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Abstract: As transistor dimensions of Static Random Access Memory (SRAM) become
smaller with each new technology generation, they become increasingly sus-
ceptible to statistical variations in their parameters. These statistical varia-
tions can result in failing memory. SRAM is used as a buildingblock for
the construction of large Integrated Circuits (IC). To ensure SRAM does not
degrade the yield (fraction of functional devices) of ICs, very low failure
probabilities ofPfail = 10−10 are strived for. For instance in SRAM memory
design one aims to get a 0.1% yield loss for 10Mbit memory, which means
that 1 in 10 billion cells fails (Pfail ≤ 10−10; this corresponds with an occur-
rence of−6.4σ when dealing with a normal distribution).
To simulate such probabilities, traditional Monte-Carlo simulations are not
sufficient and more advanced techniques are required. Importance Sampling
is a technique that is relatively easy to implement and provides sufficiently
accurate results. Importance sampling is a well known technique in statistics
to estimate the occurrences of rare events. Rare or extreme events can be
associated with dramatic costs, like in finance or because ofreasons of safety
in environment (dikes, power plants). Recently this technique also received
new attention in circuit design.
Importance sampling tunes Monte Carlo to the area in parameter space from
where the rare events are generated. By this a speed up of several orders can
be achieved when compared to standard Monte Carlo methods. We describe
the underlying mathematics. Experiments reveal the intrinsic power of the
method. The efficiency of the method increases when the dimension of the
parameter space increases.
The method could be a valuable extension to the statistical capacities of any
circuit simulator A Matlab implementation is included in the Appendix.
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Conclusions: A 0.1% yield loss for 10Mbit SRAM memory, which means that 1 in10 bil-
lion cells fails (Pfail ≤ 10−10) can be efficiently estimated by Monte Carlo
methods that are tuned by Importance Sampling. Importance sampling brings
Monte Carlo to the area in parameter space from where the rareevents are
generated. By this a speed up of several orders can be achieved when com-
pared to standard Monte Carlo methods. The efficiency of the method in-
creases when the dimension of the parameter space increases.The method
can be efficiently implemented in any circuit simulator and can be extended
to allow for adaptive tuning of the rare event density distribution.
A preliminary version of Importance Sampling has been implemented using
NXP Semiconductors’ circuit simulator Pstar with Matlab post processing
and has been demonstrated to work correctly. The method has been applied
to estimate the probability distribution of all 4 SRAM cell parameters: Static
Noise Margin (SNM), Write Margin (WM), Read Current and Bitline Leak-
age Current. A good correspondence of Importance Sampling Monte Carlo
(ISMC) and traditional Monte Carlo simulation was shown forthe relevant
probability range.
For the SNM, it is shown that extrapolation of standard MC simulations over-
estimates the yield. In addition to the benefit of ISMC simulations, it has
been shown that extrapolation of the Gaussian distributions of the individ-
ual SNM ‘eyes’ (specific enclosures of two curves) yields results in accurate
yield estimation. The results of the latter method are in agreement with ISMC
simulations.
The Read Current distribution deviates strongly from a Gaussian distribution
and its distribution can therefore not be extrapolated. Theuse of extrapolated
distributions would result in a pessimistic Read Current and could thus lead
to over-design of the memory cell and/or memory architecture. Importance
Sampling or a technique with similar statistical accuracy is required to make
correct decisions in the design process.
The WM can be estimated with extrapolated Gaussian distributions. Al-
though a small difference of the WM atPfail = 10−10 is observed between
extrapolated MC and ISMC, this difference is not significant.
To determine the SRAM Total Leakage Currents the average current per cell
is multiple by the number of cells in the instance. A guideline is proposed
to guarantee that Bitline Leakage Currents do not compromise SRAM func-
tionality.
We introduced Importance Sampling as a technique to efficiently perform
failure analysis. To prove benefits over standard Monte Carlo we applied
and extended knowledge from Large Deviation theory. The basics of the
method can easily be implemented in a circuit simulator or ina shell proce-
dure around a circuit simulator. For a refined procedure, involving adaptive
sampling, we introduced a new approach. Here some intial tests were made
using 1-dimensional functions. The real benefit must come from problems
with parameters in a higher dimensional space. This will require further re-
search.
Apart from the studied Importance Sampling we also described two addi-
tional variants (weighted importance sampling, regression importance sam-
pling) and indicated how one may reduce the variance of a particular variant
of Importance Sampling by optimizing a parameter.
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Section 1

Importance Sampling: An SRAM
Design Perspective

Importance sampling is a well-known technique in statistics to simulate the occurrences of rare
events [17] (1964). Rare or extreme events can be associatedwith dramatic costs, like in finance
or because of reasons of safety in environment (dikes, powerplants). Recently this technique
also received new attention in circuit design. For instancein SRAM memory design one aims to
get a 0.1% yield loss for 10Mbit memory, which means that 1 in 10 billion cells fails (Pfailure ≤
10−10; this corresponds with an occurrence of−6.4σ when dealing with a normal distribution).
Importance sampling tunes Monte Carlo to the area in parameter space from where the rare
events are generated (corresponding to the tails of the distribution). By this a speed up of several
orders can be achieved when compared to standard Monte Carlomethods. We describe the
underlying mathematics. Experiments reveal the intrinsicpower of the method. The efficiency
of the method increases when the dimension of the parameter space increases.
The method would be a valuable extension to the statistical capacities of Pstar [42]. We also
describe a global description for an efficient implementation in Pstar. A Matlab implementation
is included in the Appendix.

1.1 YIELD AND SRAM YIELD PREDICTION

Static Random Access Memory (SRAM) is one of the main building blocks of any digital in-
tegrated circuit (IC). A large digital IC is often referred to as “System on Chip” (SoC), since
one SoC consists of a large number of system blocks, including memory. For mobile phone
chips, these blocks can include data receivers/transmitters (for GSM, UMTS, Bluetooth, Wifi,
etc) and digital video and audio processing. Together, all of these blocks can add up to several
100 million transistors. Each of these transistors has to operate correctly and has to be correctly
connected to the rest of the system.

Just one single failing transistor leads to a SoC not being 100% correct, and can prevent it
from being sold. The profit a semiconductor company makes is directly related to the fraction
of SoC’s that are functional after fabrication. Therefore,the probability that a transistor fails
has to be very, very small. The fraction of functional chips is commonly referred to as yield.
Typically, the yield of a factory has to be above 70%-80%, before it can profitably operate. For
good products, the yield is above 90%.

SRAM has a higher probability of not functioning than “normal” digital circuitry, since it
is not a purely digital design. The cell is built around a read/write trade-off. It has to be stable
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enough to be read without changing its data, yet unstable enough to be written when desired.

Up to half of the chip area of a SoC can be consumed by SRAM. Since this is a large portion
of the chip, a lot of effort is put into reducing the size of thememory cells. Reducing the size of
the memory cells increases the probability that they fail, because fluctuations in the technology
parameters have a larger impact on smaller transistors. Special care is taken to guarantee that
SRAM does not limit the SoC yield and functions correctly in the presence of these parameter
fluctuations. Currently (45 nm technology), it is assumed that each SoC contains 10 million
memory cells (10 Mbit) and that 1 in 1000 SoC’s does not function correctly because of the
SRAM. This results in a failure probability of the memory cells of Pfail = 10−10.

1.2 IMPORTANCE SAMPLING MONTE CARLO SIMULATIONS

To predict SRAM failure rates, a standard Monte Carlo methodis currently used [14]. This
method uses the physical distributions of the statistical transistor parameters, threshold voltage
Vt and (current) amplification factorβ, to randomly introduce variations to each transistor. Both
Vt andβ have a Gaussian distribution. The simulator randomly drawsvalues forVt andβ for
each transistor, based on the Gaussian distribution. By definition, using a Gaussian distribution
results in most of the trials being drawn from around the meanof the distribution. To estimate
extreme probabilities, the tails of the distribution are more important than the average values.
Consequently, it is desirable to have more samples drawn from the tail of the distribution. A
suitable distribution would be one that has higher probabilities in its tails than a Gaussian distri-
bution. A uniform distribution is one of the simplest examples of such a distribution (Figure 1.1).
Using an importance sampling distributiong as an input for Monte-Carlo simulations leads to
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Figure 1.1: A uniform distribution has higher probabilities in its tails than a Gaussian distribu-
tion.

a distorted distribution of the output parameter. This has to be corrected with post-processing.
Suppose we are doing Monte-Carlo analysis for the Static Noise Margin of SRAM cells. For
each trial, the probability has to be calculated that the drawn value of the input parameter (Vt or
β) would have occurred in the (original) normal distributionf . This is done by integrating the
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distribution function, which forVt gives:

FVt =

∫

binwidth

1

σ
√

2π
exp

[(
Vt − µ

σ

)2

dVt

]
.

Naturally, the original distributionf (so in particular, the parametersµ andσ) has to be known
to be able to do this. The binwidth is known from the uniform distribution, as is shown in
Figure 1.2. For 1 trial, the binwidth isVtrange/N , withN the number of trials. So each trial has to

g(x)

f(x)

binwidth = Vt_range / N

Vt_range

Figure 1.2: The probability that a trial is drawn from the interval binwidth isg(x)binwidth. For
1 trial, the binwidth isVtrange/N , withN the number of trials.

be corrected with the probability that it would occur if the input parameter (Vt) were normally
distributed.

P (SNMtrial) = f(Vt)
1

N

1

g (Vt)
= f (Vt) · Vtrange/N.

To make the distribution for SNM, a number of bins has to be defined. The probabilities that a
certain combination ofVt’s lead to a certain SNM have to be summed.

P (SNMbin) =
∑

bin

f (Vt) · Vtrange/N =
1

N

∑

bin

f (Vt)

g (Vt)
.

A more formal notation uses indicator functionI to count the number of occurrences in a bint
and expresses the distribution functionFSNM(t):

FSNM (t) =
1

N

N∑

i=1

I{SNM<t}
f (Vti)

g (Vti)
,

where

I{SNM<t} =

{
1 if SNM ≤ t
0 else

.

1.3 APPLICATION OF IMPORTANCE SAMPLING

Figure 1.3 shows the Static Noise Margin (SNM) density function of an SRAM cell, using a
Gaussian sampling distribution (blue) and a uniform sampling distribution (red). Clearly, when
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using a uniform density function, the result is a distorted SNM distribution that covers a much
wider range than the original distribution. The red distribution in Figures 1.3 and 1.4 has to
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Figure 1.3: Static Noise Margin density function of an SRAM cell using a Gaussian sampling
function (blue) and a uniform sampling function (red). The simulations use 50k trials.

be corrected for using a distorted sampling function. Figure 1.4 includes the corrected SNM
distribution (green). As is obvious, the corrected densityshows much more statistical noise
around the mean than the normal SNM density function. This isbasically what Importance
Sampling does. It trades accuracy around the mean for more accuracy in the tails. Since the tails
are more important in this case, this is acceptable behaviour. Figure 1.5 shows the cumulative
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Figure 1.4: SNM density function of an SRAM cell using a Gaussian sampling function (blue),
a uniform sampling function (red) and the corrected SNM distribution (green). The simulations
use 50k trials.

distribution function of the SNM, using a Gaussian samplingfunction (blue) and using a uniform
sampling function (green). Using Importance Sampling, thedistribution extents to much smaller
probabilities than without Importance Sampling. The distributions with and without Importance
Sampling are on top of each other in the higher probability range (down to approximatelyPfail =
10−4). This example shows what Importance Sampling costs and what is can bring: increased
accuracy in the tails of the distribution at the expense of more noise around the mean.
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Figure 1.5: SNM density function of an SRAM cell using a Gaussian sampling function (blue),
a uniform sampling function (red) and the corrected SNM distribution (green). The simulations
use 50k trials. The ”Extrapolated MC” is not discussed here,but will be explained later in the
Sections 5 and 6.
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Section 2

Basic Statistics and Monte Carlo

Monte Carlo sampling is a well-known method to obtain estimates for probabilistic quantities by
simulating appropriate random variables. After a review ofbasic concepts in probability theory
and statistics, this section just summarizes some basic aspects like how many sample points one
must take to assure predefined accuracy. Also, for the normaldistribution N(0, 1) we relate
extreme probabilities to theσ-scale. Finally we will discuss some options for improving Monte
Carlo statistics. For specific items related to statistics using the circuit simulator Pstar we refer
to [41, 43].

2.1 BASIC PROBABILITY THEORY

In this section we will introduce the basic notions of probability theory. In particular, we
will learn about random variables, means, variances, distribution functions, densities, joint
distributions, independence and correlation.

Following common usage in statistics, we will denote randomvariables (theoretical random ob-
jects) with capitals and their realizations (actual observed values) with small letters. A (real)
random variableX can be seen as a real-valued function that assumes values according to a
probability measurep (weighing function)1. Probabilities of the occurrence of values2 are de-
fined as integrals with respect to this measurep:

P (a < X < b) =

∫ b

a
dp(x). (2.1)

It is convenient to have a name and notation for probabilities of the formP (X ≤ b). The
distribution function3 is the function defined by

F (x) = P (−∞ < X ≤ x) = P (X ≤ x). (2.2)

The link betweenp(x) andF (x) is given bydp(x) = dF (x).
Important properties of a random variableX include the mean or expectation

E(X) =

∫ ∞

−∞
x dp(x) (2.3)

1A mathematically more proper way would be to define an abstract sample spaceΩ with an abstract measureπ
on Ω. The random variable is then a map fromΩ to the real line and the probability measurep mentioned above is
then the induced measure ofπ on the real line by this map.

2The statistical jargon is event.
3The full official name is cumulative distribution function.

6 c© TUE Eindhoven University of Technology 2009
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and the variance

Var(X) = E (X − E(X))2 =

∫ ∞

−∞
(x− E(X))2 dp(x). (2.4)

Sometimes it is convenient to expand the square in the definition and write

Var(X) = E
(
X2
)
− (E(X))2 . (2.5)

In case of a discrete-valued random variables these integrals become sums, where the outcomes
are weighted with the corresponding probabilities. Another important class of random variables
is the class of continuous random variables like the normal and uniform distributions. For such
random variables we have the following simplification. The distribution functionF has a deriva-
tive f , called the density. In terms of this density functionf , the above formulas can be explicitly
written as

P (a < X < b) =

∫ b

a
dp(x) =

∫ b

a
dF (x) =

∫ b

a
f(x) dx, (2.6)

E(X) =

∫ ∞

−∞
x f(x) dx, (2.7)

Var(X) =

∫ ∞

−∞
(x− E(X))2 f(x) dx =

∫ ∞

−∞
x2 f(x) dx−

(∫ ∞

−∞
x f(x) dx

)2

. (2.8)

More generally, ifh is an arbitrary function, then one can prove [5] (Chapter 7.2) that

E(h(X)) =

∫ ∞

−∞
h(x) f(x) dx. (2.9)

Note that Formulas (2.7) and (2.8) correspond to the specialcasesh(x) = x andh(x) = (x −
µ)2, respectively, whereµ = E(X). It is also possible to derive the distribution of a transformed
random variable. The easiest way is to work with the distribution function. Ifh is invertible with
inverseh−1 andFX is the distribution function of the random variableX, then the distribution
functionFh(X) of the transformed random variableh(X) equals

Fh(X)(x) = P (h(X) ≤ x) = P (X ≤ h−1(x)) = FX(h−1(x)). (2.10)

Differentiation of this relation yields the density of the transformed random variable.
We now extend this framework to define the joint distributionof two or more random vari-

ables. We illustrate this concept for two random variablesX1 andX2. The joint distribution
function is defined by

FX1,X2(x1, x2) = P (X1 ≤ x1,X2 ≤ x2). (2.11)

If we moreover assume that the random variablesX1 andX2 are continuous, then the joint
density is defined as

fX1,X2(x1, x2) =
∂2

∂u∂v
FX1,X2(u, v)

∣∣∣∣
u=x1,v=x2

. (2.12)

As a consequence, we have the following generalization of (2.6):

P (a1 ≤ X1 ≤ b1, a2 ≤ X2 ≤ b2) =

∫ b2

a2

∫ b1

a1

fX1,X2(x1, x2) dx1 dx2. (2.13)
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We may recover the marginal (one-dimension) distribution and density function ofX1 by inte-
grating outX2 (and vice-versa, of course):

FX1(x1) = FX1,X2(X1 ≤ x1,−∞ < X2 <∞),

fX1(x1) =

∫ x1

−∞
fX1,X2(x1, x2) dx2.

The above notions allow us to define independence. Two randomvariables are said to be inde-
pendent if

FX1,X2(x1, x2) = FX1(x1)FX2(x2) for all x1 andx2 (2.14)

or equivalently (ifX1 andX2 are continuous)

fX1,X2(x1, x2) = fX1(x1) fX2(x2) for all x1 andx2. (2.15)

We now define the notion of correlation. We will see that correlation and (in)dependence are
closely related, but not exactly the same. In order to define correlation we first need multivariate
notion of mean and variance. There is a straightforward multivariate notion of mean. The
multivariate generalization of the notion of variance is less straightforward. The covariance of
X1 andX2 is defined as

Cov(X1,X2) = E ((X1 − E(X1)) (X2 − E(X2))) . (2.16)

Note that ifX1 = X2, then (2.16) reduces to (2.4). It is often convenient to scale (2.16) to the
interval [−1, 1]. ThecorrelationbetweenX1 andX2 is defined as

Cor(X1,X2) =
Cov(X1,X2)√

Var(X1)Var(X2)
. (2.17)

It follows from the Cauchy-Schwarz inequality for theL2 integral inner product that the corre-
lation is indeed a number between−1 and1. The random variables are said to beuncorrelated
if Cov(X1,X2) = 0 or equivalentlyCor(X1,X2) = 0. It follows from expanding the brack-
ets in (2.16) that yet another equivalent way of expression thatX1 andX2 are uncorrelated is
thatE(X1X2) = E(X1) E(X2). Writing out the definition of expectations, we easily see that
if X1 andX2 are independent, then they are also uncorrelated (and hence, if there is non-zero
correlation, then there must be dependence). The converse is not true. An easy counterexample
is takingX1 as a zero mean normal variable andX2 = X2

1 . Then an easy calculation shows
that Cov(X1,X2) = 0, but obviouslyX1 andX2 are dependent. However, ifX1 andX2 are
jointly normally distributedi.e., their joint distribution function is bivariate normal, then a zero
correlation implies independence.
There are many well-known classes of probability distributions like the normal distribution and
the uniform distribution. We refer to the Appendix for basicfacts about the most common prob-
ability distributions.

2.2 BASIC STATISTICAL THEORY

In this section we introduce the basic statistical concepts. In particular, we will discuss
estimators, parameters, unbiasedness, efficiency.

The previous section described the basic probabilistic framework. We now turn to the statistical
side of it. In practice one often uses classes of probabilitydistributions like the normal distri-
butions. Such classes depend on one or more parameters. It isthe task of statistics to choose
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and validate choice of classes of probability models and given such a choice, to extract as good
as possible information on these parameters from data. AssumeN independent identically dis-
tributed observationsXk, k = 1, . . . , N (such a set of random variables is called sample in
statistics). We denote their common mean and variance byµ andσ2, respectively. The (sample)
meanµ̂N

4 is defined by

µ̂N =
1

N

N∑

k=1

Xk. (2.18)

It is sometimes useful to compute the sample mean sequentially according to the recursive for-
mula

µ̂N =
1

N
((N − 1)µ̂N−1 +XN ) . (2.19)

Sinceµ̂N depends on the random sampleX1, . . . ,XN , it is a random variable too. A random
variable (or random vector in a multidimensional setting) like µ̂N that is constructed to get an
idea of a theoretical, unknown parameter (hereµ) is called an estimator. The observed value of
an estimator is called estimate (hence, an estimate is a number or in a multidimensional setting
a vector). Note the difference between the daily use of the verb estimate and the statistical
use here. For any sample from a distribution with a finite mean, the estimator is always (i.e,,
not depending on the actual probability law of theXi’s as long as all expectations are finite)
unbiased, meaning,

E (µ̂N ) = E

(
1

N

N∑

k=1

Xk

)
=

1

N

N∑

k=1

E (Xk) =
1

N
Nµ = µ. (2.20)

The expectation shows whether there is a systematic deviation from the true, unknown mean. In
order to assess the accuracy (fluctuations) of an estimator,we need to consider the variance too

Var (µ̂N ) = Var

(
1

N

N∑

k=1

Xk

)
=

1

N2

N∑

k=1

Var (Xk) =
1

N2
Nσ2 =

σ2

N
. (2.21)

The ideal estimator is unbiased (expectation equal to the target parameter) with minimal vari-
ance. The statistical literature yields results to derive estimators and to check whether they have
minimal variance (Cramér-Rao Lower Bound, seee.g, [3, Chapter 9]).

If Y is a random variable, then expansion of brackets in the definition Var(Y ) = E(Y −
E(Y ))2 yields thatE(Y 2) = Var(Y ) + (E(Y ))2 = σ2 + µ2. Hence,

E

(
N∑

k=1

(Xk − µ̂N )2

)
= E

(
N∑

k=1

(
X2

k − 2µ̂NXk + µ̂2
N

)
)

= E

(
N∑

k=1

X2
k −N µ̂2

N

)

=

N∑

k=1

(
µ2 + σ2

)
−N

(
µ2 +

σ2

N

)
= (N − 1)σ2.

(2.22)

We now introduce thesample variancêσ2
N as estimator for the varianceσ2 (in the statistical

literature the sample variance is usually denoted byS2)

σ̂2
N =

1

N − 1

N∑

k=1

(Xk − µ̂N )2 . (2.23)

4In statistics, this estimator is usually denoted asXN . The common usage is to use Greek letters only for
theoretical, true quantities like the mean and variance.
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The use ofN − 1 instead ofN is explained by the following consequence of (2.22)

E
(
σ̂2

N

)
=

1

N − 1
E

(
N∑

k=1

(Xk − µ̂N )2

)
=

1

N − 1
(N − 1)σ2 = σ2. (2.24)

Clearly σ̂2
N is unbiased. Note that unbiasedness of the sample variance does not hold for its

square root, the sample standard deviation. In generalE (σ̂N ) 6= σ. From the recursion (2.19)
we observe that

(N − 1)(µ̂N − µ̂N−1) = XN − µ̂N , (2.25)

N(µ̂N − µ̂N−1) = XN − µ̂N−1. (2.26)

With this we obtain a practical recursive formula for̂σ2
N , which can be viewed as a parallel to

the recusrion for mean values (2.19)

σ̂2
N =

N − 2

N − 1
σ̂2

N−1 +
(XN − µ̂N )(XN − µ̂N−1)

N − 1
. (2.27)

All formulas presented so far are valid for arbitrary distributions as long as all integrals are finite.
In case a distribution for the sampleX1, . . . ,XN is known, then one may obtain more specific
results. For example, if the sample is from a normal distribution with meanµ and varianceσ2,
then the sample mean is again normally distributed with meanµ and varianceσ2/N (cf. (2.20)

and (2.21)), while the sample variance(N − 1)σ̂2
N/σ

2 has aχ-squared distribution withN − 1
degrees of freedom. This yields the extra information

Var
(
σ̂2

N

)
=

σ4

(N − 1)2
Var

(
(N − 1)σ̂2

N

σ2

)
=

σ4

(N − 1)2
2 (N − 1) =

2σ4

N − 1
.

One may also prove under normality thatE (σ̂N ) is a constant timesσ, where the constant
depends on the sample sizeN but not on the meanµ.

There are several ways to check whether a sample follows a given class of probability distri-
butions. There are graphical checks like quantile-quantile plots (for normal distributions, this is
often called the normal probability plot), but also so-called goodness-of-fit tests. For the normal
distributions, there are dedicated tests like the Shapiro-Wilks test (seee.g., [18, Section 7.2.1.3]).

We now present an example of an estimator for a parameter which is not related to means
and variances. Here we sample from a uniform distribution onan interval[0, θ], where the right-
end of the interval is unknown and must be estimated from samplesX1, . . . ,XN . An obvious
estimator here iŝΘ := max (X1, . . . ,XN ). It follows from independence that

FbΘ(x) = P (max (X1, . . . ,XN ) ≤ x) = P (X1 ≤ x) . . . P (XN ≤ x) = (x/θ)N for 0 ≤ x ≤ θ.

Hence,fbΘ(x) = F ′
bΘ(x) = N

(
x
θ

)N−1 1
θ for 0 ≤ x ≤ θ and thus

E
(
Θ̂
)

=

∫ θ

0
x fbΘ(x) dx =

∫ θ

0
xN

(x
θ

)N−1 1

θ
dx =

∫ θ

0
N
(x
θ

)N
dx =

N

N + 1
θ.

