equivalent formulations. lidfiek from (3.8) that if one could choose
g(x) =0forz >t and% = F(t) for z < t (note that this choice afindeed yields a density),
then the variance of the estimator would be zero. This is mqtrising, since then the estimator
is constant and hence, its variance is zero. In practice weatamplement this perfect choice,
since it requires knowledge of the quanti(t) that we are trying to estimate. So preferably

one should have(z) ~ 0 for z > t, and% ~ F(t) for x < t (i.e. constant irx). In order to
achieve this one usually applies an estimatelf@r) and restricts oneself te,, = E(g(X)), or

one minimizes the normalized standard deviatian (F™5(t)) /E (F'S(¢)).
Note that if% < 1on(—o0,t], then (3.7) implies improvement

0 2 T [e%]
/ N J{Kt}‘];(—(w)) dx < /_ N Ipeny f(z)da = F(t) = Varg (F'5(t)) < Vary (FMC(t)) (3.9)

For% <k <1lon(—oo,t] we find

Var, (FIS(t)) < kVary (FMC(t)) — l_—ﬁ

F2(t). (3.10)
This means that the error estimate only slightly improves' < /x o/, which forx = 0.1
means that not an order is gained. In order to obtain moraciixpbmparisons in terms of
required sample sizes of the crude Monte Carlo simulatio8esftion 2.4 with the Importance
Sampling method of this section, we either have to work orsa bg case basis (see Section 3.3)
or to extend the Large Deviation framework of Section 2.Atlmportance Sampling case (see
Section 3.2).

For literature on Importance Sampling we refer to [8, 20,271,29, 31, 40, 45, 48, 51].

Remark: In the general setup of importance sampling, it is assumaidiie measurg, () in-
duced by is absolutely continuous with respect to the meagupg induced byf (to generalize
the positivity condition mentioned above):

pr(A) = /Af(x)dx = 0 = p(4) = /Ag(ac)dw = 0. (3.11)
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A preferred additional condition is
pr(A) > 0 = pg(A) > 0, (3.12)

but this is not necessary. However, when one aims to alseedarcumulative probability func-
tion for severalX, this assumption (3.12) becomes of interest, becauseoivglthe re-use of
the same function.

Remark: Note that the ratiog% is in fact a Radon-Nikodym derivative ¢f, with respect to
s (cf. [40]).

3.2 LARGE DEVIATION BOUNDS FOR SAMPLE SIZES IN IM-
PORTANCE SAMPLING

In [40] Importance Sampling is applied to server systemsetan using Exponential Change
of Measure (ECM). ECM is also known as Exponential Twistiagponential Tilting, which be-
came popular for rare events in queueing systems. Thidmgiet tilting is the basic idea hidden
in the Large Deviation approach that we described in Se@idnWe refer to [6] for a detailed
exposition of these ideas in the context of Importance SaaqpWe define for convenience the
random variables

J(Xk)

Vi = I{Xk<t}m' (3.13)
SinceVy, Vs, ... are independent and identically distributed, by the Weak b&Large Num-
bers, the arithmetic meady = %fo:l V. converges toF'(t). However, Ay is not a
Bernoulli random variable any more.

In the following we consideX having the same distribution &§;, X5, ... and a corresponding
V= I{X<t}%. The moment generating function Bfequals

E, [e,\v] _ / g(z) N @/9@) gy

t
= / g(z) N @)/9(@) dm+/ g(x)dz

t

t
- / g(2) M@/ 4z 41— G(p),

whereG(t) = [*__ g(z)daz. Letp(\) = InE; [¢*X]. Basically we would like to proceed as in
in Section 2.4. However, since we do not know the distributsd X explicitly, we have to as-
sume something about it. For this time, we will restrict @lwss to simplesufficientconditions
and we will not strive for full generality. Thus Iét be distributed according to the distribution
P. We assume:

1. Thereis nac € R such thatP(X =z) =1,
2. Ef [e/\X] < oo forall \ € R,

3. let@Q, be the measure given [B/with density

M f(x
o ['};(\X)] (thus /px(x) dx =1)

pa(x) =
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(which is well-defined for all € R by (1)) and letY, be a random variable distributed
according tdQ,. We assume that

_ [ ey
Epn(M) = [wmn)dyn = [ vg dy < 0o
7 [eM]
and
Var,, (Yy) = E [Y?] —E} (Y)) <
forall A € R.

Then,p(\) is a two times differentiable real function with derivatve

o) =S =m0, ey = e - S v, o)

If X is not supported by a single poinfar(Y)) > 0 andy is thereforestrictly convex Let
J(x,\) = Az — p(N). (3.14)
As in in Section 2.4 we again consider the ‘rate function’

I(x) = sup J(z, A). (3.15)
AER
[I(x) is the so-called.egendre transforrof ¢]. That implies by [11], Lemma .4, p. 8 thé{x),
also is strictly (proper) convex which means that the mimeniof I is unique (if there is one).
On the other hand, by the very definition fwe have

I(z) > J(z,0) = —p(0) = —1In ¢ = 0.

Thus, every valuer with I(x) = 0 must be the unique minimizer df. Now letp be as in
Section 2.4. Thed(p) = 0, since the Strong Law of Large Numbers implies that the eiogdir
measure of every neighbourhoodofends to one. Hence,is the unique minimizer of and
I'(p) = 0.

We assume for simplicity that the moment generating funatixists for all values ok € R.
Hence, to compute the supremum in (3.15), we consider

B, [Ve’\v]

d
—J(z,\) = x— B[]

- (3.16)

It seems hopeless to compute an explicit expression as48)(BBernouilli rate case) for the
rate function/ (x) in this new generality. However, we can try to do an expansjpto second
order around. Therefore, we have to determine the valued @f), I'(p) andI”(p), but only
I"(p) is non-zero. We observe that

%](w AN)=0 = z=U()\), where (3.17)
VA
T()\) %. (3.18)
We note that
vy = Letawdv [y )d’U - JoePg)de” 5 1)

f e
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At the right-handside we can recognize an inner-product) = f’ue”)‘g(v) dv. By the
Cauchy-Schwarz inequalityl,v) < +/(1,1)4/(v,v) we obtain®’(\) > 0. This implies that
U is invertible and hence (3.17) definks= \(x) = U~!(z). Hence

I(z) = J(z,A(z)). (3.20)
We note that we can write
z = Y\ = Ep[V], (3.21)

where we defingE;,, [V] = E, [VerV] /E, [e*V]. Note that this notation as expectation is
justified by definingh, to be the parameterized density(z) = e**)g(2) /E, [e*V], with
v(z) = I{Z<t}%. Note thathy—o(z) = g(2).

Thus, to calculate the first (total) derivative fr), we differentiate (3.20) with respect 1o
and substitute (3.17) to obtain

Eg [Ve)\(x)V]

I'(z) = Mz) + aX(z) — X(w>m
g

= \z) + N (@) (x — En, [V]) = A@). (3.22)

For the second derivative @fz), we first implicitly differentiate (3.17) with respect towhich
yields1 = a% (En, (V) N(x). The expectation in this expression can be rewritten as

0 0 By [VeNV] By [V2V] E2[Vel]
=y En (V) = =% = -

1)) OX Eg[eMV] Eg [eMV] EZ [eAV]

= Ep, (V)=Ej, (V) = Var,,, (V).

Substituting these expressions when differentiating3adth respect tac, we obtain

//x:/x:i: 1 = !
I"(z) = N(x) 92 = 9(F, (V) Var, (V)

As we explained aboves is the unique minimizer of. Sincep is also an internal point, we
obtain that) = I'(p) = \(p). Hence,
1 1 1

I"(p) = Vatn, (V) = Varr ()~ Ve, (V) (3.23)

Similar as in Section 2.4 for deriving (2.44) we consider
1
Ipxvp) = I(p)+vpl'(p) + 5v°p*I"(0) + O(W'p’)
1
= V' I"(p) + O(p?)
V2p2

- Var, (V) (8:24

We obtain the following bound (3.25) for the convergencehefilmportance samplingvhich
again stresses the important role played by the varianceigh is also more accurate than the
Chebyshev inequality (2.38)

1 N
(v

. sz 2)
>vp| <exp|—-N inf I(z)|~exp|——=———v"], (3.25
p) = oxp < |z—p|>vp ( )> P < 2Varg(V) ( )
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for all sufficiently largeN. Indeed, ifg(z) = 1thenV = Z as in (2.44) andVar, (V) =
Var (Z) = p—lq. Clearly we generalized (2.44).

As a corollary we can calculate the relative efficiency bemverude Monte Carlo and impor-
tance sampling. Indeed, let some error probability 0 be fixed. That means, we seek a bound
for the numberV of runs in the simulation such that

N
1
P(‘N;Vk—p >1/p> <a.

Using(2.44) and (3.25), we thus obtain the following coiotis for the number of runs in the
crude Monte Carlo{/;¢) and the importance sampling/(s) settings, respectively

N, 2 1
a= exp[—ﬂ VY] = Nyc = _q2 In(—), (3.26)
2q pv a
Nisp? 2Vary (V) 1
= —— Nig = —=%=—= In(—). 3.27

This yields that the relative efficiency is given by

N[S . Varg(V)
Ny pqg

Note that this is a ratio of variances, sinegis the variance for the Bernoulli variable in the
crude Monte Carlo approach. Singg(V) = p, we haveVar,V = E,(V?) — EX(V) =
E,(V?) — p%. Hence, we finally obtain that the relative efficiency betwéee importance and
the crude sampling approach is approximately given by

Nis _ By(V?) p (3.28)
Nye Pq q

In (3.9) we observed that(x)/g(z) < 1 on (—oo,t) implies a variance reduction. This yields
an improved accuracy because confidence intervals for thetityito be estimated are smaller,
but it was hard to directly show efficiency in terms of the rieggh number of runs. Because

0o 2y t " t
E, (Vz):/oo I{x<t}%g(x)dw:/_m% (w)dxg/_oo f(z)dx = p,

we see that (3.28) indeed implidg s < Ny o (as we expected). However we still do not have
an impression on how much the actual improvement is (deiteffort in deriving (3.25)).

We can sharpen the above result a bit assunfiag /g(z) < k < 1 on(—oo,t) (andp < k).
Then

Nig EQ(V2) _p_

K
Nuc  pg g q

—§§KG+C) (3.29)

for |(1 — )p + O(p?)| < ¢, which forx = 0.1 andp = 107'° means that < 10~°. Hence
for this situation we can take an order less samples with ttapoe Sampling to get the same
accuracy as with Monte Carlo.

The actual reduction in number of trials can only be quatkiba a case-to-case base. To this
end, we present explicit examples in Subsection 3.3.
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Remark 4. The gain in efficiency is merely caused by a trade-off betwldags that are visible
such as the number of runs, and things that are invisible sgcthe time that your computer
needs to calculate the valueslgfp at the sampling points. It is important to note that to ackiev
the wanted accuracyp, 1/p must be effectively calculable with the same accuracy ierondt

to mess up the mean of thé with the corresponding roundoff error. That also provides a
limiting (though unseen) factor for the importance samgliin practice, we will not strive for
an optimal solution in the sense of the minimization of the variance lagnce the numbeW; ¢

of runs. Becaus&ar,(Y) > 0 we haveE,[Y?] > (E,[Y])? = p? (in fact Jensen inequalily
and equality is assumed if and onlyYifis almost surely constant. The corresponding optimal
density in our case would be

1f(x)>ap§(w) 1
£y L1 . 3.30

This optimal choice of the density would be associated texhetsolution of our problem (note
that Var Y* = 0) and, due toY* = p, would even reduce to one. However, we decided
for a sampling approach since we realized that computirdirectly is out of reach and hence
it is infeasible to compute this optimal solution directleither p nor the indicatorl s(,)-,
are within reach. Hence, our approach to importance sangpéhould be to find densities which
provide a good compromise between reducing the varianckearte hand and being effectively
computable with sufficient precision on the other hand. Teea, however, will always be to use
a density which is as close as possible to the ideal density.

3.3 EXAMPLES OF IMPORTANCE SAMPLING

In this section we show some explicit examples of Importancampling. In particular, we
show how to use normal distributions with enlarged spread ad broad uniform distribu-
tions.

In sections 3.3.1-3.3.3 we basically are interested intoureslike

e Is % < 1in the area of interest, which is the basis for the improvangendition as
formulated in (3.9)?

e Are ‘natural’ assumptions (3.11) and (3.12) satsified?
e What is the portion of samples in the area of interest?

In section 3.3.4 some explicit results ;- andN;g, as found in literature, are summarized.

In all our examples we usg = 107, ¢ = 0.1p = 107" (sov = 0.1), anda = 0.05.
The values ofV (the minimum required of simulation runs) follow directisofn (3.26)-(3.27),
whereV has the same distribution as the variables defined by (3.13).

3.3.1 EXAMPLE: NORMAL DISTRIBUTION WITH ENLARGED SPREAD
From the above it is clear that fgf = N(u, o) one must not expect automatically good or
efficiently obtained results by taking = N(u, ko) with x > 1 (which allows to sample also
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points much further away from than done byf; in fact this is a form of scalingy(z) =
1 £(£)). For allz we have

(2) — ke 3P — e—%(“;“ﬁ[l—ﬂ%] =0 </€ e 3 z;#)2> (k — 00).
x)

(3.31)
Of course, we havég% — 0 when(Z4£)2 — oo, but [*__ f?(x)/g(x) d should be consid-
erably smaller thar#'(¢) in order to have a significantly smaller variance (cf. (3.@))d hence
have a smaller number of required simulation runs. In othemrdg; in general the importance
sampling approach may not generate relatively many morglsarnn the area we are interested
in than outside that area.

We consider this more closely. It appears that we are ableidoagtee thag% <1lin

~

Q
—~

the area we are interested in. We assumse ¢ < ¢’ < p and write"%’f/ = nkx and assume
0 <7y <1landk > 1. We note that

fz

Ve<t . 222 <1

g9(z)

~—
<C
8
A\
~
<
=
(@)
Wl
—~
8
Ql
=
-
[\V)
—
—
|
3
—
N
—_

1> 62> h(k?), for h(z)= ln(zi . (332

Clearly lim,|; h(z) = 1, while #'(z) < 0 for z > 1. Forx = 6.4 (which corresponds to
P(X < t) < 10719) this meand > 62 > 0.0929, and thusl > # > 0.3048. Sampling with
g = N(p,6.40) and takingt’ = u — 60 implies thatd = 6/6.4 = 0.9375, which is acceptable
(note thatt’ corresponds wittP(X < t) < 1079, see Table 2.1).

For this combination of distributions both assumptiond {3and (3.12) are satisfied.

We observe that a significant fraction

L 1/~ 18 L [ .24 0.8413  (3.33)
—_— e 6.4%0 T = —_— e €T = . .
\/ 27‘( 640’ /X:l/«_6-40' vV 271' /_1

(calculated in Matlab with 1 - normcdf(-1,0,1)) is sampledside the area < ¢, which may be
rather disappointing (note that this will be even more whealidg with higher dimensions), but
15% falls within. Surprisingly even this already is muchteethan what will be needed when
using ordinary Monte Carlo.

3.3.2 EXAMPLE: NORMAL DISTRIBUTION WITH SHIFTED MEAN
Another option is using shiftingy(z) = f(z — T'), say withT = ko [in one of the examples
in 3.3.4 below this is actually done with= 2]. Indeed, this is a better option, as will be shown
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next. Letf = N(u,0) andg = N(u — ko, 0). Assuminge <t = u — ko < p we have

(@=p)? | 1 (2=p+ro)?
Ve <t: Mﬁl — Vr<t: e_% Ug +% lf,+2 <1
9(x)
s emrlmmrots®ol)
— 2t—p)ko+ k20> <0
= t+gaéﬂ7 (3.34)

which clearly is satisfied sinde= i — ko.
For this combination of distributions assumption (3.113atisfied, but (3.12) not.
By construction, we have that a fraction

1 © 1 (e—[p—ro])?
e 2 o2 de = 0.5 (3.35)
2ro Jt

is sampled outside the area< t.

3.3.3 EXAMPLE: UNIFORM DISTRIBUTION ON A BROAD INTERVAL
Next we consider the case ¢f= N(u, o) andg = Unif(u — ko, u + ko) with £ > 1. Hence,
g(z) = 5= for z € [u— ko, u+ o] andg(z) = 0 elsewhere. Clearly, to get samples one must

havey — ko < z <t < t' < u. As before we Writé% = 0k and assumé > 6 > 0 and
x> 1. We find

2 z—
Vo <t Mgl — V<t P35 <1
g(x) v 2m
2K 1t/ —pN\2
v =5 ()
<= e 2V o <1
\ 27 B
e 2B e o
\ 27 B
In(2 In(k2
e 1z 2D (3.36)
K

We note thati(z) = m(%)+1n(z) has a maximumZ < 1 atz = <. Takingx = 6.4 (as in the
previous case) leads 10> 62 > 0.0796, and thusl > v > 0.2822. However, this is not enough
to ensure samples in the area< i — 6.40. Hence, we extend the interval gtto x = 8: thus
t = pu— 80 andt’ = u — 6.40. Note that) = 6.4/8 = 0.8, which is acceptable.

