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Robust Vibration Isolation by Frequency-Shaped Sliding Surface
Control with Geophone Dynamics

Chenyang Ding, A.A.H. Damen, P.P.J. van den Bosch

Abstract—The Frequency-Shaped Sliding Surface Control
(FSSSC) has been recently applied to the Active Vibration
Isolation System (AVIS) and the robust skyhook performance
is experimentally validated. However, the performance of this
approach is theoretically limited by the sensor dynamics. This
paper generalizes the FSSSC approach as a two-step AVIS con-
trol design method. The first step is to design the sliding surface
which determines the designed performances. The second step
is to design the regulator which guarantees the convergence of
the system dynamics. As long as this convergence is guaranteed,
the designed performances would be realized. The vibration
isolation of the original plant is therefore transformed to the
regulation of a new system which is composed of the original
plant and the sliding surface. As the regulator design has been
well studied in the literature, this paper focuses on the sliding
surface design. An example sliding surface design to achieve
low-frequency vibration isolation is provided. The FSSSC of
an example 1-DOF plant using both original and the improved
sliding surface are compared. Theoretical calculations show that
the improved sliding surface has no theoretical performance
limit and achieves robust vibration isolation at much lower
frequencies than the original design.

I. INTRODUCTION

Many high-precision applications, such as lithographic
wafer steppers/scanners used to fabricate integrated circuits
or electron microscopes used for sub-micron imaging, de-
mand high performance multiple Degrees Of Freedom (DOF)
Active Vibration Isolation Systems (AVIS). The objective
of such an AVIS is to support a heavy payload and to
reduce the payload vibration which is transmitted from the
floor or excited by directly applied force disturbance. The
mass of payload is in the order of 103 kg. Currently, a
6-DOF AVIS based on three pneumatic isolators [7] is
applied in the industry. It compensates the payload gravity
by pressurized air. The possibility of contactless AVIS based
on three electromagnetic isolators, which compensates the
payload gravity by passive Permanent Magnetic (PM) force,
is also feasible [8] and being investigated [4], [11]. Active
control can be applied to simultaneously achieve stability and
vibration isolation on all DOFs. Modal decomposition [5],
[7] can be applied to simplify the multi-DOF control problem
to 1-DOF control problem. Therefore, a 1-DOF model is used
here as an example plant to study the AVIS control.
The objective of the AVIS control is to minimize the

payload absolute displacement (the terminology absolute
indicates that this physical variable is with respect to an
inertially fixed reference). The vibration isolation perfor-
mance is evaluated by the transmissibility, defined by the
transfer function from the floor vibration to the payload
vibration. The disturbance rejection performance is evalu-

ated by compliance, defined by the transfer function from
the force disturbance to the payload vibration. However,
neither floor absolute displacement nor payload absolute
displacement is directly measurable by any industrial sensors.
Integration of absolute velocity/acceleration signal is not
feasible because of the limited performance of the industrial
sensors. The following two measurement schemes are widely
implemented.

• The relative displacement (payload displacement with
respect to the floor) and the payload absolute velocity.

• The relative displacement and the payload absolute
acceleration.

Each of them requires a Double-Input-Single-Output (DISO)
controller for the 1-DOF AVIS control.
The DISO controller design methods for AVIS has been

well studied in the last a few decades. The well-known
skyhook control was invented by D. Karnopp [1], [2]. The
skyhook performance becomes a standard vibration isolation
performance and an excellent reference for some adaptive
controls [9]. The skyhook control is based on the assumption
that the absolute velocity signal can be perfectly measured.
The most widely used industrial velocity sensor is geophone
which has its own dynamic characteristics. The geophone
sensitivity decreases at low frequencies and reaches zero at
zero frequency [5], [12]. Therefore, the low frequency sky-
hook performance is difficult to achieve by skyhook control.
The H∞ control is applicable to the DISO controller design
[3], [4]. By manipulating the weights, the H∞ control is
able to minimize a variable without the direct measurement.
It also guarantees robust stability and robust performance.
However, the H∞ control design is usually a iterative process
which is quite time-consuming. Besides, the order of the H∞
controller is usually very high. Order reduction algorithms
may apply but the performance would be reduced.
One of the latest achievement on the DISO controller