It now immediately follows that̃Θ := N+1
N Θ̂ is an unbiased estimator forθ

E
(
Θ̃
)

=
N + 1

N
E
(
Θ̂
)

=
N + 1

N

N

N + 1
θ = θ.
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It is not surprising to see thatmax (X1, . . . ,XN ) is systematically underestimatingθ, but it
is surprising that there is a factor depending on the sample size N only that may be used to
compensate for this.

There is a huge amount of literature on estimation theory. Weonly briefly mention that there
are systematic approaches for developing estimators (Maximum Likelihood, moment methods,
entropy methods). Maximum Likelihood is popular because itis asymptotically optimal in the
sense that asymptotically ML estimators are unbiased and have minimum variance. There are
also methods to investigate for finite sample sizes whether an unbiased estimator has minimal
variance (Cramér-Rao lower bound for variances, see [3, Chapter 9], Lehmann-Scheffé theorem,
see [3, Chapter 10]).

We conclude this section with an example of an estimator for afunction rather than a param-
eter. The empirical distribution function of a sampleX1, . . . ,XN is the estimator

FN (x) =
1

N
{#i | Xi ≤ x} =

1

N

N∑

i=1

I{Xi≤x}. (2.28)

In fact, the empirical distribution function is the distribution function of the discrete probability
distribution (see also Appendix D) with masses1/N at the pointsx1, . . . , xN . It is easy to see
thatN FN (x) ∼ Bin(N,F (x)) (a binomial distribution withN trials and success probability
F (x)), from which it directly follows thatFN (x) is an unbiased estimator forF (x) for any
distribution functionF . The famous Glivenko-Cantelli Theorem shows that the empirical distri-
bution function uniformly converges to the true distribution functionF of theX1, . . . ,XN (NB:
sup is a generalized form ofmax):

lim
N→∞

sup
x∈R

|FN (x) − F (x)| = 0.

The empirical distribution function is implicitly playingan important role in Monte Carlo simu-
lations. MATLAB offers the procedurescdfplot andecdf to plot and compute the empirical
distribution function.

2.3 GENERATION OF RANDOM VARIABLES

In this section we briefly describe how to generate non-uniform random variables. In
particular, we discuss the Inverse Transform Method and Acceptance-Rejection Method.

In a Monte Carlo simulation the valuesXk must be randomly chosen according to some distri-
bution density functionf . There are several general approaches to achieve this.

For continuous distributions the distribution functionF (x) =
∫ x
−∞ f(u) du is strictly in-

creasing and thus invertible. In practice one starts with a sampleY1, . . . , YN taken uniformly
from [0,1]. By settingXk := F−1(Yk) one obtainsP (Xk < x) = P (F−1(Yk) < x) = P (Yk <
F (x)) = F (x). Thus theXk are chosen according to the density functionf . This procedure
(usually referred to as the Inverse Transform Method) workswell if there is a closed-form ex-
pression for the distribution functionF (like for the exponential distribution with distribution
function1− exp(−x/θ). Numerical inversion should be avoided, since we then have no control
on the obtained distribution function. Especially when oneis interested in far-away tails like in
SRAM simulation, it is very dangerous to use numerically inverted distribution functions. For a
normal density functionf ≡ N(µ, σ), f(x) is defined by

f(x) =
1√
2πσ

e−
1
2

(x−µ)2

σ2 . (2.29)
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Generating a normal density functionf(x) can be done by an efficient version of the Box-Muller
method [7] (see also [6] and [18]). The monographs [1], [13] and [46] are good general sources
for simulation from the statistical point of view. The monograph [6] is a thorough treatment of
simulation geared towards using large deviation theory forrare event simulation.

A nice method is theAcceptance-Rejection Method. It assumes knowledge of a majorant
function5 q with q(z) ≥ p(z) and known integral valueI =

∫
q(z) dz. Thenq̃(z) = q(z)

I is also
a probability density function. The procedure takes each time two random valuesZ andY with
Z according tõq andY according to a uniform density on[0, 1]. Then

{
accept z if 0 < y < p(z)

q(z)

reject z if 0 < p(z)
q(z) < y < 1 .

(2.30)

Whenz is accepted takeXk = z, otherwise repeat the procedure. This method is very gen-
eral and applies to many distributions (especially distributions with bounded densities and finite
support), but the drawback is that it may not be very efficient.

A good library for random generators is provided by [50] which is based on [36]. For
further reference see also [35]. The StatLib website (http://www.lib.stat.cmu.edu )
also provides many algorithms.

2.4 MONTE CARLO SIMULATION

In this section we show the basics of Monte Carlo simulation.We show how to obtain
estimates of probabilities by generating random variables. We discuss ways to determine
the minimally required number of simulation runs, in partic ular using the Central Limit
Theorem, Chebyshev’s inequality and Large Deviation Theory.

In this section we explain the basic limit theorems in probability theory that make Monte Carlo
simulations work. The aim with Monte Carlo is to take samplesX1, . . . ,XN and to estimatêµ
andσ̂. A basic question then is how accurate these estimations are. Also by checking if for a set
A Xk ∈ A one can estimateP (A). WhenA = (−∞, x) one estimatesP (X < x).
Assume thatX1, . . . ,XN are independent, identically distributed random variables with finite
meanµ and varianceσ2. This setup is more general than it looks at first sight. Of course, sam-
pling from a given well-known probability distribution is included (e.g., the uniform distribution
on an interval). The setup also allows probabilities of events by choosing

Xi = I{Yi∈A} =

{
1 if Yi ∈ A

0 if Yi 6∈ A.

for given samplesY1, . . . , YN from a given probability distribution and a setA (e.g., the setA
may be a one-sided interval(−∞, t) or the complement of a specification interval(LSL,USL)6).
Random variables likeXi are called indicator random variables and they have a Bernouilli dis-
tribution (see also Appendix D). The mean of these last indicator random variables is the prob-
ability P (A) = P (Y ∈ A). The Central Limit Theorem says that the standardized sumXi

converges in distribution to a standard normal distribution, i.e.,

lim
N→∞

P

(∑N
i=1 Xi −Nµ

σ
√
N

≤ x

)
= lim

N→∞
P

(
µ̂N − µ

σ/
√
N

≤ x

)
= Φ(x), (2.31)

5A majorant functiong of a functionh has values such thatg(x) ≥ h(x).
6Lower Specification Limit and Upper Specification Limit, respectively.
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α 10−12 10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

zα 7.03 6.71 6.36 6.00 5.61 5.20 4.75 4.26 3.72 3.09 2.33 1.28

Table 2.1: Typical values of quantiles of the standard normal distribution (σ-scale).

whereΦ(x) =
∫ x
−∞

1√
2π
e−

y2

2 dy is the cumulative distribution function of the standard normal
distribution,e.g., the normal distribution with mean 0 and variance 1. In fact,this theorem holds
under much weaker conditions, but this is usually not important when performing simulations.
Note thatΦ is monotonically increasing and that, because of the symmetry of Φ(x) around0,
we haveΦ(−x) = 1 − Φ(x).

The Central Limit Theorem yields that we may use the following approximative confidence
interval forµ. LetZ be a standard normal variable. In the sequel we will assume thatα < 1/2.
We definezα to be the unique number such thatP (Z > zα) = 1−Φ(zα) = α. Note thatzα > 0
andP (|Z| > zα) = 2Φ(zα) = 2α. To give a feeling for the values thatzα assumes for typical
values ofα, we provide indicative values in Table 2.4. Combining this notation with (2.31), we
obtain

lim
N→∞

P

(
−zα/2

σ√
N
< µ̂N − µ < zα/2

σ√
N

)
= lim

N→∞
P

(
−zα/2 <

µ̂N − µ

σ/
√
N

< zα/2

)

= lim
N→∞

P
(
−zα/2 < Z < zα/2

)
= 1 − α.

If we wish to estimateµ within absolute accuracyε with 100(1 − α)% confidence, thenN ≥
z2
α/2 σ

2/ε2. This result is not useful in practice, since we usually do not know σ. Although
(2.31) also holds withσ replaced bŷσN (this is not trivial, it requires Slutsky’s Lemma ([3,
Section 7.7])), this only helps a posteriori.

In the special case of indicator random variables, we may usethe following approach. Here
we exploit an explicit expression forσ. We writep = P (X ∈ A) and define

p̂ =

∑N
i=1 Xi

N
=

#{i | Yi ∈ A}
N

. (2.32)

Note thatNp̂ ∼ Bin(N, p), i.e.,Np̂ is binomially distributed withN trials and success proba-
bility p (see Appendix D). Hence,

E(p̂) =
1

N
Np = p, (2.33)

Stand. dev(p̂) =
1

N

√
Np(1 − p) =

√
p(1 − p)

N
. (2.34)

Since a binomial distribution is a sum of independent Bernoulli random variables, the Central
Limit Theorem yields

P (|p̂ − p| > ε) = P


 |p̂ − p|√

p(1−p)
N

> y


 ≈ 2Φ (−y) , (2.35)

wherey = ε/

√
p(1−p)

N . We need to solveN from the inequality2Φ (−y) ≤ α, whereε and
α determine the required accuracy. Using the definition ofzα from above, we obtainN ≥
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p (1 − p)
(

zα/2

ε

)2
. This lower bound forN cannot be used directly, since we do not knowp.

Before we suggest three approaches to overcome this problem, let us look at a simple numerical
example to get a feeling for the order of magnitude ofN in relation top andα. Forα = 0.05,
we havezα/2 ≈ 2. We consider the following cases forε = νp, whereν = 0.1.

1. If there is an “intelligent guess”p∗ for p (order of magnitude), then use

N ≥ p∗ (1 − p∗)
(zα/2

ε

)2

=
1 − p∗

p

(zα/2

ν

)2

. (2.36)

We get thatN ≥ 4
0.01

1−p
p . Forp = 10−10, we haveN ≥ 4 .1012.

2. If there is no “intelligent guess” forp, then use worst-casep = 1/2 (note that because of
symmetry,p(1 − p) is maximal forp = 1/2), so

N ≥ 1

4

(zα/2

ε

)2
=

1

4

(
zα/2

νp

)2

. (2.37)

For the extreme example above, this would yieldN ≥ 1022.

3. If the above returns a value ofN for which the Central Limit Theorem does not apply,
use Chebyshev’s inequality (2.38) for suitableU . This inequality is valid for any random
variableU with finite meanµ and varianceσ2:

P (| U − µ |> ε) ≤ σ2

ε2
. (2.38)

Proof of (2.38):

σ2 = Var(U) =

∫

R

(u− µ)2dp(x)

≥
∫

{|u−µ|>ε}
(u− µ)2dp(x) ≥ ε2

∫

{|u−µ|>ε}
dp(x) = ε2 P (|u− µ| > ε).�

However, the Chebyshev inequality is very conservative. Itmay easily yield unnecessarily
large values ofN . We takeU =

∑N
i=1 Xi/N with Xi Bernouillily distributed with

success changep∗. Hence we haveµ(Xi) = p∗, σ2(Xi) = p∗(1 − p∗) andµ(U) = p∗

andσ2(U) = 1
N p

∗(1 − p∗). RequiringP (| U − µ |> ε) < α, we obtain

σ2(U)

ε
≤ α ⇔ p∗(1 − p∗)

Nε2
⇔ N ≥ p∗ (1 − p∗)

α ε2
or N ≥ 1

4α ε2
=

1

4α ν2 p2
.

(2.39)
In our extreme example above, it requires thatN ≥ 1024.

In all cases above, because of the required relative accuracy ε = νp, we see thatN → ∞ when
p ↓ 0.

We now present a method to obtain more refined bounds. This method is based on the so-called
Large Deviations theory developed by Cramér and refined by,among others, Ellis and Gärtner
(see [6] for a detailed exposition). We will apply this method in Section 3 as well.
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Let ε = νp > 0 be the wantedaccuracy, for example if we want our approximation to
coincide withp in the first fourrelevantdigits, we have to consider the probability of failure

P

(∣∣∣∣∣
1

N

N∑

k=1

Xk − p

∣∣∣∣∣ > νp

)
,

where we may chooseν ∼ 10−4 or any other typical value.
As a short summary of the Large Deviations theory: LetPN the probability distribution of

the random variable

ZN :=
1

N

N∑

k=1

Xk,

where theXk are independent indicater random variables that test whether Xk is in some set
A. Thus theXk have a Bernouilli distribution with success changep. ThenPN = PN (A) and
µ(PN ) = p.
The sequence of these probability distributionsPN satisfy aLarge-Deviation Principle mean-
ing that there is some‘rate function’ I : R → R ∪ {−∞,+∞} such that

(i) lim supN→∞
1
N lnPN (C) ≤ − infx∈C I(x) for all closed subsetsC ⊂ R,

(ii) lim infN→∞
1
N lnPN (G) ≥ − infx∈G I(x) for all open subsetsG ⊂ R.

The name rate function will be explained later, after (2.44).
Let X be a Bernouilli variable with success changep. The logarithmic moment generating
functionfor X (see Appendix D) is given by

ln
(
E
[
eλX

])
= ln

(
q + eλp

)
,

where as usualq = 1 − p. We define the following function

J(x, λ) = λx− ln
(
E
[
eλX

])
(2.40)

= λx− ln(q + eλp) (2.41)

wherex, λ ∈ R. We note that an optimum valueλ∗ must satisfy

∂J

∂λ
= x− peλ

∗

q + peλ∗ = 0, hence

λ∗ = ln(
qx

p(1 − x)
), and

peλ
∗

=
qx

1 − x
, and q + peλ

∗
=

q

1 − x
. (2.42)

In our case, the rate function can be shown to be equal to

I(x) = sup
λ∈R

J(x, λ) = J(x, λ∗) = x ln

(
qx

p(1 − x)

)
− ln

(
q

1 − x

)
, (2.43)

a function which is continuous on the interval(0, 1). Assuming now thatC = [p−νp, p+νp] ⊂
(0, 1) we takeG = R \ C, we obtain from the Large-Deviation principle above that

lim
N→∞

1

N
lnP

(∣∣∣∣∣
1

N

N∑

k=1

Xk − p

∣∣∣∣∣ ≥ νp

)
= − inf

|x−p|≥νp
I(x).
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From the identities

I(x) = x ln

(
q

p

)
− ln q + x lnx+ (1 − x) ln(1 − x),

I ′(x) = ln

(
q

p

)
+ lnx− ln(1 − x),

I ′′(x) =
1

x(1 − x)
,

we see thatI ′′(x) > 0, which implies sthatI ′ is increasing and thatI is convex. Also I(0+) =
− ln(q) > 0 andI(1−) = ln(q/p) ∈ R. ClearlyI can be extended continuously at bothx = 0
andx = 1. FurthermoreI(p) = 0 andI ′(p) = 0. HenceI(p) = 0 is a global minimum. This
implies that actually the infimum ofI on{x : |x− p| > νp} is assumed on the boundary of the
interval [p− νp, p+ νp] (see [6, Appendix A]), hence

inf
|x−p|>νp

I(x) = min{I(p − νp), I(p + νp)}.

On the other hand, simplifying this a bit using Taylor expansion

I(p+ h) = I(p) + hI ′(p) +
1

2
I ′′(p)h2 +O(h3),

which is feasible sinceν is rather small. Here we note that

I ′′(p) =
1

p(1 − p)
=

1

pq
=

N

Var(ZN )
.

We obtain

I(p− νp) =
Np2

2Var(ZN )
ν2 +O(ν3) =

p

2q
ν2 +O(ν3),

I(p+ νp) =
Np2

2Var(ZN )
ν2 +O(ν3) =

p

2q
ν2 +O(ν3).

Thus from part (i) of the Large Deviation Principle, we obtain the so-called binomial case of the
Cramér bound:

P

(∣∣∣∣∣
1

N

N∑

k=1

Xk − p

∣∣∣∣∣ ≥ νp

)
≤ e−N inf|x−p|>νp I(x) ≈ e

− N2p2

2Var(ZN )
ν2

= e
−Np

2q
ν2

, (2.44)

for all N with a possible exception of finitely many.

Remark 1. The upperbound in (2.44) decreases exponentially withN which is better than the
one obtained by the Chebyshev inequality (2.38)

e−
Np
2q

ν2 ≤ α =⇒ N ≥ 2q

pν2
ln(

1

α
). (2.45)

However, one still has thatN is large for small values ofp. If for instancep ∼ 10−3 and
ν = 10−4, thenq ∼ 1 and the exponent is∼ −10−11N/2. For the extreme case discussed
above we haveν = 0.1, p = 10−10 and an upper bound0.05 for the probability in (2.44). The
Large Deviation principle yields thatN ≥ 2 1012 ln(1/0.05) ≈ 6 1012, which is quite close to
the value if we would have an intelligent choice for the unknown p (cf. page 14).
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Remark 2. Part (ii) from the Large Deviation principle states that theexponential bound for
the probability in (2.45) is also valid from below. Thus, in that sense, the bound is sharp and
convergence can not be faster than with the speed given above. Note that the Large Deviation
estimate does not take into account fluctuations of logarithmic ordero(1/N).

Remark 3. The conclusion is that Monte Carlo needs∼ 1
p simulations to obtain an estimate

with a guaranteed relative accuracyν. We also see that an extrak-th decimal inν increasesN
with a factork2.

2.5 IMPROVEMENT OF RESULTS

In this section we describe some ways to improve the basic Monte Carlo Method as de-
scribed in the previous section. We briefly discuss antithetic variables, control variates,
matching moment technique, and stratification.

The Monte Carlo Method of the previous section is the basic form (sometimes called crude
Monte Carlo). There are several general techniques to improve this method. It depends on the
case at hand, whether a given improvement technique can be implemented and is more efficient
(i.e., requires less samples because the variances are smaller) than the original method. In this
subsection we only briefly mention the most important general improvements methods. For
more information, we refer to [1], [7] and [46].

• By using antithetic variables:apart fromX1, . . . ,XN , we also generate another sam-
ple Y1, . . . , YN such thatCov(Xk, Yk) < 0. The rationale behind this method is that
Var(Xk +Yk) = Var(Xk)+Var(Yk)+2Cov(Xk, Yk). Hence, ifCov(Xk, Yk) < 0, then
we may gain in efficiency if this negativity overcompensatesthe effort for generating the
additionalYk. In [7] this is demonstrated for a normal density usingYk = −Xk. More
general, ifXk = G(σX̂k), whereX̂k are normally distributed, than

Xk = G(σX̂k) = G(0) +G′(0)σX̂k + O(σ2).

The mean of the linear term is zero. However, in the Monte Carlo
∑

k Xk sum, the linear
terms will not cancel exactly. By additionally takingYk = G(−σX̂k) into account, the
linear terms do cancel. Then the remaining error really is proportional toσ2.

• By using control variates:Let X̃ look likeX (via a coarse approximation using a limited
MC-run, or from a previously obtained result, and some interpolation) and that it uses
the same probability density functionf asX (when using parameter-dependency this is
automatically satisfied by requiring that̃X andX depend on the same parameters).
Assume that we want to estimateM =

∫
xf(x)dx and that we knowM̃ =

∫
x̃f(x̃)dx̃.

[At first glance this may look strange. However, when dealingwith functions in a pa-
rameter space, things look more natural. Then we haveM =

∫
x(p)f(p)dp andM̃ =∫

x̃(p)f(p)dp. HereX(p) andX̃(p) can be different functions.]
Then usingσ2

Y = Var(Y ) = E[Y 2] − (E[Y ])2 for X(p) and X̃(p) with p distributed
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Y = X − λX̃ + λM̃ we obtain

σ2
X−λ eX+λ fM =

∫
[x− λx̃+ λM̃]2f(x)dx− (E[Y ])2

=

∫
[(x−M) − λ(x̃− M̃) + M]2f(x)dx−M2

=

∫
{(x−M)2 − 2λ(x−M)(x̃− M̃) + λ2(x̃− M̃)2 +

2[(x−M) − λ(x̃− M̃)]M + M2}f(x)dx−M2

= σ2
X − 2λE[(X −M)(X̃ − M̃)] + λ2σ2

eX + 2E[Y −M]M
= σ2

X − 2λγ + λ2σ2
eX , (2.46)

whereγ involves the correlation. Note thatE[Y − M] = 0. The error in the mean of
Xk − λX̃k can be much smaller than inµ. The expression (2.46) has a minimum for
λ = 2γ

2σ2
eX

, resulting in

minλ σ
2
X−λ eX+λ fM = σ2

X − γ2

σ2
eX

≤ σ2
X . (2.47)

This indicates a possible improvement. In practice one takes some chosen values forλ.

• By a matching moment technique:Prescribe the matching momentsm1 =
∫
xF (x)dx

andm2 =
∫
x2f(x)dx (for some, desired, density functionf ). Letµn(X) = 1

N

∑
k X

n
k ,

wheren > 0, be the empirical moments (thusE[µ1(X)] = µ). We consider the trans-
formed quantity

Y =
X − µ1

c
+m1, with (2.48)

c =

√
m2 −m2

1

µ2 − µ2
1

. (2.49)

After also transformingXk to Yk we see thatµn(Y ) = mn for n = 1, 2. Hence, the two
first moments match. Note, however, that theYk are not independent (the transformation
usesµ1 andµ2). This affects Monte Carlo error estimates (the Central Lmit Theorem is
not directlty applicable) and the method may be biased.

• By stratification:Stratification combines randomness with the benefits of a grid.
The basic idea is to partition the space inM blocks Ωm and to sample in eachm-th
block randomly distributed pointsXm

k k = 1, ...,N/M (with N being a multiple ofM ).
Let Mm = |Ωm|−1

∫
Ωm

xf(x)dx be the local mean onΩm. Then the error inµ (now
expressed in a so-called ‘stratified sum’) is

σ2
s =

∑

m

∫

Ωm

[x−Mm]2f(x)dx ≤
∑

m

∫

Ωm

[x−M]2f(x)dx = σ2.(2.50)

Clearly, we needN ≫ 1 trials, which can be rather large, but there always holdsσs ≤ σ.
An interesting option arises if we can obtain a cheapimpressionof the distribution of
theXm

k without actually calculating them. For instance, assume that we know in some
way thatnm hits fall within Ωm, thenN =

∑
m nm, and the localm-th density equals
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fm = nm/N . We can now actually re-sample (and evaluate) only K pointsX̃m
k in each

Ωm and determine

µ̂ =
∑

m

∑

k

X̃m
k

fm

K
. (2.51)

If M×K < N this may become beneficial (for instanceN = 10, 000 andM×K = 250).
The idea can easily be applied in a parameter space that is partitioned inM blocksΩm.
ThenXm

k = X(pm
k ) is the result ofX at distributed parameterspm

k . In these cases the
fm are derived from the densities of the parameter space: indeed, they may be known in
advance, orN ≫ 1 parameterspm

k′ may be generated in advance by a simulation program
and can be made output before actually calculatingXm

k′ = X(pm
k′)

7. Note that also after
obtaining the sampledpm

k -s we may define theM blocksΩm to our convenience. We
easily obtainfm (for instance by using a histogram). After this, we re-sample only K
pointspm

k in eachΩm with M × K ≪ N and evaluateX(.) only at these last sample
pointsXm

k = X(pm
k ) and apply

µ̂ =
∑

m

∑

k

Xm
k

fm

K
. (2.52)

The result is that

– less populated intervals are sampled more;

– more populated intervals are sampled less.

Stratification can easily be combined with Importance Sampling (see below) if we can
obtain an impression of the distribution of theXm

k . The procedure also offers options for
refinement (hierarchically, or by Kriging, etc).

• By importance sampling:Note thatM =
∫
xf(x)

g(x)g(x)dx and calculatêµ = 1
N

∑
k Xk

f(Xk)
g(Xk) .

The error inµ̂, using pointsXk with distributiong, has

σ =

∫ [
x
f(x)

g(x)
−M

]2

g(x) dx . (2.53)

One can thus emphasize areas wherex is large. Details are described in Section 3.

In [7] techniques with control variates, or with antitheticvariables are shown to reduce the error
(an order). Combining the techniques result in further error reduction (half an order). Using
Quasi-Monte Carlo techniques the error is slightly improved in each case, but is much faster
obtained.

7In the circuit simulator Spectre the sampled parameterspm
k′ may be generated with the ‘iterVsValue’ command:

in fact this is a parameter distribution scan.

c© TUE Eindhoven University of Technology 2009 19



TUE-CASA-2009

Section 3

Importance Sampling

When we wish to estimate extreme probabilities of the formP (X < t) using the indicator
random variables like in (2.32), we need a lot of samples becausep is then very small (cf.
(2.36). The reason is that most of ourXk ’s are larger thant and do not directly contribute.
The main idea behind importance sampling is to circumvent this phenomenon by sampling from
another distribution which has high probability to be larger thanc in such a way that we may
conveniently translate the results back to the originally required probability. In this section we
first introduce the theory behind Importance Sampling in Subsections 3.1 and 3.2 and show
explicit examples in Subsection 3.3. In the remaining subsections we describe some variants of
Importance Sampling.

