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Three flow regimes of viscous jet falling onto 
a moving surface 

A. Hlod't, A.C.T. Aarts" A.A.F. van de Ven' AND M.A. Peletier' 
lCenter for Analysis, Scientific computing and Applications, Eindhoven University of 

Teclwology, Eindhoven, The Netherlands. 

A stationary viscous jet falling from an oriented nozzle onto a moving surface is studied, 
both theoretically and experimentally. We distinguish three flow regimes and classify 
them by the convexity of the jet shape (concave, vertical and convex). The fluid is 
modeled as a Newtonian fluid, and the model for the How includes viscous effects, inertia 
and gravity. By studying the characteristics of the conservation of momentum for a 
dynamic jet, the boundary conditions for each flow regime are derived, and the flow 
regimes are characterized in terms of the process and material parameters. The model is 
solved by a transformation into an algebraic equation. We make a comparison between 
the model and experiments, and obtain qualitative agreement. 

1. Introduction 
During the fall WIder gravity of a viscous jet from an oriented nozzle onto a moving 

surface, called the belt, three flow regimes can be distingnished. The flow regimes are 
clIaracterized by the jet shape and depend on the process parameters suclI as dynamic 
viscosity of the Newtonian fluid, flow velocity at the nozzle, belt velocity, and falling 
height. 

In the first flow regime, apart from a boundary layer at the belt, the jet shape is 
concave and aligned with the nozzle orientation, and resembles a ballistic trajectory; see 
Figures 2(a) and 2(b). We call this flow regime concave and the associated jet a concave 
jet. The concave jet occurs for large flow velocity at the nozzle and small viscosity. 

The jet in the second flow regime has a straight, vertical shape, apart from boundary 
layers at the nozzle and at the belt; see Figure 2(c). We call thiB flow regime vertical, and 
the associated jet a vertical jet. The vertical jet happens for large falling heights, large 
viscosity, and small flow velocity at the nozzle. 

In the third flow regime, apart from a boundary layer at the nozzle, the jet shape 
is convex, and the jet touclIes the belt tangentially; see Figure 2(d). This flow regime 
we call convex, and the associated jet a convex jet. The convex jet occurs for high fluid 
viscosity, large belt velocity, small velocity at the nozzle, and small falling height. 

This paper is a continuation and a generalization of our previous work on the convex 
jet (mod et al. (2007)). 

The fall of viscous jets or sheets from a nozzle oriented vertically down onto a fixed 
surface has been widely studied. Here one can observe unstable behaviorj see Taylor 
(1969), Skorobogatiy & Mahadevan (2000), Varin & B.M. (1996), Ribe (2003), Ribe 
(2004), Cruickshank (1980) and Tchavdarov et al. (1993). Vertically falling viscous jets 
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have been studied in Clarke (1966), Clarke (1968), Adachi (1987) and Sauter & Buggisch 
(2005). Experimental investigations of steady and unsteady flows of a viscous jet falling 
under gravity onto a moving surface from a vertical nozzle were presented in Chiu
Webster & Lister (2006) and Morris et al. (2008). In Chiu-Webster & Lister (2006) and 
Ribe et al. (2006) the steady flow is modeled and the parameter region of the steady flow 
is determined in terms of the falling height and the surface velocity. 

However, the previous publications make no distinction between concave and vertical 
flows, and because the nozzle is oriented vertically down the concave flow is not recog
nized as a separate regime. In this paper, we fully describe all three flow regimes. Th 
describe the jet we use a model which includes effects of inertia, viscosity and gravity, 
but neglects surface tension, bending stiffness and air drag. The fluid is considered to be 
incompressible, Newtonian, and temperature effects are neglected. We allow the nozzle 
orientation to vary between horizontal and vertically down. By studying the characteris
tics of the equation of momentum conservation, we determine the parameter regions for 
each flow regime. Consideration of the characteristics as being the directions of informa
tion propagation explains why and when each of the three flow regimes occurs and gives 
the correct boundary conditions for each flow regime. To validate our theoretical results 
we perform experiments of the jet falling from the oriented nozzle onto the moving belt. 
We find a qualitative agreement between the experimentally observed and the theoretical 
values of the positions of the touchdown points for different belt velocities. The model 
presented in this paper can also be used to describe the fall of viscous sheets onto a 
moving surface. 

The structure of the paper is as follows: In Section 2, we describe the experiments 
of the fall of the viscous jet onto a moving belt, and present the experimental results. 
In Section 3 the model equations are derived and simplified to a first-order differential 
equation on Wlknown domain. The analysis of the characteristics of the conservation of 
momentum equation for dynamic jets in order to derive correct boundary conditions is 
given in Section 4. In Section 5 we present some results from the model, and in Section 6 
we compare them with experiments. The characteristic features of the three flow regimes 
are summarized in 7, and some conclusions are made in Section 8. 

2. Experiments 
In this section we describe experiments of the fall of a thin jet of a Newtonian fluid 

onto a moving belt. We focus on the shape of the jet between the nozzle and the belt. We 
describe the experimental setup, report our observations and present BOme conclusioIlB 
from the experiments. 

2.1. Experimental method 

A viscous fluid, polybutene Indopol H-lOO, is pumped to a nozzle and allowed to fall from 
the nozzle onto a moving belt; see Figure 1. The belt is wrapped around two horizontal 
cylinders at the same height. The left cylinder is connected to an electric motor, to move 
the horizontal belt from the left to the right with a constant speed. 

The nozzle is placed above the belt. The nozzle - belt distance and the belt and 
the nozzle orientation can be varied. A screw pump producing a constant flow rate is 
connected to the nozzle. The flow rate was measured by weighing the fluid collected 
from the nozzle during 30 s. In the experiments, two different nozzles were used, with 
diameters of 1 mm and 0.4 mm. 