Sampling withg = Unif(x — 80, 1 + 80) means that a fraction

p+8c pt8o 1
g(x)de = / —dx = 09
/t’ (=) u—6.40 160

is sampled outside the argat’], which is even slightly more worse than in the case of thedyroa
but unshifted, normal distribution. However, again, it isah more efficient than what will be
needed when using ordinary Monte Carlo.

Of course, taking a uniform distribution on a shifted in@nsayg = Unif(¢,0) for ¢t =
1 — ko Will result in a more efficient method in which case only a fiag of 0.5 of the samples
will be outside the area we are interested in.
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3.3.4 FURTHER EXAMPLES

In [31] it is assumed thaf(xz) ~ N(10,2) andt = 6.7 = 3.350, which givesF(t) =
0.049471 < 0.05. Thus to guaranteg€00 = N F(t) hits, Nyic = 100/F'(t) ~ 2000. When
g(x) ~ N(t,2) one will havely, ., = 1 for approximately 50% of the;. This time only
Nis = 130 is enough to obtain a similar accuracy using importance 8agip

Whent = 3.0 = 1.50; one hasF(t) = 0.00023623 < 0.25 1073, Nyic ~ 410°, and
Nig = 500.

A further improvement was found by starting with a non-ndrdensity functiong

—a(t—z) if <t
ae if <
9(z) = { 0 it o>t (3.37)

in whicha was a free parameter that can be optimized. Clgayly ¢t — % Equating%‘
T=Hg

Pi(X < t) =pp(X)fort = 6.7 givesa ~ 1.25. Now already forN;s = 20 one obtains a 95%
confidence interval.

In [12] a similar problem is discussed usitfgr) = e~* (power density of thermal noise in
an electronic signal) angk.,(z) = te andps(t) = [ f(z)dz = P(X > t). Herea is
determined to minimize the normalized standard deviation

AP0l 1 T a9
E[pi®(t)] VNisV 2a—1 7 '
which gives as optimal values
1
aie = 5[1 +tEvV1+ t2] (339)

(below we will take the "+” sign in the calculations). For ardry Monte Carlo the normalized
standard deviation is

o) 1
0] — VN et — 1. (3.40)

By equating (3.38) and (3.40) one can consider the simulaj&in by Importance Sampling
when compared to Monte Carlo to obtain the same minimum niaretbstandard deviation

NMC’ et -1
= > 1. (3.41)
Nis Zgilet/a -1

Fort = 8 and Ny = 10* we find%fg = 282, i.e Nig = 35.
Fort¢ > 1 we have that: ~ ¢ and thus
NMC ~ 2€t

N — 1. 3.42
Nis et > ( )

Fort ~ 20, one has (using® ~ 20 and2'° ~ 10%) thatNNLIfSC ~ 10%, which means an enormous
speed up.

In [12] also other examples are given
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o f(z)= K,x Ke—x [gamma dlstrlbunon for a sum ok exponential samples, with shape
parameterK] for p;(t) = [~ f(z)de = P(X > t) with 2 < 10log4(t) < 12 and
K = 2,5,10,20 by Importance Sampling using(z) as in (3.37) witha = t/In(2)
(giving g(z) = a 279" ¢**, andgy.y, defined by

Gbox () (3.43)

1if t<az<2t
{ 0 else

(the latter using samples, = ¢(1 + wuy), with ug € [0, 1] uniformly). In this case the
Jhox-function is the most efficient one, but also offers the oppaty to take simple uni-
form variates as samples: 26% of thg.-sampling are in the area that contributes 99% to
pf(t); fOr gexp () this is 8%. [No speed-up when compared to standard MC is oresti

o f(x)= %3326_1,2 [Maxwellian distribution of molecular speeds in a dilutesgadJsing

1 .
s |f t<ax<t+2
Goox () = { (2) else ’ (3.44)

results fort = 4 and fort = 6 are obtained. An additional remark is that poigiscan be
generated that are “Maxwellian distributed™ Ilf = I(z > t) > [f(t)/gpox(t)]us then
“k' = k' +1andz = z;”. This can be an additional benefit.

3.4 MULTIVARIATE IMPORTANCE SAMPLING
In this section we briefly describe how to use importance saming in a multivariate setting.

In several simulations the nonlinear output resparge depends on independent input param-
eters with known density distribution function (in mostess normal distribution). In this case
the ratiof(p)/g(p) is considered ip-space, wherg is known and thus the ratio can easily be
calculated. Of course, in a more dimensional parameteregbecdefinition ofy(p) that should
cover the area of parameters for the rare events of intesggijres more attention. Multivari-
ation also naturally introduces effects due to dimensignak is seen in the examples below.
With increasing dimension of the parameter space impogtaampling becomes more impor-
fant.

In [31] z(p1, p2) = \/p? + 3p3 was considered and samples= z((p1, p2)i) = z(p1i, p2i)
in which the input parametegs,; are chosen according to densifty.
Now p (X ff fi(p1) f2(p2)dpidp2, in which X now is identified with a 2-D are&, in

(p1,p2) such thatf(plam) > X (or < X).
The indicator function is now defined by

1 if , € X, ie.if , > X
Ix(x)zfxp(pl,pz))z{ 0 else (1,p2) € Xp #(p1.p2) (3.45)

and similar as in (2.28) one can estimaig.X ) by
1
PPOX) ~ D Ix(). (3.46)
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The counter parts of (3.6)-(3.8) are

Var,[pP(X)] = %[/ UXAPMM)%—Pf(X)}291(Pl)gz(Pz)dpldpz] (3.47)
= L[ ) ) dprdps - p2(X)] (3.48)

N 1) 91 p)e2(p2)
= %[z/[% — p(X)?g1(p1)g2(p2)dp1dps +

// P7(X)g1(p1)g2(p2)dp1dps]. (3.49)

R\ X,

In[31] fi ~ N(up, = 20,04 =2),andf; ~ N(uyg, = 10,04, = 1) was taken. Note that for
p1 = piy, + 204, = 24 andps = py, + 204, = 12, one hase(p1,p2) = 12V/7 ~ 31.75. For
X =32,ps(X) = P(z(p1,p2) > 32) ~ 0.18 1072

For importance sampling two functiong, g» can be definedy; ~ N(u, = 24,04, = 2),
g2 ~ N(ug, = 12,04, =1). FOI’pECS(X), the 95% confidence interval af;s = 20 was already
comparable to the one f@f!“(X) at Nasc = 2000.

Trying g1 ~ N(pg, = p,09, = 2), g2 ~ N(pg, = p/2,04, = 1) an optimum valug: = 25
was found, but this did not much improve the results furtt@erand neither did improve the
efficiency.

3.5 WEIGHTED IMPORTANCE SAMPLING

Hesterberg [20] describes two additional variants on Igrare Sampling: the “Ratio” or
“Weighted” Importance Sampling method and the Regressiggottance Sampling method.
The “Ratio” or “Weighted” Importance Sampling is defined by
FWIS(t) - %ﬁlv@ - L’
N i Wi W
whereV(X) = Ix(X)W(X) andW(X) = f(X)/g(X), and with thisV; = V(X;) and
W; = W(X;) = f(X;)/9(X;). Clearly,IW(X) has expectatiofL, [ (X )] = 1. In particularly
we haveE,[W;] = E,[W(X;)] = 1.
If in V(X)) the functionlx,(X) is written as a sunix ;(X) = A(X) + ¢ (assuming fixed
t and a constant), the Weighted Importance Sampling result for the sum isctireesponding
one forA shifted bye. For the normal Importance Sampling this only holds for tkygeetations.
The price to be paid, however, is a (small) biasing of the etqton. Each/; hasp = E4[V;].
LetV(X) = V(X) —p, thenV; = V(X;) —p = V; — p, and similarlyV (X) = V(X) — p, and
similarly W (X) = W(X) — 1, implying W; = W(X;) — 1 = W; — 1. Then

(3.50)

FWIS(t) — %Zﬁ\il‘zi/—’_p = E—’_p
N i Wit 1 W+1
‘7 =1 = 2
= p<1+—> <1—W+[W} +>
p
== == —_ = —_— 12
_ p+[v_pw}_[VW—p[WH+... (3.51)
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The second term hasexpectation 0, but its variance is not. Using the indeperag®f the X;
and ay?-related argument for the remaining products we derive dlieviing expressions for

the dominant terms in the Expectation (note Eg\ﬂ{ﬁﬂ = LE,[W?], etc)

B [FVS()] ~ p—EglV W —p[ W
= P BT OW(X) - pIT(X))

= b BV~ ()W (X)]

= = EHVX) —p) ~ (W (X) ~ DHIV(X) - 1)
= b= BV - W (O (X)) (352)

where we used thdi, (V) = p. Similarly, for the dominant terms in the Variance we derive

Var, [FWVS(1)] = Varg| = pﬁ]
= %Varg[f/ —pW]
= %Varg[V(X) —p—p(W(X)—1)]

= %Varg[V(X) — pW(X)]. (3.53)

Note that in (3.52) and (3.53) (X ) = Ix (X)W (X), which seems tentative, because we can
split of a factorlV (X'). However, the expectation is w.rd, rather than tq.

In [26] the Weighted Importance Sampling method recently ibeen applied to SRAM vyield
simulations.

3.6 REGRESSION IMPORTANCE SAMPLING

Hesterberg [20] also describes the Regression Importaacglig method. Similar as in the
previous section we havE(X) = Ix(X)W(X) andW (X) = f(X)/g9(X), and with this

Vi = V(X;) andW; = W(X;) = f(X;)/9(X;). Again, Eo[W(X)] = 1 andEy[W;] =
Ey[W (X;)] = 1.

Letv = (Vi,...,Vn)T, w = (Wy,...,Wn)T. Hesterberg [20] considers regression on
(Vi,W;) to obtainZ = ~*W + ¢*, in whichv*, §* are determined by regression. Because
for eachlV; one hadl, [W;] = 1, as optimum value as estimator by the Regression Importance
Sampling Method the value

FMORIS(p) .= Zz(W=1) = ~*+5* (3.54)

is taken. We describe the method in some more details.
Letl1=(1,....,D)T,A=(w 1),x=(y 0)7 andx* = (y* §)7.
We determinex* such thatj|v — Ax||? is minimum. Note tha{ ATv)T = (wlv,NV )T,
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Clearly
x* = (ATA)'ATy
B 1 N —-NW
T wIwN-N2[W]R\ —NW wlw

Ty
V
- 1 Nwlv - N?WV
—NwIvIWV + NwiwV

)

B 1 Awlyv —-WV
L WwTwhN — [W ]2 —%WTVW—I- %WTWV

_ cov(w,Vv) B A
- 52 < 62,V — cov(w,v)W > = < 5* ) ; (3.55)
where
N
6 = —wiw— (W] = W2-(W Z 7). (3.56)
cov(w,v) = —wiv-WV = o Z: Vi - T, 357

The Regression Importance Sampling method takes as estifoap (X)) the optimum value
forZatW =1

FMORIS() . x4 5>
_ v w(w ) (3.58)
Ow
= V-pBW-1) = V+acov(w,v) (3.59)
N
_ % ST+ a(W; - WV, (3.60)
i=1
where
a = i S TZW (3.61)
W2 — (W)2 oW
5 - w (3.62)
Ow

In [20] the following dominant terms in the Expectation ahd ¥ariance are derived

By [FNOUS(0)] = p— By [(W — DV —p) — OV - 1)}, (363)
w
Var, [FMORIS ()] = w (3.64)
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3.7 PARAMETERIZED IMPORTANCE SAMPLING

In [45, 51] a parametet is introduced in the distribution: g(x, §). We may choosé such that
the varianca/arg(FIS(t)) is minimized. According to (3.7) this is equivalent to miriiing
[ ()

() = / I{Kt}mdx = Ejllcpw(z,0)] = Eyl<pw’(z,0)), (3.65)

in whichw(z, ) = f(x,0)/g(x,6). More generally we have

Fw(z, 0 oFw(z, 0
I(k)(‘g) = Ef[I{x<t}%] = Eg[f{x<t}% w(x,@)]. (3.66)

(wherek = 0,1,2,...). For a givend and a given sampling’; according tog(x, §) we may
estimate

N
I® ) ~ NZI{XKt}ig;gk )w(Xi,H). (3.67)

i=1

To minimize I() we determine a stationary poifit such that/(!) (§*) = 0 by applying a
Newton process té(") (4), which results in a sequence of poifitsdetermined by the recursion

gt — gt _ T (9()) /1) (). (3.68)

Here\, € [0, 1] is adamping parameter. If (3.67) is used we may speak of etastic’ Newton
process. Note that in this case the sampling points may loelve &dapted within each Newton
iteration.

In [51] an example is given using a scaled random variatdepy usingg(z) = éf(g), which
givesI(a) = [*_ ‘;{;;‘;gdx Note thatl’(1) = —tf(t) < 0, while I(a) — 400 (a — 00),
which implies that/ (a) has a minimum foll < a < co. However, wherz f(z) — 0if z — oo
we also have™>(t) — 0if a — oc.

A similar remark can be made when one applies shifting orrsstaéion, for instance by using
g(z) = f(z + ¢). Then the variance is given b§(c) = [*__ fﬁ(ﬁ) dz, which also has a
minimum for0 < ¢ < oo.

EXAMPLE: SHIFTED AND SCALED NORMAL DISTRIBUTION

This idea we can apply to the examples in Section 3.3. fLet N(u,0) andg(61,62) =
N(u — 010,020). Henced = (01,02)T = (T/o, k)T represent &'/o-shift and ax-standard
deviation on ther-scale of thef-distribution.

We define
ol oI
T _ _
F6) = VI (891’ 005
ow(x, 0y,6>) ow(x,61,62)

The Newton process for finding a root B{¢) = 0 is defined by

Y(OMYATTD = _p™)  inwhich Y(H):%—Z(H), (3.70)

gt = g 4\ ALFD (3.71)
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in which \,, € [0,1] is a damping parameter. Let

HIZH($>M70): x;N>

H2 :H(x,,u—ela,ega) =

T — ,u+910
Os0

1 1
E| = E(z,p,0) = eXP[—§ H*(z,p,0)] = eXP[—§H12]>
1 1
Ey = Ey(x,p1,0,01,02) := eXP[§ H?(z, 11 — 610,050)] = eXp[§H22]>
then

8H2 1 E?Hg . 1’—,&4-910’ . H2

96, 6y 96,  63c 6y
OB, By Hy 0By By Hj
9001 0y 1 90y Oy

We consider, o as fixed. Fotw(z,01,0s) := 03 Ey(x, u,0) Ex(z, p,o0,01,02) we derive

Oow E?Eg

— = 6 F = F; Ey H 3.72
90, 2 51 5p; 1 Lo Ha, ( )
ow 0F, 2
— = E FE 0y E = FEiE)|1-H 3.73
26, 1 B2 + 6o 50, 1 Es [ 5] (3.73)
and
Pu _ pop 4 H2) (3.74)
89% - 1 L2 2 027 .
0w 1
= —E| EyHy[1+H? — 3.75
50,00, 1 B Hay [1+ Hj] oy’ ( )
O*w 2 9 1
The Hessian matrix ofy equals
1 1 —H.
21 1 2
By By [L+ Hy)] o [_H2 2 } (3.77)

of which the last matrix has non-negative real eigenvahies= 0 at eigenvectofdy, 6,)” =
(Hay, )T andXy = 1+ H2 at(61,62)" = (1, —H,)T, respectively. This implies that, fés > 0,
the Hessian matrix afy is non-negative definite (despite a Gershgorin circle [4484] around
0 for small vales offf,) and thus the Hessian matrix 6f0). We note that

d
0))dx

0) [1+ H3(0)]dx
) [1+ H3(0)]dz

8]

BT 101y E1 F2(0) Ha(0) B EA0)H0

= - )
FO) = |: EfI{z<ty E1E2(6)(1 —H%(Q))] :| - |: f ElEQ( )1 — HE( :| (3.78)
fjoo E} E2(0) [1 + HZ(0)]dx _f E? Bo(0) H

1 2(
e = @[—ItmE%Exe)sz) L+ B3Oz [ E} Ba(6) H3(0

}3 79)

in which we dropped all parameters other titas (6, 02)T. Note thatFy, F2 and H, depend
on the integration variable.
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The optimum point* depends on and thus one may loéko %0*(15) when increasing and
adaptively upgradé™.