3.1 BACKGROUND OF IMPORTANCE SAMPLING

In this section we describe Importance Sampling, a method toincrease accuracy of simu-
lation by changing the distribution from which is sampled and suitably correcting for this
change.

Suppose we are interested in probabilities of the formp = P (Y < t), whereY follows a
probability distribution with density functionf and distribution functionF . The Monte Carlo
approach of Section 2.4 is based on samplingX1, . . . ,XN from f and using the following
estimator:

FMC(t) =
1

N

N∑

i=1

I{Xi<t} . (3.1)

It follows directly from (2.33) and (2.34) that

Ef

(
FMC(t)

)
= F (t) = p andVarf

(
FMC(t)

)
=

1

N
F (t) (1 − F (t)) =

1

N
p(1 − p). (3.2)

For Importance Samplingwe use an additional probability distribution with densityfunctiong,
sog(x) ≥ 0,

∫∞
−∞ g(x)dx = 1. Clearly, wheng(x) > 0 for x ∈ (−∞, t):

P (Y < t) = F (t) =

∫ t

−∞
f(y) dy =

∫ t

−∞

f(x)

g(x)
g(x) dx. (3.3)

On purpose we changed the dummy variables fromy to x. The above formula should be read as
follows: the first integral is with respect to sampling fromY which densityf , while the second
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integral is weighted sampling from another random variableX with densityg, the weights being
f(X)/g(X). Importance Sampling is based on transforming the above relation into an estimator
in the following way:

F IS(t) =
1

N

N∑

i=1

f(Xi)

g(Xi)
I{Xi<t}, (3.4)

with theXi chosen according to the densityg, rather than tof . Note thatF IS(t) is anunbiased
estimator forP (Y < t):

Eg

(
F IS(t)

)
=

1

N

N∑

i=1

Eg

(
I{Xi<t}

f(Xi)

g(Xi)

)

=
1

N

N∑

i=1

∫ ∞

−∞
I{xi<t}

f(xi)

g(xi)
g(xi) dxi

=
1

N

N∑

i=1

Ef (I{Xi<t})

=
1

N

N∑

i=1

F (t)

= F (t).

Note that this re-sampling may already be a benefit: samplingaccording to a known and simple
g may be more efficient than sampling according to a densityf that involves more calculations.
However, we will now compute the variance of this estimator to study whether it is indeed
more efficient than the crude Monte Carlo presented in Section 2.4. To derive an expression for
Var

(
F IS(t)

)
, we use (2.5) and observe that

Varg

(
I{Xi<t}

f(Xi)

g(Xi)

)
= Eg

((
I{Xi<t}

f(Xi)

g(Xi)

)2
)

− E2
g

(
I{Xi<t}

f(Xi)

g(Xi)

)

=

∫ ∞

−∞

(
I{xi<t}

f(xi)

g(xi)

)2

g(xi) dxi − F 2(t)

=

∫ ∞

−∞

(
I{x<t}

f(x)

g(x)
− F (t)

)2

g(x) dx. (3.5)

SinceXi andXj are independent fori 6= j , we also have thatI{Xi<t} andI{Xj<t} are indepen-

dent. Hence, becauseF (t) =
∫ t
−∞ f(x)dx =

∫∞
−∞ I{x<t}f(x)dx,

Varg

(
F IS(t)

)
= Varg

(
1

N

N∑

i=1

I{Xi<t}
f(Xi)

g(Xi)

)

=
1

N

(∫ ∞

−∞

(
I{x<t}

f(x)

g(x)
− F (t)

)2

g(x) dx

)
(3.6)

=
1

N

(∫ ∞

−∞
I{x<t}

f2(x)

g(x)
dx− 2F (t)

∫ ∞

−∞
I{x<t}f(x)dx+ F 2(t)

∫ ∞

−∞
g(x)dx

)

=
1

N

(∫ ∞

−∞
I{x<t}

f2(x)

g(x)
dx− F 2(t)

)
(3.7)
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Hence

N Varg

(
F IS(t)

)
=

∫ t

−∞

f2(x)

g(x)
dx−

∫ t

−∞
F 2(t)g(x) dx −

∫ ∞

t
F 2(t)g(x) dx

=

∫ t

−∞

(
f(x)

g(x)
− F (t)

)2

g(x) dx + 2F (t)

∫ t

−∞
f(x) dx−

∫ t

−∞
F 2(t)g(x) dx −

∫ t

−∞
F 2(t)g(x) dx −

∫ ∞

t
F 2(t)g(x) dx

=

∫ t

−∞

(
f(x)

g(x)
− F (t)

)2

g(x) dx + 2F 2(t) −

2

(∫ t

−∞
F 2(t)g(x) dx +

∫ ∞

t
F 2(t)g(x) dx

)
+

∫ ∞

t
F 2(t)g(x) dx

=

∫ t

−∞

(
f(x)

g(x)
− F (t)

)2

g(x) dx +

∫ ∞

t
F 2(t)g(x) dx. (3.8)

Here (3.6)-(3.8) are three equivalent formulations. It follows from (3.8) that if one could choose
g(x) = 0 for x > t andf(x)

g(x) = F (t) for x < t (note that this choice ofg indeed yields a density),
then the variance of the estimator would be zero. This is not surprising, since then the estimator
is constant and hence, its variance is zero. In practice we cannot implement this perfect choice,
since it requires knowledge of the quantityF (t) that we are trying to estimate. So preferably
one should haveg(x) ≈ 0 for x > t, and f(x)

g(x) ≈ F (t) for x < t (i.e. constant inx). In order to
achieve this one usually applies an estimate forF (t) and restricts oneself toxµg = E(g(X)), or
one minimizes the normalized standard deviationVar

(
F IS(t)

)
/E
(
F IS(t)

)
.

Note that if f(x)
g(x) ≤ 1 on (−∞, t], then (3.7) implies improvement

∫ ∞

−∞
I{x<t}

f2(x)

g(x)
dx ≤

∫ ∞

−∞
I{x<t}f(x) dx = F (t) ⇒ Varg

(
F IS(t)

)
≤ Varf

(
FMC(t)

)
.(3.9)

For f(x)
g(x) ≤ κ ≤ 1 on (−∞, t] we find

Varg

(
F IS(t)

)
≤ κVarf

(
FMC(t)

)
− 1 − κ

N
F 2(t). (3.10)

This means that the error estimate only slightly improves:σIS
g ≤ √

κσMC
f , which forκ = 0.1

means that not an order is gained. In order to obtain more explicit comparisons in terms of
required sample sizes of the crude Monte Carlo simulation ofSection 2.4 with the Importance
Sampling method of this section, we either have to work on a case by case basis (see Section 3.3)
or to extend the Large Deviation framework of Section 2.4 to the Importance Sampling case (see
Section 3.2).
For literature on Importance Sampling we refer to [8, 20, 21,27, 29, 31, 40, 45, 48, 51].

Remark: In the general setup of importance sampling, it is assumed that the measureµg() in-
duced byg is absolutely continuous with respect to the measureµf () induced byf (to generalize
the positivity condition mentioned above):

µf (A) =

∫

A
f(x)dx = 0 =⇒ µg(A) =

∫

A
g(x)dx = 0. (3.11)

22 c© TUE Eindhoven University of Technology 2009



TUE-CASA-2009

A preferred additional condition is

µf (A) > 0 =⇒ µg(A) > 0, (3.12)

but this is not necessary. However, when one aims to also derive a cumulative probability func-
tion for severalX, this assumption (3.12) becomes of interest, because it allows the re-use of
the same functiong.

Remark: Note that the ratiof(x)
g(x) is in fact a Radon-Nikodym derivative ofµg with respect to

µf (cf. [40]).

3.2 LARGE DEVIATION BOUNDS FOR SAMPLE SIZES IN IM-
PORTANCE SAMPLING

In [40] Importance Sampling is applied to server systems, based on using Exponential Change
of Measure (ECM). ECM is also known as Exponential Twisting,Exponential Tilting, which be-
came popular for rare events in queueing systems. This twisting or tilting is the basic idea hidden
in the Large Deviation approach that we described in Section2.4. We refer to [6] for a detailed
exposition of these ideas in the context of Importance Sampling. We define for convenience the
random variables

Vk := I{Xk<t}
f(Xk)

g(Xk)
. (3.13)

SinceV1, V2, . . . are independent and identically distributed, by the Weak Law of Large Num-
bers, the arithmetic meanAN := 1

N

∑N
k=1 Vk converges toF (t). However,AN is not a

Bernoulli random variable any more.
In the following we considerX having the same distribution asX1,X2, . . . and a corresponding
V = I{X<t}

f(X)
g(X) . The moment generating function ofV equals

Eg

[
eλV

]
=

∫ ∞

−∞
g(x) eλf(x)/g(x) dx

=

∫ t

−∞
g(x) eλf(x)/g(x) dx+

∫ ∞

t
g(x) dx

=

∫ t

−∞
g(x) eλf(x)/g(x) dx+ 1 −G(t),

whereG(t) =
∫ t
−∞ g(x) dx. Letϕ(λ) = ln Ef

[
eλX

]
. Basically we would like to proceed as in

in Section 2.4. However, since we do not know the distribution ofX explicitly, we have to as-
sume something about it. For this time, we will restrict ourselves to simplesufficientconditions
and we will not strive for full generality. Thus letX be distributed according to the distribution
P. We assume:

1. There is nox ∈ R such thatP (X = x) = 1,

2. Ef

[
eλX

]
<∞ for all λ ∈ R,

3. letQλ be the measure given byP with density

ρλ(x) =
eλxf(x)

Ef [eλX ]
(thus

∫
ρλ(x) dx = 1)
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(which is well-defined for allλ ∈ R by (1)) and letYλ be a random variable distributed
according toQλ. We assume that

Eρλ
(Yλ) =

∫
yλρλ(yλ) dyλ =

∫
y
eλyf(y)

Ef [eλY ]
dy <∞

and
Varρλ

(Yλ) = E
[
Y 2

λ

]
− E2

ρλ
(Yλ) <∞,

for all λ ∈ R.

Then,ϕ(λ) is a two times differentiable real function with derivatives

ϕ′(λ) =
Ef [X eλX]
Ef [eλX ]

= Eρλ
(Yλ), ϕ′′(λ) =

Ef [X2 eλX]
Ef [eλX]

− E2
f [X eλX]
E2

f [eλX]
= Varρλ

(Yλ).

If X is not supported by a single point,Var(Yλ) > 0 andϕ is thereforestrictly convex. Let

J(x, λ) = λx− ϕ(λ). (3.14)

As in in Section 2.4 we again consider the ‘rate function’

I(x) = sup
λ∈R

J(x, λ). (3.15)

[I(x) is the so-calledLegendre transformof ϕ]. That implies by [11], Lemma I.4, p. 8 thatI(x),
also is strictly (proper) convex which means that the minimizer ofI is unique (if there is one).
On the other hand, by the very definition ofI, we have

I(x) ≥ J(x, 0) = −ϕ(0) = − ln e0 = 0.

Thus, every valuex with I(x) = 0 must be the unique minimizer ofI. Now let p be as in
Section 2.4. ThenI(p) = 0, since the Strong Law of Large Numbers implies that the empirical
measure of every neighbourhood ofp tends to one. Hence,p is the unique minimizer ofI and
I ′(p) = 0.

We assume for simplicity that the moment generating function exists for all values ofλ ∈ R.
Hence, to compute the supremum in (3.15), we consider

d

dλ
J(x, λ) = x− Eg

[
V eλV

]

Eg [eλV ]
. (3.16)

It seems hopeless to compute an explicit expression as in (2.43) (Bernouilli rate case) for the
rate functionI(x) in this new generality. However, we can try to do an expansionup to second
order aroundp. Therefore, we have to determine the values ofI(p), I ′(p) andI ′′(p), but only
I ′′(p) is non-zero. We observe that

d

dλ
J(x, λ) = 0 =⇒ x = Ψ(λ), where (3.17)

Ψ(λ) =

∫
v evλg(v) dv∫
evλg(v) dv

. (3.18)

We note that

Ψ′(λ) =

∫
evλg(v) dv

∫
v2evλg(v) dv − [

∫
vevλg(v) dv]2

[
∫
eλg(v) dv]2

. (3.19)
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At the right-handside we can recognize an inner-product(1, v) ≡
∫
vevλg(v) dv. By the

Cauchy-Schwarz inequality,(1, v) ≤
√

(1, 1)
√

(v, v) we obtainΨ′(λ) ≥ 0. This implies that
Ψ is invertible and hence (3.17) definesλ = λ(x) = Ψ−1(x). Hence

I(x) = J(x, λ(x)). (3.20)

We note that we can write

x = Ψ(λ) = Ehλ
[V ] , (3.21)

where we defineEhλ
[V ] = Eg

[
V eλV

]
/Eg

[
eλV

]
. Note that this notation as expectation is

justified by defininghλ to be the parameterized densityhλ(z) = eλv(z)g(z) /Eg

[
eλV

]
, with

v(z) = I{z<t}
f(z)
g(z) . Note thathλ=0(z) = g(z).

Thus, to calculate the first (total) derivative ofI(x), we differentiate (3.20) with respect tox
and substitute (3.17) to obtain

I ′(x) = λ(x) + xλ′(x) − λ′(x)
Eg

[
V eλ(x)V

]

Eg

[
eλ(x)V

] = λ(x) + λ′(x) (x− Ehλ
[V ]) = λ(x). (3.22)

For the second derivative ofI(x), we first implicitly differentiate (3.17) with respect tox which
yields1 = ∂

∂λ (Ehλ
(V )) λ′(x). The expectation in this expression can be rewritten as

∂

∂λ
(Ehλ

(V )) =
∂

∂λ

Eg

[
V eλV

]

Eg [eλV ]
=

Eg

[
V 2eλV

]

Eg [eλV ]
−

E2
g

[
V eλV

]

E2
g [eλV ]

= Ehλ
(V 2)−E2

hλ
(V ) = Varhλ

(V ) .

Substituting these expressions when differentiating (3.22) with respect tox, we obtain

I ′′(x) = λ′(x) =
1
∂x
∂λ

=
1

∂
∂λ (Ehλ

(V ))
=

1

Varhλ
(V )

.

As we explained above,p is the unique minimizer ofI. Sincep is also an internal point, we
obtain that0 = I ′(p) = λ(p). Hence,

I ′′(p) =
1

Varhλ(p)
(V )

=
1

Varhλ=0
(V )

=
1

Varg (V )
. (3.23)

Similar as in Section 2.4 for deriving (2.44) we consider

I(p ± νp) = I(p) + νpI ′(p) +
1

2
ν2p2I ′′(p) + O(ν3p3)

=
1

2
ν2p2I ′′(p) + O(ν3p3)

=
ν2p2

Varg (V )
. (3.24)

We obtain the following bound (3.25) for the convergence of the importance samplingwhich
again stresses the important role played by the variance butwhich is also more accurate than the
Chebyshev inequality (2.38)

P

(∣∣∣∣∣
1

N

N∑

k=1

Vk − p

∣∣∣∣∣ > νp

)
≤ exp

(
−N inf

|x−p|>νp
I(x)

)
≈ exp

(
− Np2

2Varg(V )
ν2

)
, (3.25)
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for all sufficiently largeN . Indeed, ifg(x) ≡ 1 thenV = Z as in (2.44) andVarg (V ) =
Var (Z) = 1

pq . Clearly we generalized (2.44).
As a corollary we can calculate the relative efficiency between crude Monte Carlo and impor-
tance sampling. Indeed, let some error probabilityα > 0 be fixed. That means, we seek a bound
for the numberN of runs in the simulation such that

P

(∣∣∣∣∣
1

N

N∑

k=1

Vk − p

∣∣∣∣∣ > νp

)
≤ α.

Using(2.44) and (3.25), we thus obtain the following conditions for the number of runs in the
crude Monte Carlo (NMC) and the importance sampling (NIS) settings, respectively

α = exp[−NMCp

2q
ν2] =⇒ NMC =

2q

pν2
ln(

1

α
), (3.26)

α = exp[− NISp
2

2Varg(V )
ν2] =⇒ NIS =

2Varg(V )

p2ν2
ln(

1

α
). (3.27)

This yields that the relative efficiency is given by

NIS

NMC
=

Varg(V )

pq
.

Note that this is a ratio of variances, sincepq is the variance for the Bernoulli variable in the
crude Monte Carlo approach. SinceEg(V ) = p, we haveVargV = Eg(V

2) − E2
g(V ) =

Eg(V
2) − p2. Hence, we finally obtain that the relative efficiency between the importance and

the crude sampling approach is approximately given by

NIS

NMC
=

Eg(V
2)

pq
− p

q
. (3.28)

In (3.9) we observed thatf(x)/g(x) ≤ 1 on (−∞, t) implies a variance reduction. This yields
an improved accuracy because confidence intervals for the quantity to be estimated are smaller,
but it was hard to directly show efficiency in terms of the required number of runs. Because

Eg

(
V 2
)
=

∫ ∞

−∞
I{x<t}

f2(x)

g2(x)
g(x) dx =

∫ t

−∞

f(x)

g(x)
f(x) dx ≤

∫ t

−∞
f(x) dx = p,

we see that (3.28) indeed impliesNIS ≤ NMC (as we expected). However we still do not have
an impression on how much the actual improvement is (despitethe effort in deriving (3.25)).
We can sharpen the above result a bit assumingf(x)/g(x) ≤ κ ≤ 1 on (−∞, t) (andp ≤ κ).
Then

NIS

NMC
=

Eg(V
2)

pq
− p

q
≤ κ

q
− p

q
≤ κ(1 + ζ) (3.29)

for |(1 − 1
κ)p + O(p2)| ≤ ζ, which forκ = 0.1 andp = 10−10 means thatζ ≤ 10−9. Hence

for this situation we can take an order less samples with Importance Sampling to get the same
accuracy as with Monte Carlo.
The actual reduction in number of trials can only be quantified on a case-to-case base. To this
end, we present explicit examples in Subsection 3.3.
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Remark 4. The gain in efficiency is merely caused by a trade-off betweenthings that are visible
such as the number of runs, and things that are invisible suchas the time that your computer
needs to calculate the values of1/ρ at the sampling points. It is important to note that to achieve
the wanted accuracyνp, 1/ρ must be effectively calculable with the same accuracy in order not
to mess up the mean of theYi with the corresponding roundoff error. That also provides a
limiting (though unseen) factor for the importance sampling. In practice, we will not strive for
an optimalsolution in the sense of the minimization of the variance andhence the numberNIS

of runs. BecauseVarg(Y ) ≥ 0 we haveEg[Y
2] ≥ (Eg[Y ])2 = p2 (in fact Jensen inequality)

and equality is assumed if and only ifY is almost surely constant. The corresponding optimal
density in our case would be

ρ∗η(x) =
1f(x)>aρξ(x)∫
{f>a} ρξ(x′)dx′

=
1

p
ρξ(x)1f(x)>a. (3.30)

This optimal choice of the density would be associated to theexactsolution of our problem (note
that Var Y ∗ = 0) and, due toY ∗ = p, would even reducen to one. However, we decided
for a sampling approach since we realized that computingp directly is out of reach and hence
it is infeasible to compute this optimal solution directly.Neitherp nor the indicator1f(x)>a

are within reach. Hence, our approach to importance sampling should be to find densities which
provide a good compromise between reducing the variance on the one hand and being effectively
computable with sufficient precision on the other hand. The idea, however, will always be to use
a density which is as close as possible to the ideal density.

3.3 EXAMPLES OF IMPORTANCE SAMPLING

In this section we show some explicit examples of ImportanceSampling. In particular, we
show how to use normal distributions with enlarged spread and broad uniform distribu-
tions.

In sections 3.3.1-3.3.3 we basically are interested in questions like

• Is f(x)
g(x) ≤ 1 in the area of interest, which is the basis for the improvement condition as

formulated in (3.9)?

• Are ‘natural’ assumptions (3.11) and (3.12) satsified?

• What is the portion of samples in the area of interest?

In section 3.3.4 some explicit results forNMC andNIS , as found in literature, are summarized.

In all our examples we usep = 10−10, ε = 0.1p = 10−11 (so ν = 0.1), andα = 0.05.
The values ofN (the minimum required of simulation runs) follow directly from (3.26)-(3.27),
whereV has the same distribution as the variables defined by (3.13).

3.3.1 EXAMPLE: NORMAL DISTRIBUTION WITH ENLARGED SPREAD
From the above it is clear that forf ≡ N(µ, σ) one must not expect automatically good or
efficiently obtained results by takingg ≡ N(µ, κσ) with κ ≫ 1 (which allows to sample also
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points much further away fromµ than done byf ; in fact this is a form of scaling:g(x) =
1
κf(x

κ)). For allx we have

f(x)

g(x)
= κ e−

1
2
(x−µ

σ
)2+ 1

2
(x−µ

κσ
)2 = κ e

− 1
2
(x−µ

σ
)2

h
1− 1

κ2

i

= O
(
κ e−

1
2
(x−µ

σ
)2
)

(κ→ ∞).

(3.31)
Of course, we havef(x)

g(x) → 0 when(x−µ
σ )2 → ∞, but

∫ t
−∞ f2(x)/g(x) dx should be consid-

erably smaller thanF (t) in order to have a significantly smaller variance (cf. (3.7)), and hence
have a smaller number of required simulation runs. In other words, in general the importance
sampling approach may not generate relatively many more samples in the area we are interested
in than outside that area.

We consider this more closely. It appears that we are able to guarantee thatf(x)
g(x) ≤ 1 in

the area we are interested in. We assumex ≤ t ≤ t′ < µ and write µ−t′

σ = ηκ and assume
0 ≤ η ≤ 1 andκ ≥ 1. We note that

∀x < t′ :
f(x)

g(x)
≤ 1 ⇐⇒ ∀x < t′ : κ e

− 1
2
(x−µ

σ
)2

h
1− 1

κ2

i

≤ 1

⇐⇒ κ e−
1
2
( t′−µ

σ
)2[1− 1

κ2 ] ≤ 1

⇐⇒ κ e−
1
2
θ2κ2[1− 1

κ2 ] ≤ 1

⇐⇒ 2 ln(κ) − θ2(κ2 − 1) ≤ 0

⇐⇒ θ2 ≤ 2 ln(κ)

(κ2 − 1)

=⇒ 1 ≥ θ2 ≥ h(k2), for h(z) =
ln(z)

z − 1
. (3.32)

Clearly limz↓1 h(z) = 1, while h′(z) ≤ 0 for z ≥ 1. For κ = 6.4 (which corresponds to
P (X < t) ≤ 10−10) this means1 ≥ θ2 ≥ 0.0929, and thus1 ≥ θ ≥ 0.3048. Sampling with
g ≡ N(µ, 6.4σ) and takingt′ = µ− 6σ implies thatθ = 6/6.4 = 0.9375, which is acceptable
(note thatt′ corresponds withP (X < t) ≤ 10−9, see Table 2.1).
For this combination of distributions both assumptions (3.11) and (3.12) are satisfied.
We observe that a significant fraction

1√
2π

1

6.4σ

∫ ∞

X=µ−6.4σ
e−

1
2

(x−µ)2

6.42σ2 dx =
1√
2π

∫ ∞

−1
e

x2

2 dx = 0.8413 (3.33)

(calculated in Matlab with 1 - normcdf(-1,0,1)) is sampled outside the areax < t, which may be
rather disappointing (note that this will be even more when dealing with higher dimensions), but
15% falls within. Surprisingly even this already is much better than what will be needed when
using ordinary Monte Carlo.

3.3.2 EXAMPLE: NORMAL DISTRIBUTION WITH SHIFTED MEAN
Another option is using shifting:g(x) = f(x − T ), say withT = κσ [in one of the examples
in 3.3.4 below this is actually done withκ = 2]. Indeed, this is a better option, as will be shown
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next. Letf ≡ N(µ, σ) andg ≡ N(µ− κσ, σ). Assumingx ≤ t = µ− κσ < µ we have

∀x < t :
f(x)

g(x)
≤ 1 ⇐⇒ ∀x < t : e−

1
2

(x−µ)2

σ2 + 1
2

(x−µ+κσ)2

σ2 ≤ 1

⇐⇒ e
1

2σ2 [2(t−µ)κσ+κ2σ2] ≤ 1

⇐⇒ 2(t− µ)κσ + κ2σ2 ≤ 0

⇐⇒ t+
κ

2
σ ≤ µ , (3.34)

which clearly is satisfied sincet = µ− κσ.
For this combination of distributions assumption (3.11) issatisfied, but (3.12) not.
By construction, we have that a fraction

1√
2πσ

∫ ∞

t
e−

1
2

(x−[µ−κσ])2

σ2 dx = 0.5 (3.35)

is sampled outside the areax < t.