The experimental setup allows us to change the nozzle position and orientation, belt 
velocity, and flow velocity from the nozzle. For all experiments the same fluid is used. 
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I Paxameter name 

I belt velocity 
I flow velocity at nozzle 
I distance between belt and nozzle 
I nozzle orientationt 
kinema.tic viscosity of fluid 

, fluid density 
; nozzle diameter 

, Value I Unit 

Vbelt 10 - 5 I m/s 
Vooule 10.4 - 1.2 I m/s 
L ,0.01- 0.07,rn 
Qoozzle I -9 - 38c 

I I 

v 0.047 rn'/s 
p 880 kg/rn3 

dooZlille I 1 or 0.4 I mm 

t The angle between the nozzle orienta.tion and the 
horizontal direction, positive for downwards-pointing 

nozzle. 

TABLE 1. Values of the experimental parameters 

Vb .. , 

FIGURE 1. The scheme of the experimental setup for a jet falling onto a moving belt. 
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The fluid is considered to be Newtonian. No nonlinear effects such as die swell near the 
nozzle were observed. The values of the experimental parameters are given in Table 1. 

2.2. Experimental results 

First, we describe a typical sequence of experiments. We start with Vbelt close to zero 
and make sure that L and Voozzle are chosen such that the shape of the jet is concave, 
resembling a ballistic trajectory; see Figure 2(a). To obtain the concave jet shape the 
nozzle should not point down vertically, and therefore we put Onozzle < 7r/2. Next, we 
gradually increase Vbelt and study the evolution of the jet shape. 

For small 'Ubelt the jet shape is concave with an unstationary region near the belt; 
see Figure 2(a). By increasing Vbelt, we observe that the unstationary region near the 
belt transforms into a stable bending region where the jet bends to the horizontal belt 
direction; see Figure 2(b). The jet shape in this region resembles the backward-pointing 
heel, reported for the vertically falling jet in Chiu-Webster & Lister (2006). 

When we increase Vbelt further, the jet shape approaches the vertical direction. Note 
that this direction of change is often considered counterintuitive. In this case, the contact 
point with the belt approaches the vertical projection of the nozzle position. As a result, 
for Vb,lt large enongh, the main part of the jet between the belt and the nozzle is purely 
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(8) "".1. = 0.093 m/s (b) "" ... = 0.750m/s 

(c) "".1. = 1.708 m/s (d) ""cl. = 3.200m/s 

FIGURE 2. Jet shapes for the set of experiments with dnoszle = 1 UWl, VnOZllle = 1.061 mis, 
L = 0.054 m and (lnoz.l. = 37.3°. The belt moves from the left to the right. The jet shape 
cbanges from concave (Fignres 2(0) and 2(b)) to vertical (Figure 2(c)), and from vertical to 
convex (Figure 2(d)), while Vbelt is increased. 

vertical; see Figure 2(c). The bending region near the belt remains, and a new bending 
region near the nozzle appears. Near the nozzle the jet bends from the nozzle orientation 
to the vertical direction. 

FUrther increase in Vbelt results in the disappearing of the bending region near the belt. 
The jet shape becomes convex everywhere, except for a bending region near the nozzle; 
see Figure 2(d). The touchdown point moves away from the nozzle in the direction of the 
belt motion as Vbelt increases. 

Swnmarizing the results of the experiments, we observe a concave jet shape for small 
Vbeltl except for a small bending or unstable region near the belt. With increasing 'lIbelt 

the jet shape becomes vertical, except for small bending regions near the nozzle and the 
belt. Further increase of tlbelt leads to a convex jet shape, except for a small bending 
region near the nozzle. This gives a characterization of the jet flow by its shape, i.e. 
concave, vertical and convex. 

A convenient way to quantitatively study the jet is to look at the horizontal position 
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• 0.8 

0.6 • 
0.4 • • 

• 
0.2 • • • •• "".It (m/a) 

1 2 3 4 5 

FIGURE 3. Experimentally obtained positions of the touchdown point Xend for different 'Vbelt 

indicated by eo The other parameters are dnOllzle = O.4mm, VnoZlille = 1.147m/s, L = 4.1 em 8Jld 
anozzle = 5° . 

~ g 
L 

, --+---......:~;;:::;;=""18 = 8.Dd 
~ ~ 

Vbelt 

FIGURE 4. Model of a fall of a viscous jet onto 8 moving surface. 

Xend (see Figure 4) of the touchdown point at the belt, relative to the nozzle position. For 
the concave jet with Vbe1t small the contact point is away from the nozzle in the direction 
of the nozzle. With increasing Vbeltl the touchdown point moves first towards the nozzle 
position (Xend decreases) until the jet becomes vertical (Xend = 0), stays vertical for some 
time and then moves away from the nozzle position in the direction of the belt motion 
(Xend increases). Figure 3 suggest that the first five dots are in the concave flow regime, 
the sixth, with Xend = 0, represents a vertical flow, and the remaining ones (7th and 
higher) are in the convex How regime. 

For the concave jet in Figures 2(a) and 2(b), where the nozzle diameter is 1 rnm, the 
jet near the nozzle is aligned with the nozzle orientation. When the nozzle diameter is 
0.4 mm, the jet is not aligned with the nozzle orientation. This can be seen in Figure 5. 

In the next section we present a model that characterizes the How type and, among 
other things, predicts the relation between Xend and tlbelt. 
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--- - --'- -... - - - -
FIGURE 5. Experiment with dnozzle = O.4mm, VnOllzle = 1.188m/s, 'Ubelt = a.lm/s, L = O.068m 
and QnOOlzle = 5°. The jet has a. concave shape, which is not aligned with the nozzle orientation. 