The integrals in (3.78)-(3.79) are not treated well by Mathéca fort < 0. Hence additional
numerical procedures are needed to calculate them adgurate

Note that: - [F fewydu = [T fo(z,uw)du+ f(z,z).
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Section 4

Adaptive Important Sampling for Tall
Probabilities of Costly Functions

4.1 ADAPTIVE IMPORTANCE SAMPLING

The efficiency of Importance Sampling depends on how theilolision g(z) can be chosen, or
can be constructed. In [27] a non-parametric adaptive ilapoe sampling (NAIS) procedure
is described, that needs the known distribution funcfiohe distributiong is improved in Al-
gorithm 1. A refinement can be to re-use also the old results get better estimates pf (X)

Algorithm 1 NAIS:Non-parametric Adaptive Importance Sampling [27]
Lot x| <1

Step L:Let K(x) =4 2 : be a rectangular kernel function.
0 otherwise
Step 2:Let h > 0 be a smoothing parameter.
Step 3: Initialize a simulation run to collect rare event sample$i = 1,...,k). LetY =
{yi,-- o}k

Step 4: Define an estimate of the optimal sampling distributidm) by the "kernel function
estimation methody(z) = #15 Sy TE ().

Step 5: Generate events using the distributigfx). Apply Importance Sampling (3.4) with
this. Save the rare evengs(i = 1, ..., k).

Step6:LetY =Y U{y],...,yu}

Step 7: Go to Step 4.

using the updated expressiongof

In the following subsections we develop an alternative mwetor finding an optimuny. The
method naturally locates "bumps”, maintains a distancevéeh sample points and is adaptive
in the sence that when the levels are increased the distribfuinctiong is easily adapted. This
is especially appreciated when constructing a cumulatistilolition function. The method is
intelligent in that it learns from internal Monte Carloilevaluations and adaptively adapts
The method can be enhanced to also deal with more functiah®arifer a user-defined thresh-
old for finding an optimum distributiog.
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4.2 STATEMENT OF THE PROBLEM

Let X be anR?-valued random variable with probability distributidgh From now on, we will
assume thak is a multivariate Gaussian variable with covariance mafriand density

1 1
p(r) = ——————exp {——:UTE_lx}
27 det (%) 2

even though this is not important for most of the consideretibelow. In the sequel, we will
consider the problem of exploring the distribution of taibpabilitiesp, = P(h(X) > «) for

a given function» : RY — R (exploring distribution of tail probabilitieg, = P(h(X) < )

is done similarly). More precisely, we want to explore thattf the distribution for very large
values ofa > «ag, meaning that the probabilities, are small and thus difficult to estimate
using simulations based on naive Monte-Carlo methods. eftwer, on the one hand we have
to estimatep,, for different values oty, and on the other hand, we are forced to use importance
sampling algorithms.

However, there is one additional feature which gives thélpra a somewhat different flavor.
Roughly speaking, we introduce the teawstly functiorfor a functions : R — R for which
it takes quite some effort to compute the valyés) for a givenz € R%. We will leave this
notion vague, not attempting to make it precise for instanderms of runtime. Even more, we
think of this term in a relative way in the sense that the datan of the value ofi(z) is the
limiting factor in every Monte-Carlo simulation which ainas estimating the tail probabilities
above. Thus, the most important reason for keeping the nuoflmulation runs small is that
it takes so much time to decide for a givere R¢ whetherh(z) > o actually holds.

In the sequel, we will think of the functioh as being unknown meaning that we have no
prior information about the location of the super-levebs®t := {x | h(z) > «} and therefore
in the beginning no indication how to choose the importareeming distribution. That means,
the importance sampling has to adaptivein the sense that finding a sampling distribution is
part of the algorithm.

From the remark at the end of Section 3.2, it is rather clear we can not expect any
miracles of an importance sampling algorithm. The funci®ulifficult to compute and this
will remain so. Thus, in one way or another we will haveexplore the function and this
will inevitably be costly. The reason why we believe that vem @ain something — and also
the basic idea underlying the algorithm we propose — is thplsi observation that the super
- level sets decrease monotonously, i€.> « impliesS,, C S, and that we may therefore
base the exploration of the super - level §gt on the prior knowledge already obtained by the
exploration ofS,,. We will make that precise in the sequel.

Remark 5. The assumption that no prior knowledge abéut available is a worst case sce-
nario. Every additional piece of information abolitmay lead to variants of the algorithm
with improved efficiency. However, we believe that the bidsia to use the monotonicity of the
super-level sets will remain present.

4.3 THE IDEA OF THE ALGORITHM

From the remark about the (theoreticafjitimal densityat the end of Section 3.2, to minimize
the variance and hence the necessary humber of simulatisnwe will strive for an algorithm
that to some extend approximates itheal density(3.30). We are trying to reach this goal by an
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approximation with mixtures of Gaussian bell shaped cucezdred around somexploration
points Thus, we will use some kind @idapted importance samplirognsisting of the following
two steps:

(i) A preprocessing stewhich corresponds to the exploration mentioned above. Food
erate (meaning not too large) value@fwe construct an algorithm to find points in the
sample spac®? which cover in a sufficient way the s > a}. The collection of these
points is calledset of exploration pointsThis initial step will only be carried out once.

(i) Then, theproper importance sampling step carried out for different values af which
are ordered in an increasing way. The purpose of this stefokivoOn the one hand,
the tail probability is estimated on the basis of an impar¢éasampling distribution given
by the mixture of Gaussian distributions centered at thdéoeation points. On the other
hand, in the course of sampling, the set of exploration panili be constantly modified
in favor of points wheré attains larger values.

As said above, the basic observation is the monotonicithefsuper - level sets which we
are using to save running time by modifying the set of expionapoints fora’ > o while we
are estimating the tail probability fer at the same time.

Remark 6. The use of Gaussian bell shaped curves for the approximafitreideal densityis
completely arbitrary and mainly due to the fact that the dgnsith respect to the true distribu-
tion of X can be easily calculated. More sophisticated choices assipte such as Gaussians
with different variances or uniform distributions aroundlls of suitable diameters around the
exploration points in order to look to tail®(h(x) > a).

4.4 THE PREPROCESSING STEP

The exploratory preprocessing step mentioned above isdetkto gain some first information
about the tail probabilities gf(X), in particular some knowledge about points whiie large.
The analysis depends on the lewethosen. Basically, we want to construct an algorithm which
on the one hand finds exploration pointsSp but on the other hand also provides us with a
criterion to stop the preprocessing when the set of exptoradoints is sufficiently large.

To choose the exploration points, we introduce three paemthat control the preprocess-
ing, namely:

(i) Theexploration widthe > 0. The exploration width makes sure that the minimum distance
between two exploration points is larger than- 0 to control the number of exploration
points.

(i) Theexploration gainE > 1. The exploration gain is a threshold parameter for the numbe
of simulation runs allowed without changing the set of erglion points. That means,
the preprocessing step is terminated after the set of exarpoints has not changed in
a suitable numbeFE of consecutive simulation steps.

(i) An outback thresholdconsisting of a fixed functiom : R — R and someB > 0.
The outback threshold helps to avoid to explore parts of tipeis- level set where the
probability thatX actually takes values in that part is orders of magnitudellsmian
P(h > «). Itis imposed by discarding every sampled valu¢ 75 := {z|r(z) < B}.
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This requires some crude lower bound of the order of mageiwfdy,. The setFp
is called thefeasibility spaceof the sampling method, the introduction of the outback
threshold thus reduces the explorationSgfto the exploration o8, N Fp.

Remark 7. (i) In the one - dimensional testbed below, we simply hgwg := |z|.

(i) The proper choice of the parameters is absolutely autor the performance of the algo-
rithm. To derive some criteria how to do that in an appropeiatay is a difficult problem which
so far can only be approached by extensive simulation stughich are beyond the scope of
this short description.

To describe the exploration of the super - level sets in thesmof the process, we have
to keep track of the barycentres and the weights attachduketdifferent Gaussian bell shaped
curves. This requires some bookkeeping for which we inttedbie notion oéxploration status

The exploration status

Ea(n) = (O .. 00 [w{™ . wi |heM),.. . nem))

mn

after then-th exploration step is a collection of< m,, < n exploration points
© ", ... elm),

O, € R%, their values
(h(O), ..., h(OW)),

mn

which are calculated and stored during the processiandssociated weights
(n)

(wy ,...,wfﬁi),

Wherewgn) > 1, wln) 4+ wfﬁ)b = n (thusm, < n; m, indicates the status length: it
also reflects the number of local maximums observed sofaewf”) will count the number of
times the poinl@§"> was survivor in comparison with new poins It also indicates the width

or size of the area around the local bump. Note ﬂﬁ%\’t = w§")/n may serve as a probability
density that allows to sample around extreme points.
The exploration status is obtained as follows:

1. Forn = 1: The first exploration step is to sample some pdifdr the distribution ofX
such that.(f) > o andrf) < B. This having done, the exploration status will be

Ea(l) == (O := 0| wlY) = 1| n(h)).

We setm; = 1. We also seti,changed = 0 (the number of times that the status length
does not change).

2. In stepn + 1, we wait again until we sample sorfiec R? with h(#) > «. A way to speed
up this adaptively is decribed in the next subsection 4.%nT ke consider the following
alternative:

(@) In casenin [|§—©!"|| > ¢, while alsor(¢) < B (a feasible point), we add the point
0 to the exploration status, i.e. we sef, 41 = my, + 1, O0") = 0, wiitl) =1

and obtain fo€, (n + 1):
©",....0 g™ . wi 11ne™), ... hel), ne)).

) mn

Thus@,(:“) = o, w,(;f“) = wl, for k' # k. We resetiynehanged = 0-
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(b) In casemin ||§ — @E") | < e, we look for the exploration point which is closesttto
i.e. Iet@lg") be this point. Now we have two alternatives:

e reject 6: If r(6) > B (point ¢ is unfeasible), oi(0\™) > h(#) (old point
@,(f") is better therd), the exploration status remains unchangeg,.anged =

Nunchanged + 1) €XCeEpt that novww,(f”“) = w,g") + 1 is increased by oned(}

is a survivor). Thu®"Y = o7, (for all '), w!" ™) = wn, for k' # k. Set
Mp+1 = My

e acceptd: If n(©\") < h(6), thend will replace ©T and will inherit the qual-
ifications of the last in the exploration status. Thus théustéength remains
unchanged except the modificatie ") = 6, (O™ = h(6), w(™™ =
w™ +1andel") = e, wit — wn, for K # k. Setmy, 41 = my,. Also
in this case we decide to increasg,changed = Munchanged + 1.

3. Thestopping criterion We will stop the exploration if the vectc(l@gn), . ,@ﬁﬁ)

7)) of
exploration points status remains constantf@lchanged > E.

4.5 THE PROPER IMPORTANCE SAMPLING STEP

After the exploration step fotv > 0, we have a vecto(@&"), cel @52‘3) of exploration points

together with an associated weight vec([m("), - ,w%). These exploration points are con-
structed to cover the super - level gktin a way that is sufficiently accurate for the subsequent
important sampling from the mixture distribution. The nuiret distribution associated to a given
exploration status is obtained by centering the standamthaadistribution given by the density

p above around the exploration poin&’én), weighting them with the valugs; = =t (note that
> p; = 1). Thus, our new sampling distribution is given by the migtdensity

p @ __ (4.1)

where the ratio can be evaluated by expanding the square exffonent of the normal distribu-
tion. The approximation of theptimal sampling densit{8.30) aftern exploration runs is then
given by

7 — ~ L ) Tg—15(n) Ty—1g(™n)
Wn(x) = I{h(x)>a} Z p; ~exp {iez(k) by Gz(k) —x X ez(k)}
k=1

[we assumed the sam¥matrix in bothp densities], wheré(k) indicates a subset df,..., n
(only m,, indices will be used).

As already said above, itis natural to expect that it is méreient to look for exploration points
of S/, & > «, on the basis of the information already given by the expionastatust, (n)
for « aftern exploration runs rather than to use the same exploratioorittigh again. Thus,
the sampling isadaptivein the sense that the exploration status and therefore ladsmixture
distribution (4.1) that we use for the sampling, may chamgieé course of the procedure.

Due to the fact that the super-level sets decrease, we maywaurd to remove exploration points
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from &, (n). There are certainly many different reasonable ways toalo We use the following
approach where we sample in the first place from a distributibich may be more concentrated
around its barycentre than those appearing in the mixtsteitolition.

We think of £, (n) as theseed status
e Foreact®™, letw = w™. We assume that(©") is known.

— We samplev x E times from a normal variable as follows:

(a) Draw a valug from aN(@E"), ¥')-variable where>’ = a¥ anda < 1. Check
feasibility (f(#) < B) and evaluaté(0).

(b) If »(#) < B we have three alternatives:
o if 1(8) > n(O'™) set for the next dra®™ := 6, h(O\™) := () and
wﬁ") = wﬁ") + 1 and proceed to step (a),

o if o/ < h(h) < h(@ﬁ”)) just change the status m§"> = w§"> + 1 and
proceed to step (a),
e if &/ > h(6) just proceed with step (a),
(c) Stop when we have drawn x E times.

— If after the simulations for drawing &, we haveh(@gn)) > o, then we transfer
0™, n(©™) andw!™ to the new exploration status. Otherwise, the p@fit’ is

)

no longer considered

Collecting location, weights and function value from psimtith h(@l(")) > o/, we obtain the
new exploration status, (n') wheren’ is the sum of the final weights of all exploration points
which were not removed in step (c). Thus, the new exploragiatus consists at most of as many
exploration points as ié, (n) with different weights.

4.6 DISCUSSION AND OUTLOOK

The basic idea of the proposed adaptive importance samalgagithm can be found at many
places in the literature (f.i. [27]). Due to our assumpti@®ut the structure of the problem,
we propose an adaptive approach to construct the explorptimts by a rather time consuming
exploration stepwvhich has to be performed only once. The hope is that thidddéagage is
outbalanced by the flexibility that is now gained by a consiikee improvement in the sampling
step and in the exploration of the super-level&gfor increasing values af.

The way to achieve this is by no means unique. Different sengpulistributions could be
used, different ways to explore the function, and so on. Bt all, it is not expected that
there is one optimal way to resolve the problem stated abdaeawniraculous gain in sampling
efficiency. At one point one will always be confronted witle thact that calculating the function
is costly. This holds no longer true if some of our basic agstions about the problem do not
hold any longer, for instance if there appears a way to calledl in a fast way. Then we might
have to think about some completely different algorithm.

Three further refinements one could think of are:

e Adaption of the variance for the sampling around a givenagion point using smaller
variances for points with large weights.
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e Introduction of amutback thresholdlso in the step, where the super-level setfor- «
is explored. That would help to avoid rather improbable galforé (cf. the problems in
sampling aroutback-phantontelow).

e An adaptive approach also for the preprocessing step whdeg s always sampled from
the raw distribution ofX.

The performance of the scheme depends heavily on the qudlitye exploration in the
preprocessing step and hence on the choice of the threkcpatameters. However, this and
therefore the performance of the whole adapted importaacglkng algorithm is notoriously
difficult to evaluate on a theoretical base. To get some tiotuihow to choose the correct
parameter values for a given application thus requiresnsite simulation studies. It seems to
be reasonable to carry out the first exploration step as ateyias possible. For that, the starting
value fora: should be moderate (such thatis not too small) and the exploration gdihshould
be chosen rather large (such that there are many explonaiors in this first approach to the
function). But we also have to be aware of the fact that therétgm will perform better for
smooth functiong and may not work at all if: is very rough, for instance if there are a number
of small spikes. Another problem is to choose the step sizenvihicreasing the values for.

If the difference between and the next value’ is too large, the removal of exploration points
described above is likely to become unreliable. The probdémrhoosing the step size seems
therefore similar to the problem to find a suitable coolingestule in simulated annealing. All
this has to be investigated.

Another problem is the reliability of the results producedtie algorithm. For the impor-
tance sampling from the mixing distribution, we can onlyeghounds on the number of runs
necessary for a given accuracy on the basis of the (unknoswrignce of the sampling variable.
It might therefore be necessary to wsmvergence diagnosti¢sf. for instance the survey [10])
to find suitable stopping criteria for the actual importasaepling.