3.3.3 EXAMPLE: UNIFORM DISTRIBUTION ON A BROAD INTERVAL
Next we consider the case off ≡ N(µ, σ) andg ≡ Unif(µ− κσ, µ + κσ) with κ ≥ 1. Hence,
g(x) = 1

2κσ for x ∈ [µ−κσ, µ+κσ] andg(x) = 0 elsewhere. Clearly, to get samples one must

haveµ − κσ ≤ x ≤ t ≤ t′ < µ. As before we write|t
′−µ|
σ = θκ and assume1 ≥ θ ≥ 0 and

κ ≥ 1. We find

∀x < t′ :
f(x)

g(x)
≤ 1 ⇐⇒ ∀x < t′ :

2κ√
2π

e−
1
2
(x−µ

σ
)2 ≤ 1

⇐⇒ 2κ√
2π

e−
1
2
( t′−µ

σ
)2 ≤ 1

⇐⇒ 2κ√
2π

e−
1
2
θ2κ2 ≤ 1

⇐⇒ 1 ≥ θ2 ≥ ln( 2
π ) + ln(κ2)

κ2
. (3.36)

We note thath(z) =
ln( 2

π
)+ln(z)

z has a maximum2
eπ < 1 at z = eπ

2 . Takingκ = 6.4 (as in the
previous case) leads to1 ≥ θ2 ≥ 0.0796, and thus1 ≥ ν ≥ 0.2822. However, this is not enough
to ensure samples in the areax < µ− 6.4σ. Hence, we extend the interval ofg to κ = 8: thus
t = µ− 8σ andt′ = µ− 6.4σ. Note thatθ = 6.4/8 = 0.8, which is acceptable.

Sampling withg ≡ Unif(µ− 8σ, µ+ 8σ) means that a fraction

∫ µ+8σ

t′
g(x)dx =

∫ µ+8σ

µ−6.4σ

1

16σ
dx = 0.9

is sampled outside the area[t, t′], which is even slightly more worse than in the case of the broad,
but unshifted, normal distribution. However, again, it is much more efficient than what will be
needed when using ordinary Monte Carlo.

Of course, taking a uniform distribution on a shifted interval, sayg ≡ Unif(t, σ) for t =
µ− κσ will result in a more efficient method in which case only a fraction of 0.5 of the samples
will be outside the area we are interested in.
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3.3.4 FURTHER EXAMPLES
In [31] it is assumed thatf(x) ∼ N(10, 2) and t = 6.7 = 3.35σf , which givesF (t) =
0.049471 ≤ 0.05. Thus to guarantee100 = N F (t) hits,NMC = 100/F (t) ≈ 2000. When
g(x) ∼ N(t, 2) one will haveI{xi<t} = 1 for approximately 50% of thexi. This time only
NIS = 130 is enough to obtain a similar accuracy using importance sampling.
When t = 3.0 = 1.5σf one hasF (t) = 0.00023623 ≤ 0.25 10−3, NMC ≈ 4 105, and
NIS = 500.
A further improvement was found by starting with a non-normal density functiong

g(x) =

{
ae−a(t−x) if x ≤ t

0 if x > t
, (3.37)

in whichawas a free parameter that can be optimized. Clearlyµg = t− 1
a . Equatingf(x)

g(x)
x=µg

=

Pf (X < t) = pf (X) for t = 6.7 givesa ≈ 1.25. Now already forNIS = 20 one obtains a 95%
confidence interval.

In [12] a similar problem is discussed usingf(x) = e−x (power density of thermal noise in
an electronic signal) andgexp(x) = 1

ae
−x

a andpf (t) =
∫∞
t f(x)dx = P (X > t). Herea is

determined to minimize the normalized standard deviation

σ[pIS
f (t)]

E[pIS
f (t)]

=
1√
NIS

√
a2

2a− 1
et/a − 1 , (3.38)

which gives as optimal values

a1,2 =
1

2
[1 + t±

√
1 + t2] (3.39)

(below we will take the ”+” sign in the calculations). For ordinary Monte Carlo the normalized
standard deviation is

σ[pMC
f (t)]

E[pMC
f (t)]

=
1√
N

√
et − 1 . (3.40)

By equating (3.38) and (3.40) one can consider the simulation gain by Importance Sampling
when compared to Monte Carlo to obtain the same minimum normalized standard deviation

NMC

NIS
=

et − 1
a2

2a−1e
t/a − 1

> 1. (3.41)

For t = 8 andNMC = 104 we find NMC
NIS

= 282, i.eNIS = 35.
For t≫ 1 we have thata ≈ t and thus

NMC

NIS
≈ 2et

e t
≫ 1. (3.42)

For t ≈ 20, one has (usinge3 ≈ 20 and210 ≈ 103) that NMC
NIS

≈ 108, which means an enormous
speed up.

In [12] also other examples are given
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• f(x) = 1
K!x

Ke−x [gamma-distribution for a sum ofK exponential samples, with shape
parameterK] for pf (t) =

∫∞
t f(x)dx = P (X > t) with 2 ≤ 10log10(t) ≤ 12 and

K = 2, 5, 10, 20 by Importance Sampling usingg(x) as in (3.37) witha = t/ln(2)
(giving g(x) = a 2−a2

eax, andgbox, defined by

gbox(x) =

{
1
t if t ≤ x ≤ 2t
0 else

(3.43)

(the latter using samplesxk = t(1 + uk), with uk ∈ [0, 1] uniformly). In this case the
gbox-function is the most efficient one, but also offers the opportunity to take simple uni-
form variates as samples: 26% of thegbox-sampling are in the area that contributes 99% to
pf (t); for gexp(x) this is 8%. [No speed-up when compared to standard MC is mentioned]

• f(x) = 4√
π
x2e−x2

[Maxwellian distribution of molecular speeds in a dilute gas]. Using

gbox(x) =

{
1
2 if t ≤ x ≤ t+ 2
0 else

, (3.44)

results fort = 4 and fort = 6 are obtained. An additional remark is that pointszk′ can be
generated that are “Maxwellian distributed”: IfIk ≡ I(x > t) > [f(t)/gbox(t)]uk then
“k′ = k′ + 1 andzk′ = xk”. This can be an additional benefit.

3.4 MULTIVARIATE IMPORTANCE SAMPLING

In this section we briefly describe how to use importance sampling in a multivariate setting.

In several simulations the nonlinear output responsex(p) depends on independent input param-
eters with known density distribution function (in most cases a normal distribution). In this case
the ratiof(p)/g(p) is considered inp-space, wheref is known and thus the ratio can easily be
calculated. Of course, in a more dimensional parameter space the definition ofg(p) that should
cover the area of parameters for the rare events of interest,requires more attention. Multivari-
ation also naturally introduces effects due to dimensionality as is seen in the examples below.
With increasing dimension of the parameter space importance sampling becomes more impor-
tant.

In [31] x(p1, p2) =
√
p2
1 + 3p2

2 was considered and samplesxi = x((p1, p2)i) = x(p1i, p2i)
in which the input parameterspki are chosen according to densityfk.
Now pf (X) =

∫∫
Xp

f1(p1)f2(p2)dp1dp2, in whichX now is identified with a 2-D areaXp in

(p1, p2) such thatx(p1, p2) > X (or< X).
The indicator function is now defined by

IX(x) = IXp(p1, p2)) =

{
1 if (p1, p2) ∈ Xp, i.e. if x(p1, p2) > X
0 else

(3.45)

and similar as in (2.28) one can estimatepf (X) by

pMC
f (X) ≈ 1

N

N∑

i=1

IX(xi). (3.46)
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The counter parts of (3.6)-(3.8) are

Varg[p
IS

f (X)] =
1

N
[

∫∫
{IXp

(p1, p2)
f1(p1)f2(p2)

g1(p1)g2(p2)
− pf (X)}2g1(p1)g2(p2)dp1dp2] (3.47)

=
1

N
[

∫∫

Xp

[
f1(p1)f2(p2)

g1(p1)g2(p2)
]2g1(p1)g2(p2)dp1dp2 − p2

f (X)] (3.48)

=
1

N
[

∫∫

Xp

[
f1(p1)f2(p2)

g1(p1)g2(p2)
− pf(X)]2g1(p1)g2(p2)dp1dp2 +

∫∫

R2\Xp

p2

f (X)g1(p1)g2(p2)dp1dp2]. (3.49)

In [31] f1 ∼ N(µf1 = 20, σf1 = 2), andf1 ∼ N(µf2 = 10, σf2 = 1) was taken. Note that for
p1 = µf1 + 2σf1 = 24 andp2 = µf2 + 2σf2 = 12, one hasx(p1, p2) = 12

√
7 ≈ 31.75. For

X = 32, pf (X) = P (x(p1, p2) ≥ 32) ≈ 0.18 10−2.
For importance sampling two functionsg1, g2 can be defined:g1 ∼ N(µg1 = 24, σg1 = 2),
g2 ∼ N(µg2 = 12, σg2 = 1). ForpIS

f (X), the 95% confidence interval atNIS = 20 was already

comparable to the one forpMC
f (X) atNMC = 2000.

Trying g1 ∼ N(µg1 = µ, σg1 = 2), g2 ∼ N(µg2 = µ/2, σg2 = 1) an optimum valueµ = 25
was found, but this did not much improve the results furthermore and neither did improve the
efficiency.

3.5 WEIGHTED IMPORTANCE SAMPLING

Hesterberg [20] describes two additional variants on Importance Sampling: the “Ratio” or
“Weighted” Importance Sampling method and the Regression Importance Sampling method.
The “Ratio” or “Weighted” Importance Sampling is defined by

FWIS(t) =
1
N

∑N
i=1 Vi

1
N

∑N
i=1Wi

=
V

W
, (3.50)

whereV (X) = IX<t(X)W (X) andW (X) = f(X)/g(X), and with thisVi = V (Xi) and
Wi = W (Xi) = f(Xi)/g(Xi). Clearly,W (X) has expectationEg[W (X)] = 1. In particularly
we haveEg[Wi] = Eg[W (Xi)] = 1.
If in V (X) the functionIX<t(X) is written as a sumIX<t(X) = A(X) + c (assuming fixed
t and a constantc), the Weighted Importance Sampling result for the sum is thecorresponding
one forA shifted byc. For the normal Importance Sampling this only holds for the expectations.
The price to be paid, however, is a (small) biasing of the expectation. EachVi hasp = Eg[Vi].
Let Ṽ (X) = V (X)− p, thenṼi = V (Xi)− p = Vi − p, and similarlyṼ (X) = V (X)− p, and
similarly W̃ (X) = W (X) − 1, implying W̃i = W (Xi) − 1 = Wi − 1. Then

FWIS(t) =
1
N

∑N
i=1 Ṽi + p

1
N

∑N
i=1 W̃i + 1

=
Ṽ + p

W̃ + 1

= p

(
1 +

Ṽ

p

)(
1 − W̃ +

[
W̃
]2

+ . . .

)

= p+
[
Ṽ − pW̃

]
−
[
Ṽ W̃ − p

[
W̃
]2]

+ . . . (3.51)
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The second term hasg-expectation 0, but its variance is not. Using the independency of theXi

and aχ2-related argument for the remaining products we derive the following expressions for

the dominant terms in the Expectation (note thatEg[[ W̃ ]2] = 1
N Eg[W̃

2], etc)

Eg[F
WIS(t)] ≈ p− Eg[Ṽ W̃ − p[ W̃ ]2]

= p− 1

N
Eg[Ṽ (X)W̃ (X) − pW̃ 2(X)]

= p− 1

N
Eg[{Ṽ (X) − pW̃ (X)}W̃ (X)]

= p− 1

N
Eg[{(V (X) − p) − p(W (X) − 1)}(W (X) − 1)]

= p− 1

N
Eg[{V (X) − pW (X)}W (X)], (3.52)

where we used thatEg(V ) = p. Similarly, for the dominant terms in the Variance we derive

Varg[F
WIS(t)] = Varg[ Ṽ − pW̃ ]

=
1

N
Varg[Ṽ − pW̃ ]

=
1

N
Varg[V (X) − p− p(W (X) − 1)]

=
1

N
Varg[V (X) − pW (X)]. (3.53)

Note that in (3.52) and (3.53)V (X) = IX<t(X)W (X), which seems tentative, because we can
split of a factorW (X). However, the expectation is w.r.t.g, rather than tof .

In [26] the Weighted Importance Sampling method recently has been applied to SRAM yield
simulations.

3.6 REGRESSION IMPORTANCE SAMPLING

Hesterberg [20] also describes the Regression Importance Sampling method. Similar as in the
previous section we haveV (X) = IX<t(X)W (X) andW (X) = f(X)/g(X), and with this
Vi = V (Xi) andWi = W (Xi) = f(Xi)/g(Xi). Again, Eg[W (X)] = 1 and Eg[Wi] =
Eg[W (Xi)] = 1.
Let v = (V1, . . . , VN )T , w = (W1, . . . ,WN )T . Hesterberg [20] considers regression on
(Vi,Wi) to obtainZ = γ⋆W + δ⋆, in which γ⋆, δ⋆ are determined by regression. Because
for eachWi one hasEg[Wi] = 1, as optimum value as estimator by the Regression Importance
Sampling Method the value

FMCRIS(t) := Z(W = 1) = γ⋆ + δ⋆ (3.54)

is taken. We describe the method in some more details.
Let 1 = (1, . . . , 1)T , A = (w 1), x = (γ δ)T andx

⋆ = (γ⋆ δ⋆)T .
We determinex⋆ such that||v − Ax||2 is minimum. Note that(AT

v )T = (wT
v ,NV )T .
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Clearly

x
⋆ = (AT

A)−1
A

T
v

=
1

wTwN −N2[ W ]2

(
N −NW

−NW w
T
w

)(
w

T
v

NV

)

=
1

wTwN −N2[ W ]2

(
Nw

T
v −N2 W V

−Nw
T
vW +Nw

T
wV

)

=
1

1
N wTwN − [ W ]2

(
1
N w

T
v −W V

− 1
N w

T
vW + 1

N w
T
wV

)

=
1

σ̂2
W

(
cov(w,v)

− 1
N w

T
vW + (W )2V + [ 1

N w
T
w − (W )2]V

)

=
1

σ̂2
W

(
cov(w,v)

σ̂2
WV + (W V − 1

N w
T
v)W

)

=
1

σ̂2
W

(
cov(w,v)

σ̂2
WV − cov(w,v)W

)
=

(
γ⋆

δ⋆

)
, (3.55)

where

σ̂2
W =

1

N
w

T
w − [ W ]2 = W 2 − (W )2 =

1

N

N∑

i=1

(Wi −W )2, (3.56)

cov(w,v) =
1

N
w

T
v −W V =

1

N

N∑

i=1

(Wi −W )(Vi − V ). (3.57)

The Regression Importance Sampling method takes as estimator for pf (X) the optimum value
for Z atW = 1

FMCRIS(t) := γ⋆ + δ⋆

= V − cov(w,v)

σ̂2
W

(W − 1) (3.58)

= V − β(W − 1) = V + α cov(w,v) (3.59)

=
1

N

N∑

i=1

[1 + α(Wi −W )]Vi, (3.60)

where

α =
1 −W

W 2 − (W )2
=

1 −W

σ̂2
W

(3.61)

β =
cov(w,v)

σ̂2
W

. (3.62)

In [20] the following dominant terms in the Expectation and the Variance are derived

Eg[F
MCRIS(t)] = p− 1

Nσ̂2
W

Eg[(W − 1)2{(V − p) − β(W − 1)}], (3.63)

Varg[F
MCRIS(t)] =

Varg(V − βW )

N
. (3.64)
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3.7 PARAMETERIZED IMPORTANCE SAMPLING

In [45, 51] a parameterθ is introduced in the distributiong: g(x, θ). We may chooseθ such that
the varianceVarg(F

IS(t)) is minimized. According to (3.7) this is equivalent to minimizing

I(θ) =

∫ ∞

−∞

I{x<t}
f2(x)

g(x, θ)
dx = Ef [I{x<t}w(x, θ)] = Eg[I{x<t}w

2(x, θ)], (3.65)

in whichw(x, θ) = f(x, θ)/g(x, θ). More generally we have

I(k)(θ) = Ef [I{x<t}
∂kw(x, θ)

∂θk
] = Eg[I{x<t}

∂kw(x, θ)

∂θk
w(x, θ)]. (3.66)

(wherek = 0, 1, 2, ...). For a givenθ and a given samplingXi according tog(x, θ) we may
estimate

I(k)(θ) ≈ 1

N

N∑

i=1

I{Xi<t}
∂kw(Xi, θ)

∂θk
w(Xi, θ) . (3.67)

To minimize I(θ) we determine a stationary pointθ⋆ such thatI(1)(θ⋆) = 0 by applying a
Newton process toI(1)(θ), which results in a sequence of pointsθn determined by the recursion

θ(n+1) = θ(n) − λn I
(1)(θ(n))/I(2)(θ(n)). (3.68)

Hereλn ∈ [0, 1] is a damping parameter. If (3.67) is used we may speak of a ‘stochastic’ Newton
process. Note that in this case the sampling points may have to be adapted within each Newton
iteration.
In [51] an example is given using a scaled random variable, i.e. by usingg(x) = 1

af(x
a), which

givesI(a) =
∫ t
−∞

af2(x)
f(x/a)dx. Note thatI ′(1) = −tf(t) < 0, while I(a) → +∞ (a → ∞),

which implies thatI(a) has a minimum for1 < a < ∞. However, whenxf(x) → 0 if x→ ∞
we also haveF IS(t) → 0 if a→ ∞.
A similar remark can be made when one applies shifting or a translation, for instance by using

g(x) = f(x + c). Then the variance is given byI(c) =
∫ t
−∞

f2(x)
f(x+c)dx, which also has a

minimum for0 < c <∞.

EXAMPLE: SHIFTED AND SCALED NORMAL DISTRIBUTION
This idea we can apply to the examples in Section 3.3. Letf ≡ N(µ, σ) and g(θ1, θ2) ≡
N(µ − θ1σ, θ2σ). Henceθ = (θ1, θ2)

T = (T/σ, κ)T represent aT/σ-shift and aκ-standard
deviation on theσ-scale of thef -distribution.
We define

F T (θ) ≡ ∇I = (
∂I

∂θ1
,
∂I

∂θ2
)

= ( Ef [I{x<t}
∂w(x, θ1, θ2)

∂θ1
], Ef [I{x<t}

∂w(x, θ1, θ2)

∂θ2
] ). (3.69)

The Newton process for finding a root ofF (θ) = 0 is defined by

Y (θ(n))∆(n+1) = −F (θ(n)) in which Y (θ) =
∂F

∂θ
(θ), (3.70)

θ(n+1) = θ(n) + λn ∆(n+1), (3.71)
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in whichλn ∈ [0, 1] is a damping parameter. Let

H1 = H(x, µ, σ) =
x− µ

σ
,

H2 = H(x, µ− θ1σ, θ2σ) =
x− µ+ θ1σ

θ2σ
,

E1 = E1(x, µ, σ) := exp[−1

2
H2(x, µ, σ)] = exp[−1

2
H2

1 ],

E2 = E2(x, µ, σ, θ1, θ2) := exp[
1

2
H2(x, µ− θ1σ, θ2σ)] = exp[

1

2
H2

2 ],

then

∂H2

∂θ1
=

1

θ2
,

∂H2

∂θ2
= −x− µ+ θ1σ

θ2
2σ

= −H2

θ2
,

∂E2

∂θ1
=
E2 H2

θ2
,

∂E2

∂θ2
= − E2 H

2
2

θ2
.

We considerµ, σ as fixed. Forw(x, θ1, θ2) := θ2 E1(x, µ, σ) E2(x, µ, σ, θ1, θ2) we derive

∂w

∂θ1
= θ2 E1

∂E2

∂θ1
= E1 E2 H2, (3.72)

∂w

∂θ2
= E1 E2 + θ2 E1

∂E2

∂θ2
= E1 E2 [1 −H2

2 ] (3.73)

and

∂2w

∂θ2
1

= E1 E2 [1 +H2
2 ]

1

θ2
, (3.74)

∂2w

∂θ1∂θ2
= − E1 E2 H2 [1 +H2

2 ]
1

θ2
, (3.75)

∂2w

∂θ2
2

= E1 E2 H
2
2 [1 +H2

2 ]
1

θ2
. (3.76)

The Hessian matrix ofw equals

E1 E2 [1 +H2
2 ]

1

θ2

[
1 −H2

−H2 H2
2

]
, (3.77)

of which the last matrix has non-negative real eigenvaluesλ1 = 0 at eigenvector(θ1, θ2)T =
(H2, 1)

T andλ2 = 1+H2
2 at(θ1, θ2)T = (1,−H2)

T , respectively. This implies that, forθ2 > 0,
the Hessian matrix ofw is non-negative definite (despite a Gershgorin circle [44, p.184] around
0 for small vales ofH2) and thus the Hessian matrix ofI(θ). We note that

F (θ) =

»

Ef [I{x<t}E1E2(θ)H2(θ)]
Ef [I{x<t}E1E2(θ)(1 − H2

2 (θ))]

–

=

"

R t

−∞
E2

1E2(θ)H2(θ)dx
R t

−∞
E2

1E2(θ)(1 − H2
2 (θ))dx

#

(3.78)

Y (θ) =
1

θ2

"

R t

−∞
E2

1 E2(θ) [1 + H2
2 (θ)]dx −

R t

−∞
E2

1 E2(θ) H2(θ) [1 + H2
2 (θ)]dx

−
R t

−∞
E2

1 E2(θ) H2(θ) [1 + H2
2 (θ)]dx

R t

−∞
E2

1 E2(θ) H2
2 (θ) [1 + H2

2 (θ)]dx

#

,(3.79)

in which we dropped all parameters other thanθ = (θ1, θ2)
T . Note thatE1, E2 andH2 depend

on the integration variablex.
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The optimum pointθ⋆ depends ont and thus one may look1 to d
dtθ

⋆(t) when increasingt and
adaptively upgradeθ⋆.

The integrals in (3.78)-(3.79) are not treated well by Mathematica fort ≪ 0. Hence additional
numerical procedures are needed to calculate them accurately.

1Note that: d
dx

R x

a
f(x, u)du =

R x

a
fx(x, u)du + f(x, x).
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Section 4

Adaptive Important Sampling for Tail
Probabilities of Costly Functions

4.1 ADAPTIVE IMPORTANCE SAMPLING

The efficiency of Importance Sampling depends on how the distribution g(x) can be chosen, or
can be constructed. In [27] a non-parametric adaptive importance sampling (NAIS) procedure
is described, that needs the known distribution functionf . The distributiong is improved in Al-
gorithm 1. A refinement can be to re-use also the old resultsxi to get better estimates ofpf (X)

Algorithm 1 NAIS:Non-parametric Adaptive Importance Sampling [27]

Step 1: LetK(x) =

{
1
2 if ||x|| < 1
0 otherwise

be a rectangular kernel function.

Step 2: Let h > 0 be a smoothing parameter.
Step 3: Initialize a simulation run to collect rare event samplesyi (i = 1, . . . , k). Let Y =
{y1, . . . , yk}.
Step 4: Define an estimate of the optimal sampling distributiong(x) by the ”kernel function
estimation method”g(x) = 1

#Y
∑

yi∈Y
1
hK(x−yi

h ).
Step 5: Generate events using the distributiong(x). Apply Importance Sampling (3.4) with
this. Save the rare eventsy′i (i = 1, . . . , k′).
Step 6: LetY = Y ∪ {y′1, . . . , y′k′}.
Step 7: Go to Step 4.

using the updated expression ofg.
In the following subsections we develop an alternative method for finding an optimumg. The
method naturally locates ”bumps”, maintains a distance between sample points and is adaptive
in the sence that when the levels are increased the distribution functiong is easily adapted. This
is especially appreciated when constructing a cumulative distribution function. The method is
intelligent in that it learns from internal Monte Carlo-like evaluations and adaptively adaptsg.
The method can be enhanced to also deal with more functions and to offer a user-defined thresh-
old for finding an optimum distributiong.
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4.2 STATEMENT OF THE PROBLEM

LetX be anRd-valued random variable with probability distributionP . From now on, we will
assume thatX is a multivariate Gaussian variable with covariance matrixΣ and density

ρ(x) =
1

√
2π det(Σ)

d
exp

{
−1

2
xT Σ−1x

}

even though this is not important for most of the considerations below. In the sequel, we will
consider the problem of exploring the distribution of tail probabilitiespα = P (h(X) > α) for
a given functionh : Rd → R (exploring distribution of tail probabilitiespα = P (h(X) < α)
is done similarly). More precisely, we want to explore that part of the distribution for very large
values ofα > α0, meaning that the probabilitiespα are small and thus difficult to estimate
using simulations based on naive Monte-Carlo methods. Therefore, on the one hand we have
to estimatepα for different values ofα, and on the other hand, we are forced to use importance
sampling algorithms.