3. Modeling and analysis 

In this section we present our model of the fall of a viscous jet onto a moving belt. To 
model the flow we use a thin-jet approximation and include effects of inertia, viscous ten
sion and gravity. We assume the fluid to be incompressible, isothermal, and Newtonian. 
We neglect surface tension, bending stiffness, and air drag. Therefore possible bending or 
buckling regions at the nozzle or at the belt are disregarded. The jet is described by the 
equations of conservation of mass and momentum. First we formulate the equations for 
the dynamic jet, which are used in Section 4 to justify or choice of boundary conditions. 
Next, we partiy solve the stationary jet equations and make an analysis showing that the 
jet can have only three possible shapes: concave, vertical and convex. Finally, we refor
mulate the problem by deriving an equivalent algebraic equation which is convenient for 
further analysis. 

The jet is modeled as a curve in the x, z-plane of unknown length Send,; see Figure 4. 
The curve is parameterized by its arc length 8, with the origin S = a at the nozzle and 
S = SODd at the touchdown point at the belt. The position of a certain point s of the thin 
jet at time t is described by its position vector r = r(s, t) with respect to the origin 0, 
which is chosen at the nozzle point. 

A local coordinate system in a point 8 having as basis the tangent and normal vectors 
et, en, is constructed at each point of the jet. The angle between the tangent vector and 
horizontal direction is 9. The horizontal distance between the nozzle and the touchdown 
point at the belt is Xend. The flow velocity in a point 8 of the jet is v = vIs, t). The jet 
at the touchdown point has the same velocity as the belt Vbelt, and the flow velocity at 
the nozzle is Vnozillle. 

The system of equations describing a thin dynamical jet in two dimensions can be 
found in variety of publications i.e. Roos et al. (1973), Yarin (1993), and Entonov & 
Yarin (1980). It consists of the laws of conservation of mass and momentum 

At + (Av), = 0, (3.1) 
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pA{r .. + r.{v, + vv.) + v2r .. + 2vr,,) = P.r. + Pr .. + K', (3.2) 

respectively, where A = A{s, t) is the cross-sectional area, P = PIs, t) is the longitudinal 
force, and K' = K'{s, t) is the external force per unit oflength of the jet. The longitudinal 
force P is given by a constitutive law 1 and in the case of a Newtonian viscous fluid it is 
equal to 

P = 3vpv.A. (3.3) 

Finally for K' we take 

K' =p.Ag, (3.4) 

the gravity force per unit of length of the jet (external air drag is neglected). 
The stationary versions of the equations (3.2)-{3.1) together with (3.3)-{3.4), and the 

condition for s as the arc length are 

A{r,vv. + v2r .. ) = 3v{v,Ar.). +.Ag, 
(Av). = 0, 

Ir.1 = 1. 

(3.5) 

(3.6) 

(3.7) 

Thus, we have three differential equations, (3.5)-{3.7), for the unknowns r, v and A. Next 
we describe the boundary conditions. 

For the velocity v we prescribe two boundary conditions: at s = 0, the How velocity at 
the nozzle is 

v(O) = Vnozzle , 

while at s = Send the jet sticks to the belt, so 

V(Send) = Vbelt. 

(3.8) 

(3.9) 

The boundary condition for A follows form the known cross-sectional area of the nozzle 

(3.10) 

The fixed vertical distance between the nozzle and the belt gives the additional constraint 

l···d 

Bin9{s)ds=L. (3.11) 

'Ib make the system (3.5)-{3.11) complete we need two boundary conditions for r. Since 
the position r is with respect to the fixed nozzle, we have one boundary condition for r 

rIO, t) = o. (3.12) 

The second boundary condition is chosen later in this section and our choice is justified 
in Section 4. By integrating (3.6), using (3.8) and (3.10), we find that 

F 
A{s) = -(-) , vsp 

where the mass flux is given by F = PVnozzle7r~ozzle/4. We eliminate A from (3.5) to 
obtain 

rsV" + vr"" = 3v(r"vs/v)s + g/v. 

Next we introduce a new variable ~ by 

v. 
~ = v -31'-, 

V 

(3.13) 

(3.14) 
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which stands for the scaled momentum transfer through a jet cross-section and plays a 
crucial role in our further analysis. By use of { we write (3.13) as 

g 
({r.), =. 

v 

Using et = rSJ and (et)s = -9se nJ we can write (3.15) in components as 

{ _ gsin(8) 
,s- v ' 

and 
8 = gcos(8) 

• {v· 

(3.15) 

(3.16) 

(3.17) 

Equation (3.17) requires a boundary condition for 8; this is related to the queation of 
boundary conditions for r. 

We scale the system as follows: the length. is scaled with reapect to 311/Vno",le, and 
the velocity v with respect to Vneo,le. Then, (3.16), (3.17), (3.14), (3.8), (3.9) and (3.11) 
become 

{. = Asin(8), 
v 

8 _ Acos(8) 
s - €v ' 

v, 
{= v - il' 
v(O) = 1, 

v( 'end) = Dr, 

1'·" sin(8(s))ds = Re. 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

Here, A = 3gll/V~ozzlel Re = vnozzleL/(311) is the Reynolds number, Dr = Vbelt/Vnozzle is 
the draw ratio, and the scaled Send becomes SendVnozzle/(311). The dimensionless number 
A is related to the Froude number Fr = Vno"le/,jijL and Re as A = 1/(ReFr2

). After 
scaling the system is described in terms of three positive dimensionless numbers, which 
define a parameter space ~ as 

~ = {(A,Re,Dr): A > O,Re > O,Dr > O}. (3.24) 

The nozzle orientation O'nozzle only appears in the bmwdary condition for e for the 
concave jet (3.38), and is considered to be fixed. 

By replacing the material coordinate s by the time variable 7", according to 

ds = v(T)dT, 

the system (3.18)-(3.23) becomes 

{T = Asin(8), 
8 _ Acos(8) .,.- e ' 

VT 
{=v- v2 ' 

v(O) = 1, 

V(Tend) = Dr, 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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fo
T

" " sin(8(T))V(T)dT = Re. 
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(3.31) 

Here, rend is the result of the coordinate transformation (3.25) of Send = J;end v(r)dr. 
Next, we solve (3.26) and (3.27), using the first integral 

to obtain 

Here, Cl and C2 are unknown constants to be determined later. 