4.7 A1-D-TESTBED

Finally, we will consider some simple simulations of thealthm in a one-dimensional testbed.
Note that this should be seen just as some first approach tordgrate that the algorithm ba-
sically works. Even though the situation in one dimensioceainly simpler than in general,
we think that this is sufficient for a first judgement since fleeformance of MC - methods is
commonly believed not to depend too much on the dimengiof the sample space (cf. for
instance the paragraph on Monte - Carlo methods in [53], (.30

We investigate the algorithm (see Appendix B for the soummel for real functions of a single
standard normal random variablé. Testbeds are real functiols: R — R consisting of
mixtures of three different types representing three dhffie qualitative ways how large values
of f may occur, namely:

(i) The bump-phantome;(z) := a;(1 — ((x — z;)/b;)?), a;,b; > 0, z; € R: Small con-
tributions to the tail probabilitiep, arise from those parts of a function,dfis slightly
smaller tham:. But bump phantoms are also important to test the explorgtant of the
algorithm. Ifa < a is changed to some& > «, all exploration points iif,, which explore
this particular bump should be removed while proceeding,to
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Figure 4.1: The “bump”-, “spike”- and “outback’-phantoms

(i) The spike-phantom ¢y (x) := (x_“—ufng ap > 0, z; € R: This phantom represents
singularities where arbitrary large values occur. In drepthe levela, the exploration

should yield less and less points which come closer andrdogbke actual location of the
spike.

(i) The outback-phantomy;(z) := aj(z — z;)?, a > 0, z; € R: This phantom represents
large function values which are located close to the outthshold and are therefore
explored with only a small probability. Those parts of theeu- level set caused by
outback - phantoms seem difficult to explore and requireiqdatrr large values for the
exploration gain parametds in order to be discovered.

To test for possible interactive effects between thesecligpes we can combine these basic
phantoms to more general testbed functibrigven by

h(z) := max{p1 (), ..., &1(x), x1(X), ..., Xm (2), Y1(x), ..., ¥y (x), 0}

but this is only considered briefly at the end of this first aggh. We choose theutback
thresholdof the feasibility set defined by(z) = |x| to be B = 8.5 since for a standard normal
variable, we have

P(|X| >85)=2x ®(—85) =19 x 107'".

To judge about the performance of the algorithm, we caleulast some true tail probabili-
ties for the three phantoms. Note that these probabilitiese®actly calculated using tHe
implementation of the distribution function of a standaotmal variable. That we can do this
was the major reason to restrict ourselves to tests in dimease.

¢ In the first case, thbump phantomare given by
pa(r) =100(1 — A(x — 4)?),

with for A valuesA; = 10,100,1000 (labelling the rows) and the table displays the
probabilitiesP;; = P(¢4, > «;) with o; = 5,10, 15 (columns).

A, Py = P(0a, > ;)

a1=5 a2=10 a3=15
A= 10| 1.031167e-04 9.925983e-05 9.539331e-05
As= 100 | 2.671111e-05 2.596663e-05 2.520389e-05
Asz= 1000 | 8.269453e-06 8.047889e-06 7.820166e-06
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[P, is made boldface for future reference]

e For thespike phantoms

1

N
we determine the probabilitie;; = P(¢4, > «;) for A; = 2,5,7 anda; = 5,10, 15.
A; Py = P((bAi > )
a1=5 042210 a3=15
A= 2| 5.303881e-02 3.583993e-02 2.880499e-02
A= 5 2.621418e-06 1.355245e-06 9.863961e-07
As= 7| 2.818901e-11 1.151590e-11| 7.625567e-12

[P, 2 is made boldface for future reference]

e Finally, for theoutback-phantoms

xa(r) = Az?
we determine the probabilitieB;; = P(x4, > «;) for A; = 0.75,0.5,0.25 ando; =
5,10, 15.
A Pij = P(¢a;, > aj)
a1=5 a=10 a3=15
A= 0.75| 9.823275e-03 2.607296e-04 7.744216e-06
Ap= 0.50| 1.565402e-03 7.744216e-06 4.320463e-08
Az= 0.25| 7.744216e-06 2.539629e-10 9.485738e-15

[P+ is made boldface for future reference] Compared to thesetéiliprobabilities, the
outback threshold is properly chosen.

We choose now one particular case for each example to estirail probability by our algo-
rithm (see Appendix B for the functions EFS, WS and “c”). Bleaote that the EFS-step might
give an output “NULL” which means that in that case, the alphlie was chosen too small in
the exploration step in relation to the alpha-value in EFS.

1. We choose the bump phantom given by
ba(x) =100(1 — A(z — 4)?),

with for A = 100. We are interested in obtaining = P(¢4 > «) for o = 10. Note
that this corresponds t8 = P, = 2.596663e — 05. We do this adaptively in two steps.
First we determine the exploration status for the levet 2 and then increase the level to

o = 10.
e The first exploration step (with level = 2) yields the exploration statu#, w).

> status
[1] 3.990454 5.000000

e The two subsequent steps with new lewet 10 and previous weighty = 5 yield
the updated exploration status
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> EFS(status,10,5)
[1] 3.995818 6.000000

e To discuss the performance of the algorithm, we now aim tones¢ the0.95-
guantile of the absolute difference between the true piitityabnd the simulation
for importance sampling wittiV;g = 40000 runs on the basis d0 subsequent
simulations. Steps:

— CallWS(0, w, a, Nyg).
— Determine relative error when compareditc= P55 = 2.596663¢ — 05.

> out<-c();
for(k in 1:20){out[k]<-WS(3.995818,6,10,40000)};
dif <- abs((out - 0.0000259)/0.0000259);
print(dif[0.95 *20])
[1] 0.001446600

We thus obtain that with probability.95, the relative differenc® is of order10—3
after Nyg = 40000 importance sampling steps. The theoretical value for naive
Monte Carlo from the Cramér bound is given by approximafély- = 2.3 x 10'".

Thus, the sampling point found during the process are reasonably close to the single
bump atz = 4 and the tail probability is reasonably close to the tpue 2.597 x 10~°
from the exact calculation above.

2. For thespike phantoms
1

(x —A)

we takeA = 5. We are interested in obtaining = P(¢4 > «) for « = 10. Note that
this corresponds t& = P,y = 1.355245¢ — 06. We do this again adaptively in two steps.
First we determine the exploration status for the levet 2 and £ = 5, then increase the
level toa/ = 10.

Ya(z) =

e The first exploration step (with level = 2) yields the exploration statug, w).

> status
[1] 4.775324 5.000000

e The adaptive step with new level = 10 and previous weightv = 5 yield the
updated exploration status

> EFS(status,10,5)
[1] 5.259688 6.000000

¢ In order to consider the performance of the algorithm, wirege thed.95-quantile
of the absolute difference between the true probabilitythedsimulation for impor-
tance sampling withiV;s = 40000 runs on the basis d&f0 subsequent simulations.
Steps:
— Apply the weighted sampling W8, w, a, N1g).
— Determine relative error when comparediRic= P, = 1.355245¢ — 06.

(© TUE Eindhoven University of Technology 2009 47



TUE-CASA-2009

48

> out<-c();
for(k in 1:20){out[k]<-WS(5.259688,6,10,40000)};
dif <- abs((out - 0.000001355)/0.000001355);
print(dif[0.95 *20])

[1] 0.004649013

This yields a0.95-quantile for the relative error of ordéd—3. The required num-
ber of steps for ‘naive’ (normal MC) sampling necessary toieae a comparative
accuracy is of the same order of magnitude as in the case blithe.

Again, the sampling point8 found during the process are reasonably close to the single
spike atz = 5 and the tail probability is reasonably close to the tpue 1.355 x 1076
from the exact calculation above.

. For theoutback phantom

xa(z) = Ax?

we takeA = 0.5. We are interested in obtaining = P(¢4 > «) for « = 10. Note that
this corresponds t& = P, = 7.744216e¢ — 06. We do this again adaptively in two steps.
First we determine the exploration status for the levet 2 andE' = 5, then increase the
level toa/ = 10.

e The first exploration step (with level = 2 andn = 3) yields the exploration status
(917 927 937 wi, w2, UJ3).

> status
[1] 3.943461 4.468545 -3.795828 7.000000 1.000000
7.000000

e Next, increasing the exploration level to= 10 and stopping factoZ = 5 now
yields for the exploration-from-seed functionality

EFS(status,10,5)
[1] 9.667335 4.880202 -6.971651 35.000000 4.000000
33.000000

¢ Here the results differ largely frotR = P,o = 7.744216e—06. Due to the problems
with the outback function we only consider single simula@arying the respective
exploration points.
We apply the weighted sampling W8(61, 62, 03), c(w1,ws, ws), a, Nig)

> WS(c(9.667335,4.880202,-6.971651),c(35,4,33),10,50 00)
[1] 1.808273e-06

> WS(c(4.880202,-6.971651),c(4,33),10,5000)

[1] 3.819555e-06

> WS(c(4.880202),c(4),10,5000)

[1] 3.595187e-06

which shows that a size restriction would be good for the@gpion-from-seed step
as well. In total, we see that the sampling for these outbd@nimms does not
perform as good as for the others.
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The true probabilityP = P, = 7.74 x 10~% deviates considerably from the estimate
but is at least of the true order of magnitude. Probably theetlsampling points do
not sufficiently coverS, and one should use a larger value for the exploration gain to
overcome this difficulty. Clearly that will increase the dtion of the preprocessing step
and we have to keep an eye on that.

4. Finally, for a combined functioh(x) = Y a—_4(z) + xa=0.5(x) + ¢a=100(7)
h <-function(t){x<-1/(t+4)"2+0.5 *{72+100 *(1-100 = (t-4)°2)},

we get setting the exploration point distarsce: 2 and the stopping factar = 200 in the
program macr&cXPLORATION

e The first exploration step yields the exploration stgfis 6, w1, w2)

> status
[1]  4.000018 -3.999809 397.000000  3.000000

e By the exploration-from-seed this is upgarded to

> EFS(status,10,5)
[1] 4.000235 -3.999809 702.000000 3.000000

e The weighted sampling WS:(61, 62), c¢(w1,ws), a, Nig)

> WS(c(4.000235,-3.999809),¢(702,3),10, ...)
[1] 2.633854e-05

We observed that it is important to use a very large valuegi@stopping factoFE in order
to find all different places with large values bfin particular if the probabilities for these
regions differ by orders of magnitude.
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Section 5

Prototype procedure Importance
Sampling

Static RAM (SRAM) performance can be described by evalgatisponse functions like Static
Noise Margin, Write Margin, Read Current, and Leakage CQuras function of several param-
eters. Batches of wafers of chips and a series of dies on eafeln (@ach die containing SRAMs
are subject to process variations. One considers intgordeess variations (that are correlated)
and intra-die ones (that are stochastic). Variabilitynsiting SRAM performance: one has to be
able to distinguish between a writable (unstable) memoltyarel readability without flipping
situation (stable). Due to technology scaling one has tbdith an increased number of bits
and an increased process spread. Variability has alwaysdreamportant issue for SRAM. In
the past an additional design margin was taken into accoterigure the memory would operate
even though the distributions were approximated by somagotation technique (like we will
check in Section 5.3). Nowadays it is not possible anymorgseadditional design margins if
one wants to continue technology scaling. The increasedoauf bits in combination with
the increased variability has left very little margin. Wan@ven say that variability has become
critical for SRAM performance. Therefore an accurate estiiom of the tails of the distributions
has become important.

Each SRAM memory is composed of several transistors. The s@msistors are used for read-
ing and writing. Hence, important input parameters for tbgponse functions are transistor
parameters liké7 (threshold voltage) and (current amplification factor).

In this section we describe a prototype procedure used tty &amportance Sampling. This
prototype was used in simulating results presented in thtedoming Section 6. The actual
code can be found in Appendix A. As output quantity we consttie Static Noise Margin
SNM(Vr1,...,Vre), where each of the input parametéfs; is taken according to some den-
sity function. The Static Noise Margin function does notwhmnormal density distribution.
Hence we will not assume this in the current Section. NoteSeation 6 will a way to circum-
vent this for this particular function.

The notions of f-distribution for the original distribution in the parareetspace and of-
distribution of the one used by importance sampling will imsilar as used earlier in Section 3.
In Section 5.1 we will sample th&z ; from a broad uniform distribution, while in Section 5.2
we will sample according to the normal distributii ; ~ N(1), ¢7)) (i.e. thef-distribution)
as for standard Monte Carlo. Section 5.3 will demonstrad ttie “Extrapolated Monte Carlo”
approach erroneously under-estimates the cumulativatddoaction of this particular SNM
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distribution.

For calculating the Static Noise Margin as postprocessagditfy on the results of a circuit sim-
ulation we refer to [9, 14].

We refer to Appendix A for the Matlab code that is associatét this section.

5.1 IMPORTANCE SAMPLING MONTE CARLO

To applylmportance Sampling M@e sample thé/r ; by a broad uniform distributionyz ; ~
Unif (u, ko), with & = 6 (i.e. theg-distribution). In this way we gelN sampled tuples*) =
(V}?....,V}?), k = 1,...N = 10°. Note that this is much less than the'?> samples
mentioned at (2.36).

LetMU) = maxk(VT(?) andm0) = mlnk(VT(k))
First we estimate for eacjrth parametep,) by 4l9) = meank(V}?) ando@) by 60) =

(M) — 40 /. From this we define the individual approximative densities

)2
s@ 7, (5.1
With this the multi-parameter distributiofiis obtained

6
fFV) = f(Vra... . Vee) = [ fi(Vry). (5.2)
j=1

Next, with the parameter range len@f) = M) —m() we estimate each (uniforng}-density
distribution by

L if zemW M)
) — R ’
gj(x) { 87 e (5.3)
With this the multi-parameter distributiopnbecomes
6
9(v) =9(Vra.... . Virg) = [ [ 95 (Very)- (5.4)
j=1

The f /g ratio now become&(v) = ¢(Vr1....,Vrg) = ?:1 ﬁj%ﬁj?

For the cumulative probability functiomdfsny (X) = P(SNM(v) < X) we have to determine

N
1
cdfsnu(X) = PSNM(v) < X) = = > Tsnuvivy<x ¢(v). (5.5)
k

To approximate the cumulative probability function we detime a histogram. Let

Msxm = maxg(SNM(V. .. V), (5.6)

)

meny = ming(SNM(V. ... V). (5.7)

Then the range length of the values of the output functioeimdd byRsnv = Mgnm —msNM.
Let Xgnm [’L] = mgNM + (Z — 1) * RSNM/S be thei-th bin bound, where = 250 (bln SiZE) and
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i =1,...s+ 1. Hence the-th bin is defined by Xgnm|[é], Xsnm[i + 1]], ¢ = 2, ... s, while the
first interval just is the single poiftXgsnyi[1]}. Define the bin probability function by

{ P(XsnMm € (XSNM[i],XSNM[i + 1]]) if i>1

P(Xsnm = Xsnm[1]) ifi=1 " (5.8)

fo1smc[d]

in which P(Xgnum € (Xsnmli], Xsnm|i + 1]]) is determined by determining the relative occur-
rence of the outcomes of the SNM function in this intervalighieed by thef /g ratio. Now the
cumulative probability function can be approximated by

Pismc(X§h < Xonmll) = Y forsmc[m]. (5.9)
m=1

We make several remarks

¢ After ordering the SNM-values in increasing order the aacyrof the cumulative proba-
bility function can be improved by applying weighted Trapielal Rule quadrature of
on successive ordered outcom’éggM < ng\)rM We indicate the corresponding samples
k by k, andk,, respectively. Then

b a
Xsn =~ Xt

2 Rsnm

In doing this we assumed to have filtered out multiple occures and to have incorpo-
rated their effect in the chancé¥) at the right-hand side of (5.10). Note that

1 N

P(Xsnm = Xgam@) = N ZISNM(v(k):SNM(v(a)) $(vM) (5.11)
k

[P(Xsnut = Xéang) + P(Xsnar = X)) (5.10)

(note that these-values may be different for differetassociated with function results
with the same&NM (v()) value. There may be even very large variations.

¢ When dealing with parameters in a multidimensional paransgiace the sensitivity with
respect to the parameters may be taken into account.