However, there is one additional feature which gives the problem a somewhat different flavor.
Roughly speaking, we introduce the termcostly functionfor a functionh : Rd → R for which
it takes quite some effort to compute the valuesf(x) for a givenx ∈ Rd. We will leave this
notion vague, not attempting to make it precise for instancein terms of runtime. Even more, we
think of this term in a relative way in the sense that the calculation of the value ofh(x) is the
limiting factor in every Monte-Carlo simulation which aimsat estimating the tail probabilities
above. Thus, the most important reason for keeping the number of simulation runs small is that
it takes so much time to decide for a givenx ∈ Rd whetherh(x) > α actually holds.

In the sequel, we will think of the functionh as being unknown meaning that we have no
prior information about the location of the super-level setsSα := {x |h(x) > α} and therefore
in the beginning no indication how to choose the importance sampling distribution. That means,
the importance sampling has to beadaptivein the sense that finding a sampling distribution is
part of the algorithm.

From the remark at the end of Section 3.2, it is rather clear that we can not expect any
miracles of an importance sampling algorithm. The functionis difficult to compute and this
will remain so. Thus, in one way or another we will have toexplore the function and this
will inevitably be costly. The reason why we believe that we can gain something – and also
the basic idea underlying the algorithm we propose – is the simple observation that the super
- level sets decrease monotonously, i.e.α′ > α impliesSα′ ⊂ Sα and that we may therefore
base the exploration of the super - level setSα′ on the prior knowledge already obtained by the
exploration ofSα. We will make that precise in the sequel.

Remark 5. The assumption that no prior knowledge abouth is available is a worst case sce-
nario. Every additional piece of information abouth may lead to variants of the algorithm
with improved efficiency. However, we believe that the basicidea to use the monotonicity of the
super-level sets will remain present.

4.3 THE IDEA OF THE ALGORITHM

From the remark about the (theoretical)optimal densityat the end of Section 3.2, to minimize
the variance and hence the necessary number of simulation runs, we will strive for an algorithm
that to some extend approximates theideal density(3.30). We are trying to reach this goal by an
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approximation with mixtures of Gaussian bell shaped curvescentred around someexploration
points. Thus, we will use some kind ofadapted importance samplingconsisting of the following
two steps:

(i) A preprocessing stepwhich corresponds to the exploration mentioned above. For amod-
erate (meaning not too large) value ofα, we construct an algorithm to find points in the
sample spaceRd which cover in a sufficient way the set{h > α}. The collection of these
points is calledset of exploration points. This initial step will only be carried out once.

(ii) Then, theproper importance sampling stepis carried out for different values ofα which
are ordered in an increasing way. The purpose of this step twofold: On the one hand,
the tail probability is estimated on the basis of an importance sampling distribution given
by the mixture of Gaussian distributions centered at the exploration points. On the other
hand, in the course of sampling, the set of exploration points will be constantly modified
in favor of points whereh attains larger values.

As said above, the basic observation is the monotonicity of the super - level sets which we
are using to save running time by modifying the set of exploration points forα′ ≥ α while we
are estimating the tail probability forα at the same time.

Remark 6. The use of Gaussian bell shaped curves for the approximationof theideal densityis
completely arbitrary and mainly due to the fact that the density with respect to the true distribu-
tion ofX can be easily calculated. More sophisticated choices are possible such as Gaussians
with different variances or uniform distributions around balls of suitable diameters around the
exploration points in order to look to tailsP (h(x) > a).

4.4 THE PREPROCESSING STEP

The exploratory preprocessing step mentioned above is intended to gain some first information
about the tail probabilities ofh(X), in particular some knowledge about points whereh is large.
The analysis depends on the levelα chosen. Basically, we want to construct an algorithm which
on the one hand finds exploration points inSα but on the other hand also provides us with a
criterion to stop the preprocessing when the set of exploration points is sufficiently large.

To choose the exploration points, we introduce three parameters that control the preprocess-
ing, namely:

(i) Theexploration widthǫ > 0. The exploration width makes sure that the minimum distance
between two exploration points is larger thanǫ > 0 to control the number of exploration
points.

(ii) The exploration gainE > 1. The exploration gain is a threshold parameter for the number
of simulation runs allowed without changing the set of exploration points. That means,
the preprocessing step is terminated after the set of exploration points has not changed in
a suitable numberE of consecutive simulation steps.

(iii) An outback thresholdconsisting of a fixed functionr : Rd → R and someB > 0.
The outback threshold helps to avoid to explore parts of the super - level set where the
probability thatX actually takes values in that part is orders of magnitude smaller than
P(h > α). It is imposed by discarding every sampled valuex /∈ FB := {x | r(x) < B}.
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This requires some crude lower bound of the order of magnitude of pα. The setFB

is called thefeasibility spaceof the sampling method, the introduction of the outback
threshold thus reduces the exploration ofSα to the exploration ofSα ∩ FB .

Remark 7. (i) In the one - dimensional testbed below, we simply haver(x) := |x|.
(ii) The proper choice of the parameters is absolutely crucial for the performance of the algo-
rithm. To derive some criteria how to do that in an appropriate way is a difficult problem which
so far can only be approached by extensive simulation studies which are beyond the scope of
this short description.

To describe the exploration of the super - level sets in the course of the process, we have
to keep track of the barycentres and the weights attached to the different Gaussian bell shaped
curves. This requires some bookkeeping for which we introduce the notion ofexploration status.

The exploration status

Eα(n) := (Θ
(n)
1 , . . . ,Θ(n)

mn
|w(n)

1 , ..., w(n)
mn

|h(Θ(n)
1 ), . . . , h(Θ(n)

mn
))

after then-th exploration step is a collection of1 ≤ mn ≤ n exploration points

(Θ
(n)
1 , . . . ,Θ(n)

mn
),

Θi ∈ Rd, their values
(h(Θ

(n)
1 ), . . . , h(Θ(n)

mn
)),

which are calculated and stored during the process andmn associated weights

(w
(n)
1 , ..., w(n)

mn
),

wherew(n)
i ≥ 1, w(n)

1 + ... + w
(n)
mn = n (thusmn ≤ n; mn indicates the status length: it

also reflects the number of local maximums observed sofar). Thew(n)
j will count the number of

times the pointΘ(n)
j was survivor in comparison with new pointsθ. It also indicates the width

or size of the area around the local bump. Note thatp
(n)
j = w

(n)
j /n may serve as a probability

density that allows to sample around extreme points.
The exploration status is obtained as follows:

1. Forn = 1: The first exploration step is to sample some pointθ for the distribution ofX
such thath(θ) > α andrθ) ≤ B. This having done, the exploration status will be

Eα(1) := (Θ
(1)
1 := θ |w(1)

1 := 1 |h(θ)).
We setm1 = 1. We also setnunchanged = 0 (the number of times that the status length
does not change).

2. In stepn+1, we wait again until we sample someθ ∈ Rd with h(θ) > α. A way to speed
up this adaptively is decribed in the next subsection 4.5. Then, we consider the following
alternative:

(a) In casemin ‖θ−Θ
(n)
i ‖ > ǫ, while alsor(θ) ≤ B (a feasible point), we add the point

θ to the exploration status, i.e. we setmn+1 = mn + 1, Θ
(n+1)
mn+1 := θ, w(n+1)

mn+1 := 1
and obtain forEα(n+ 1):

(Θ
(n)
1 , . . . ,Θ(n)

mn
, θ |w(n)

1 , . . . , w(n)
mn
, 1|h(Θ(n)

1 ), . . . , h(Θ(n)
mn

), h(θ)).

ThusΘ
(n+1)
k′ = Θn

k′, w
(n+1)
k′ = wn

k′ for k′ 6= k. We resetnunchanged = 0.
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(b) In casemin ‖θ − Θ
(n)
i ‖ ≤ ǫ, we look for the exploration point which is closest toθ,

i.e. letΘ(n)
k be this point. Now we have two alternatives:

• reject θ: If r(θ) > B (point θ is unfeasible), orh(Θ(n)
k ) > h(θ) (old point

Θ
(n)
k is better thenθ), the exploration status remains unchanged (nunchanged =

nunchanged + 1) except that noww(n+1)
k = w

(n)
k + 1 is increased by one (Θn

k

is a survivor). ThusΘ(n+1)
k′ = Θn

k′ (for all k′), w(n+1)
k′ = wn

k′ for k′ 6= k. Set
mn+1 = mn.

• acceptθ: If h(Θ(n)
k ) ≤ h(θ), thenθ will replaceΘn

k and will inherit the qual-
ifications of the last in the exploration status. Thus the status length remains
unchanged except the modificationΘ

(n+1)
k = θ, h(Θ(n+1)

k ) = h(θ), w(n+1)
k =

w
(n)
k + 1 andΘ

(n+1)
k′ = Θn

k′ , w
(n+1)
k′ = wn

k′ for k′ 6= k. Setmn+1 = mn. Also
in this case we decide to increasenunchanged = nunchanged + 1.

3. Thestopping criterion: We will stop the exploration if the vector(Θ(n)
1 , . . . ,Θ

(n)
mn) of

exploration points status remains constant fornunchanged ≥ E.

4.5 THE PROPER IMPORTANCE SAMPLING STEP

After the exploration step forα > 0, we have a vector(Θ(n)
1 , . . . ,Θ

(n)
mn) of exploration points

together with an associated weight vector(w
(n)
1 , . . . , w

(n)
mn). These exploration points are con-

structed to cover the super - level setSα in a way that is sufficiently accurate for the subsequent
important sampling from the mixture distribution. The mixture distribution associated to a given
exploration status is obtained by centering the standard normal distribution given by the density
ρ above around the exploration pointsΘ

(n)
i , weighting them with the valuespi = wi

n (note that∑mn
i=1 pi = 1). Thus, our new sampling distribution is given by the mixture density

πn(x) =

mn∑

i=1

p
(n)
i

ρ(x)

ρ(x− Θ
(n)
i )

, (4.1)

where the ratio can be evaluated by expanding the square in the exponent of the normal distribu-
tion. The approximation of theoptimal sampling density(3.30) aftern exploration runs is then
given by

π̃n(x) = I{h(x)>α}

n∑

k=1

p
(n)
i exp

{
1

2
Θ

(n) T
i(k) Σ−1Θ

(n)
i(k) − xT Σ−1Θ

(n)
i(k)

}

[we assumed the sameΣ-matrix in bothρ densities], wherei(k) indicates a subset of1, . . . , n
(onlymn indices will be used).

As already said above, it is natural to expect that it is more efficient to look for exploration points
of Sα′ , α′ > α, on the basis of the information already given by the exploration statusEα(n)
for α aftern exploration runs rather than to use the same exploration algorithm again. Thus,
the sampling isadaptivein the sense that the exploration status and therefore also the mixture
distribution (4.1) that we use for the sampling, may change in the course of the procedure.

Due to the fact that the super-level sets decrease, we may even want to remove exploration points
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from Eα(n). There are certainly many different reasonable ways to do that. We use the following
approach where we sample in the first place from a distribution which may be more concentrated
around its barycentre than those appearing in the mixture distribution.

We think ofEα(n) as theseed status.

• For eachΘ(n)
i , letω = w

(n)
i . We assume thath(Θ(n)

i ) is known.

– We sampleω × E times from a normal variable as follows:

(a) Draw a valueθ from aN(Θ
(n)
i ,Σ′)-variable whereΣ′ = aΣ anda ≤ 1. Check

feasibility (f(θ) ≤ B) and evaluateh(θ).

(b) If r(θ) ≤ B we have three alternatives:

• if h(θ) > h(Θ
(n)
i ) set for the next drawΘ(n) := θ, h(Θ(n)

i ) := h(θ) and

w
(n)
i := w

(n)
i + 1 and proceed to step (a),

• if α′ ≤ h(θ) ≤ h(Θ
(n)
i ) just change the status tow(n)

i := w
(n)
i + 1 and

proceed to step (a),

• if α′ > h(θ) just proceed with step (a),

(c) Stop when we have drawnω × E times.

– If after the simulations for drawing aθ, we haveh(Θ(n)
i ) > α′, then we transfer

Θ
(n)
i , h(Θ(n)

i ) andw(n)
i to the new exploration status. Otherwise, the pointΘ

(n)
i is

no longer considered.

Collecting location, weights and function value from points with h(Θ(n)
i ) > α′, we obtain the

new exploration statusEα′(n′) wheren′ is the sum of the final weights of all exploration points
which were not removed in step (c). Thus, the new explorationstatus consists at most of as many
exploration points as inEα(n) with different weights.

4.6 DISCUSSION AND OUTLOOK

The basic idea of the proposed adaptive importance samplingalgorithm can be found at many
places in the literature (f.i. [27]). Due to our assumptionsabout the structure of the problem,
we propose an adaptive approach to construct the exploration points by a rather time consuming
exploration stepwhich has to be performed only once. The hope is that this disadvantage is
outbalanced by the flexibility that is now gained by a considerable improvement in the sampling
step and in the exploration of the super-level setSα for increasing values ofα.

The way to achieve this is by no means unique. Different sampling distributions could be
used, different ways to explore the function, and so on. But after all, it is not expected that
there is one optimal way to resolve the problem stated above with a miraculous gain in sampling
efficiency. At one point one will always be confronted with the fact that calculating the function
is costly. This holds no longer true if some of our basic assumptions about the problem do not
hold any longer, for instance if there appears a way to calculateh in a fast way. Then we might
have to think about some completely different algorithm.

Three further refinements one could think of are:

• Adaption of the variance for the sampling around a given exploration point using smaller
variances for points with large weights.
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• Introduction of anoutback thresholdalso in the step, where the super-level set forα′ > α
is explored. That would help to avoid rather improbable values forθ (cf. the problems in
sampling anoutback-phantombelow).

• An adaptive approach also for the preprocessing step where so far is always sampled from
the raw distribution ofX.

The performance of the scheme depends heavily on the qualityof the exploration in the
preprocessing step and hence on the choice of the three control parameters. However, this and
therefore the performance of the whole adapted importance sampling algorithm is notoriously
difficult to evaluate on a theoretical base. To get some intuition how to choose the correct
parameter values for a given application thus requires extensive simulation studies. It seems to
be reasonable to carry out the first exploration step as accurately as possible. For that, the starting
value forα should be moderate (such thatpα is not too small) and the exploration gainE should
be chosen rather large (such that there are many explorationpoints in this first approach to the
function). But we also have to be aware of the fact that the algorithm will perform better for
smooth functionsh and may not work at all ifh is very rough, for instance if there are a number
of small spikes. Another problem is to choose the step size when increasing the values forα.
If the difference betweenα and the next valueα′ is too large, the removal of exploration points
described above is likely to become unreliable. The problemof choosing the step size seems
therefore similar to the problem to find a suitable cooling schedule in simulated annealing. All
this has to be investigated.

Another problem is the reliability of the results produced by the algorithm. For the impor-
tance sampling from the mixing distribution, we can only give bounds on the number of runs
necessary for a given accuracy on the basis of the (unknown) variance of the sampling variable.
It might therefore be necessary to useconvergence diagnostics(cf. for instance the survey [10])
to find suitable stopping criteria for the actual importancesampling.

4.7 A 1-D-TESTBED

Finally, we will consider some simple simulations of the algorithm in a one-dimensional testbed.
Note that this should be seen just as some first approach to demonstrate that the algorithm ba-
sically works. Even though the situation in one dimension iscertainly simpler than in general,
we think that this is sufficient for a first judgement since theperformance of MC - methods is
commonly believed not to depend too much on the dimensiond of the sample space (cf. for
instance the paragraph on Monte - Carlo methods in [53], p. 30ff.).

We investigate the algorithm (see Appendix B for the source code) for real functions of a single
standard normal random variableX. Testbeds are real functionsh : R → R consisting of
mixtures of three different types representing three different qualitative ways how large values
of f may occur, namely:

(i) The bump-phantom: φi(x) := ai(1 − ((x − xi)/bi)
2), ai, bi > 0, xi ∈ R: Small con-

tributions to the tail probabilitiespα arise from those parts of a function, ifα is slightly
smaller thana. But bump phantoms are also important to test the exploration part of the
algorithm. Ifα < a is changed to someα′ > a, all exploration points inEα which explore
this particular bump should be removed while proceeding toEα′ .
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Figure 4.1: The “bump”-, “spike”- and “outback”-phantoms

(ii) The spike-phantom: ψk(x) := ak
(x−xk)2

, ak > 0, xk ∈ R: This phantom represents
singularities where arbitrary large values occur. In creasing the levelα, the exploration
should yield less and less points which come closer and closer to the actual location of the
spike.

(iii) The outback-phantom: χj(x) := aj(x − xj)
2, a > 0, xj ∈ R: This phantom represents

large function values which are located close to the outbackthreshold and are therefore
explored with only a small probability. Those parts of the super - level set caused by
outback - phantoms seem difficult to explore and require particular large values for the
exploration gain parameterE in order to be discovered.

To test for possible interactive effects between these basic types we can combine these basic
phantoms to more general testbed functionsh given by

h(x) := max{φ1(x), ..., φl(x), χ1(x), ..., χm(x), ψ1(x), ..., ψn(x), 0}

but this is only considered briefly at the end of this first approach. We choose theoutback
thresholdof the feasibility set defined byr(x) = |x| to beB = 8.5 since for a standard normal
variable, we have

P (|X| > 8.5) = 2 × Φ(−8.5) = 1.9 × 10−17.

To judge about the performance of the algorithm, we calculate first some true tail probabili-
ties for the three phantoms. Note that these probabilities are exactly calculated using theR-
implementation of the distribution function of a standard normal variable. That we can do this
was the major reason to restrict ourselves to tests in dimension one.

• In the first case, thebump phantomsare given by

φA(x) = 100(1 −A(x− 4)2),

with for A valuesAi = 10, 100, 1000 (labelling the rows) and the table displays the
probabilitiesPij = P (φAi > αj) with αj = 5, 10, 15 (columns).

Ai Pij = P (φAi > αj)

α1=5 α2=10 α3=15
A1= 10 1.031167e-04 9.925983e-05 9.539331e-05
A2= 100 2.671111e-05 2.596663e-05 2.520389e-05
A3= 1000 8.269453e-06 8.047889e-06 7.820166e-06
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[P2 2 is made boldface for future reference]

• For thespike phantoms

ψA(x) =
1

(x−A)2

we determine the probabilitiesPij = P (ψAi > αj) for Ai = 2, 5, 7 andαj = 5, 10, 15.

Ai Pij = P (φAi > αj)

α1=5 α2=10 α3=15
A1= 2 5.303881e-02 3.583993e-02 2.880499e-02
A2= 5 2.621418e-06 1.355245e-06 9.863961e-07
A3= 7 2.818901e-11 1.151590e-11 7.625567e-12

[P2 2 is made boldface for future reference]

• Finally, for theoutback-phantoms

χA(x) = Ax2

we determine the probabilitiesPij = P (χAi > αj) for Ai = 0.75, 0.5, 0.25 andαj =
5, 10, 15.

Ai Pij = P (φAi > αj)

α1=5 α2=10 α3=15
A1= 0.75 9.823275e-03 2.607296e-04 7.744216e-06
A2= 0.50 1.565402e-03 7.744216e-06 4.320463e-08
A3= 0.25 7.744216e-06 2.539629e-10 9.485738e-15

[P2 2 is made boldface for future reference] Compared to these true tail probabilities, the
outback threshold is properly chosen.

We choose now one particular case for each example to estimate a tail probability by our algo-
rithm (see Appendix B for the functions EFS, WS and “c”). Please note that the EFS-step might
give an output “NULL” which means that in that case, the alpha-value was chosen too small in
the exploration step in relation to the alpha-value in EFS.

1. We choose the bump phantom given by

φA(x) = 100(1 −A(x− 4)2),

with for A = 100. We are interested in obtainingP = P (φA > α) for α = 10. Note
that this corresponds toP = P2 2 = 2.596663e − 05. We do this adaptively in two steps.
First we determine the exploration status for the levelα = 2 and then increase the level to
α′ = 10.

• The first exploration step (with levelα = 2) yields the exploration status(θ,w).

> status
[1] 3.990454 5.000000

• The two subsequent steps with new levelα = 10 and previous weightw = 5 yield
the updated exploration status
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> EFS(status,10,5)
[1] 3.995818 6.000000

• To discuss the performance of the algorithm, we now aim to estimate the0.95-
quantile of the absolute difference between the true probability and the simulation
for importance sampling withNIS = 40000 runs on the basis of20 subsequent
simulations. Steps:

– Call WS(θ,w, α,NIS).

– Determine relative error when compared toP = P2 2 = 2.596663e − 05.

> out<-c();
for(k in 1:20){out[k]<-WS(3.995818,6,10,40000)};
dif <- abs((out - 0.0000259)/0.0000259);
print(dif[0.95 * 20])
[1] 0.001446600

We thus obtain that with probability0.95, the relative differenceΘ is of order10−3

after NIS = 40000 importance sampling steps. The theoretical value for naive
Monte Carlo from the Cramér bound is given by approximatelyNMC = 2.3× 1011.

Thus, the sampling pointsθ found during the process are reasonably close to the single
bump atx = 4 and the tail probability is reasonably close to the truep = 2.597 × 10−5

from the exact calculation above.

2. For thespike phantoms

ψA(x) =
1

(x−A)2

we takeA = 5. We are interested in obtainingP = P (φA > α) for α = 10. Note that
this corresponds toP = P2 2 = 1.355245e−06. We do this again adaptively in two steps.
First we determine the exploration status for the levelα = 2 andE = 5, then increase the
level toα′ = 10.

• The first exploration step (with levelα = 2) yields the exploration status(θ,w).

> status
[1] 4.775324 5.000000

• The adaptive step with new levelα = 10 and previous weightw = 5 yield the
updated exploration status

> EFS(status,10,5)
[1] 5.259688 6.000000

• In order to consider the performance of the algorithm, we estimate the0.95-quantile
of the absolute difference between the true probability andthe simulation for impor-
tance sampling withNIS = 40000 runs on the basis of20 subsequent simulations.
Steps:

– Apply the weighted sampling WS(θ,w, α,NIS).

– Determine relative error when compared toP = P2 2 = 1.355245e − 06.

c© TUE Eindhoven University of Technology 2009 47



TUE-CASA-2009

> out<-c();
for(k in 1:20){out[k]<-WS(5.259688,6,10,40000)};
dif <- abs((out - 0.000001355)/0.000001355);
print(dif[0.95 * 20])

[1] 0.004649013

This yields a0.95-quantile for the relative error of order10−3. The required num-
ber of steps for ‘naive’ (normal MC) sampling necessary to achieve a comparative
accuracy is of the same order of magnitude as in the case of thebump.

Again, the sampling pointsθ found during the process are reasonably close to the single
spike atx = 5 and the tail probability is reasonably close to the truep = 1.355 × 10−6

from the exact calculation above.

3. For theoutback phantom

χA(x) = Ax2

we takeA = 0.5. We are interested in obtainingP = P (φA > α) for α = 10. Note that
this corresponds toP = P2 2 = 7.744216e−06. We do this again adaptively in two steps.
First we determine the exploration status for the levelα = 2 andE = 5, then increase the
level toα′ = 10.

• The first exploration step (with levelα = 2 andn = 3) yields the exploration status
(θ1, θ2, θ3, w1, w2, w3).

> status
[1] 3.943461 4.468545 -3.795828 7.000000 1.000000
7.000000

• Next, increasing the exploration level toα = 10 and stopping factorE = 5 now
yields for the exploration-from-seed functionality

EFS(status,10,5)
[1] 9.667335 4.880202 -6.971651 35.000000 4.000000
33.000000

• Here the results differ largely fromP = P2 2 = 7.744216e−06. Due to the problems
with the outback function we only consider single simulations varying the respective
exploration points.
We apply the weighted sampling WS( c(θ1, θ2, θ3), c(w1, w2, w3), α,NIS)

> WS(c(9.667335,4.880202,-6.971651),c(35,4,33),10,50 00)
[1] 1.808273e-06
> WS(c(4.880202,-6.971651),c(4,33),10,5000)
[1] 3.819555e-06
> WS(c(4.880202),c(4),10,5000)
[1] 3.595187e-06

which shows that a size restriction would be good for the exploration-from-seed step
as well. In total, we see that the sampling for these outback phantoms does not
perform as good as for the others.
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The true probabilityP = P2 2 = 7.74 × 10−6 deviates considerably from the estimate
but is at least of the true order of magnitude. Probably the three sampling points do
not sufficiently coverSα and one should use a larger value for the exploration gain to
overcome this difficulty. Clearly that will increase the duration of the preprocessing step
and we have to keep an eye on that.