(3.32) 

(3.33) 

(3.34) 

In the analysis we restrict ourselves to solutions with e E [0,7r/21. Then, we conclude 
from (3.26) that { is a strictly increasing function. Therefore, we distinguish three possible 
situations for the sign of ~: always positive, a sign change from negative to positive, and 
always negative, i.e. 

0< {(OJ < {(Tend), 

{(OJ ~ 0 ~ {(Tend), 

{(OJ < {(Tend) < O. 

(3.35) 

(3.36) 

(3.37) 

If (3.35) holds, then it follows from (3.27) that e is a strictly increasing function for 
8 < 7r /2, implying that the jet has a concave shape. As will be justified in Section 4 we 
prescribe the nozzle orientation angle as the boundary condition for e, i.e. 

8(0) = a="le' (3.38) 

Substitution of (3.38) into (3.33)-(3.34) gives 

{= .J A2T2 + 2Ay'C2 sin(an=le)T + 02, (3.39) 

8 . ( AT + y'ci. sin(a="le) ) 
= arCSIn . vi A2T2 + 2Ay'C2 sin(an=le)T + 02 

(3.40) 

Because (3.35) implies a concave shape, we refer to a jet satisfying (3.35) as a convex jet. 
Fbr (3.36) to hold, there must exist aT" E [O,Tendl such that {(T") = O. Then from 

(3.27), it follows that 8(T') = 7r/2. Substituting T' into (3.34), we have 

AT' + c, _ 1 (3.41) 
vi A2(T")2 + 2Ac,T" + 02 - , 

giving c~ = C2. This implies that 

8 == 7r/2, (3.42) 

for all T E [0, Tend], and hence the jet is vertical, and 

{=AT+C,. (3.43) 

Fbr { obeying (3.36), we obtain {(T) = AT - vI(C2)2. Because (3.36) implies a vertical 
shape, we refer to a jet satisfying (3.36) as a vertical jet. Note that for the vertical jet, 
as will be shown in Section 4, no boundary condition for e is necessary. 

If (3.37) holds, then it follows from (3.27) that 8 is a strictly decreasing function for 
8 < 7r /2. In this case the jet has a convex shape. As will be justified in Section 4, we 
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require tangency for the jet at the helt, i.e. 

e{T,nd) = O. (3.44) 

Then 

{= -j A'T{T - 2T,nd) + c" (3.45) 

e . ( A{Tond -T) ) = arCSIn / . 
V A'T{ T - 2T .. d) + C2 

(3.46) 

Because (3.37) implies a convex shape we call a jet for which (3.37) holds a convex jet. 
By substituting the found solutions for { and e into (3.28)-{3.31) for the three situa

tions (3.35)-{3.37) we successively obtain 

concave jet, 
vertical jet, 
convex jet, 

(3.47) 

(3.48) 
(3.49) 

(3.50) 

where w = ~(O). We refer to the situations of concave, vertical and convex jets as concave, 
vertical and convex How regimes, respectively. 

Fbr given wEIR and flow regime, the problem (3.47)-{3.49) has a solution V{T;W) and 
Tond{W), where T,nd{W) satisfies (3.49). Here, we assume that for any w, (3.49) has only 
one solution, which is not always true. However, this allows us to illustrate a solution 
procedure. 

Substituting V{T; w) and T .. d{W) into the integrals (3.50), we obtain the functions of w: 

1
relld (W) AT + w sin(anozzle} 

1 (w) - V {7" w)dr concave l·et, ,=, - lA'" 2A·( )'000' o V T + W + Twam Onozzle 
r ·"(w) 

lvert{w) = Jo Vvert{T; w)dT 

1
T."(W) A{Tond{W) - T) 

I,=v{w) = .IA2 ( ()) 2V,onv{T;w)dT 
o V' T T - 2Tend W + w 

vertical jet, 

convex jet. 

(3.51) 
Here, we denote by V,on,{T;W), V",,{T;W) and V'ODV{T;W) the solution of (3.47) for a 
concave, vertical and convex jet, respectively. According to (3.35)-{3.37), I,onv{w) and 
I",,{w) are defined for W .;; 0, and loon'{w) for W > O. With (3.51), solving (3.47)-{3.50) 
is equivalent to solving the algebraic equation 

I,{w) = Re, (3.52) 

where ? stands for an unknown jet How regime. Therefore, a study of existence and 
lWiqueness of a jet solution results into a study of the existence and uniqueness of a 
solution to the algebraic equation (3.52). 

At this point1 we like to briefly recapitulate the main steps in our solution procedure. 
We do this1 as an example for the concave flow; the other cases are completely analogous. 
The steps are: 
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Dr 

FIGURE 6. Parameter regions for three flow regimes 9'CODC, 9'vert and 9'CODV' The border 
between 9'CS3nc and 9'vert is 8 1 and the border between 9'CODV and 9'vert is S'}.. 

(a) Solve v = V=nc(T; w) from (3.47)" with use of the boundary condition (3.48). 
(b) Find Tend(W) from (3.49) as V=nc (Tend (W); W) = Dr. 
(c) Calculate I=nc(w) from (3.51). 
(d) Solve w from (3.52). 
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The partitioning of the parameter space EP into the regions of concave EP eonc, vertical 
EPvert and convex EPeonv jets is presented in Figure 6. The partitioning follows from the 
solutions of (3.47)-(3.50) with the additional condition ~(Tend) = 0 for the border between 
§'~rt. and §'con., and e(O) = 0 for the border between §'conc and §'~rt.. 