5.2 STANDARD MONTE CARLO

Similarly to the above, for &tandard Monte Carlave look at the output functioligiy; =
SNM(Vz1...., V1), where theVr ; are sampled according to a Normal distributigp; ~

N(u, o), resulting in tuplesﬂN/T(ﬁ). e VT(%)), k=1,...N =10°. Let

Msxv = maxp(SNM(VE. .. V), (5.12)

msnv = ming(SNM(V. .. V). (5.13)
Then the range length of the values is definedRayn = Msxu — s Let Xsnw[i] =
mgnMm + (2 — 1) * Rgnm/s again be the-th bin bound, wheres = 250 (bin size) andi =
1,...(s + 1). The bin probability function is defined similarly as in (b#8y sampling the
relative occurrences of the output function in this intéii. actually weighted by th¢ /g
ratio equal to 1). The cumulative probability function igided by a histogram (bin size equal
to the one used as in the Importance Sampling case).
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5.3 EXTRAPOLATED MONTE CARLO

For Extrapolated MGwve boldly assume that the output density functfigry(s) is normal. We
estimateugny andogny by

fsNM =~ meank(SNM(f/jgﬁ)....,TN/T(%))), (5.14)
Gsnu A~ stdp(SNM(VLY. ... 729)). (5.15)

Let Xoum[i] = mgnm + (i — &) * Renu/s be thei-th bin center, where = 250 (bin size) and
i =1,...s. The bin probability function is defined by

. 1 1 1 Xsnm ['L] - ﬂSNM 2
fb,EXMc ] = —F= exXpl—5 =
] V21 OSNM [ 2 OSNM )y

from which again a cumulative probability function can bewk. In this case the last function
could also have been determined exactly.

x Rsnm/s, (5.16)

5.4 COMPARISONS

In Figure 5.1 the cumulative probability functions (CPFb}jained by MC using Importance
Sampling, by Standard MC, and by ‘Extrapolated MC’ are show@iearly the CPF of the
‘Extrapolated MC’ deviates already quite soon from the ottve CPFs due to the non-normality
of the distribution of the output function SNM. There evea onsequent under estimation. The
CPFs of the Normal MC and of the Importance Sampling MC araistent forl0—> < P(z <
X). Clearly, Importance Sampling MC is able to continue to gvelow 10~1°.
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Comparison of Cumulative Probabilities
10 ! ' ' ! ! !

— T T
- X=SNM(V],...V})

10'/""—
: : Y - 2N :

10 .
P(x<X)

10°°F :

10° -
Importance Sampling MC
Normal MC

————— Extrap. MC
10_20 I I I 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

X

Figure 5.1: Cumulative probability functions by MC usingdartance Sampling, by Standard
MC, and by ‘Extrapolated MC’
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Figure 5.2: Histograms of SNM usingy-s by Importance Sampling (left), and by Normal
distribution (right)’
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Section 6

Importance Sampling Monte Carlo
Simulations for Accurate Estimation of
SRAM Yield

6.1 ABSTRACT

Lvariability is an important aspect of SRAM cell design. Eaél probabilities ofP,; < 10710
have to be estimated through statistical simulations. Aateustatistical techniques such as Im-
portance Sampling Monte Carlo simulations are essentiattarately and efficiently estimate
such low failure probabilities. This chapter shows thanapé form of Importance Sampling is
sufficient for simulatingPe;; < 1070 for the SRAM parameterStatic Noise Margir(SNM),
Write Margin (WM) and Read Current For the SNM, a new simple technique is proposed that
allows extrapolating the SNM distribution based on a limhiteimber of trials. For SRAMotal
Leakage Currentsit suffices to take the averages into account for designiRgM cells and
modules. A guideline is proposed to ensure Bitline Leakageebts do not compromise SRAM
functionality.

6.2 INTRODUCTION

Decades of scaling according to Moores law have shrunk deuiz such an extent that vari-
ability has become a serious issue at all levels of circusigite The effects of variability are
most noticeable in SRAM design, since SRAM cells use veryllgnaasistors. For this reason,
statistics have long been part of SRAM cell design. Intetdinsisto’; mismatch is still the
main statistical parameter, although others are gainimgpitance. Downscaling of transistors
leads to widened/;-distributions (Figure 6.1-left). In addition, the amowfitSRAM on large
System-on-Chips (SoC'’s) continues to increase, causm@niount of variation that has to be
taken into account to increase as well (Figure 6.1-right).

On top of this, there is a clear trend towards voltage scalapstems [9, 38], resulting in an
increased demand for voltage scalable SRAM as well. At lesugply voltages, SRAM’s are
more susceptible to variability, leaving less design mrafgi the designer. Hence it is becoming

1This chapter was presented at the ESSCIRC 2008 Conferertegiriburgh, Scotland, Sept. 19, 2008. Roelof
Salters, Patrick van de Steeg, Jwalant Mishra, Dick Klaassel Theo Beelen (all NXP Semiconductors) are ac-
knowledged for many fruitful discussions. The current sxtains minor corrections.
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increasingly hard to guarantee correct SRAM operation uatigprocess, voltage and temper-
ature conditions. This translates to very tough requirdmmen SRAM parameters like Static
Noise Margin (SNM), Write Margin (WM) and Read Curretit.(q).

c 04 o _ 03
B 0.35 e}

= 5 0.25
£ 03 =
LL
Z 0.25 | >
T 02 v =
a ' | ©
2 0.15 12
3 01 |
S 3
£ 005 |5
0 o

o, [AU.] o, [AU]

Figure 6.1: Increased variability leads to widening misthatistributions (left). Increasing the
number of memory bits per SoC leads to a larger part of the atigmdistribution being taken
into account in memory bitcell design (righfp.U.] stands fofArbitrary Unitg

SRAM yield should not be limited by parametric yield loss daevariability of design param-
eters. To guarantee no more than 0.1% vyield loss for a 10MbNsRAfailure probability of
Pri < 10719 is taken into account in SRAM bitcell design for all relevasrameters. Pro-
vided the probability distribution is GaussiaR,; < 10~'° corresponds tg — 6.40 (with . the
mean andr the standard deviation of the distribution). Using Mont&dG (MC) simulations,
the 6.40 limits of the SRAM parameter distributions are estimatedcuxate estimation of the
relevant parameters at— 6.40 with plain Monte-Carlo takes billions of simulations andae
time consuming. Hence, a limited number of simulations isedd0?® — 10%), the x ando of
the distribution are extracted apd- 6.40 is determined by extrapolation. This technique is not
always accurate, since the SNM distribution is not Gaussiati [9, 47] and the distribution of
I eaq 1S NOt Gaussian in its tail.

This chapter presents the use of the simplest form of Impoets&sampling (IS) to drastically
increase the accuracy of Monte-Carlo simulations. Thikrigpgie was applied before in a com-
plex adaptive fashion, requiring complex sampling aldgnis and post-processing [26]. This
chapter presents a form of IS that requires less implementaffort. The applicability of the
method is demonstrated by estimating the yield and prabahblistribution functions of SNM,
WM and [,..q. In the case of the SNM, a new method is presented for actyregémating
Pri < 10719 by extrapolation. For SRAM Total Leakage Currents, it seffito take the av-
erages into account for designing SRAM cells and modulesuidgline is proposed to ensure
Bitline Leakage Currents do not compromise SRAM functitypal
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6.3 IMPORTANCE SAMPLING

Monte-Carlo analysis in circuit design normally assumesssin distributed’;-s of the tran-
sistors in the circuit. This results in many samples beirywirfrom around the average of the
distribution. The extrem&;-s are responsible for the extremes in the distributions®biutput
parameters (SNM, WMi,...q4, €tc.). Therefore it makes sense to have more samples dramn f
the tails of theV; distributions. Using a Gaussian distribution with a largemdard deviation
for the V; is the simplest way to achieve this.

0.4

0.35" Original density function |

03 |
0.251
021

0.15
Importance Sampling

0.1 I density function

0.051

Probability density function (A.U.)

Gavt (AU

Figure 6.2: The principle of Importance Sampling. Using asiky function with a larger stan-
dard deviation in Monte- Carlo analysis results in more dampeing drawn from the extremes
of the distribution. Here the latter density used tnat was 3 times that of the original one.

From Figure 6.2 it is clear that using a wider Gaussian dgifgiiction for Monte-Carlo sam-
pling, indeed more samples are drawn from the extremes ofl¢ésity. Using a widel;
sampling distribution is a very practical choice, since nadifications to the circuit simulator
are necessary. Using a wider density instead of the origlistibution leads to distorted SNM,
WM and I,.,q distributions. The correct density functions and distiifms are obtained by a
mathematical transformation based on the ratio of themailgind IS distribution. The resulting
distributions are now estimated over a much larger rangepeoad to applying standard MC.
IS can be described more formally as follows. Suppose pasméias a density (). With
IS, parameter: is sampled according to densiyz). To compensate for sampling according to
g(z) instead off (z), the distribution functiory, the sampled version af, has to be multiplied
by the ratiof (x)/g(x). The sampled distribution function of parameter y is givgr{th1)-(6.2)

1 < f(w3)
Plz<y) = FS@ = sz{my} m with (6.1)
i=1 v

whereN is the number of trials.
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6.4 APPLICATION OF IS TO SRAM BIT CELL ANALYSIS

This section shows that with the same number of trials, ISestimate much smaller failure
probabilities than is possible with standard MC. It is alsoven that extrapolated MC can lead
to over- or under-estimation of thg.; < 1070 for the most important SRAM parameters:
SNM, I,..q and WM. Moreover, for the SNM, a new method allows estimatiag < 10~10
using extrapolated MC with high accuracy.

A 65nm SRAM cell is simulated using PSP MOS transistor modAalsupply voltageV,,; =
0.9V is used, to bring the cell closer to its operating limits. BistV,,, the accuracy with
which all parameters are determined becomes more impoiftaertlS simulations use Gaussian
distributions with as = 3oy, for the V;-s of all transistors in the SRAM cell [we generated
enough samples in the tails to draw conclusions].

6.4.1 STATIC NOISE MARGIN (SNM)

An SRAM cell has to be stable enough to be read without chantjia data in the cell. The
SNM is a measure for the read stability of the cell. The SNMh&samount of noise that can
be imposed on the internal nodes of the SRAM cell before ingba its state. The SNM is
determined by plotting the voltage transfer curve of oné ¢fdhe SRAM cell together with the
inverse of the voltage transfer curve of the other half ofdblé The sides of the largest squares
that can be drawn inside the eyes are SNMigh’) and SNM (“low”), see Figure 6.3.

1.2

1.0 1
S
< 08 SNMA!
g
>
-~ 06
£
>
0.4
0.2 SNM!I
0 v v v v + J
0 0.2 0.4 0.6 0.8 1.0 1.2
Vin2! Vin1 (V)

Figure 6.3: The butterfly curve of an SRAM cell, used to detemthe SNM.

Both SNM, and SNM have a Gaussian distribution. The minimum of SN&hd SNM is tradi-
tionally defined as the SNM [47]. Since taking the minimum bif\B;, and SNM is a non-linear
operation, the distribution of SNM is no longer Gaussianer&fore using extrapolated MC to
determineP,; < 10~'° does not yield accurate results.

Figure 6.4-left, shows the cumulative distribution funatiCDF) of the SNM, determined by a
MC simulation using 50k trials, both for standard MC (sokatd IS (dotted). Standard MC can
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only simulate down taP,; < 10~°. Statistical noise becomes apparent belgyy, < 1074,
Using the simple form of ISP.,;; < 10710 is easily simulated. The correspondence between
Standard MC and IS is very good downy; < 10~°. Figure 6.4-left clearly shows that using
extrapolated MC leads to overestimating the SNMPaf = 10710,

1000 10° ] ‘ ‘ //’
SNM just below 0 _ , ||SNM just below 0 # trials = 50k |
10° [ | at Py, <=10" #trials = 50k { 107 flatp_<0.5:10™
b= ’ 5 ’
8 10° / 18 10° 7
= % = ¢
- 7 ’ /
w 10° . // é 10° ,’/'
. -10
o 10 X target: Pgy; < 1.0-10 107} i |
S/ E target: Py < 0.5:10™
10»12 :.' I/ ] 10-12 I-I |
. / L
0 40 80 120 160 0 50 100 150 200 250
Static Noise Margin (mV) Static Noise Margin high (mV)

Figure 6.4: SNM (left) and SNIM(‘high’) (right) cumulative distribution function for esdpo-
lated MC (dashed), standard MC (solid) and MC (dotted).

A new simple method is now presented to estimate the SNM blyatitag the distribution of
only SNMy, or SNM,. Figure 6.4-right shows the CDF of SNMThe distribution of SNM is

a Gaussian distribution and extrapolation leads to a gotwha® of SNM, at Pr,; = 10710,
The Py = 10719 limits for SNM;, and SNM appear be to almost identical. At first sight, this is
surprising, since the SNM and SNMhave different distributions. However, a small difference
exists between SNM and SNN¥BNM,;. The following describes how they are different.

The SNM is defined as the smaller value of SNhd SNM

SNM = min(SNMy, SNM;). (6.3)
Next, we apply the probability rule
P(AUB) = P(A)+ P(B)—P(ANB), (6.4)

with A = {SNM,;, < a} andB = {SNM; < a}. The probability that SN and SNM
simultaneously are very small is extremely low. Thereféwethe extreme chancef(ANB) ~
0 (and much smaller than the other chances). Assuming that;Sid SNM are identically
distributed, it follows for the values of interest foithat:

P(SNM <a) = P(SNM, <a)+ P(SNM, < a)
= 2P(SNM, < a) (6.5)
= 2P(SNM, < a). (6.6)

A failure probability for SNM, of P(SNM;, < a) = 0.5 10~!0 is required to get the same
failure probability P(SNM < a) = 1010, In the example shown in this chapter, the difference
betweena for P(SNM;, < a) = 0.5 1071° and P(SNM < a) = 107! is only 1.2mV, which
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is within the statistical accuracy of IS. The justificati@diemonstrated in Figure 6.4 where the
crossings are at the same for SNM. For larger values (andahger chances) the assumption
that P(A N B) = 0 is not longer valid. Indeed Figure 6.4 shows that there (6dgs not hold
there (but this is also clear from the equation itself fogéar).

The extrapolated version @t(SNM,, < a) = 0.5 1071 deviates fromP(SNM < a) = 1010

by only 0.3mV. Effectively, using®(SNM;, < a) = 0.5 10~'Y means extrapolating ®— 6.5¢.
This analysis shows it is possible to use extrapolated MGhaxaurate estimate of the far tail
of the SNM distribution.

6.4.2 READ CURRENT

The Read Current,.,q is a measure for the speed of the memory cell and is therefoira@or-
tant parameter. Figure 6.5 shows the extrapolated MC, ae@C and IS distribution for the
Read Current of an SRAM cell. Again, there is a good match éetwegular MC (solid) and
IS (dotted), down tQP:; < 1074,

10° ‘
10° # trials = 50k |
_ 4| d
§ 10 A
- ; s
§ 10° | /,’y‘.-"
«
w 10°| ;i
(=] S
O 4ol i target: P, <= 0.5-10™ |
10" < flipped cells during
) read operation

0 2 4 6 8 10 12 14 16
Read current (pA)

Figure 6.5: Read Current Cumulative Distribution functiohthe extrapolated distribution
(dashed), regular Monte-Carlo (solid) and IS (dotted).

These Read Current simulations were done on one side of ih&lserefore,Pr,; < 0.5 10719
has to be targeted for the Read Current as well. The corrdspoe with the SN simulation

is very good. The cells start flipping during a read actionlatoat exactly the same failure
probability as where SNM=0mV.

These simulations show that extrapolated MC can resultrinisunderestimation of the Read
Current. This can lead to over-design of the memory cell. &able to accurately simulate
the worst case Read Current as a result of mismatch, IS iatedbeneeded for sampling the
Read Current,..q appropriately. Extrapolated MC is by no means accurategmothis is in
contrast to the SNM function.

6.4.3 WRITE MARGIN

An SRAM cell should not only be stable during read, it also twalse sufficiently instable to be
written when desired. The Write Margin (WM) is a measure Fa writeability of the SRAM
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cell. A cell is written by precharging one bitline g4 and discharging the other bitline to

ground, with the wordlines at;q. The WM can be defined as the highest acceptable voltage on

this low bitline (Figure 6.6).

For the WM, a similar line of reasoning holds as for the SNMer&fiore the target should be
Pri < 0.5 10719, The distribution function of the WM was also simulated gsaxtrapolated
MC, standard MC and IS MC (Figure 6.7). Again, a good matclbisined between standard
MC and IS MC. The WM is underestimated by about 10 mV, whicloisasignificant deviation.
Therefore the far tail of the WM distribution can be estindabsing extrapolated MC.
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Figure 6.6: The internal node voltages of an SRAM cell veteadow bitline voltage. The write
margin (WM) is defined as the highest bitline voltage at widelSRAM cell flips.
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Figure 6.7: Write Margin (WM) Cumulative Distribution fution of the extrapolated distribu-
tion (dashed), regular Monte-Carlo (solid) and IS Montet€&otted).