design is provided by L. Zuo and J.J.E. Slotine [5] wherein
the Frequency-Shaped Sliding Surface Control (FSSSC) is
applied to AVIS control. According to the skyhook trans-
missibility, a sliding surface is designed based on relative
displacement and absolute velocity feedback. The switching
control and adaptive control are applied to guarantee that
the convergence of the system dynamics despite of unknown
disturbances and plant uncertainties. Robust skyhook perfor-
mance is experimentally validated.
The FSSSC has simple structure and robust performance

but the sliding surface design in [5] has a theoretical limit
on further lowering the transmissibility resonant frequency
due to the velocity sensor dynamics. However, the sensor
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dynamics could be compensated so that it should not be
a theoretical obstacle to improve the transmissibility. It is
the sensor noise who destroys the velocity measurement.
Therefore, the theoretical limit of lowering the transmissi-
bility resonant frequency could be removed by improving
the sliding surface design.
This paper generalizes the FSSSC approach as a two-step

AVIS control design method. The first step is to design the
sliding surface which determines the designed performances.
The second step is to design the regulator which realizes
the designed performances. As the regulator design has been
well studied in [5], we focus on the sliding surface design.
An example sliding surface design which has no theoretical
performance limits are provided. The example 1-DOF plant,
sensor dynamics, and the AVIS performance requirements
are introduced in Section II. Section III introduces the
generalized FSSSC approach, including the sliding surface
design and the regulator design. The original sliding surface
design in [5] and the improved sliding surface design are
given in Section IV. FSSSC of the example 1-DOF plant
using both sliding surface designs are compared in Section V.
This work is concluded in Section VI.

II. PROBLEM STATEMENT
A. 1-DOF Model
A 1-DOF model is introduced as an example plant to

study the AVIS control. The physical model of the 1-
DOF plant is shown in Fig. 1. The payload mass, spring
stiffness, and damping coefficient are denoted by m, k, and
c, respectively. For pneumatic isolators, c > 0 and k > 0.
For 1-DOF contactless electromagnetic isolators, c = 0 and
k < 0 (For multi-DOF contactless electromagnetic isolators,
there is at least one DOF that has negative stiffness). The
payload absolute displacement, payload absolute velocity,
and floor absolute displacement are denoted by xA, vA, and
xG, respectively. The actuator force is denoted by fa. The
equation of motion for the payload is given by

mẍA+ cẋR+ kxR = fa, (1)

where xR = xA−xG is the relative displacement. The diagram
of the physical model is shown in the dashed rectangular in
Fig. 2. Define the transfer function P as

P(s) =
1
ms2

. (2)

B. Sensor Models
The signals fedback for control are the payload relative

displacement xR and the payload absolute velocity vA. The
signals x̃R and ṽA are the measured xR and vA, respectively.
The displacement sensor usually has very high bandwidth (in
the order of 104 Hz) so that the sensor dynamics is negligible
at low frequencies (in the order of 102 Hz or lower). The
displacement sensor noise, denoted by nx, is assumed to be
independent of xR so that x̃R is derived by

x̃R = xR+ nx. (3)

Geophone is a type of absolute velocity sensor widely

Fig. 1. Physical model of the 1-DOF AVIS.

used in the industry. The dynamic model [5], [12] for the
geophone has the form of

Gv(s) =
s2

s2+ 2ωvξvs+ω2v
, (4)

where ωv is the resonant frequency and ξv is the damping
ratio. The geophone noise, denoted by nv, is assumed to be
independent of vA. The relation between ṽA and vA is

ṽA = Gv(s)vA+ nv. (5)

C. Performance Requirements
The closed-loop performances are the transmissibility Tc,

the compliance Cc, the geophone-noise sensitivity Sc and
the displacement-sensor-noise sensitivity Rc. Sc and Rc are
concerned because they would affect |Tc|, the upper bound of
|Tc|. Sc is defined as the transfer function from the geophone
noise to the payload absolute displacement and Rc is defined
as the transfer function from the displacement sensor noise
to the payload absolute displacement. The requirements are
described as follows.