For any set of parameters from EPeonc , or EPvert , or fJi'eonv, a corresponding solution of 
(3.47)-(3.50) exists. This solution is unique in the case of vertical and convex flow. For 
the concave How a solution might not be unique when the nozzle does not point vertically 
down and Dr > 1. In this case up to two solutions exist for a concave jet and one solution 
for a convex or vertical jet. The questions of existence and uniqueness are fully treated in 
the upcoming paper Hlod & Peletier (2009), and for the convex jet in mod et aI. (2007). 

In the next section we justify our choice of the boundary conditions for e, i.e. (3.38) 
and (3.44), for concave and convex How, and we explain that no boundary condition is 
needed for e in case of vertical flow. 

4. Justification of boundary conditions for e 
In this section we explain our choice of boWldary conditions for e made in the previous 

section. We use the highest-order part, or principal part, of the conservation of momentwn 
equation (3.2) 

(4.1) 

This equation is of hyperbolic type in the neighborhood of B = B.nd if ~(B.nd) is close to 
zero, and in the neighborhood of s = 0, if ~(O) is close to zero, because v, = v2 + ~v > 0 
in theses situations. We consider the direction of the characteristics of (4.1), either at 
B = Bend if ~(Bend) changes sign, or at B = 0 if ~(O) changes sign. This directly yields 
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the nwnber of boundary conditions, which must be prescribed at 8 = Send or s = O. The 
feason is that the nwnber of boundary conditions at any point of the boundary ia equal 
to the number of characteristics pointing inside the domain at this point; (see Godlewski 
& Raviart 1996, p 417). 

The characteristics eqnation (see Davis 2000, p 57) for (4.1) is 

Z2 - 2vz + v2 
- V" = 0, (4.2) 

where z represents the velocity of a characteristic. Equation (4.2) has the solutions 

Zl = V + -/ii;, Z2 = v - y'v----;'. (4.3) 

According (4.3) and (3.20), the directions of the characteristics of (4.1) depend on the 
sign of { as follows: 

(a) If { > 0 then z, > 0 and Z2 > 0, i.e. the two characteristics point to the right. 
(b) If ~ = 0 then z, > 0 and Z2 = 0, i.e. one characteristic points to the right and one 

is stationary. 
(c) If { < 0 then z, > 0 and Z2 < 0, i.e. one characteristic points to the left and one 

to the right. 
From the characterization of the flow regimes (3.35)-(3.37) we infer that: 

• At s = 0 two boundary conditions for r(s, t) are necessary in case of a concave jet 
({(O) > 0), and only one in case of a vertical or convex jet ({(O) ,;;; 0). 

• In case of a convex jet, one boundary condition for r is necessary at 8 = Send 

(~(Send) < 0), and no in case of vertical or concave jets ({(Send) ;;. 0). 
For all three situations we prescribe the nozzle position. In addition, for the concave jet 
the nozzle orientation is prescribed by (3.38), and for the convex jet the tangency con
dition (3.44) with the belt is prescribed. This justifies our choice of boundary condltions 
(3.38) and (3.44) for the stationary problem. 

The analysis of characteristics, as directions of information propagation, explains why 
the nozzle orientation influences the jet shape only in the case of concave How, and why 
the belt orientation influences the jet shape only in case of convex How. 

• In concave How all information about the jet shape travels from the nozzle to the 
belt. Therefore, not only nozzle position but also nozzle orientation is relevant for the 
jet. In addition, no information on angle travels back from the belt. 

• In vertical flow only one characteristic (at the nozzle) points inside the domain. 
Therefore, no information about nozzle orientation or belt movement direction influences 
the jet shape. Thus, in vertical flow the nozzle and the belt orientations are irrelevant 
for the jet. 

• In convex flow one characteristic points inside the domain at the nozzle and one at 
the belt. Hence, information about the dlrection of the belt movement influences the jet 
shape, and therefore, the belt orientation becomes relevant in convex How. 

5. Results from the model 
In this section we present some results from our model. We analyse the partitioning of 

the parameter space. Next, we investigate changes of the flow type if one of the physical 
parameters (L, II, 'Ubelt, Vnozzle) is varied. We describe the trajectories of the process 
parameters in the parameter space 9', and we illustrate the jet shape evolution. Note 
that the only possible transitions between How types are between Y'vert and 9'ConVl and 
between 9' vert and 9' cone; see Figure 6. 

The projeciion of the regions for the three flow regimes onto the (A, Re)-plane is 
depicted in Figure 7, and following is valid for all values of Dr. We observe a region {A < 
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FIGURE 7. Regions of A and Re for which, for all Dr, different flow regime exist. In the region 
{A < AO, Re > 9f,(A)}, only concave jets are possible, in {A > AO, Re > 9f,(A)} only vertical 
jets, while in {A > 0, Re < Bla(A)} all flow regimes are possible. In the remaining region 
between Bll' Bl2 and Bla concave and vertical jets, but no convex jets, are possible. 
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FIGURE B. Regions of A and Dr for which for all Re different flow regimes exist. In the region 
{A < A"', Dr < I} only concave jets are possible, in {A > A'" 1 Dr < I} concave and vertical jets 
(no convex jets), and in {A > AO, Dr > !J1(A)} convex and vertical jets (no concave jets). In 
the remaining region between Dr = 1 and ~, all flow regimes are possible. 

AO, Re > &ll (A)} where the jet is concave, and a region {A > A*, Re > &l2(A)} where 
it is vertical. In the region between !!iI, !!i2 and !!ig concave or vertical How is possible, 
but there can be no convex flow. Finally, in the region {A > 0, Re < &latA)}, all three 
flow regimes are possible. Hence, it is only in the latter region, where Re < &la(A) < 1, 
that a convex jet can occur. 