6.4.4 LEAKAGE CURRENTS

Leakage Currents can be divided into two important categori
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e Total Leakage Current: Total Leakage Current is important for the standby power con
sumption of the memory. This can be estimated by multiplytingy average of the total
cell leakage by the number of cells in the memory instancee [@tge number of cells
in an SRAM results in a small variation on this estimate, mgkhis method sufficiently
accurate.

e Bitline Leakage Current: Bitline Leakage is the sum of the leakage currents of the non-
selected cells in the column being accessed. Too much 8ltikakage Current can result
in a non-functional memory. During reading, one of the twtlines of the column is
discharged to develop sufficient differential voltage foe sense amp to be detected. In
a worst case situation, all non-accessed cells connectib@ twlumn being read are dis-
charging the opposite bitline with their leakage currelitdie sum of the leakage currents
is in the order of the worst-case Read Current, there is afidkveloping insufficient dif-
ferential voltage on the bitlines and a read failure.

Short columns with fewer cells have lower Bitline Leakager€nts than longer columns.
Hence, if a memory with long columns can handle the worst bakee leakage, a smaller
instance of that memory with shorter columns can also hahéléitline leakage.

100 P —7]
#trials = 50k
~ 107
5
— 4 |
5 10 .
® 3
£10° | A
é 10° Hieakage ‘\‘;
~ 10" ."“-
P ~t00x [\
107 v
%
-13 -12 -11 -10 -9 -8

Passgate leakage current (log(A))

Figure 6.8: 1-CDF of the logarithm of the Bitline (Passgateakage Current (leakage current
of one cell): extrapolated MC (dashed), regular MC (solia) $&& MC(dotted).

Figure 6.8 shows the logarithm of the Bitline (Passgatekhaga Current. Since the leakage cur-
rent depends exponentially on the transistor tresholdgelt;, the distribution of the logarithm

is excellently Gaussian. The probability of a Bitline Leg&aCurrent that is 100x higher than

the average is approximatel)(licax b1 > 100 Leak b1,) ~ 10710 for this cell, meaning this is

a very rare event. Hence it is safe to assume only one cell best wase leakage and all other
cells have an average leakage current. Inequality (6.7ogsed as a guideline to ensure that
Bitline Leakage Current does not compromise SRAM funcfibna

Iread,wc > (Ileak,bl,6.40 + (L - 2) Ileak,bl,u)» (67)

where/,c.q we IS the worst case Read Curreiitis the maximum number of cells in a column
andzx is a margin factor at the discretion of the designer.
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6.5 CONCLUSION

Continuous scaling according to Moore’s law and an increpaumber of bits used in SRAM
memories strongly increase the need for incorporatingssitatl information into the design
of SRAM bit cells. To guarantee sufficient yield for a 10 Mb SIRAfailure probabilities of
Pra < 10710 are required, probabilities found in the far tails of thegwaeter distributions.
Accurate statistical techniques are a must to be able tolgiensuch failure probabilities.

In this chapter it was shown that accurate statistical DC BIRo&Il simulations are possible
using a relatively simple statistical technique like Imoce Sampling (IS) Monte Carlo (MC)
with widenedV; distributions. The technique has been successfully applieaccurately esti-
mate the distributions of Static Noise Margin (SNM), Writeatdin (WM) and Read Current
Liead-

For the SNM, it is shown that extrapolation of standard MCusations overestimates the yield.
In addition to the benefit of IS MC simulations, it has beenmahthat extrapolation of the Gaus-
sian distributions of the individual eyes yields resultagturate yield estimation. The results
of the latter method are in agreement with IS MC simulations.

The Read Current distribution deviates strongly from a Gaumsdistribution and therefore its
distribution can not be extrapolated. The use of extrapdldistributions would result in a pes-
simistic I,.,q and could thus lead to over-design of the memory cell andénary architecture.
Importance Sampling or a technique with similar stati$@cauracy is required to make correct
decisions in the design process.

The WM can be estimated with extrapolated Gaussian disioiist Although a small difference
of the WM atPr,; < 10710 is observed between extrapolated MC and IS MC, this diffezds
not significant.

To determine the SRAM Total Leakage Currents the averagemuper cell is multiple by
the number of cells in the instance. A guideline is propogseguarantee that Bitline Leakage
Currents do not compromise SRAM functionality.
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Section 7

Recommendations for PSTAR [42]

In this chapter we give some recommendations to allow forligmce Sampling.

e Input: The user should be able to define a distributipfor selecting parameters: by
referring to a standard one (normal, uniform, lognormat),atr by explicitly defining a
function. In the last case Pstar should perform some chdi&lksbeing positive, cumula-
tive probability adds up to 1).

The user should also be able to define the reference distnibitthat would have been
used without Importance Sampling.

e Output: Several items can be listed

— ProvideP(X < t) for given output functionX and given value of.

— Also allow for a PDF and a cumulative probability (CDF) plptot P(X < t) for a
list of ¢-values.
This will need binning, hence an additional binning speatfian must be included.
As default number of bins, the square root of the number opsesrmay be chosen.
Creating a CDF by ‘binning’ can be improved by applying progeadrature, like
the Trapezoidal Rule.

— In doing the current research it appeared to be very helfifatl plots of the values
of f and ofg at the sampling points can be plotted together.

— A parameter sweep of the values of the quantities of intatekie chosen probability
against the swept parameter(s) is wanted as well.

e Generalizations: Allow also for correlations. Include a functionality thagtdrminesy
automatically (for instance by adaptivity). Also allow tetdrminet such that for given
onehasP(X <t)<e
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Section 8

Conclusions

A 0.1% vyield loss for 10Mbit SRAM memory, which means that 11 billion cells fails
(P < 1071%) can be efficiently estimated by Monte Carlo methods thattamed by Im-
portance Sampling. Importance sampling brings Monte Carlthe area in parameter space
from where the rare events are generated. By this a speedagv@fal orders can be achieved
when compared to standard Monte Carlo methods. The efficigitbhe method increases when
the dimension of the parameter space increases.

The method would be a valuable extension to the statistajgacities of Pstar [42] and/or Spec-
tre [49]. In fact the method can be efficiently implementedmy simulator and can be extended
to allow for adaptive tuning of the rare event density disttion.

A version of Importance Sampling has been implemented uBB@r with Matlab post pro-
cessing and has been demonstrated to work correctly. THeoohbas been applied to estimate
the probability distribution of all 4 SRAM cell parameteiStatic Noise Margin (SNM), Write
Margin (WM), Read Current and Bitline Leakage Current. A d@orrespondence of Impor-
tance Sampling Monte Carlo and traditional Monte Carlo $ation was shown for the relevant
probability range.

For the SNM, it is shown that extrapolation of standard MCugations overestimates the yield.
In addition to the benefit of ISMC simulations, it has beervamthat extrapolation of the Gaus-
sian distributions of the individual SNM eyes yields resuit accurate yield estimation. The
results of the latter method are in agreement with IS MC satis.

The Read Current distribution deviates strongly from a Giamsdistribution and therefore its
distribution can not be extrapolated. The use of extrapdldistributions would result in a pes-
simistic Read Current and could thus lead to over-desigmefmemory cell and/or memory
architecture. Importance Sampling or a technique withlainsiatistical accuracy is required to
make correct decisions in the design process.

The WM can be estimated with extrapolated Gaussian disimifisl Although a small difference
of the WM atPp,; = 10710 is observed between extrapolated MC and IS MC, this diffezds
not significant.

To determine the SRAM Total Leakage Currents the averagermuper cell is multiple by the
number of cell in the instance. A guideline is proposed torgniee that Bitline Leakage Cur-
rents do not compromise SRAM functionality.

We introduced Importance Sampling as a technique to effigiperform failure analysis. To

prove benefits over standard Monte Carlo we applied and @ézteknowledge from Large De-
viation theory. The basics of the method can easily be impiged in a circuit simulator or in a
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shell procedure around a circuit simulator. For a refinedguare, involving adaptive sampling,
we introduced a new approach. Here some intial tests were osdg 1-dimensional functions.

The real benefit must come from problems with parameters igleehdimensional space. This
will require further research.

Apart from the studied Importance Sampling we also desdritye additional variants (weighted

importance sampling, regression importance sampling)hénee some benefits from a numeri-
cal mathematics point of view, but for us the obtained bemafi¢é here not decisive.

In further improving the performance of a particular vatiahlmportance Sampling the vari-

ance can be minimized by optimizing a parameter. Apart fromestrivial situations, in general

this requires some accurate numerical procedures.

RESPONSE SURFACE MODELING

We did some minor experiments with Response Surface MagléRisM) techniques (using the
MatLab M3/SUMO toolbox developed at the University of AntwiShent). After paying the
costs for exploring the design space and to build the modelptitput function enables a rapid
Monte-Carlo simulation. To give an impression, for 4 SRAMdtions (SNM, WM, Iread,

It cakage) @nd 6V7-s, 10 million samples can efficiently be simulated withirvaainutes, which
is a speed-up of 1400 with respect to Pstar [42] (that use@ ft¥)s per minute). For standard
MC using10'® samples, Pstar will need more thEs{ minutes & 1.710° hours, orZ 10* days,
or ca 20 years), while MC via RSM was done in 7000 minutes. BDiséfor generating the RSM
was 10h.

For RSM techniques one needs to verify the accuracy of theelagdometimes strange peaks
occur in the surface). Also the model has to become very ateim the area that is important
for the failure analysis.

In the tool ROAD (RObust Analog Design) of ExtremeDA (httpxtreme-da.com/ROAD
Suite.html) a Quadratic Response Surface Model (QRSF) fantéinear performance function
f is constructed [32, 33, 34]. The main features are

e One efficiently determines high-order moments of QRSF vikiadmial moment evalu-
ation”.

Next one determines the polesand residues; of a transfer functiorff (s) = S| <%

such that moments itdomain match those of QRSF.

The pdf(f) is obtained via a time impulse resporige) = Zf‘il a;ebt (actuallyt ~ f)

The cdf(f) follows simply vias(t) = [} h(7)dr.

One applies a carefull shifting: pdf@ fo).

Here the step via the moments is the unattractive part, e nice recursion. The problem
with exlicit moment matching algorithms always is the digbof these recursions. However the
approach is interesting when viewed from the point of viewaidel Order Reduction (MOR)
where poles and residues are calculated using other teagmiGome research is needed here to
obtain the required implicit moment matching.

*http://www.sumo.intec.ugent.be/
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FUTURE WORK

Topics to be studied further are listed below.

e The outcome of an evaluation can guide to how to determingifspeampling points. Our
current experiments did not exploit this as well. Sectiorr@vjgles a starting procedure
to adaptively sample points at proper locations. By this aperoximates the optimum
Importance Sampling functionin an adaptive way.

e The sampling functioy may be different for various output responses. Currentijnae
derived a practical form of Importance Sampling for SRAMI sahulations. However,
we have not solved the general question: What is the optimabttance Sampling distri-
bution ¢ for statistical (SRAM) circuit simulations? Again, Sectid provides a starting
procedure for this.

e How many trials are needed to obtain the required accuratgedttion 2.4 we derived by
the Large Deviation principle that one may need a nuniYet 1/p for Monte Carlo. In
Section 3.2 we proved that Importance Sampling needs legslsa to obtain a reduction
of the variance of the estimate pf Both proofs were not trivial. In practice we worked
with much less samples (ordéT(%)). One needs some adaptive error estimates during
the sampling process.

e For the SRAM response functions the distributions have lolestermined. For low volt-
age memory quite a number of parameters have influence. ti8gygdias not yet been
exploited in our experiments. A simple procedure that &splvhen sensitivity analysis
is not provided by a circuit simulator is to run a MC "scan” mivance putting variability
on all parameters at once. Now, before calculations of thiilblitions, dominant param-
eters can be determined (note that parameters can be ddnmreaspecific region only).
Only these parameters need to be included in the calculatitire distribution. To exploit
sensitivity in MC see [19].

e Which part of the input parameter space meets the outpuifigpdions of the SRAM
simulations:i.e., for givene find ¢ such that?(X < t) < e. How to detect the part of the
input parameter space that determines output specificafilorSRAM simulations?

This relates to Inverse Problem techniques [25, 30]. Naewre have learned during the
research that analog designers are interested in derivitignaulative Probability Func-
tion. It means that one is interested in a sequencesof

e Which methods other than Importance Sampling can be useudgmve accuracy and
performance (to increase speed) of statistical runs forlRAow can they be applied, or
combined with Importance Sampling. For example, how caimlidypercube Sampling
or generalized Polynomial Chaos (gPC) Theory [2, 37, 54]dmelgned with Importance
Sampling (see for instance [39])? Perhaps that on the strontthese questions are more
interesting to be answered than to generalize adaptiverianpee sampling.

e How can Response Surface Modelling Techniques be usedttefureduce evaluation
time, e.g, by determining the dominant parameters [28, 52]. We naé [BR, 33, 34]
have described a procedure to efficiently obtain statisticanents for nonlinear response
functions based on approximation techniques from ModekOREduction.
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Appendix A

Matlab Code

A.1 File Matlab_ImpSampling_Pstar.m

clear;

%path = '’home/nlv15606/projects/C065/lop/sram_opt/ps
path = 'H:\__ RESEARCH_PAPERS__\Statistics\SRAM\Import

% Plotting chances y=10"(-k) vs x; y=N(x) the cumulative nor
% y=N(x)=0.5 ( l+erf(x/sqrt(2) ), hence x=sqrt(2) erfinv(2

% Powers: -12, -11-0.75, -11-0.5, -11-0.25, -11, .., -1, -0
powers = linspace(-12,0,49)
y=10."powers

x=sqrt(2) * erfinv(2  *y-1)

figure(1);

subplot(121), hl=semilogy(x,y,’b’);
title({\bf Log(Cumul. Normal chances)});
grid minor;

subplot(122), h2=plot(x,y,'b’);
title({\bf Cumul. Normal chances});
grid minor;

[nx,mx]=size(x);
[ny.my]=size(y);

xpos= - x([mx-2:-1:1]); % Mirror only the negative values of
ypos= 1 - y([my-2:-1:1]);

xtot=[x(1,1:mx-2) xpos(1,1:mx-2)];
ytot=[y(1,1:my-2) ypos(1,1:my-2)];

figure(2);

subplot(121), hl=semilogy(xtot,ytot,’b’);
title({\bf Log(Cumul. Normal chances)});
grid minor

subplot(122), h2=plot(xtot,ytot,’b’);
title({\bf Cumul. Normal chances});

grid minor

% Data files from Pstar: 8 columns, containing “index, vtl--
% It is assumed that the vtj are mutually independent

%

% snm=snm(vtl,vt2, ..., vt6) is output result from Pstar

%
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tar/sram/’;
ance_Sampling\’;

mal density function
y-1)

.75, -0.5, -0.25, 0

vt6, snm"
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w=waitbar(0,'Reading data files ...
waitbar(0,w);

file_uni 'snm_1e5_uni.table’;
data_uni single(load([path file_uni])); % uniformly dis
waitbar(0.5,w);

)

file_norm = ’'snm_1e5_norm.table’;
data_norm = single(load([path file_norm])); % normally di

waitbar(1,w);
close(w);

pstarSigma = 6;

numsam = length(data_uni); % The number of parameter tuples
%numsam=100000;

numbin = 250;

[mdu,ndu] = size (data_uni); % n=8 in example

vt = data_uni(:;, [2:ndu-1]);

snm = data_uni(:, ndu);
snm_norm = data_norm(:,ndu);
figure(3);

[n_snm,snm_bin_centers]=hist(snm,numbin);
[n_snm_norm, snm_norm_bin_centers]=hist(snm_norm,num

subplot(121), bar(snm_bin_centers,n_snm); % Fig 5.2a
title({\bf Histogram SNM with V"T_k uniformly distribute

subplot(122), bar(snm_norm_bin_centers,n_snm_norm); %
title({\bf Histogram SNM with V"T_k normally distributed

w=waitbar(0, Calculating correlations of vt-s...”);
waitbar(0,w);
‘Correlation data of vt-s’
[rho_uni,pval_uni]=corr(vt) % rho_uni contains positive
% pval_uni is nonnegative
rho=rho_uni;
for i=1:ndu-2
rho(i,i)=0;
end
rho_max=max(max(rho));
rho_min=min(min(rho));

figure(4);

xc=[1:1:ndu-2];

yC=XC;
[XC,YC]=meshgrid(xc,yc);

plot3(XC,YC,rho);

axis([1 ndu-2 1 ndu-2 rho_min rho_max]);

title({\bf Corr between vt-s; diag (was 1) set to 0});
grid;

waitbar(1,w);
close(w);

w=waitbar(0, Starting calculating probabilities ...
waitbar(0,w);

)

%
% Importance Sampling using samples from a broad uniform dis
%

snmRange max(snm)-min(snm)

70

tributed [mu-6sigma, mu+6sigma]

stributed with stdv=sigma

(vt1,vt2, ..., vit6)

bin);

d on [\mu-6\sigma, \mu+6\sigma]}’,FontSize’,12);

Fig. 5.2b
with N(\mu,\sigma)}’,’FontSize’,12);

and negative values;

tribution (data_uni)
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vtmean = mean(vt)

% The sigmaVt of the normal distribution can be calculated fr om
% sigmaVt of the uniform distribution.

sigmaVt_uni = std(vt)

sigmaVt_uni_scaled = sigmaVt_uni/pstarSigma

sigmaVt_norm = sigmaVt_uni_scaled *sqrt(3)

% The sigmaVt of the normal distribution can also be calculat ed
% from the range of the uniform Vt distribution.
vtstd = (max(vt)-mean(vt))/pstarSigma

% From PStar we obtain the next numbers for sigmaVt (trials=1 0000):
%vtstd = [0.0396 0.0350 0.0389 0.0396 0.0350 0.0389]

% The exponent of the normal distribution -0.5 *((vt - u)ls)"2

%

[mvt,nvi] = size(vt);

vtmeanM = ones(mvt,nvt) * diag(vtmean);

expMult = ( (vt-vtmeanM) +diag(1./vtstd) )."2 ;

f_pdf = 1/sqrt(2 *pi) * exp( - 1/2 + expMult ) * diag(l./vtstd) ;

% We have to determine the chance p(snm<X) for several values of X

% This is done by the formula [using the mutual indpendency]

%

% p(snm<X) = (1/N) sum InX(snm) * f_pdf(vtl)/g_pdf(vtl) * ... f_pdf(vt6)/g_pdf(vt6)
%

% Here InX(x) = 1 if x<=X, InX(x) = 0 if x>X.