• Tc, Cc, Rc, and Sc are all stable.
• Interested frequency range is from zero up to the order
of 102 Hz.

• |Tc(ω)|= 0 dB,∀ ω ∈ [0,ωc]. |Tc(ω)| decreases for all
ω >ωc and the decreasing rate is at least -40 dB/dec. ωc
is the cross-over frequency of Tc. Smaller ωc indicates
better transmissibility. Around ωc, |Tc|may have a peak.
Smaller peak value indicate better transmissibility.

• Low |Cc(ω)| for all ω � 0. Some high performance
AVIS require that |Cc(0)|= 0 (−∞ dB).

• |Sc(0)|= 0 (−∞ dB). Low |Sc(ω)| for all ω > 0.

III. GENERALIZED FSSSC

The name ”frequency-shaped sliding surface” was given
by K.D. Young and U. Ozguner [6] in 1993. It is usually
applied to tracking control, in which, a measurable signal is
to be minimized. It is physically applied to AVIS control by
L. Zuo and J.J.E. Slotine [5] in 2004. Therein, the sliding
surface is designed for ideal feedback signals. The FSSSC
approach is generalized as a two-step AVIS control design
method in this section.
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The control of the 1-DOF plant P by FSSSC approach
is illustrated by the diagram in Fig. 2. The sliding surface
is defined by the equation σ = 0. The blocks Λ1 and Λ2
are two transfer functions used to shape the sliding surface.
The block R is the regulator. The FSSSC approach can be
generalized to a two-step AVIS control design method. The
first step is to design the frequency-shaped sliding surface
(Λ1 and Λ2) which determines the designed performances.
The designed sliding surface and the original plant P form
a new system Pn, shown as the shaded blocks in Fig. 2. The
second step is to design the regulator R for Pn to guarantee
the convergence of σ to zero. As long as this convergence
is guaranteed, the designed performances can be realized.

A. Sliding Surface Design
The designed performances, which are determined by Λ1

and Λ2, are the designed transmissibility Td , the designed
displacement-sensor-noise Rd and the designed geophone-
noise sensitivity Sd . They are defined as

Td =−Rd =
Λ1

Λ1+Λ2sGv
, Sd =

−Λ2
Λ1+Λ2sGv

. (6)

According to Fig. 2, the equation σ = 0 is equivalent to

Λ1x̃R+Λ2ṽA = 0. (7)

Substitute (3) and (5) into (7), we have

Λ1(xR+ nx)+Λ2(GvvA+ nv) = 0. (8)

By applying the Laplace Transform, it can be subsequently
used to calculate |Td |, the upper bound of the designed
transmissibility magnitude.

XA
XG

=
Λ1

Λ1+Λ2sGv

(
1−

Nx
XG

)
−

Λ2
Λ1+Λ2sGv

Nv
XG

, (9)

where XA, XG, Nx, and Nv are Laplace Transform of signals
xA, xG, nx, and nv, respectively. According to (9), |Td | can
be derived as

|Td |� |Td |= |Td |+ |Rd|

∣∣∣∣NxXG
∣∣∣∣+ |Sd |

∣∣∣∣NvXG
∣∣∣∣. (10)

To make Td more robust against the sensor noise, its upper
bound has to be reduced. Among all the possible ways to
achieve that, reducing |Sd | is the only way in the field of
control design, which relies on the sliding surface design.
According to (6), Sd and Td are related by

Td+ sGvSd = 1. (11)

Therefore, to simultaneously improve both Sd and Td is
impossible with predefined geophone dynamics. The sliding
surface design has to make a trade-off between Sd and Td .

B. Regulator Design
The objective of the regulator design is to realize the

designed performances by keeping σ = 0. The vibration
isolation of the original plant is therefore transformed to the
regulation of a new system Pn which is composed of the
original plant and the designed sliding surface (Λ1 and Λ2).
The input is the control force fa and the output is σ (note that

Fig. 2. Generalized FSSSC diagram.

σ is exactly known). The transfer function of Pn is derived
according to the shaded blocks in Fig. 2.