The parameter regions projection onto the (A, Dr)-plane is depicted in Figure 8; and 
following holds for all Re. We observe that for {A > A*, Dr < I} only a concRvejet is 
possible, whlle concave or vertical flow is possible for {A > A*, Dr < I}. In the region 
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FIGURE 9. Traces of the point (A, Re, Dr) as we change one of the physical parameters (L 
increases, v decreases, Vbelt decreases, VnOl"ole increases). The curves originate at the same point 
in the region ~COD.V and eventually leave !Peonv by crossing the separating gray surface at the 
points indicated by the dots. 

{A> A', Dr > ~(A)} convex or vertical flow is possible, while in the rest of region 
{Dr > 1} all three flow regimes are possible. Hence, a convex jet can only occur if 
Dr> 1. 

Next, we study the evolution of the jet if one of the physical parameters varies as to 
change the How type from convex to vertical. For a reference configuration we take the 
physical parameters L = lern, v = O.047m2/s, Vbelt = 1.4m/s, and Vnozillle = 1m/s, for 
which the jet is convex. Then, if we increase L, decrease v, decrease VbeltJ or increase 
Vnozzle, eventually the jet flow changes from convex to vertical. The corresponding curves 
in the parameter space 9 are indicated in Figure 9. 

Changes of the jet shape while only one of the physical parameters L, v, "Vb.It, or 
V.a"l. varies as described above are shown in Figures lO(a) , lO(b), 10(c), and lO(d) , 
respectively. In Figures 9 and 10 we aee that if the point (A, Re, Dr) approaches the 
boundary of 9"conv, the jet shape becomes vertical. IT (A, Re, Dr) is very close to the 
boundary of 9"conv the jet shape is almost vertical, except for the small region near the 
belt where the jet rapidly bends to the horizontal belt direction. 

The analysis of the parameter region for the concave jet is more complex than that 
for the convex jet. In CMe {A > A', Dr < 1} ("Only concave jet" in Figure 8), the 
flow is concave for all L. Similar, if {A < A', Re > q,(A)} ("Only concave jet" in 
Figure 7), the flow is concave for all Vbelt. In a situation when v decreases or Vnozzle 

increases, A approaches zero and Re approaches infinity since A = 3gv/V!ozzle' and 
Re = vn.,..,.L/(3v). Thus, eventually the point (A,Re) enters the "Only concave jet" 
region in Figure 7. Hence, if the jet is not in the concave How regime, decreasing v or 
increasing Vnozzle makes the jet to become concave eventually. 

'Ib illustrate the change of How from concave to vertical, while only one of the param
eters L, v, Vbelt, and Vnozzle varies, we take the reference values L = 3D em, v = D.2m2 /s, 
Vbelt = 2 mis, and Vnozzle = 1.5 m/s. Then, if we decrease L, increase v, increase Vbelt, or 
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(e) Convex jet shapes for different 
t1belt: 1.4, 1.21, 1.11, and 1.08 m/s. The 
shape approaches the vertical as Vbelt 

decreases. 

(b) Convex jet shapes for different v: 
0.047, 0.026, 0.015, and 0.012 m' Is. 
The shape approaches the vertical as 
1.1 decreases. 
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(d) Convex jet shapes for different 
VDoule : 1, 1.16, 1.24, and 1.26 m/s. The 
shape approaches the vertical as VDozzle 
increases. 

FIGURE 10. Shapes of the eonvex jet for different values of L, 1.1, Vbelt and VnO:llllle. The reference 
values are L = 1 em, 1.1 = 0.047 m2/s, Vbelt = 1Am/s, and Vnoule = 1 m/s. 

decrease Vnozzle eventually the jet How changes from concave to vertical. The curves in 
the parameter space !Ji' are indicated in Figure 11. 

Changes of the jet shape for ano,.le = 7r /4, while only one of the physical parameters L, 
v, 'lIb.lt, or Vn~l. varies as described above are shown in Figures 12(a), 12(b), 12(c), and 
12(d), respectively. In Figures 11 and 12 we see thst if the point (A, Re, Dr) approaches 
the bonndary of !Ji'con" the jet shspe becomes more vertical. If (A, Re, Dr) is very close 
to the boundary of 9' cone the jet shape is almost vertical except for the small region near 
the belt where the jet rapidly bends from the nozzle direction to an almost vertical one. 

The analysis above shows that the transition between the convex and the concave flow 
regimes as parameters continuously vary is only possible via the vertical How. In the next 
section we compare the results from our model with those from our experiments. 

6. Comparison between the model and experiments 
In this section we validate our model using the results of the experiments described in 

Section 2 by comparing the corresponding relations between Xend and Vbelt. We compare 
the shapes from the experiments and the model, and discuss differences and similarities 
for jets in convex and concave How regimes. 

6.1. Comparison of Xend 

We start by comparing the model predictions of the touchdown point with the ones 
obtained from the experiments in Figure 3. The following values of parameters are used 
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FIGURE 11. Cmves in the parameter space &1 as we change one ofthe parameters (L decreases, v 
increases, tlbelt increases, Vnozzle decreases). The curves originates at the same point in the region 
&JC O'1J.C and eventually leave &JCOD.C by crossing the sepaxating surface at the points indicated by 
the dots. 

'Vnozzle = 1. 147 m/s, L = 4.1cm, v = O.047m2/s, dnozzle = O.4mm, and Clnozzle = 5°. 
In Figure 13 we present the relations between Xend and Vbelt obtained from the model 
(solid curve) and the experiments (dots). The partitioning of the parameter space f?' 
gives the regions of Vbelt for the three flow regimes as indicated by the vertical lines (at 
'Ubelt = Vl and '(2). For small Vbelt the flow is concave, for increasing 'Vbelt vertical, and 
for even larger Vbelt convex. 