%

% g_pdf is from a uniform distribution between min(vt) and ma x(vt): 1/vtRange
%

% f_pdfMult = f_pdf(vtl) * ...+ f_pdf(vi6)

f_pdfMult = prod(f_pdf,2);

vtRange = max(vt)-min(vt) ;

% 1/N * 1/g_pdfMult = 1/N * prod(vtRange)

one_over_N_times_one_over_g_pdfMult = prod(vtRange)/n umsam ;

% 1/N * 1/g_pdfMult = 1/N * prod(vtRange)

% 1/n * prod_k (f_k/g_k)

pdfMultNorm = f_pdfMult * one_over_N_times_one_over_g_pdfMult;

waitbar(0.5,w);
[snmAxis, snmPDF, snmCDF] = Matlab_Makepdf(snm,pdfMultN orm,numbin);
waitbar(1,w);

% Normal/Standard Monte-Carlo ===

% (via Histogram sampling, covering non-normality of outpu t function)
%

% normHist contains totals in each bin; normbins: bin-cente rs

[normHist,normBins] = hist(snm_norm,numbin);
snmRangeNorm = max(snm_norm)-min(snm_norm);
stepsizeNorm = snmRangeNorm/numbin;

snmPDFnorm = normHist/numsam; % Calculate fraction in eac h bin interval
snmCDFnorm = cumsum(snmPDFnorm); % Sum all chances

snmAxisNorm = normBins; %

% Extrapolated Monte-Carlo

% (via Histogram sampling, assuming normal density functio n of output function)

%

meanNorm = mean(snm_norm) ;
sigmaNorm = std(snm_norm) ;

snmPDFextr = 1/sqrt(2 *pi)/sigmaNorm  *exp(-1/2 * (snmAxisNorm-meanNorm)."2/sigmaNorm~2);
snmCDFextr = cumsum(snmPDFextr * snmRangeNorm/(numbin-1));
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figure(5) % Fig. 5.1
h3=semilogy(snmAxis’,snmCDF,’b’, snmAxisNorm,snmCDFn orm,'g--", snmAxisNorm, ...
snmCDFextr,'r-.");

set(h3,’LineWidth’,2);

legend(’{\bf Importance Sampling MC}’, '{\bf Normal MC}, {\bf Extrap. MC}, ...
‘Location’, 'SouthEast’);

titte({\bf Comparison of Cumulative Probabilities}’,'F ontSize’,12);

xlabel('{\bf X},’FontSize’,12,’FontAngle’,italic’) ;

ylabel('{\bf P(x<X)}, 'Rotation’, 0, 'FontSize’,12,'Fo ntAngle’,'italic’);

text(0.055, 1073, '{\bf x=SNM(V"T_1,...,V'T_6)},'Font Size',12);

grid;

hold on;

%msu=mean(snm);

%msn=meanNorm; %mean(snm_norm);
%semilogy([msu,msu],[1075,107(-20)],'m-..");
%semilogy([msn,msn],[1075,107(-20)],'m-..");

%text(0.055,1071,strcat(strcat({\bf \mu_{unif}(x)=’ ,num2str(msu)),’}));
%text(0.055,107(-1),strcat(strcat('{\bf \mu_{norm}(x )=",num2str(msn)),’}));
close(w);

A.2 File Matlab_Makepdf

%

% [axisbin, pdfbin, cdfbin] = Matlab_Makepdf(values, prob values, nobins)
%

% Creates the pdf, cdf (with 'nobins’ bins) and accompanying axis

% for random data consisting of 'values’, based on the probab ilities

% of those values.
%

function [axisbin, pdfbin, cdfbin] = Matlab_Makepdf(valu es, probvalues, nobins)

axisbin zeros(nobins+1,1);

pdfbin = zeros(nobins+1,1);
cdfbin = zeros(nobins+1,1);
minValue min(values);

maxValue = max(values);

rangeValue = maxValue-minValue;

binstep = rangeValue/nobins ; % binlength

axisbin(:,1) = [minValue:binstep:maxValue]’; % Always on e point more than the number of bins
[na,ma] = size(axisbin);

[nv,mv] = size(values);

[sortedValues,sortingindex] = sort(values(:,1));
[nsv,msv] = size(sortedValues);

[nsi,msi] = size(sortingIindex);

[np,mp] = size(probvalues);

kstart=0;
for jbinbound=1:1:na
bool=0;
k=kstart;
% occurrences in (X,X+step]
while ( (k < nv) & (sortedValues(k+1,1) <= axisbin(jbinboun d,1)) )
k=k+1;
bool=1,;
end
if (bool)
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% sum all the probabilities of the occurrences
pdfbin(jbinbound,1) = sum(probvalues( sortinglndex(kst art+1:k,1), 1));
kstart=k;
else
kstart=k+1;
end
end
cdfbin = cumsum(pdfbin);
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Appendix B

Source Code Adaptive Importance
Sampling Simulation

For the simulations in the 1-d testbed in Chapter 4, we usedbtlowing routines programmed
in the open source statistical programming langua@eeewww.r-project.org ). Defining
a function f consisting of a combination of the three basic 1-d-phanfomescan explore the
dependence of the algorithm on the three relevant contrahpeters.

BHHBHH R B
FIRST EXPLORATION

#
#
#
#
#
#
#
T R T R T R R T R R R T i

T R T R T R R T T R T T R HH#
DEFINE THE FUNCTION TO BE

EXPLORED

e R R

BHH R R HHH#

# f <- function(t){x <- 1/(t-5)"2} # spike phantom
# f <- function(t){x <- 0.5 * "2} # outback phantom
# f <- function(t ){x <- 100 *(1-100 *(t-4)°2)} # bump phantom

f <- function(t){x <- 1/(t+4)2 + 0.5 ££2 + 100 *(1-100 *(t-4)°2)}

HHH B R HHH#

TR R T T R R T R T T R T i
#

# EXPLORATION PARAMETERS

#

HHH B R #HH#

# exploring the function f #HEHHHHHHEHIHHHHEHEHIHREHEHEHE HHHHH

74 (© TUE Eindhoven University of Technology 2009
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alpha <- 5

# exploration width #HHHHHHHHHEHHEHHEHHEHHERHHEHHEE HHHEHH
width <- 2

# exploration gain HHHHHHHEHIHHHHHHHHHHEHHHHE HEHHHH
gain <- 200

# initiating exploration state #H##HHHHHEHHHHIHHIHHEHHHHHHE biniziarnimarsiaid

points <- c()

weights <- ¢()

numbers <- 1

HH R R R R R R HitHHH#

# macro sampling step HHHHIEHHHHHIHIHHHHIHHHHHE i
sample <- function()

{

n<-0

X <- rnorm(1)

while(f(x) < alpha)

X <- rnorm(2)

}

}

HH R R R R R R HitHHH#

#

# EXPLORATION

#

HHHHHHH T HiHHHH

# 1 first exploration step #HHHHEHHHIHHHHHEHEHHEHEHEHHI HHHH
points[1]<- sample()

weights[1] <- 1

stepnumber <- 1

# 3. loop with stopping criterion ##HHHHHHHIHHIHHHHIHHEHHE Htitnitt

while(stepnumber < gain * numbers)

x <- sample()
stepnumber <- stepnumber + 1

# 2 check distance/outback and modify state #i#H#HH I it
dist <- abs(points - rep(x,numbers))

d <- min(dist)

outback <- 8.5

if(d > width) # 2a

{

if(abs(x) < outback)

numbers <- numbers + 1

points[numbers] <- x

weights[numbers] <- 1

}
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else

{

k <- which.min(dist)
weights[k] <- weights[k] + 1
}

}
else # 2b

if(abs(x) < outback)

{

k <- which.min(dist)
weights[k] <- weights[k] + 1

if(f(points[k]) < f(x)) # accept
{points[k] <- x}

else # reject
{

}

else

{

k <- which.min(dist)
weights[k] <- weights[k] + 1
}

}

HHHBHH R R B

}

# end loop HHHHHHHHHHIHHEHIHIHHHHEHEHE fizied

status <- c(points,weights)

print(status) # output

HHHHHHEHEH R HitHt
#

# END FIRST EXPLORATION

#

BHHBHH R R B

BHH BB R B
#

# EXPLORATION FROM SEED

#

BHHBHH R R B

EFS <- function(status, alpha, gain) % gain is the stopping f actor E

{

L <- length(status) *0.5
newstatus <- c()

newpoints <- c¢()
newweights <- c()

n<-1

for(i in 1:.L)

{

w <-0

r<-L+i

M <- status[r] *gain

for( in 1:M)
{
val <- status[i] + rnorm(1,0,0.5)
if(f(val) > alpha)
{
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w<-w+1
if(f(val) > f(statusli]))
{

status[i] <- val

else{}
else{}
}
iftw > 0)
{

newpoints[n] <- status]i]
newweights[n] <- status[r] + w
n <- n+l
}
else{
if(f(status[i]) > alpha)
{

newpoints[n] <- status]i]
newweights[n] <- status[r]
n<-n+1

else{}

}

newstatus <- c(newpoints,newweights)
print(newstatus)

}

BHHBHH R
#

# END OF EXFROMSEED

#

T R T B R R R B R BT T

T R T B T R R B R T T
#

# WEIGHTED SAMPLING
# with 'sweeps’ number of simulation steps
#

HHHEHHHH R R
WS <- function(points,weights,alpha,sweeps)

{

## mixture probabilities #HHHHHFHIHHHHHIHHHHIHIHIHHHE

NN <- rep(stepnumber, length(weights))
prob <- weights/NN

mixture <- rmultinom(sweeps,length(weights),prob)

)
approx <- 0

for(j in 1:length(weights))

{
zfj] <- 0
for(i in 1l:sweeps){z[j] <- z[j] + mixture[j,i]} # samples fr

mixfrom <- rnorm(z[j],pointslj])
for(u in 1:z[j])
{

if(f(mixfrom[u]) > alpha)
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{approx <- approx + exp(points[j]"2/2 - mixfrom[u] * points[j])}
else

{

}

}

## approximation HHHHHHHHHIHHEHHHHEHHEHHH T HiHHHE

print(approx / sum(mixture))

}

T R T R R R R T R T T R T i
#

# END WEIGHTED SAMPLING

#

T R T T R R T R R T R i
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Appendix C

Alternatives For Histograms

The shape of a distribution (unimodality, asymmetries) atcdifficult to assess from a normal
probability plot. For this we need to estimate the densitgt present it in a plot. A widely
used density estimator (although it is not always recoghae such) is the histogram. Let
X1,...,X, be arandom sample from a distribution functibn(pertaining to a lawP) on R,
with continuous derivativé” = f. As before, we denote the empirical distribution functign b
P,. Let I be a compact interval oR and suppose that the intervdls . .., I form a partition
of I,i.e.

I=5LU...UI, Ilﬁljzwlfl#j

The histogram ofXy, . .., X, with respect to the partitioth, . .., I, is defined as

“ PalL) Iy ()
@) =3 =

J=1

where|/;| denotes the length of the interva). It is clear that the histogram is a stepwise
constant function. Two major disadvantages of the histogree

e the stepwise constant nature of the histogram
o the fact that the histogram heavily depends on the choideegbartition

In order to illustrate the last point, consider Figure C vehire two histograms are made from
the same data set.

It is because of this phenomenon that histograms are not tedmenmended. A natural way
to improve on histograms is to get rid of the fixed partitionputting an interval around each
point. If h > 0 is fixed, then

Ry () = Dl _2};’“}”) (C.1)

is called thenaive density estimataand was introduced in 1951 by Fix and Hodges in an un-
published report (reprinted in [16]) dealing with discrivant analysis. The motivation for the
naive estimator is that

z+h

P(x—h<X<:U—|—h):/ F(t)dt ~2h f(z). (C.2)
z—h
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Figure C.1: Two histograms of the same sample of size 50 fromixaure of 2 normal distribu-
tions.

Note that the naive estimator is a local procedure; it usstba observations close to the point
at which one wants to estimate the unknown density. Compasenith the empirical distribu-
tion function, which uses all observations to the right & goint at which one is estimating.

It is intuitively clear from (C.2) that the bias 0¥, decreases dstends to 0. However, it
tends to O, then one is using less and less observations,esmoeé kthe variance d?fn increases.
This phenomenon occurs often in density estimation. Thiengtvalue ofh is a compromise
between the bias and the variance. We will return to thisctapigreat practical importance
when we discuss the MSE.

The naive estimator is a special case of the following cldskensity estimators. Lek be
akernel functionthat is a nonnegative function such that

/OO K(x)dz =1. (C.3)

Thekernel estimatovith kernel K and bandwidtth is defined by

n

Falz) = % Z %K (ac —th> . (C.4)

i=1

Thus, the kernel indicates the weight that each observatiogives in estimating the unknown
density. It is easy to verify that kernel estimators are diessand that the naive estimator is a
kernel estimator with kernel
1 .
5 if|z] <1
K(z) = {2 2]

0 otherwise.

Examples of other kernels are given in Table C.1. Kernelitleestimators are available
in the Statistics Toolbox of MATLAB through the commaksddensity , including an auto-
matic choice of the bandwidth. The default kernel is the Gaussian kernel (called normal in
MATLAB), other available kernels are box, Epanechnikov &émeltriangular (called triangle in
MATLAB) kernels.
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name function
Gaussian L ez
V2w
. 1

naive/rectangula 3 L1, (7)
triangular (1= |z|) L—q,1y ()

o 15 29
biweight T (1 —2%)" 1(q,n()

Epanechnikov % (1—2?) L—1)(z)

Table C.1: Well-known kernels for density estimators.
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Appendix D

Discrete Probability Distributions

This chapter contains an overview of common discrete digins, in alphabetical order. For
more information on these distributions, we refer to [22pbnf& generating functions can be
expressed in terms of hypergeometric functions. For mdcermation on these particular func-
tions, we also refer to [22]. Capitdl always refers to a random variable with the distribution
being discussed.

Bernoulli distribution

A special case of the binomial distribution, namely= 1. Oftenq stands forl — p.

Parameter) <p <1

Values:0, 1

Probability mass functionP(X =1) =p, P(X =0)=1—-p

Expected valuep

Variance:p (1 — p)

Probability generating functiomit + (1 — p)

Moment generating functionie? + (1 — p).