4. Finally, for a combined functionh(x) = ψA=−4(x) + χA=0.5(x) + φA=100(x)

h <-function(t){x<-1/(t+4)ˆ2+0.5 * tˆ2+100 * (1-100 * (t-4)ˆ2)},

we get setting the exploration point distanceε = 2 and the stopping factorE = 200 in the
program macroEXPLORATION

• The first exploration step yields the exploration status(θ1, θ2, w1, w2)

> status
[1] 4.000018 -3.999809 397.000000 3.000000

• By the exploration-from-seed this is upgarded to

> EFS(status,10,5)
[1] 4.000235 -3.999809 702.000000 3.000000

• The weighted sampling WS( c(θ1, θ2), c(w1, w2), α,NIS)

> WS(c(4.000235,-3.999809),c(702,3),10, ...)
[1] 2.633854e-05

We observed that it is important to use a very large value for the stopping factorE in order
to find all different places with large values ofh, in particular if the probabilities for these
regions differ by orders of magnitude.
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Section 5

Prototype procedure Importance
Sampling

Static RAM (SRAM) performance can be described by evaluating response functions like Static
Noise Margin, Write Margin, Read Current, and Leakage Current as function of several param-
eters. Batches of wafers of chips and a series of dies on each wafer (each die containing SRAMs
are subject to process variations. One considers inter-dieprocess variations (that are correlated)
and intra-die ones (that are stochastic). Variability is limiting SRAM performance: one has to be
able to distinguish between a writable (unstable) memory cell and readability without flipping
situation (stable). Due to technology scaling one has to deal with an increased number of bits
and an increased process spread. Variability has always been an important issue for SRAM. In
the past an additional design margin was taken into account to ensure the memory would operate
even though the distributions were approximated by some extrapolation technique (like we will
check in Section 5.3). Nowadays it is not possible anymore touse additional design margins if
one wants to continue technology scaling. The increased number of bits in combination with
the increased variability has left very little margin. We can even say that variability has become
critical for SRAM performance. Therefore an accurate estimation of the tails of the distributions
has become important.
Each SRAM memory is composed of several transistors. The same transistors are used for read-
ing and writing. Hence, important input parameters for the response functions are transistor
parameters likeVT (threshold voltage) andβ (current amplification factor).

In this section we describe a prototype procedure used to apply Importance Sampling. This
prototype was used in simulating results presented in the forthcoming Section 6. The actual
code can be found in Appendix A. As output quantity we consider the Static Noise Margin
SNM(VT,1, . . . , VT,6), where each of the input parametersVT,j is taken according to some den-
sity function. The Static Noise Margin function does not show a normal density distribution.
Hence we will not assume this in the current Section. Note that Section 6 will a way to circum-
vent this for this particular function.
The notions off -distribution for the original distribution in the parameter space and ofg-
distribution of the one used by importance sampling will be similar as used earlier in Section 3.
In Section 5.1 we will sample theVT,j from a broad uniform distribution, while in Section 5.2
we will sample according to the normal distributionVT,j ≈ N(µ(j), σ(j)) (i.e. thef -distribution)
as for standard Monte Carlo. Section 5.3 will demonstrate that the “Extrapolated Monte Carlo”
approach erroneously under-estimates the cumulative density function of this particular SNM
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distribution.
For calculating the Static Noise Margin as postprocessing facility on the results of a circuit sim-
ulation we refer to [9, 14].
We refer to Appendix A for the Matlab code that is associated with this section.

5.1 IMPORTANCE SAMPLING MONTE CARLO

To applyImportance Sampling MCwe sample theVT,j by a broad uniform distribution,vT,j ∼
Unif(µ, κσ), with κ = 6 (i.e. theg-distribution). In this way we getN sampled tuplesv(k) =

(V
(k)
T,1 . . . . , V

(k)
T,6 ), k = 1, . . . N = 105. Note that this is much less than the1012 samples

mentioned at (2.36).
Let M(j) = maxk(V

(k)
T,j ) andm(j) = mink(V

(k)
T,j ).

First we estimate for eachj-th parameterµ(j) by µ̂(j) := meank(V
(k)
T,j ) andσ(j) by σ̂(j) :=

(M(j) − µ(j))/κ. From this we define the individual approximative densities

fj(x) =
1√
2π

1

σ̂(j)
e
− 1

2
(x−µ̂(j)

σ̂(j)
)2
. (5.1)

With this the multi-parameter distributionf is obtained

f(v) = f(VT,1. . . . , VT,6) =
6∏

j=1

fj(VT,j). (5.2)

Next, with the parameter range lengthR(j) = M(j)−m(j) we estimate each (uniform)gj-density
distribution by

gj(x) =

{
1

R(j) if x ∈ [m(j),M(j)]

0 else
. (5.3)

With this the multi-parameter distributiong becomes

g(v) = g(VT,1. . . . , VT,6) =

6∏

j=1

gj(VT,j). (5.4)

Thef/g ratio now becomesφ(v) = φ(VT,1. . . . , VT,6) =
∏6

j=1
fj(VT,j)
gj(VT,j)

.

For the cumulative probability functioncdfSNM(X) = P (SNM(v) ≤ X) we have to determine

cdfSNM(X) = P (SNM(v) ≤ X) =
1

N

N∑

k

ISNM(v(k))≤X φ(v(k)). (5.5)

To approximate the cumulative probability function we determine a histogram. Let

MSNM = maxk(SNM(V
(k)
T,1 . . . . , V

(k)
T,6 )), (5.6)

mSNM = mink(SNM(V
(k)
T,1 . . . . , V

(k)
T,6 )). (5.7)

Then the range length of the values of the output function is defined byRSNM = MSNM−mSNM.
LetXSNM[i] = mSNM + (i− 1) ∗RSNM/s be thei-th bin bound, wheres = 250 (bin size) and
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i = 1, . . . s+ 1. Hence thei-th bin is defined by(XSNM[i],XSNM[i+ 1]], i = 2, . . . s, while the
first interval just is the single point{XSNM[1]}. Define the bin probability function by

fb,ISMC[i] =

{
P(XSNM ∈ (XSNM[i],XSNM[i+ 1]]) if i > 1
P(XSNM = XSNM[1]) if i = 1

, (5.8)

in whichP(XSNM ∈ (XSNM[i],XSNM[i+ 1]]) is determined by determining the relative occur-
rence of the outcomes of the SNM function in this interval, weighted by thef/g ratio. Now the
cumulative probability function can be approximated by

PISMC(Xunif
SNM ≤ XSNM[i]) ≈

i∑

m=1

fb,ISMC[m]. (5.9)

We make several remarks

• After ordering the SNM-values in increasing order the accuracy of the cumulative proba-
bility function can be improved by applying weighted Trapezoidal Rule quadrature onf
on successive ordered outcomesX

(a)
SNM ≤ X

(b)
SNM. We indicate the corresponding samples

k by ka andkb, respectively. Then

X
(b)
SNM −X

(a)
SNM

2RSNM
[P (XSNM = X

(a)
SNM) + P (XSNM = X

(b)
SNM)] (5.10)

In doing this we assumed to have filtered out multiple occurrences and to have incorpo-
rated their effect in the chancesP () at the right-hand side of (5.10). Note that

P (XSNM = XSNM(a)) =
1

N

N∑

k

ISNM(v(k)=SNM(v(a)) φ(v(k)) (5.11)

(note that theseφ-values may be different for differentk associated with function results
with the sameSNM(v(a)) value. There may be even very large variations.

• When dealing with parameters in a multidimensional parameter space the sensitivity with
respect to the parameters may be taken into account.

5.2 STANDARD MONTE CARLO

Similarly to the above, for aStandard Monte Carlowe look at the output functionΣnorm
SNM =

SNM(ṼT,1. . . . , ṼT,6), where theṼT,j are sampled according to a Normal distributionṼT,j ∼
N(µ, σ), resulting in tuples(Ṽ (k)

T,1 . . . . , Ṽ
(k)
T,6 ), k = 1, . . . N = 105. Let

M̃SNM = maxk(SNM(Ṽ
(k)
T,1 . . . . , Ṽ

(k)
T,6 )), (5.12)

m̃SNM = mink(SNM(Ṽ
(k)
T,1 . . . . , Ṽ

(k)
T,6 )). (5.13)

Then the range length of the values is defined byR̃SNM = M̃SNM − m̃SNM. Let X̃SNM[i] =
m̃SNM + (i − 1) ∗ R̃SNM/s again be thei-th bin bound, wheres = 250 (bin size) andi =
1, . . . (s + 1). The bin probability function is defined similarly as in (5.8) by sampling the
relative occurrences of the output function in this interval (i.e. actually weighted by thef/g
ratio equal to 1). The cumulative probability function is derived by a histogram (bin size equal
to the one used as in the Importance Sampling case).
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5.3 EXTRAPOLATED MONTE CARLO

ForExtrapolated MCwe boldly assume that the output density functionfSNM(s) is normal. We
estimateµSNM andσSNM by

µ̂SNM ≈ meank(SNM(Ṽ
(k)
T,1 . . . . , Ṽ

(k)
T,6 )), (5.14)

σ̂SNM ≈ stdk(SNM(Ṽ
(k)
T,1 . . . . , Ṽ

(k)
T,6 )). (5.15)

Let X̂snm[i] = mSNM + (i − 1
2) ∗ RSNM/s be thei-th bin center, wheres = 250 (bin size) and

i = 1, . . . s. The bin probability function is defined by

fb,EXMC[i] =
1√
2π

1

σ̂SNM
exp[−1

2
(
X̂snm[i] − µ̂SNM

σ̂SNM
)2] × RSNM/s, (5.16)

from which again a cumulative probability function can be derived. In this case the last function
could also have been determined exactly.

5.4 COMPARISONS

In Figure 5.1 the cumulative probability functions (CPFs) obtained by MC using Importance
Sampling, by Standard MC, and by ‘Extrapolated MC’ are shown. Clearly the CPF of the
‘Extrapolated MC’ deviates already quite soon from the other two CPFs due to the non-normality
of the distribution of the output function SNM. There even isa consequent under estimation. The
CPFs of the Normal MC and of the Importance Sampling MC are consistent for10−5 ≤ P(x <
X). Clearly, Importance Sampling MC is able to continue to evenbelow10−15.
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Figure 5.1: Cumulative probability functions by MC using Importance Sampling, by Standard
MC, and by ‘Extrapolated MC’
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Section 6

Importance Sampling Monte Carlo
Simulations for Accurate Estimation of
SRAM Yield

6.1 ABSTRACT

1Variability is an important aspect of SRAM cell design. Failure probabilities ofPfail ≤ 10−10

have to be estimated through statistical simulations. Accurate statistical techniques such as Im-
portance Sampling Monte Carlo simulations are essential toaccurately and efficiently estimate
such low failure probabilities. This chapter shows that a simple form of Importance Sampling is
sufficient for simulatingPfail ≤ 10−10 for the SRAM parametersStatic Noise Margin(SNM),
Write Margin (WM) andRead Current. For the SNM, a new simple technique is proposed that
allows extrapolating the SNM distribution based on a limited number of trials. For SRAMTotal
Leakage Currents, it suffices to take the averages into account for designing SRAM cells and
modules. A guideline is proposed to ensure Bitline Leakage Currents do not compromise SRAM
functionality.

6.2 INTRODUCTION

Decades of scaling according to Moores law have shrunk devices to such an extent that vari-
ability has become a serious issue at all levels of circuit design. The effects of variability are
most noticeable in SRAM design, since SRAM cells use very small transistors. For this reason,
statistics have long been part of SRAM cell design. Intra-die transistorVt mismatch is still the
main statistical parameter, although others are gaining importance. Downscaling of transistors
leads to widenedVt-distributions (Figure 6.1-left). In addition, the amountof SRAM on large
System-on-Chips (SoC’s) continues to increase, causing the amount of variation that has to be
taken into account to increase as well (Figure 6.1-right).
On top of this, there is a clear trend towards voltage scalable systems [9, 38], resulting in an
increased demand for voltage scalable SRAM as well. At lowersupply voltages, SRAM’s are
more susceptible to variability, leaving less design margin for the designer. Hence it is becoming

1This chapter was presented at the ESSCIRC 2008 Conference inEdinburgh, Scotland, Sept. 19, 2008. Roelof
Salters, Patrick van de Steeg, Jwalant Mishra, Dick Klaassen and Theo Beelen (all NXP Semiconductors) are ac-
knowledged for many fruitful discussions. The current textcontains minor corrections.
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increasingly hard to guarantee correct SRAM operation under all process, voltage and temper-
ature conditions. This translates to very tough requirements on SRAM parameters like Static
Noise Margin (SNM), Write Margin (WM) and Read Current (Iread).
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Figure 6.1: Increased variability leads to widening mismatch distributions (left). Increasing the
number of memory bits per SoC leads to a larger part of the mismatch distribution being taken
into account in memory bitcell design (right).[A.U.] stands for[Arbitrary Units]
.

SRAM yield should not be limited by parametric yield loss dueto variability of design param-
eters. To guarantee no more than 0.1% yield loss for a 10Mb SRAM, a failure probability of
Pfail ≤ 10−10 is taken into account in SRAM bitcell design for all relevantparameters. Pro-
vided the probability distribution is Gaussian,Pfail ≤ 10−10 corresponds toµ−6.4σ (with µ the
mean andσ the standard deviation of the distribution). Using Monte-Carlo (MC) simulations,
the6.4σ limits of the SRAM parameter distributions are estimated. Accurate estimation of the
relevant parameters atµ− 6.4σ with plain Monte-Carlo takes billions of simulations and istoo
time consuming. Hence, a limited number of simulations is done (103 − 104), theµ andσ of
the distribution are extracted andµ− 6.4σ is determined by extrapolation. This technique is not
always accurate, since the SNM distribution is not Gaussianat all [9, 47] and the distribution of
Iread is not Gaussian in its tail.
This chapter presents the use of the simplest form of Importance Sampling (IS) to drastically
increase the accuracy of Monte-Carlo simulations. This technique was applied before in a com-
plex adaptive fashion, requiring complex sampling algorithms and post-processing [26]. This
chapter presents a form of IS that requires less implementation effort. The applicability of the
method is demonstrated by estimating the yield and probability distribution functions of SNM,
WM and Iread. In the case of the SNM, a new method is presented for accurately estimating
Pfail ≤ 10−10 by extrapolation. For SRAM Total Leakage Currents, it suffices to take the av-
erages into account for designing SRAM cells and modules. A guideline is proposed to ensure
Bitline Leakage Currents do not compromise SRAM functionality.
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6.3 IMPORTANCE SAMPLING

Monte-Carlo analysis in circuit design normally assumes Gaussian distributedVt-s of the tran-
sistors in the circuit. This results in many samples being drawn from around the average of the
distribution. The extremeVt-s are responsible for the extremes in the distributions of the output
parameters (SNM, WM,Iread, etc.). Therefore it makes sense to have more samples drawn from
the tails of theVt distributions. Using a Gaussian distribution with a largerstandard deviation
for theVt is the simplest way to achieve this.
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Figure 6.2: The principle of Importance Sampling. Using a density function with a larger stan-
dard deviation in Monte- Carlo analysis results in more samples being drawn from the extremes
of the distribution. Here the latter density used aσ that was 3 times that of the original one.

From Figure 6.2 it is clear that using a wider Gaussian density function for Monte-Carlo sam-
pling, indeed more samples are drawn from the extremes of thedensity. Using a widerVt

sampling distribution is a very practical choice, since no modifications to the circuit simulator
are necessary. Using a wider density instead of the originaldistribution leads to distorted SNM,
WM and Iread distributions. The correct density functions and distributions are obtained by a
mathematical transformation based on the ratio of the original and IS distribution. The resulting
distributions are now estimated over a much larger range compared to applying standard MC.
IS can be described more formally as follows. Suppose parameter x has a densityf(x). With
IS, parameterx is sampled according to densityg(x). To compensate for sampling according to
g(x) instead off(x), the distribution functiony, the sampled version ofx, has to be multiplied
by the ratiof(x)/g(x). The sampled distribution function of parameter y is given by (6.1)-(6.2)

P (x < y) = F IS(y) =
1

N

N∑

i=1

I{xi<y}
f(xi)

g(xi)
, with (6.1)

I{xi<y} =

{
1 if xi < y
0 if xi ≥ y

, (6.2)

whereN is the number of trials.
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6.4 APPLICATION OF IS TO SRAM BIT CELL ANALYSIS

This section shows that with the same number of trials, IS canestimate much smaller failure
probabilities than is possible with standard MC. It is also shown that extrapolated MC can lead
to over- or under-estimation of thePfail ≤ 10−10 for the most important SRAM parameters:
SNM, Iread and WM. Moreover, for the SNM, a new method allows estimatingPfail ≤ 10−10

using extrapolated MC with high accuracy.
A 65nm SRAM cell is simulated using PSP MOS transistor models. A supply voltageVdd =
0.9V is used, to bring the cell closer to its operating limits. At this Vdd, the accuracy with
which all parameters are determined becomes more important. The IS simulations use Gaussian
distributions with aσ = 3σVt for the Vt-s of all transistors in the SRAM cell [we generated
enough samples in the tails to draw conclusions].

6.4.1 STATIC NOISE MARGIN (SNM)

An SRAM cell has to be stable enough to be read without changing the data in the cell. The
SNM is a measure for the read stability of the cell. The SNM is the amount of noise that can
be imposed on the internal nodes of the SRAM cell before it changes its state. The SNM is
determined by plotting the voltage transfer curve of one half of the SRAM cell together with the
inverse of the voltage transfer curve of the other half of thecell. The sides of the largest squares
that can be drawn inside the eyes are SNMh (‘high’) and SNMl (“low”), see Figure 6.3.
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Figure 6.3: The butterfly curve of an SRAM cell, used to determine the SNM.

Both SNMh and SNMl have a Gaussian distribution. The minimum of SNMh and SNMl is tradi-
tionally defined as the SNM [47]. Since taking the minimum of SNMh and SNMl is a non-linear
operation, the distribution of SNM is no longer Gaussian. Therefore using extrapolated MC to
determinePfail ≤ 10−10 does not yield accurate results.

Figure 6.4-left, shows the cumulative distribution function (CDF) of the SNM, determined by a
MC simulation using 50k trials, both for standard MC (solid)and IS (dotted). Standard MC can
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only simulate down toPfail ≤ 10−5. Statistical noise becomes apparent belowPfail ≤ 10−4.
Using the simple form of IS,Pfail ≤ 10−10 is easily simulated. The correspondence between
Standard MC and IS is very good down toPfail ≤ 10−5. Figure 6.4-left clearly shows that using
extrapolated MC leads to overestimating the SNM atPfail = 10−10.

0 40 80 120

# trials = 50k

160

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

C
D

F
 (

fr
a
c
ti

o
n

)

Static Noise Margin (mV)

SNM just below 0
at P <=10fail

-10

target: P 1.0·10fail £
-10

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

C
D

F
 (

fr
a

c
ti

o
n

)

Static Noise Margin high (mV)

0 50 100 150 200 250

# trials = 50k

target: P 0.5·10fail £
-10

SNM just below 0

at P 0.5·10fail£
-10

Figure 6.4: SNM (left) and SNMh (‘high’) (right) cumulative distribution function for extrapo-
lated MC (dashed), standard MC (solid) and MC (dotted).

A new simple method is now presented to estimate the SNM by evaluating the distribution of
only SNMh or SNMl. Figure 6.4-right shows the CDF of SNMh. The distribution of SNMh is
a Gaussian distribution and extrapolation leads to a good estimate of SNMh at Pfail = 10−10.
ThePfail = 10−10 limits for SNMh and SNM appear be to almost identical. At first sight, this is
surprising, since the SNM and SNMh have different distributions. However, a small difference
exists between SNM and SNMh/SNMl. The following describes how they are different.
The SNM is defined as the smaller value of SNMh and SNMl

SNM = min(SNMh,SNMl). (6.3)

Next, we apply the probability rule

P (A ∪B) = P (A) + P (B) − P (A ∩B), (6.4)

with A = {SNMh ≤ a} andB = {SNMl ≤ a}. The probability that SNMh and SNMl

simultaneously are very small is extremely low. Therefore,for the extreme chances,P (A∩B) ≈
0 (and much smaller than the other chances). Assuming that SNMh and SNMl are identically
distributed, it follows for the values of interest fora that:

P (SNM ≤ a) = P (SNMh ≤ a) + P (SNMl ≤ a)

= 2P (SNMh ≤ a) (6.5)

= 2P (SNMl ≤ a). (6.6)

A failure probability for SNMh of P (SNMh ≤ a) = 0.5 10−10 is required to get the same
failure probabilityP (SNM ≤ a) = 10−10. In the example shown in this chapter, the difference
betweena for P (SNMh ≤ a) = 0.5 10−10 andP (SNM ≤ a) = 10−10 is only 1.2mV, which

60 c© TUE Eindhoven University of Technology 2009



TUE-CASA-2009

is within the statistical accuracy of IS. The justification is demonstrated in Figure 6.4 where the
crossings are at the same for SNM. For larger values (and thuslarger chances) the assumption
thatP (A ∩ B) = 0 is not longer valid. Indeed Figure 6.4 shows that there (6.5)does not hold
there (but this is also clear from the equation itself for largea).
The extrapolated version ofP (SNMh ≤ a) = 0.5 10−10 deviates fromP (SNM ≤ a) = 10−10

by only 0.3mV. Effectively, usingP (SNMh ≤ a) = 0.5 10−10 means extrapolating toσ−6.5σ.
This analysis shows it is possible to use extrapolated MC as an accurate estimate of the far tail
of the SNM distribution.

6.4.2 READ CURRENT

The Read CurrentIread is a measure for the speed of the memory cell and is therefore an impor-
tant parameter. Figure 6.5 shows the extrapolated MC, regular MC and IS distribution for the
Read Current of an SRAM cell. Again, there is a good match between regular MC (solid) and
IS (dotted), down toPfail ≤ 10−4.
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Figure 6.5: Read Current Cumulative Distribution functionof the extrapolated distribution
(dashed), regular Monte-Carlo (solid) and IS (dotted).

These Read Current simulations were done on one side of the cell. Therefore,Pfail ≤ 0.5 10−10

has to be targeted for the Read Current as well. The correspondence with the SNMh simulation
is very good. The cells start flipping during a read action at almost exactly the same failure
probability as where SNM=0mV.
These simulations show that extrapolated MC can result in serious underestimation of the Read
Current. This can lead to over-design of the memory cell. To be able to accurately simulate
the worst case Read Current as a result of mismatch, IS is essentially needed for sampling the
Read CurrentIread appropriately. Extrapolated MC is by no means accurate enough. This is in
contrast to the SNM function.

6.4.3 WRITE MARGIN

An SRAM cell should not only be stable during read, it also hasto be sufficiently instable to be
written when desired. The Write Margin (WM) is a measure for the writeability of the SRAM
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cell. A cell is written by precharging one bitline toVdd and discharging the other bitline to
ground, with the wordlines atVdd. The WM can be defined as the highest acceptable voltage on
this low bitline (Figure 6.6).
For the WM, a similar line of reasoning holds as for the SNM. Therefore the target should be
Pfail ≤ 0.5 10−10. The distribution function of the WM was also simulated using extrapolated
MC, standard MC and IS MC (Figure 6.7). Again, a good match is obtained between standard
MC and IS MC. The WM is underestimated by about 10 mV, which is not a significant deviation.
Therefore the far tail of the WM distribution can be estimated using extrapolated MC.
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6.4.4 LEAKAGE CURRENTS

Leakage Currents can be divided into two important categories:
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• Total Leakage Current: Total Leakage Current is important for the standby power con-
sumption of the memory. This can be estimated by multiplyingthe average of the total
cell leakage by the number of cells in the memory instance. The large number of cells
in an SRAM results in a small variation on this estimate, making this method sufficiently
accurate.

• Bitline Leakage Current: Bitline Leakage is the sum of the leakage currents of the non-
selected cells in the column being accessed. Too much Bitline Leakage Current can result
in a non-functional memory. During reading, one of the two bitlines of the column is
discharged to develop sufficient differential voltage for the sense amp to be detected. In
a worst case situation, all non-accessed cells connected tothe column being read are dis-
charging the opposite bitline with their leakage currents.If the sum of the leakage currents
is in the order of the worst-case Read Current, there is a riskof developing insufficient dif-
ferential voltage on the bitlines and a read failure.
Short columns with fewer cells have lower Bitline Leakage Currents than longer columns.
Hence, if a memory with long columns can handle the worst casebitline leakage, a smaller
instance of that memory with shorter columns can also handlethe bitline leakage.
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Figure 6.8: 1-CDF of the logarithm of the Bitline (Passgate)Leakage Current (leakage current
of one cell): extrapolated MC (dashed), regular MC (solid) and IS MC(dotted).