Pn = (Λ1+Λ2sGv)
1

ms2+ cs+ k
. (12)

The regulator R has to be designed according to the prop-
erties of Pn to keep σ zero. If the plant Pn is linear, the
regulation can be as simple as PID even if Cc(0) = 0 is
required. More advanced methods like optimal control or H∞
control can also apply. If there exist significant nonlinearity
in Pn (due to the original plant), there are also many candidate
design methods, for example, back-stepping, sliding mode
control, etc.
In [5], the conventional switching control is directly ap-

plied as the regulator to reject the unknown disturbances
and an adaptive algorithm is proposed to deal with the plant
parameter uncertainties. The switching control is described
as

fa =− f · sgn(σ), (13)

where f is a positive constant. Since the sliding surface is
much more complicated than that in [5], directly applied
switching control might not be able to stabilize Pn. If that is
the case, sliding mode control can be applied to guarantee the
convergence of σ to zero under all the unknown disturbances.
Boundary layer control can be designed to reduce the chatter.
However, boundary layer control rely on linear control design
tools [10]. In either cases, switching control or sliding mode
control, Td and Sd can be approximately realized.
If the regulator is linear, the FSSSC approach is a linear

approach. Based on the linear plant (if it is nonlinear, we
assume it can be linearized around a working point), the
closed-loop transmissibility Tc and compliance Cc can be
calculated based on Fig. 2.

Tc=
Λ1+ cs+k

R
1
PR +

cs+k
R +Λ1+Λ2sGv

, Cc=
1
R

1
PR +

cs+k
R +Λ1+Λ2sGv

,

(14)
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where P = 1
ms2 . The closed-loop geophone-noise sensitivity

Sc is calculated as

Sc =
−Λ2

1
PR +

cs+k
R +Λ1+Λ2sGv

. (15)

The closed-loop displacement-sensor-noise sensitivity Rc is
calculated as

Rc =
−Λ1

1
PR +

cs+k
R +Λ1+Λ2sGv

. (16)

The upper bound of the closed-loop transmissibility magni-
tude, |Tc|, is calculated as

|Tc|� |Tc|= |Tc|+ |Rc|

∣∣∣∣NxXG
∣∣∣∣+ |Sc|

∣∣∣∣NvXG
∣∣∣∣. (17)

If the open loop gain is so high that the approximations

Λ1+
cs+ k
R

≈ Λ1, (18a)

1
PR

+
cs+ k
R

+Λ1+Λ2sGv ≈ Λ1+Λ2sGv, (18b)

are feasible, we have Tc = Td , Rc = Rd and Sc = Sd . Also,
the upper bound in (17) is exactly the same as (10) and
|Cc| is reduced. Therefore, R has to be designed as a high-
gain controller to make the approximation (18) feasible. As
a result, design of Tc and Sc can be accomplished by the
sliding surface design. The bottle neck to increase the open-
loop gain would be the actuator capacity, the control-loop
time-delay, and possible flexible modes.

IV. EXAMPLE SLIDING SURFACE DESIGN
A. Sliding Surface for Ideal Sensors
Assume that Gv = 1, the designed transmissibility Td

defined in (6) becomes

Td =
Λ1

Λ1+Λ2s
, (19)

In [5], Λ1 = a0 and Λ2 = a2s+a1, where ai,∀i∈ {1,2,3} are
constants. The designed transmissibility (19) is subsequently
derived as

Td =
a0

a0+ a1s+ a2s2
, (20)

which is exactly the skyhook transmissibility. However, if
the geophone dynamics (4) is considered, the actual designed
transmissibility can be derived as

Td =
a0(s2+ 2ωvξvs+ω2v )

a0(s2+ 2ωvξvs+ω2v )+ (a1+ a2s)s3
(21)

It is derived in [5] that Td in (21) is stable if
ωd
ωv

>
ξd
ξv

+
ξv
ξd

, (22)

where ωd and ωv are the resonant frequency of Td and Gv,
respectively. ξd and ξv are the damping ratio of Td and
Gv, respectively. A necessary condition to keep Td stable is
ωd > 2ωv. Ideal skyhook performance can be achieved only
if ωd � ωv. Therefore, the vibration isolation performance
at low frequencies is limited by the sensor dynamics using
this sliding surface design.