A curve C(Xendl 1.'belt), describing the relation between Xend and Vbelt as obtained from 
the model (solid curve in Figure 13) consists of three parts: 

Concave jet part. For Vbelt cl08eto 0, Xend increases as Vbelt increases, till C(Xend, Vbelt) 

reaches its maximum. For further increasing Vbelt, XEUld decreases till C(Xend, Vbelt) be
comes vertical (at Vbelt = V2). After this point C(Xendl Vbelt) bends back and Xend decreases 
to zero; during this phase Vbelt decreases to VI. At this point where Xend becomes zero, 
the jet becomes vertical; in the preceding part of C(Xend, Vbelt) the jet is concave. Hence, 
for Vbelt E [0,1.1:2] and XEUld > 0, the jet is concave. 

Vertical jet part. This part of C(X .. d, "".It) is horizontal with X .. d = 0, while "".It 

increases from VI to V2. In this part, the flow is vertical. 
Convex jet part. This part of C(Xend, Vbe1t) starts at Xend = 0 and Vbelt = V2, after 

which both Xend and Vbelt increase. In this part the jet is convex. 
Looking at the shape C(Xend, Vbelt) in Figure 13 within the region VI < Vbelt < 1.1:2, we 
notice that the solution is non-unique there: two concave and one vertical solution exist 
there. This illustrates the non-uniqueness of the jet solution for Onozzle < 1r/2. 

The experimental results have qualitatively the same tendency as the theoretical ones 
from our model. For ""elt close to zero (the first three experimental values) the small 
maximum, or a kind of plateau, is found too and after that the values monotonically 
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FIGURE 12. Shapes of the concave jet for different values of L, v, 'llbelt, VnOllllle • The reference 
values are L = 30 CUl, v = 0.2 m 2 Is, Vbelt = 2 mIs, and Vnoule = 1.5 m/s. The nozzle orientation 
is Onozzie = 7r I 4. 
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FIGURE 13. Comparison of the relations between Vbelt and Xend. as obtained from the model 
C(X~d,,,,,.lt) (solid line) and from the experiment (dots) for L = 4.1cm, v = O.047m2js, 
VnOl!lzle = 1.147 mIs, dnozzle = 0.4mm, and Onozzle = 5°. A vertical jet occurs for 'Vbelt E [Vl,tJ2j, 

and Xend. = O. 
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FIGURE 14. The regions of Vbelt and L for the three flow regimes and the experimental values of 
Xend. Here, two values of L are used 4.1 em and 6.8 em. The other parameters are v = 0.047 m2/s, 
Vnozlile = 1.147m/s, duoule = O.4mm, and O:ILOlizie = 5Q

• The value of Xend is small for Vbelt in 
the parameter region for the vertical jet and increaBes if Ubelt goes away from this region. 

decrease till Xend becomes zero. This represents the transition from the concave to the 
vertical jet regime. The following observation points a.lllie in the convex jet regime and 
they show a monotonic increase of Xend with Vbelt. Hence, the behavior of the experimental 
data agrees, in general, with that predicted by the model. The only difference is (non
)monotonicity in the small region between VI and V2. 

Although the theoretical and experimental results agree in a qualitative sense, quan
titatively significant differences are found. The values of Xend predicted by the model 
for convex and concave Hows are larger than the values obtained experimentally. We 
comment on this in the next section 

Finally, we compare the predictions of the parameter regions in the (''''.It, L)-plane for 
flow regimes obtained from the model with those from the experiments. Th determine the 
type of How regime from the experimental data, we observe the behavior of Xend as Vbelt 
increases: for concave How Xend decreases, for vertical How Xend is close to zero, and for 
convex How Xend increases. The results for two values of L are presented in Figure 14. For 
the smaller L we clearly see that in the concave jet region Xend decreases, stays close to 
zero in the vertical jet region, and increases in the convex jet region as Vbelt increases. A 
similar behavior of Xend is observed for the larger L, except in the convex jet region where 
the increase of Xend is less significant. Summarizing, we conclude that the experimental 
results for the parameter regions for the three How regimes in the {Vbelt,L)-plane agree 
with the theoretical ones. 

6.2. Comparison of jet shapes 

Theoretically and experimentally obtained jet shapes are presented in Figures 15 and 16 
for a concave and a convex jet, respectively. The experimental shapes are obtained from 
the photos using an image analysis program. For vertical jet the only differences between 
the experimental and theoretical shapes is due to bending regions near the nozzle and 
the belt in the experiments. Therefore, we do not discuss vertical jet here. 



Three viscous jet flow regimes 
y (em) 

Nozzle orientation 

19 

FIGURE 15. Comparison of concave the jet shapes obtained theoretically and experimentally 
for L = 4.1 em, v = 0.047m2 /s, Vuoszle = 1.147m/s, Vbelt = 0.81 mIs, and Ouoszle = 50. 
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FIGURE 16. Comparison of the convex jet shapes obtained theoretically and experimentally for 
L = 4.1 em, v = 0.047 m2/s, Vnozzle = 1.147 mIs, tlbelt = 4.398 mIs, and O:'noszle = 50. 

In Figure 15 we compare the jet shapes for the concave How. The experimental shape 
bends steeper down at the nozzle than the one from the model, and is more curved. 
This results in a smaller Xe.ud from the experiment than predicted theoretically. The 
bending region near the belt in the experimental jet does not contribute significantly to 
the difference in Xeud. 

The comparison of the jet shapes for the convex flow is presented in Figure 16. In the 
experimental shape a small bending region appears near the nozzle where the jet bends 
from the nozzle orientation to some preferred orientation. This orientation is closer to 
the vertical than our theory predicts. The middle part of the experimental jet is almost 
straight, clearly less curved than the one obtained form the model. Near the belt the 
experimental jet bends to the horizontal more rapidly then the one from the model. The 
theoretical shape is curved more unifonnly than the experimental one. All this results in 
a larger Xend predicted theoretically than observed experimentally. 