Figure 6.8 shows the logarithm of the Bitline (Passgate) Leakage Current. Since the leakage cur-
rent depends exponentially on the transistor treshold voltageVt, the distribution of the logarithm
is excellently Gaussian. The probability of a Bitline Leakage Current that is 100x higher than
the average is approximatelyP (Ileak,bl ≥ 100 Ileak,bl,µ) ≈ 10−10 for this cell, meaning this is
a very rare event. Hence it is safe to assume only one cell has worst case leakage and all other
cells have an average leakage current. Inequality (6.7) is proposed as a guideline to ensure that
Bitline Leakage Current does not compromise SRAM functionality

Iread,wc ≥ x (Ileak,bl,6.4σ + (L− 2) Ileak,bl,µ), (6.7)

whereIread,wc is the worst case Read Current,L is the maximum number of cells in a column
andx is a margin factor at the discretion of the designer.
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6.5 CONCLUSION

Continuous scaling according to Moore’s law and an increasing number of bits used in SRAM
memories strongly increase the need for incorporating statistical information into the design
of SRAM bit cells. To guarantee sufficient yield for a 10 Mb SRAM, failure probabilities of
Pfail ≤ 10−10 are required, probabilities found in the far tails of the parameter distributions.
Accurate statistical techniques are a must to be able to simulate such failure probabilities.
In this chapter it was shown that accurate statistical DC SRAM cell simulations are possible
using a relatively simple statistical technique like Importance Sampling (IS) Monte Carlo (MC)
with widenedVt distributions. The technique has been successfully applied to accurately esti-
mate the distributions of Static Noise Margin (SNM), Write Margin (WM) and Read Current
Iread.
For the SNM, it is shown that extrapolation of standard MC simulations overestimates the yield.
In addition to the benefit of IS MC simulations, it has been shown that extrapolation of the Gaus-
sian distributions of the individual eyes yields results inaccurate yield estimation. The results
of the latter method are in agreement with IS MC simulations.
The Read Current distribution deviates strongly from a Gaussian distribution and therefore its
distribution can not be extrapolated. The use of extrapolated distributions would result in a pes-
simisticIread and could thus lead to over-design of the memory cell and/or memory architecture.
Importance Sampling or a technique with similar statistical accuracy is required to make correct
decisions in the design process.
The WM can be estimated with extrapolated Gaussian distributions. Although a small difference
of the WM atPfail ≤ 10−10 is observed between extrapolated MC and IS MC, this difference is
not significant.
To determine the SRAM Total Leakage Currents the average current per cell is multiple by
the number of cells in the instance. A guideline is proposed to guarantee that Bitline Leakage
Currents do not compromise SRAM functionality.
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Section 7

Recommendations for PSTAR [42]

In this chapter we give some recommendations to allow for Importance Sampling.

• Input: The user should be able to define a distributiong for selecting parameters: by
referring to a standard one (normal, uniform, lognormal, etc), or by explicitly defining a
function. In the last case Pstar should perform some checks (like being positive, cumula-
tive probability adds up to 1).
The user should also be able to define the reference distribution f that would have been
used without Importance Sampling.

• Output: Several items can be listed

– ProvideP (X < t) for given output functionX and given value oft.

– Also allow for a PDF and a cumulative probability (CDF) plot:plot P (X < t) for a
list of t-values.
This will need binning, hence an additional binning specification must be included.
As default number of bins, the square root of the number of samples may be chosen.
Creating a CDF by ‘binning’ can be improved by applying proper quadrature, like
the Trapezoidal Rule.

– In doing the current research it appeared to be very helpfullthat plots of the values
of f and ofg at the sampling points can be plotted together.

– A parameter sweep of the values of the quantities of interestat the chosen probability
against the swept parameter(s) is wanted as well.

• Generalizations: Allow also for correlations. Include a functionality that determinesg
automatically (for instance by adaptivity). Also allow to determinet such that for givenε
one hasP (X < t) < ε
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Section 8

Conclusions

A 0.1% yield loss for 10Mbit SRAM memory, which means that 1 in10 billion cells fails
(Pfail ≤ 10−10) can be efficiently estimated by Monte Carlo methods that aretuned by Im-
portance Sampling. Importance sampling brings Monte Carloto the area in parameter space
from where the rare events are generated. By this a speed up ofseveral orders can be achieved
when compared to standard Monte Carlo methods. The efficiency of the method increases when
the dimension of the parameter space increases.
The method would be a valuable extension to the statistical capacities of Pstar [42] and/or Spec-
tre [49]. In fact the method can be efficiently implemented inany simulator and can be extended
to allow for adaptive tuning of the rare event density distribution.
A version of Importance Sampling has been implemented usingPStar with Matlab post pro-
cessing and has been demonstrated to work correctly. The method has been applied to estimate
the probability distribution of all 4 SRAM cell parameters:Static Noise Margin (SNM), Write
Margin (WM), Read Current and Bitline Leakage Current. A good correspondence of Impor-
tance Sampling Monte Carlo and traditional Monte Carlo simulation was shown for the relevant
probability range.
For the SNM, it is shown that extrapolation of standard MC simulations overestimates the yield.
In addition to the benefit of ISMC simulations, it has been shown that extrapolation of the Gaus-
sian distributions of the individual SNM eyes yields results in accurate yield estimation. The
results of the latter method are in agreement with IS MC simulations.
The Read Current distribution deviates strongly from a Gaussian distribution and therefore its
distribution can not be extrapolated. The use of extrapolated distributions would result in a pes-
simistic Read Current and could thus lead to over-design of the memory cell and/or memory
architecture. Importance Sampling or a technique with similar statistical accuracy is required to
make correct decisions in the design process.
The WM can be estimated with extrapolated Gaussian distributions. Although a small difference
of the WM atPfail = 10−10 is observed between extrapolated MC and IS MC, this difference is
not significant.
To determine the SRAM Total Leakage Currents the average current per cell is multiple by the
number of cell in the instance. A guideline is proposed to guarantee that Bitline Leakage Cur-
rents do not compromise SRAM functionality.

We introduced Importance Sampling as a technique to efficiently perform failure analysis. To
prove benefits over standard Monte Carlo we applied and extended knowledge from Large De-
viation theory. The basics of the method can easily be implemented in a circuit simulator or in a
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shell procedure around a circuit simulator. For a refined procedure, involving adaptive sampling,
we introduced a new approach. Here some intial tests were made using 1-dimensional functions.
The real benefit must come from problems with parameters in a higher dimensional space. This
will require further research.
Apart from the studied Importance Sampling we also described two additional variants (weighted
importance sampling, regression importance sampling) that have some benefits from a numeri-
cal mathematics point of view, but for us the obtained benefits are here not decisive.
In further improving the performance of a particular variant of Importance Sampling the vari-
ance can be minimized by optimizing a parameter. Apart from some trivial situations, in general
this requires some accurate numerical procedures.

RESPONSE SURFACE MODELING

We did some minor experiments with Response Surface Modeling (RSM) techniques (using the
MatLab M3/SUMO toolbox developed at the University of Antwerp/Ghent1). After paying the
costs for exploring the design space and to build the model, the output function enables a rapid
Monte-Carlo simulation. To give an impression, for 4 SRAM functions (SNM, WM,IRead,
ILeakage) and 6VT -s, 10 million samples can efficiently be simulated within ca7 minutes, which
is a speed-up of 1400 with respect to Pstar [42] (that used 1000 trials per minute). For standard
MC using1010 samples, Pstar will need more than107 minutes (= 1.7 105 hours, or23 104 days,
or ca 20 years), while MC via RSM was done in 7000 minutes. The cost for generating the RSM
was 10h.
For RSM techniques one needs to verify the accuracy of the models (sometimes strange peaks
occur in the surface). Also the model has to become very accurate in the area that is important
for the failure analysis.

In the tool ROAD (RObust Analog Design) of ExtremeDA (http://extreme-da.com/ROAD-
Suite.html) a Quadratic Response Surface Model (QRSF) for anonlinear performance function
f is constructed [32, 33, 34]. The main features are

• One efficiently determines high-order moments of QRSF via a ”binomial moment evalu-
ation”.

• Next one determines the polesbi and residuesai of a transfer functionH(s) =
∑M

i=1
ai

s−bi

such that moments int-domain match those of QRSF.

• The pdf(f ) is obtained via a time impulse responseh(t) =
∑M

i=1 aie
bit (actuallyt ≈ f )

• The cdf(f ) follows simply vias(t) =
∫ t
0 h(τ)dτ .

• One applies a carefull shifting: pdf(f ± f0).

Here the step via the moments is the unattractive part, despite the nice recursion. The problem
with exlicit moment matching algorithms always is the stability of these recursions. However the
approach is interesting when viewed from the point of view ofModel Order Reduction (MOR)
where poles and residues are calculated using other techniques. Some research is needed here to
obtain the required implicit moment matching.

1http://www.sumo.intec.ugent.be/
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FUTURE WORK

Topics to be studied further are listed below.

• The outcome of an evaluation can guide to how to determine specific sampling points. Our
current experiments did not exploit this as well. Section 4 provides a starting procedure
to adaptively sample points at proper locations. By this oneapproximates the optimum
Importance Sampling functiong in an adaptive way.

• The sampling functiong may be different for various output responses. Currently wehave
derived a practical form of Importance Sampling for SRAM cell simulations. However,
we have not solved the general question: What is the optimal Importance Sampling distri-
butiong for statistical (SRAM) circuit simulations? Again, Section 4 provides a starting
procedure for this.

• How many trials are needed to obtain the required accuracy? In Section 2.4 we derived by
the Large Deviation principle that one may need a numberN ≈ 1/p for Monte Carlo. In
Section 3.2 we proved that Importance Sampling needs less samples to obtain a reduction
of the variance of the estimate ofp. Both proofs were not trivial. In practice we worked
with much less samples (orderO( 1√

p)). One needs some adaptive error estimates during
the sampling process.

• For the SRAM response functions the distributions have beendetermined. For low volt-
age memory quite a number of parameters have influence. Sensitivity has not yet been
exploited in our experiments. A simple procedure that applies when sensitivity analysis
is not provided by a circuit simulator is to run a MC ”scan” in advance putting variability
on all parameters at once. Now, before calculations of the distributions, dominant param-
eters can be determined (note that parameters can be dominant in a specific region only).
Only these parameters need to be included in the calculationof the distribution. To exploit
sensitivity in MC see [19].

• Which part of the input parameter space meets the output specifications of the SRAM
simulations:i.e., for givenε find t such thatP (X < t) ≤ ε. How to detect the part of the
input parameter space that determines output specifications for SRAM simulations?
This relates to Inverse Problem techniques [25, 30]. Note that we have learned during the
research that analog designers are interested in deriving aCumulative Probability Func-
tion. It means that one is interested in a sequence ofε’s.

• Which methods other than Importance Sampling can be used to improve accuracy and
performance (to increase speed) of statistical runs for SRAM. How can they be applied, or
combined with Importance Sampling. For example, how can Latin Hypercube Sampling
or generalized Polynomial Chaos (gPC) Theory [2, 37, 54] be combined with Importance
Sampling (see for instance [39])? Perhaps that on the short term these questions are more
interesting to be answered than to generalize adaptive importance sampling.

• How can Response Surface Modelling Techniques be used to further reduce evaluation
time, e.g., by determining the dominant parameters [28, 52]. We note that [32, 33, 34]
have described a procedure to efficiently obtain statistical moments for nonlinear response
functions based on approximation techniques from Model Order Reduction.
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Appendix A

Matlab Code

A.1 File Matlab ImpSampling Pstar.m

clear;

%path = ’/home/nlv15606/projects/C065/lop/sram_opt/ps tar/sram/’;
path = ’H:\__RESEARCH_PAPERS__\Statistics\SRAM\Import ance_Sampling\’;

% Plotting chances y=10ˆ(-k) vs x; y=N(x) the cumulative nor mal density function
% y=N(x)=0.5 ( 1+erf(x/sqrt(2) ), hence x=sqrt(2) erfinv(2 y-1)

% Powers: -12, -11-0.75, -11-0.5, -11-0.25, -11, ..., -1, -0 .75, -0.5, -0.25, 0
powers = linspace(-12,0,49)
y=10.ˆpowers
x=sqrt(2) * erfinv(2 * y-1)

figure(1);
subplot(121), h1=semilogy(x,y,’b’);
title(’{\bf Log(Cumul. Normal chances)}’);
grid minor;

subplot(122), h2=plot(x,y,’b’);
title(’{\bf Cumul. Normal chances}’);
grid minor;

[nx,mx]=size(x);
[ny,my]=size(y);

xpos= - x([mx-2:-1:1]); % Mirror only the negative values of x
ypos= 1 - y([my-2:-1:1]);

xtot=[x(1,1:mx-2) xpos(1,1:mx-2)];
ytot=[y(1,1:my-2) ypos(1,1:my-2)];

figure(2);
subplot(121), h1=semilogy(xtot,ytot,’b’);
title(’{\bf Log(Cumul. Normal chances)}’);
grid minor
subplot(122), h2=plot(xtot,ytot,’b’);
title(’{\bf Cumul. Normal chances}’);
grid minor

% Data files from Pstar: 8 columns, containing "index, vt1-- vt6, snm"
% It is assumed that the vtj are mutually independent
%
% snm=snm(vt1,vt2, ..., vt6) is output result from Pstar
%
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w=waitbar(0,’Reading data files ...’);
waitbar(0,w);
file_uni = ’snm_1e5_uni.table’;
data_uni = single(load([path file_uni])); % uniformly dis tributed [mu-6sigma, mu+6sigma]
waitbar(0.5,w);

file_norm = ’snm_1e5_norm.table’;
data_norm = single(load([path file_norm])); % normally di stributed with stdv=sigma

waitbar(1,w);

close(w);

pstarSigma = 6;
numsam = length(data_uni); % The number of parameter tuples (vt1,vt2, ..., vt6)
%numsam=100000;
numbin = 250;

[mdu,ndu] = size (data_uni); % n=8 in example
vt = data_uni(:, [2:ndu-1]);
snm = data_uni(:, ndu);

snm_norm = data_norm(:,ndu);

figure(3);

[n_snm,snm_bin_centers]=hist(snm,numbin);
[n_snm_norm, snm_norm_bin_centers]=hist(snm_norm,num bin);

subplot(121), bar(snm_bin_centers,n_snm); % Fig 5.2a
title(’{\bf Histogram SNM with VˆT_k uniformly distribute d on [\mu-6\sigma, \mu+6\sigma]}’,’FontSize’,12);

subplot(122), bar(snm_norm_bin_centers,n_snm_norm); % Fig. 5.2b
title(’{\bf Histogram SNM with VˆT_k normally distributed with N(\mu,\sigma)}’,’FontSize’,12);

w=waitbar(0,’Calculating correlations of vt-s...’);
waitbar(0,w);
’Correlation data of vt-s:’
[rho_uni,pval_uni]=corr(vt) % rho_uni contains positive and negative values;

% pval_uni is nonnegative
rho=rho_uni;
for i=1:ndu-2

rho(i,i)=0;
end
rho_max=max(max(rho));
rho_min=min(min(rho));

figure(4);
xc=[1:1:ndu-2];
yc=xc;
[XC,YC]=meshgrid(xc,yc);

plot3(XC,YC,rho);
axis([1 ndu-2 1 ndu-2 rho_min rho_max]);
title(’{\bf Corr between vt-s; diag (was 1) set to 0}’);
grid;

waitbar(1,w);
close(w);

w=waitbar(0,’Starting calculating probabilities ...’);
waitbar(0,w);

%
% Importance Sampling using samples from a broad uniform dis tribution (data_uni)
%

snmRange = max(snm)-min(snm)
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vtmean = mean(vt)

% The sigmaVt of the normal distribution can be calculated fr om
% sigmaVt of the uniform distribution.
sigmaVt_uni = std(vt)
sigmaVt_uni_scaled = sigmaVt_uni/pstarSigma
sigmaVt_norm = sigmaVt_uni_scaled * sqrt(3)

% The sigmaVt of the normal distribution can also be calculat ed
% from the range of the uniform Vt distribution.
vtstd = (max(vt)-mean(vt))/pstarSigma

% From PStar we obtain the next numbers for sigmaVt (trials=1 0000):
%vtstd = [0.0396 0.0350 0.0389 0.0396 0.0350 0.0389]

% The exponent of the normal distribution -0.5 * ((vt - u)/s)ˆ2
%
[mvt,nvt] = size(vt);
vtmeanM = ones(mvt,nvt) * diag(vtmean);
expMult = ( (vt-vtmeanM) * diag(1./vtstd) ).ˆ2 ;
f_pdf = 1/sqrt(2 * pi) * exp( - 1/2 * expMult ) * diag(1./vtstd) ;

% We have to determine the chance p(snm<X) for several values of X
% This is done by the formula [using the mutual indpendency]
%
% p(snm<X) = (1/N) sum InX(snm) * f_pdf(vt1)/g_pdf(vt1) * ... * f_pdf(vt6)/g_pdf(vt6)
%
% Here InX(x) = 1 if x<=X, InX(x) = 0 if x>X.
%
% g_pdf is from a uniform distribution between min(vt) and ma x(vt): 1/vtRange
%
% f_pdfMult = f_pdf(vt1) * ... * f_pdf(vt6)
f_pdfMult = prod(f_pdf,2);
vtRange = max(vt)-min(vt) ;
% 1/N * 1/g_pdfMult = 1/N * prod(vtRange)
one_over_N_times_one_over_g_pdfMult = prod(vtRange)/n umsam ;
% 1/N * 1/g_pdfMult = 1/N * prod(vtRange)
% 1/n * prod_k (f_k/g_k)
pdfMultNorm = f_pdfMult * one_over_N_times_one_over_g_pdfMult;

waitbar(0.5,w);
[snmAxis, snmPDF, snmCDF] = Matlab_Makepdf(snm,pdfMultN orm,numbin);
waitbar(1,w);

% ===================== Normal/Standard Monte-Carlo === ==================
% (via Histogram sampling, covering non-normality of outpu t function)
%

% normHist contains totals in each bin; normbins: bin-cente rs
[normHist,normBins] = hist(snm_norm,numbin);
snmRangeNorm = max(snm_norm)-min(snm_norm);
stepsizeNorm = snmRangeNorm/numbin;
snmPDFnorm = normHist’/numsam; % Calculate fraction in eac h bin interval
snmCDFnorm = cumsum(snmPDFnorm); % Sum all chances
snmAxisNorm = normBins; %

% ================ Extrapolated Monte-Carlo =========== =====
% (via Histogram sampling, assuming normal density functio n of output function)
%

meanNorm = mean(snm_norm) ;
sigmaNorm = std(snm_norm) ;

snmPDFextr = 1/sqrt(2 * pi)/sigmaNorm * exp(-1/2 * (snmAxisNorm-meanNorm).ˆ2/sigmaNormˆ2);
snmCDFextr = cumsum(snmPDFextr * snmRangeNorm/(numbin-1));
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figure(5) % Fig. 5.1
h3=semilogy(snmAxis’,snmCDF,’b’, snmAxisNorm,snmCDFn orm,’g--’, snmAxisNorm, ...

snmCDFextr,’r-.’);

set(h3,’LineWidth’,2);

legend(’{\bf Importance Sampling MC}’, ’{\bf Normal MC}’, ’{\bf Extrap. MC}’, ...
’Location’, ’SouthEast’);

title(’{\bf Comparison of Cumulative Probabilities}’,’F ontSize’,12);
xlabel(’{\bf X}’,’FontSize’,12,’FontAngle’,’italic’) ;
ylabel(’{\bf P(x<X)}’, ’Rotation’, 0, ’FontSize’,12,’Fo ntAngle’,’italic’);
text(0.055, 10ˆ3, ’{\bf x=SNM(VˆT_1,...,VˆT_6)}’,’Font Size’,12);
grid;

hold on;

%msu=mean(snm);
%msn=meanNorm; %mean(snm_norm);
%semilogy([msu,msu],[10ˆ5,10ˆ(-20)],’m-..’);
%semilogy([msn,msn],[10ˆ5,10ˆ(-20)],’m-..’);
%text(0.055,10ˆ1,strcat(strcat(’{\bf \mu_{unif}(x)=’ ,num2str(msu)),’}’));
%text(0.055,10ˆ(-1),strcat(strcat(’{\bf \mu_{norm}(x )=’,num2str(msn)),’}’));

close(w);

A.2 File Matlab Makepdf

%
% [axisbin, pdfbin, cdfbin] = Matlab_Makepdf(values, prob values, nobins)
%
% Creates the pdf, cdf (with ’nobins’ bins) and accompanying axis
% for random data consisting of ’values’, based on the probab ilities
% of those values.
%

function [axisbin, pdfbin, cdfbin] = Matlab_Makepdf(valu es, probvalues, nobins)

axisbin = zeros(nobins+1,1);
pdfbin = zeros(nobins+1,1);
cdfbin = zeros(nobins+1,1);

minValue = min(values);
maxValue = max(values);
rangeValue = maxValue-minValue;
binstep = rangeValue/nobins ; % binlength
axisbin(:,1) = [minValue:binstep:maxValue]’; % Always on e point more than the number of bins
[na,ma] = size(axisbin);
[nv,mv] = size(values);

[sortedValues,sortingIndex] = sort(values(:,1));
[nsv,msv] = size(sortedValues);
[nsi,msi] = size(sortingIndex);
[np,mp] = size(probvalues);

kstart=0;
for jbinbound=1:1:na

bool=0;
k=kstart;

% occurrences in (X,X+step]
while ( (k < nv) & (sortedValues(k+1,1) <= axisbin(jbinboun d,1)) )

k=k+1;
bool=1;

end
if (bool)
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% sum all the probabilities of the occurrences
pdfbin(jbinbound,1) = sum(probvalues( sortingIndex(kst art+1:k,1), 1));
kstart=k;

else
kstart=k+1;

end
end
cdfbin = cumsum(pdfbin);
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Appendix B

Source Code Adaptive Importance
Sampling Simulation

For the simulations in the 1-d testbed in Chapter 4, we used the following routines programmed
in the open source statistical programming languageR (seewww.r-project.org ). Defining
a functionf consisting of a combination of the three basic 1-d-phantoms, we can explore the
dependence of the algorithm on the three relevant control parameters.

################################################### ####
#
# F I R S T E X P L O R A T I O N
#
#
#
#
#
################################################### ####

################################################### ####
#
# D E F I N E T H E F U N C T I O N T O B E
#
# E X P L O R E D
#
################################################### ####

# f <- function(t){x <- 1/(t-5)ˆ2} # spike phantom
# f <- function(t){x <- 0.5 * tˆ2} # outback phantom
# f <- function(t ){x <- 100 * (1-100 * (t-4)ˆ2)} # bump phantom

f <- function(t){x <- 1/(t+4)ˆ2 + 0.5 * tˆ2 + 100 * (1-100 * (t-4)ˆ2)}

################################################### ####

################################################### ####
#
# E X P L O R A T I O N P A R A M E T E R S
#
################################################### ####

# exploring the function f ############################# #######
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alpha <- 5

# exploration width ################################## ######

width <- 2

# exploration gain ################################### ######

gain <- 200

# initiating exploration state ######################## #########

points <- c()

weights <- c()

numbers <- 1

################################################### #####

# macro sampling step ################################# #####

sample <- function()
{
n <- 0
x <- rnorm(1)

while(f(x) < alpha)
{
x <- rnorm(1)
}
}

################################################### #####
#
# E X P L O R A T I O N
#
################################################### #####

# 1 first exploration step ############################# ########

points[1]<- sample()
weights[1] <- 1
stepnumber <- 1

# 3. loop with stopping criterion ####################### #######

while(stepnumber < gain * numbers)
{
x <- sample()
stepnumber <- stepnumber + 1

# 2 check distance/outback and modify state ############## ######

dist <- abs(points - rep(x,numbers))
d <- min(dist)
outback <- 8.5

if(d > width) # 2a
{
if(abs(x) < outback)
{
numbers <- numbers + 1
points[numbers] <- x
weights[numbers] <- 1
}
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else
{
k <- which.min(dist)
weights[k] <- weights[k] + 1
}
}
else # 2b
{
if(abs(x) < outback)
{
k <- which.min(dist)
weights[k] <- weights[k] + 1

if(f(points[k]) < f(x)) # accept
{points[k] <- x}
else # reject
{}
}
else
{
k <- which.min(dist)
weights[k] <- weights[k] + 1
}
}

################################################### ####

}

# end loop ########################################### ###

status <- c(points,weights)

print(status) # output

################################################### ####
#
# E N D F I R S T E X P L O R A T I O N
#
################################################### ####

################################################### ####
#
# E X P L O R A T I O N F R O M S E E D
#
################################################### ####

EFS <- function(status, alpha, gain) % gain is the stopping f actor E
{

L <- length(status) * 0.5
newstatus <- c()
newpoints <- c()
newweights <- c()
n <- 1

for(i in 1:L)
{
w <- 0
r <- L + i
M <- status[r] * gain

for(j in 1:M)
{
val <- status[i] + rnorm(1,0,0.5)
if(f(val) > alpha)

{
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w <- w + 1
if(f(val) > f(status[i]))

{
status[i] <- val
}
else{}

}
else{}

}

if(w > 0)
{
newpoints[n] <- status[i]
newweights[n] <- status[r] + w
n <- n+1
}
else{

if(f(status[i]) > alpha)
{
newpoints[n] <- status[i]
newweights[n] <- status[r]
n <- n + 1
}
else{}

}
}

newstatus <- c(newpoints,newweights)
print(newstatus)
}

################################################### ####
#
# E N D O F E X F R O M S E E D
#
################################################### ####

################################################### ####
#
# W E I G H T E D S A M P L I N G
# with ’sweeps’ number of simulation steps
#
################################################### ####

WS <- function(points,weights,alpha,sweeps)
{
## mixture probabilities ############################# #######

NN <- rep(stepnumber, length(weights))
prob <- weights/NN

mixture <- rmultinom(sweeps,length(weights),prob)

z <- c()
approx <- 0

for(j in 1:length(weights))
{
z[j] <- 0
for(i in 1:sweeps){z[j] <- z[j] + mixture[j,i]} # samples fr om jth variable

mixfrom <- rnorm(z[j],points[j])
for(u in 1:z[j])
{
if(f(mixfrom[u]) > alpha)
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{approx <- approx + exp(points[j]ˆ2/2 - mixfrom[u] * points[j])}
else
{}
}

}

## approximation #################################### #####

print(approx / sum(mixture))
}
################################################### ####
#
# E N D W E I G H T E D S A M P L I N G
#
################################################### ####
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Appendix C

Alternatives For Histograms

The shape of a distribution (unimodality, asymmetries etc.) is difficult to assess from a normal
probability plot. For this we need to estimate the density and present it in a plot. A widely
used density estimator (although it is not always recognized as such) is the histogram. Let
X1, . . . ,Xn be a random sample from a distribution functionF (pertaining to a lawP ) on R,
with continuous derivativeF ′ = f . As before, we denote the empirical distribution function by
Pn. Let I be a compact interval onR and suppose that the intervalsI1, . . . , Ik form a partition
of I, i.e.