Binomial distribution

The binomial distribution describes the number of suceeaseongn independent trials with
equal success probability. Often ¢ denotesl — p. The binomial distribution is a special
case of the multinomial distribution, witlm = 2. The binomial distribution converges (in
distribution) forn — oo andnp = X fixed to a Poisson distribution with parameter For
p < 0.10, the binomial distribution can be approximated by a Poislistnibution. Fomp > 5
andn(1 — p) > 5, the binomial distribution can be approximated by a nornisttidution.

e Parametersn =1,2,...,0<p <1

e Values:0,1,...,n

e Probability mass functionP(X = k) = (Z) PP (1 —p)n*
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e Expected valuenp
e Variance:np(1 — p)

e Probability generating functior(pt + 1 — p)"

n
e Moment generating functior(p el +1— p>

Geometric distribution

This is a special case of the negative binomial distribytwith » = 1. The geometric dis-
tribution measures the number of independent trials, eatthsuccess probability, until the
first success (successful trial included in the total numb&he geometric distribution has no
memory,i.e, P(X >n+m | X > n) = P(X > m). Itis the only discrete distribution with
this property and is therefore the discrete counterpatietiponential distribution.

e Parameter) < p <1

Values:1,2,...

Probability mass functionP(X = k) = p (1 — p)F~!

1
Expected valuer-
p

1—p

Variance: 5
b

Probability generating functionL

I—(1-p)t

t
Moment generating function#
1-(1-p)e

Hypergeometric distribution

The hypergeometric distribution counts the number of ssee whem elements are selected
without replacemerftom a group ofV elements of whichl/ mean “success” anf — M imply
“failure”.

e ParametersN =1,2,...,n=0,1,2,...,N,M =0,1,2,..., N.
e Values:max(0,n — (N — M)),...,min(n, M)

M\ (N-M

() G

()

Probability mass functionP(X = k) =

M
Expected value:nT

nM (N —M)(N —n)

Variance:
N2 (N —1)
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e Probability generating function:F; [—n, —M, —N; 1 — t] wherey F is a hypergeometric
function.

e Moment generating functions y [—n, —M, —N; 1 — ¢'] where, Fy is a hypergeometric
function.

Multinomial distribution

The multinomial distribution generalises the binomialtidlisition. Whereas a binomial dis-
tribution describes a sequence of independent Bernoyblerxents with each two possible
outcomes (success and failure), the multinomial distidloutlescribes a sequenceromutually
independent experiments with a fixed finite numbefm > 2) of possible outcomes. LeY;
denote the number of occurrences of tthepossible resulti(= 1, ..., m) andp; the probability
that theith possible result occurs in one experiment.

Parameterso =1,2,....m=1,2,...,0<p; <1withpy+...+pp, =1

Values:{(ki,...,km) | ki €{0,1,...,n} (i=1,...,m)and >.7" | k; =n}

n!
N

Probability mass functionP (X1, ..., X)) = (k1, ..., kn)) = M

km
N Vists

Vector of expected valuesnpy, . .., npnm,)

Covariance matrix: C\X;, X;) = —np;p; (i # 7), Var(X;) = np; (1 — p;)

Probability generating function(Z Di t,-)
=1

m n
Moment generating function(Z i eti>
i=1

Negative binomial distribution

This distribution counts the total number of independentnBelli experiments with equal suc-
cess probabilityp that is necessary to arrive atsuccessful experiments (the total number in-
cluding therth success). ItJ; (i = 1,...r) are mutually independent and all geometrically
distributed with parametey, thenX = ', U; has the negative binomial distribution with
parameterp andr.

Parametersd < p <1,r=1,2,...

Values:r,r +1,...

k-1
r—1

Probability mass functionP(X = k) = < > pr(1—p)kT

Expected value’
p

(1-p)

. T
Variance: 5
p
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-
¢ Probability generating functior{ﬁ)

r
. . et
e Moment generating function| —
1 p)e

Poisson distribution

This important distribution is often used to describe cewitnumber of events that occur within
a fixed time or space unit. As such, it is the building blockief so-called Poisson process. For
A > 15, the Poisson probabilities are well approximated usingritienal distribution. The
binomial distribution withn — oo andnp = A fixed converges (in distribution) to a Poisson
distribution with parametek.

e Parameter) > 0

Values:0, 1, ...

_/\)\k
k!

Probability mass functionP(X = k) =e

Expected valueA

Variance:\

Probability generating function:(t = 1)

t
e Moment generating functionA (€ — 1)

Uniform distribution (discrete)

The discrete uniform distribution should not be confusethhe continuous uniform distribu-
tion. The uniform distributions are sometimes also callechbgeneous distributions.
e Values:0,1,...,n

1
n+1

Probability mass functionP(X = k) =

Expected value%

n(n+2)

Variance:
12

. : . 1 — ¢t
Probability generating function——7M——

(n+1) (11

1 — et(n + 1)
Moment generating function:
(n+1)(1—eb)
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Appendix E

Continuous Probability Distributions

This appendix contains an overview of common continuousibiigions, in alphabetical order.
For more information on the distributions discussed in thapter, we refer to [23] and [24].
Some expressions involve the Gamma function. This functiaefined for positiver as

'(x) :/ ettt tat
0
Useful properties of the Gamma function are
e I'(n + 1) = n! for non-negative integet (n > 0)
e '(z+1)=zI(x)
o I'(3) =7

The second property also defines the Gamma function for imegabn-integetc.

Beta distribution

This distribution appears when studying the order statisti a sample from a uniform random
variable. If X is beta distributed with integer parameterand 3, thenP(X < t) = P(a <
Y <a+ (—1), whereY is binomial with parameters = o+  — 1 andp = ¢.

e Parameterse > 0,6 > 0

e Values:(0,1)
x0T —g)Bt . . ,
e Density: whereB(«, ) is the Beta function defined by
B(a, 3)
['(a)D(B) /1 -1 6-1
B(a, ) = ——2> = (1= d
(a, 8) ot /), " (I—y)"  dy

Expected value: a
o+

af
(a+B+1)(a+5)>

Characteristic functionM («, a+(, it), wherelM is a confluent hypergeometric function.

Variance:
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Cauchy distribution

The ratio of two independent normally distributed randomalaes with zero mean is Cauchy
distributed. The Cauchy distribution with = 1 andf = 0 coincides with the Studerit
distribution with one degree of freedom.

e Parametersi > 0, —co < 0 < o0

Values: (—o0, o0)
1

(5]

Expected value: does not exist

Density:

TA

Variance: does not exist

e Characteristic functione?*? — [t[A

x2-distribution

The x2-distribution is characterised by one parameter, denotd hyn, and known as the
“degrees of freedom”. Notatiory2. The name of the2-distribution is derived from its relation

to the standard normal distribution: 4 is a standard normal random variable, then its square
X = Z%is y? distributed, with one degree of freedom.Xf arey? distributed, and mutually
independent, then the sul = ). X; is x2 and the parameter (degrees of freedom) is the sum
of the parameters of the individual;. The y2-distribution is also a special case of the Gamma
distribution, witha = v/2 and A = 1/2. The x2-distribution is of great importance in the
Analysis of Variance (ANOVA), contingency table tests, @ubdness-of-fit tests.

e Parametersy =1,2,...

Values: (0, o)

o—/2 1 (v—2)/2
21°T(v/2)
Expected valuer

Density:

Variance:2v

e Characteristic function(1 — 2it)~*/?

Erlang distribution

This is a special case of the Gamma distribution for posititeger values ofv. It measures the

time until thenth event in a Poisson process.Xi is Erlang distributed with parametetsand A

and if X5 is Erlang distributed with parametersand), and if X; and X, are independent, then

X1+ Xs is Erlang distributed with parametets-m and\. Forn = 1, the Erlang distribution is

the exponential distribution. IX; are mutually independent and exponentially distributetth wi
n

intensity A, thenz X; is Erlang distributed with parametersand A\. Sometimes? = 1/ is

=1
used as parameter.
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Parametersn =1,2,...,A >0

Values: (0, co)
l,n—l ANe™ Ax
(n—1)!

Density:

Expected valueg

. n
Variance: 2

—n
Characteristic function<1 —1 %)

Exponential distribution

This is a special case of both the Gamma and the Weibull bligibins. The exponential distri-
bution has the lack-of-memory property, in the sense lHa > s+t | X > s) = P(X > t).
This property defines the exponential distributioa,, no other continuous random variable has
this property. The times between events in a Poisson praceexponentially distributed. K;

are mutually independent and exponentially distributetth witensity\, then) ;" | X; is Erlang
distributed with parameters and \.

ParametersA > 0; sometimes? = 1/ is used as parameter

Values: (0, co)

Density: \e = AL

Cumulative distribution functioni — ¢~

Expected valuel /A

Variance:1/\?

Characteristic function-———
1—dt/A

F-distribution

The F-distribution, named after the famous statistician Fisisethe distribution of a ratio of
two independenk? random variables. It has two parameters, denotechandn, which are
called the degrees of freedom of the numerator and the deabonj respectively. Notation:
F™. If X is Student-distributed withn degrees of freedom, thexi? is an £} variable. IfU is
x? distributed withm degrees of freedon/ is x? distributed withn degrees of freedom, and
if U andV are independent, theki = [\]//TT: is an F)" variable. The valueg;, are defined by
P (Fg” > ,’;La) = « (so they do not follow the customary definition of quantileByom the
definition of £ as a ratio of twoy? variables, it follows thay™, _ = L/ fh o

n;l—a

e Parametersin =1,2,...,n=1,2,...

e Values: (0, 00)
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r m+n
9 m™m/2 pn/2 w(m/2)—1

e Density: —— =
m Y (n+ ma)(mtn)/2
r(3)r(3g)
e Expected value:n i 5 if n > 3; not defined fom = 1 orn = 2.

2n% (m +n — 2)
m(n—2)%(n—4)

Variance: (n=25,6,...)

Characteristic functionM (%m7 —%n; - z‘t), whereM is a confluent hypergeometric
function.

Gamma distribution

Special cases of the Gamma distribution include thalistribution @ = v/2 and\ = 1/2),
the Erlang distributiond, positive integer) and the exponential distributien=€ 1).

e Parameterse > 0, A > 0. Sometimess = 1/ is used as parameter.

Values: (0, o)

a—1 -z

. €T €
D A —
ensity: A (o)

Expected value%

. (6%
Variance: 2

—Q
L . t
Characteristic functlon<1 —1 X)

Gumbel distribution

The Gumbel distribution is one of the limiting distribut®m extreme value theory.

e Parameters-oo < a < 00,8 >0

e Values:(—o0, 00)

Cumulative distribution functione—¢ (&)

Expected valuex + 5y wherevy = 0,577216 (Euler's constant)

2 2
. ™
Variance: B

Characteristic functione®@? I'(1—ipt)
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Logistic distribution

This distribution is often used in the description of growthves.

e Parameters-oo < a < 00,3 >0

e Values:(—oo, c0)

-1
Cumulative distribution function(l te(@— 0‘)/5)

Expected valuex

2 122
. v
Variance: B

ot
sinhr Gt

Characteristic functione?t

Lognormal distribution

X has a lognormal distribution I X ~ N (u, 0?).

e Parameters:-oo < < 00,0 >0

e Values: (0, c0)
. (Inz — p)?
e Density: e 202
oxV 2T
1 2

+ -0
Expected valuee# 2

9 9
Variance:e2t +20° _ 2u+o

Characteristic function: No closed expression known

Normal distribution

As suggested by its name, the normal distribution is the fingsortant probability distribution

in view of the Central Limit Theorem. NotationX ~ N(u,02). The special casp = 0
ando = 1 is calledstandard normal distributionand a standard normal variable is most often
denoted with the letteZ. The standard normal density is mostly writtenss) and the cumu-
lative distribution function a®(z). It holds that®(z) = 1 — ®(—z). The notationz,, is often
defined as?(Z > z,) = « (so they do not follow the customary definition of quantiles)

e Parameters:-oo < < 00,0 >0

e Values:(—oo, 00)

e Density:

1
o2
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e Expected valueu

e Variance:o?

- o 2 92
e Characteristic functione?#t — (t°0°/2)

Pareto distribution

The Pareto distribution is often used in economical apfitioa, such as the study of household
incomes.

e Parameterse > 0,60 > 0

e Values:(a, )

0
Cumulative distribution functionl — (3)

X
fa .
e Expected valuei9 1 (if o > 1)
2
e Variance: = 1?5(9 —5 (if 6 > 2)

e Characteristic function: No closed expression known

Student ¢-distribution

If Z is a standard normal variable antlis a x? variable withn degrees of freedom, and #

: Z o . .
andU are independent, thenU— has a Student-distribution with parameter. Notation:
n

T,,. The parameter is called the number of degrees of freedom stEmdardised sample mean

3 K ota sample of normal random variables is Studettistributed with parameter — 1.
n

The values,,., are defined by?(7}, > t,,.o) = « (so they do not follow the customary definition
of quantiles).

The Student-distribution is named after the statistician William GelssHis employer, the
Guinness breweries, prohibited any scientific publicabgrts employees. Hence, Gosset pub-
lished using a pen name, Student.

e Parametersn =1,2,...

n+1
(")
2\ (n+1)/2

vnr D (g) (1 + %)

Expected valued if n > 2, not defined fon = 1.

e Values:(—o0, 00)

Density:

n

Variance: 5 (n >3)

n
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ztz

e Characteristic functlon / dz, whereB(a, b) is the Beta
B(1 /2 n/2)

function defined byB(a,b) = (( )I( ))

1+ 207

Jo vt L=yt dy.

Uniform distribution (continuous)

Also known as homogenous distribution. This distributidtod not be confused with the
discrete uniform distribution.

Parameters-co < a < b < o0

e Values:(a,b)
. 1
e Density: ——
b—a
e Cumulative distribution function';f —a
—a
b
e Expected value%
N2
e Variance;: (b—a)
12
eitb o eita
e Characteristic function——
it(b—a)

Weibull distribution

The Weibull distribution often models survival times whéxe tack of memory property does
not hold. The exponential distribution is a special case-(1 and\ = 1/9).

e Parameters3 > 0,9 > 0

Values: (0, co)

Density: % (%)ﬁ_l o~ (2/8)°

Expected valuej " (1 + %)

Variance:§? [P (1 + %) — T2 <1 + %)}

Characteristic function: no closed expression known.
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Acceptance-Rejection Method, 12
antithetic variables, 17

bandwidth, 80
Bernoulli distribution, 82
Beta
distribution, 86
function, 92
Beta function, 86
Binomial distribution, 82
biweight
kernel, 80

Cauchy distribution, 87
Central Limit Theorem, 12
Chebyshev’s inequality, 14
x2-distribution, 87

control variates, 17
correlation, 8

covariance, 8

density function, 7

distribution
Bernoulli, 82
beta, 86
binomial, 82
Cauchy, 87
x?, 87
continuous, 86
discrete, 82
Erlang, 87
exponential, 88
F-, 88
gamma, 89
geometric, 83
Gumbel, 89
hypergeometric, 83
logistic, 90
lognormal, 90
marginal, 8
multinomial, 84
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negative binomial distribution, 84

normal, 90

Pareto, 91

Poisson, 85

standard normal, 90

Studentz, 91

t, 91

uniform
continuous, 92
discrete, 85

Weibull, 92

distribution function, 6
empirical, 11

empirical distribution function, 11
Epanechnikov

kernel, 80
Erlang distribution, 87
estimator

kernel, 80

naive density, 79
expectation, 6
exponential distribution, 88

Function
Beta, 86
Gamma, 86
function
Beta, 92
density, 7
distribution, 6
empirical distribution, 11
joint density, 7
joint distribution, 7
F-distribution, 88

Gamma
distribution, 89
function, 86

Gaussian
kernel, 80
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geometric distribution, 83 Pareto distribution, 91
goodness-of-fit test, 10 partition, 79
Gumbel distribution, 89 Poisson distribution, 85

probability distribution seedistribution
histogram, 79

hypergeometric distribution, 83 quantile, 13
independence, 8 random variable
indicator indicator, 12
random variable, 12 rectangular
inequality kernel, 80

Chebyshev, 14

Inverse Transform Method, 11 sample mean, 9

sample variance, 9
standard normal distribution, 90

joint N
Studentt-distribution, 91

density function, 7
distribution function, 7

test
kernel triangi?:rness-of-flt, 10
biweight, 80 cernel. 80

Epanechnikov, 80

estimator, 80 t-distribution, 91

function, 80 unbiased, 9
Gaussian, 80 uniform distribution
naive, 80 continuous, 92
rectangular, 80 discrete, 85
triangular, 80
variance, 7
Large Deviation principle, 15 sample, 9
Large Deviations theory, 14
Logistic distribution, 90 Weibull distribution, 92
Lognormal distribution, 90 13
2oy

marginal distribution, 8
matching moment technique, 18
mean, 6

sample, 9
method

Acceptance-Rejection, 12

Inverse Transform, 11
moment generation function, 15
multinomial distribution, 84

naive

kernel, 80
naive density estimator, 79
negative binomial distribution, 84
Normal distribution, 90

standard, 90
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