B. Sliding Surface with Sensor Dynamics

The limit of ωd > 2ωv can be eliminated by including the
geophone dynamics in the sliding surface design. Denote the
numerators and denominators of Λi,∀i∈ {1,2} by Ni and Di,
respectively, (6) becomes

Td =
N1D2(s2+ 2ωvξvs+ω2v )

N1D2(s2+ 2ωvξvs+ω2v )+N2D1s3
, (23a)

Sd =−
N2D1(s2+ 2ωvξvs+ω2v )

N1D2(s2+ 2ωvξvs+ω2v )+N2D1s3
. (23b)

Let D1 = (s2+ 2ωvξvs+ω2v )D2, (23) is simplified to

Td =
N1

N1+N2s3
, Sd =−

N2(s2+ 2ωvξvs+ω2v )
N1+N2s3

. (24)

To achieve Sd(0) = 0, the constant term of the polynomial
N2 should be zero. Let N2 = N′

2s, (24) becomes

Td =
N1

N1+N′
2s4

, Sd =−
N′
2s(s2+ 2ωvξvs+ω2v )

N1+N′
2s4

. (25)

Td can be designed by the choice of N1 and N′
2. To achieve

the -40 dB/dec decreasing rate of |Td | at high frequencies,
the denominator order should be the numerator order plus
two. If the order of Td is four (this is the lowest), N′

2 has
to be a constant and the order of N1 has three possibilities:
zero, one or two. In this case, Td has the possible forms of
Td =

a0
a4s4+a0

or Td = a1s+a0
a4s4+a1s+a0

or Td = a2s2+a1s+a0
a4s4+a2s2+a1s+a0

.
To make Td stable, proper sets of constants {a0,a4} or
{a0,a1,a4} or {a0,a1,a2,a4} have to be found, each of which
is difficult.
If the order of Td is five, the two numerators can be

designed as N1 = a3s3+a2s2+a1s+a0 and N′
2 = a5s+a4 so

that Td has the form of

Td =
a3s3+ a2s2+ a1s+ a0

a5s5+ a4s4+ a3s3+ a2s2+ a1s+ a0
. (26)

Similarly, the five poles of Td can be selected based on
criterions of stability and low resonant frequency. Subse-
quently, the five constants ai,∀i ∈ {1,2,3,4,5} are uniquely
determined. There are also no theoretical performance limit
induced by the geophone resonant frequency. Based on (24),
Sd has the form of

Sd =−
(a5s2+ a4s)(s2+ 2ωvξvs+ω2v )

a5s5+ a4s4+ a3s3+ a2s2+ a1s+ a0
. (27)

Therefore, both Td and Sd fulfill the design criterions. The
design of D1 and D2 is to make Λ1 and Λ2 stable and to
simplify the regulator design. If we continue increasing the
order of Td , higher decreasing rate of |Td | or lower |Sd | can
be achieved. The price would be the increased order of the
controller.
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V. PERFORMANCE COMPARISON

If the regulator is linear, the closed-loop transmissibility
and its upper bound can be theoretically calculated. The
parameters of the geophone dynamics are assumed to be
ωv = 2π rad/s (1 Hz) and ξv = 0.7 so that the geophone
dynamics is calculated as

Gv =
s2

s2+ 8.796s+ 39.48
. (28)

We also assume that
∣∣ Nv(ω)
XG(ω)

∣∣= 0.2 and ∣∣ Nx(ω)
XG(ω)

∣∣= 0.1,∀ω � 0.
The example plant with different parameters will be used
to test the performance robustness. The model parameters
for a pneumatic plant are assumed to be m = 500 kg, c =
894 N·s/m, and k = 104 N/m. The model parameters for an
electromagnetic plant are assumed to be m= 500 kg, c= 0,
and k =−104 N/m.

A. FSSSC Assuming Ideal Sensor
According to (22), ωd and ξd are chosen as ωd = 8π rad/s

(4 Hz) and ξd = 0.7. The designed sliding surface ignoring
the geophone dynamics is

Λ1 =
631.7
s+ 1

, Λ2 =
s+ 35.19
s+ 1

. (29)

The designed transmissibility as in (20) is

Td =
631.7

s2+ 35.19s+ 631.7
. (30)

R is designed as a PID controller.