I = I1 ∪ . . . ∪ Ik, Ii ∩ Ij = ∅ if i 6= j.

The histogram ofX1, . . . ,Xn with respect to the partitionI1, . . . , Ik is defined as

Hn(x) :=

k∑

j=1

Pn(Ij) IIj (x)

|Ij |
,

where |Ij | denotes the length of the intervalIj . It is clear that the histogram is a stepwise
constant function. Two major disadvantages of the histogram are

• the stepwise constant nature of the histogram

• the fact that the histogram heavily depends on the choice of the partition

In order to illustrate the last point, consider Figure C where the two histograms are made from
the same data set.
It is because of this phenomenon that histograms are not to berecommended. A natural way
to improve on histograms is to get rid of the fixed partition byputting an interval around each
point. If h > 0 is fixed, then

N̂n(x) :=
Pn((x− h, x+ h))

2h
(C.1)

is called thenaive density estimatorand was introduced in 1951 by Fix and Hodges in an un-
published report (reprinted in [16]) dealing with discriminant analysis. The motivation for the
naive estimator is that

P (x− h < X < x+ h) =

∫ x+h

x−h
f(t) dt ≈ 2h f(x). (C.2)
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−4 −2 2 4 −4 −2 2 4

Figure C.1: Two histograms of the same sample of size 50 from amixture of 2 normal distribu-
tions.

Note that the naive estimator is a local procedure; it uses only the observations close to the point
at which one wants to estimate the unknown density. Compare this with the empirical distribu-
tion function, which uses all observations to the right of the point at which one is estimating.

It is intuitively clear from (C.2) that the bias of̂Nn decreases ash tends to 0. However, ifh
tends to 0, then one is using less and less observations, and hence the variance of̂Nn increases.
This phenomenon occurs often in density estimation. The optimal value ofh is a compromise
between the bias and the variance. We will return to this topic of great practical importance
when we discuss the MSE.

The naive estimator is a special case of the following class of density estimators. LetK be
akernel function, that is a nonnegative function such that

∫ ∞

−∞
K(x) dx = 1. (C.3)

Thekernel estimatorwith kernelK and bandwidthh is defined by

f̂n(x) :=
1

n

n∑

i=1

1

h
K

(
x−Xi

h

)
. (C.4)

Thus, the kernel indicates the weight that each observationreceives in estimating the unknown
density. It is easy to verify that kernel estimators are densities and that the naive estimator is a
kernel estimator with kernel

K(x) =

{
1
2 if |x| < 1

0 otherwise.

Examples of other kernels are given in Table C.1. Kernel density estimators are available
in the Statistics Toolbox of MATLAB through the commandksdensity , including an auto-
matic choice of the bandwidthh. The default kernel is the Gaussian kernel (called normal in
MATLAB), other available kernels are box, Epanechnikov andthe triangular (called triangle in
MATLAB) kernels.
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name function

Gaussian
1√
2π

e−
1
2

x2

naive/rectangular
1

2
1(−1,1)(x)

triangular (1 − |x|) 1(−1,1)(x)

biweight
15

16
(1 − x2)2 1(−1,1)(x)

Epanechnikov
3

4
(1 − x2) 1(−1,1)(x)

Table C.1: Well-known kernels for density estimators.
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Appendix D

Discrete Probability Distributions

This chapter contains an overview of common discrete distributions, in alphabetical order. For
more information on these distributions, we refer to [22]. Some generating functions can be
expressed in terms of hypergeometric functions. For more information on these particular func-
tions, we also refer to [22]. CapitalX always refers to a random variable with the distribution
being discussed.

Bernoulli distribution

A special case of the binomial distribution, namelyn = 1. Oftenq stands for1 − p.

• Parameter:0 ≤ p ≤ 1

• Values:0, 1

• Probability mass function:P (X = 1) = p, P (X = 0) = 1 − p

• Expected value:p

• Variance:p (1 − p)

• Probability generating function:p t+ (1 − p)

• Moment generating function:p et + (1 − p).

Binomial distribution

The binomial distribution describes the number of successes amongn independent trials with
equal success probabilityp. Often q denotes1 − p. The binomial distribution is a special
case of the multinomial distribution, withm = 2. The binomial distribution converges (in
distribution) forn → ∞ andnp = λ fixed to a Poisson distribution with parameterλ. For
p ≤ 0.10, the binomial distribution can be approximated by a Poissondistribution. Fornp > 5
andn(1 − p) > 5, the binomial distribution can be approximated by a normal distribution.

• Parameters:n = 1, 2, . . ., 0 ≤ p ≤ 1

• Values:0, 1, . . . , n

• Probability mass function:P (X = k) =

(
n

k

)
pk (1 − p)n−k
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• Expected value:np

• Variance:np(1 − p)

• Probability generating function:(p t+ 1 − p)n

• Moment generating function:
(
p et + 1 − p

)n

Geometric distribution

This is a special case of the negative binomial distribution, with r = 1. The geometric dis-
tribution measures the number of independent trials, each with success probabilityp, until the
first success (successful trial included in the total number). The geometric distribution has no
memory,i.e., P (X > n +m | X > n) = P (X > m). It is the only discrete distribution with
this property and is therefore the discrete counterpart of the exponential distribution.

• Parameter:0 ≤ p ≤ 1

• Values:1, 2, . . .

• Probability mass function:P (X = k) = p (1 − p)k−1

• Expected value:
1

p

• Variance:
1 − p

p2

• Probability generating function:
p t

1 − (1 − p) t

• Moment generating function:
p et

1 − (1 − p) et

Hypergeometric distribution

The hypergeometric distribution counts the number of successes whenn elements are selected
without replacementfrom a group ofN elements of whichM mean “success” andN−M imply
“failure”.

• Parameters:N = 1, 2, . . ., n = 0, 1, 2, . . . ,N ,M = 0, 1, 2, . . . ,N .

• Values:max(0, n − (N −M)), . . . ,min(n,M)

• Probability mass function:P (X = k) =

(M
k

) (N−M
n−k

)
(
N
n

)

• Expected value:
nM

N

• Variance:
nM (N −M) (N − n)

N2 (N − 1)
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• Probability generating function:2F1[−n,−M,−N ; 1− t] where2F1 is a hypergeometric
function.

• Moment generating function:2F1[−n,−M,−N ; 1 − et] where2F1 is a hypergeometric
function.

Multinomial distribution

The multinomial distribution generalises the binomial distribution. Whereas a binomial dis-
tribution describes a sequence of independent Bernoulli experiments with each two possible
outcomes (success and failure), the multinomial distribution describes a sequence ofn mutually
independent experiments with a fixed finite numberm (m ≥ 2) of possible outcomes. LetXi

denote the number of occurrences of theith possible result (i = 1, . . . ,m) andpi the probability
that theith possible result occurs in one experiment.

• Parameters:n = 1, 2, . . .,m = 1, 2, . . ., 0 ≤ pi ≤ 1 with p1 + . . .+ pm = 1

• Values:{(k1, . . . , km) | ki ∈ {0, 1, . . . , n} (i = 1, . . . ,m) and
∑m

i=1 ki = n}

• Probability mass function:P ((X1, . . . ,Xm) = (k1, . . . , km)) =
n!

k1! . . . km!
pk1
1 . . . pkm

m

• Vector of expected values:(np1, . . . , npm)

• Covariance matrix: Cov(Xi,Xj) = −npipj ( i 6= j), Var(Xi) = npi (1 − pi)

• Probability generating function:

(
m∑

i=1

pi ti

)n

• Moment generating function:

(
m∑

i=1

pi e
ti

)n

Negative binomial distribution

This distribution counts the total number of independent Bernoulli experiments with equal suc-
cess probabilityp that is necessary to arrive atr successful experiments (the total number in-
cluding therth success). IfUi (i = 1, . . . r) are mutually independent and all geometrically
distributed with parameterp, thenX =

∑r
i=1 Ui has the negative binomial distribution with

parametersp andr.

• Parameters:0 ≤ p ≤ 1, r = 1, 2, . . .

• Values:r, r + 1, . . .

• Probability mass function:P (X = k) =

(
k − 1

r − 1

)
pr (1 − p)k−r

• Expected value:
r

p

• Variance:
r (1 − p)

p2
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• Probability generating function:

(
p t

1 − (1 − p) t

)r

• Moment generating function:

(
p et

1 − (1 − p) et

)r

Poisson distribution

This important distribution is often used to describe counts of number of events that occur within
a fixed time or space unit. As such, it is the building block of the so-called Poisson process. For
λ > 15, the Poisson probabilities are well approximated using thenormal distribution. The
binomial distribution withn → ∞ andnp = λ fixed converges (in distribution) to a Poisson
distribution with parameterλ.

• Parameter:λ > 0

• Values:0, 1, . . .

• Probability mass function:P (X = k) = e−λ λ
k

k!

• Expected value:λ

• Variance:λ

• Probability generating function:eλ(t− 1)

• Moment generating function:eλ(et − 1)

Uniform distribution (discrete)

The discrete uniform distribution should not be confused with the continuous uniform distribu-
tion. The uniform distributions are sometimes also called homogeneous distributions.

• Values:0, 1, . . . , n

• Probability mass function:P (X = k) =
1

n+ 1

• Expected value:
n

2

• Variance:
n(n+ 2)

12

• Probability generating function:
1 − tn+1

(n+ 1) (1 − t)

• Moment generating function:
1 − et(n + 1)

(n+ 1) (1 − et)
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Appendix E

Continuous Probability Distributions

This appendix contains an overview of common continuous distributions, in alphabetical order.
For more information on the distributions discussed in thischapter, we refer to [23] and [24].
Some expressions involve the Gamma function. This functionis defined for positivex as

Γ(x) =

∫ ∞

0
e−t tx−1 dt

Useful properties of the Gamma function are

• Γ(n+ 1) = n! for non-negative integern (n ≥ 0)

• Γ(x+ 1) = xΓ(x)

• Γ(1
2) =

√
π

The second property also defines the Gamma function for negative, non-integerx.

Beta distribution

This distribution appears when studying the order statistics of a sample from a uniform random
variable. IfX is beta distributed with integer parametersα andβ, thenP (X ≤ t) = P (α ≤
Y ≤ α+ β − 1), whereY is binomial with parametersn = α+ β − 1 andp = t.

• Parameters:α > 0, β > 0

• Values:(0, 1)

• Density:
xα−1 (1 − x)β−1

B(α, β)
whereB(α, β) is the Beta function defined by

B(α, β) :=
Γ(α) Γ(β)

Γ(α+ β)
=

∫ 1

0
yα−1 (1 − y)β−1 dy

• Expected value:
α

α+ β

• Variance:
αβ

(α+ β + 1) (α + β)2

• Characteristic function:M(α,α+β, it), whereM is a confluent hypergeometric function.
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Cauchy distribution

The ratio of two independent normally distributed random variables with zero mean is Cauchy
distributed. The Cauchy distribution withλ = 1 and θ = 0 coincides with the Studentt-
distribution with one degree of freedom.

• Parameters:λ > 0, −∞ < θ <∞
• Values:(−∞,∞)

• Density:
1

πλ

[
1 +

(
x− θ

λ

)2
]

• Expected value: does not exist

• Variance: does not exist

• Characteristic function:eitθ − |t|λ

χ2-distribution

The χ2-distribution is characterised by one parameter, denoted here byn, and known as the
“degrees of freedom”. Notation:χ2

n. The name of theχ2-distribution is derived from its relation
to the standard normal distribution: ifZ is a standard normal random variable, then its square
X = Z2 is χ2 distributed, with one degree of freedom. IfXi areχ2 distributed, and mutually
independent, then the sumX =

∑
iXi is χ2 and the parameter (degrees of freedom) is the sum

of the parameters of the individualXi. Theχ2-distribution is also a special case of the Gamma
distribution, withα = ν/2 andλ = 1/2. Theχ2-distribution is of great importance in the
Analysis of Variance (ANOVA), contingency table tests, andgoodness-of-fit tests.

• Parameters:ν = 1, 2, . . .

• Values:(0,∞)

• Density:
e−x/2 x(ν−2)/2

2ν/2 Γ(ν/2)

• Expected value:ν

• Variance:2ν

• Characteristic function:(1 − 2it)−v/2

Erlang distribution

This is a special case of the Gamma distribution for positiveinteger values ofα. It measures the
time until thenth event in a Poisson process. IfX1 is Erlang distributed with parametersn andλ
and ifX2 is Erlang distributed with parametersm andλ, and ifX1 andX2 are independent, then
X1+X2 is Erlang distributed with parametersn+m andλ. Forn = 1, the Erlang distribution is
the exponential distribution. IfXi are mutually independent and exponentially distributed with

intensityλ, then
n∑

i=1

Xi is Erlang distributed with parametersn andλ. Sometimesβ = 1/λ is

used as parameter.
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• Parameters:n = 1, 2, . . ., λ > 0

• Values:(0,∞)

• Density:
xn−1 λn e−λx

(n− 1)!

• Expected value:
n

λ

• Variance:
n

λ2

• Characteristic function:

(
1 − i

t

λ

)−n

Exponential distribution

This is a special case of both the Gamma and the Weibull distributions. The exponential distri-
bution has the lack-of-memory property, in the sense thatP (X > s+ t | X > s) = P (X > t).
This property defines the exponential distribution,i.e., no other continuous random variable has
this property. The times between events in a Poisson processare exponentially distributed. IfXi

are mutually independent and exponentially distributed with intensityλ, then
∑n

i=1Xi is Erlang
distributed with parametersn andλ.

• Parameters:λ > 0; sometimesβ = 1/λ is used as parameter

• Values:(0,∞)

• Density:λe−λx

• Cumulative distribution function:1 − e−λx

• Expected value:1/λ

• Variance:1/λ2

• Characteristic function:
1

1 − it/λ

F -distribution

TheF -distribution, named after the famous statistician Fisher, is the distribution of a ratio of
two independentχ2 random variables. It has two parameters, denoted bym andn, which are
called the degrees of freedom of the numerator and the denominator, respectively. Notation:
Fm

n . If X is Studentt-distributed withn degrees of freedom, thenX2 is anF 1
n variable. IfU is

χ2 distributed withm degrees of freedom,V is χ2 distributed withn degrees of freedom, and
if U andV are independent, thenX = U/m

V/n is anFm
n variable. The valuesfm

n;α are defined by

P
(
Fm

n > fm
n;α

)
= α (so they do not follow the customary definition of quantiles). From the

definition ofFm
n as a ratio of twoχ2 variables, it follows thatfm

n;1−α = 1/fn
m;α.

• Parameters:m = 1, 2, . . ., n = 1, 2, . . .

• Values:(0,∞)
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• Density:
Γ

(
m+ n

2

)

Γ
(m

2

)
Γ
(n

2

) m
m/2 nn/2 x(m/2)−1

(n+mx)(m+n)/2

• Expected value:
n

n− 2
if n ≥ 3; not defined forn = 1 or n = 2.

• Variance:
2n2 (m+ n− 2)

m (n− 2)2 (n− 4)
(n = 5, 6, . . .)

• Characteristic function:M
(

1
2m;−1

2n;− n
m it

)
, whereM is a confluent hypergeometric

function.

Gamma distribution

Special cases of the Gamma distribution include theχ2-distribution (α = ν/2 andλ = 1/2),
the Erlang distribution (α positive integer) and the exponential distribution (α = 1).

• Parameters:α > 0, λ > 0. Sometimesβ = 1/λ is used as parameter.

• Values:(0,∞)

• Density:λα x
α−1 e−λ x

Γ(α)

• Expected value:
α

λ

• Variance:
α

λ2

• Characteristic function:

(
1 − i

t

λ

)−α

Gumbel distribution

The Gumbel distribution is one of the limiting distributions in extreme value theory.

• Parameters:−∞ < α <∞, β > 0

• Values:(−∞,∞)

• Cumulative distribution function:e−e−(x−α)/β

• Expected value:α+ βγ whereγ ≈ 0, 577216 (Euler’s constant)

• Variance:
π2 β2

6

• Characteristic function:eiαt Γ(1 − iβt)
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Logistic distribution

This distribution is often used in the description of growthcurves.

• Parameters:−∞ < α <∞, β > 0

• Values:(−∞,∞)

• Cumulative distribution function:
(
1 + e−(x− α)/β

)−1

• Expected value:α

• Variance:
π2 β2

3

• Characteristic function:eiαt
πβ t

sinhπβt

Lognormal distribution

X has a lognormal distribution iflnX ∼ N(µ, σ2).

• Parameters:−∞ < µ <∞, σ > 0

• Values:(0,∞)

• Density:
1

σx
√

2π
e
−(lnx− µ)2

2σ2

• Expected value:e
µ+

1

2
σ2

• Variance:e2µ+ 2σ2 − e2µ+ σ2

• Characteristic function: No closed expression known

Normal distribution

As suggested by its name, the normal distribution is the mostimportant probability distribution
in view of the Central Limit Theorem. Notation:X ∼ N(µ, σ2). The special caseµ = 0
andσ = 1 is calledstandard normal distribution, and a standard normal variable is most often
denoted with the letterZ. The standard normal density is mostly written asϕ(z) and the cumu-
lative distribution function asΦ(z). It holds thatΦ(z) = 1 − Φ(−z). The notationzα is often
defined asP (Z > zα) = α (so they do not follow the customary definition of quantiles).

• Parameters:−∞ < µ <∞, σ > 0

• Values:(−∞,∞)

• Density:
1

σ
√

2π
e
−(x− µ)2

2σ2
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• Expected value:µ

• Variance:σ2

• Characteristic function:eiµt− (t2σ2/2)

Pareto distribution

The Pareto distribution is often used in economical applications, such as the study of household
incomes.

• Parameters:a > 0, θ > 0

• Values:(a,∞)

• Cumulative distribution function:1 −
(a
x

)θ

• Expected value:
θa

θ − 1
(if θ > 1)

• Variance:
θa2

(θ − 1)2 (θ − 2)
(if θ > 2)

• Characteristic function: No closed expression known

Student t-distribution

If Z is a standard normal variable andU is aχ2 variable withn degrees of freedom, and ifZ

andU are independent, then
Z√
U/n

has a Studentt-distribution with parametern. Notation:

Tn. The parameter is called the number of degrees of freedom. The standardised sample mean
X − µ

S/
√
n

of a sample of normal random variables is Studentt distributed with parametern− 1.

The valuestn;α are defined byP (Tn > tn;α) = α (so they do not follow the customary definition
of quantiles).
The Studentt-distribution is named after the statistician William Gosset. His employer, the
Guinness breweries, prohibited any scientific publicationby its employees. Hence, Gosset pub-
lished using a pen name, Student.

• Parameters:n = 1, 2, . . .

• Values:(−∞,∞)

• Density:
Γ

(
n+ 1

2

)

√
nπ Γ

(n
2

)(
1 +

x2

n

)(n+1)/2

• Expected value:0 if n ≥ 2, not defined forn = 1.

• Variance:
n

n− 2
(n ≥ 3)

c© TUE Eindhoven University of Technology 2009 91



TUE-CASA-2009

• Characteristic function:
1

B(1/2, n/2)

∫ ∞

−∞

eitz
√
n

(1 + z2)(n+1)/2
dz, whereB(a, b) is the Beta

function defined byB(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
=
∫ 1
0 ya−1 (1 − y)b−1 dy.

Uniform distribution (continuous)

Also known as homogenous distribution. This distribution should not be confused with the
discrete uniform distribution.

• Parameters:−∞ < a < b <∞

• Values:(a, b)

• Density:
1

b− a

• Cumulative distribution function:
x− a

b− a

• Expected value:
a+ b

2

• Variance:
(b− a)2

12

• Characteristic function:
eitb − eita

i t (b− a)

Weibull distribution

The Weibull distribution often models survival times when the lack of memory property does
not hold. The exponential distribution is a special case (β = 1 andλ = 1/δ).

• Parameters:β > 0, δ > 0

• Values:(0,∞)

• Density:
β

δ

(x
δ

)β−1
e−(x/δ)β

• Expected value:δ Γ

(
1 +

1

β

)

• Variance:δ2
[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]

• Characteristic function: no closed expression known.
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Index

Acceptance-Rejection Method, 12
antithetic variables, 17

bandwidth, 80
Bernoulli distribution, 82
Beta

distribution, 86
function, 92

Beta function, 86
Binomial distribution, 82
biweight

kernel, 80

Cauchy distribution, 87
Central Limit Theorem, 12
Chebyshev’s inequality, 14
χ2-distribution, 87
control variates, 17
correlation, 8
covariance, 8

density function, 7
distribution

Bernoulli, 82
beta, 86
binomial, 82
Cauchy, 87
χ2, 87
continuous, 86
discrete, 82
Erlang, 87
exponential, 88
F -, 88
gamma, 89
geometric, 83
Gumbel, 89
hypergeometric, 83
logistic, 90
lognormal, 90
marginal, 8
multinomial, 84

negative binomial distribution, 84
normal, 90
Pareto, 91
Poisson, 85
standard normal, 90
Student-t, 91
t, 91
uniform

continuous, 92
discrete, 85

Weibull, 92
distribution function, 6

empirical, 11

empirical distribution function, 11
Epanechnikov

kernel, 80
Erlang distribution, 87
estimator

kernel, 80
naive density, 79

expectation, 6
exponential distribution, 88

Function
Beta, 86
Gamma, 86

function
Beta, 92
density, 7
distribution, 6
empirical distribution, 11
joint density, 7
joint distribution, 7

F -distribution, 88

Gamma
distribution, 89
function, 86

Gaussian
kernel, 80
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geometric distribution, 83
goodness-of-fit test, 10
Gumbel distribution, 89

histogram, 79
hypergeometric distribution, 83

independence, 8
indicator

random variable, 12
inequality

Chebyshev, 14
Inverse Transform Method, 11

joint
density function, 7
distribution function, 7

kernel
biweight, 80
Epanechnikov, 80
estimator, 80
function, 80
Gaussian, 80
naive, 80
rectangular, 80
triangular, 80

Large Deviation principle, 15
Large Deviations theory, 14
Logistic distribution, 90
Lognormal distribution, 90

marginal distribution, 8
matching moment technique, 18
mean, 6

sample, 9
method

Acceptance-Rejection, 12
Inverse Transform, 11

moment generation function, 15
multinomial distribution, 84

naive
kernel, 80

naive density estimator, 79
negative binomial distribution, 84
Normal distribution, 90

standard, 90

Pareto distribution, 91
partition, 79
Poisson distribution, 85
probability distribution,seedistribution

quantile, 13

random variable
indicator, 12

rectangular
kernel, 80

sample mean, 9
sample variance, 9
standard normal distribution, 90
Studentt-distribution, 91

test
goodness-of-fit, 10

triangular
kernel, 80

t-distribution, 91

unbiased, 9
uniform distribution

continuous, 92
discrete, 85

variance, 7
sample, 9

Weibull distribution, 92

zα, 13
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