6.3. Discussion about differences and similarities 

From comparing the jet shapes, including Xend, for the two How regimes concave and 
convex, we observe significant differences in the jet shapes obtained theoretically and ex
perimentally. The common difference for these flow regimes is the difference in curvature 
of the shapes. Also differences due to bending near the nozzle and the belt are found. 
The steep bending downwards near the nozzle of the concave jet in the experiment, and 
the differences in the jet orientation near the nozzle in the convex How playa significant 
role in the observed shape differences. At; a consequence the theoretical predictions of 
Xeud are larger than the experimental ones. 

We conjecture that the cause of these differences lies in the effects which we did not 
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include in our model, such as air resistance, bending stiffness and surface tension. Ex
periments for dnozzle = 1 mm, and L = 0.054 m are shown in Figure 2. We found that the 
differences mentioned above in Xend are smaller for the thicker jet falling from a smaller 
height L, which makes us believe that air resistance is important. For the thicker jet, we 
do not observe in the experiments a steep bending of the concave jet near the nozzle; see 
Figures 2(a), 2(b) and 5. The effect of the bending at the nozzle can be compensated 
by adjusting the value of O'noz:z:le in our model. Bending stiffness is less important for 
thinner jets, and surface tension for larger flow velocities. For Vbelt close to zero, the 
jet is unstable near the belt, but adequate modeling of this instability is still an open 
question. 

To conclude, we state that our model predicts correctly the transitions between the pa
rameter regions for the three flow regimes. Also the tendencies in the (partial) monotonic 
behavior of Xend as Vbelt increases are predicted well, yielding a satisfactory qualitative 
agreement. However, significant quantitative differences are obtained. 

7. Summary of the three flow regimes 

Using our knowledge about the three How regimes from model and experiment, we 
describe typical features of each flow regime. In the model the three flow regimes are 
characterized by the sign of the dimensionless variable ~. The value of ~ represents the 
momentum transfer through a cross-section of the jet and describes the balance between 
the inertia and viscous terms in the conservation of momentum equation (3.5). Flow 
characterization using experimental jet shape featlU'es is possible as well. Below, we 
describe each flow regime separately 

Concave flow. In this flow regime ~ ill positive. This means that the momentum 
transfer due to inertia is larger than that due to viscosity. This is reHected in the concave 
shape of the jet comparable to a ballistic trajectory. The nozzle orientation is important 
for the jet shape. When the nozzle points vertically down the jet shape in this flow regime 
is vertical, no matter the flow regime is concave or vertical. Therefore, in this case the 
characterization of the flow regime using the jet shape does not distinguish between 
vertical and concave jets. 

Vertical flow. In this How regime e changes sign from negative near the nozzle to 
positive near the belt. Hence, the momentum transfer due to viscosity is larger near the 
nozzle and the one due to inertia is so near the belt. The belt and nozzle orientations are 
now irrelevant for the jet shape, which is straight vertical in the experiments (except a 
possible bending region near the nozzle and bending or unstable region near the belt) as 
well as in the model. 

Convex flow. In this How regime e is negative, which means that the momentwn 
transfer due to viscosity is larger than that due to inertia. Both in the experiments and 
the model the jet shape is conV€X (disregarding a smali bending region near the nozzle 
in the experiment) and the jet touches the belt tangentially. 
Summarizing, we conclude that the flow regimes can be characterized by the sign of 
the momentum transfer throngh the cross-section of the jet or by the convexity of the 
jet shape. However, for Q'nozzle = 1r/2 the concave jet shape is vertical, which makes it 
then impossible to distinguish between the concave and vertical flow regimes. Some more 
shape features such as the tangency condition at the belt for the convex flow, and the 
relevance of the nozzle orientation for the concave How can be used to distinguish these 
flow regimes. 
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8. Conclusions 

In this paper we have studied experimentally and theoretically the problem of the fall 
of a viscous jet onto a moving belt. Three flow regimes of the jet are distinguished and 
characterized by the convexity of the jet shape, i.e. concave, vertical, and convex. 

We have modeled the jet using a thin-jet approximation including the effects of iner
tia, viscous tension and gravity. The model consists of the stationary conservation laws 
for ID.8SS and momentum. A change of the independent variable is made to allow for 
a transformation of the model equations into an algebraic equation. The partitioning 
of the parameter space between the three How regimes is evaluated in terms of three 
dimensionless numbers. 

The model shows that the sign of the momentum transfer through a croso-section 
of the jet determines the corresponding flow regime. For each flow regime the correct 
boundary condition for the jet orientation is derived by looking at the characteristics of 
the dynamic conservation of momentum equation. These boundary conditions for the jet 
orientation are: 

(a) the nozzle orientation for the concave jet, 
(b) no boundary condition for the vertical jet, 
(c) the tangency of the jet at the belt for the convex jet. 

The missing boundary condition for the vertical jet is replaced by the constraint that at 
the point where the momentum transfer equals zero the jet is aligned with the vertical 
direction of gravity. 

It is shown that a continuous transition between the concave and the convex jets is 
only possible via the vertical one. Also the way how the dimensionfull parameters should 
be changed in order to leave the convex or concave jet region is indicated. 

Comparison of the relations between the horizontal position of the touchdown point 
Xend and the belt velocity Vbelt, obtained from experiments and from the model, shows 
that: 

(a) The model and experiments show similar monotonic behavior of Xend as Vbelt is 
changed. 

(b) The parameter regions in the (Vb,It, L)-plane for the three flow regimes predicted 
by the model agree with the experimental data. 

(c) Quantitatively the relations between X,nd and Vb,lt show a significant mismatch 
(experiments give smaller Xend) due to differences in the shapes of calculated and exper
imentally observed jets. 
As a final conclusion, we state that the model, which includes viscous tension and in
ertia, but disregards air resistance, bending stiffness, and surface tension, describes in 
qualitative sense the fall of a jet of a Newtonian fluid under gravity. 
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