R=
5× 104(s2+ 1.4s+ 0.98)

s
. (31)

The designed transmissibility Td calculated by (20) and the
closed-loop transmissibility Tc calculated with the geophone
dynamics are compared in Fig. 3 for both pneumatic and
electromagnetic plants. With different plants, both Td and Tc
are almost identical, which indicates that the transmissibility
is robust against the plant uncertainties. For each plant, Tc
and Td coincide except that Tc has a resonant peak around 2
Hz, which is caused by the geophone dynamics. Tc is quite
close to its upper bound, which indicates that the closed-loop
transmissibility is robust against the sensor noises.

B. FSSSC Considering Geophone Dynamics
Including the geophone dynamics (4) into the sliding

surface design, the designed transmissibility Td would have
higher order. If the order of Td is five, the five poles of the
designed transmissibility are chosen as [−1.4+1.4i,−1.4−
1.4i,−1.4+1.4i,−1.4−1.4i,−2]. The designed sliding sur-
face is

Λ1 =
26.88(s+ 0.9333)
s2+ 8.796s+ 39.48

, Λ2 =
s2+ 7.6s

s2+ 1.05s+ 1.225
. (32)

The designed transmissibility is

Td =
26.88(s+ 0.9333)(s2+ 1.05s+ 1.225)

(s+ 2)(s2+ 2.8s+ 3.92)2
. (33)

R is designed as a PID controller.

R=
5× 104(s2+ 1.4s+ 0.98)

s
. (34)

The designed transmissibility Td and the closed-loop
transmissibility Tc are compared in Fig. 4 for both pneu-
matic and electromagnetic plants. With different plants, both
Td and Tc are almost identical, which indicates that the
vibration isolation performance is robust against the plant
uncertainties. For each plant, Tc and Td coincide and they
both has the resonant peak. Tc is reasonably close to its upper
bound, which indicates that the transmissibility is robust
against the sensor noises at low frequencies. Compared to
the closed-loop transmissibility in Fig. 3, the transmissibility
resonant frequency is reduced significantly from around 2 Hz
to around 0.4 Hz. The high frequency decreasing rate is -40
dB/dec. The robustness against the sensor noise is reduced
but acceptable. The overall closed-loop performance is better
than the previous design. It can be expected that the sliding
surface design could gain more flexibility by increasing the
order of the designed transmissibility. The trade-off would
be higher controller order.

VI. CONCLUSION

This paper generalizes the Frequency-Shaped Sliding Sur-
face Control (FSSSC) approach in [5] as a two-step Active
Vibration Isolation System (AVIS) control design method,
which is applicable to a class of AVIS. The first step is
to design the sliding surface based on the dynamics of the
relative displacement sensor and absolute velocity sensor
(geophone). The objective is make sure that the designed
transmissibility and the designed geophone-noise sensitivity
fulfill their requirements. The performance limit induced
by the geophone dynamics which exists in the original
sliding surface design is removed by the improved sliding
surface design. It is proved that the transmissibility and the
geophone-noise sensitivity can not be improved simultane-
ously so that a trade-off has to made during the sliding
surface design. The second step is the regulator design which
is to realize the designed performances. The designed sliding
surface and the original plant forms a new system. According
to the properties of this new system, the regulator may
be nonlinear like sliding mode control or linear like PID.
The only design criterion is that the output of this new
system converges to zero. Example sliding surface design
structures are provided. Based on an example 1-DOF plant,
the improved sliding surface design is compared to the
original design. Theoretical calculations based on provided
parameters show that the improved sliding surface controller
realizes vibration isolation at much lower frequency than the
original design although the robustness against the sensor
noise is slightly reduced. The performance robustness against
the plant uncertainties is comparable to the original FSSSC.
The future work would be the optimal sliding surface design
and the experimental validation.
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(a) For the pneumatic AVIS.
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(b) For the electromagnetic AVIS.

Fig. 3. Calculated |Tc| and |Td | according to the original sliding surface
design in [5]. The dashed line (red) is the upper bound of Tc calculated
according to (17).
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